login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117457
Number of parts in all partitions of n in which every integer from the smallest part to the largest part occurs as a part.
2
1, 3, 6, 10, 15, 24, 32, 45, 63, 82, 107, 144, 179, 228, 296, 362, 450, 564, 684, 839, 1029, 1232, 1487, 1799, 2141, 2546, 3044, 3589, 4237, 5015, 5863, 6869, 8051, 9361, 10904, 12677, 14657, 16948, 19595, 22552, 25927, 29812, 34130, 39066, 44703, 50955, 58070
OFFSET
1,2
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..20000 (terms 1..5000 from Alois P. Heinz)
FORMULA
a(n) = Sum_{k=1..n} k * A117456(n,k).
G.f.: Sum_{j >= 1} (j*x^j*(Product_{i=1..j-1} (1+x^i))/(1-x^j)) (obtained by taking the derivative with respect to t of the g.f. G(t,x) of A117456 and setting t=1).
EXAMPLE
a(5) = 15 because in the 5 (=A034296(5)) partitions in which every integer from the smallest to the largest part occurs, namely [5], [3,2], [2,2,1],[2,1,1,1] and [1,1,1,1,1], the total number of parts is 1+2+3+4+5 = 15.
MAPLE
g:=sum(j*x^j*product(1+x^i, i=1..j-1)/(1-x^j), j=1..60): gser:=series(g, x=0, 55): seq(coeff(gser, x^n), n=1..50);
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
add((p-> p+[0, p[1]*j])(b(n-i*j, i-1)), j=1..n/i)))
end:
a:= n-> add(b(n, k)[2], k=0..n):
seq(a(n), n=1..50); # Alois P. Heinz, Oct 09 2020
MATHEMATICA
b[n_, i_] := b[n, i] = Module[{p}, If[n==0, {1, 0}, If[i<1, {0, 0}, Sum[p = b[n - i j, i-1]; If[p === 0, {0, 0}, p + {0, p[[1]] j}], {j, 1, n/i}]]]];
a[n_] := Sum[b[n, k][[2]], {k, 0, n}];
Array[a, 50] (* Jean-François Alcover, Dec 04 2020, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A122554 A111734 A372111 * A024674 A026104 A261632
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Mar 18 2006
STATUS
approved