OFFSET
5,1
REFERENCES
F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 261.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 5..200
Désiré André, Mémoire sur les séquences des permutations circulaires, Bulletin de la S. M. F., tome 23 (1895), pp. 122-184.
Nelson H. F. Beebe, The Greek functions: gamma, psi, and zeta, In: The Mathematical-Function Computation Handbook, 2017. See pp. 549-550.
C. J. Fewster, D. Siemssen, Enumerating Permutations by their Run Structure, arXiv preprint arXiv:1403.1723 [math.CO], 2014.
R. G. Rieper and M. Zeleke, Valleyless Sequences, arXiv:math/0005180 [math.CO], 2000.
Index entries for linear recurrences with constant coefficients, signature (20,-160,656,-1456,1664,-768).
FORMULA
G.f.: 16x^5(1-3x)/((1-2x)^3*(1-4x)^2*(1-6x)). - Ralf Stephan, Sep 18 2003 [Proved by Désiré André, 1895, p. 154, for circular permutations (see A008303). Peter Luschny, Aug 07 2019]
a(n) = (6^n + (2 - 2n)4^n + (2n^2 - 4n - 1)2^n)/32. - Mitchell Harris, Apr 02 2004
MATHEMATICA
nn = 30; Drop[CoefficientList[Series[16 x^5 (1 - 3 x)/((1 - 2 x)^3*(1 - 4 x)^2*(1 - 6 x)), {x, 0, nn}], x], 5] (* T. D. Noe, Jun 20 2012 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Ralf Stephan, Sep 18 2003
STATUS
approved