login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000487
Number of permutations of length n with exactly two valleys.
(Formerly M5022 N2165)
6
16, 272, 2880, 24576, 185856, 1304832, 8728576, 56520704, 357888000, 2230947840, 13754155008, 84134068224, 511780323328, 3100738912256, 18733264797696, 112949304754176, 680032201605120, 4090088616099840, 24582312700149760, 147669797096652800
OFFSET
5,1
REFERENCES
F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 261.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Désiré André, Mémoire sur les séquences des permutations circulaires, Bulletin de la S. M. F., tome 23 (1895), pp. 122-184.
Nelson H. F. Beebe, The Greek functions: gamma, psi, and zeta, In: The Mathematical-Function Computation Handbook, 2017. See pp. 549-550.
C. J. Fewster, D. Siemssen, Enumerating Permutations by their Run Structure, arXiv preprint arXiv:1403.1723 [math.CO], 2014.
R. G. Rieper and M. Zeleke, Valleyless Sequences, arXiv:math/0005180 [math.CO], 2000.
Index entries for linear recurrences with constant coefficients, signature (20,-160,656,-1456,1664,-768).
FORMULA
G.f.: 16x^5(1-3x)/((1-2x)^3*(1-4x)^2*(1-6x)). - Ralf Stephan, Sep 18 2003 [Proved by Désiré André, 1895, p. 154, for circular permutations (see A008303). Peter Luschny, Aug 07 2019]
a(n) = (6^n + (2 - 2n)4^n + (2n^2 - 4n - 1)2^n)/32. - Mitchell Harris, Apr 02 2004
MATHEMATICA
nn = 30; Drop[CoefficientList[Series[16 x^5 (1 - 3 x)/((1 - 2 x)^3*(1 - 4 x)^2*(1 - 6 x)), {x, 0, nn}], x], 5] (* T. D. Noe, Jun 20 2012 *)
CROSSREFS
Column k=2 of A008303.
Sequence in context: A144660 A158574 A330151 * A249391 A197622 A002303
KEYWORD
nonn,easy
EXTENSIONS
More terms from Ralf Stephan, Sep 18 2003
STATUS
approved