login
A021099
Decimal expansion of 1/95.
0
0, 1, 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1, 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1, 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1, 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1, 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1, 0, 5, 2, 6, 3, 1, 5
OFFSET
0,4
COMMENTS
Generalization:
1/5 = Sum_(5^i/10^(i+1)), i >= 0,
1/95 = Sum_(5^i/100^(i+1)), i >= 0, (this sequence)
1/995 = Sum_(5^i/1000^(i+1)), i >= 0,
1/9995 = Sum_(5^i/1000^(i+1)), i >= 0, ... - Daniel Forgues, Oct 28 2011
FORMULA
From Chai Wah Wu, Sep 24 2020: (Start)
a(n) = a(n-1) - a(n-9) + a(n-10) for n > 10.
G.f.: x*(-2*x^9 - 2*x^8 - 4*x^7 + 2*x^6 + 3*x^5 - 4*x^4 + 3*x^3 - 5*x^2 + x - 1)/(x^10 - x^9 + x - 1). (End)
MAPLE
evalf(1/95, 100); # Wesley Ivan Hurt, Apr 28 2017
MATHEMATICA
Join[{0}, RealDigits[1/95, 10, 120][[1]]] (* Harvey P. Dale, Mar 03 2012 *)
CROSSREFS
Sequence in context: A217702 A018247 A152025 * A021023 A078716 A308081
KEYWORD
nonn,cons
STATUS
approved