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The calculation of the number of members of certain sets can be achieved by analysing recurrence
relations. In this note, attention is drawn to the use of such recurrence relations for deriving
orderings of the members of the sets in a systematic way and for answering questions about places
in the orderings. Examples for certain types of restricted permutations are given.

(Received April 1970)

1. Introduction

For some combinatorial problems which arise in practical
computing contexts it is required to perform one or more of
the following processes:

(i) compute how many members there are of a certain set;

(i) list the members of the set in some convenient systematic
order;

(iii) determine what place a specified member occupies in a
given order;

(iv) determine what member occupies a given place in the
order;

(v) select, at random, a member of the set.

Difference equations have often been found convenient routes
for solving (i) but they have more rarely been interpreted to
assist in (ii) to (v). Some such examples are given in the
following sections.

2. Unrestricted permutations

Several algorithms for generating the arrangements of n
distinct objects (here taken as the integers 1, 2, . .., n) have
been given in the literature (e.g. Johnson, 1963; Lehmer, 1964;
Paige and Tompkins, 1960; Wells, 1961) and recently Ord-
Smith (1970) has compared the efficiencies of the methods of
generation. One proof of the elementary result that the number
of such permutations, U, = n! notices that U, = 1 and U, =

)

n=72 n=3 n=4
12 I 2 3 1 2 3 4
2 1 1 3 2 1 2 4 3
31 2 1 4 2 3
2 1.3 4 1 2 3

2 3 1 '

3 2 1 . ..
2 31 4
2 3 4 1
2 4 3 1
4 2 3 1

Fig. 1. Unrestricted permutations
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where 0 < a, < i, where a (1 —1) correspondence betwﬁw

s—1> since each permutation of the first n-1 integ 1T
yield n permutations of 1, 2, . . ., n by inserting the i intege 4
into any of the n-2 spaces between the integers or a
beginning or end of the (1-1) permutation. Thus, thc
of derivation of the difference equation indicates recusg:
methods of listing the permutations; the order obtained &
inserting the new item from the rightmost positions. first 2
shown in Fig. 1. SR
Identification of the position of a given n- permutatnonnﬂ
ordering is itself obtained recursively; if the number of plasd
from the right which the integer n occupies is r,, the pcru
tion is at position 4

nU,

ry + n(Vn—l - 1)

where V,_, is the position of the (n—1)-permutation obtsm§
by deleting n in the ordering of all (n—1)-permutations. T
converse problem, (iv), derives the permutation fora’ﬂ!
position by finding successively the positions of n,:l-i
n—2,....Forexample, for n = 4 we get the fourteenth perm
tation by noting 14/4 = 3 + remainder 2. Hence - -4 %33
(V3 — 1) = 3 so that the 3-permutation is fourth in 1150_1?
then4/3 = 1 + remainder 1 and so we have - - 3 for the posis
of the ‘3, giving - - 43 and finally (V, — 1) = lwhnch)““
2143 as the fourteenth in the order. =
The ordering produced .in this way is thus the same ﬁﬁ’
based upon the representation of integers in the form““i

integers {0, 1,...,(n! — 1)} and all n- permutatlons is obts®
by regardmg a; as the number of digits less than i which app®*
to the right of it. Thus, the fourteenth permutation follo\“f”
(aZ: as, a4) - (l 0 1) ',
The same representation (2.2) is used in a dlﬁ‘erent"‘?
Johnson (1963) to generate all n-permutations succeSSI
single interchanges of adjacent digits.

3. Restricted permutations with repetition ﬁ

Consider the number U’, of permutations of n Objecwobf’
with whatever repetition is ‘desired from k d1>tmct
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SeU, =3 U= Uy = 24
i I
1 11 e S 1 LY |
2 12 133 123 232
3 13 211 131 312
21 233 132 313
22 311 212 321
| L : 23 322 213 323
i : 31 112 221 331
32 113 223 332
o 33
P '2. Listing of restricted permutations I
""———f
: T

2,3,...) such that no three adjacent objects in the permuta-
soos shall be the same.
These n-permutations can be divided into two sets according
o their last two objects are the same or are different. Any
utation with the last two objects the same can be
sbtzined from an (n—2)-permutation by attaching two like
wmbols to it, as long as they are distinct from the previous
4zal object; there are thus (k — 1)U’,_, such n-permutations.
Sailarly all n-permutations of the other set are (k — 1)U, _,
» sumber and are obtained by attaching one different symbol
w the end. Hence

& U=k =) U,z + U,_y) @3.1)

where clearly U’y = &, U’, = k? and an expression for U’,
am be derived.
Oace again, a systematic ordering is derived naturally, but
@5 time the ordering for m-permutations involves both
#-1}- and (7—2)-permutations. For example, for k = 3, the
prmutations are listed in some order :
fem=1, 2. The permutations for n = 3 can then be listed by
:é 3 the possible identical pairs of objects in turn to the
rs of U'y, followed by those of U’, with the possible
eagh object added, and similarly for n > 3 (Fig. 2).
‘The identification of the place in the order occupied by a
p¥ea one of these restricted n-permutations is attained by
#ermining successively which permutation it is derived from,
ie whether it comes from an (71— 1)- or an (n—2)-permutation
#d 50 on until the permutations of one or two elements are
mxched. The diagram (Fig. 3) indicates the process for a five-
femutation where D, D’ denote different digits.
This algorithm is, of course, a generalisation of the evaluation

flgppber dd,_, ...d, inthe scale of 7 by nested multiplica-

DD

DD

DD

DD’ (k=DU;

-1,

fea, Identification of a restricted permutation

¥
Slume 14 Number 2

--— =

Uy=3 U,=9 Uy = 24
1 I 112 123 232
12 113 131 233
3 13 221 i} 31
21 23 133 312
22 31 211 313
23 332 202 321
31 121 213 322
32 122 231 323

33
Fig. 4. Listing of restricted permutations II

(oo (ted, + dyoy) +dy ) + ...

The reverse process of finding the permutation at a given
place in the order consists of repeated division by (k—1), sub-
traction of U,_, if the quotient exceeds it and noting the
remainders to permit the building of the permutation from
whichever member of the U’, I-permutations or U’, 2-permu-
tations is appropriate.

Just as the unrestricted permutations of Section 2 could be
composed from either left to right or in the opposite sense in an
order, so can these restricted permutations. The argument for
deriving the difference equation (3.1) differs a little. The first
two digits of an n-permutation are either the same or different;
if the same then we can attach to these digits any (n—1)-
permutation which does not begin with the same digit as the
initial pair—as U’,_,/k of these will begin with each of the
digits, there will be a total of (k—1)U’,_,/k (n—1)-permuta-
tions that can be used for each of the k pairs of like initial
digits. A similar argument follows for the unlike digits at the
start and we have _

=k {C Wt vl 62)

If the order of the 1- and 2-permutations are as shown, the
order of the 3-permutations follows for k = 3 (Fig. 4).

A further order, special to this example, comes from noticing
the relationship of (3.1) to the Fibonacci numbers and their
difference equation

f;x Zf;x—l +./;1—2’f1 = ]’fl = 2. (33)

Each restricted permutation can be regarded as a sequence of
single or double digits and the number of such patterns is f,
by the previous arguments on the last two digits. For any given
pattern, e.g. for seven digits, S;S, D, D,S;D,D, where the S’s
represent single digits and the D’s double, the first digit may
be selected in k ways and there are (k—1) digits possible at
every position except those occurring between two double
digits (i.e. D’s). Thus, for the pattern above there are k(k—1)*
different permutations and these can be ordered in a natural
way numerically; a number representation .

5
Zak—=1Y"0<a <k 0<a, <k-1,i=2345

i=1

is then readily available to identify or to construct the corres-
ponding permutation. The first digit S; = 1 4+ a, and the i'?
digit is the (@i + 1)'" available digit of (1, 2, . . ., k), equality
with the (/—1)'" digit not being permitted; thus S, = 1 + a,
unless @, > a, when S, = 2 + a,, and so on. Hence, if we are
given an order for the f, patterns, we derive from them an
order for the n-permutations. For example, for n = 3, the
order of the patterns could be S, D, D,, D, D,S,, S,5,S,; then
for k = 3 the derived order is the samc as that shown in
Fig. 5.
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1 1
| &3 11 2 121 231
1783 113 123 232
25 ! 2 21 131 312
2% 3 223 132 313
Bt 1 331 212 321
¥ 5 3 2 213 323

Fig. 5. Listing of restricted permutations III

Other problems which lead to second order linear difference
equations can be treated in the same way. For example, if ¥,
is the number of valid ALGOL expressions that can be con-
structed from the symbols +, —, x, 1,0, 1,2, 3,4, 5,6, 7,
8, 9 then, since the syntax shows that only

<expression> <sign> < digit>
or <expression> < digit >

are possible we obtain
V,=1V,_, +40V,_, 3.4

where V; = 10, ¥, = 120. The construction of the order for
n-expressions is obtained by systematically adding all possible
combinations <sign> <digit> to the (n—2)-expressions in
their order and then all digits to the (n—1)-expressions. For
this example, too, the number of valid arrangements of n
symbols <sign> and <digit> is f;, the Fibonacci number
given by (3.3), so that the corresponding ‘two dimensional’
ordering may also be generated.

4. Key permutations

A more complex example is provided by a (slightly simplified)
version of a problem posed by a lock and key manufacturer
L) required a list of the length of teeth of all kEys satisfying
&€ following conditions. Each key must have » teeth of
different lengths 1, 2, . . ., n units but no adjacent teeth may
differ by more than two units. In order to satisfy these con-
ditions we need to construct the subset of those permutations
of (1, 2, . . ., n) which satisfy the requirement on adjacent
digits. Naturally, a listing of the key permutations could be
made in a variety of ways (e.g. by enumeration of all permuta-
tions and rejection of unacceptable ones or by a backtrack
procedure) but computation of the number of key permutations
for general n can be obtained by establishing recurrence rela-
tions for different types of key permutations, and a listing then
follows in a manner similar to the earlier examples.
Let:

I U, = no. of key permutations of 1, 2, .. ., n which start

nn—1,...

II V, = no. of key permutations of 1, 2, . . ., n which start
n—1,n,...

IIT W, = no. of key permutations of 1, 2, . . . , n which start
‘ n,n—2, ... and end with (n—1).

IV T, = no. of key permutations of 1, 2, . . ., n which start
n, n—2 and do not end with (n—1).

V S, = no. of key permutations of 1, 2, ..., rn which has

thefpair . . .Jn—1, n}. . . at neither end.
Then a key (n+ 1)-permufatloh of type I can be obtained only
by putting the tooth of length (#+ 1) before a key r-permuta-
tion of types I, Tl and 1V. Hence
Uyo=U,+ W, +T,.
n (n+ 1)-permutation of type II arises only from placing the
tooth (n+ 1) following the 1 of a type I of n teeth. Hence

Vn+l = Un
Similarly

Tn+1 = Vn H
152

“that no element is more than 2 units greater than- both :

n | R Nk T N e Y 9
N, | b~ 12 207,34 S569:88. %6
Fig. 6. The number of key permutations £
s et R
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We need also to notice that for every key permuta'n

I to V, there corresponds exactly one of the type obta
reading from right to left. Hence we obtain ’

Wn+l = W,

n

by inserting the (n+ 1) tooth at the right-hand end:o
(and it is obvious that W, = 1), and reading in e
further ;

Sn+1 = Sn + Vn

~

The total number of key n-permutations is thusi
_ Ny=2U, +V,+ W, + T, + S)
Solution of the difference equations shows that -
N, = O(")

where a(== 1-47) is the root of largest modulus o :
*—x*=1=0

Fig. 6 shows a few values of N, :
Since W, = 1, it is perhaps convenient to place the pe me
tion of type III first in the listing and to follow it with type
IL, IV and V. Thus, half the listing (i.e. L. to R. only} pes
appear as in Fig. 7. 5

A simpler problem which can be treated in the same way 5
ordering of the set of permutations of the first 7 integers

neighbours; it follows from a similar argument that the nuss:
in this set is the integer part of - A

(1+2) @+/2)"7 %2 .

5. Random selection

Once the number, N, of members in a set is knowr_l
ordering defined which allows, for given r, the rth meﬁfﬁ?
be constructed, the task of making random selections fmg 2
set is theoretically trivial—being reduced just to the sele
of integer r (1 < r < N) with probability 1/N. Howej’g’rﬂi
is at all large (e.g. greater than the largest integer contegg_‘ :
single word in storage) the source of ‘random’ numbers %
able may not be sufficiently well defined; for exampie,®

execution of the process _ .
[N&]+ 1

where {¢;} are the ‘random’ numbers from the - genet®

7

n=23 n=4 n=5%
Im 312 I 4213 10 531-%%
I 321 4312 542135
I 231 4321 54312
II 3421 543208

IV 4231 54230

V. 2431 45312

T ass2le

v 53%_%

35428

v {iisa

Fig. 7. Listing of key permutations 3 |
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5 :ﬁcd uniformly distributed in (0, 1) may not even be able 1967). For the U’, restricted n-permutations of Section 3 we
S ute all the integers 1,2, ..., N, let alone to give them  note that a fraction p, = Uylo/(U',-y + U’,_,) begin with

. ] probabilities. Again, the random selection of r would two equal digits; hence if p, < &, where ¢ is a standard uniform
| qezd to be followed by the construction of the corresponding  variate we start the n-permutation with the pair DD with
t  member and it can be little more work to make several calls probability 1/k, and otherwise with the single digit D, again
{ o the random number generator and use the smaller with probability 1/k. We continue the construction, choosing
:, ategers produced fro‘m these calls t(_) coqstruct the se@ member. whether a single? digit or pair of equal ones follows with the
i rk-diﬂ‘ereuce_ equation approach is suitable fo_r this step by cprrect'probabilxty,' (L LTl U’,_,) and then the actual
i —~onstruction (e.g. for unrestricted permutations see Page, digit with probability 1/k(k — 1).

ces
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Book review

Yementary Linear Algebra, by Bernard Kolman, 1970; 255 pages. vector spaces with.real scalars but these restrictions are often not
{Collier-MacMillan Ltd., £4-50) brought out explicitly enough. Thus we find the statement that a

6 mencing this book, it seems at first to be wholly admirable, onc-one linear transformation between two spaces of equal dimen-
; . simple, logical and fairly rigorous introduction to finite- sion is necessarily onto and, later, the surprising statement that the

 &xxasional linear spaces, bases and linear transformations, having eigenvalues of a matrix are the real (my italics!) roots of its character-
.t introduced matrices and used the methods of elementary row istic equation. A student could easily believe these to be true gener-
- mition to echelon form of a matrix of a system of simultaneous ally. This also leads to some illogical statements when a brief
#ar equations to obtain the usual results on consistency and attempt is made to cover the use of complex scalars. Another fault
wetons. There is a first chapter on set theory and functions, is that, although there is some attempt to give numerical methods,
%eugh this Janguage is not much used subsequently. Determinants those given are sometimes not very practical and there is no
# mtroduced and evaluation is given both by use of cofactors and mention of iterative methods. For example, to obtain eigenvectors
dzmatively by use of row-reduction methods. In the remainder of it is suggested that the characteristic equation should be solved by
Hlbook, use is made of eigenvectors to obtain similarity trans- repeated bisection methods and these roots then used to obtain
‘ezations of a matrix to diagonal form and these methods are eigenvectors; the book limits this method to matrices of order less
"?P"t‘/d to symmetric matrices and quadratic forms and to than 5! A final surprising omission in the last chapter is any con-
g orthogonal transformations in Euclidean space and, sideration of normal modes.

J+-10- dealing with linear systems of ordinary differential There are few misprints in the book——I noted three affecting the
*Smbons with constant coefficients. The whole text is very adequately mathematics, the omission of the word ‘not’ on line 8, p. 194 being
' Bwtnated with o good selection of numerical examples. perhaps the most important.
Eh » this book seems to be a dangerous one to recommend
h reading by a student. It confines itself to finite dimensional V. W. D. Haik (York)
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