
 

Withdrawn Draft 
 
 

Warning Notice 
 

The attached draft document has been withdrawn and is provided solely for historical purposes. 
It has been followed by the document identified below. 
 

Withdrawal Date August 13, 2024 

Original Release Date August 24, 2023 
 

 
 

The attached draft document is followed by: 

Status Final 

Series/Number NIST FIPS 205 

Title Stateless Hash-Based Digital Signature Standard 

Publication Date August 13, 2024 

DOI https://doi.org/10.6028/NIST.FIPS.205  

CSRC URL https://csrc.nist.gov/pubs/fips/205/final  

Additional Information https://csrc.nist.gov/projects/post-quantum-cryptography/post-
quantum-cryptography-standardization  

 

https://doi.org/10.6028/NIST.FIPS.205
https://csrc.nist.gov/pubs/fips/205/final
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization


1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

FIPS 205 (Draft) 

Federal Information Processing Standards Publication 

Stateless Hash-Based Digital Signature 
Standard 

Category: Computer Security Subcategory: Cryptography 

Information Technology Laboratory 
National Institute of Standards and Technology 
Gaithersburg, MD 20899-8900 

This publication is available free of charge from: 
https://doi.org/10.6028/NIST.FIPS.205.ipd 

Published: August 24, 2023 

U.S. Department of Commerce 
Gina M. Raimondo, Secretary 

National Institute of Standards and Technology 

Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology 

https://doi.org/10.6028/NIST.FIPS.205.ipd
https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.FIPS.205.ipd


18 

19 

20 

21 

22 

23 

24 

25 

Foreword 

The Federal Information Processing Standards Publication (FIPS) series of the National Institute of 
Standards and Technology (NIST) is the offcial series of publications relating to standards and guidelines 
developed under 15 U.S.C. 278g-3, and issued by the Secretary of Commerce under 40 U.S.C. 11331. 

Comments concerning this Federal Information Processing Standard publication are welcomed and should 
be submitted using the contact information in the “Inquiries and comments” clause of the announcement 
section. 

James A. St. Pierre, Acting Director 
Information Technology Laboratory 
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This standard specifes the stateless hash-based digital signature algorithm (SLH-DSA). Digital 
signatures are used to detect unauthorized modifcations to data and to authenticate the identity of 
the signatory. In addition, the recipient of signed data can use a digital signature as evidence in 
demonstrating to a third party that the signature was, in fact, generated by the claimed signatory. 
This is known as non-repudiation since the signatory cannot easily repudiate the signature at a 
later time. SLH-DSA is based on SPHINCS+, which was selected for standardization as part of 
the NIST Post-Quantum Cryptography Standardization process. 

Keywords: computer security; cryptography; digital signatures; Federal Information Processing 
Standards; hash-based signatures; public-key cryptography 
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Federal Information Processing Standards Publication 205 

Published: August 24, 2023

Announcing the 

Stateless Hash-Based Digital Signature Standard 

ederal Information Processing Standards Publications (FIPS) are developed by the National 
nstitute of Standards and Technology (NIST) under 15 U.S.C. 278g-3 and issued by the Secretary 
f Commerce under 40 U.S.C. 11331. 

. Name of Standard. Stateless Hash-Based Digital Signature Standard (FIPS 205). 

. Category of Standard. Computer Security. Subcategory. Cryptography. 

. Explanation. This standard specifes a stateless hash-based digital signature scheme, SLH-
DSA, for applications that require a digital signature rather than a written signature. (Addi-
tional digital signature schemes are specifed and approved in other NIST Special Publications 
and FIPS publications, e.g., FIPS 186-5 [1].) A digital signature is represented in a computer 
as a string of bits and computed using a set of rules and parameters that allow the identity of 
the signatory and the integrity of the data to be verifed. Digital signatures may be generated 
on both stored and transmitted data. 

Signature generation uses a private key to generate a digital signature. Signature verifcation 
uses a public key that corresponds to but is not the same as the private key. Each signatory 
possesses a private and public key pair. Public keys may be known by the public, but private 
keys must be kept secret. Anyone can verify the signature by employing the signatory’s public 
key. Only the user who possesses the private key can perform signature generation. 

The digital signature is provided to the intended verifer along with the signed data. The 
verifying entity verifes the signature by using the claimed signatory’s public key. Similar 
procedures may be used to generate and verify signatures for both stored and transmitted data. 

This standard specifes several parameter sets for SLH-DSA that are approved for use. 
Additional parameter sets may be specifed and approved in future NIST Special Publications. 

. Approving Authority. Secretary of Commerce. 

. Maintenance Agency. Department of Commerce, National Institute of Standards and Tech-
nology, Information Technology Laboratory (ITL). 

. Applicability. This standard is applicable to all federal departments and agencies for the 
protection of sensitive unclassifed information that is not subject to section 2315 of Title 10, 
United States Code, or section 3502 (2) of Title 44, United States Code. Either this standard, 
FIPS 204, FIPS 186-5, or NIST Special Publication 800-208 shall be used in designing 
and implementing public-key-based signature systems that federal departments and agencies 
operate or that are operated for them under contract. In the future, additional digital signature 
schemes may be specifed and approved in FIPS publications or in NIST Special Publications. 

The adoption and use of this standard are available to private and commercial organizations. 

i 
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7. Applications. A digital signature algorithm allows an entity to authenticate the integrity of 
signed data and the identity of the signatory. The recipient of a signed message can use a 
digital signature as evidence in demonstrating to a third party that the signature was, in fact, 
generated by the claimed signatory. This is known as non-repudiation since the signatory 
cannot easily repudiate the signature at a later time. A digital signature algorithm is intended 
for use in electronic mail, electronic funds transfer, electronic data interchange, software 
distribution, data storage, and other applications that require data integrity assurance and data 
origin authentication. 

8. Implementations. A digital signature algorithm may be implemented in software, frmware, 
hardware, or any combination thereof. NIST will develop a validation program to test 
implementations for conformance to the algorithms in this standard. For every computational 
procedure that is specifed in this standard, a conforming implementation may replace the 
given set of steps with any mathematically equivalent set of steps. In other words, different 
procedures that produce the correct output for every input are permitted. Information about 
validation programs is available at https://csrc.nist.gov/projects/cmvp. Examples for digital 
signature algorithms are available at https://csrc.nist.gov/projects/cryptographic-standards-
and-guidelines/example-values. 

Agencies are advised that digital signature key pairs shall not be used for other purposes. 

9. Other Approved Security Functions. Digital signature implementations that comply with 
this standard shall employ cryptographic algorithms that have been approved for protect-
ing Federal Government-sensitive information. Approved cryptographic algorithms and 
techniques include those that are either: 

a. Specifed in a Federal Information Processing Standard (FIPS), 

b. Adopted in a FIPS or NIST recommendation, or 

c. Specifed in the list of approved security functions for FIPS 140-3. 

10. Export Control. Certain cryptographic devices and technical data regarding them are subject 
to federal export controls. Exports of cryptographic modules that implement this standard 
and technical data regarding them must comply with these federal regulations and be licensed 
by the Bureau of Industry and Security of the U.S. Department of Commerce. Information 
about export regulations is available at https://www.bis.doc.gov. 

11. Patents. The algorithm in this standard may be covered by U.S. or foreign patents. 

12. Implementation Schedule. This standard becomes effective immediately upon fnal publica
tion. 

13. Specifcations. Federal Information Processing Standard (FIPS) 205, Stateless Hash-Based 
Digital Signature Standard (affxed). 

14. Qualifcations. The security of a digital signature system is dependent on the secrecy of the 
signatory’s private keys. Signatories shall, therefore, guard against the disclosure of their 
private keys. While it is the intent of this standard to specify general security requirements for 
generating digital signatures, conformance to this standard does not ensure that a particular 

-

ii 
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implementation is secure. It is the responsibility of an implementer to ensure that any module 
that implements a digital signature capability is designed and built in a secure manner. 

Similarly, the use of a product containing an implementation that conforms to this standard 
does not guarantee the security of the overall system in which the product is used. The 
responsible authority in each agency or department shall ensure that an overall implementation 
provides an acceptable level of security. 

Since a standard of this nature must be fexible enough to adapt to advancements and innova-
tions in science and technology, this standard will be reviewed every fve years in order to 
assess its adequacy. 

15. Waiver Procedure. The Federal Information Security Management Act (FISMA) does 
not allow for waivers to Federal Information Processing Standards (FIPS) that are made 
mandatory by the Secretary of Commerce. 

16. Where to Obtain Copies of the Standard. This publication is available by accessing 
https://csrc.nist.gov/publications. Other computer security publications are available at the 
same website. 

17. How to Cite this Publication. NIST has assigned NIST FIPS 205 ipd as the publication 
identifer for this FIPS, per the NIST Technical Series Publication Identifer Syntax. NIST 
recommends that it be cited as follows: 

National Institute of Standards and Technology (2023) Stateless Hash-Based Dig-
ital Signature Standard. (Department of Commerce, Washington, D.C.), Fed-
eral Information Processing Standards Publication (FIPS) NIST FIPS 205 ipd. 
https://doi.org/10.6028/NIST.FIPS.205.ipd 

18. Inquiries and Comments. Inquiries and comments about this FIPS may be submitted to 
fps-205-comments@nist.gov. 
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136 Call for Patent Claims 

137 This public review includes a call for information on essential patent claims (claims whose 
138 use would be required for compliance with the guidance or requirements in this Information 
139 Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may be 

directly stated in this ITL Publication or by reference to another publication. This call also 
141 includes disclosure, where known, of the existence of pending U.S. or foreign patent applications 
142 relating to this ITL draft publication and of any relevant unexpired U.S. or foreign patents. 

143 ITL may require from the patent holder, or a party authorized to make assurances on its behalf, in 
144 written or electronic form, either: 

a) assurance in the form of a general disclaimer to the effect that such party does not hold and 
146 does not currently intend holding any essential patent claim(s); or 

147 b) assurance that a license to such essential patent claim(s) will be made available to appli-
148 cants desiring to utilize the license for the purpose of complying with the guidance or 
149 requirements in this ITL draft publication either: 

(i) under reasonable terms and conditions that are demonstrably free of any unfair 
151 discrimination; or 

152 (ii) without compensation and under reasonable terms and conditions that are demonstra-
153 bly free of any unfair discrimination. 

154 Such assurance shall indicate that the patent holder (or third party authorized to make assurances 
on its behalf) will include in any documents transferring ownership of patents subject to the 

156 assurance, provisions suffcient to ensure that the commitments in the assurance are binding on 
157 the transferee, and that the transferee will similarly include appropriate provisions in the event of 
158 future transfers with the goal of binding each successor-in-interest. 

159 The assurance shall also indicate that it is intended to be binding on successors-in-interest 
regardless of whether such provisions are included in the relevant transfer documents. 

161 Such statements should be addressed to: fps-205-comments@nist.gov 

iv 
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1. Introduction 

1.1 Purpose and Scope 
This standard defnes a method for digital signature generation that can be used for the protection 
of binary data (commonly called a message) and for the verifcation and validation of those 
digital signatures. (NIST SP 800-175B [2], Guideline for Using Cryptographic Standards in 
the Federal Government: Cryptographic Mechanisms, includes a general discussion of digital 
signatures.) The security of SLH-DSA relies on the presumed diffculty of fnding preimages 
for hash functions as well as several related properties of the same hash functions. Unlike the 
algorithms specifed in FIPS 186-5 [1], SLH-DSA is expected to provide resistance to attacks 
from a large-scale quantum computer. 

his standard specifes the mathematical steps that need to be performed for key generation, 
signature generation, and signature verifcation. In order for digital signatures to be valid, addi-
tional assurances are required, such as assurance of identity and of private key possession. NIST 
SP 800-89, Recommendation for Obtaining Assurances for Digital Signature Applications [3], 
specifes the required assurances and methods for obtaining these assurances. 

T

1.2 Context 
Over the past several years, there has been steady progress toward building quantum computers. 
The security of many commonly used public-key cryptosystems will be at risk if large-scale 
quantum computers are ever realized. In particular, this would include key-establishment schemes 
and digital signatures that are based on integer factorization and discrete logarithms (both over 
fnite felds and elliptic curves). As a result, in 2016, the National Institute of Standards and 
Technology (NIST) initiated a public process to select quantum-resistant public-key cryptographic 
algorithms for standardization. A total of 82 candidate algorithms were submitted to NIST for 
consideration for standardization. 

After three rounds of evaluation and analysis, NIST selected the frst four algorithms to standardize 
as a result of the Post-Quantum Cryptography (PQC) Standardization process. These algorithms 
are intended to protect sensitive U.S. Government information well into the foreseeable future, 
including after the advent of quantum computers. This standard includes the specifcation for 
one of the algorithms selected: SPHINCS+ , a stateless hashed-based digital signature scheme. 
Throughout this standard, SPHINCS+ will be referred to as SLH-DSA for stateless hash-based 
digital signature algorithm. 

1.3 Differences From the SPHINCS+ Submission 
This standard is based on version 3.1 of the SPHINCS+ specifcation [4], and contains several 
minor modifcations compared to version 3 [5], which was submitted at the beginning of round 
three of the NIST PQC Standardization process: 

• Two new address types were defned, WOTS_PRF and FORS_PRF, which are used for WOTS+ 

and FORS secret key value generation. 

• PK.seed was added as an input to PRF in order to mitigate multi-key attacks. 

1 
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• For the category 3 and 5 parameter sets that use SHA-2, SHA-256 was replaced with 
SHA-512 in Hmsg, PRFmsg, H, and Tl based on weaknesses that were discovered when 
using SHA-256 to obtain category 5 security [6, 7, 8]. 

• R and PK.seed were added as inputs to MGF1 when computing Hmsg for the SHA-2 
parameter sets in order to mitigate against multi-target long-message second preimage 
attacks. 

In addition to the changes that appear in version 3.1 of the SPHINCS+ specifcation, this standard 
differs from the version 3 specifcation in its method for extracting bits from the message digest 
for selecting a forest of random subsets (FORS) key. This change was made in order to align with 
the reference implementation that was submitted along with the round three specifcation. The 
description of the method for extracting indices for FORS signature generation and verifcation 
from the message digest was also changed due to ambiguity in the submitted specifcation. 
The method described in this standard is not compatible with the method used in the reference 
implementation that was submitted along with the round three specifcation. Also, step 9 in both 
wots_sign and wots_PKFromSig were changed the match the reference implementation, as the 
pseudocode in [4, 5] will sometimes shift csum by the incorrect amount when lgw is not 4. 

This standard approves the use of only 12 of the 36 parameter sets defned in [4, 5]. As specifed 
in Section 10, only the ‘simple’ instances in which the cryptographic functions are instantiated 
with SHA-2 or SHAKE are approved. 
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2. Glossary of Acronyms, Terms, and Mathematical 
Symbols 

2.1 Acronyms 
ADRS Address 

ADRSc Compressed Address 

AES Advanced Encryption Standard 

FIPS Federal Information Processing Standard 

FORS Forest of Random Subsets 

ITL Information Technology Laboratory 

MGF Mask Generation Function 

NIST National Institute of Standards and Technology 

PQC Post-Quantum Cryptography 

PRF Pseudorandom Function 

SHA Secure Hash Algorithm 

SHAKE Secure Hash Algorithm KECCAK 

SP Special Publication 

RFC Request for Comments 

WOTS+ Winternitz One-Time Signature Plus 

XMSS eXtended Merkle Signature Scheme 

XOF eXtendable-Output Function 

2.2 Terms and Defnitions 
approved FIPS-approved and/or NIST-recommended. An algorithm or tech-

nique that is either 1) specifed in a FIPS or NIST recommendation, 2) 
adopted in a FIPS or NIST recommendation, or 3) specifed in a list of 
NIST-approved security functions. [1] 

big-endian The property of a byte string having its bytes positioned in order of 
decreasing signifcance. In particular, the leftmost (frst) byte is the 
most signifcant, and the rightmost (last) byte is the least signifcant. 
The term “big-endian” may also be applied in the same manner to bit 
strings. [9, adapted] 

byte string An array of integers in which each integer is in the set {0, . . . ,255}. 
claimed signatory From the verifer’s perspective, the claimed signatory is the entity that 

purportedly generated a digital signature. [1] 
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destroy An action applied to a key or a piece of secret data. After a key or a 
piece of secret data is destroyed, no information about its value can be 
recovered. [1] 

digital signature The result of a cryptographic transformation of data that, when properly 
implemented, provides a mechanism for verifying origin authentication, 
data integrity, and signatory non-repudiation. [1] 

entity An individual (person), organization, device, or process. Used inter-
changeably with “party.” [1] 

equivalent process Two processes are equivalent if the same output is produced when the 
same values are input to each process (either as input parameters, as 
values made available during the process, or both). [1] 

extendable-output 
function 

A function on bit strings in which the output can be extended to any 
desired length. Approved XOFs (such as those specifed in FIPS 
202 [10]) are designed to satisfy the following properties as long as the 
specifed output length is suffciently long to prevent trivial attacks: 

1. (One-way) It is computationally infeasible to fnd any input that 
maps to any new pre-specifed output. 

2. (Collision-resistant) It is computationally infeasible to fnd any 
two distinct inputs that map to the same output. [11, adapted] 

hash function A function on bit strings in which the length of the output is fxed. 
Approved hash functions (such as those specifed in FIPS 180 [12] 
and FIPS 202 [10]) are designed to satisfy the following properties: 

1. (One-way) It is computationally infeasible to fnd any input that 
maps to any new pre-specifed output 

2. (Collision-resistant) It is computationally infeasible to fnd any 
two distinct inputs that map to the same output. [1] 

hash value See “message digest.” [1] 

key A parameter used in conjunction with a cryptographic algorithm that 
determines its operation. Examples applicable to this standard include: 

1. The computation of a digital signature from data, and 

2. The verifcation of a digital signature. [1] 

key pair A public key and its corresponding private key. [1] 

message The data that is signed. Also known as “signed data” during the 
signature verifcation and validation process. [1] 

message digest The result of applying a hash function to a message. Also known as a 
“hash value.” [1] 

non-repudiation A service that is used to provide assurance of the integrity and origin 
of data in such a way that the integrity and origin can be verifed and 
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owner 

party 

private key 

pseudorandom 

public key 

security category 

security strength 

shall 

should 

signatory 

signature generation 

signature validation 
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validated by a third party as having originated from a specifc entity in 
possession of the private key (i.e., the signatory). [1] 

A key pair owner is the entity authorized to use the private key of a key 
pair. [1] 

An individual (person), organization, device, or process. Used inter-
changeably with “entity.” [1] 

A cryptographic key that is used with an asymmetric (public-key) 
cryptographic algorithm. The private key is uniquely associated with 
the owner and is not made public. The private key is used to compute 
a digital signature that may be verifed using the corresponding public 
key. [1] 

A process or data produced by a process is said to be pseudorandom 
when the outcome is deterministic yet also effectively random as long 
as the internal action of the process is hidden from observation. For 
cryptographic purposes, “effectively random” means “computationally 
indistinguishable from random within the limits of the intended security 
strength.” [1] 

A cryptographic key that is used with an asymmetric (public-key) 
cryptographic algorithm and is associated with a private key. The 
public key is associated with an owner and may be made public. In 
the case of digital signatures, the public key is used to verify a digital 
signature that was generated using the corresponding private key. [1] 

A number associated with the security strength of a post-quantum 
cryptographic algorithm as specifed by NIST (see Appendix A, Table 
2). 

A number associated with the amount of work (i.e., the number of 
operations) that is required to break a cryptographic algorithm or 
system. [1] 

Used to indicate a requirement of this standard. [1] 

Used to indicate a strong recommendation but not a requirement of 
this standard. Ignoring the recommendation could result in undesirable 
results. [1] 

The entity that generates a digital signature on data using a private 
key. [1] 

The process of using a digital signature algorithm and a private key to 
generate a digital signature on data. [1] 

The (mathematical) verifcation of the digital signature and obtain-
ing the appropriate assurances (e.g., public-key validity, private-key 
possession, etc.). [1] 
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437 

438 

439 
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442 

443 

444 

445 

446 

447 

448 

449 

450 

451 

452 

signature verifcation 

signed data 

verifer 

The process of using a digital signature algorithm and a public key to 
verify a digital signature on data. [1] 

The data or message upon which a digital signature has been computed. 
Also see “message.” [1] 

The entity that verifes the authenticity of a digital signature using the 
public key. [1] 

2.3 Mathematical Symbols 
The following notation is used in this standard. 

X ∥ Y 

X [i : j] 

Truncℓ(X) 

|X | 
⌈a⌉ 

⌊a⌋ 

a mod n 

a · b 

ab 

log2 x 

0b 

0x 

a ≫ b 

a ≪ b 

The concatenation of two arrays X and Y . If X is an array of length 
ℓx and Y is an array of length ℓy, then Z = X ∥ Y is an array of length 
ℓx + ℓy such that � 

X [i] if 0 ≤ i < ℓ
Z x[i] = Y [i − ℓx] if ℓx ≤ i < ℓx + ℓy 

A subarray of X . If X is an array of length ℓx, 0 ≤ i < j ≤ ℓx, and 
Y = X [i : j], then Y is an array of length j − i such that Y [k] = X [i + k] 
for 0 ≤ k < j − i. 

A truncation function that outputs the most signifcant ℓ bytes of the 
input byte string X . If Y = Truncℓ(X), then Y is a byte string (array) 
of length ℓ such that Y [i] = X [i] for 0 ≤ i < ℓ (i.e., Y = X [0 : ℓ]). 

The length (in bytes) of byte string X . 

The ceiling of a; the smallest integer that is greater than or equal to a. 
For example, ⌈5⌉ = 5, ⌈5.3⌉ = 6, and ⌈−2.1⌉ = −2. [1] 

The foor of a; the largest integer that is less than or equal to a. For 
example, ⌊5⌋ = 5, ⌊5.3⌋ = 5, and ⌊−2.1⌋ = 3. [1] 

The unique remainder r, 0 ≤ r ≤ (n − 1), when integer a is divided by 
the positive integer n. For example, 23 mod 7 = 2. [1] 

The product of a and b. For example, 3 · 5 = 15. 

a raised to the power b. For example, 2 = 325 . 

The base 2 logarithm of x. For example, log (16) = 4. 2

The prefx to a number that is represented in binary. 

The prefx to a number that is represented in hexadecimal. [1, adapted] 

The logical right shift of a by b positions (i.e., a ≫ b = ⌊a/2 ⌋). For 
example. 0x73 ≫ 4 = 7. [4, adapted] 

b

The logical left shift of a by b positions (i.e., a ≪ b = a · 2b). For 
example. 0x73 ≪ 4 = 0x730. [4, adapted] 

6 



FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD 

453 

454 

455 

456 

457 

458 

459 

a ⊕ b The bitwise exclusive-or of a and b. For example, 115 ⊕ 1 = 114 
(115 ⊕ 1 = 0b01110011 ⊕ 0b00000001 = 0b01110010 = 114). 

s ← x In pseudocode, this notation means that the variable s is set to the value 
of the expression x. 

s 
$←− Bn In pseudocode, this notation means that the variable s is set to a byte 

string of length n chosen at random. A fresh random value must be 
generated for each time this step is performed. 
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3. Overview of the SLH-DSA Signature Scheme 

SLH-DSA is a stateless hash-based signature scheme that is constructed using other hash-based 
signature schemes as components: a few-time signature scheme, forest of random subsets (FORS), 
and a multi-time signature scheme, the eXtended Merkle Signature Scheme (XMSS). XMSS is 
constructed using the hash-based one-time signature scheme Winternitz One-Time Signature Plus 
(WOTS+) as a component.1 

1The WOTS+ and XMSS schemes that are used as components of SLH-DSA are not the same as the WOTS+ and 
XMSS schemes in RFC 8391 [13] and NIST SP 800-208 [14]. 

Conceptually, an SLH-DSA key pair consists of a very large set of FORS key pairs.2 

2For the parameter sets in this standard, an SLH-DSA key pair contains 263 , 264, 266, or 268 FORS keys, which are 
pseudorandomly generated from a single seed. 

The few-time 
signature scheme FORS allows each key pair to safely sign a small number of messages (about 
10 for the parameter sets in this standard). An SLH-DSA signature is created by computing a 
randomized hash of the message, using part of the resulting message digest to (pseudorandomly) 
select a FORS key, and signing the remaining part of the message digest with that key. An 
SLH-DSA signature consists of the FORS signature along with information that authenticates the 
FORS public key. The authentication information is created using XMSS signatures. 

XMSS is a multi-time signature scheme that is created using a combination of WOTS+ one-time 
signatures and Merkle hash trees [15]. An XMSS key consists of 2h′ WOTS+ keys and can sign 
2h′ messages. The WOTS+ public keys are formed into a Merkle hash tree, and the root of the 
tree is the XMSS public key. (The Merkle hash tree formed from the WOTS+ keys is also referred 
to as an XMSS tree.) An XMSS signature consists of a WOTS+ signature and an authentication 
path within the Merkle hash tree for the WOTS+ public key. In Figure 1, each triangle represents 
an XMSS tree with squares representing the WOTS+ public keys and circles representing the 
interior nodes of the hash tree. The square and circles that are flled in represent the authentication 
path for the WOTS+ public key needed to verify the signature. 

The authentication information for a FORS public key is a hypertree signature. A hypertree is 
a tree of XMSS trees, as depicted in Figure 1. The tree consists of d layers,3 

3For the parameter sets in this standard, d is 7, 8, 17, or 22. 

with the top layer 
(layer d − 1) consisting of a single XMSS tree, the next layer down (layer d − 2) consisting of 2h′ 

XMSS trees, and the lowest layer (layer 0) consisting of 2
 (d−1)h′ XMSS trees. The public key 

of each XMSS key at layers 0 through d − 2 is signed by an XMSS key at the next higher layer. 
The XMSS keys at layer 0 collectively have 2dh′ = 2h WOTS+ keys, which are used to sign the 
2h FORS public keys in the SLH-DSA key pair. The sequence of d XMSS signatures needed 
to authenticate a FORS public key when starting with the public key of the XMSS key at layer 
d − 1 is a hypertree signature. An SLH-DSA signature consists of a FORS signature along with a 
hypertree signature. 

An SLH-DSA public key contains two n-byte components: PK.root, which is the public key of 
the XMSS key at layer d − 1; and PK.seed, which is used to provide domain separation between 
different SLH-DSA key pairs. An SLH-DSA private key consists of an n-byte seed SK.seed, 
which is used to pseudorandomly generate all of the secret values for the WOTS+ and FORS 
keys, and an n-byte key SK.prf, which is used in the generation of the randomized hash of the 
message. An SLH-DSA private key also includes copies of PK.root and PK.seed, as these values 
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Figure 1. An SLH-DSA signature 
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are needed during both signature generation and signature verifcation. 

he WOTS+ one-time signature scheme is specifed in Section 5, and the XMSS multi-time 
gnature scheme is specifed in Section 6. Section 7 specifes the generation and verifcation of 
ypertree signatures. The FORS few-time signature scheme is specifed in Section 8. Finally, 
ection 9 specifes the SLH-DSA key generation, signature, and verifcation functions. As the 
OTS+, XMSS, hypertree, and FORS schemes described in this standard are not intended for use 
 stand-alone signature schemes, only the components of the schemes necessary to implement 

LH-DSA are described. In particular, these sections do not include functions for key pair 
eneration, and a signature verifcation function is only specifed for hypertree signatures. 

hen used in this standard, WOTS+, XMSS, and FORS signatures are verifed implicitly using 
nfu ctions to generate public keys from messages and signatures (see Sections 5.3, 6.3, and 8.4). 
hen verifying an SLH-DSA signature, the randomized hash of the message and the FORS 
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signature are used to compute a candidate FORS public key. The candidate FORS public key 
and the WOTS+ signature from the layer 0 XMSS key are used to compute a candidate WOTS+ 

public key, and this candidate public key is then used in conjunction with the corresponding 
authentication path to compute a candidate XMSS public key. The candidate layer 0 XMSS 
public key is used along with the layer 1 XMSS signature to compute a candidate layer 1 XMSS 
public key, and this process is repeated until a candidate layer d −1 public key has been computed. 
SLH-DSA signature verifcation succeeds if the computed candidate layer d − 1 XMSS public 
key is the same as the SLH-DSA public key root PK.root. 

3.1 Additional Requirements 
This section specifes requirements for cryptographic modules that implement SLH-DSA. Ap-
pendix B discusses issues that implementers of cryptographic modules should take into considera-
tion, but that are not requirements. NIST SP 800-89, Recommendation for Obtaining Assurances 
for Digital Signature Applications [3], specifes requirements that apply to the use of digital 
signature schemes. 

Randomness generation. SLH-DSA key generation (Algorithm 17) requires the generation of 
three random n-byte values, PK.seed, SK.seed, and SK.prf (where n is 16, 24, or 32, depending 
on the parameter set). For each invocation of key generation each of these values shall be freshly 
generated using an approved random bit generator (RBG), as prescribed in NIST SP 800-90A, 
SP 800-90B, and SP 800-90C [16, 17, 18]. Moreover, the RBG used shall have a security strength 
of at least 8n bits. 

Destruction of sensitive data. Data used internally by key generation and signing algorithms 
in intermediate computation steps could be used by an adversary to gain information about the 
private key, and thereby compromise security. For some applications, including the verifcation 
of signatures that are used as bearer tokens (i.e., authentication secrets) or the verifcation of 
signatures on plaintext messages that are intended to be confdential, data used internally by 
verifcation algorithms is similarly sensitive. (Intermediate values of the verifcation algorithm 
may reveal information about its inputs, i.e., the message, signature, and public key, and in 
some applications security or privacy requires one or more of these inputs to be confdential.) 
Implementations of SLH-DSA shall, therefore, ensure that any local copies of the inputs and any 
potentially sensitive intermediate data is destroyed as soon as it is no longer needed. 

Key validation. NIST SP 800-89 imposes requirements for assurance of public-key validity 
and private-key possession. In the case of SLH-DSA, where public-key validation is required 
implementations shall verify that the public key is 2n bytes in length. When assurance of private 
key possession is obtained via regeneration, the owner of the private key shall check that the 
private key is 4n bytes in length and shall use SK.seed and PK.seed to recompute PK.root and 
compare the newly-generated value with the value in the private key currently held. 
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4. Functions and Addressing 

4.1 Hash Functions and Pseudorandom Functions 
The specifcation of SLH-DSA makes use of six functions — PRFmsg, Hmsg, PRF, Tℓ, H, and 
F — that are all implemented using hash functions (or XOFs with fxed output lengths). The 
inputs and output of each function are byte strings. In the following defnitions, B = {0, . . . ,255}
denotes the set of all bytes, Bn denotes the set of byte strings of length n bytes, and B∗ denotes 
the set of all byte strings. The ADRS input is described in Section 4.2. 

• PRFmsg(SK.prf opt_rand M  (Bn  Bn  B∗  Bn, , ) × × → ) is a pseudorandom function (PRF) 
that generates the randomizer (R) for the randomized hashing of the message to be signed. 

• H R PK.seed PK.root M  (Bn  Bn  ,  n m
msg( , , ) × ×B × B∗ → B ) is used to generate the digest of 

the message to be signed. 

• PRF(PK.seed SK.seed n,ADRS  n 32 n, ) (B × B × B → B ) is a PRF that is used to generate 
the secret values in WOTS+ and FORS private keys. 

• Tℓ(PK.seed,ADRS,Mℓ) (Bn × B32 × Bℓn → Bn) is a hash function that maps an ℓn-byte 
message to an n-byte message. 

• H(PK.seed,ADRS,M2) (Bn × B32 × B2n → Bn) is a special case of Tℓ that takes a 2n-byte 
message as input. 

• F PK.seed ADRS M  (Bn 32 ( , , 1) × B × Bn → Bn) is a hash function that takes an n-byte 
message as input and produces an n-byte output. 

The specifc instantiations for these functions differ for different parameter sets and are specifed 
in Section 10. 

4.2 Addresses 
Four of the functions described in Section 4.1 take a 32-byte address (ADRS) as input. An ADRS 
consists of public values that indicate the position of the value being computed by the function. A 
different ADRS value is used for each call to each function. In the case of PRF, this is in order 
to generate a large number of different secret values from a single seed. In the case of Tℓ, H, and 
F, it is used to mitigate multi-target attacks. 

The structure of an ADRS conforms to word boundaries, with each word being 4 bytes long, and 
with values being encoded as unsigned integers in big-endian byte order. The frst word of ADRS 
specifes the layer address, which is the height of an XMSS tree within the hypertree. Trees on 
the bottom layer have a height of zero, and the single XMSS tree at the top has a height of d − 1 
(see Figure 1). The next three words of ADRS specify the tree address, which is the position 
of an XMSS tree within a layer of the hypertree. The leftmost XMSS tree in a layer has a tree 
address of zero, and the rightmost XMSS tree in layer L has a tree address of 2(d−1−L)h′ − 1. The 
next word is used to specify the type of the address, which differs depending on the use case. 
There are seven different types of address used in SLH-DSA, as described below.4 

4The type word will have a value of 0, 1, 2, 3, 4, 5, or 6. In order to improve readability, these values will be 
referred to in this standard by the constants WOTS_HASH, WOTS_PK, TREE, FORS_TREE, FORS_ROOTS, WOTS_PRF, 
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address determines how the fnal 12 bytes of the address are to be interpreted. The algorithms in 
this standard are written based on the assumption that whenever the type in an ADRS is changed, 
the fnal 12 bytes of address are initialized to zero. 

The type is set to WOTS_HASH (0) for a WOTS+ hash address (see Figure 2), which is used when 
computing hash chains in WOTS+ . When type is WOTS_HASH, the next word encodes the key 
pair address, which is the index of the WOTS+ key pair within the XMSS tree specifed by the 
layer and tree addresses, with the leftmost WOTS+ key having an index of zero and the rightmost 
WOTS+ key having an index of 2h′ − 1. Next is the chain address, which encodes the index of 
the chain within WOTS+, followed by the hash address, which encodes the address of the hash 
function within the chain. 

Figure 2. WOTS+ hash address 

layer address 

tree address 

type = 0 (WOTS_HASH) 
key pair address 

chain address 
hash address 

4 bytes 

12 bytes 

4 bytes 
4 bytes 
4 bytes 
4 bytes 

Figure 3. WOTS+ public key compression address 
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type = 1 (WOTS_PK) 
key pair address 

padding = 0 

4 bytes 
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8 bytes 

The type is set to WOTS_PK (1) when compressing WOTS+ public keys (see Figure 3). As when 
the type is WOTS_HASH, the next word encodes the index of the WOTS+ key pair within the XMSS 
tree specifed by the layer and tree addresses. The remaining two words of ADRS are not needed 
and are set to zero. 

The type is set to TREE (2) when computing the hashes within the XMSS tree (see Figure 4). For 
this type of address, the next word is always set to zero. The following word encodes the height 
of the node within the tree that is being computed, and the fnal word encodes the index of the 
node at that height. 

Figure 4. Hash tree address 

layer address 

tree address 

type = 2 (TREE) 
padding = 0 
tree height 
tree index 

4 bytes 

12 bytes 

4 bytes 
4 bytes 
4 bytes 
4 bytes 

The type is set to FORS_TREE (3) when computing hashes within the FORS tree (see Figure 5). 
The next word is the key pair address, which encodes the FORS key that is used and is the same as 

and FORS_PRF, respectively. 
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the key pair address in WOTS+ addresses (see Figure 2 and Figure 3). The next two words — the 
tree height and tree index — encode the node within the FORS tree that is being computed. The 
tree height starts with zero for the leaf nodes. The tree index is counted continuously across the k 
different FORS trees. The leftmost node in the leftmost tree has an index of zero and rightmost 
node in the rightmost tree at level j has an index of k  2(a− j) · − 1, where a is the height of the tree. 

Figure 5. FORS tree address 

layer address = 0 

tree address 

type = 3 (FORS_TREE) 
key pair address 

tree height 
tree index 

4 bytes 

12 bytes 

4 bytes 
4 bytes 
4 bytes 
4 bytes 

Figure 6. FORS tree roots compression 
address 

layer address = 0 

tree address 

type = 4 (FORS_ROOTS) 
key pair address 

padding = 0 

4 bytes 

12 bytes 

4 bytes 
4 bytes 

8 bytes 

The type is set to FORS_ROOTS (4) when compressing the k FORS tree roots (see Figure 6). The 
next word is the key pair address, which has the same meaning as it does in the FORS_TREE 
address. The remaining two words of ADRS are not needed and are set to zero. 

The type is set to  WOTS_PRF (5) when generating secret values for WOTS+ keys (see Figure 7). 
The values for the other words in the address are set to the same values as for the WOTS_HASH 
address (Figure 2) used for the chain. The hash address is always set to zero. 

Figure 7. WOTS+ key generation address 

layer address 

tree address 

type = 5 (WOTS_PRF) 
key pair address 

chain address 
hash address = 0 

4 bytes 

12 bytes 

4 bytes 
4 bytes 
4 bytes 
4 bytes 

Figure 8. FORS key generation address 

layer address = 0 

tree address 

type = 6 (FORS_PRF) 
key pair address 
tree height = 0 

tree index 

4 bytes 

12 bytes 

4 bytes 
4 bytes 
4 bytes 
4 bytes 

The type is set to FORS_PRF (6) when generating secret values for FORS keys (see Figure 8). The 
values for the other words in the address are set to the same values as for the FORS_TREE address 
(Figure 5) used for the same leaf node. 

The instantiations of the functions in Section 4.1 that are based on SHA-2 (Section 10.2 and 
Section 10.3) make use of a compressed version of ADRS. A compressed address (ADRSc) is a 
22-byte string that is the same as an ADRS with the exceptions that the encodings of the layer 
address and type are reduced to one byte each and the encoding of the tree address is reduced to 
eight bytes (i.e., ADRSc = ADRS[3] ∥ ADRS[8 : 16] ∥ ADRS[19] ∥ ADRS[20 : 32]). 
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4.3 Member Functions 
The algorithms in this standard make use of member functions. If a complex data structure, 
such as an ADRS, contains a component X , then ADRS.getX() returns the value of X , and 
ADRS.setX(Y ) sets the component X in ADRS to the value held by Y . If a data structure s 
contains multiple instances of X , then s.getX(i) returns the value of the ith instance of X in s. For 
example, if s is a FORS signature (Figure 13), then s.getAUTH(i) returns the authentication path 
for the ith tree. 

As noted in Section 4.2, whenever the type in an address changes, the fnal 12 bytes of the address 
are initialized to zero. The member function ADRS.setTypeAndClear(Y ) for addresses sets the 
type of the ADRS to Y and sets the fnal 12 bytes of the ADRS to zero. 

4.4 Arrays, Byte Strings, and Integers 

If X is an array of length n, then X [i] (for i th ∈ {0, . . . ,n − 1}) will refer to the i element in the 
string X . If X is an array of m n-byte strings, then X [i] (for i ∈ {0 th , . . . ,m − 1}) will refer to the i
n-byte string in X , and X will refer to the m · n-byte string X [0] ∥ X [1] ∥ . . .X [m − 1]. 

A byte string may be interpreted as the big-endian representation of an integer. In such cases, a 
byte string X of length n is converted to the integer 

X [0] · 256n−1 + X [1 256 2 ] · n− + . . .X [n − 2] · 256 + X [n − 1]. 

Similarly, an integer x may be converted to a byte string of length n by fnding coeffcients 
x0,x1, . . .xn−1,xn−2 ∈ {0, . . . ,255} such that 

x = x n
0 · 256 −1 + x1 · 256n−2 + . . .xn−2 · 256 + xn−1 

and then setting the byte string to be x0x1 . . .xn−2xn−1. 

Algorithm 1 is a function that converts a byte string X of length n to an integer, and Algorithm 2 
is a function that converts an integer x to a byte string of length n. 

Algorithm 1 toInt(X ,n) 
Convert a byte string to an integer. 

Input: n-byte string X . 
Output: Integer value of X . 

1: total ← 0 
2: 
3: for i from 0 to n − 1 do 
4: total ← 256 · total + X [i] 
5: end for 
6: return total 
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Algorithm 2 toByte(x,n) 
Convert an integer to a byte string. 

Input: Integer x, string length n. 
Output: Byte string of length n containing binary representation of x in big-endian byte-order. 

1: total ← x 
2: 
3: for i from 0 to n − 1 do 
4: S[n − 1 − i] ← total mod 256 ▷ Least signifcant 8 bits of total 
5: total ← total ≫ 8 
6: end for 
7: return S 
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646 

647 

648 

649 

650 

For the WOTS+ and FORS schemes, the messages to be signed need to be split into a sequence 
of b-bit strings, where each b-bit string is interpreted as an integer between 0 and 2b − 1.5 

5b will be the value of lgw when the base_2b function is used in WOTS+ , and b will be the value of a when the
base_2b function is used in FORS. For the parameter sets in this standard, lgw is 4, and a is 6, 8, 9, 12, or 14. 

(This 
is the equivalent of creating the base-2b representation of the message.) The  base_2b function 
(Algorithm 3) takes as input a byte string X , a bit string length b, and an output length out_len and 
returns an array of base-2b integers that represent the frst out_len · b bits of X (if the individual 
bytes in X are encoded as 8-bit strings in big-endian bit order). X must be at least ⌈out_len · b/8⌉ 
bytes in length. 

Algorithm 3 base_2b(X , b, out_len) 

Compute the base 2b representation of X.� ·  Input: Byte string X of length at least out_len b
8 , integer b, output length out_len. 

Output: Array of out_len integers in the range [0, . . . ,2b − 1]. 
1: in ← 0 
2: bits ← 0 
3: total ← 0 
4: 
5: for out from 0 to out_len − 1 do 
6: while bits < b do 
7: total ← (total ≪ 8)+ X [in] 
8: in ← in + 1 
9: bits ← bits + 8 

10: end while 
11: bits ← bits − b 
12: baseb[out] ← (total ≫ bits) mod 2b 

13: end for 
14: return baseb 
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5. One-Time Signatures 

This section describes the WOTS+ one-time signature scheme that is a component of SLH-DSA. 

WOTS+ uses two parameters. The security parameter n is the length in bytes of the messages 
that may be signed, as well as the length of the private key elements, public key elements, and 
signature elements. For the parameter sets specifed in this standard, n may be 16, 24, or 32 (see 
Table 1). The second parameter, lgw, indicates the number of bits that are encoded by each hash 
chain that is used.6 

6In [4], the Winternitz parameter w is used at the second WOTS+ parameter, where w indicates the length of the hash 
chains that are used. This standard uses the parameter lgw = log2(w) instead, in order to simplify computations. 

lgw is 4 for all parameter sets in this standard. These parameters are used to 
compute four additional values: 

w = 2lgw (5.1)� � 
8n

len1 = (5.2)
lgw� � 

log2(len1 · (w − 1)) 
len2 = + 1 (5.3)

lgw 

len = len1 + len2 (5.4) 

When lgw = 4, w = 16, len1 = 2n, len2 = 3, and len = 2n + 3. 

A WOTS+ private key consists of len secret values of length n. In SLH-DSA, these are all 
generated from an n-byte seed SK.seed using a PRF. Chains of length w are then created from 
the secret values using a chaining function, and the end values from each of the chains are public 
values. The WOTS+ public key is computed as the hash of these public values. In order to 
create a signature, the 8n-bit message is frst converted into an array of len1 base-w integers. A 
checksum is then computed for this string, and the checksum is converted into an array of len2 
base-w integers. The signature consists of the appropriate entries from the chains for each of the 
integers in the message and checksum arrays. 

The WOTS+ functions make use of two helper functions:  base_2b and chain. The base_2b 

function (Section 4.4) is used to break the message to be signed and the checksum value into 
arrays of base-w integers. The chain function (Algorithm 4) is used to compute the hash chains. 

The chain function takes as input an n-byte string X and integers s and i and returns the result of 
iterating a hash function F on the input s times, starting from an index of i. The chain function 
also requires as input PK.seed, which is part of the SLH-DSA public key, and an address ADRS. 
The type in ADRS must be set to WOTS_HASH, and the layer address, tree address, key pair address, 
and chain address must be set to the address of the chain being computed. The chain function 
updates the hash address in ADRS with each iteration to specify the current position in the chain 
prior to ADRS’s use in F. 
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Algorithm 4 chain(X , i, s, PK.seed, ADRS) 

Chaining function used in WOTS+ . 

Input: Input string X , start index i, number of steps s, public seed PK.seed, address ADRS. 
Output: Value of F iterated s times on X . 

1: if (i + s) ≥ w then 
2: return NULL 
3: end if 
4: 
5: tmp ← X 
6: 
7: for j from i to i + s − 1 do 
8: ADRS.setHashAddress( j) 
9: tmp ← F(PK.seed,ADRS, tmp) 

10: end for 
11: return tmp 
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5.1 WOTS+ Public-Key Generation 
The wots_PKgen function (Algorithm 5) generates WOTS+ public keys. It takes as input SK.seed 
and PK.seed from the SLH-DSA private key and an address. The type in the address ADRS must 
be set to WOTS_HASH, and the layer address, tree address, and key pair address must encode the 
address of the WOTS+ public key to be generated. 

Lines 4 through 9 in Algorithm 5 generate the public values, as described in Section 5. For each 
of the len public values, the corresponding secret value is generated in lines 5 and 6, and the 
chain function is called to compute the end value of the chain of length w. Once the len public 
values are computed, they are compressed into a single n-byte value in lines 10 through 13. 
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Algorithm 5 wots_PKgen(SK.seed, PK.seed, ADRS) 

Generate a WOTS+ public key. 

Input: Secret seed SK.seed, public seed PK.seed, address ADRS. 
Output: WOTS+ public key pk. 

1: skADRS ← ADRS ▷ Copy address to create key generation key address 
2: skADRS.setTypeAndClear(WOTS_PRF) 
3: skADRS.setKeyPairAddress(ADRS.getKeyPairAddress()) 
4: for i from 0 to len − 1 do 
5: skADRS.setChainAddress(i) 
6: sk ← PRF(PK.seed, SK.seed, skADRS) ▷ Compute secret value for chain i 
7: ADRS.setChainAddress(i) 
8: tmp[i] ← chain(sk,0,w − 1,PK.seed,ADRS) ▷ Compute public value for chain i 
9: end for 

10: wotspkADRS ← ADRS ▷ Copy address to create WOTS+public key address 
11: wotspkADRS.setTypeAndClear(WOTS_PK) 
12: wotspkADRS.setKeyPairAddress(ADRS.getKeyPairAddress()) 
13: pk ← Tlen(PK.seed,wotspkADRS, tmp) ▷ Compress public key 
14: return pk 

5.2 WOTS+ Signature Generation 
A WOTS+ signature is an array of len byte strings of length n, as shown in Figure 9. The 
wots_sign function (Algorithm 6) generates the signature by converting the n-byte message M7 

In SLH-DSA, the message M that is signed using WOTS+ is either an XMSS public key or a FORS public key. 

into an array of len1 base-w integers (line 3). A checksum is computed over M (lines 5 through 7). 
The checksum is converted to a byte string, which is then converted into an array of len2 base-w 
integers (lines 9 and 10). The len2 integers that represent the checksum are appended to the len1 
integers that represent the message (line 10).8 

8In the case that lgw = 4, the n-byte message is converted into an array of 2n base-16 integers (i.e., hexadecimal 
digits). The checksum is encoded as 2 bytes with the least signifcant 4 bits being zeros, and the most signifcant 12 
bits are appended to the message as an array of three base-16 integers. 

For each of the len base-w integers, the signature 
consists of the corresponding node in one of the hash chains. For each of these integers, lines 
16 and 17 compute the secret value for the hash chain, and lines 18 and 19 compute the node in 
the hash chain that corresponds to the integer. The selected nodes are concatenated to form the 
WOTS+ signature. 

Figure 9. WOTS+ signature data format 

sigots[0] 
· · · 

sigots[len − 1] 

n bytes 

n bytes 

In addition to the n-byte message to be signed, wots_sign takes as input SK.seed and PK.seed 
from the SLH-DSA private key and an address. The type in the address ADRS must be set to 

7

18 



FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD 

704 

705 

706 

707 

708 

709 

710 

711 

712 

713 

714 

715 

716 

717 

718 

WOTS_HASH, and the layer address, tree address, and key pair address must encode the address of 
the WOTS+ key that is used to sign the message. 

Algorithm 6 wots_sign(M, SK.seed, PK.seed, ADRS) 

Generate a WOTS+ signature on an n-byte message. 

Input: Message M, secret seed SK.seed, public seed PK.seed, address ADRS. 
Output: WOTS+ signature sig. 

1: csum ← 0 
2: 
3: msg ← base_2b(M, lgw, len1) ▷ Convert message to base w 
4: 
5: for i from 0 to len1 − 1 do ▷ Compute checksum 
6: csum ← csum + w − 1− msg[i] 
7: end for 
8: 
9: csum ← csum ≪ ((8 −� ((len 2 · l�gw) mod l 8)) mod m� 8   For lg  4 left shift by 4  ) � ▷ w =

msg  len ·lg10: ← msg ∥ base_2b toByte csum, 2 w ,8 lgw, len2 ▷ Convert csum to base w 
11: 
12: skADRS ← ADRS 
13: skADRS.setTypeAndClear(WOTS_PRF) 
14: skADRS.setKeyPairAddress(ADRS.getKeyPairAddress()) 
15: for i from 0 to len − 1 do 
16: skADRS.setChainAddress(i) 
17: sk ← PRF(PK.seed, SK.seed, skADRS) ▷ Compute secret value for chain i 
18: ADRS.setChainAddress(i) 
19: sig[i] ← chain(sk,0,msg[i],PK.seed,ADRS) ▷ Compute signature value for chain i 
20: end for 
21: return sig 

5.3 Computing a WOTS+ Public Key From a Signature 
As noted in Section 3, verifying a WOTS+ signature involves computing a public-key value from 
a message and signature value. Verifcation succeeds if the correct public-key value is computed, 
which is determined by using the computed public-key value along with other information to 
compute a candidate PK.root value and then comparing that value to the known value of PK.root 
from the SLH-DSA public key. This section describes wots_PKFromSig (Algorithm 7), a function 
that computes a candidate WOTS+ public key from a WOTS+ signature and corresponding 
message. 

In addition to an n-byte message M and a len ·n-byte signature sig, which is interpreted as an array 
of len n-byte strings, the wots_PKFromSig function takes as input PK.seed from the SLH-DSA 
public key and an address. The type of the address ADRS must be set to WOTS_HASH, and the 
layer address, tree address, and key pair address must encode the address of the WOTS+ key that 
was used to sign the message. 
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Lines 1 through 10 of wots_PKFromSig are the same as lines 1 through 10 of wots_sign (Algo-
rithm 6). Lines 11 through 14 of wots_PKFromSig compute the end nodes for each of the chains 
using the signature value as the starting point and the message value to determine the number of 
iterations that need to be performed to get to the end node. Finally, as with lines 10 through 13 of 
Algorithm 5, the computed public-key values are compressed in lines 15 through 18. 

Algorithm 7 wots_PKFromSig(sig, M, PK.seed, ADRS) 

Compute a WOTS+ public key from a message and its signature. 

Input: WOTS+ signature sig, message M, public seed PK.seed, address ADRS. 
Output: WOTS+ public key pksig derived from sig. 

1: csum ← 0 
2: 
3: msg ← base_2b(M, lgw, len1) ▷ Convert message to base w 
4: 
5: for i from 0 to len1 − 1 do ▷ Compute checksum 
6: csum ← csum + w − 1− msg[i] 
7: end for 
8: 
9: csum ← csum ≪ ((8 −� ((len 2 · l�gw) mod l 8)) mod m� 8)  For g � l  4 left shift by 4  ▷ w =

msg  msg  _ b  csum  len2·lg10: ← ∥ base 2 toByte , w , gw, len2 ▷ Convert csum to base w 8 l
11: for i from 0 to len − 1 do 
12: ADRS.setChainAddress(i) 
13: tmp[i] ← chain(sig[i],msg[i],w − 1 − msg[i],PK.seed,ADRS) 
14: end for 
15: wotspkADRS ← ADRS 
16: wotspkADRS.setTypeAndClear(WOTS_PK) 
17: wotspkADRS.setKeyPairAddress(ADRS.getKeyPairAddress()) 
18: pksig ← Tlen(PK.seed,wotspkADRS, tmp) 
19: return pksig 
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6. The eXtended Merkle Signature Scheme (XMSS) 

XMSS extends the WOTS+ signature scheme into one that can sign multiple messages. A Merkle 
tree [15] of height h′ is used to allow 2h′ WOTS+ public keys to be authenticated using a single 
n-byte XMSS public key, which is the root of the Merkle tree.9 

9The Merkle tree formed from the 2h′ WOTS+ keys of an XMSS key is referred to in this standard as an XMSS tree. 

As each WOTS+ key may be 
used to sign one message, the XMSS key may be used to sign 2h′ messages. 

An XMSS signature is (h′ + len)  · n bytes in length and consists of a WOTS+ signature and an 
authentication path (see Figure 10). The authentication path is an array of nodes from the Merkle 
tree — one from each level of the tree (except the root) — that allows the verifer to compute the 
root of the tree when used in conjunction with the WOTS+ public key that can be computed from 
the WOTS+ signature. 

Figure 10. XMSS signature data format 

SIGWOTS+ 

AUTH[0] 
· · · 

AUTH[h′ − 1] 

len · n bytes 

n bytes 

n bytes 

6.1 Generating a Merkle Hash Tree 
The xmss_node function (Algorithm 8) computes the nodes of an XMSS tree. The xmss_node 
function takes as input SK.seed and PK.seed from the SLH-DSA private key; a target node index 
i, which is the index of the node being computed; a target node height z, which is the height within 
the Merkle tree of the node being computed; and an address. The address ADRS must have the 
layer address and tree address set to the XMSS tree within which the node is being computed. 

Each node in an XMSS tree is the root of a subtree, and Algorithm 8 computes the root of the 
subtree recursively. If the subtree consists of a single leaf node, then the function simply returns 
the value of the node’s WOTS+ public key (lines 5 through 7). Otherwise, the function computes 
the roots of the left subtree (line 9) and right subtree (line 10) and hashes them together (lines 11 
through 14). 
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Algorithm 8 xmss_node(SK.seed, i, z, PK.seed, ADRS) 

Compute the root of a Merkle subtree of WOTS+ public keys. 

Input: Secret seed SK.seed, target node index i, target node height z, public seed PK.seed, 
address ADRS. 

Output: n-byte root node. 
1: if z > h′ or i ≥ 2(h

′−z) then 
2: return NULL 
3: end if 
4: if z = 0 then 
5: ADRS.setTypeAndClear(WOTS_HASH) 
6: ADRS.setKeyPairAddress(i) 
7: node ← wots_PKgen(SK.seed, PK.seed, ADRS) 
8: else 
9: lnode ← xmss_node(SK.seed,2i,z − 1,PK.seed,ADRS) 

10: rnode ← xmss_node(SK.seed,2i + 1,z − 1,PK.seed,ADRS) 
11: ADRS.setTypeAndClear(TREE) 
12: ADRS.setTreeHeight(z) 
13: ADRS.setTreeIndex(i) 
14: node ← H(PK.seed,ADRS, lnode ∥ rnode) 
15: end if 
16: return node 
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6.2 Generating an XMSS Signature 

The xmss_sign function (Algorithm 9) creates an XMSS signature on an n-byte message M  by 
frst creating an authentication path (lines 1 through 4) and then signing M with the appropriate 
WOTS+ key (lines 6 through 8). In addition to M, xmss_sign takes as input SK.seed and PK.seed 
from the SLH-DSA private key, an address, and an index. The address ADRS must have the layer 
address and tree address set to the XMSS key that is being used to sign the message, and the 
index idx must be the index of the WOTS+ key within the XMSS tree that will be used to sign 
the message. 

The authentication path consists of the sibling nodes of each node that is on the path from the 
WOTS+ key used to the root. For example, in Figure 11, if the message is signed with K2, then 
K2, n1,1, and n2,0 are the on path � nodes, � and the authentication path consists of K3, n1,0, and n � � 2,1.
In line 2 of Algorithm 9, idx/2 j is the on path node, and idx/2 j ⊕ 1 is the authentication 
path node. Line 3 computes the value of the authentication path node. 

10

10In SLH-DSA, the message M that is signed using XMSS is either an XMSS public key or a FORS public key. 
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Algorithm 9 xmss_sign(M, SK.seed, idx, PK.seed, ADRS) 
Generate an XMSS signature. 

Input: n-byte message M, secret seed SK.seed, index idx, public seed PK.seed, address ADRS. 
Output: XMSS signature SIGXMSS = (sig ∥ AUTH). 

1: for j from 0 to h′ − 1  ▷ Build authentication path � � do 
k  idx 2 j 2: ← / ⊕ 1 

3: AUTH[ j] ← xmss_node(SK.seed,k, j,PK.seed,ADRS) 
4: end for 
5: 
6: ADRS.setTypeAndClear(WOTS_HASH) 
7: ADRS.setKeyPairAddress(idx) 
8: sig ← wots_sign(M,SK.seed,PK.seed,ADRS) 
9: SIGXMSS ← sig ∥ AUTH 

10: return SIGXMSS 

Figure 11. Merkle Hash Tree 
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6.3 Computing an XMSS Public Key From a Signature 
As noted in Section 3, verifying an XMSS signature involves computing a public-key value from 
a message and a signature value. Verifcation succeeds if the correct public-key value is computed, 
which is determined by using the computed public-key value along with other information to 
compute a candidate PK.root value and then comparing that value to the known value of PK.root 
from the SLH-DSA public key. This section describes xmss_PKFromSig (Algorithm 10), a 
function that computes a candidate XMSS public key from an XMSS signature and corresponding 
message. 

In addition to an n-byte message M and an len h′ ( + )·n-byte signature SIGXMSS, xmss_PKFromSig 
takes as input PK.seed from the SLH-DSA public key, an address, and an index. The address 
ADRS must be set to the layer address and tree address of the XMSS key that was used to sign 
the message, and the index idx must be the index of the WOTS+ key within the XMSS tree that 
was used to sign the message. 

Algorithm 10 begins by computing the WOTS+ public key in lines 1 through 5. The root is then 
computed in lines 7 through 19. Starting with the leaf node (the WOTS+ public key), a node at 
each level of the tree is computed by hashing together the node computed in the previous iteration 
with the corresponding authentication path node. In lines 13 and 16, AUTH is interpreted as an 
array of h′ n-byte strings. 
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Algorithm 10 xmss_PKFromSig(idx, SIGXMSS, M, PK.seed, ADRS) 
Compute an XMSS public key from an XMSS signature. 

Input: Index idx, XMSS signature SIGXMSS = (sig ∥ AUTH), n-byte message M, 
public seed PK.seed, address ADRS. 

Output: n-byte root value node[0]. 
ADRS.setTypeAndClear( _ )  Compute WOTS+ pk from WOTS+ 1: WOTS HASH ▷ sig 

2: ADRS.setKeyPairAddress(idx) 
3: sig ← SIGXMSS.getWOTSSig() ▷ SIGXMSS[0 : len · n] 
4: AUTH  ← SIGXMSS.getXMSSAUTH() ▷ SIGXMSS[len · n : (len + h′) · n] 
5: node[0] ← wots_PKFromSig(sig,M,PK.seed,ADRS) 
6: 
7: ADRS.setTypeAndClear(TREE) ▷ Compute root from WOTS+ pk and AUTH 
8: ADRS.setTreeIndex(idx) 
9: for k from 0 to h′ − 1 do 

10: ADRS.setTreeHeight(k + 1)� � 
11: if idx/2k is even then 
12: ADRS.setTreeIndex(ADRS.getTreeIndex()/2) 
13: node[1] ← H(PK.seed,ADRS,node[0] ∥ AUTH[k]) 
14: else 
15: ADRS.setTreeIndex((ADRS.getTreeIndex() − 1)/2) 
16: node[1] ← H(PK.seed,ADRS,AUTH[k] ∥ node[0]) 
17: end if 
18: node[0] ← node[1] 
19: end for 
20: return node[0] 
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7. The SLH-DSA Hypertree 

As noted in Section 3, SLH-DSA requires a very large number of WOTS+ keys to sign FORS 
public keys. As it would not be feasible for the parameter sets in this standard to have a single 
XMSS key with so many WOTS+ keys, SLH-DSA uses a hypertree to sign the FORS keys. As 
depicted in Figure 1, a hypertree is a tree of XMSS trees. The XMSS keys at the lowest layer are 
used to sign FORS public keys (Section 8), and the XMSS keys at every other layer are used to 
sign the XMSS public keys at the layer below. 

The hypertree has d layers of XMSS trees with each XMSS tree being a Merkle tree of height 
h′ , so the total height of the hypertree is h = d · h′ (see Table 1). The top layer (layer d − 1) is a 
single XMSS tree, and the public key of this XMSS key pair (i.e., the root of the Merkle tree) 
is the public key of the hypertree (PK.root). The next layer down has 2h′ XMSS trees, and the 
public key of each of these XMSS keys is signed by one of the 2h′ WOTS+ keys that is part of 
the top layer’s XMSS key. The lowest layer has 2h−h′ XMSS trees, providing 2h WOTS+ keys to 
sign FORS keys. 

7.1 Hypertree Signature Generation 
A hypertree signature is (h + d · len) · n bytes in length and consists of a sequence of d XMSS 
signatures, starting with one generated using an XMSS key at the lowest layer and ending with 
one generated using the XMSS key at the top layer (see Figure 12). 

Figure 12. HT signature data format 

XMSS signature SIGXMSS (layer 0) 
XMSS signature SIGXMSS (layer 1) 

· · · 
XMSS signature SIGXMSS (layer d − 1) 

(h′ + len) · n bytes 
(h′ + len) · n bytes 

(h′ + len) · n bytes 

In addition to the n-byte message M,11 

11In SLH-DSA, the message M that is provided to ht_sign is a FORS public key. 

the ht_sign function (Algorithm 11) takes as input SK.seed 
and PK.seed from the SLH-DSA private key, the index of the XMSS tree at the lowest layer that 
will sign the message idxtree, and the index of the WOTS+ key within the XMSS tree that will 
sign the message idxlea f . 

Algorithm 11 begins in lines 1 through 4 by signing M with the specifed XMSS key using the 
WOTS+ key within that XMSS key specifed by idxlea f . The XMSS public key is obtained (line 
6 or 15) for each successive layer and signed by the appropriate key at the next higher level (lines 
8 through 12). 
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Algorithm 11 ht_sign(M, SK.seed, PK.seed, idxtree, idxlea f ) 

Generate a hypertree signature. 

Input: Message M, private seed SK.seed, public seed PK.seed, tree index idxtree, 
leaf index idxlea f . 

Output: HT signature SIGHT . 
1: ADRS ← toByte(0,32) 
2: 
3: ADRS.setTreeAddress(idxtree) 
4: SIGtmp ← xmss_sign(M,SK.seed, idxlea f ,PK.seed,ADRS) 
5: SIGHT ← SIGtmp 

6: root ← xmss_PKFromSig(idxlea f ,SIGtmp,M,PK.seed,ADRS) 
7: for j from 1 to d − 1 do 
8: idx h′ ′ 

lea f ← idxtree mod 2 ▷ h least signifcant bits of idxtree 
 9: idxtree ← idxtree ≫ h′ ▷ Remove least signifcant h′ bits from idxtree 

10: ADRS.setLayerAddress( j) 
11: ADRS.setTreeAddress(idxtree) 
12: SIGtmp ← xmss_sign(root,SK.seed, idxlea f ,PK.seed,ADRS) 
13: SIGHT ← SIGHT ∥ SIGtmp 

14: if j < d − 1 then 
15: root ← xmss_PKFromSig(idxlea f ,SIGtmp,root,PK.seed,ADRS) 
16: end if 
17: end for 
18: return SIGHT 
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7.2 Hypertree Signature Verifcation 
Hypertree signature verifcation works by making d calls to xmss_PKFromSig (Algorithm 10) 
and comparing the result to the public key of the hypertree. 

In addition to the n-byte message M and the (h + d · len) · n-byte signature SIGHT , ht_verify 
(Algorithm 12) takes as input PK.seed and PK.root from the SLH-DSA public key, the index of 
the XMSS tree at the lowest layer that signed the message idxtree, and the index of the WOTS+ 

key within the XMSS tree that signed the message idxlea f . 

At each layer, either the message M or the computed public key of the XMSS key at the lower 
layer is provided along with the appropriate XMSS signature to xmss_PKFromSig in order to 
obtain the layer’s computed XMSS public key. If the computed XMSS public key of the top layer 
tree is the same as the known hypertree public key, PK.root, then verifcation succeeds. 

Algorithm 12 ht_verify(M, SIGHT , PK.seed, idxtree, idxlea f , PK.root) 

Verify a hypertree signature. 

Input: Message M, signature SIGHT , public seed PK.seed, tree index idxtree, leaf index idxlea f , 
HT public key PK.root. 

Output: Boolean. 
1: ADRS ← toByte(0,32) 
2: 
3: ADRS.setTreeAddress(idxtree) 
4: SIGtmp ← SIGHT .getXMSSSignature  (0) ▷ SIGHT [0 : (h′+ len) · n] 
5: node ← xmss_PKFromSig(idxlea f ,SIGtmp,M,PK.seed,ADRS) 
6: for j from 1 to d − 1 do 
7: idxlea f ← idx h′ ′ 

tree mod 2 ▷ h least signifcant bits of idxtree 

idx  idx  h′  Remove least signifcant h′ 8: tree ← tree ≫ ▷ bits from idxtree 

9: ADRS.setLayerAddress( j) 
10: ADRS.setTreeAddress(idxtree) 
11: SIGtmp ← SIGHT .getXMSSSignature( j) ▷ SIGHT [ j  · (h′+ len) · n : ( j + 1)(h′ + len) · n] 
12: node ← xmss_PKFromSig(idxlea f ,SIGtmp,node,PK.seed,ADRS) 
13: end for 
14: if node = PK.root then 
15: return true 
16: else 
17: return false 
18: end if 
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8. Forest of Random Subsets (FORS) 

FORS is a few-time signature scheme that is used to sign the digests of the actual messages. 
Unlike WOTS+, for which forgeries become feasible if a key is used twice [19], the security of a 
FORS key degrades gradually as the number of signatures increases. 

FORS uses two parameters: k and t = 2a (see Table 1). A FORS private key consists of k sets of t 
n-byte strings, all of which are pseudorandomly generated from the seed SK.seed. Each of the k 
sets is formed into a Merkle tree, and the roots of the trees are hashed together to form the FORS 
public key. A signature on a ka-bit message digest consists of k elements from the private key, 
one from each set selected using a bits of the message digest, along with the authentication paths 
for each of these elements (see Figure 13). 

Figure 13. FORS signature data format 

private key value (tree 0) 

AUTH (tree 0) 

· · · 
private key value (tree k − 1) 

AUTH (tree k − 1) 

n bytes 

a · n bytes 

n bytes 

a · n bytes 

8.1 Generating FORS Secret Values 
The fors_SKgen function (Algorithm 13) generates the n-byte strings of the FORS private key. 
The function takes as input SK.seed and PK.seed from the SLH-DSA private key, an address, 
and an index. The type in the address ADRS must be set to FORS_TREE, and the tree address and 
key pair address must be set to the index of the WOTS+ key within the XMSS tree that signs the 
FORS key. The layer address must be set to zero. The index idx is the index of the FORS secret 
value within the sets of FORS trees. 

Algorithm 13 fors_SKgen(SK.seed, PK.seed, ADRS, idx) 
Generate a FORS private-key value. 

Input: Secret seed SK.seed, public seed PK.seed, address ADRS, secret key index idx. 
Output: n-byte FORS private-key value. 

1: skADRS ← ADRS ▷ Copy address to create key generation address 
2: skADRS.setTypeAndClear(FORS_PRF) 
3: skADRS.setKeyPairAddress(ADRS.getKeyPairAddress()) 
4: skADRS.setTreeIndex(idx) 
5: return PRF(PK.seed,SK.seed,skADRS) 

8.2 Generating a Merkle Hash Tree 
The fors_node function (Algorithm 14) computes the nodes of a Merkle tree. It is the same as 
mss_  node, except that the leaf nodes are the hashes of the FORS secret values instead of WOTS+
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public keys. 

The fors_node function takes as input SK.seed and PK.seed from the SLH-DSA private key; a 
target node index i, which is the index of node being computed; a target node height z, which 
is the height within the Merkle tree of the node being computed; and an address. The address 
ADRS must have the layer address set to zero (since the XMSS tree that signs a FORS key is 
always at layer 0), the tree address set to the XMSS tree that signs the FORS key, the type set to 
FORS_TREE, and the key pair address set to the index of the WOTS+ key within the XMSS tree 
that signs the FORS key. 

Each node in the Merkle tree is the root of a subtree, and Algorithm 14 computes the root of a 
subtree recursively. If the subtree consists of a single leaf node, then the function simply returns a 
hash of the node’s private n-byte string (lines 5 through 8). Otherwise, the function computes the 
roots of the left subtree (line 10) and right subtree (line 11) and hashes them together (lines 12 
through 14). 

Algorithm 14 fors_node(SK.seed, i, z, PK.seed, ADRS) 
Compute the root of a Merkle subtree of FORS public values. 

Input: Secret seed SK.seed, target node index i, target node height z, public seed PK.seed, 
address ADRS. 

Output: n-byte root node. 
1: if z > a or i ≥ k a z  · 2( − ) then 
2: return NULL 
3: end if 
4: if z = 0 then 
5: sk ← fors_SKgen(SK.seed,PK.seed,ADRS, i) 
6: ADRS.setTreeHeight(0) 
7: ADRS.setTreeIndex(i) 
8: node ← F(PK.seed,ADRS,sk) 
9: else 

10: lnode ← fors_node(SK.seed,2i,z − 1,PK.seed,ADRS) 
11: rnode ← fors_node(SK.seed,2i + 1,z − 1,PK.seed,ADRS) 
12: ADRS.setTreeHeight(z) 
13: ADRS.setTreeIndex(i) 
14: node ← H(PK.seed,ADRS, lnode ∥ rnode) 
15: end if 
16: return node 

8.3 Generating a FORS Signature 

The fors_sign function (Algorithm 15) signs a ka-bit message digest md. In addition to the 
message digest, fors_sign takes as input SK.seed and PK.seed from the SLH-DSA private key 
and an address. The address ADRS must have the layer address set to zero (since the XMSS tree 
that signs a FORS key is always at layer 0), the tree address set to the XMSS tree that signs the 

12 

�  k a12For convenience, fors_sign takes as input a · byte message digest and then extracts k · a 8 bits to sign. 
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FORS key, the type set to FORS_TREE, and the key pair address set to the index of the WOTS+ 

key within the XMSS tree that signs the FORS key. 

The fors_sign function splits ka bits of md into k a-bit strings (line 2), each of which is interpreted 
as an integer between 0 and t − 1. Each of these integers is used to select a secret value from one 
of the k sets (line 4). For each secret value selected, an authentication path is computed and added 
to the signature (lines 6 through 10). 

Algorithm 15 fors_sign(md, SK.seed, PK.seed, ADRS) 
Generate a FORS signature. 

Input: Message digest md, secret seed SK.seed, address ADRS, public seed PK.seed. 
Output: FORS signature SIGFORS. 

1: SIGFORS = NULL ▷ Initialize SIGFORS as a zero-length byte string 
2: indices ← base_2b(md,a,k) 
3: for i from 0 to k − 1 do ▷ Compute signature elements 
4: SIGFORS ← SIGFORS ∥ afors_SKgen(SK.seed,PK.seed,ADRS, i · 2  + indices[i]) 
5: 
6: for j from 0 a 1 Compute auth path � to  − do � ▷  
7: s ← indices[i]/2 j ⊕ 1 
8: AUTH[ j] ← fors_node(SK.seed, i · 2a− j + s, j,PK.seed,ADRS) 
9: end for 

10: SIGFORS ← SIGFORS ∥ AUTH 
11: end for 
12: return SIGFORS 

8.4 Computing a FORS Public Key From a Signature 
As noted in Section 3, verifying a FORS signature involves computing a public-key value from 
a message digest and a signature value. Verifcation succeeds if the correct public-key value is 
computed, which is determined by verifying the hypertree signature on the computed public-key 
value using the SLH-DSA public key. This section describes fors_pkFromSig (Algorithm 16), a 
function that computes a candidate FORS public key from a FORS signature and corresponding 
message digest. 

In addition to a message digest md and a k · (a + 1) · n-byte signature SIGFORS, fors_pkFromSig 
takes as input PK.seed from the SLH-DSA public key and an address.13 

As with fors_sign, fors_pkFromSig takes as input a k·a byte message digest and then extracts k · a 8 bits.

The address ADRS must 
have the layer address set to zero (since the XMSS tree that signs a FORS key is always at layer 
0), the tree address set to the XMSS tree that signs the FORS key, the type set to FORS_TREE, 
and the key pair address set to the index of the WOTS+ key within the XMSS tree that signs the 
FORS key. 

The fors_pkFromSig function begins by computing the roots of each of the k Merkle trees (lines 
2 through 21). As in fors_sign, ka bits of the message digest are split into k a-bit strings (line 1), 
each of which is interpreted as an integer between 0 and t − 1. The integers are used to determine 

�  
13
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the locations in the Merkle trees of the secret values from the signature (lines 3 through 5). The 
hashes of the secret values are computed (line 6), and the hash values are used along with the 
corresponding authentication paths from the signature to compute the Merkle tree roots (lines 8 
through 20). Once all of the Merkle tree roots have been computed, they are hashed together to 
compute the FORS public key (lines 22 through 25). 

Algorithm 16 fors_pkFromSig(SIGFORS, md, PK.seed, ADRS) 
Compute a FORS public key from a FORS signature. 

Input: FORS signature SIGFORS, message digest md, public seed PK.seed, address ADRS. 
Output: FORS public key. 

1: indices ← base_2b(md,a,k) 
2: for i from 0 to k − 1 do 
3: sk ← SIGFORS.getSK(i) ▷ SIGFORS[i · (a + 1) · n : (i · (a + 1)+ 1) · n] 
4: ADRS.setTreeHeight(0) ▷ Compute leaf 
5: ADRS.setTreeIndex(i · 2a + indices[i]) 
6: node[0] ← F(PK.seed,ADRS,sk) 
7: 
8: auth ← SIGFORS.getAUTH(i) ▷ SIGFORS[(i · (a + 1)+ 1) · n : (i + 1) · (a + 1) · n] 
9: for j from 0 to a − 1 do ▷ Compute root from leaf and AUTH 

10: ADRS.setTreeHeight( j + 1)� � j 11: if indices[i]/2 is even then 
12: ADRS.setTreeIndex(ADRS.getTreeIndex()/2) 
13: node[1] ← H(PK.seed,ADRS,node[0] ∥ auth[ j]) 
14: else 
15: ADRS.setTreeIndex((ADRS.getTreeIndex() − 1)/2) 
16: node[1] ← H(PK.seed,ADRS,auth[ j] ∥ node[0]) 
17: end if 
18: node[0] ← node[1] 
19: end for 
20: root[i] ← node[0] 
21: end for 
22: forspkADRS ← ADRS ▷ Compute the FORS public key from the Merkle tree roots 
23: forspkADRS.setTypeAndClear(FORS_ROOTS) 
24: forspkADRS.setKeyPairAddress(ADRS.getKeyPairAddress()) 
25: pk ← Tk(PK.seed, forspkADRS,root) 
26: return pk; 
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9. SLH-DSA 

SLH-DSA uses the hypertree and the FORS keys to create a stateless hash-based signature 
scheme. The SLH-DSA private key contains a secret seed value and a secret PRF key. The public 
key consists of a key identifer PK.seed and the root of the hypertree. A signature is created 
by hashing the message, using part of the message digest to select a FORS key, signing other 
bits from the message digest with the FORS key, and generating a hypertree signature for the 
FORS key. The parameters for SLH-DSA are those specifed previously for WOTS+, XMSS, the 
SLH-DSA hypertree, and FORS, which are given in Table 1. 

SLH-DSA uses one additional parameter m, which is the length in bytes of the message digest. It 
is computed as: 

� � � � � � 
h − h′ h′ k · a 

m = + +
8 8 8 

SLH-DSA uses h bits of the message digest to select a FORS key: h − h′ bits to select an XMSS 
tree at the lowest layer and h′ bits to select a WOTS+ key (and corresponding FORS key) from 
that tree. k · a bits of the digest are signed by the selected FORS key. While only h + k · a bits of 
the message digest are used, implementation is simplifed by extracting the necessary bits from a 
slightly larger digest. 

9.1 SLH-DSA Key Generation 
SLH-DSA public keys contain two elements (see Figure 15). The frst is an n-byte public seed 
PK.seed, which is used in many hash function calls to provide domain separation between 
different SLH-DSA key pairs. The second value is the hypertree public key (i.e., the root of the 
top layer XMSS tree). PK.seed shall be generated using an approved random bit generator (see 
the NIST SP 800-90 series of publications [16, 17, 18]), where the instantiation of the random bit 
generator supports at least 8n bits of security strength. 

The SLH-DSA private key contains two random, secret n-byte values (see Figure 14). SK.seed is 
used to generate all of the WOTS+ and FORS private key elements. SK.prf is used to generate a 
randomization value for the randomized hashing of the message in SLH-DSA. The private key 
also includes a copy of the public key. Both SK.seed and SK.prf shall be generated using an 
approved random bit generator, where the instantiation of the random bit generator supports at 
least 8n bits of security strength. 

Algorithm 17 generates an SLH-DSA key pair. Lines 1 through 3 generate the random values 
for the private and public keys using an instantiation of an approved random bit generator that 

Figure 14. SLH-DSA private key 

SK.seed 
SK.prf 

PK.seed 
PK.root 

n bytes 
n bytes 
n bytes 
n bytes 

Figure 15. SLH-DSA public key 

PK.seed n bytes 
PK.root n bytes 
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supports at least 8n bits of security strength. Lines 5 through 7 then compute the root of the top 
layer XMSS tree. 

lgorithm 17 slh_keygen() 
enerate an SLH-DSA key pair. 

Input: (none) 
Output: SLH-DSA key pair (SK, PK). 

$
1: SK.seed ←− Bn ▷ Set SK.seed, SK.prf, and PK.seed to random n-byte 
2: SK.prf $←− Bn ▷ strings using an approved random bit generator 

$ n3: PK.seed ←− B  

4: 
5: ADRS ← toByte(0,32) ▷ Generate the public key for the top-level XMSS tree 
6: ADRS.setLayerAddress(d − 1) 
7: PK.root ← _  xmss node(SK.seed,0,h′,PK.seed,ADRS) 
8: 
9: return ( (SK.seed, SK.prf, PK.seed, PK.root), (PK.seed, PK.root) ) 

A
G

9.2 SLH-DSA Signature Generation 
An SLH-DSA signature consists of a randomization string, a FORS signature, and a hypertree 
signature, as shown in Figure 16. 

Generating an SLH-DSA signature (Algorithm 18) begins by creating an m-byte message digest 
(lines 3 through 10). A PRF is used to create a message randomizer (line 7), and it is hashed 
along with the message to create the digest (line 10). Bits are then extracted from the message 
digest to be signed by the FORS key (line 11), to select an XMSS tree (lines 12 and 15), and 
to select a WOTS+ key and corresponding FORS key within that XMSS tree (lines 13 and 16). 
Next, the FORS signature is computed (lines 18 through 21) and the corresponding FORS public 
key is obtained (line 24). Finally, the FORS public key is signed (line 26). 

The message randomizer may be set in either a deterministic or non-deterministic way, depending 
on whether opt_rand is set to a fxed value (line 3) or a random value (line 5). If opt_rand 
is set to PK.seed, then signing will be deterministic — signing the same message twice will 
result in the same signature. For devices that are vulnerable to side-channel attacks and for 
which deterministic signing would be a problem, opt_rand may be set to a random value. The 
generation of a random value for opt_rand does not require the use of an approved random bit 
generator. 

Figure 16. SLH-DSA signature data format 

Randomness R 
FORS signature SIGFORS 

HT signature SIGHT 

n bytes 
k(1 + a) · n bytes 
(h + d · len) · n bytes 
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Algorithm 18 slh_sign(M, SK) 
Generate an SLH-DSA signature. 

Input: Message M, private key SK = (SK.seed, SK.prf, PK.seed, PK.root). 
Output: SLH-DSA signature SIG. 

1: ADRS ← toByte(0,32) 
2: 
3: opt_rand ← PK.seed ▷ Set opt_rand to either PK.seed 
4: if (RANDOMIZE) then ▷ or to a random n-byte string 
5: opt_rand 

$ n←− B
6: end if 
7: R ← PRFmsg(SK.prf,opt_rand,M) ▷ Generate randomizer 
8: SIG ← R 
9: 

10: digest ← Hmsg(R� �,PK.seed,PK.root,M) ▷ Compute message digest  � �  
11: md ← digest 0 : k·a k·a▷ 8 frst bytesh� l mi l   �  8 m

tmp_idx  digest k·a : k·a h−h/dh 8 ne h−h/d12: tree ← + ▷ 8 8 xt bytes�  l m  �   l m i 8

tmp_idx k·a h−h/d k·a h−h digest  : /d �  �  h h13: lea f ← + + + ▷ 8 8 8 8 8d next 8d bytes
14: � l m� 

idx tmp h−h/d  _idx h h d 15: tree ← toInt tree, mod 2 − /� 8 �  �
idx   tmp_idx h h/d 16: lea f ← toInt lea f , 8d mod 2

17: 
18: ADRS.setTreeAddress(idxtree) 
19: ADRS.setTypeAndClear(FORS_TREE) 
20: ADRS.setKeyPairAddress(idxlea f ) 
21: SIGFORS ← fors_sign(md,SK.seed,PK.seed,ADRS) 
22: SIG ← SIG ∥ SIGFORS 

23: 
24: PKFORS ← fors_pkFromSig(SIGFORS,md,PK.seed,ADRS) ▷ Get FORS key 
25: 
26: SIGHT ← ht_sign(PKFORS,SK.seed,PK.seed, idxtree, idxlea f ) 
27: SIG ← SIG ∥ SIGHT 

28: return SIG 
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9.3 SLH-DSA Signature Verifcation 
As with signature generation, SLH-DSA signature verifcation (Algorithm 19) begins by com-
puting a message digest (line 9) and then extracting md (line 10), idxtree (lines 11 and 14), and 
idxlea f (lines 12 and 15) from the digest. A candidate FORS public key is then computed (line 
21), and the signature on the FORS key is verifed (line 23). If this signature verifcation succeeds, 
then the correct FORS public key was computed, and the signature SIG on message M is valid. 

Algorithm 19 slh_verify(M, SIG, PK) 
Verify an SLH-DSA signature. 

Input: Message M, signature SIG, public key PK = (PK.seed, PK.root). 
Output: Boolean. 

1: if |SIG|= (1 + k(1 + a)+ h + d · len) · n then 
2: return false 
3: end if 
4: ADRS ← toByte(0,32) 
5: R ← SIG.getR() ▷ SIG[0 : n] 
6: SIGFORS ← SIG.getSIG_FORS() ▷ SIG[n : (1+ k(1 + a)) · n] 
7: SIGHT ← SIG.getSIG_HT() ▷ SIG[(1 + k(1 + a)) · n : (1+ k(1 + a)+ h + d · len) · n] 
8: 
9: digest ← Hmsg(R,PK.seed,PK.root� �  � ,M) ▷ Compute message digest  �  

10: md ← digest 0 : k·a k·a▷ 8 frst bytesh� l mi  l 8 m
tmp_idx  digest k·  �  a : k·a h h−h −h/d  next /d11: tree ← + ▷8 8 8 bytesh�  l m �  l m i 8

  
tmp_idx digest k·a h−h/d : k·a h−h/d �  �  h 

lea f ← h12:  + + + ▷ 8 8 8 8 8d next 8d bytes
13: � l m� 

x −h/d14: id h h−h/d 
tree ← toInt tmp_idxtree, 8 mod 2� �  �

15: idxlea f ← toInt tmp_idx h
lea f , mod 2h/d 

8d 
16: 
17: ADRS.setTreeAddress(idxtree) ▷ Compute FORS public key 
18: ADRS.setTypeAndClear(FORS_TREE) 
19: ADRS.setKeyPairAddress(idxlea f ) 
20: 
21: PKFORS ← fors_pkFromSig(SIGFORS,md,PK.seed,ADRS) 
22: 
23: return ht_verify(PKFORS,SIGHT ,PK.seed, idxtree, idxlea f ,PK.root) 

̸

9.4 Prehash SLH-DSA 
For some cryptographic modules that generate SLH-DSA signatures, performing lines 7 and 10 
of Algorithm 18 may be infeasible if the message M is large. This may, for example, be the result 
of the module having limited memory to store the message to be signed. Similarly, for some 
cryptographic modules that verify SLH-DSA signatures, performing step 9 of Algorithm 19 may 
be infeasible if the message M is large. For some use cases, these issues may be addressed by 
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signing a digest of the message rather than signing the message directly. In order to maintain the 
same level of security strength, the digest that is signed needs to be generated using an approved 
hash function or extendable-output function (XOF) (e.g., from FIPS 180-4 [12] or FIPS 202 [10]) 
that provides at least 8n bits of classical security strength against both collision and second 
preimage attacks [10, Table 4].14 

14Obtaining at least 8n bits of classical security strength against collision attacks requires that the digest to be signed 
is at least 2n bytes in length. 

Note that verifcation of a signature created in this way will 
require the verify function to generate a digest from the message in the same way for input to the 
verifcation function. 

It should be noted that even if it is feasible to compute collisions on the hash functions (or XOF) 
used to instantiate Hmsg, PRF, PRFmsg, F, H, and Tl , there is believed to be no adverse effect 
on the security of SLH-DSA.15 

15As noted in Section 10, applications that require message-bound signatures may be adversely affected if it is 
feasible to compute collisions on . Hmsg

However, if the input to the signing function is a digest of the 
message, then collisions on the function used to compute the digest can result in forged messages. 
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10. Parameter Sets 

This standard approves 12 parameter sets for use with SLH-DSA. A parameter set consists of 
parameters for WOTS+ (n and lgw), XMSS and the SLH-DSA hypertree (h and d), and FORS (k 
and a), as well as instantiations for the functions Hmsg, PRF, PRFmsg, F, H, and Tl . 

Table 1 lists the parameter sets that are approved for use. Each parameter set name indicates the 
hash function family (SHA2 or SHAKE) that is used to instantiate the hash functions, the length 
in bits of the security parameter n, and whether the parameter set was designed to create relatively 
small signatures (‘s’) or to have relatively fast signature generation (‘f’). There are six sets of 
values for n, lgw, h, d, k, and a that are approved for use.16 

16In addition to n, lgw, h, d, k, and a, Table 1 also lists values for parameters that may be computed from these values 
(h′ , m, public-key size, and signature size). The security level is the security category in which the parameter set is 
claimed to be [4]. 

For each of the six sets of values, 
the functions Hmsg, PRF, PRFmsg, F, H, and Tl may be instantiated using either SHAKE [10] 
or SHA-2 [12]. For the SHAKE parameter sets, the functions shall be instantiated as specifed 
in Section 10.1. For the SHA2 parameter sets, the functions shall be instantiated as specifed in 
Section 10.2 if n = 16 and shall be instantiated as specifed in Section 10.3 if n = 24 or n = 32. 

Table 1. SLH-DSA parameter sets 

sec pk sig 
n h d h′ a k lgw m level bytes bytes 

SLH-DSA-SHA2-128s 
SLH-DSA-SHAKE-128s 

16 63 7 9 12 14 4 30 1 32 7 856 

SLH-DSA-SHA2-128f 
SLH-DSA-SHAKE-128f 

16 66 22 3 6 33 4 34 1 32 17 088 

SLH-DSA-SHA2-192s 
SLH-DSA-SHAKE-192s 

24 63 7 9 14 17 4 39 3 48 16 224 

SLH-DSA-SHA2-192f 
SLH-DSA-SHAKE-192f 

24 66 22 3 8 33 4 42 3 48 35 664 

SLH-DSA-SHA2-256s 
SLH-DSA-SHAKE-256s 

32 64 8 8 14 22 4 47 5 64 29 792 

SLH-DSA-SHA2-256f 
SLH-DSA-SHAKE-256f 

32 68 17 4 9 35 4 49 5 64 49 856 

In Sections 10.2 and 10.3, the functions MGF1-SHA-256 and MGF1-SHA-512 are MGF from 
Section 7.2.2.2 of NIST SP 800-56B Revision 2 [9], where hash is SHA-256 or SHA-512, 
respectively. The functions HMAC-SHA-256 and HMAC-SHA-512 are the HMAC function 
from FIPS 198-1 [20], where H is SHA-256 or SHA-512, respectively. 

The 12 parameter sets included in Table 1 were designed to meet certain security strength 
categories defned by NIST in its original Call for Proposals [21] with respect to existential 
unforgeability under chosen message attack (EUF-CMA) when each key pair is used to sign at 
most 264 messages.17 

17If a key pair were used to sign 10 billion (1010) messages per second it would take over 58 years to sign 264 

messages. 

These security strength categories are explained further in Appendix A. 
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Using this approach, security strength is not described by a single number, such as “128 bits of 
security.” Instead, each parameter set is claimed to be at least as secure as a generic block cipher 
with a prescribed key size. More precisely, it is claimed that the computational resources needed 
to break SLH-DSA are greater than or equal to the computational resources needed to break 
the block cipher when these computational resources are estimated using any realistic model of 
computation. Different models of computation can be more or less realistic and, accordingly, 
lead to more or less accurate estimates of security strength. Some commonly studied models are 
discussed in [22]. 

Concretely, the parameter sets with n = 16 are claimed to be in security category 1, the parameter 
sets with n = 24 are claimed to be in security category 3, and the parameter sets with n = 32 
are claimed to be in security category 5 [4]. For additional discussion of the security strength of 
SLH-DSA, see [4, 23]. 

Some applications require a property known as message-bound signatures [24, 25], which 
intuitively requires that it be infeasible for anyone to create a public key and a signature that 
are valid for two different messages. Signature schemes are not required to have this property 
under the EUF-CMA security defnition used in assigning security categories. In the case of 
SLH-DSA, the key pair owner could create two messages with the same signature by fnding 
a collision on Hmsg. Due to the length of the output of Hmsg, fnding such a collision would be 
expected to require fewer computational resources than specifed for the parameter sets’ claimed 
security levels in all cases except SLH-DSA-SHA2-128f and SLH-DSA-SHAKE-128f. Therefore, 
applications that require message-bound signatures should either take the expected cost of fnding 
collisions on Hmsg into account when choosing an appropriate parameter set or apply a technique, 
such as the BUFF transformation [25], in order to obtain the message-bound signatures property. 

10.1 SLH-DSA Using SHAKE 
Hmsg(R,PK.seed,PK.root,M) = SHAKE256(R ∥ PK.seed ∥ PK.root ∥ M,8m) 
PRF(PK.seed,SK.seed,ADRS) = SHAKE256(PK.seed ∥ ADRS ∥ SK.seed,8n) 
PRFmsg(SK.prf,opt_rand,M) = SHAKE256(SK.prf ∥ opt_rand ∥ M,8n) 
F(PK.seed,ADRS,M1) = SHAKE256(PK.seed ∥ ADRS ∥ M1,8n) 
H(PK.seed,ADRS,M2) = SHAKE256(PK.seed ∥ ADRS ∥ M2,8n) 
Tℓ(PK.seed,ADRS,Mℓ) = SHAKE256(PK.seed ∥ ADRS ∥ Mℓ,8n) 

10.2 SLH-DSA Using SHA2 for Security Category 1 
Hmsg(R,PK.seed,PK.root,M)= MGF1-SHA-256(R ∥ PK.seed ∥ SHA-256(R ∥ PK.seed ∥ PK.root ∥ 
M),m) 
PRF(PK.seed c ,SK.seed,ADRS) = Truncn(SHA-256(PK.seed ∥ toByte(0,64 − n) ∥ ADRS ∥ 
SK.seed)) 
PRFmsg(SK.prf,opt_rand,M) = Truncn(HMAC-SHA-256(SK.prf,opt_rand ∥ M)) 
F(PK.seed,ADRS,M1) = Truncn(SHA-256(PK.seed ∥ toByte(0,64 c − n) ∥ ADRS ∥ M1)) 
H(PK.seed,ADRS,M2) = Truncn(SHA-256(PK.seed ∥ toByte(0 c,64 − n) ∥ ADRS  ∥ M2)) 
Tℓ(PK.seed,ADRS,Mℓ) = c Truncn(SHA-256(PK.seed ∥ toByte(0,64 − n) ∥ ADRS ∥ Mℓ)) 
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10.3 SLH-DSA Using SHA2 for Security Categories 3 and 5 
Hmsg(R,PK.seed,PK.root,M)= MGF1-SHA-512(R ∥ PK.seed ∥ SHA-512(R ∥ PK.seed ∥ PK.root ∥ 
M),m) 
PRF(PK.seed c ,SK.seed,ADRS) = Truncn(SHA-256(PK.seed ∥ toByte(0,64 − n) ∥ ADRS ∥ 
SK.seed)) 
PRFmsg(SK.prf,opt_rand,M) = Truncn(HMAC-SHA-512(SK.prf,opt_rand ∥ M)) 
F(PK.seed,ADRS,M1) = Truncn(SHA-256(PK.seed ∥ toByte(0,64 c − n) ∥ ADRS ∥ M1)) 
H(PK.seed,ADRS,M2) = Truncn(SHA-512(PK.seed ∥ toByte(0 c,128 − n) ∥ ADRS  ∥ M2)) 
Tℓ(PK.seed,ADRS,Mℓ) = c Truncn(SHA-512(PK.seed ∥ toByte(0,128− n) ∥ ADRS ∥ Mℓ)) 
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Appendix A — Security Strength Categories 

NIST understands that there are signifcant uncertainties in estimating the security strengths of 
post-quantum cryptosystems. These uncertainties come from two sources: frst, the possibility 
that new quantum algorithms will be discovered, leading to new cryptanalytic attacks; and second, 
our limited ability to predict the performance characteristics of future quantum computers, such 
as their cost, speed, and memory size. 

In order to address these uncertainties, NIST proposed the following approach in its original Call 
for Proposals [21]. Instead of defning the strength of an algorithm using precise estimates of 
the number of “bits of security,” NIST defned a collection of broad security strength categories. 
Each category is defned by a comparatively easy-to-analyze reference primitive whose security 
will serve as a foor for a wide variety of metrics that NIST deems potentially relevant to practical 
security. A given cryptosystem may be instantiated using different parameter sets in order to ft 
into different categories. The goals of this classifcation are: 

• To facilitate meaningful performance comparisons between various post-quantum algo-
rithms by ensuring — insofar as possible — that the parameter sets being compared provide 
comparable security 

• To allow NIST to make prudent future decisions regarding when to transition to longer keys 

• To help submitters make consistent and sensible choices regarding what symmetric prim-
itives to use in padding mechanisms or other components of their schemes that require 
symmetric cryptography 

• To better understand the security/performance trade-offs involved in a given design approach 

In accordance with the second and third goals above, NIST based its classifcation on the range 
of security strengths offered by the existing NIST standards in symmetric cryptography, which 
NIST expects to offer signifcant resistance to quantum cryptanalysis. In particular, NIST defned 
a separate category for each of the following security requirements (listed in order of increasing 
strength): 

1. Any attack that breaks the relevant security defnition must require computational resources 
comparable to or greater than those required for key search on a block cipher with a 128-bit 
key (e.g., AES-128). 

2. Any attack that breaks the relevant security defnition must require computational resources 
comparable to or greater than those required for collision search on a 256-bit hash function 
(e.g., SHA-256/ SHA3-256). 

3. Any attack that breaks the relevant security defnition must require computational resources 
comparable to or greater than those required for key search on a block cipher with a 192-bit 
key (e.g., AES-192). 

4. Any attack that breaks the relevant security defnition must require computational resources 
comparable to or greater than those required for collision search on a 384-bit hash function 
(e.g., SHA-384/ SHA3-384). 

5. Any attack that breaks the relevant security defnition must require computational resources 

44 



FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD 

1173 

1174 

1175 

1176 

1177 

1178 

1179 

1180 

1181 

1182 

1183 

1184 

1185 

1186 

1187 

1188 

1189 

1190 

1191 

1192 

1193 

1194 

1195 

1196 

1197 

1198 

1199 

1200 

comparable to or greater than those required for key search on a block cipher with a 256-bit 
key (e.g., AES-256). 

Table 2. NIST Security Strength Categories 

Security Category Corresponding Attack Type Example 

1 Key search on block cipher with 128-bit key AES-128 

2 Collision search on 256-bit hash function SHA3-256 

3 Key search on block cipher with 192-bit key AES-192 

4 Collision search on 384-bit hash function SHA3-384 

5 Key search on block cipher with 256-bit key AES-256 

Here, computational resources may be measured using a variety of different metrics (e.g., number 
of classical elementary operations, quantum circuit size). In order for a cryptosystem to satisfy one 
of the above security requirements, any attack must require computational resources comparable 
to or greater than the stated threshold with respect to all metrics that NIST deems to be potentially 
relevant to practical security. 

NIST intends to consider a variety of possible metrics, refecting different predictions about the 
future development of quantum and classical computing technology, and the cost of different 
computing resources (such as the cost of accessing extremely large amounts of memory).18 

18See the discussion in [22, Appendix B]. 

NIST 
will also consider input from the cryptographic community regarding this question. 

In an example metric provided to submitters, NIST suggested an approach where quantum attacks 
are restricted to a fxed running time or circuit depth. Call this parameter MAXDEPTH. This 
restriction is motivated by the diffculty of running extremely long serial computations. Plausible 
values for MAXDEPTH range from 240 logical gates (the approximate number of gates that 
presently envisioned quantum computing architectures are expected to serially perform in a year) 
through 264 logical gates (the approximate number of gates that current classical computing 
architectures can perform serially in a decade), to no more than 296 logical gates (the approximate 
number of gates that atomic scale qubits with speed of light propagation times could perform in a 
millennium). The most basic version of this cost metric ignores costs associated with physically 
moving bits or qubits so they are physically close enough to perform gate operations. This 
simplifcation may result in an underestimate of the cost of implementing memory-intensive 
computations on real hardware. 

The complexity of quantum attacks can then be measured in terms of circuit size. These numbers 
can be compared to the resources required to break AES and SHA-3. During the post-quantum 
standardization process, NIST gave the estimates in Table 3 for the classical and quantum gate 
counts19 

19Quantum circuit sizes are based on the work in [26]. 

for the optimal key recovery and collision attacks on AES and SHA-3, respectively, 
where circuit depth is limited to MAXDEPTH.20 

20NIST believes the above estimates are accurate for the majority of values of MAXDEPTH that are relevant to its 
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Table 3. Estimates for classical and quantum gate counts for the optimal key recovery and 
collision attacks on AES and SHA-3 

AES-128 2157/MAXDEPTH quantum gates or 2143 classical gates 

SHA3-256 2146 classical gates 

AES-192 2221/MAXDEPTH quantum gates or 2207 classical gates 

SHA3-384 2210 classical gates 

AES-256 2285/MAXDEPTH quantum gates or 2272 classical gates 

SHA3-512 2274 classical gates 

1201 
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1209 

1210 

1211 

1212 

1213 

It is worth noting that the security categories based on these reference primitives provide substan-
tially more quantum security than a naïve analysis might suggest. For example, categories 1, 3, 
and 5 are defned in terms of block ciphers, which can be broken using Grover’s algorithm [27] 
with a quadratic quantum speedup. However, Grover’s algorithm requires a long-running serial 
computation, which is diffcult to implement in practice. In a realistic attack, one has to run many 
smaller instances of the algorithm in parallel, which makes the quantum speedup less dramatic. 

Finally, for attacks that use a combination of classical and quantum computation, one may 
use a cost metric that rates logical quantum gates as being several orders of magnitude more 
expensive than classical gates. Presently envisioned quantum computing architectures typically 
indicate that the cost per quantum gate could be billions or trillions of times the cost per classical 
gate. However, especially when considering algorithms claiming a high security strength (e.g., 
equivalent to AES-256 or SHA-384), it is likely prudent to consider the possibility that this 
disparity will narrow signifcantly or even be eliminated. 

security analysis, but the above estimates may understate the security of SHA for very small values of MAXDEPTH 
and may understate the quantum security of AES for very large values of MAXDEPTH. 
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Appendix B — Implementation Considerations 

This appendix discusses some implementation considerations for SLH-DSA. 

Don’t support component use. As WOTS+, XMSS, FORS, and hypertree signature schemes 
are not approved for use as standalone signature schemes, cryptographic modules should not 
make interfaces to these components available to applications. NIST SP 800-208 [14] specifes 
approved stateful hash-based signature schemes. 

Side-channel and fault attacks. For signature schemes, secrecy of the private key is critical. 
Care must be taken to protect implementations against attacks, such as side-channel attacks or 
fault attacks [28, 29, 30, 31, 32]. A cryptographic device may leak critical information with 
side-channel analysis or attacks that allow internal data or keying material to be extracted without 
breaking the cryptographic primitives. 

Floating-point arithmetic. Implementations of SLH-DSA should not use foating-point arith-
metic, as rounding errors in foating point operations may lead to incorrect results in some cases. 
In all pseudocode in this standard in which division is performed (e.g., x/y), and y may not divide 
x, either ⌊x/y⌋ or ⌈x/y⌉ is used. Both of these may be computed without foating-point arithmetic 
as ordinary integer division x/y computes ⌊x/y⌋, and ⌈x/y⌉ = ⌊(x + y − 1)/y⌋. 

While the value of len2 (see Equation 5.3) may be computed without using foating-point arith-
metic (see Algorithm 20), it is recommended that this value be precomputed. When lgw = 4 and 
9 ≤ n ≤ 136, the value of len2 will be 3. 

Algorithm 20 gen_len2(n, lgw) 

Compute len2 (Equation 5.3). 

Input: Security parameter n, bits per hash chain lgw. 
Output: len2. 

lg1: w ← 2 jw k ▷  Equation 5.1
len  8·n+lgw−12: 1 ← ▷ lg Equation 5.2

w 

3: max_checksum = len1 · (w − 1) ▷ Maximum checksum value that may need to be signed 
4: 
5: len2 ← 1 ▷ Maximum value that may be signed using 

len6: capacity ← w ▷ len 2 2 hash chains is w − 1 = capacity − 1 
7: while capacity ≤ max_checksum do 
8: len2 ← len2 + 1 
9: capacity ← capacity · w 

10: end while 
11: return len2 
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