Notes on Fermat Pseudoprimes

Proposition. Suppose that n is a composite number, and a is an integer such that $a^{n-1} \equiv 1 \pmod{n}$. Then

$$\frac{n-1}{\operatorname{ord}_n(a)} \ge 5,$$

except in the cases

$$n = 4$$
, $a \equiv 1 \pmod{4}$; $n = 9$, $a \equiv -1 \pmod{9}$

Here $\operatorname{ord}_n(a)$ is the multiplicative order of a module n.

Note that we have the equality if

$$n = 6601$$
, $a \not\equiv \pm 1 \pmod{7}$ $a \not\equiv \pm 1 \pmod{23}$, a is a primitive root modulo 41

(for example a = 11).

Proof. Let φ be the Euler totient function. We will consider the following cases respectively: Case 1. n is an even number. Write $n = 2^{\alpha}q_1 \cdots q_r$, where q_i are coprime prime powers. Since n-1 is odd, the multiplicative order of a modulo 2^{α} and modulo each q_i should also be odd, so

$$a \equiv 1 \pmod{2^{\alpha}}, \quad a^{\varphi(q_i)/2} \equiv 1 \pmod{q_i},$$

hence

$$\operatorname{ord}_n(a) \leq 1 \cdot \frac{\varphi(q_1)}{2} \cdot \dots \cdot \frac{\varphi(q_r)}{2} = \frac{\varphi(q_1) \cdot \dots \cdot \varphi(q_r)}{2^r}.$$

We deduce that

$$\frac{n-1}{\operatorname{ord}_n(a)} \ge \frac{2^{\alpha} q_1 \cdots q_r - 1}{\underline{\varphi(q_1) \cdots \varphi(q_r)}} \ge 2^{\alpha+r} - 1.$$

The inequality $\frac{n-1}{\operatorname{ord}_n(a)} \geq 5$ can only be violated when $\alpha = 2$ and r = 0, corresponding to the first exceptional case given.

Case 2. n is not squarefree. Write $n = p^{\alpha}m$, where $\alpha \geq 2$. Since n-1 is coprime to p, we must have $a^{p-1} \equiv 1 \pmod{p^{\alpha}}$, which is to say that p is a base-a Wieferich prime, so

$$\operatorname{ord}_n(a) \le \operatorname{ord}_{p^{\alpha}}(a) \operatorname{ord}_m(a) \le (p-1)\varphi(m),$$

and

$$\frac{n-1}{\operatorname{ord}_n(a)} \ge \frac{p^{\alpha}m-1}{(p-1)\varphi(m)} \ge \frac{p^{\alpha}-1}{p-1}.$$

The inequality $\frac{n-1}{\operatorname{ord}_n(a)} \geq 5$ can only be violated when p=2 or 3, $\alpha=2$ and m=1, corresponding to the two exceptional cases given.

Case 3. n is odd and has at least three distinct prime factors. Write $m = q_1 \cdots q_r$, where q_i are coprime odd prime powers, then

$$\operatorname{ord}_{n}(a) \leq \operatorname{lcm}(\varphi(q_{1}), \cdots, \varphi(q_{r})) = 2 \operatorname{lcm}\left(\frac{\varphi(q_{1})}{2}, \cdots, \frac{\varphi(q_{r})}{2}\right)$$
$$\leq 2 \cdot \frac{\varphi(q_{1})}{2} \cdot \cdots \cdot \frac{\varphi(q_{r})}{2} = \frac{\varphi(q_{1}) \cdots \varphi(q_{r})}{2^{r-1}},$$

SO

$$\frac{n-1}{\operatorname{ord}_n(a)} \ge \frac{q_1 \cdots q_r - 1}{\underbrace{\varphi(q_1) \cdots \varphi(q_r)}_{2r-1}}.$$

Since $r \geq 3$, we have $q_1 \cdots q_r - 1 > \varphi(q_1) \cdots \varphi(q_r)$, so

$$\frac{n-1}{\operatorname{ord}_n(a)} \ge 2^{r-1} + 1 \ge 5.$$

Case 4. n = pq is the product of two distinct primes. Note that we have

$$a^{\gcd(pq-1,p-1)} \equiv 1 \pmod{p}, \quad a^{\gcd(pq-1,q-1)} \equiv 1 \pmod{q}.$$

Since

$$\gcd(pq-1,p-1) = \gcd(pq-1-q(p-1),p-1) = \gcd(q-1,p-1)$$

and similarly gcd(pq - 1, q - 1) = gcd(p - 1, q - 1), we have

$$a^{\gcd(p-1,q-1)} \equiv 1 \pmod{pq},$$

SO

$$\frac{n-1}{\operatorname{ord}_n(a)} \ge \frac{pq-1}{\gcd(p-1,q-1)} > \frac{(p-1)(q-1)}{\gcd(p-1,q-1)} = \operatorname{lcm}(p-1,q-1).$$

This shows that $\frac{n-1}{\operatorname{ord}_n(a)} \ge 6$ if $\max\{p,q\} \ge 7$, and direct verification shows that $\frac{n-1}{\operatorname{ord}_n(a)} \ge 5$ for $p,q \in \{2,3,5\}$.