
On the Hardware Implementation of Triangle Traversal
Algorithms for Graphics Processing

Pablo Royer Pablo Ituero Marisa López-Vallejo Carlos A. López Barrio
Dpto. de Ingenierı́a Electrónica, ETSI Telecomunicación, Universidad Politécnica de Madrid

Ciudad Universitaria s/n, 28040 Madrid, Spain
{proyer,pituero,marisa,barrio}@die.upm.es

Abstract—Current GPU architectures provide impressive processing
rates in graphical applications because of their specialized graphics
pipeline. However, little attention has been paid to the analysis and
study of different hardware architectures to implement specific pipeline
stages. In this work we have identified one of the key stages in the
graphics pipeline, the triangle traversal procedure, and we have imple-
mented three different algorithms in hardware: bounding-box, zig-zag
and Hilbert curve-based. The experimental results show that important
area-performance trade-offs can be met when implementing key image
processing algorithms in hardware.

I. INTRODUCTION

The video game and interactive entertainment industry is getting
revenues of tens of billions of dollars and increasing every year. The
heart of the technological developments that makes possible to keep
satisfied the users increasing demand is the Graphics Processing Unit
(GPU). Furthermore, the computational power and programmability
of today’s graphics hardware can be applied to many areas like com-
puter graphics, film rendering, physical simulation, and visualization.

GPUs implement basic graphical operations optimized for graphics
processing. The 3D graphics computations are organized into a
graphics pipeline that performs a series of computation stages to go
from a 3D model to the pixels on a monitor. The GPU processes
and transforms the input vertexes into screen-space geometry, which
in turn is divided into pixel-sized fragments, in a process called
rasterization, according to which pixels are covered by that geometry.
Each fragment is then associated with a pixel position on the screen.
Finally, the fragments are processed and assembled into an image
made of pixels [1].

Figure 1 shows a conventional graphics pipeline, which contains
around a dozen stages. The input vertex stream passes through a
computation stage that transforms and computes some of the vertex
attributes generating a stream of transformed vertexes. The stream
of transformed vertexes is assembled into a stream of triangles,
each triangle keeping the attributes of its three vertexes. After that,
the stream of triangles may pass through a stage that performs a
clipping test. Then each triangle passes through a rasterizer that
generates a stream of fragments, discrete portions of the triangle
surface that correspond to the pixels of the rendered image. Fragment
attributes are derived from the triangle vertex attributes. This stream
of fragments may pass through a number of stages performing a
number of visibility tests (stencil, depth, alpha and scissor) that will
remove non visible fragments and then will pass through a second
computation stage. The fragment computation stage may modify the
fragment attributes using additional information from n-dimensional
arrays stored in memory (textures). Textures may not be accessed
as stream. The stream of shaded fragments will, finally, update the
frame-buffer [2].

This work was funded by the CICYT project DELTA TEC2009-08589 of
the Spanish Ministry of Science and Innovation.

Ve
rt

ex
 S

ha
de

r

G
eo

m
et

ry
 S

ha
de

r

C
lip

pi
ng

Tr
ia

ng
le

 S
et

up

Fr
ag

m
en

t S
ha

de
r

Tr
ia

ng
le

 T
ra

ve
rs

al

M
er

ge
r

Vertexes Triangles Fragments

P
rim

iti
ve

 A
ss

em
bl

y

Fig. 1. Graphics pipeline.

The typical input to the pipeline is tens to hundreds of thousands
of vertexes that define the geometry of the scene. The basic elements
are made up of triangles in general, since triangles can be described
with three vertexes, and only reside in one plane. Thus a key
stage in the graphics pipeline is the one that maps each pixel to
a given triangle. To accomplish this task triangle traversal algorithms
are required, whose computation is responsible for a significant
performance overhead due to the huge number of vertexes which
are processed. The hardware implementation of the triangle traversal
should be carefully analyzed in order to minimize the performance
penalty incurred by this stage. This is the objective of the work
we present here. Very few previous approaches have dealt with the
hardware implementation of triangle traversal algorithms. Moreover,
the way how triangle traversal is actually implemented in GPUs
is unknown, since most work around GPUs is kept secret because
of high competitiveness in the hardware segment of this industry.
In [3] a specific full-custom implementation for a tile-based triangle
traversal algorithm is studied, but paying special attention to power
minimization. Other works focus on the quantization impact on the
quality of the resulting images [4].

The main contributions of this work are the following:
• To the best of our knowledge this is the first time that the hard-

ware implementation of different triangle traversal algorithms
has been analyzed.

• The quantization of each involved signal has been studied.
• An in-depth analysis of the implications of each algorithm

concerning throughput and latency has been performed.
Next, the basis of triangle traversal and depth interpolation using

edge functions are introduced. The following sections explain the
hardware implementation of the three algorithms. Finally the results
are detailed and some conclusions are drawn.

II. TRIANGLE TRAVERSAL OVERVIEW

The triangle traversal stage checks whether each of the pixels
is inside the triangle or not. For each pixel (or sample point) that
overlaps the triangle, a fragment is generated (see figure 2). Each

Fig. 2. Triangle traversal: for each pixel inside the triangle, a fragment is
generated. [5]

- + -

+ + -

+ - -

+ - +

- + +

+ + +

- - +

p
0

p
2

p
1

e
0

e
1

e
2

Fig. 3. Regions defined by the Edge Equations of a triangle.

fragment has information about its location in the screen, its location
in the triangle (how far it is from the vertexes) and its depth [5] [6].

A triangle is defined by its three vertexes (v0, v1 and v2), and each
vertex is composed by three coordinates: vi = (xi, yi, zi) where xi

and yi are the location of the vertex in the screen and zi is the depth
of the vertex.

In a triangle, we can define three edge equations (ei with i =
{0, 1, 2}), one for each couple of vertexes. The edge ei is the one
defined by the vertexes opposite to vi. Checking in which side of
each edge a pixel is, we can decide whether the pixel is inside the
triangle or not.

A. Edge Equations

An edge function is the equation of the line between two vertexes
of the triangle, whose implicit general equation is:

e(x, y) = ax + by + c = 0 (1)

where x and y are the integer coordinates of the center of the pixel1.
The a, b and c coefficients are computed as:

a = yp − yq

b = xq − xp

c = xpyq − xqyp

(2)

where the p and q sub-indexes denote the two vertexes that define
the edge.

The sign of ei tells us if a point is on one side of the edge or on the
other. The region inside the triangle corresponds to the region where
the three edge equations are greater than zero. Any region outside has
at least one edge equation result less than zero, as shown in figure 3.
The triangle traversal using edge equations is well explained in [7]
and [8].

Pixels that are located exactly on the edge of the triangle (e(x, y) =
0) may belong or not to the triangle. Considering two triangles
sharing an edge, a pixel that lies on the shared edge should belong

1In this work no anti-aliasing has been considered so only one sample per
pixel is taken.

TABLE I
TIE-BREAK RULE FOR DETERMINING IF A POINT IS INSIDE AN EDGE. [9]

ei(x, y) ai bi inside
> 0 true
< 0 false
= 0 > 0 true
= 0 < 0 false
= 0 = 0 ≥ 0 true
= 0 = 0 < 0 false

to one and only one of the two triangles, otherwise this can generate
incorrect results. Given that for two triangles sharing an edge, the
shared edge equation coefficients are negations of one another, a tie-
break rule [9] can be established as it is shown in Table I.

B. Incremental Traversal

Computing the ei values of a fragment requires six multiplications
and six additions. But, seeing that:

ei(x + 1, y) = ei(x, y) + ai

ei(x− 1, y) = ei(x, y)− ai

ei(x, y + 1) = ei(x, y) + bi

ei(x, y − 1) = ei(x, y)− bi

(3)

given the edge functions values of a fragment, its four neighbours
can be tested performing only three additions (one per edge) instead
of performing again six multiplications and six additions. That is
the reason why most traversal algorithms incrementally explore the
triangle pixel by pixel.

C. Depth Interpolation

After the triangle traversal is done, it is known if a pixel belongs
or not to the triangle, but there is more information that has to
be computed. Usually the vertex has a depth coordinate, colour or
texture, thus the generated fragments need this information, which is
usually calculated by interpolating the values at the vertexes.

When traversing the triangle using edge equations, the depth coor-
dinate can be interpolated with a similar equation whose coefficients
are derived from the edge equation coefficients as:

az = a0z0+a1z1+a2z2P
ci

bz = b0z0+b1z1+b2z2P
ci

cz = c0z0+c1z1+c2z2P
ci

(4)

where ai, bi and ci are the coefficients of the edge equation and zi

are the depths of the three vertexes. The az , bz and cz coefficients
are calculated only once per triangle as explained in [8].

The depth value of a vertex, denoted as ez is computed from the
previous coefficients as:

ez = azx + bzy + cz (5)

It can also be calculated incrementally along with the ei values of
the edges.

D. Bit Length Considerations

In our work we consider a maximum screen resolution of 4096×
4096 pixels (as [2]) so 12 bits are required to represent the x and y
coordinates as an unsigned integer. From how ai and bi coefficients
are calculated (see [8]) a 13-bit signed integer is needed. For the
same reason ci coefficients are represented as 25-bit signed integers
while the ei values require a 27-bit signed integer. The sign bit of
ei values is only required while traversing the triangle, but the value

z=0

z=1

x=0 x=4095x=1

triangle edge

Fig. 4. Determining fractional parts of the az and bz coefficients.

TABLE II
BIT-WIDTH OF THE VARIABLES.

variable signed bits
xi, yi no 12

zi no 24
ai, bi yes 13

ci yes 25
ei(x, y) yes 27

az , bz , ez - 36 = (24 + 12)

that is output with a fragment does not need that bit since the value
is positive because the pixel is inside the triangle.

In order to avoid artifacts in the rendered frame, at least 24 bits
are required to represent the depth coordinate [10]. Therefore it has
been represented as a 24-bit unsigned integer and the interpolated
value will also be a 24-bit integer. While the ei values need to have
an appropriate value for pixels outside the triangle, the interpolated
depth value —ez— is only taken into account for pixels that are
inside so it does not matter if the value overflows as it will recover
an appropriate value when traversing back to an internal pixel. As a
consequence, only 24 bits are required to represent the integer part
of ez , az and bz coefficients; higher bits —including the sign bit—
do not need to be represented.

Another difference between ai or bi and az or bz is that the former
are integers whereas, due to the division, the latter are not. To decide
how many decimal bits are necessary to represent az and bz we
will consider the worst case, that is a triangle where the z value is
increased as little as possible while the triangle is traversed. This
case is shown in figure 4. From the figure it can be easily understood
that the lowest value that a az or bz coefficient will take is 1

4096
. To

represent this, 12 fractional bits are required. So the ez , az and bz

are represented as 36 bit-width numbers, with a 24-bit integer part
and a 12-bit fractional part. The fractional part is used during the
traversal while only the rounded integer part is output as a fragment
information.

This quantization has been obtained considering the worst case for
triangles that are not realistic, we leave as future work the study of
the quantization noise produced by decreasing the number of bits
allocated to the fractional part of the depth interpolation coefficients.

All the bit lengths from the resulting parameters are summarized
in Table II.

III. TRIANGLE TRAVERSAL ALGORITHMS

A. Bounding-Box Traversal

The bounding-box traversal algorithm tests every pixel that is
inside the smallest rectangle that contains the triangle. As the triangle
is fully inside the rectangle, every pixel belonging to the triangle will
be tested and a fragment will be generated.

This algorithm explores the bounding-box line by line. To enable
every new pixel edge equations to be calculated from a previous

x = x
m a x

y ≠ y
m a x

=> y = y + 1

x = x
m a x

y ≠ y
m a x

=> y = y + 1

x = x
m i n

y ≠ y
m a x

=> y = y + 1

x = x
m i n

y = y
m a x

=> stop

(x
i n i

,y
i n i

)

Fig. 5. Bounding-box Traversal Algorithm.

x 2 adder_ei

m
u

x_
ei

m
u

x_
ab

i

ai

bi

sel_ab
addi

sel_e

ei

ei_1

ei_2 eiout

Qei

Fig. 6. Full schematic of an ei adder.

neighbour pixel, the order in which a line is traversed is changed for
every new line.

While the ei values —which indicate if the pixel is inside or not—
are updated, the x and y coordinates —that indicate the location in
the screen— are also updated.

The algorithm control is performed by comparing the x and y
coordinates with the xmin, xmax and ymax values provided by the
set-up stage2. The first pixel tested is the one located at (xini, yini)
where yini = ymin. This process is explained by figure 5.

1) Adder/subtracter Implementation: The main module that com-
poses the bounding-box traversal stage is an adder / subtracter, which
performs the addition or subtraction of the ai or bi coefficients to
the current ei value. The result is the new ei value that replaces the
previous one. The implementation is shown in figure 6.

In order to reduce the delay of the hardware, two registers have
been introduced in the loop that composes the adder/subtracter. To
avoid bubbles in the pipeline it is necessary to enable the addition of
2ai that makes the box to be traversed by two pixels to the right or
the left. With this solution bubbles are avoided during a line traversal
but cannot be avoided at the beginning and the end of the line.

The implementation of the x and y adders is quite similar to the
ei implementation, but includes the comparators required to change
the scanning direction.

2) Generating the Inside Flag: This is done by testing the ei,
ai and bi values as explained in table I. However comparing them
with zero and using the results to decide if the pixel is inside would
introduce a too long delay. Thus, the process is split in two steps: on
the first one, the coefficients are checked if they are greater, equal or

2The previous stage in the graphics pipeline that is in charge of computing
the traversal coefficients and the bounds of the box.

(x
i n i

,y
i n i

)

Continue the
traversal in the
same direction until
an external pixel is
reached

An external pixel
is reached in the
last line
=> stop

Fig. 7. Zig-zag traversal algorithm.

lower than zero, this generates 2-bit wide signals easier to process
than long bit-width ei, ai and bi values. On the second step these
signals are combined following Table I to find out if the pixel is on
the positive side of the edge.

B. Zig-Zag Traversal

As the bounding-box traversal, the zig-zag traversal tests the pixels
of a triangle line by line, but the length of the line differs from
one another. Only the pixels that are useful to ensure that no pixel
belonging to the triangle is being left have to be visited. The process
is shown in figure 7.

In most of the scan lines the process is quite simple. The first
pixel location to be checked is the one just under the last pixel of
the previous line. If this pixel is not outside the triangle, the line is
explored in the same direction as the previous one until an external
pixel is reached. Then the line is explored in the opposite direction,
traversing the triangle from a pixel that is outside to another that is
also external but in the other side of the triangle.

However, there are some triangles, usually thin ones, for which
this simple process can lead to mistakes because two edges can be
crossed in a single step. To avoid this, instead of testing only whether
the pixel is inside the triangle or not, the three edge equations results
are checked separately. In this way we can know for a pixel that is
outside the triangle, on which side it is. We denote the place of the
screen where the pixel is with a triplet S = (s0, s1, s2), where si is
the sign of the edge equation ei. If the current pixel is in the positive
side of the edge i, then si = 1 otherwise si = 0.

1) Inside Flag: The pixel is now said to be in the positive side
of an edge if its ei value is greater than or equal to zero, while ai

and bi are not tested anymore. The difference between this algorithm
and the former is that pixels located just in the edge (ei = 0) will
always be considered as belonging to the triangle while those whose
ai is negative are actually outside. This does not lead to mistakes as
the other test is still executed to decide if a fragment is generated
or not. On the other hand, none of the pixels that are inside will be
omitted by this new test.

2) Control Signals: As seen before the traversal algorithm needs
information about the location of the current pixel in relation to the
triangle, this information was called S = (s0, s1, s2). When the
traversal of a line is finished the S value at the last pixel is stored as
Sstored and the screen is traversed one pixel down. The new line is
traversed in the same direction until a pixel that is outside in the same
side of the triangle is reached. This corresponds to a pixel whose S

Qe0

Qe1

Qe2

S_current

S_stored

go_down

go_back

to
 F

S
M

C/L

C/L

Fig. 8. Zig-zag traversal control signals generation.

Fig. 9. Triangle traversal using Hilbert curve.

value has zeros at least in the same places as the Sstored value:

Scurrent ∪ Sstored = (1, 1, 1) (6)

Once we are placed in the required side of the triangle, the actual
traversal can start in the opposite direction until a pixel that is in the
opposite side of the triangle is reached. This corresponds to a pixel
whose S value has ones at least in the same places where Sstored

had zeros, and that is not an internal pixel whose S = (1, 1, 1):

(Scurrent 6= (1, 1, 1)) ∩ ((Scurrent ∪ Sstored) = (1, 1, 1)) (7)

The additional hardware for this function is shown in figure 8.

C. Hilbert Curve Traversal

The Hilbert curve traversal is a different approach than bounding-
box or zig-zag traversal. Instead of traversing the triangles pixel by
pixel, the screen is divided into tiles of different sizes: if a tile
overlaps the triangle it is divided into four smaller sub-tiles. The
triangle is traversed repeating this same process for each tile and
sub-tile until a one pixel size tile is achieved [9].

In this algorithm, the next pixel being tested is not always the
neighbour of the current one so a multiplication is required. Fortu-
nately the jump between a pixel and the next one is always a power
of two: 2n, so the multiplication is easily achieved by shifting the ai

or bi coefficients by n bits.
Figure 9 shows how a triangle is traversed: different color rectan-

gles represent tiles that are discarded without subdividing, the darker
a tile is the less times it has been subdivided before discarding it.
White pixels belong to the triangle and need to be subdivided until
the smaller tile size to generate a fragment.

1) Four Corners Test: As the Hilbert curve traversal is a tiled
traversal, one of the core operations of the algorithm is to test the
four corners of the tile to decide whether it has to be subdivided or
not. If the four corners are in the negative side of at least one of

start

subdivide?

●One pixel large tile
●Generate fragment if

the pixel is inside
●Move to the next tile in

a set of four (r(n)++)

n==0?

●Descend to a lower
level tile (n­­),(r(n)=0)

●Update current
position if necessary

●State=nextstate

●Move to the next tile in
a set of four (r(n)++)

YES
 NO

YES NO

Have all the tiles
in the set of four
been processed?

●Move to a higher level
tile (n++)

●state=prevstate
●Move to the next tile in

a set of four (r(n)++)

n==12?

end

YES

 YES
NO

NO

●n=12
●x=y=0
●r(n)=0

●state=F

Fig. 10. Hilbert curve triangle traversal algorithm.

the edges, the tile does not overlap the triangle. If the four corners
are outside the triangle but not for the same edge is not enough to
say that the tile does not overlap the triangle and the tile has to be
subdivided [8].

The first operation to be performed is ei + ai. Then, ei + bi is
executed taking advantage of the pipeline as this operation does not
require the result of the previous one. With those operations the next
two corners are tested. The results of ei +ai are stored as the current
ei values while the results of ei + bi are not. This way the fourth
corner can be tested as (ei + ai) + bi and we can come back to the
first corner by (ei + ai)− ai. This last operation is required because
the result of ei +ai had been loaded as the current ei values and we
need to recover the initial position after testing the four corners.

2) Additional Hardware Modules: This implementation needs new
hardware modules not required by the previous ones. The size of the
tile that is currently being processed is denoted as n, that means that
the tile is 2n× 2n pixels. This variable is stored in a register and an
adder/subtracter changes the values according to the current tile size.
As the n value is updated the ai and bi coefficients are shifted to the
corresponding direction to make them fit to the appropriate tile size.

When subdividing a tile, four sub-tiles are generated. In order to
distinguish those four tiles an r value ranging from 0 to 3 is set.
As any of those sub-tiles can be further subdivided, a new r value
is needed for the lower level tiles. We denote these values as r(n),
they are stored in a 13-word × 2-bit register.

When a tile is subdivided the order in which the four sub-tiles
are explored is determined by a recursive algorithm that generates a
Hilbert curve. This order is denoted as a high level state represented
by two bits. The next order when going down to a lower level tile
depends on the current order and the current r value. Meanwhile the
order when moving to a higher level tile is recovered from the current
order and the most significant bit of the x and y coordinates. Those
functions are implemented employing combinational circuits with a
4-bit input and a 2-bit output.

The traversal process for the Hilbert curve method that we have
implemented is shown in figure 10.

TABLE III
AREA AND DELAY OF THE THREE IMPLEMENTATIONS

Bounding-Box Zig-zag Hilbert
Slices 375 483 777
Delay 5347 ps 4625 ps 6818 ps

Frequency 187 MHz 216 MHz 147 MHz

IV. RESULTS

The three algorithms functionality has been validated by Matlab
simulation. Then the algorithms have been described in VHDL
and simulated using ModelSim. The simulation results have been
compared to the ones obtained with Matlab to check they were
correct.

As test-benches, in addition to random triangles, we have used
special triangles that could lead to mistakes if the hardware was
no properly designed. Those triangles were the ones located at the
corners and the edges of the screen and also special-shape triangles
that were very thin or small.

A. Area and Speed Results

In order to obtain comparable area and speed results, we have im-
plemented the three triangle traversal modules on a Xilinx XC2VP30
Virtex-II Pro FPGA using Xilinx ISE 9.2i. It must be said that the
natural target for a GPU is direct implementation on silicon, so
metrics taken from an FPGA synthesis should be taken as a coarse
indication of the comparison in a more realistic situation. However,
some research groups show interest in implementing GPU related
modules on them [11]. The design has been synthesized with a speed
optimization goal and with the register balancing option enabled. The
Map and Place and Route processes have been done with a speed
reduction strategy and a multi-pass place and route.

The results of the FPGA implementation related to speed and delay
are shown in Table III. We can see that, as expected, the Bounding-
Box algorithm is the one that requires the least area while the Zig-zag
algorithm is the one that can work at the highest speed: 216 MHz.
The Hilbert curve traversal is the algorithm that takes the highest
area and that runs at the lowest speed.

B. Throughput

1) Bounding-Box: The Bounding-Box triangle traversal achieves
almost a rate of one pixel test per clock cycle, but due to the pipeline,
this rate cannot be maintained when the traversal direction changes.
As a consequence it takes n + 3 clock cycles to traverse an n-pixels
scan-line. Therefore the time required to traverse a triangle depends
on the size of its bounding-box: testing all the pixels of an n ×m
rectangle lasts m · (n + 3) clock cycles.

The area of the biggest triangle that can be contained on a
rectangle is half the area of the rectangle. So, considering a big
enough bounding-box, the highest rate that can be achieved with this
algorithm is two clock cycles per fragment generated. Employing
the figures from our FPGA implementation, that corresponds to a
throughput of 93.5 · 106 fragments/second.

2) Zig-zag: As the Bounding-box, the Zig-zag traversal tests one
pixel per clock cycle, but some extra cycles are required when the
traversal direction changes. Some other cycles are also needed when
seeking external pixels where the scanning has to begin. So both
the number of cycles required to traverse a triangle and the rate of
pixel tested against the pixel that actually belongs to the triangle will
depend on the triangle shape.

TABLE IV
THROUGHPUT AND LATENCY OF THE THREE IMPLEMENTATIONS

Bounding-Box Zig-zag Hilbert
Max. throughput 93.5 · 106 fr./s 194.6 · 106 fr./s 13.6 · 106 fr./s

Min. latency 7 cycles 10 cycles 649 cycles

The bigger a triangle is the better rate will be achieved as the
number of extra clock cycles will be masked by many more fragments
generated. In the same way triangles whose edges are not near
horizontal will have a better rate as less cycles will be missed
searching for an external pixel when starting a new line. On the
whole, rates above 90% can be achieved for triangles larger than 2000
pixels, this rate corresponds to a maximum throughput of 194.6 ·106

fragments/second in our FPGA implementation.
3) Hilbert Curve: The Hilbert curve triangle traversal is the one

that requires more cycles to generate fragments. The reason behind
this is that when generating two consecutive fragments from a single
triangle it has to move to at least one higher level tile and then move
back to the next lower level tile. This means many operations to move
from a tile to another and to test if the tile overlaps the triangle.

The number of cycles that this algorithm takes to explore a triangle
strongly depends on the triangle shape, but we can estimate a higher
bound. It takes 43 clock cycles to explore the four pixels of the lower
level tile, so we cannot achieve a rate better than 10.75 cycles per
fragment generated that corresponds to a throughput of 13.6 · 106

fragments/second in our FPGA implementation.

C. Latency

The minimum latency of the modules has been simulated for the
smallest triangle, that had a half-pixel area. The lowest latency from
the different orientations and positions of the triangle has been kept.
The zig-zag traversal has higher latency than the bounding-box as it
searches for external pixels that may be outside the box. The Hilbert
curve traversal has the highest latency as even if the triangle leads to
one or even none fragment generated, we have to go down through
at least twelve levels of tiles and then go back. The throughput and
latency of the three modules implementations are shown in Table IV.

D. Discussion

According to the results, the Hilbert curve traversal has worse
performance in area and throughout than the two other algorithms, but
it has an advantage: the pixels are generated in a spatially coherent
order [9], better that Bounding-Box or Zig-zag whose pixels are
generated line by line. This will improve the data locality of the
texture caches decreasing the number of times a same texture needs
to be loaded. The high latency disadvantage of the Hilbert curve
traversal could be solved using different rasterizers depending on the
triangle size as suggested by [12].

For the two other algorithms, the order in which the pixels are
generated is the same for both of them. The zig-zag traversal seems
to be a better approach: even if it has a larger area, on average fewer
external pixels are visited and so its throughput is much higher.

A different implementation of the Hilbert curve traversal could use
pipelined stages to process tiles of different sizes, or perform more
operations per clock cycle at the cost of a larger area. Another im-
provement could be a hybrid implementation using a fixed pipelined

Hilbert curve traversal down to a certain tile size level and then using
one of the other algorithms to test the pixels inside the tile. This will
enable a speed close to the Zig-zag or Bounding-Box traversal and
a lower latency than the Hilbert curve traversal, keeping the spatial
coherence of the generated fragments that a tiled traversal achieves.
This is left as future work.

V. CONCLUSION

The GPU field has undergone a hardware revolution during the last
fifteen years attaining amazing processing rates far beyond general-
purpose CPUs. This has been made possible thanks to a very deep
pipeline in which each of the stages is very carefully designed. This
work has analyzed the trade-offs of the hardware implementation of
the triangle traversal stage.

Even though FPGAs are not the most suitable platform for GPU
implementation, the results related to latency and number of pixels
checked or fragments generated per cycle will be the same. The area
and delay, and as a consequence the throughput, will strongly depend
on the hardware, but differences from an algorithm to another should
remain similar.

Specifically, three different algorithms have been implemented
and compared: bounding-box, zig-zag and Hilbert curve-based. Our
results set a compromise between area, frequency, throughput and
latency that can be used by future designers.

REFERENCES

[1] J. D. Owens, “GPUs tapped for general comput-
ing,” EE Times, 13 Dec. 2004. [Online]. Available:
http://www.eet.com/news/latest/showArticle.jhtml?articleID=55300884

[2] V. del Barrio, C. Gonzalez, J. Roca, A. Fernandez, and E. ATTILA, “a
cycle-level execution-driven simulator for modern GPU architectures,”
in Intl Symp. on Performance Analysis of Systems and Software, 2006,
pp. 231–241.

[3] D. Crisu, S. Cotofana, S. Vassiliadis, and P. Liuha, “Efficient hardware
for tile-based rasterization,” in Proceedings of the 15th Annual Workshop
on Circuits, Systems, and Signal Processing, Veldhoven. Citeseer, 2004,
pp. 352–357.

[4] ——, “Design Tradeoffs for an Embedded OpenGL-Compliant Hard-
ware Rasterizer,” in Proc. of the 14 th Annual Workshop on Circuits,
Systems, and Signal Processing. Veldhoven, The Netherlands:[s. n.].
Citeseer, 2003.

[5] T. Akenine-Möller, E. Haines, and N. Hoffman, Real-Time Rendering
3rd Edition. Natick, MA, USA: A. K. Peters, Ltd., 2008.

[6] M. Segal and K. Akeley, “The opengl graphics system: A specification,”
2009, version 3.2 (Core Profile).

[7] J. Pineda, “A parallel algorithm for polygon rasterization,” ACM SIG-
GRAPH Computer Graphics, vol. 22, no. 4, p. 20, 1988.

[8] T. Akenine-Möller, “Mobile graphics hardware,” 2007, draft for the
course EDA075 Mobile Computer Graphics.

[9] M. McCool, C. Wales, and K. Moule, “Incremental and hierarchical
Hilbert order edge equation polygon rasterization,” in Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware.
ACM New York, NY, USA, 2001, pp. 65–72.

[10] K. Akeley, “Reality engine graphics,” in Proceedings of the 20th annual
conference on Computer graphics and interactive techniques. ACM,
1993, p. 116.

[11] D. B. Thomas and W. Luk, Implementing Graphics Shaders Using
FPGAs. Lecture Notes in Computer Science. Springer Berlin, 2004.

[12] J. Roca, V. Moya, C. Gonzalez, V. Escandell, A. Murciego, A. Fernan-
dez, and R. Espasa, “A SIMD-efficient 14 instruction shader program
for high-throughput microtriangle rasterization,” The Visual Computer,
pp. 1–13.

