login
A046716
Coefficients of a special case of Poisson-Charlier polynomials.
17
1, 1, 1, 1, 3, 1, 1, 6, 8, 1, 1, 10, 29, 24, 1, 1, 15, 75, 145, 89, 1, 1, 21, 160, 545, 814, 415, 1, 1, 28, 301, 1575, 4179, 5243, 2372, 1, 1, 36, 518, 3836, 15659, 34860, 38618, 16072, 1, 1, 45, 834, 8274, 47775, 163191, 318926, 321690, 125673, 1, 1, 55, 1275, 16290, 125853, 606417, 1809905, 3197210, 2995011, 1112083, 1
OFFSET
0,5
COMMENTS
Diagonals: A000012, A000217; A000012, A002104. - Philippe Deléham, Jun 12 2004
The sequence a(n) = Sum_{k = 0..n} T(n,k)*x^(n-k) is the binomial transform of the sequence b(n) = (n+x-1)! / (x-1)!. - Philippe Deléham, Jun 18 2004
LINKS
E. A. Enneking and J. C. Ahuja, Generalized Bell numbers, Fib. Quart., 14 (1976), 67-73.
C. Radoux, Déterminants de Hankel et théorème de Sylvester, Séminaire Lotharingien de Combinatoire, B28b (1992), 9 pp.
FORMULA
Enneking and Ahuja reference gives the recurrence t(n, k) = t(n-1, k) - n*t(n-1, k-1) - (n-1)*t(n-2, k-2), with t(n, 0) = 1 and t(n, n) = (-1)^n. This sequence is T(n, k) = (-1)^k * t(n, k).
Sum_{k = 0..n} T(n, k)*x^(n-k) = A000522(n), A001339(n), A082030(n) for x = 1, 2, 3 respectively.
Sum_{k = 0..n} T(n, k)*2^k = A081367(n). - Philippe Deléham, Jun 12 2004
Let P(x, n) = Sum_{k = 0..n} T(n, k)*x^k, then Sum_{n>=0} P(x, n)*t^n / n! = exp(xt)/(1-xt)^(1/x). - Philippe Deléham, Jun 12 2004
T(n, 0) = 1, T(n, k) = (-1)^k * Sum_{i=n-k..n} (-1)^i*C(n, i)*S1(i, n-k), where S1 = Stirling numbers of first kind (A008275).
From G. C. Greubel, Jul 31 2024: (Start)
T(n, k) = T(n-1, k) + n*T(n-1, k-1) - (n-1)*T(n-2, k-2), with T(n, 0) = T(n, n) = 1.
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^(n+1)*A023443(n). (End)
EXAMPLE
Triangle starts:
1;
1, 1;
1, 3, 1;
1, 6, 8, 1;
1, 10, 29, 24, 1;
1, 15, 75, 145, 89, 1;
1, 21, 160, 545, 814, 415, 1;
1, 28, 301, 1575, 4179, 5243, 2372, 1;
1, 36, 518, 3836, 15659, 34860, 38618, 16072, 1;
MAPLE
a := proc(n, k) option remember;
if k = 0 then 1
elif k < 0 then 0
elif k = n then (-1)^n
else a(n-1, k) - n*a(n-1, k-1) - (n-1)*a(n-2, k-2) fi end:
A046716 := (n, k) -> abs(a(n, k));
seq(seq(A046716(n, k), k=0..n), n=0..9); # Peter Luschny, Apr 05 2011
MATHEMATICA
t[_, 0] = 1; t[n_, k_] := (-1)^k*Sum[(-1)^i*Binomial[n, i]*StirlingS1[i, n-k], {i, n-k, n}]; Table[t[n, k] // Abs, {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 10 2014 *)
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0 || k==n, 1, T[n-1, k] +n*T[n-1, k-1] - (n-1)*T[n-2, k-2]]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 31 2024 *)
PROG
(Magma)
A046716:= func< n, k | (&+[(-1)^j*Binomial(n, k-j)*StirlingFirst(j+n-k, n-k): j in [0..k]]) >;
[A046716(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 31 2024
(SageMath)
def A046716(n, k): return sum(binomial(n, k-j)*stirling_number1(j+n-k, n-k) for j in range(k+1))
flatten([[A046716(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 31 2024
CROSSREFS
Diagonals include: A000012, A000217, A002104.
Sums include: A000522 (row), A001339, A023443 (alternating sign row), A082030, A081367.
Sequence in context: A137251 A370757 A158359 * A371967 A202605 A298636
KEYWORD
nonn,tabl,easy
EXTENSIONS
More terms from Vladeta Jovovic, Jun 15 2004
STATUS
approved