OFFSET
1,1
COMMENTS
Selfridge conjectured, and Pomerance proved, that there are infinitely many numbers in this sequence. Pomerance asks if the sequence has density 0. - Charles R Greathouse IV, Apr 14 2011
REFERENCES
Guy, R. K. `Good' Primes and the Prime Number Graph. A14 in Unsolved Problems in Number Theory, 2nd ed. Springer-Verlag, pp. 32-33, 1994.
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
Carl Pomerance, The prime number graph, Mathematics of Computation 33:145 (1979), pp. 399-408.
Eric Weisstein's World of Mathematics, Good Prime
Eric Weisstein's World of Mathematics, Selfridge's Conjecture
MATHEMATICA
Module[{nn=300, prs}, prs=Prime[Range[2nn]]; qprQ[n_]:=Module[{pi= PrimePi[n]}, n^2>Max[Times@@@Thread[{Take[prs, pi-1], Reverse[Take[ prs, {pi+1, 2 pi-1}]]}]]]; Select[Take[prs, nn], qprQ]] (* Harvey P. Dale, May 13 2012 *)
PROG
(Magma) [NthPrime(n): n in [2..220] | forall{i: i in [1..n-1] | NthPrime(n)^2 gt NthPrime(n-i)*NthPrime(n+i)}]; // Bruno Berselli, Oct 23 2012
(PARI) is(n)=if(!isprime(n), return(0)); my(p=n, q=n, n2=n^2); while(p>2, p=precprime(p-1); q=nextprime(q+1); if(n2<p*q, return(0))); n>2 \\ Charles R Greathouse IV, Jul 02 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved