OFFSET
2,3
COMMENTS
Note that a(0) is also well-defined to be 1 because the only solution to x - phi(x) = 0 is x = 1. - Jianing Song, Dec 25 2018
LINKS
T. D. Noe, Table of n, a(n) for n = 2..10000
FORMULA
From Amiram Eldar, Apr 08 2023 (Start)
a(A005278(n)) = 0.
a(A131825(n)) = 1.
a(A063741(n)) = n. (End)
EXAMPLE
Cototient(x) = 101 for x in {485, 1157, 1577, 1817, 2117, 2201, 2501, 2537, 10201}, with a(101) = 8 terms; e.g. 485 - phi(485) = 485 - 384 = 101. Cototient(x) = 102 only for x = 202 so a(102) = 1.
MATHEMATICA
Table[Count[Range[n^2], k_ /; k - EulerPhi@ k == n], {n, 2, 105}] (* Michael De Vlieger, Mar 17 2017 *)
PROG
(PARI) first(n)=my(v=vector(n), t); forcomposite(k=4, n^2, t=k-eulerphi(k); if(t<=n, v[t]++)); v[2..n] \\ Charles R Greathouse IV, Mar 17 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Aug 13 2001
EXTENSIONS
Name edited by Charles R Greathouse IV, Mar 17 2017
STATUS
approved