login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122552
a(0)=a(1)=a(2)=1, a(n) = a(n-1) + a(n-2) + 2*a(n-3) for n > 2.
3
1, 1, 1, 4, 7, 13, 28, 55, 109, 220, 439, 877, 1756, 3511, 7021, 14044, 28087, 56173, 112348, 224695, 449389, 898780, 1797559, 3595117, 7190236, 14380471, 28760941, 57521884, 115043767, 230087533, 460175068, 920350135, 1840700269, 3681400540
OFFSET
0,4
COMMENTS
Equals INVERT transform of (1, 0, 3, 0, 3, 0, 3, ...). - Gary W. Adamson, Apr 27 2009
No term is divisible by 3. - Vladimir Joseph Stephan Orlovsky, Mar 24 2011
For n > 3, a(n) is the number of quaternary sequences of length n-1 starting with q(0) = 0, in which all triples (q(i), q(i+1), q(i+2)) contain digits 0 and 3; cf. A294627. - Wojciech Florek, Jul 30 2018
For n > 0, a(n) is the number of ways to tile a strip of length n with squares, dominoes, and two colors of trominoes, with the restriction that the first tile cannot be a domino. - Greg Dresden and Bora Bursalı, Aug 31 2023
FORMULA
a(3*n) = 2*a(3*n-1)+2, a(3*n+1) = 2*a(3*n)-1, a(3*n+2) = 2*a(3*n+1)-1, a(0)=1.
G.f.: (1-x^2)/(1-x-x^2-2*x^3).
a(n) = ((-1)^n*A130815(n+2) + 3*2^n)/7. - R. J. Mathar, Nov 30 2008
From Paul Curtz, Oct 02 2009: (Start)
a(n) = A140295(n+2)/4.
a(n+1) - 2a(n) = period 3: repeat -1,-1,2 = -A061347.
a(n) - a(n-1) = 0,0,3,3,6,15,27,54,111,... = 3*A077947.
a(n) - a(n-2) = 0,3,6,9,21,42,81,....
a(n) - a(n-3) = 3,6,12,24,... = A007283 = 3*A000079.
a(3n) + a(3n+1) + a(3n+2) = 3,24,192,... = A103333(n+1) = A140295(3n) + A140295(3n+1) + A140295(3n+2).
See A078010, A139217, A139218. (End)
EXAMPLE
It is shown in A294627 that there are 42 quaternary sequences (i.e., build from four digits 0, 1, 2, 3) and having both 0 and 3 in every (consecutive) triple. Only a(5=4+1) = 13 of them start with 0: 003x, 030x, 03y0, 0y30, 0330, where x = 0, 1, 2, 3 and y = 1, 2.
MAPLE
seq(coeff(series((1-x^2)/(1-x-x^2-2*x^3), x, n+1), x, n), n=0..40); # Muniru A Asiru, Aug 02 2018
MATHEMATICA
LinearRecurrence[{1, 1, 2}, {1, 1, 1}, 40]
CoefficientList[ Series[(x^2 - 1)/(2x^3 + x^2 + x - 1), {x, 0, 35}], x] (* Robert G. Wilson v, Jul 30 2018 *)
PROG
(Sage) from sage.combinat.sloane_functions import recur_gen3; it = recur_gen3(1, 1, 1, 1, 1, 2); [next(it) for i in range(30)] # Zerinvary Lajos, Jun 25 2008
(PARI) Vec((1-x^2)/(1-x-x^2-2*x^3)+O(x^99)) \\ Charles R Greathouse IV, Jan 17 2012
(GAP) a:=[1, 1, 1];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+2*a[n-3]; od; a; # Muniru A Asiru, Jul 30 2018
CROSSREFS
Cf. A294627.
Sequence in context: A293342 A298346 A373718 * A197546 A074862 A101064
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Sep 20 2006
EXTENSIONS
Corrected by T. D. Noe, Nov 01 2006, Nov 07 2006
Typo in definition corrected by Paul Curtz, Oct 02 2009
STATUS
approved