login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126985
Expansion of 1/(1+8*x*c(x)), c(x) the g.f. of Catalan numbers A000108.
6
1, -8, 56, -400, 2840, -20208, 143664, -1021728, 7265240, -51665200, 367392656, -2612584928, 18578329456, -132112749920, 939467783520, -6680662171200, 47506922377560, -337827035002800, 2402325467002320, -17083203745473120, 121480558396908240, -863861754435010080
OFFSET
0,2
COMMENTS
Hankel transform is (-8)^n.
Catalan transform of (-1)^n*A001018(n). - R. J. Mathar, Nov 11 2008
LINKS
FORMULA
a(n) = Sum_{k=0..n} A039599(n,k)*(-9)^k.
G.f.: 2/(10 - 8*sqrt(1-4*x)). - G. C. Greubel, May 28 2019
D-finite with recurrence 9*n*a(n) +2*(14*n+27)*a(n-1) +128*(-2*n+3)*a(n-2)=0. - R. J. Mathar, Nov 22 2024
MAPLE
c:=(1-sqrt(1-4*x))/2/x: ser:=series(1/(1+8*x*c), x=0, 25): seq(coeff(ser, x, n), n=0..21); # Emeric Deutsch, Mar 24 2007
MATHEMATICA
CoefficientList[Series[2/(10-8*Sqrt[1-4*x]), {x, 0, 30}], x] (* G. C. Greubel, May 28 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(2/(10-8*sqrt(1-4*x))) \\ G. C. Greubel, May 28 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 2/(10-8*Sqrt(1-4*x)) )); // G. C. Greubel, May 28 2019
(Sage) (2/(10-8*sqrt(1-4*x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 28 2019
CROSSREFS
KEYWORD
sign
AUTHOR
Philippe Deléham, Mar 21 2007
EXTENSIONS
More terms from Emeric Deutsch, Mar 24 2007
STATUS
approved