login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054785
a(n) = sigma(2n) - sigma(n), where sigma is the sum of divisors of n, A000203.
24
2, 4, 8, 8, 12, 16, 16, 16, 26, 24, 24, 32, 28, 32, 48, 32, 36, 52, 40, 48, 64, 48, 48, 64, 62, 56, 80, 64, 60, 96, 64, 64, 96, 72, 96, 104, 76, 80, 112, 96, 84, 128, 88, 96, 156, 96, 96, 128, 114, 124, 144, 112, 108, 160, 144, 128, 160, 120, 120, 192, 124, 128, 208
OFFSET
1,1
COMMENTS
Sum of divisors of 2*n that do not divide n. - Franklin T. Adams-Watters, Oct 04 2018
a(n) = 2*n iff n = 2^k, k >= 0 (A000079). - Bernard Schott, Mar 24 2020
LINKS
Octavio A. Agustín-Aquino, Wang-Sun formula in GL(Z/2kZ), Integers, Vol. 23 (2023), #A37.
FORMULA
a(n) = A000203(2n) - A000203(n).
a(n) = 2*A002131(n).
a(2*n) = A000203(n) + A000593(2*n). - Reinhard Zumkeller, Apr 23 2008
L.g.f.: -log(EllipticTheta(4,0,x)) = Sum_{ n>0 } (a(n)/n)*x^n. - Benedict W. J. Irwin, Jul 05 2016
G.f.: Sum_{k>=1} 2*k*x^k/(1 - x^(2*k)). - Ilya Gutkovskiy, Oct 23 2018
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/8 = 1.2337005... (A111003). - Amiram Eldar, Jan 19 2024
EXAMPLE
n=9: sigma(18)=18+9+6+3+2+1=39, sigma(9)=9+3+1=13, a(9)=39-13=26.
MAPLE
a:= proc(n) local e;
e:= 2^padic:-ordp(n, 2);
2*e*numtheory:-sigma(n/e)
end proc:
map(a, [$1..100]); # Robert Israel, Jul 05 2016
MATHEMATICA
Table[DivisorSigma[1, 2n]-DivisorSigma[1, n], {n, 70}] (* Harvey P. Dale, May 11 2014 *)
Table[CoefficientList[Series[-Log[EllipticTheta[4, 0, x]], {x, 0, 80}], x][[n + 1]] n, {n, 1, 80}] (* Benedict W. J. Irwin, Jul 05 2016 *)
PROG
(PARI) a(n)=sigma(2*n)-sigma(n) \\ Charles R Greathouse IV, Feb 13 2013
(Magma) [DivisorSigma(1, 2*n) - DivisorSigma(1, n): n in [1..70]]; Vincenzo Librandi, Oct 05 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Labos Elemer, May 22 2000
STATUS
approved