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Abstract—We present OMPRACER, a static tool that uses

flow-sensitive, interprocedural analysis to detect data races in

OpenMP programs. OMPRACER is fast, scalable, has high code

coverage, and supports the most common OpenMP features

by combining state-of-the-art pointer analysis, novel value-flow

analysis, happens-before tracking, and generalized modelling of

OpenMP APIs.

Unlike dynamic tools that currently dominate data race

detection, OMPRACER achieves almost 100% code coverage

using static analysis to detect a broader category of races

without running the program or relying on specific input or

runtime behaviour. OMPRACER has competitive precision with

dynamic tools like Archer and ROMP: passing 105/116 cases in

DataRaceBench with a total accuracy of 91%.

OMPRACER has been used to analyze several Exascale Com-

puting Project proxy applications containing over 2 million lines

of code in under 10 minutes. OMPRACER has revealed previously

unknown races in an ECP proxy app and a production simulation

for COVID19.

Index Terms—OpenMP, Data race detection, Static analysis,

Bug detection, Nondeterminism

I. INTRODUCTION

OpenMP is a de facto standard for on-node parallelism in
HPC, targeting both multicore CPUs and accelerators such
as GPUs, and also serving as the backend of high-level
programming models, such as RAJA [1] and Kokkos [2].
While writing parallel programs using OpenMP is easy, writ-
ing them correctly is as hard as any other multithreaded
programming, which is notoriously prone to race conditions
and other concurrency errors such as deadlocks and atomicity
violations. Debugging race conditions in OpenMP is particu-
larly challenging because the non-deterministic races can be
perplexed by the OpenMP runtime, which is hidden from the
static program.

The majority of recent work in OpenMP race detection
has focused on dynamic tools. There are a number of dy-
namic tools in use today, including Archer [3], ROMP [4],
SWORD [5], TSAN [6], Intel Inspector [7], and Helgrind [8].
The dynamic tools typically detect a data race by tracing
memory accesses per thread, running a program with a specific
configuration of number of threads and input, to report a data

race if writing a memory location violates happens-before [9]
ordering semantics. This approach has several drawbacks:
1) it is slow because of the high overhead associated with
memory tracing; 2) detection depends on the specific thread
and input configuration, so it may miss data races that do not
manifest with a specific configuration—testing every possible
thread setting and input is practically infeasible; 3) it can
be sometimes difficult to accurately pinpoint the cause of
a data race in the source code since this method involves
redirection through debugging information for the executable.
While recent work [4] improves the accuracy of runtime
data race detection by analyzing memory accesses at the
level of concurrent logical tasks of OpenMP, i.e., it detects
races independent of the threading configuration, this detection
method still depends on input and incurs the overhead of
running the program traced.

Previous work has also proposed a small number of
static verification tools for OpenMP, including DRACO [10],
LLOV [11], and ompVerify [12]. These tools put heavy
emphasis on proving that a section of code is race free. While
powerful, such strong guarantees come at a cost: these tools
are either restricted to a subset of OpenMP features, such as
affine loops, are too expensive to scale to large programs, or
must operate in a limited scope of the program.

In this paper, we present OMPRACER, a new data race de-
tection tool that performs flow-sensitive, interprocedural static
analysis to find races in OpenMP programs. OMPRACER
combines several novel techniques designed for OpenMP,
including a static happens-before graph built upon a gener-
alized modeling of OpenMP APIs, an efficient race detection
engine through hybrid happens-before and lockset analyses, an
interprocedural value-flow analysis for array indices, together
with a state-of-the-art pointer analysis. OMPRACER detects
races independently of both the threading configuration and
input, and it integrates seamlessly with the compiler toolchain
without requiring any annotation or other intervention from the
user. Compared to existing static tools, OMPRACER does not
aim to be a verification tool; instead it is explicitly designed
to be a tool capable of supporting the majority of OpenMP
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features that can scale to real-world large complex applications
with millions of lines of code.

The specific contributions of this work are:
• A new, state-of-the-art data race detection tool, named

OMPRACER, that performs detection at compile time
using static analysis. We design OMPRACER so that
its accuracy is independent of the number of threads or
input configuration. OMPRACER is deployed as an exten-
sion to the Clang/LLVM compiler and cmake toolchain,
requires no user intervention other than compiling the
program through it, and pinpoints exactly the source code
line and source code variable for which the race occurs.

• A novel technique to detect OpenMP races that ex-
tracts OpenMP semantics to build the static happens-
before graph at the level of logical threads and under-
stands OpenMP-defined data sharing semantics. Com-
bining OpenMP semantic analysis with a set of novel
algorithms for reasoning about pointer aliases and value
flows in an interprocedural setting enables OMPRACER’s
to achieve both scalability and precision.

• An extensive evaluation of OMPRACER using
DataRaceBench [13] and HPC proxy applications
comparing with other state-of-the-art tools, including
the widely used tool Archer [3], the recently developed
OpenMP-specific tool ROMP [4], as well as a more
recent static OpenMP race detector LLOV [11].
Besides OMPRACER being superior than those tools
by detecting races regardless of thread and input
configuration and avoiding the overhead of traced
execution, OMPRACER shows high accuracy and high
precision on DataRaceBench benchmarks.

We have applied OMPRACER to the Exascale Computing
Project (ECP) proxy applications containing over 2 million
lines of code. OMPRACER is fully automated to run on all
of them under 10 minutes. In our evaluation of the proxy
application miniAMR [14], OMPRACER found a previously-
undetected data race (we elaborate the race in the next
section). We also applied our tool to a high profile covid
simulation code, finding several new races that are missed by
dynamic race detectors. This demonstrates the effectiveness of
OMPRACER in being ready to be used in realistic OpenMP
applications. Instructions to download and try OMPRacer can
be found at https://github.com/parasol-aser/OMPRacer.

II. MOTIVATING EXAMPLES

In this section, we illustrate challenges in OpenMP race
detection and highlight the advantages of our approach.

A. Challenges
Input-dependent Races. Listing 1 shows an example of a

data race that depends on a specific branch being executed.
An array A and its length N are given as inputs. There is a
data race on A[0], but only when A is over a certain length.
In order for a dynamic tool to detect the race, an array A given
as input must be large enough that the branch inside of the
parallel for loop is executed. If the wrong input is given and

the branch is not taken, it is impossible for a dynamic tool to
detect the race.
1 int *A; int N;
2 load_from_input(A, &N);
3 #pragma omp parallel for shared(A)
4 for(int i = 0; i < N; i++) {
5 A[i] = i;
6 if (N > 10000) { A[0] = 1; }
7 }

Listing 1. Input Dependent Race

Although the example in Listing 1 is simple, this problem
in principle applies to large projects. Different paths within
a program may access different locations in memory and
dynamic tools are limited to observing only a single execution
path. For each branch taken there exists an alternate path
through the program that was not observed.

Ideally, a dynamic race detection tool would run multiple
times with a variety of different inputs that cause every possi-
ble path to be executed and therefore analyzed by the dynamic
tool. However, it is impractical to find enough inputs to cover
all possible program paths. In a non-trivial application, finding
enough inputs to cover even the majority of possible program
behaviour is not practical. In practice, it is more likely that
a dynamic tool will be run using a set of sample or test
inputs used to mimic the common use cases of an application.
Therefore, a fundamental limitation of dynamic race detection
tools is their dependence on the input.
1 int len = 100;
2 double a[len]
3 #pragma omp target map(tofrom: a[0:len])
4 #pragma omp teams num_teams(2)
5 {
6 a[50]*=2.0;
7 }

Listing 2. DataRaceBench 116 with OpenMP offloaded to GPU

Races in Regions Offloaded to GPU. OpenMP offloading
is becoming increasingly prevalent. Listing 2 shows a case
from DataRaceBench which has a race in code offloaded
to a GPU. All existing dynamic tools for OpenMP race
detection are designed to be run on CPU and cannot analyze
programs offloaded to GPU. A dynamic tool needs to consider
extra details about the device to properly support GPU race
detection. The hardware level structure of a GPU differs so
dramatically from a CPU that applying a dynamic technique
designed for CPU directly to GPU will almost certainly fail.
Extending a dynamic OpenMP race detection tool to work for
GPU would be a huge effort and to date no one has been
successful in this area.
1 #pragma omp parallel for shared(A)
2 for(int i = 0; i < 10; i++) {
3 A[i] = i;
4 if (i == 1) { A[0] = 1; }
5 }

Listing 3. Race Depends on Number of Threads

Configuration-dependent Races. Another drawback of dy-
namic race detection tools is they generally have no knowledge
of source level information. In the context of OpenMP race
detection, this means that many dynamic tools may miss

https://github.com/parasol-aser/OMPRacer
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Fig. 1. An overview of OMPRACER.

possible races because they lack higher level information about
OpenMP. Consider Listing 3, in which there is a data race
between the iterations of the loop where i equals 0 and 1.
When this program is run with only two threads the race may
not occur. The compiler may simply divide the loop iterations
by the number of threads. In this case, iterations 0 through 4
would be executed on the first thread and iterations 5 through
9 would be executed on the second thread. When the iterations
are split in this way, the two racing accesses in iterations 0
and 1 are executed by the same thread, meaning there is no
race. The race is only exposed when the loop is split such
that iterations 0 and 1 are executed on different threads. In
Listing 3, depending on the OpenMP runtime scheduling, the
program may be race free when run with up to 9 threads.
However when run with 10 threads, iterations 0 and 1 will
be scheduled on different threads and suddenly there is a data
race.

Implications for Highly Parallel Systems. The types of
races described above are more likely to be exposed on sys-
tems with a large number of threads. This can be particularly
problematic if the machine used to test the application has
fewer threads than the machine used to do production runs.
A data race that occurs in production may not be observed
on the machine used to test due to the smaller number of
threads. This type of race can also be problematic over time
as applications are run on new and more powerful machines.
An application that was designed and tested on a 128 core
machine may have run correctly for years, but when moved
to a newer machine with more cores or even ported to run on
a GPU suddenly experiences non-deterministic behaviour.

The static nature of OMPRACER allows us to address the
aforementioned challenges faced by dynamic tools. Moreover,
underpinned by our new advances in static analysis, OM-
PRACER is able to achieve both high performance and high
accuracy, as we will show in the rest of this paper.

B. Race in miniAMR

OMPRACER has been used to detect a previously-unknown
race in a real OpenMP application: miniAMR [14].

1 #pragma omp parallel default(shared) \
2 private(i, j, k, bp)
3 {
4 for (in = 0; in < sorted_index[num_refine+1]; in++)
5 {
6 bp = &blocks[sorted_list[in].n];
7 for (i = 1; i <= x_block_size; i++)
8 for (j = 1; j <= y_block_size; j++)
9 for (k = 1; k <= z_block_size; k++)

10 work[i][j][k] =
11 (bp->array[var][i-1][j ][k ] +
12 bp->array[var][i ][j-1][k ] +
13 bp->array[var][i ][j ][k-1] +
14 bp->array[var][i ][j ][k ] +
15 bp->array[var][i ][j ][k+1] +
16 bp->array[var][i ][j+1][k ] +
17 bp->array[var][i+1][j ][k ])/7.0;
18 for (i = 1; i <= x_block_size; i++)
19 for (j = 1; j <= y_block_size; j++)
20 for (k = 1; k <= z_block_size; k++)
21 bp->array[var][i][j][k] = work[i][j][k];
22 }
23 }

Listing 4. Data Race Discovered by OMPRacer

Listing 4 shows the OpenMP code containing the data
race in miniAMR. The code begins with #pragma omp
parallel, which specifies that every thread in the team will
execute the entirety of the enclosed region. This means that
the shared index variable in used in the outermost loop can
be set to zero and incremented in parallel by multiple threads
simultaneously. This is clearly a data race.

Data races are undefined behaviour and at high optimiza-
tion levels, the compiler could potentially generate code that
produces wrong results. However, it at first appears that this
race simply causes some iterations of the loop to be executed
more than once as in is reset to zero.

In reality this data race is more sinister. In fact, because of
the race on in there is also a race on the private variable bp,
or rather the data to which bp points to. Note that lines 11-17
read from bp->array and line 21 writes to bp->array.
Although bp is a private variable, if bp were to point to the
same location on two different threads, both threads would
be reading and writing to the same bp->array in parallel.
Each thread calculates bp at line 6 based on the value of in.
As was shown above, the race on in makes it possible for



two different threads to have the same value of in at line 6,
causing different threads to be assigned the same value for
bp. The data race on bp->array will almost certainly lead
to incorrect results.

OMPRACER was able to detect both the race on in, and
the race on bp->array.

C. Races in CovidSim
OMPRACER has been used to detect and find three real

races on CovidSim [15], [16] which have since been confirmed
and fixed by the CovidSim developers. CovidSim is a mi-
crosimulation model developed by the MRC Centre for Global
Infectious Disease Analysis hosted at Imperial College, Lon-
don. CovidSim is used to model the spread of COVID-19 and
the results generated by CovidSim have played a crucial role in
shaping government policy on how to effectively address the
COVID-19 pandemic. The importance of the CovidSim model
has led to increased scrutiny on the code base. The developers
use various tools, including Intel Inspector [7], to check for
data races. The CovidSim project has also received support
from GitHub and Microsoft who lent professional software
engineers to review the code base. Additionally, since the
project’s public release on GitHub, developers all over the
world have spent time trying to identify race conditions in the
CovidSim model.

However, despite this heightened level of attention and
scrutiny, OMPRACER was able to detect three new data
races. The newly detected races are in unreachable code by
default and only executed under a specialized configuration.
These races had no effect on the current or previous results
from modelling the spread of COVID-19, but the authors
mention they plan to extend their models in the coming months
to include features relying on the buggy code we detected.
OMPRACER helped to resolve the problem in advance. Figure
2 shows the report for one of the races found by OMPRACER.

The CovidSim races show the power of OMPRACER as a
static tool. As it is practically impossible to have dynamic tools
to examine every possible program path with an exhaustive
set of inputs and configurations, static tools have the unique
ability to analyze the program in its entirety and find the bugs
in uncommon code paths that might otherwise go unnoticed.

III. THE OMPRACER TECHNIQUE

Fig. 1 shows an overall architecture of OMPRACER, con-
sisting of three primary components: ∂ a memory alias analy-
sis, ∑ a comprehensive static modeling of OpenMP semantics,
and ∏ a general race detection engine. These components
work together to achieve scalable and precise race detection
for OpenMP programs.

A. Memory Alias Analysis
One fundamental problem for static race detection tools is

identifying shared memory that might be accessed concur-
rently by multiple threads. We use two types of analyses for
this purpose: 1) a context- and field-sensitive pointer analysis
and 2) an inter-procedural value flow analysis. These two

========	Found	a	race	between:
line	215,	column	3	in	Update.cpp	AND	line	145,	column	8	in	Update.cpp
Shared	variable:
/covim-sim/src/SetupModel:287
287|	if	(!(nEvents	=	(int*)calloc(1,	sizeof(int))))...

Thread1:	/covim-sim/src/Update.cpp
	213|
	214|									//increment	the	index	of	the	infection	event
>215|									(*nEvents)++;
	216|	}
	217|
Stack	Trace:
>>>	DoInfect(int,	double,	int,	int)	[src/Sweep.cpp:717]
>>>	RecordEvent(double,	int,	int,	int,	int)	[src/Update.cpp:147]
Thread2:	/covim-sim/src/Update.cpp
	143|	if	(P.DoRecordInfEvents)
	144|	{
>145|									if	(*nEvents	<	P.MaxInfEvents)
	146|									{
	147|																	RecordEvent(t,	ai,	run,	0,	tn);	//...
Stack	Trace:
>>>	DoInfect(int,	double,	int,	int)	[src/Sweep.cpp:717]

The	OpenMP	Region	Causing	this	race:
/covim-sim/src/Sweep.cpp:
>701|#pragma	omp	parallel	for	schedule(static,1)	default(none)	\
	702|											shared(t,	run,	P,	StateT,	Hosts,	ts)
	703|			for	(int	j	=	0;	j	<	P.NumThreads;	j++)
	704|			{
	705|											for	(int	k	=	0;	k	<	P.NumThreads;	k++)
	706|											{
Gets	called	from:
>>>	main
>>>			RunModel(int)	[src/CovidSim.cpp:409]

Fig. 2. The terminal report for a real race detected in covid-sim

analyses work together to reason about memory aliases. The
pointer analysis is a whole program analysis that computes
the points-to set of every pointer in the program and is able
to distinguish whether different memory accesses can refer to
the shared piece of memory. However, the pointer analysis is
array index insensitive, meaning that it cannot distinguish two
memory accesses on the same array but at different indices
(e.g., A[i] and A[i+1]). As array indexing is prevalent in
OpenMP programs, apart from the pointer analysis, we also
developed an inter-procedural value flow analysis to provide
stronger ability to analyze array accesses. We introduce them
as follows.

1) Pointer Analysis for OpenMP: In OMPRACER, we im-
plement a context- and field-sensitive Andersen-style pointer
analysis [17]. The pointer analysis offers two fundamental
capabilities to our race detector: a) it computes the shared
variables information for data race detection and b) it com-
putes the complete call graph of the target program in the
presence of function pointers, which is essential for building
the global happens-before graph and for achieving high code
coverage.

Our pointer analysis advances prior research with the fol-
lowing two contributions:

• In addition to providing support for non-OpenMP code,
our pointer analysis is the only openly available frame-
work that supports OpenMP programs. Other tools [18]
fail to provide meaningful results because of unhandled
OpenMP APIs.

• Instead of using conventional context sensitive pointer



	int	main()	{
			int	a[100];
			#omp	parallel	for
			for	(int	i;	i	<	100;	i++){
					do_something(a,	i);
			}
	}

	int	main()	{
			int	a[100];
			__kmpc_fork_call(...,	.omp_outlined.,	a)
	}

	void	.omp_outlined.(int	*a)	{
			__kmpc_for_static_init(...,	upper,	lower,	...);
			for	(int	i	=	lower;	i	<	upper;	i++)	{
					do_something(a,	i);
			}
	}

Translated	To

Fig. 3. A (simplified) example of how an OpenMP parallel region is translated
when compiled with clang/LLVM.

analysis such as callsite sensitivity [19] and object sensi-
tivity [20], we introduce a new type of context sensitivity,
the OpenMP region sensitivity, that is designed specially
for OpenMP programs to improve both the analysis
precision and performance.

Understanding OpenMP APIs: To implement a pointer
analysis framework that supports OpenMP programs, it is
essential for the framework to understand the semantics of the
OpenMP APIs and to model (potential) side effects correctly.
When a call is made to the OpenMP runtime, pointer analysis
should understand how data will be passed and processed by
different OpenMP threads to compute the correct points-to
information. Correctly modeling OpenMP requires an under-
standing of how high-level OpenMP features are translated by
the compiler to LLVM IR. As the example shown in Fig. 3, to
start an OpenMP parallel for region, the compiler first
generates code to call the __kmpc_fork_call function to
spawn OpenMP threads. The actual for loop body is encap-
sulated into .omp_outlined. functions, which are passed
as callback functions internally invoked by the OpenMP run-
time. To divide the for loop into disjoint sections that can
be computed concurrently, __kmpc_for_static_init is
invoked to split the loop statically as the OpenMP loop
(implicitly) uses the static scheduling scheme.

As in Fig. 3, pointer analysis needs to understand how
the .omp_outlined. function is executed and how the
parameters are passed in to analyze shared objects between
different OpenMP threads. It also needs to understand side
effects caused by OpenMP runtime to abstract the behavior
more accurately, e.g., __kmp_omp_task_alloc allocates
objects and thus affects the points-to information. Our pointer
analysis strictly follows the OpenMP standard and models
most of the commonly used APIs. However, there are some
less common OpenMP features that remain to be handled in
the future (namely, task and sections).

	//	thread	body	
	void	.omp_outlined.()	{
					int	a;
					call_1(&a);	//C1
	}

	void	call_1(int	*a)	{
			call_2(a);	//C2	
	}
													...
	void	call_N(int	*a)	{
			*a	=	1;	
	}

Thread	1

Thread	2

call_1 call_2

call_1 call_2
call_3 call_N...

<T1> <T1, C1>
<C1, C2>

<T2> <T2, C1>

(a)

Thread	1

Thread	2

call_1 call_2

call_1 call_2

call_3 call_N...
<T1> <T1> <T1> <T1>

<T2> <T2>

(b)

<C{N-2}, C{N-1}>

call_3 call_N...
<T2> <T2>

Fig. 4. A comparison between OpenMP region sensitivity and callsite
sensitivity (with k-limiting set to 2). (a) 2-callsite sensitivity only maintains the
most recent 2 call site to distinguish pointers; (b) OpenMP region sensitivity
uses the logical thread ID to distinguish pointers.

OpenMP Region Sensitivity: Context sensitivity is essential
for pointer analysis to improve the accuracy, it allows pointer
analysis to distinguish the same static pointer when used by
different callers. Apart from providing comprehensive support
for OpenMP programs, we design and implement a new type
of context sensitivity specially for OpenMP programs so that
our pointer analysis is faster (and usually more accurate) when
analyzing OpenMP programs than conventional approaches
(e.g., callsite sensitivity). The key observations are

• To detect races in OpenMP parallel regions, the precision
of the pointer analysis outside OpenMP parallel regions
is less important. Performance can be improved by ana-
lyzing functions in a context-insensitive manner until an
OpenMP parallel region is reached.

• For better scalability, conventional context-sensitive
pointer analysis has to impose a k-limiting [21] to avoid
the exponential complexity growth (e.g., only distinguish
the most recent k callsites). This limitation could lead
to unacceptable imprecision because of discarding criti-
cal contexts upon exceeding the k-limiting (e.g., where
OpenMP regions are spawned). We will explain in the
following paragraphs.

OpenMP region sensitivity overcomes the limitation by
picking OpenMP threads’ spawning sites as a context (nor-
mally a call to __kmpc_fork_call) and instead of up-
dating the context whenever a new call is invoked, OpenMP
region sensitivity only updates the context when new OpenMP
threads are spawned. This allows users to handle nested
OpenMP regions while imposing little overhead to the pointer
analysis. Despite of the advantages that OpenMP region
sensitivity has over conventional approaches when analyzing
OpenMP programs, we make no claim that OpenMP Region
sensitivity is superior in all other cases. Instead, we focus on
showing how it improves OpenMP data race detection.



An important technical caveat specially for OpenMP pro-
grams is that one __kmpc_fork_call can create multiple
threads. Thus, it is essential for pointer analysis to be able to
distinguish different logical threads and provide meaningful
data sharing information across threads. Our pointer analysis
spawns two logical threads for each __kmpc_fork_call.

The difference between OpenMP region sensitivity and con-
ventional callsite sensitivity is illustrated in Fig. 4. As shown
in the figure, the thread body (i.e., the .omp_outlined.()
function) allocates a thread local variable a. All the OpenMP
threads then access their own copy of a in call_N and thus
the example shown is race-free. The key to avoid reporting
a false positive in the example is to recognize that the same
pointer (pointer a) used in different OpenMP threads points
to its own thread-local copy. 2-callsite sensitivity fails on this
case because it only looks up the 2 most recent callsites.
Thus, starting from call_3, the two pointers become in-
distinguishable because the thread spawn site is popped out
as the k-limiting is exceeded. On the other hand, OpenMP
region sensitivity reports no race on the example. Instead
of using concrete callsite to distinguish pointers, OpenMP
region sensitivity adopts the logical thread ID to distinguish
pointers, thus, no matter how long the call chain is within an
OpenMP region, the functions are analyzed under the context
of different logical threads.

2) Interprocedural Value Flow Analysis: Our inter-
procedural value flow analysis is key to determining whether
two array accesses can refer to the same location in memory.
Our implementation reuses LLVM’s Scalar Evolution (SCEV)
analysis [22], a state-of-the-art symbolic analysis on scalar
variables based on chains of recurrences [23]. However, SCEV
is only intra-procedural, which does not work for array indices
computed through multiple function calls. We made the fol-
lowing two major extensions on the original SCEV analysis:

• We extended SCEV to an on-demand context-sensitive
inter-procedural analysis so that it is able to analyze array
accesses across different functions.

• We built a fast constraint solver on top of the SCEV
analysis to verify whether two array accesses can alias.

1 int arr[100];
2 for (i=1;i<100;i++) {
3 // SCEV: {%arr, +, 4}<for.body>
4 arr[i]=i;
5 }

Listing 5. A simple example on SCEV analysis

SCEV abstracts programs into SCEV expressions. For ex-
ample in Listing 5, the index on array arr in the for loop is
modeled by SCEV as {%arr, +, 4}<for.body>, which
means that the address being accessed in the loop is increased
by 4 (sizeof(int)) in each iteration. Note that although
the example shown is simple, SCEV is capable of handing
more complex loop structures in practice.

We utilize SCEV expressions and adapt them specially for
OpenMP race detection. At a high level, OpenMP parallelizes
for-loops by splitting the loop into chunks, each with its own
induction variable which is calculated based in each thread’s

TABLE I
LIST OF FEATURES SUPPORTED BY OMPRACER

Feature Support Feature Support
omp parallel X target X
omp for X teams X
omp barrier X simd X
master X for simd X
single X sections 7*
reduction X task 7*
atomic X taskwait 7*
critical X taskloop 7*
threadprivate X ordered 7*

* This feature was incomplete at the time of
writing. However there is no fundamental limitation
preventing OMPRacer from supporting this feature.

id. Hence the array accesses within each sub-loops can all be
viewed as:

f
array

(tid) = f
offset

(tid) + base

where base is a constant computation for the base address
of the array (independent of the induction variable), and f(tid)
is an offset computation related to the induction variable. To
guarantee soundness, we assume that OpenMP will assign
each iteration of the loop to a different logical thread. Then
the alias checking for two array accesses f

array1(tid1) and
f
array2(tid2), within a for-loop from low to high, can be

formalized as:
9f

array1(tid1) = f
array2(tid2)

where tid1 6= tid2 and tid1, tid2 2 [low, high]

1 int i, j; double b[100][100];
2 #pragma omp parallel for private(j)
3 for (i=1;i<100;i++)
4 for (j=0;j<100;j++)
5 b[i][j]=b[i][j-1];

Listing 6. DataRaceBench Case No. 014

Listing 6 shows an example in DataRaceBench that contains
a race on line 5 between b[i][j] and b[i][j-1]. Since
j (line 4) starts from 0, it is possible for two different threads
to access the same array element concurrently (e.g., between
b[0][99] and b[1][-1]) due to array underflow. The
simplified SCEV expression for b[i][j] and b[i][j-1]
are:

f
b[i][j](tid1) = j ⇤ 8 + tid1 ⇤ 800 + base

f
b[i][j�1](tid2) = (j � 1) ⇤ 8 + tid2 ⇤ 800 + base

Here the base is a constant value denoting b’s base address
and j is a constant range from 0 to 100. By omitting base
and applying the range of j, we can get the address range of
b[i][j] is [tid1 ⇤ 800, tid1 ⇤ 800 + 800] and the range of
b[i][j-1] is [tid2 ⇤ 800� 8, tid2 ⇤ 800 + 792]. Under the
constraint tid1 6= tid2, we can see that these two ranges can
overlap, thus there exist potential races.

B. OpenMP Modeling
OpenMP parallel regions start with a call to

__kmpc_fork_call functions. Our OpenMP modeling



uses a similar scheme as introduced in memory alias
analysis by creating two logical threads for thread sharing
and happens-before analysis. Although variables are often
declared to be private or shared explicitly in OpenMP
programs, OMPRACER takes advantage of a whole program
pointer analysis to compute data sharing information and
achieve more fine-grained detail about what memory locations
may be shared between threads.

In OMPRACER’s implementation, we have modeled most
APIs in OpenMP 5.0. Table I shows a summary of these
features. In the following, we elaborate how we model some
of the most common ones.

• Master/Single regions represent a section of code that
should only be executed by a single thread. Events within
a master or single region cannot race with themselves
as they are guaranteed to happen on the same thread.
However, they may race with events outside of the
master/single region so they still need to be analyzed.
This behaviour can be modelled by allowing only a
single logical thread to execute a master/single region.
By adding the events of a master or single region to only
one logical thread, our analysis is able to detect possible
data races involving events in a single region without
falsely reporting races within the single region.

• Reduction allows for multiple values computed in parallel
to be combined into a single result. An OpenMP de-
veloper generally specifies a variable that contains some
piece of the result and an operation to combine each piece
into a final value. The compiler then inserts code that
handles the actual reduction. For simplicity, we assume
the reduction code added by the compiler to be race
free. Our tool is able to identify the reduction code and
excludes it from analysis.

• Critical sections allow only a single thread to execute
the specified block of code at a time. We model critical
sections by treating them as if they were guarded by a
lock. The start of a critical section is treated as acquiring
a lock, and the end of the critical section is treated
as releasing the same lock. We then use the lockset
algorithm to determine if two events hold the same lock.

• Atomic regions in OpenMP are converted to atomic
instructions at the IR level. Our tool excludes atomic
instructions from analysis during race detection as they
are guaranteed to be race free.

• Barriers represent a synchronization across threads in
an OpenMP region. Barriers are modelled by adding a
special barrier event to the static happens-before graph
(described in Section III-C1). The first logical thread to
encounter a barrier adds a barrier event and continues
traversing the program. The second thread to encounter
a barrier also adds a barrier event into its trace, but then
must also create a bi-directional edge between its barrier
event and the barrier event created by the first thread.
This enforces a happens-before ordering between the two
threads such that all events on both threads before the

TABLE II
EVENTS IN SHB GRAPH

Instruction Event

*ptr = val WriteEvent(ptr)
vec.push_back(val)∂ WriteEvent(vec)
val = *ptr ReadEvent(ptr)
val = vec.at(idx)∑ ReadEvent(vec)
omp_set_lock(&lock) LockEvent(&lock)
omp_set_unlock(&lock) UnlockEvent(&lock)
#pragma omp barrier BarrierEvent()

#pragma omp parallel
ForkEvent()
JoinEvent()

#pragma omp critical lock
LockEvent(&lock)
UnlockEvent(&lock)

∂ and ∑: we use vector as an example, but we also modeled
most common APIs for the container classes in C++ such as
string, set, etc.

barrier must happen before all events after the barrier.
• SIMD in OpenMP signals that the compiler should trans-

late code to use SIMD instructions. We support SIMD for
loops in OpenMP by disabling the SIMD translation and
treating the loops as normal parallel for loops.

C. Race Detection Engine
1) Static Happens-Before Graph: Our race detection is

based on a static happens-before (SHB) graph [24] extended
with OpenMP semantics. The SHB graph is a directed graph
whose nodes represent a Program Event and edges represent
Happens-Before relations.

• Events represent the IR instructions relevant to data race
detection, such as memory read/write, thread fork/join,
and synchronization primitives. Table II shows a list of
instructions and their corresponding events. Apart from
normal read and write instructions, it is also necessary
to model the common APIs for container classes in
C++ standard libraries as read or write events, such as
vector, set, string, etc.

• Happens-Before Edges connect the events to form a
static representation of the program trace. There are two
types of edges: 1) Intra-thread HB edges are implicit
edges represented by unique ID of events. The events
are created by traversing the program starting from the
program entry, and each event is assigned with an unique
ID at its creation. Therefore, the ID can be viewed as
a “static timestamp” that implies its sequential orders
with other events in the same thread. For example, event
A with ID1 and event B with ID2 are two events in
thread 1 and ID1 is smaller than ID2. Then there exists a
Happens-Before relation from A to B. 2) Inter-thread HB
edges are explicit edges that connect events in different
threads. They are usually created by thread fork/join
events or synchronization primitives such as signal/wait,
memory barriers, etc. For example, thread 1 invokes a
thread fork event, thus thread 2 is created. Then there will



be an explicit edge from the thread fork event to the head
of thread 2. In OpenMP programs, the thread fork/joins
are much simpler than normal concurrent programs, the
majority of inter-thread HB edges are created by memory
barriers.

The SHB Graph is a generic abstraction that fits into
any multithreaded program in general. In OMPRACER, we
identify a pair of __kmpc_fork_call (one created by
OpenMP and the other injected by OMPRACER) and their
corresponding .omp_outlined. function as the entry for
each OpenMP region and start traversing the instructions
inside. When function calls are encountered, we query the call
graph generated by pointer analysis to find the instructions for
that function. The final result of the SHB graph for an OpenMP
region are two parallel sequence of events connected by some
inter-thread HB edges.

2) Thread Sharing Analysis: Another core part for race
detection is identifying all the shared memory locations and
the memory access events on them. The shared memory is
represented by abstract objects constructed by pointer analysis.
For each abstract object, we maintain a Writes Map and a
Reads Map, where we build a mapping between the static
threads and the read/write access events on the abstract object.

Algorithm 1: ThreadSharingAnalysis
input : PTA - pointer analysis

CG - program call graph
output: SharedObjects - a set of shared abstract

objects
1 threads two static threads of an OpenMP region
2 for t 2 threads do

3 for inst 2 t do

4 pts getPointsToSet(inst);
5 if isWrite(inst) then

6 for o 2 pts do

7 wmap getWritesMap(o);
8 wmap (t, inst);

9 else if isRead(inst) then

10 for o 2 pts do

11 rmap getReadsMap(o);
12 rmap (t, inst);

13 FindSharedObjects();

Algorithm 1 traverses the OpenMP program IR instructions
to collect the Writes Map and Reads Map for all the abstract
objects we encountered (line 2-18). The maps not only record
the correspondence between abstract objects and memory
access instructions, but also reflect the the number of threads
accessing each object (the keys of each map). Therefore we
can use Algorithm 2 to identify shared abstract objects.

3) Connectivity Checking: The SHB graph abstracts the
problem of checking happens-before relation of two events
into a graph connectivity problem. To find if there’s happens-
before order between two events, a strawman approach is to

Algorithm 2: FindSharedObjects
input : AbstractObjects - all abstract objects

encountered
output: SharedObjects - a set of shared abstract

objects
1 for o 2 AbstractObjects do

2 rmap getReadsMap(o)
3 wmap getWritesMap(o)
4 if wmap.size > 1 then

5 SharedObjects o
6 else if wmap.size = 1&&rmap.size > 1 then

7 SharedObjects o
8 else if wmap.size = 1&&rmap.size = 1 then

9 if writes and reads are on different thread then

10 SharedObjects o

perform a DFS (or BFS) starting from one event and vice
versa. This approach does not scale to realistic programs
because it is common to have millions of events in the SHB
graph. In our algorithm, we represent intra-thread HB edges as
ordered event IDs, so that only the inter-thread HB relations
require connectivity checking. We derive a Synchronization
Graph from the SHB graph, which only consists of inter-
thread edges and their corresponding nodes. Since the number
of synchronizations is usually only small fraction compared
to memory accesses, the size of the synchronization graph is
significantly smaller than the SHB graph.

To check the connectivity of event A and event B, it is then
sufficient to check the connectivity from A’s immediate suc-
ceeding outgoing node to B’s immediate preceding incoming
node and from B’s immediate succeeding outgoing node to
A’s immediate preceding incoming node. It is common for
two events to have the same immediate succeeding outgoing
node or the same immediate preceding incoming node, thus
this method enables efficiently caching the connectivity results
to optimize the performance.

4) Lock Set Tracking: OMPRACER uses a fairly straight-
forward approach to handle locks. Each read/write event in the
SHB Graph will be associated with a lockset at its creation.
The lockset is a global state that contains a list of abstract
lock objects being held when we reach the current event.
Once a lock/unlock event is encountered, we query the pointer
analysis to see which abstract lock objects the pointer may
point to, and we update the lockset by pushing abstract objects
into or popping the abstract object out of the lockset. The
commonly used OpenMP instruction omp critical always
acquires a pre-defined global lock by default.

5) Race Detection: Once all the essential data structures
described above are constructed, the last step is to check each
pair of memory access events on a shared abstract object:

1) check if there’s at least one write event;
2) check if the two events are not connected on the SHB

graph;



3) check if the two events do not share a common lock
(sharing at least one abstract lock object in their lockset).

6) Missed OpenMP Regions: To fully take advantage of
pointer analysis in detecting shared objects, the baseline al-
gorithm starts by looking for an entry function, like main,
and builds/traverses the SHB graph by recursively visiting any
called functions. This allows the tool to track the calling stack
of any location visited and to track information about what
objects are shared.

There is however a downside to this approach. There are
some cases where static analysis may not be able to resolve
what function is being called. This is especially true when
there is unhandled external APIs. In these cases our tool may
not realize that some functions are being called and may fail
to analyze those functions. If those functions contain OpenMP
regions, potential races could be missed.

To address this issue, we add a final step to scan for missed
OpenMP regions. After running race detection from the entry
function, we scan the code for any OpenMP region that has
not been analyzed. If a missed OpenMP region is found, we
set the function containing the missed OpenMP region as the
entry function and run race detection again.

The challenge with this approach is reasoning about argu-
ments passed into this function. If any of the arguments are
pointers, or objects that contain pointers, we must make some
assumptions about what they may alias with as pointer analysis
lacks information about how this function was called. In order
to produce meaningful results, we assume that any arguments
passed in do not alias or overlap in anyway.

IV. EVALUATION

This section presents the evaluation of OMPRACER on
DataRaceBench and the ECP proxy applications. We com-
pare the results with three representative tools: Archer [3],
ROMP [4], and LLOV [11]. Archer and ROMP are two state-
of-the-art dynamic tools in use today and LLOV is a more
recent static tool for OpenMP race detection.

All benchmarks used in our evaluation are written in either
C or C++. However, because OMPRACER analyzes LLVM
IR, OMPRACER is capable of detecting races in OpenMP
programs written in Fortran as long as an LLVM front-end
for Fortran is provided.

A. DataRaceBench
DataRaceBench is a collection of OpenMP microbench-

marks designed to evaluate and compare data race detection
tools. As of v2.0, it contains a set of 116 benchmarks each
with or without a specially designed data race that matches
a misuse of certain OpenMP features, allowing evaluations
to count the number of true positives (TP), false positives
(FP), true negatives (TN), and false negatives (FN) that each
tool reports. Tools can then be compared using the following
metrics.

• Precision = TP / (TP + FP)
• Recall = TP / (TP + FN)
• Accuracy = (TP + TN) / (TP + FP + TN + FN)

• Total Accuracy = (TP + TN) / (Total # of cases)
We introduce the Total Accuracy metric to give a complete

picture of the accuracy across all 116 cases in DataRaceBench,
including those cases on which some tools fail to run. While
the Accuracy only reflects the cases on which each tool suc-
cessfully runs, excluding cases where the tool fails to produce
results. We use the statistics published on the DataRaceBench
github repo [25] to compare our tool to Archer and ROMP in
Table V. The results of dynamic tools can change from one
run to the next as they may be sensitive to input, number of
threads, and timing. So, the authors of DataRaceBench run
each dynamic tool multiple times and give a min-max range
for each metric. LLOV and OMPRACER have only a single
value because as a static tool it is not dependent on any runtime
behaviour and gives the same result every time.

The results in Table V show that OMPRACER significantly
outperforms LLOV and even achieves a better result than
the two dynamic tools in terms of the total accuracy. Both
OMPRACER and LLOV have a very high recall, because
both tools are static and they analyze the entire program and
thus are unlikely to miss races. The false negatives cases
in DataRaceBench are either due to unsupported features
(task and sections), or due to compiler transformation. More
specifically, there are two cases in DataRaceBench where the
data race is removed by LLVM transformation passes. The
simplified code pattern looks like the following code snippet:
1 int tmp; int A[100];
2 #pragma omp parallel for shared(A)
3 for(int i = 0; i < 100; i++) {
4 tmp = A[i];
5 A[i] = tmp;
6 // ===> Optimized as
7 // A[i] = A[i];
8 }

The above optimization is legitimate as data races are
undefined behaviours (UB) in C/C++. And we kept those
transformation passes as they simplify the LLVM IR and
improve the accuracy of OMPRACER in general.

OMPRACER has a slightly lower precision than the dy-
namic tools and there are two main reasons for it: 1) To
calculate the precision, the fail-to-run cases are excluded.
Thus, OMPRACER, as the only tool that succeed on all the
benchmarks, has a higher chance to fail as it evaluates more
cases. In fact, OMPRACER has the highest total accuracy as
is shown in Table V, which considers fail-to-run cases as
well; 2) There are some fundamental challenges for static
analysis tool compared to dynamic tools that can cause the
imprecision. For example, OMPRACER does not reason about
branch conditions. When two threads can access the same
memory location but there are branch conditions to ensure
that only one branch is executed at runtime, OMPRACER
will conservatively report a race. A dynamic tool would only
observe one of the branches at runtime, so will not report
the false positive. We considered those challenges for future
improvements and they remain to be unsolved at the current
version.

When compared to LLOV, OMPRACER shows much more



TABLE III
EVALUATION RESULTS ON LARGE REAL APPLICATIONS

Benchmark #Instructions LOC #Regions #Reads #Writes

ROMP Archer OMPRACER

times (s) #races time (s) #races time (s) #races

XSBench 5,617 6k 7 428 344 OOM - 77 0 0.230 0
CoMD 6,454 11k 15 832 402 TO - 49 0 0.739 4
Quicksilver 9,250 13k 1 1,166 806 CRASH - 190 25 5.516 10
RSBench 10,637 6k 6 576 360 CRASH - 138 0 0.225 0
miniFE 11,637 300k 21 866 776 CRASH - 11 0 0.944 2
AMG 12,320 91k 2 2,534 792 CRASH - 129 54 0.480 4
Lulesh 26,722 7k 30 3,534 1,542 CRASH - 194 0 0.600 6
miniAMR 40,792 20k 36 7,054 1,214 CRASH - 2,395 202 15 23
Kripke 90,288 700k 37 7,176 5,260 OOM - 30 0 12 0
GROMACS 77,383,187 2,500k 82 4,980,655 2,173,035 CRASH - 173 0 548.934 44

TABLE IV
PRECISION OF OMPRACER AND ARCHER ON COVIDSIM

Tool #TP #unknown #race Precision

OMPRACER 3 26 29 10%/100%
Archer 0 36(2)* 36(2)* 0%/100%

*Archer reports 36 races and 2 are unique.

TABLE V
DATARACEBENCH METRICS

Tools Precision Recall Accuracy

Total

Accuracy

Archer 0.98-0.98 0.90-0.91 0.94-0.95 0.90
ROMP 0.96-0.96 0.91-0.91 0.93-0.93 0.85
LLOV 0.83 0.94 0.86 0.63
OMPRACER 0.89 0.93 0.89 0.91

promising result in almost every aspect (except for Recall,
which is due to OMPRACER’s much higher coverage on the
DataRaceBench).

The experiment results on DataRaceBench indicate that
OMPRACER is the most powerful static OpenMP race de-
tection tool so far. As shown in Table VI, OMPRACER is the
only tool that is able to cover all cases in DataRaceBench
and it reports the highest number of true positives and true
negative among all the tools. Although OMPRACER is slightly
worse than the dynamic tools in terms of precision, OMPRacer
shows that a static tool is able to provide competitive results
to dynamic OpenMP race detection tools. In the following
section, we show that OMPRACER is also able to run much
faster and achieve much higher code coverage when run on
real-world application.

B. Evaluation on Real World Applications
We evaluated both the effectiveness and efficiency of OM-

PRACER on a collection of ECP proxy applications (Table III)
to show that OMPRACER is ready to be used in realistic
OpenMP applications. These applications are all popular real-
world applications that use OpenMP for parallelism. All the
programs are non-trivial and the number of lines of code
ranges from 6 thousands to over 2.5 million. All experiments
were done on a desktop with an AMD Ryzen 9 3900 12-Core
Processor and 32GB RAM in an Ubuntu 18.0.4 LTS docker
container. For comparison we used Archer 2.0.0 built with

TABLE VI
DATARACEBENCH RESULTS

Tool

Correct

(TP/TN)

Incorrect

(FP/FN)

Mix Error

Archer 104 6 1 5
ROMP 99 7 0 10
LLOV 73 12 0 31
OMPRACER 105 9 2 0

spack [26], and the latest version of ROMP available from
their github repository. We could not run LLOV since it is not
available.

Table III reports both the time spent on race detection as
well as the number of reported races. Note that the time for
compiling the project and generating the LLVM IR is not
included. For OMPRACER, we first generated LLVM IR and
then measured the time taken to perform race detection on that
IR. For Archer and ROMP, we first generated instrumented
binaries and then measured the time it took to run those
instrumented binaries. If any benchmark took more than 30
minutes to complete, we report a time out (TO). If the process
was killed for running out of memory, we reported OOM
to represent out of memory. Unfortunately, despite our best
efforts, we were unable to successfully run ROMP on any of
the benchmarks tested, which also indicates the difficulty to
develop practical tools on realistic programs.

In all but two cases, OMPRACER is able to analyze
benchmarks much more quickly than Archer. This is because
dynamic tools like Archer must execute the program and the
time to run Archer on these benchmarks includes the time to
run the program being analyzed in addition to the time to do
the actual analysis. Static tools like OMPRACER do not have
the overhead of running the tool and only run analysis.

The results in Table III reveal several interesting findings.
First, OMPRACER is extremely fast. OMPRACER is able to
analyze the majority of the benchmarks tested in under 1
second. Even on the largest benchmark, GROMACS, which
contains over 77 million instructions to be analyzed, it com-
pletes within 10 minutes. Second, the number of races reported
by OMPRACER is comparable to or fewer than the number
of races reported by Archer, which is valuable as one would
expect static tools always report more false positives than



dynamic tools.
We are unable to determine the exact precision of either

tool on the benchmarks in Table III as manual inspection
to confirm the races reported on large programs requires
extensive domain-specific knowledge. Without some ground
truths like those given in dataracebench, it is difficult to know
for sure which races are true or false positives in every case.
A race we believe to be true under some input may actually be
prevented by some path condition elsewhere in the program.
Likewise, a race we believe to be a false positive may actually
be possible under a very specific condition in a complex
program. As such, we picked a single benchmark to study
and report some comparison on precision. The results are
shown in Table IV. OMPRACER reports 29 races in total
and 3 of them have been confirmed by the developers. On
the other hand, Archer reports two unconfirmed unique races
on CovidSim, but misses the confirmed real races reported by
OMPRACER. Archer misses the confirmed races OMPRACER
reported because dynamic tools cannot analyze unreachable
code paths. The remaining 26 unknown races reported by
OMPRACER are all on the same variable as the unconfirmed
races reported by Archer, but along different paths that Archer
did not analyze.

Additionally, dynamic tools like Archer are only analyzing
a single path through the program while OMPRACER is
analyzing the entire program. This is why OMPRACER is
slower than Archer when analyzing GROMACS. GROMACS
is a huge application that consists of almost 100 sub modules.
While Archer can only analyze a single path in one submodule,
OMPRACER analyzes all 77 million IR instructions.

C. Limitations
As we can see from the evaluation results, for benchmarks

like Lulesh, CoMD, and miniFE, OMPRACER reported sev-
eral races while Archer reported none. By manually checking
those reported races, we confirmed they were all false posi-
tives, mainly because it is hard for static analysis to reason
about the alias information for input-dependent data. Further-
more, since OMPRACER does not handle branch conditions, it
will also discover races between accesses from two branches
that cannot happen at the same time. The limitations above
can be overcome by extending our analysis to include path-
sensitivity.

Additionally, because OMPRACER runs analysis at compile
time, it is unable to analyze precompiled libraries where the
source code is not available at compile time. It is possible for
OMPRACER to miss races in this case. Although OMPRACER
internally models some commonly used libraries, such as the
C++ standard libraries, to correctly analyze other precompiled
binaries, the users will need to statically link the binaries with
their executables.

V. RELATED WORK

Race detection has been considered as an important research
topic for decades. Both static and dynamic algorithm has been
proposed to tackle the problem. One of the key challenges is

how to compute and represent Happens-Before Relationships.
Offset-span labeling [27], which is an online scheme that la-
bels threads in a fork-join graph, labels each task with a vector
of tuples. Vector Clock [28] records a clock for each thread
in the system, and the virtual clock is increased upon every
synchronization event. Two events are considered to be parallel
if the two vector clock are not ordered. Flanagan et al [29]
improve the vector clock algorithm by replacing heavyweight
vector clocks with adaptive lightweight representation as they
find the full generality of vector clocks is unnecessary in most
cases.

Dynamic Race Detection Tools. Google’s Thread Sani-
tizer [6], also known as TSAN, proposed a hybrid algorithm
that uses both happens-before and lockset to detect data
races. TSAN has been used to find hundreds of races in
real world application. Helgrind [30] is a tool based on Val-
grind [31]. Helgrind only detects happens-before relationships
and it supports a subset o the dynamic annotations in TSAN.
Intel’s Inspector [7] is another dynamic data race detection
tool that uses Intel PT [32] to trace the program. It uses
a Concurrent Provenance Graph to record control, data and
schedule dependencies.

Static Race Detection Tools. Chord [33], ECHO [24],
D4 [34], RacerD [35], and SWORD [36] are static race
detection tool on Java. Chord is based on object-sensitive,
flow-insensitive alias analysis and escape analysis. RacerD
leverages separation logic to detect races. It abandons the alias
analysis and uses syntactic patterns to check alias information
to achieve scalability. ECHO, SWROD, and D4 use field-
sensitive but context-insensitive PTA. ECHO and D4 primarily
focus on the incremental race detection, hence the SHB
Graph design for handling function calls is different from
OMPRACER.

LOCKSMITH [37], RELAY [38] are two static race detec-
tors for C that both focus on precise lockset reasoning. RELAY
uses a context-sensitive bottom-up algorithm leveraging the
function summaries and symbolic analysis. LOCKSMITH uses
a context-, flow-sensitive correlation analysis to infer the
protection of locks and applies a sharing analysis to rule out
thread local variables.

None of the static tools above support analyzing OpenMP
programs, and only ECHO, D4, and SWORD try to reason
about HB relations statically. OMPRACER, however, not only
leverages the OpenMP region to achieve an efficient yet pre-
cise pointer analysis, but also extends the general abstraction
of concurrent programs to support fast data race detection on
OpenMP programs.

OpenMP Race Detection Tools. Various race detectors de-
signed specifically for OpenMP programs have also been
proposed. Archer [3] is a dynamic tool based TSAN. Archer
achieves a low overhead by using a lightweight static analysis
to only instrument code that cannot be verified to be race-
free statically. However, Archer is based on TSAN and cannot
detect logical OpenMP races. ROMP [4] is a recent dynamic
tool that introduces a novel extension to offset-span labels
[27] Atzeni et al. [5] proposed SWORD, an offline analysis



tool. SWORD reduces the memory overhead by logging thread
traces into log files and analyze the log files in an offline
manner. SWORD is also able to detect logical OpenMP races
through an operational semantics of OpenMP [39]. LLOV [11]
is a recent static tool built on Polly [40] that is capable of
detecting OpenMP races and verifying that certain regions are
race free. LLOV is also the only modern static tool capable
of detecting races in OpenMP Fortran code.

VI. CONCLUSIONS

This paper introduces OMPRACER, a pure static analysis
tool for OpenMP race detection. OMPRACER supports most
of the commonly used OpenMP features. Unlike dynamic
tools, OMPRACER is able to detect logical data races regard-
less of input and hardware configuration. It achieves nearly
100% code coverage and runs significantly faster than the
state-of-the-art dynamic tools.

Our extensive evaluation on both DataRaceBench and real-
world applications shows that static analysis can compete and
in some cases outperform state-of-the-art dynamic OpenMP
race detection tools. OMPRACER has also discovered a pre-
viously unknown data race in miniAMR and several races in
CovdSim.
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