login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108476
Expansion of (1-4x)/(1-6x-12x^2+8x^3).
0
1, 2, 24, 160, 1232, 9120, 68224, 508928, 3799296, 28357120, 211662848, 1579868160, 11792306176, 88018952192, 656982441984, 4903783628800, 36602339459072, 273203580764160, 2039219289063424, 15220939987877888
OFFSET
0,2
COMMENTS
In general, sum{k=0..n, sum{j=0..n, C(2(n-k),j)C(2k,j)r^j}} has expansion (1-(r+1)x)/((1+(r+3)x+(r-1)(r+3)x^2+(r-1)^3*x^3).
FORMULA
G.f.: (1-4x)/((1+2x)(1-8x+4x^2)); a(n)=6a(n-1)+12a(n-2)-8a(n-3); a(n)=sum{k=0..n, sum{j=0..n, C(2(n-k), j)C(2k, j)3^j}}.
Conjecture: a(n)=A002605(n+1)*A026150(n). [From R. J. Mathar, Jul 08 2009]
a(0)=1, a(1)=2, a(2)=24, a(n)=6*a(n-1)+12*a(n-2)-8*a(n-3) [From Harvey P. Dale, Feb 21 2012]
a(n) = (-2)^n/2 +A102591(n)/2. - R. J. Mathar, Sep 20 2012
MATHEMATICA
CoefficientList[Series[(1-4x)/(1-6x-12x^2+8x^3), {x, 0, 30}], x] (* or *) LinearRecurrence[{6, 12, -8}, {1, 2, 24}, 30] (* Harvey P. Dale, Feb 21 2012 *)
CROSSREFS
Sequence in context: A234352 A241623 A288443 * A157053 A279853 A052411
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jun 04 2005
STATUS
approved