OFFSET
1,2
COMMENTS
Both the 3x+1 steps and the halving steps are counted.
Record values in A025586: a(n) = A025586(A006884(n)) and A025586(m) < a(n) for m < A006884(n). - Reinhard Zumkeller, May 11 2013
In an email of Aug 06 2023, Guy Chouraqui observes that the digital root of a(n) appears to be 7 for all n > 2. - N. J. A. Sloane, Aug 11 2023
REFERENCES
R. B. Banks, Slicing Pizzas, Racing Turtles and Further Adventures in Applied Mathematics, Princeton Univ. Press, 1999. See p. 96.
D. R. Hofstadter, Goedel, Escher, Bach: an Eternal Golden Braid, Random House, 1980, p. 400.
G. T. Leavens and M. Vermeulen, 3x+1 search problems, Computers and Mathematics with Applications, 24 (1992), 79-99.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Hugo Pfoertner, Table of n, a(n) for n = 1..97, using data from Eric Rosendaal's 3x+1 Path records (terms 1..84 from T. D. Noe)
Brian Hayes, Computer Recreations: On the ups and downs of hailstone numbers, Scientific American, 250 (No. 1, 1984), pp. 10-16.
J. C. Lagarias, The 3x+1 problem and its generalizations, Amer. Math. Monthly, 92 (1985), 3-23.
G. T. Leavens and M. Vermeulen, 3x+1 search programs, Computers and Mathematics with Applications, 24 (1992), 79-99. (Annotated scanned copy)
Eric Roosendaal, 3x+1 Path Records
Robert G. Wilson v, Letter to N. J. A. Sloane with attachments, Jan. 1989
Robert G. Wilson v, Tables of A6877, A6884, A6885, Jan. 1989
MATHEMATICA
mcoll[n_]:=Max@@NestWhileList[If[EvenQ[#], #/2, 3#+1]&, n, #>=n&]; t={1, max=2}; Do[If[(y=mcoll[n])>max, AppendTo[t, max=y]], {n, 3, 10^6, 4}]; t (* Jayanta Basu, May 28 2013 *)
PROG
(Haskell)
a006885 = a025586 . a006884 -- Reinhard Zumkeller, May 11 2013
CROSSREFS
KEYWORD
nonn,nice,changed
AUTHOR
STATUS
approved