login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094133
Leyland primes: 3, together with primes of form x^y + y^x, for x > y > 1.
23
3, 17, 593, 32993, 2097593, 8589935681, 59604644783353249, 523347633027360537213687137, 43143988327398957279342419750374600193, 4318114567396436564035293097707729426477458833, 5052785737795758503064406447721934417290878968063369478337
OFFSET
1,1
COMMENTS
Contains A061119 as a subsequence.
LINKS
Charles R Greathouse IV and Hans Havermann (Charles R Greathouse IV to 49), Table of n, a(n) for n = 1..100
Ed Copeland and Brady Haran, Leyland Numbers, Numberphile video (2014).
Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
EXAMPLE
2^1 + 1^2, 3^2 + 2^3, 9^2 + 2^9, 15^2 + 2^15, 21^2 + 2^21, 33^2 + 2^33, 24^5 + 5^24, 56^3 + 3^56, 32^15 + 15^32, 54^7 + 7^54, 38^33 + 33^38.
MAPLE
N:= 10^100: # to get all terms <= N
A:= {3}:
for n from 2 while 2*n^n < N do
for k from n+1 do if igcd(n, k)=1 then
a:= n^k + k^n;
if a > N then break fi;
if isprime(a) then A:= A union {a} fi fi;
od
od:
A; # if using Maple 11 or earlier, uncomment the next line
# sort(convert(A, list)); # Robert Israel, Apr 13 2015
MATHEMATICA
a = {3}; Do[Do[k = m^n + n^m; If[PrimeQ[k], AppendTo[a, k]], {m, 2, n}], {n, 2, 100}]; Union[a] (* Artur Jasinski *)
PROG
(PARI) f(x)=my(L=log(x)); L/lambertw(L) \\ finds y such that y^y == x
list(lim)=my(v=List()); for(x=2, f(lim/2), my(y=x+1, t); while((t=x^y+y^x)<=lim, if(ispseudoprime(t), listput(v, t)); y+=2)); Set(v) \\ Charles R Greathouse IV, Oct 28 2014
CROSSREFS
Cf. A061119 (primes where one of x,y is 2), A064539 (non-2 values where one of x,y is 2), A253471 (non-3 values where one of x,y is 3), A073499 (subset listing y where x = y+1), A076980 (Leyland numbers).
Sequence in context: A292082 A001601 A061119 * A049985 A126579 A309060
KEYWORD
nonn
AUTHOR
Lekraj Beedassy, May 04 2004
EXTENSIONS
Corrected and extended by Jens Kruse Andersen, Oct 26 2007
Edited by Hans Havermann, Apr 10 2015
STATUS
approved