OFFSET
1,1
COMMENTS
Consider the free algebraic system with two commutative associative operators (x+y) and (x*y) and two generators A,B. The number of elements with n occurrences of the generators is 2*a(n) if n>1, and the number of generators if n=1. - Michael Somos, Aug 07 2017
From Gus Wiseman, Feb 07 2020: (Start)
Also the number of semi-lone-child-avoiding rooted trees with n leaves. Semi-lone-child-avoiding means there are no vertices with exactly one child unless that child is an endpoint/leaf. For example, the a(1) = 2 through a(3) = 10 trees are:
o (oo) (ooo)
(o) (o(o)) (o(oo))
((o)(o)) (oo(o))
((o)(oo))
(o(o)(o))
(o(o(o)))
((o)(o)(o))
((o)(o(o)))
(o((o)(o)))
((o)((o)(o)))
(End)
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..500
David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784 [math.CO], (30-June-2014).
F. Chapoton, F. Hivert, J.-C. Novelli, A set-operad of formal fractions and dendriform-like sub-operads, arXiv preprint arXiv:1307.0092 [math.CO], 2013.
V. P. Johnson, Enumeration Results on Leaf Labeled Trees, Ph. D. Dissertation, Univ. Southern Calif., 2012. - From N. J. A. Sloane, Dec 22 2012
N. J. A. Sloane, Transforms
FORMULA
Doubles (index 2+) under EULER transform.
Product_{k>=1} (1-x^k)^-a(k) = 1 + a(1)*x + Sum_{k>=2} 2*a(k)*x^k. - Michael Somos, Aug 07 2017
a(n) ~ c * d^n / n^(3/2), where d = 6.158893517087396289837838459951206775682824030495453326610366016992093939... and c = 0.1914250508201011360729769525164141605187995730026600722369002... - Vaclav Kotesovec, Aug 17 2018
EXAMPLE
For n=2, the 2*a(2) = 6 elements are: A+A, A+B, B+B, A*A, A*B, B*B. - Michael Somos, Aug 07 2017
MATHEMATICA
terms = 22;
B[x_] = x O[x]^(terms+1);
A[x_] = 1/(1 - x + B[x])^2;
Do[A[x_] = A[x]/(1 - x^k + B[x])^Coefficient[A[x], x, k] + O[x]^(terms+1) // Normal, {k, 2, terms+1}];
Join[{2}, Drop[CoefficientList[A[x], x]/2, 2]] (* Jean-François Alcover, Aug 17 2018, after Michael Somos *)
slaurte[n_]:=If[n==1, {o, {o}}, Join@@Table[Union[Sort/@Tuples[slaurte/@ptn]], {ptn, Rest[IntegerPartitions[n]]}]];
Table[Length[slaurte[n]], {n, 10}] (* Gus Wiseman, Feb 07 2020 *)
PROG
(PARI) {a(n) = my(A, B); if( n<2, 2*(n>0), B = x * O(x^n); A = 1 / (1 - x + B)^2; for(k=2, n, A /= (1 - x^k + B)^polcoeff(A, k)); polcoeff(A, n)/2)}; /* Michael Somos, Aug 07 2017 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian G. Bower, Nov 15 1999
STATUS
approved