

Withdrawn Draft

Warning Notice

The attached draft document has been withdrawn and is provided solely for historical purposes.
It has been followed by the document identified below.

Withdrawal Date August 13, 2024

Original Release Date August 24, 2023

The attached draft document is followed by:

Status Final

Series/Number NIST FIPS 205

Title Stateless Hash-Based Digital Signature Standard

Publication Date August 13, 2024

DOI https://doi.org/10.6028/NIST.FIPS.205

CSRC URL https://csrc.nist.gov/pubs/fips/205/final

Additional Information https://csrc.nist.gov/projects/post-quantum-cryptography/post-
quantum-cryptography-standardization

https://doi.org/10.6028/NIST.FIPS.205
https://csrc.nist.gov/pubs/fips/205/final
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

FIPS 205 (Draft)

Federal Information Processing Standards Publication

Stateless Hash-Based Digital Signature
Standard

Category: Computer Security Subcategory: Cryptography

Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8900

This publication is available free of charge from:
https://doi.org/10.6028/NIST.FIPS.205.ipd

Published: August 24, 2023

U.S. Department of Commerce
Gina M. Raimondo, Secretary

National Institute of Standards and Technology

Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology

https://doi.org/10.6028/NIST.FIPS.205.ipd
https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.FIPS.205.ipd

18

19

20

21

22

23

24

25

Foreword

The Federal Information Processing Standards Publication (FIPS) series of the National Institute of
Standards and Technology (NIST) is the offcial series of publications relating to standards and guidelines
developed under 15 U.S.C. 278g-3, and issued by the Secretary of Commerce under 40 U.S.C. 11331.

Comments concerning this Federal Information Processing Standard publication are welcomed and should
be submitted using the contact information in the “Inquiries and comments” clause of the announcement
section.

James A. St. Pierre, Acting Director
Information Technology Laboratory

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

26 Abstract
27

28

29

30

31

32

33

34

35

This standard specifes the stateless hash-based digital signature algorithm (SLH-DSA). Digital
signatures are used to detect unauthorized modifcations to data and to authenticate the identity of
the signatory. In addition, the recipient of signed data can use a digital signature as evidence in
demonstrating to a third party that the signature was, in fact, generated by the claimed signatory.
This is known as non-repudiation since the signatory cannot easily repudiate the signature at a
later time. SLH-DSA is based on SPHINCS+, which was selected for standardization as part of
the NIST Post-Quantum Cryptography Standardization process.

Keywords: computer security; cryptography; digital signatures; Federal Information Processing
Standards; hash-based signatures; public-key cryptography

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

F
I
o

1

2

3

4

5

6

Federal Information Processing Standards Publication 205

Published: August 24, 2023

Announcing the

Stateless Hash-Based Digital Signature Standard

ederal Information Processing Standards Publications (FIPS) are developed by the National
nstitute of Standards and Technology (NIST) under 15 U.S.C. 278g-3 and issued by the Secretary
f Commerce under 40 U.S.C. 11331.

. Name of Standard. Stateless Hash-Based Digital Signature Standard (FIPS 205).

. Category of Standard. Computer Security. Subcategory. Cryptography.

. Explanation. This standard specifes a stateless hash-based digital signature scheme, SLH-
DSA, for applications that require a digital signature rather than a written signature. (Addi-
tional digital signature schemes are specifed and approved in other NIST Special Publications
and FIPS publications, e.g., FIPS 186-5 [1].) A digital signature is represented in a computer
as a string of bits and computed using a set of rules and parameters that allow the identity of
the signatory and the integrity of the data to be verifed. Digital signatures may be generated
on both stored and transmitted data.

Signature generation uses a private key to generate a digital signature. Signature verifcation
uses a public key that corresponds to but is not the same as the private key. Each signatory
possesses a private and public key pair. Public keys may be known by the public, but private
keys must be kept secret. Anyone can verify the signature by employing the signatory’s public
key. Only the user who possesses the private key can perform signature generation.

The digital signature is provided to the intended verifer along with the signed data. The
verifying entity verifes the signature by using the claimed signatory’s public key. Similar
procedures may be used to generate and verify signatures for both stored and transmitted data.

This standard specifes several parameter sets for SLH-DSA that are approved for use.
Additional parameter sets may be specifed and approved in future NIST Special Publications.

. Approving Authority. Secretary of Commerce.

. Maintenance Agency. Department of Commerce, National Institute of Standards and Tech-
nology, Information Technology Laboratory (ITL).

. Applicability. This standard is applicable to all federal departments and agencies for the
protection of sensitive unclassifed information that is not subject to section 2315 of Title 10,
United States Code, or section 3502 (2) of Title 44, United States Code. Either this standard,
FIPS 204, FIPS 186-5, or NIST Special Publication 800-208 shall be used in designing
and implementing public-key-based signature systems that federal departments and agencies
operate or that are operated for them under contract. In the future, additional digital signature
schemes may be specifed and approved in FIPS publications or in NIST Special Publications.

The adoption and use of this standard are available to private and commercial organizations.

i

75

80

85

90

95

100

105

110

73

74

76

77

78

79

81

82

83

84

86

87

88

89

91

92

93

94

96

97

98

99

101

102

103

104

106

107

108

109

111

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

7. Applications. A digital signature algorithm allows an entity to authenticate the integrity of
signed data and the identity of the signatory. The recipient of a signed message can use a
digital signature as evidence in demonstrating to a third party that the signature was, in fact,
generated by the claimed signatory. This is known as non-repudiation since the signatory
cannot easily repudiate the signature at a later time. A digital signature algorithm is intended
for use in electronic mail, electronic funds transfer, electronic data interchange, software
distribution, data storage, and other applications that require data integrity assurance and data
origin authentication.

8. Implementations. A digital signature algorithm may be implemented in software, frmware,
hardware, or any combination thereof. NIST will develop a validation program to test
implementations for conformance to the algorithms in this standard. For every computational
procedure that is specifed in this standard, a conforming implementation may replace the
given set of steps with any mathematically equivalent set of steps. In other words, different
procedures that produce the correct output for every input are permitted. Information about
validation programs is available at https://csrc.nist.gov/projects/cmvp. Examples for digital
signature algorithms are available at https://csrc.nist.gov/projects/cryptographic-standards-
and-guidelines/example-values.

Agencies are advised that digital signature key pairs shall not be used for other purposes.

9. Other Approved Security Functions. Digital signature implementations that comply with
this standard shall employ cryptographic algorithms that have been approved for protect-
ing Federal Government-sensitive information. Approved cryptographic algorithms and
techniques include those that are either:

a. Specifed in a Federal Information Processing Standard (FIPS),

b. Adopted in a FIPS or NIST recommendation, or

c. Specifed in the list of approved security functions for FIPS 140-3.

10. Export Control. Certain cryptographic devices and technical data regarding them are subject
to federal export controls. Exports of cryptographic modules that implement this standard
and technical data regarding them must comply with these federal regulations and be licensed
by the Bureau of Industry and Security of the U.S. Department of Commerce. Information
about export regulations is available at https://www.bis.doc.gov.

11. Patents. The algorithm in this standard may be covered by U.S. or foreign patents.

12. Implementation Schedule. This standard becomes effective immediately upon fnal publica
tion.

13. Specifcations. Federal Information Processing Standard (FIPS) 205, Stateless Hash-Based
Digital Signature Standard (affxed).

14. Qualifcations. The security of a digital signature system is dependent on the secrecy of the
signatory’s private keys. Signatories shall, therefore, guard against the disclosure of their
private keys. While it is the intent of this standard to specify general security requirements for
generating digital signatures, conformance to this standard does not ensure that a particular

-

ii

https://csrc.nist.gov/projects/cmvp
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/example-values
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/example-values
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/example-values
https://www.bis.doc.gov

115

120

125

130

135

112

113

114

116

117

118

119

121

122

123

124

126

127

128

129

131

132

133

134

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

implementation is secure. It is the responsibility of an implementer to ensure that any module
that implements a digital signature capability is designed and built in a secure manner.

Similarly, the use of a product containing an implementation that conforms to this standard
does not guarantee the security of the overall system in which the product is used. The
responsible authority in each agency or department shall ensure that an overall implementation
provides an acceptable level of security.

Since a standard of this nature must be fexible enough to adapt to advancements and innova-
tions in science and technology, this standard will be reviewed every fve years in order to
assess its adequacy.

15. Waiver Procedure. The Federal Information Security Management Act (FISMA) does
not allow for waivers to Federal Information Processing Standards (FIPS) that are made
mandatory by the Secretary of Commerce.

16. Where to Obtain Copies of the Standard. This publication is available by accessing
https://csrc.nist.gov/publications. Other computer security publications are available at the
same website.

17. How to Cite this Publication. NIST has assigned NIST FIPS 205 ipd as the publication
identifer for this FIPS, per the NIST Technical Series Publication Identifer Syntax. NIST
recommends that it be cited as follows:

National Institute of Standards and Technology (2023) Stateless Hash-Based Dig-
ital Signature Standard. (Department of Commerce, Washington, D.C.), Fed-
eral Information Processing Standards Publication (FIPS) NIST FIPS 205 ipd.
https://doi.org/10.6028/NIST.FIPS.205.ipd

18. Inquiries and Comments. Inquiries and comments about this FIPS may be submitted to
fps-205-comments@nist.gov.

iii

https://csrc.nist.gov/publications
https://www.nist.gov/document/publication-identifier-syntax-nist-technical-series-publications
https://doi.org/10.6028/NIST.FIPS.205.ipd
mailto:fips-205-comments@nist.gov

140

145

150

155

160

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

136 Call for Patent Claims

137 This public review includes a call for information on essential patent claims (claims whose
138 use would be required for compliance with the guidance or requirements in this Information
139 Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may be

directly stated in this ITL Publication or by reference to another publication. This call also
141 includes disclosure, where known, of the existence of pending U.S. or foreign patent applications
142 relating to this ITL draft publication and of any relevant unexpired U.S. or foreign patents.

143 ITL may require from the patent holder, or a party authorized to make assurances on its behalf, in
144 written or electronic form, either:

a) assurance in the form of a general disclaimer to the effect that such party does not hold and
146 does not currently intend holding any essential patent claim(s); or

147 b) assurance that a license to such essential patent claim(s) will be made available to appli-
148 cants desiring to utilize the license for the purpose of complying with the guidance or
149 requirements in this ITL draft publication either:

(i) under reasonable terms and conditions that are demonstrably free of any unfair
151 discrimination; or

152 (ii) without compensation and under reasonable terms and conditions that are demonstra-
153 bly free of any unfair discrimination.

154 Such assurance shall indicate that the patent holder (or third party authorized to make assurances
on its behalf) will include in any documents transferring ownership of patents subject to the

156 assurance, provisions suffcient to ensure that the commitments in the assurance are binding on
157 the transferee, and that the transferee will similarly include appropriate provisions in the event of
158 future transfers with the goal of binding each successor-in-interest.

159 The assurance shall also indicate that it is intended to be binding on successors-in-interest
regardless of whether such provisions are included in the relevant transfer documents.

161 Such statements should be addressed to: fps-205-comments@nist.gov

iv

mailto:fips-205-comments@nist.gov

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

16

16

16

16

16

16

16

16

17

17

17

17

17

17

17

17

17

17

18

18

18

18

18

18

18

18

18

18

2 Federal Information Processing Standards Publication 205

3 Specifcation for the
Stateless Hash-Based Digital Signature Standard 4

5 Table of Contents

6 1 Introduction 1

7 1.1 Purpose and Scope . 1

8 1.2 Context . 1

9 1.3 Differences From the SPHINCS+ Submission 1

0 2 Glossary of Acronyms, Terms, and Mathematical Symbols 3

1 2.1 Acronyms . 3

2 2.2 Terms and Defnitions . 3

3 2.3 Mathematical Symbols . 6

4 3 Overview of the SLH-DSA Signature Scheme 8

5 3.1 Additional Requirements . 10

6 4 Functions and Addressing 11

7 4.1 Hash Functions and Pseudorandom Functions 11

8 4.2 Addresses . 11

9 4.3 Member Functions . 14

0 4.4 Arrays, Byte Strings, and Integers . 14

1 5 One-Time Signatures 16

2 5.1 WOTS+ Public-Key Generation . 17

3 5.2 WOTS+ Signature Generation . 18

4 5.3 Computing a WOTS+ Public Key From a Signature 19

5 6 The eXtended Merkle Signature Scheme (XMSS) 21

6 6.1 Generating a Merkle Hash Tree . 21

7 6.2 Generating an XMSS Signature . 22

8 6.3 Computing an XMSS Public Key From a Signature 24

9 7 The SLH-DSA Hypertree 26

v

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

 7.1 Hypertree Signature Generation . 26

 7.2 Hypertree Signature Verifcation . 28

 8 Forest of Random Subsets (FORS) 29

 8.1 Generating FORS Secret Values . 29

 8.2 Generating a Merkle Hash Tree . 29

 8.3 Generating a FORS Signature . 30

 8.4 Computing a FORS Public Key From a Signature 31

 9 SLH-DSA 33

 9.1 SLH-DSA Key Generation . 33

 9.2 SLH-DSA Signature Generation . 34

 9.3 SLH-DSA Signature Verifcation . 36

 9.4 Prehash SLH-DSA . 36

 10 Parameter Sets 38

 10.1 SLH-DSA Using SHAKE . 39

 10.2 SLH-DSA Using SHA2 for Security Category 1 39

 10.3 SLH-DSA Using SHA2 for Security Categories 3 and 5 40

 References 41

 Appendix A — Security Strength Categories 44

 Appendix B — Implementation Considerations 47

vi

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

List of Tables

Table 1 SLH-DSA parameter sets . 38
Table 2 NIST Security Strength Categories . 45
Table 3 Estimates for classical and quantum gate counts for the optimal key recovery

and collision attacks on AES and SHA-3 . 46

List of Figures

Figure 1 An SLH-DSA signature . 9
Figure 2 WOTS+ hash address . 12
Figure 3 WOTS+ public key compression address 12
Figure 4 Hash tree address . 12
Figure 5 FORS tree address . 13
Figure 6 FORS tree roots compression address 13
Figure 7 WOTS+ key generation address . 13
Figure 8 FORS key generation address . 13
Figure 9 WOTS+ signature data format . 18
Figure 10 XMSS signature data format . 21
Figure 11 Merkle Hash Tree . 23
Figure 12 HT signature data format . 26
Figure 13 FORS signature data format . 29
Figure 14 SLH-DSA private key . 33
Figure 15 SLH-DSA public key . 33
Figure 16 SLH-DSA signature data format . 34

Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Algorithm 5
Algorithm 6
Algorithm 7
Algorithm 8
Algorithm 9
Algorithm 10
Algorithm 11
Algorithm 12
Algorithm 13
Algorithm 14
Algorithm 15
Algorithm 16

List of Algorithms
toInt(X ,n) . 14
toByte(x,n) . 15
base_2b(X , b, out_len) . 15
chain(X , i, s, PK.seed, ADRS) . 17
wots_PKgen(SK.seed, PK.seed, ADRS) 18
wots_sign(M, SK.seed, PK.seed, ADRS) 19
wots_PKFromSig(sig, M, PK.seed, ADRS) 20
xmss_node(SK.seed, i, z, PK.seed, ADRS) 22
xmss_sign(M, SK.seed, idx, PK.seed, ADRS) 23
xmss_PKFromSig(idx, SIGXMSS, M, PK.seed, ADRS) 25
ht_sign(M, SK.seed, PK.seed, idxtree, idxlea f) 27
ht_verify(M, SIGHT , PK.seed, idxtree, idxlea f , PK.root) 28
fors_SKgen(SK.seed, PK.seed, ADRS, idx) 29
fors_node(SK.seed, i, z, PK.seed, ADRS) 30
fors_sign(md, SK.seed, PK.seed, ADRS) 31
fors_pkFromSig(SIGFORS, md, PK.seed, ADRS) 32

vii

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

248

249

250

251

Algorithm 17 slh_keygen() . 34
Algorithm 18 slh_sign(M, SK) . 35
Algorithm 19 slh_verify(M, SIG, PK) . 36
Algorithm 20 gen_len2(n, lgw) . 47

viii

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

1. Introduction

1.1 Purpose and Scope
This standard defnes a method for digital signature generation that can be used for the protection
of binary data (commonly called a message) and for the verifcation and validation of those
digital signatures. (NIST SP 800-175B [2], Guideline for Using Cryptographic Standards in
the Federal Government: Cryptographic Mechanisms, includes a general discussion of digital
signatures.) The security of SLH-DSA relies on the presumed diffculty of fnding preimages
for hash functions as well as several related properties of the same hash functions. Unlike the
algorithms specifed in FIPS 186-5 [1], SLH-DSA is expected to provide resistance to attacks
from a large-scale quantum computer.

his standard specifes the mathematical steps that need to be performed for key generation,
signature generation, and signature verifcation. In order for digital signatures to be valid, addi-
tional assurances are required, such as assurance of identity and of private key possession. NIST
SP 800-89, Recommendation for Obtaining Assurances for Digital Signature Applications [3],
specifes the required assurances and methods for obtaining these assurances.

T

1.2 Context
Over the past several years, there has been steady progress toward building quantum computers.
The security of many commonly used public-key cryptosystems will be at risk if large-scale
quantum computers are ever realized. In particular, this would include key-establishment schemes
and digital signatures that are based on integer factorization and discrete logarithms (both over
fnite felds and elliptic curves). As a result, in 2016, the National Institute of Standards and
Technology (NIST) initiated a public process to select quantum-resistant public-key cryptographic
algorithms for standardization. A total of 82 candidate algorithms were submitted to NIST for
consideration for standardization.

After three rounds of evaluation and analysis, NIST selected the frst four algorithms to standardize
as a result of the Post-Quantum Cryptography (PQC) Standardization process. These algorithms
are intended to protect sensitive U.S. Government information well into the foreseeable future,
including after the advent of quantum computers. This standard includes the specifcation for
one of the algorithms selected: SPHINCS+ , a stateless hashed-based digital signature scheme.
Throughout this standard, SPHINCS+ will be referred to as SLH-DSA for stateless hash-based
digital signature algorithm.

1.3 Differences From the SPHINCS+ Submission
This standard is based on version 3.1 of the SPHINCS+ specifcation [4], and contains several
minor modifcations compared to version 3 [5], which was submitted at the beginning of round
three of the NIST PQC Standardization process:

• Two new address types were defned, WOTS_PRF and FORS_PRF, which are used for WOTS+

and FORS secret key value generation.

• PK.seed was added as an input to PRF in order to mitigate multi-key attacks.

1

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

• For the category 3 and 5 parameter sets that use SHA-2, SHA-256 was replaced with
SHA-512 in Hmsg, PRFmsg, H, and Tl based on weaknesses that were discovered when
using SHA-256 to obtain category 5 security [6, 7, 8].

• R and PK.seed were added as inputs to MGF1 when computing Hmsg for the SHA-2
parameter sets in order to mitigate against multi-target long-message second preimage
attacks.

In addition to the changes that appear in version 3.1 of the SPHINCS+ specifcation, this standard
differs from the version 3 specifcation in its method for extracting bits from the message digest
for selecting a forest of random subsets (FORS) key. This change was made in order to align with
the reference implementation that was submitted along with the round three specifcation. The
description of the method for extracting indices for FORS signature generation and verifcation
from the message digest was also changed due to ambiguity in the submitted specifcation.
The method described in this standard is not compatible with the method used in the reference
implementation that was submitted along with the round three specifcation. Also, step 9 in both
wots_sign and wots_PKFromSig were changed the match the reference implementation, as the
pseudocode in [4, 5] will sometimes shift csum by the incorrect amount when lgw is not 4.

This standard approves the use of only 12 of the 36 parameter sets defned in [4, 5]. As specifed
in Section 10, only the ‘simple’ instances in which the cryptographic functions are instantiated
with SHA-2 or SHAKE are approved.

2

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

2. Glossary of Acronyms, Terms, and Mathematical
Symbols

2.1 Acronyms
ADRS Address

ADRSc Compressed Address

AES Advanced Encryption Standard

FIPS Federal Information Processing Standard

FORS Forest of Random Subsets

ITL Information Technology Laboratory

MGF Mask Generation Function

NIST National Institute of Standards and Technology

PQC Post-Quantum Cryptography

PRF Pseudorandom Function

SHA Secure Hash Algorithm

SHAKE Secure Hash Algorithm KECCAK

SP Special Publication

RFC Request for Comments

WOTS+ Winternitz One-Time Signature Plus

XMSS eXtended Merkle Signature Scheme

XOF eXtendable-Output Function

2.2 Terms and Defnitions
approved FIPS-approved and/or NIST-recommended. An algorithm or tech-

nique that is either 1) specifed in a FIPS or NIST recommendation, 2)
adopted in a FIPS or NIST recommendation, or 3) specifed in a list of
NIST-approved security functions. [1]

big-endian The property of a byte string having its bytes positioned in order of
decreasing signifcance. In particular, the leftmost (frst) byte is the
most signifcant, and the rightmost (last) byte is the least signifcant.
The term “big-endian” may also be applied in the same manner to bit
strings. [9, adapted]

byte string An array of integers in which each integer is in the set {0, . . . ,255}.
claimed signatory From the verifer’s perspective, the claimed signatory is the entity that

purportedly generated a digital signature. [1]

3

345

350

355

360

365

370

375

342

343

344

346

347

348

349

351

352

353

354

356

357

358

359

361

362

363

364

366

367

368

369

371

372

373

374

376

377

378

379

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

destroy An action applied to a key or a piece of secret data. After a key or a
piece of secret data is destroyed, no information about its value can be
recovered. [1]

digital signature The result of a cryptographic transformation of data that, when properly
implemented, provides a mechanism for verifying origin authentication,
data integrity, and signatory non-repudiation. [1]

entity An individual (person), organization, device, or process. Used inter-
changeably with “party.” [1]

equivalent process Two processes are equivalent if the same output is produced when the
same values are input to each process (either as input parameters, as
values made available during the process, or both). [1]

extendable-output
function

A function on bit strings in which the output can be extended to any
desired length. Approved XOFs (such as those specifed in FIPS
202 [10]) are designed to satisfy the following properties as long as the
specifed output length is suffciently long to prevent trivial attacks:

1. (One-way) It is computationally infeasible to fnd any input that
maps to any new pre-specifed output.

2. (Collision-resistant) It is computationally infeasible to fnd any
two distinct inputs that map to the same output. [11, adapted]

hash function A function on bit strings in which the length of the output is fxed.
Approved hash functions (such as those specifed in FIPS 180 [12]
and FIPS 202 [10]) are designed to satisfy the following properties:

1. (One-way) It is computationally infeasible to fnd any input that
maps to any new pre-specifed output

2. (Collision-resistant) It is computationally infeasible to fnd any
two distinct inputs that map to the same output. [1]

hash value See “message digest.” [1]

key A parameter used in conjunction with a cryptographic algorithm that
determines its operation. Examples applicable to this standard include:

1. The computation of a digital signature from data, and

2. The verifcation of a digital signature. [1]

key pair A public key and its corresponding private key. [1]

message The data that is signed. Also known as “signed data” during the
signature verifcation and validation process. [1]

message digest The result of applying a hash function to a message. Also known as a
“hash value.” [1]

non-repudiation A service that is used to provide assurance of the integrity and origin
of data in such a way that the integrity and origin can be verifed and

4

380

385

390

395

400

405

410

415

381

382

383

384

386

387

388

389

391

392

393

394

396

397

398

399

401

402

403

404

406

407

408

409

411

412

413

414

416

417

418

FIPS 205 (DRAFT)

owner

party

private key

pseudorandom

public key

security category

security strength

shall

should

signatory

signature generation

signature validation

STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

validated by a third party as having originated from a specifc entity in
possession of the private key (i.e., the signatory). [1]

A key pair owner is the entity authorized to use the private key of a key
pair. [1]

An individual (person), organization, device, or process. Used inter-
changeably with “entity.” [1]

A cryptographic key that is used with an asymmetric (public-key)
cryptographic algorithm. The private key is uniquely associated with
the owner and is not made public. The private key is used to compute
a digital signature that may be verifed using the corresponding public
key. [1]

A process or data produced by a process is said to be pseudorandom
when the outcome is deterministic yet also effectively random as long
as the internal action of the process is hidden from observation. For
cryptographic purposes, “effectively random” means “computationally
indistinguishable from random within the limits of the intended security
strength.” [1]

A cryptographic key that is used with an asymmetric (public-key)
cryptographic algorithm and is associated with a private key. The
public key is associated with an owner and may be made public. In
the case of digital signatures, the public key is used to verify a digital
signature that was generated using the corresponding private key. [1]

A number associated with the security strength of a post-quantum
cryptographic algorithm as specifed by NIST (see Appendix A, Table
2).

A number associated with the amount of work (i.e., the number of
operations) that is required to break a cryptographic algorithm or
system. [1]

Used to indicate a requirement of this standard. [1]

Used to indicate a strong recommendation but not a requirement of
this standard. Ignoring the recommendation could result in undesirable
results. [1]

The entity that generates a digital signature on data using a private
key. [1]

The process of using a digital signature algorithm and a private key to
generate a digital signature on data. [1]

The (mathematical) verifcation of the digital signature and obtain-
ing the appropriate assurances (e.g., public-key validity, private-key
possession, etc.). [1]

5

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

signature verifcation

signed data

verifer

The process of using a digital signature algorithm and a public key to
verify a digital signature on data. [1]

The data or message upon which a digital signature has been computed.
Also see “message.” [1]

The entity that verifes the authenticity of a digital signature using the
public key. [1]

2.3 Mathematical Symbols
The following notation is used in this standard.

X ∥ Y

X [i : j]

Truncℓ(X)

|X |
⌈a⌉

⌊a⌋

a mod n

a · b

ab

log2 x

0b

0x

a ≫ b

a ≪ b

The concatenation of two arrays X and Y . If X is an array of length
ℓx and Y is an array of length ℓy, then Z = X ∥ Y is an array of length
ℓx + ℓy such that �

X [i] if 0 ≤ i < ℓ
Z x[i] = Y [i − ℓx] if ℓx ≤ i < ℓx + ℓy

A subarray of X . If X is an array of length ℓx, 0 ≤ i < j ≤ ℓx, and
Y = X [i : j], then Y is an array of length j − i such that Y [k] = X [i + k]
for 0 ≤ k < j − i.

A truncation function that outputs the most signifcant ℓ bytes of the
input byte string X . If Y = Truncℓ(X), then Y is a byte string (array)
of length ℓ such that Y [i] = X [i] for 0 ≤ i < ℓ (i.e., Y = X [0 : ℓ]).

The length (in bytes) of byte string X .

The ceiling of a; the smallest integer that is greater than or equal to a.
For example, ⌈5⌉ = 5, ⌈5.3⌉ = 6, and ⌈−2.1⌉ = −2. [1]

The foor of a; the largest integer that is less than or equal to a. For
example, ⌊5⌋ = 5, ⌊5.3⌋ = 5, and ⌊−2.1⌋ = 3. [1]

The unique remainder r, 0 ≤ r ≤ (n − 1), when integer a is divided by
the positive integer n. For example, 23 mod 7 = 2. [1]

The product of a and b. For example, 3 · 5 = 15.

a raised to the power b. For example, 2 = 325 .

The base 2 logarithm of x. For example, log (16) = 4. 2

The prefx to a number that is represented in binary.

The prefx to a number that is represented in hexadecimal. [1, adapted]

The logical right shift of a by b positions (i.e., a ≫ b = ⌊a/2 ⌋). For
example. 0x73 ≫ 4 = 7. [4, adapted]

b

The logical left shift of a by b positions (i.e., a ≪ b = a · 2b). For
example. 0x73 ≪ 4 = 0x730. [4, adapted]

6

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

453

454

455

456

457

458

459

a ⊕ b The bitwise exclusive-or of a and b. For example, 115 ⊕ 1 = 114
(115 ⊕ 1 = 0b01110011 ⊕ 0b00000001 = 0b01110010 = 114).

s ← x In pseudocode, this notation means that the variable s is set to the value
of the expression x.

s
$←− Bn In pseudocode, this notation means that the variable s is set to a byte

string of length n chosen at random. A fresh random value must be
generated for each time this step is performed.

7

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

3. Overview of the SLH-DSA Signature Scheme

SLH-DSA is a stateless hash-based signature scheme that is constructed using other hash-based
signature schemes as components: a few-time signature scheme, forest of random subsets (FORS),
and a multi-time signature scheme, the eXtended Merkle Signature Scheme (XMSS). XMSS is
constructed using the hash-based one-time signature scheme Winternitz One-Time Signature Plus
(WOTS+) as a component.1

1The WOTS+ and XMSS schemes that are used as components of SLH-DSA are not the same as the WOTS+ and
XMSS schemes in RFC 8391 [13] and NIST SP 800-208 [14].

Conceptually, an SLH-DSA key pair consists of a very large set of FORS key pairs.2

2For the parameter sets in this standard, an SLH-DSA key pair contains 263 , 264, 266, or 268 FORS keys, which are
pseudorandomly generated from a single seed.

The few-time
signature scheme FORS allows each key pair to safely sign a small number of messages (about
10 for the parameter sets in this standard). An SLH-DSA signature is created by computing a
randomized hash of the message, using part of the resulting message digest to (pseudorandomly)
select a FORS key, and signing the remaining part of the message digest with that key. An
SLH-DSA signature consists of the FORS signature along with information that authenticates the
FORS public key. The authentication information is created using XMSS signatures.

XMSS is a multi-time signature scheme that is created using a combination of WOTS+ one-time
signatures and Merkle hash trees [15]. An XMSS key consists of 2h′ WOTS+ keys and can sign
2h′ messages. The WOTS+ public keys are formed into a Merkle hash tree, and the root of the
tree is the XMSS public key. (The Merkle hash tree formed from the WOTS+ keys is also referred
to as an XMSS tree.) An XMSS signature consists of a WOTS+ signature and an authentication
path within the Merkle hash tree for the WOTS+ public key. In Figure 1, each triangle represents
an XMSS tree with squares representing the WOTS+ public keys and circles representing the
interior nodes of the hash tree. The square and circles that are flled in represent the authentication
path for the WOTS+ public key needed to verify the signature.

The authentication information for a FORS public key is a hypertree signature. A hypertree is
a tree of XMSS trees, as depicted in Figure 1. The tree consists of d layers,3

3For the parameter sets in this standard, d is 7, 8, 17, or 22.

with the top layer
(layer d − 1) consisting of a single XMSS tree, the next layer down (layer d − 2) consisting of 2h′

XMSS trees, and the lowest layer (layer 0) consisting of 2
 (d−1)h′ XMSS trees. The public key

of each XMSS key at layers 0 through d − 2 is signed by an XMSS key at the next higher layer.
The XMSS keys at layer 0 collectively have 2dh′ = 2h WOTS+ keys, which are used to sign the
2h FORS public keys in the SLH-DSA key pair. The sequence of d XMSS signatures needed
to authenticate a FORS public key when starting with the public key of the XMSS key at layer
d − 1 is a hypertree signature. An SLH-DSA signature consists of a FORS signature along with a
hypertree signature.

An SLH-DSA public key contains two n-byte components: PK.root, which is the public key of
the XMSS key at layer d − 1; and PK.seed, which is used to provide domain separation between
different SLH-DSA key pairs. An SLH-DSA private key consists of an n-byte seed SK.seed,
which is used to pseudorandomly generate all of the secret values for the WOTS+ and FORS
keys, and an n-byte key SK.prf, which is used in the generation of the randomized hash of the
message. An SLH-DSA private key also includes copies of PK.root and PK.seed, as these values

8

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

PK.root

WOTS+ signature

WOTS+ signature

WOTS+ signature

Message

FORS signature

layer 0

layer 1

layer d − 1 = 2

Merkle tree node

WOTS+ public key

FORS public key

Figure 1. An SLH-DSA signature

498

499

500

501

502

503

504

505

506

507

508

509

are needed during both signature generation and signature verifcation.

he WOTS+ one-time signature scheme is specifed in Section 5, and the XMSS multi-time
gnature scheme is specifed in Section 6. Section 7 specifes the generation and verifcation of
ypertree signatures. The FORS few-time signature scheme is specifed in Section 8. Finally,
ection 9 specifes the SLH-DSA key generation, signature, and verifcation functions. As the
OTS+, XMSS, hypertree, and FORS schemes described in this standard are not intended for use
 stand-alone signature schemes, only the components of the schemes necessary to implement

LH-DSA are described. In particular, these sections do not include functions for key pair
eneration, and a signature verifcation function is only specifed for hypertree signatures.

hen used in this standard, WOTS+, XMSS, and FORS signatures are verifed implicitly using
nfu ctions to generate public keys from messages and signatures (see Sections 5.3, 6.3, and 8.4).
hen verifying an SLH-DSA signature, the randomized hash of the message and the FORS

T
si
h
S
W
as
S
g

W

W

9

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

signature are used to compute a candidate FORS public key. The candidate FORS public key
and the WOTS+ signature from the layer 0 XMSS key are used to compute a candidate WOTS+

public key, and this candidate public key is then used in conjunction with the corresponding
authentication path to compute a candidate XMSS public key. The candidate layer 0 XMSS
public key is used along with the layer 1 XMSS signature to compute a candidate layer 1 XMSS
public key, and this process is repeated until a candidate layer d −1 public key has been computed.
SLH-DSA signature verifcation succeeds if the computed candidate layer d − 1 XMSS public
key is the same as the SLH-DSA public key root PK.root.

3.1 Additional Requirements
This section specifes requirements for cryptographic modules that implement SLH-DSA. Ap-
pendix B discusses issues that implementers of cryptographic modules should take into considera-
tion, but that are not requirements. NIST SP 800-89, Recommendation for Obtaining Assurances
for Digital Signature Applications [3], specifes requirements that apply to the use of digital
signature schemes.

Randomness generation. SLH-DSA key generation (Algorithm 17) requires the generation of
three random n-byte values, PK.seed, SK.seed, and SK.prf (where n is 16, 24, or 32, depending
on the parameter set). For each invocation of key generation each of these values shall be freshly
generated using an approved random bit generator (RBG), as prescribed in NIST SP 800-90A,
SP 800-90B, and SP 800-90C [16, 17, 18]. Moreover, the RBG used shall have a security strength
of at least 8n bits.

Destruction of sensitive data. Data used internally by key generation and signing algorithms
in intermediate computation steps could be used by an adversary to gain information about the
private key, and thereby compromise security. For some applications, including the verifcation
of signatures that are used as bearer tokens (i.e., authentication secrets) or the verifcation of
signatures on plaintext messages that are intended to be confdential, data used internally by
verifcation algorithms is similarly sensitive. (Intermediate values of the verifcation algorithm
may reveal information about its inputs, i.e., the message, signature, and public key, and in
some applications security or privacy requires one or more of these inputs to be confdential.)
Implementations of SLH-DSA shall, therefore, ensure that any local copies of the inputs and any
potentially sensitive intermediate data is destroyed as soon as it is no longer needed.

Key validation. NIST SP 800-89 imposes requirements for assurance of public-key validity
and private-key possession. In the case of SLH-DSA, where public-key validation is required
implementations shall verify that the public key is 2n bytes in length. When assurance of private
key possession is obtained via regeneration, the owner of the private key shall check that the
private key is 4n bytes in length and shall use SK.seed and PK.seed to recompute PK.root and
compare the newly-generated value with the value in the private key currently held.

10

550

555

560

565

570

575

580

546

547

548

549

551

552

553

554

556

557

558

559

561

562

563

564

566

567

568

569

571

572

573

574

576

577

578

579

581

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

4. Functions and Addressing

4.1 Hash Functions and Pseudorandom Functions
The specifcation of SLH-DSA makes use of six functions — PRFmsg, Hmsg, PRF, Tℓ, H, and
F — that are all implemented using hash functions (or XOFs with fxed output lengths). The
inputs and output of each function are byte strings. In the following defnitions, B = {0, . . . ,255}
denotes the set of all bytes, Bn denotes the set of byte strings of length n bytes, and B∗ denotes
the set of all byte strings. The ADRS input is described in Section 4.2.

• PRFmsg(SK.prf opt_rand M (Bn Bn B∗ Bn, ,) × × →) is a pseudorandom function (PRF)
that generates the randomizer (R) for the randomized hashing of the message to be signed.

• H R PK.seed PK.root M (Bn Bn , n m
msg(, ,) × ×B × B∗ → B) is used to generate the digest of

the message to be signed.

• PRF(PK.seed SK.seed n,ADRS n 32 n,) (B × B × B → B) is a PRF that is used to generate
the secret values in WOTS+ and FORS private keys.

• Tℓ(PK.seed,ADRS,Mℓ) (Bn × B32 × Bℓn → Bn) is a hash function that maps an ℓn-byte
message to an n-byte message.

• H(PK.seed,ADRS,M2) (Bn × B32 × B2n → Bn) is a special case of Tℓ that takes a 2n-byte
message as input.

• F PK.seed ADRS M (Bn 32 (, , 1) × B × Bn → Bn) is a hash function that takes an n-byte
message as input and produces an n-byte output.

The specifc instantiations for these functions differ for different parameter sets and are specifed
in Section 10.

4.2 Addresses
Four of the functions described in Section 4.1 take a 32-byte address (ADRS) as input. An ADRS
consists of public values that indicate the position of the value being computed by the function. A
different ADRS value is used for each call to each function. In the case of PRF, this is in order
to generate a large number of different secret values from a single seed. In the case of Tℓ, H, and
F, it is used to mitigate multi-target attacks.

The structure of an ADRS conforms to word boundaries, with each word being 4 bytes long, and
with values being encoded as unsigned integers in big-endian byte order. The frst word of ADRS
specifes the layer address, which is the height of an XMSS tree within the hypertree. Trees on
the bottom layer have a height of zero, and the single XMSS tree at the top has a height of d − 1
(see Figure 1). The next three words of ADRS specify the tree address, which is the position
of an XMSS tree within a layer of the hypertree. The leftmost XMSS tree in a layer has a tree
address of zero, and the rightmost XMSS tree in layer L has a tree address of 2(d−1−L)h′ − 1. The
next word is used to specify the type of the address, which differs depending on the use case.
There are seven different types of address used in SLH-DSA, as described below.4

4The type word will have a value of 0, 1, 2, 3, 4, 5, or 6. In order to improve readability, these values will be
referred to in this standard by the constants WOTS_HASH, WOTS_PK, TREE, FORS_TREE, FORS_ROOTS, WOTS_PRF,

11

The type of the

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

address determines how the fnal 12 bytes of the address are to be interpreted. The algorithms in
this standard are written based on the assumption that whenever the type in an ADRS is changed,
the fnal 12 bytes of address are initialized to zero.

The type is set to WOTS_HASH (0) for a WOTS+ hash address (see Figure 2), which is used when
computing hash chains in WOTS+ . When type is WOTS_HASH, the next word encodes the key
pair address, which is the index of the WOTS+ key pair within the XMSS tree specifed by the
layer and tree addresses, with the leftmost WOTS+ key having an index of zero and the rightmost
WOTS+ key having an index of 2h′ − 1. Next is the chain address, which encodes the index of
the chain within WOTS+, followed by the hash address, which encodes the address of the hash
function within the chain.

Figure 2. WOTS+ hash address

layer address

tree address

type = 0 (WOTS_HASH)
key pair address

chain address
hash address

4 bytes

12 bytes

4 bytes
4 bytes
4 bytes
4 bytes

Figure 3. WOTS+ public key compression address

layer address

tree address

type = 1 (WOTS_PK)
key pair address

padding = 0

4 bytes

12 bytes

4 bytes
4 bytes

8 bytes

The type is set to WOTS_PK (1) when compressing WOTS+ public keys (see Figure 3). As when
the type is WOTS_HASH, the next word encodes the index of the WOTS+ key pair within the XMSS
tree specifed by the layer and tree addresses. The remaining two words of ADRS are not needed
and are set to zero.

The type is set to TREE (2) when computing the hashes within the XMSS tree (see Figure 4). For
this type of address, the next word is always set to zero. The following word encodes the height
of the node within the tree that is being computed, and the fnal word encodes the index of the
node at that height.

Figure 4. Hash tree address

layer address

tree address

type = 2 (TREE)
padding = 0
tree height
tree index

4 bytes

12 bytes

4 bytes
4 bytes
4 bytes
4 bytes

The type is set to FORS_TREE (3) when computing hashes within the FORS tree (see Figure 5).
The next word is the key pair address, which encodes the FORS key that is used and is the same as

and FORS_PRF, respectively.

12

606

602

603

604

605

607

608

609

610

611

612

613

614

615

616

617

618

619

620

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

the key pair address in WOTS+ addresses (see Figure 2 and Figure 3). The next two words — the
tree height and tree index — encode the node within the FORS tree that is being computed. The
tree height starts with zero for the leaf nodes. The tree index is counted continuously across the k
different FORS trees. The leftmost node in the leftmost tree has an index of zero and rightmost
node in the rightmost tree at level j has an index of k 2(a− j) · − 1, where a is the height of the tree.

Figure 5. FORS tree address

layer address = 0

tree address

type = 3 (FORS_TREE)
key pair address

tree height
tree index

4 bytes

12 bytes

4 bytes
4 bytes
4 bytes
4 bytes

Figure 6. FORS tree roots compression
address

layer address = 0

tree address

type = 4 (FORS_ROOTS)
key pair address

padding = 0

4 bytes

12 bytes

4 bytes
4 bytes

8 bytes

The type is set to FORS_ROOTS (4) when compressing the k FORS tree roots (see Figure 6). The
next word is the key pair address, which has the same meaning as it does in the FORS_TREE
address. The remaining two words of ADRS are not needed and are set to zero.

The type is set to WOTS_PRF (5) when generating secret values for WOTS+ keys (see Figure 7).
The values for the other words in the address are set to the same values as for the WOTS_HASH
address (Figure 2) used for the chain. The hash address is always set to zero.

Figure 7. WOTS+ key generation address

layer address

tree address

type = 5 (WOTS_PRF)
key pair address

chain address
hash address = 0

4 bytes

12 bytes

4 bytes
4 bytes
4 bytes
4 bytes

Figure 8. FORS key generation address

layer address = 0

tree address

type = 6 (FORS_PRF)
key pair address
tree height = 0

tree index

4 bytes

12 bytes

4 bytes
4 bytes
4 bytes
4 bytes

The type is set to FORS_PRF (6) when generating secret values for FORS keys (see Figure 8). The
values for the other words in the address are set to the same values as for the FORS_TREE address
(Figure 5) used for the same leaf node.

The instantiations of the functions in Section 4.1 that are based on SHA-2 (Section 10.2 and
Section 10.3) make use of a compressed version of ADRS. A compressed address (ADRSc) is a
22-byte string that is the same as an ADRS with the exceptions that the encodings of the layer
address and type are reduced to one byte each and the encoding of the tree address is reduced to
eight bytes (i.e., ADRSc = ADRS[3] ∥ ADRS[8 : 16] ∥ ADRS[19] ∥ ADRS[20 : 32]).

13

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

4.3 Member Functions
The algorithms in this standard make use of member functions. If a complex data structure,
such as an ADRS, contains a component X , then ADRS.getX() returns the value of X , and
ADRS.setX(Y) sets the component X in ADRS to the value held by Y . If a data structure s
contains multiple instances of X , then s.getX(i) returns the value of the ith instance of X in s. For
example, if s is a FORS signature (Figure 13), then s.getAUTH(i) returns the authentication path
for the ith tree.

As noted in Section 4.2, whenever the type in an address changes, the fnal 12 bytes of the address
are initialized to zero. The member function ADRS.setTypeAndClear(Y) for addresses sets the
type of the ADRS to Y and sets the fnal 12 bytes of the ADRS to zero.

4.4 Arrays, Byte Strings, and Integers

If X is an array of length n, then X [i] (for i th ∈ {0, . . . ,n − 1}) will refer to the i element in the
string X . If X is an array of m n-byte strings, then X [i] (for i ∈ {0 th , . . . ,m − 1}) will refer to the i
n-byte string in X , and X will refer to the m · n-byte string X [0] ∥ X [1] ∥ . . .X [m − 1].

A byte string may be interpreted as the big-endian representation of an integer. In such cases, a
byte string X of length n is converted to the integer

X [0] · 256n−1 + X [1 256 2] · n− + . . .X [n − 2] · 256 + X [n − 1].

Similarly, an integer x may be converted to a byte string of length n by fnding coeffcients
x0,x1, . . .xn−1,xn−2 ∈ {0, . . . ,255} such that

x = x n
0 · 256 −1 + x1 · 256n−2 + . . .xn−2 · 256 + xn−1

and then setting the byte string to be x0x1 . . .xn−2xn−1.

Algorithm 1 is a function that converts a byte string X of length n to an integer, and Algorithm 2
is a function that converts an integer x to a byte string of length n.

Algorithm 1 toInt(X ,n)
Convert a byte string to an integer.

Input: n-byte string X .
Output: Integer value of X .

1: total ← 0
2:
3: for i from 0 to n − 1 do
4: total ← 256 · total + X [i]
5: end for
6: return total

14

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

Algorithm 2 toByte(x,n)
Convert an integer to a byte string.

Input: Integer x, string length n.
Output: Byte string of length n containing binary representation of x in big-endian byte-order.

1: total ← x
2:
3: for i from 0 to n − 1 do
4: S[n − 1 − i] ← total mod 256 ▷ Least signifcant 8 bits of total
5: total ← total ≫ 8
6: end for
7: return S

644

645

646

647

648

649

650

For the WOTS+ and FORS schemes, the messages to be signed need to be split into a sequence
of b-bit strings, where each b-bit string is interpreted as an integer between 0 and 2b − 1.5

5b will be the value of lgw when the base_2b function is used in WOTS+ , and b will be the value of a when the
base_2b function is used in FORS. For the parameter sets in this standard, lgw is 4, and a is 6, 8, 9, 12, or 14.

(This
is the equivalent of creating the base-2b representation of the message.) The base_2b function
(Algorithm 3) takes as input a byte string X , a bit string length b, and an output length out_len and
returns an array of base-2b integers that represent the frst out_len · b bits of X (if the individual
bytes in X are encoded as 8-bit strings in big-endian bit order). X must be at least ⌈out_len · b/8⌉
bytes in length.

Algorithm 3 base_2b(X , b, out_len)

Compute the base 2b representation of X.� · Input: Byte string X of length at least out_len b
8 , integer b, output length out_len.

Output: Array of out_len integers in the range [0, . . . ,2b − 1].
1: in ← 0
2: bits ← 0
3: total ← 0
4:
5: for out from 0 to out_len − 1 do
6: while bits < b do
7: total ← (total ≪ 8)+ X [in]
8: in ← in + 1
9: bits ← bits + 8

10: end while
11: bits ← bits − b
12: baseb[out] ← (total ≫ bits) mod 2b

13: end for
14: return baseb

15

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

5. One-Time Signatures

This section describes the WOTS+ one-time signature scheme that is a component of SLH-DSA.

WOTS+ uses two parameters. The security parameter n is the length in bytes of the messages
that may be signed, as well as the length of the private key elements, public key elements, and
signature elements. For the parameter sets specifed in this standard, n may be 16, 24, or 32 (see
Table 1). The second parameter, lgw, indicates the number of bits that are encoded by each hash
chain that is used.6

6In [4], the Winternitz parameter w is used at the second WOTS+ parameter, where w indicates the length of the hash
chains that are used. This standard uses the parameter lgw = log2(w) instead, in order to simplify computations.

lgw is 4 for all parameter sets in this standard. These parameters are used to
compute four additional values:

w = 2lgw (5.1)� �
8n

len1 = (5.2)
lgw� �

log2(len1 · (w − 1))
len2 = + 1 (5.3)

lgw

len = len1 + len2 (5.4)

When lgw = 4, w = 16, len1 = 2n, len2 = 3, and len = 2n + 3.

A WOTS+ private key consists of len secret values of length n. In SLH-DSA, these are all
generated from an n-byte seed SK.seed using a PRF. Chains of length w are then created from
the secret values using a chaining function, and the end values from each of the chains are public
values. The WOTS+ public key is computed as the hash of these public values. In order to
create a signature, the 8n-bit message is frst converted into an array of len1 base-w integers. A
checksum is then computed for this string, and the checksum is converted into an array of len2
base-w integers. The signature consists of the appropriate entries from the chains for each of the
integers in the message and checksum arrays.

The WOTS+ functions make use of two helper functions: base_2b and chain. The base_2b

function (Section 4.4) is used to break the message to be signed and the checksum value into
arrays of base-w integers. The chain function (Algorithm 4) is used to compute the hash chains.

The chain function takes as input an n-byte string X and integers s and i and returns the result of
iterating a hash function F on the input s times, starting from an index of i. The chain function
also requires as input PK.seed, which is part of the SLH-DSA public key, and an address ADRS.
The type in ADRS must be set to WOTS_HASH, and the layer address, tree address, key pair address,
and chain address must be set to the address of the chain being computed. The chain function
updates the hash address in ADRS with each iteration to specify the current position in the chain
prior to ADRS’s use in F.

16

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

Algorithm 4 chain(X , i, s, PK.seed, ADRS)

Chaining function used in WOTS+ .

Input: Input string X , start index i, number of steps s, public seed PK.seed, address ADRS.
Output: Value of F iterated s times on X .

1: if (i + s) ≥ w then
2: return NULL
3: end if
4:
5: tmp ← X
6:
7: for j from i to i + s − 1 do
8: ADRS.setHashAddress(j)
9: tmp ← F(PK.seed,ADRS, tmp)

10: end for
11: return tmp

682

683

684

685

686

687

688

689

690

5.1 WOTS+ Public-Key Generation
The wots_PKgen function (Algorithm 5) generates WOTS+ public keys. It takes as input SK.seed
and PK.seed from the SLH-DSA private key and an address. The type in the address ADRS must
be set to WOTS_HASH, and the layer address, tree address, and key pair address must encode the
address of the WOTS+ public key to be generated.

Lines 4 through 9 in Algorithm 5 generate the public values, as described in Section 5. For each
of the len public values, the corresponding secret value is generated in lines 5 and 6, and the
chain function is called to compute the end value of the chain of length w. Once the len public
values are computed, they are compressed into a single n-byte value in lines 10 through 13.

17

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

691

692

693

694

695

696

697

698

699

700

701

702

703

Algorithm 5 wots_PKgen(SK.seed, PK.seed, ADRS)

Generate a WOTS+ public key.

Input: Secret seed SK.seed, public seed PK.seed, address ADRS.
Output: WOTS+ public key pk.

1: skADRS ← ADRS ▷ Copy address to create key generation key address
2: skADRS.setTypeAndClear(WOTS_PRF)
3: skADRS.setKeyPairAddress(ADRS.getKeyPairAddress())
4: for i from 0 to len − 1 do
5: skADRS.setChainAddress(i)
6: sk ← PRF(PK.seed, SK.seed, skADRS) ▷ Compute secret value for chain i
7: ADRS.setChainAddress(i)
8: tmp[i] ← chain(sk,0,w − 1,PK.seed,ADRS) ▷ Compute public value for chain i
9: end for

10: wotspkADRS ← ADRS ▷ Copy address to create WOTS+public key address
11: wotspkADRS.setTypeAndClear(WOTS_PK)
12: wotspkADRS.setKeyPairAddress(ADRS.getKeyPairAddress())
13: pk ← Tlen(PK.seed,wotspkADRS, tmp) ▷ Compress public key
14: return pk

5.2 WOTS+ Signature Generation
A WOTS+ signature is an array of len byte strings of length n, as shown in Figure 9. The
wots_sign function (Algorithm 6) generates the signature by converting the n-byte message M7

In SLH-DSA, the message M that is signed using WOTS+ is either an XMSS public key or a FORS public key.

into an array of len1 base-w integers (line 3). A checksum is computed over M (lines 5 through 7).
The checksum is converted to a byte string, which is then converted into an array of len2 base-w
integers (lines 9 and 10). The len2 integers that represent the checksum are appended to the len1
integers that represent the message (line 10).8

8In the case that lgw = 4, the n-byte message is converted into an array of 2n base-16 integers (i.e., hexadecimal
digits). The checksum is encoded as 2 bytes with the least signifcant 4 bits being zeros, and the most signifcant 12
bits are appended to the message as an array of three base-16 integers.

For each of the len base-w integers, the signature
consists of the corresponding node in one of the hash chains. For each of these integers, lines
16 and 17 compute the secret value for the hash chain, and lines 18 and 19 compute the node in
the hash chain that corresponds to the integer. The selected nodes are concatenated to form the
WOTS+ signature.

Figure 9. WOTS+ signature data format

sigots[0]
· · ·

sigots[len − 1]

n bytes

n bytes

In addition to the n-byte message to be signed, wots_sign takes as input SK.seed and PK.seed
from the SLH-DSA private key and an address. The type in the address ADRS must be set to

7

18

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

WOTS_HASH, and the layer address, tree address, and key pair address must encode the address of
the WOTS+ key that is used to sign the message.

Algorithm 6 wots_sign(M, SK.seed, PK.seed, ADRS)

Generate a WOTS+ signature on an n-byte message.

Input: Message M, secret seed SK.seed, public seed PK.seed, address ADRS.
Output: WOTS+ signature sig.

1: csum ← 0
2:
3: msg ← base_2b(M, lgw, len1) ▷ Convert message to base w
4:
5: for i from 0 to len1 − 1 do ▷ Compute checksum
6: csum ← csum + w − 1− msg[i]
7: end for
8:
9: csum ← csum ≪ ((8 −� ((len 2 · l�gw) mod l 8)) mod m� 8 For lg 4 left shift by 4) � ▷ w =

msg len ·lg10: ← msg ∥ base_2b toByte csum, 2 w ,8 lgw, len2 ▷ Convert csum to base w
11:
12: skADRS ← ADRS
13: skADRS.setTypeAndClear(WOTS_PRF)
14: skADRS.setKeyPairAddress(ADRS.getKeyPairAddress())
15: for i from 0 to len − 1 do
16: skADRS.setChainAddress(i)
17: sk ← PRF(PK.seed, SK.seed, skADRS) ▷ Compute secret value for chain i
18: ADRS.setChainAddress(i)
19: sig[i] ← chain(sk,0,msg[i],PK.seed,ADRS) ▷ Compute signature value for chain i
20: end for
21: return sig

5.3 Computing a WOTS+ Public Key From a Signature
As noted in Section 3, verifying a WOTS+ signature involves computing a public-key value from
a message and signature value. Verifcation succeeds if the correct public-key value is computed,
which is determined by using the computed public-key value along with other information to
compute a candidate PK.root value and then comparing that value to the known value of PK.root
from the SLH-DSA public key. This section describes wots_PKFromSig (Algorithm 7), a function
that computes a candidate WOTS+ public key from a WOTS+ signature and corresponding
message.

In addition to an n-byte message M and a len ·n-byte signature sig, which is interpreted as an array
of len n-byte strings, the wots_PKFromSig function takes as input PK.seed from the SLH-DSA
public key and an address. The type of the address ADRS must be set to WOTS_HASH, and the
layer address, tree address, and key pair address must encode the address of the WOTS+ key that
was used to sign the message.

19

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

719

720

721

722

723

Lines 1 through 10 of wots_PKFromSig are the same as lines 1 through 10 of wots_sign (Algo-
rithm 6). Lines 11 through 14 of wots_PKFromSig compute the end nodes for each of the chains
using the signature value as the starting point and the message value to determine the number of
iterations that need to be performed to get to the end node. Finally, as with lines 10 through 13 of
Algorithm 5, the computed public-key values are compressed in lines 15 through 18.

Algorithm 7 wots_PKFromSig(sig, M, PK.seed, ADRS)

Compute a WOTS+ public key from a message and its signature.

Input: WOTS+ signature sig, message M, public seed PK.seed, address ADRS.
Output: WOTS+ public key pksig derived from sig.

1: csum ← 0
2:
3: msg ← base_2b(M, lgw, len1) ▷ Convert message to base w
4:
5: for i from 0 to len1 − 1 do ▷ Compute checksum
6: csum ← csum + w − 1− msg[i]
7: end for
8:
9: csum ← csum ≪ ((8 −� ((len 2 · l�gw) mod l 8)) mod m� 8) For g � l 4 left shift by 4 ▷ w =

msg msg _ b csum len2·lg10: ← ∥ base 2 toByte , w , gw, len2 ▷ Convert csum to base w 8 l
11: for i from 0 to len − 1 do
12: ADRS.setChainAddress(i)
13: tmp[i] ← chain(sig[i],msg[i],w − 1 − msg[i],PK.seed,ADRS)
14: end for
15: wotspkADRS ← ADRS
16: wotspkADRS.setTypeAndClear(WOTS_PK)
17: wotspkADRS.setKeyPairAddress(ADRS.getKeyPairAddress())
18: pksig ← Tlen(PK.seed,wotspkADRS, tmp)
19: return pksig

20

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

6. The eXtended Merkle Signature Scheme (XMSS)

XMSS extends the WOTS+ signature scheme into one that can sign multiple messages. A Merkle
tree [15] of height h′ is used to allow 2h′ WOTS+ public keys to be authenticated using a single
n-byte XMSS public key, which is the root of the Merkle tree.9

9The Merkle tree formed from the 2h′ WOTS+ keys of an XMSS key is referred to in this standard as an XMSS tree.

As each WOTS+ key may be
used to sign one message, the XMSS key may be used to sign 2h′ messages.

An XMSS signature is (h′ + len) · n bytes in length and consists of a WOTS+ signature and an
authentication path (see Figure 10). The authentication path is an array of nodes from the Merkle
tree — one from each level of the tree (except the root) — that allows the verifer to compute the
root of the tree when used in conjunction with the WOTS+ public key that can be computed from
the WOTS+ signature.

Figure 10. XMSS signature data format

SIGWOTS+

AUTH[0]
· · ·

AUTH[h′ − 1]

len · n bytes

n bytes

n bytes

6.1 Generating a Merkle Hash Tree
The xmss_node function (Algorithm 8) computes the nodes of an XMSS tree. The xmss_node
function takes as input SK.seed and PK.seed from the SLH-DSA private key; a target node index
i, which is the index of the node being computed; a target node height z, which is the height within
the Merkle tree of the node being computed; and an address. The address ADRS must have the
layer address and tree address set to the XMSS tree within which the node is being computed.

Each node in an XMSS tree is the root of a subtree, and Algorithm 8 computes the root of the
subtree recursively. If the subtree consists of a single leaf node, then the function simply returns
the value of the node’s WOTS+ public key (lines 5 through 7). Otherwise, the function computes
the roots of the left subtree (line 9) and right subtree (line 10) and hashes them together (lines 11
through 14).

21

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

Algorithm 8 xmss_node(SK.seed, i, z, PK.seed, ADRS)

Compute the root of a Merkle subtree of WOTS+ public keys.

Input: Secret seed SK.seed, target node index i, target node height z, public seed PK.seed,
address ADRS.

Output: n-byte root node.
1: if z > h′ or i ≥ 2(h

′−z) then
2: return NULL
3: end if
4: if z = 0 then
5: ADRS.setTypeAndClear(WOTS_HASH)
6: ADRS.setKeyPairAddress(i)
7: node ← wots_PKgen(SK.seed, PK.seed, ADRS)
8: else
9: lnode ← xmss_node(SK.seed,2i,z − 1,PK.seed,ADRS)

10: rnode ← xmss_node(SK.seed,2i + 1,z − 1,PK.seed,ADRS)
11: ADRS.setTypeAndClear(TREE)
12: ADRS.setTreeHeight(z)
13: ADRS.setTreeIndex(i)
14: node ← H(PK.seed,ADRS, lnode ∥ rnode)
15: end if
16: return node

745

746

747

748

749

750

751

752

753

754

755

756

757

6.2 Generating an XMSS Signature

The xmss_sign function (Algorithm 9) creates an XMSS signature on an n-byte message M by
frst creating an authentication path (lines 1 through 4) and then signing M with the appropriate
WOTS+ key (lines 6 through 8). In addition to M, xmss_sign takes as input SK.seed and PK.seed
from the SLH-DSA private key, an address, and an index. The address ADRS must have the layer
address and tree address set to the XMSS key that is being used to sign the message, and the
index idx must be the index of the WOTS+ key within the XMSS tree that will be used to sign
the message.

The authentication path consists of the sibling nodes of each node that is on the path from the
WOTS+ key used to the root. For example, in Figure 11, if the message is signed with K2, then
K2, n1,1, and n2,0 are the on path � nodes, � and the authentication path consists of K3, n1,0, and n � � 2,1.
In line 2 of Algorithm 9, idx/2 j is the on path node, and idx/2 j ⊕ 1 is the authentication
path node. Line 3 computes the value of the authentication path node.

10

10In SLH-DSA, the message M that is signed using XMSS is either an XMSS public key or a FORS public key.

22

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

Algorithm 9 xmss_sign(M, SK.seed, idx, PK.seed, ADRS)
Generate an XMSS signature.

Input: n-byte message M, secret seed SK.seed, index idx, public seed PK.seed, address ADRS.
Output: XMSS signature SIGXMSS = (sig ∥ AUTH).

1: for j from 0 to h′ − 1 ▷ Build authentication path � � do
k idx 2 j 2: ← / ⊕ 1

3: AUTH[j] ← xmss_node(SK.seed,k, j,PK.seed,ADRS)
4: end for
5:
6: ADRS.setTypeAndClear(WOTS_HASH)
7: ADRS.setKeyPairAddress(idx)
8: sig ← wots_sign(M,SK.seed,PK.seed,ADRS)
9: SIGXMSS ← sig ∥ AUTH

10: return SIGXMSS

Figure 11. Merkle Hash Tree

23

� @ � @
� @ � @

� @ � @ � @ � @
� @ � @ � @ � @

n3,0 = H(n2,0 ∥ n2,1)

����� PPPPP� P
n2,0 = H(n1,0 ∥ n1,1) n2,1 = H(n1,2 ∥ n1,3)

n1,0 = H(K0 ∥ K1) n1,1 = H(K2 ∥ K3) n1,2 = H(K4 ∥ K5) n1,3 = H(K6 ∥ K7)

K0 K1 K2 K3 K4 K5 K6 K7

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

6.3 Computing an XMSS Public Key From a Signature
As noted in Section 3, verifying an XMSS signature involves computing a public-key value from
a message and a signature value. Verifcation succeeds if the correct public-key value is computed,
which is determined by using the computed public-key value along with other information to
compute a candidate PK.root value and then comparing that value to the known value of PK.root
from the SLH-DSA public key. This section describes xmss_PKFromSig (Algorithm 10), a
function that computes a candidate XMSS public key from an XMSS signature and corresponding
message.

In addition to an n-byte message M and an len h′ (+)·n-byte signature SIGXMSS, xmss_PKFromSig
takes as input PK.seed from the SLH-DSA public key, an address, and an index. The address
ADRS must be set to the layer address and tree address of the XMSS key that was used to sign
the message, and the index idx must be the index of the WOTS+ key within the XMSS tree that
was used to sign the message.

Algorithm 10 begins by computing the WOTS+ public key in lines 1 through 5. The root is then
computed in lines 7 through 19. Starting with the leaf node (the WOTS+ public key), a node at
each level of the tree is computed by hashing together the node computed in the previous iteration
with the corresponding authentication path node. In lines 13 and 16, AUTH is interpreted as an
array of h′ n-byte strings.

24

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

Algorithm 10 xmss_PKFromSig(idx, SIGXMSS, M, PK.seed, ADRS)
Compute an XMSS public key from an XMSS signature.

Input: Index idx, XMSS signature SIGXMSS = (sig ∥ AUTH), n-byte message M,
public seed PK.seed, address ADRS.

Output: n-byte root value node[0].
ADRS.setTypeAndClear(_) Compute WOTS+ pk from WOTS+ 1: WOTS HASH ▷ sig

2: ADRS.setKeyPairAddress(idx)
3: sig ← SIGXMSS.getWOTSSig() ▷ SIGXMSS[0 : len · n]
4: AUTH ← SIGXMSS.getXMSSAUTH() ▷ SIGXMSS[len · n : (len + h′) · n]
5: node[0] ← wots_PKFromSig(sig,M,PK.seed,ADRS)
6:
7: ADRS.setTypeAndClear(TREE) ▷ Compute root from WOTS+ pk and AUTH
8: ADRS.setTreeIndex(idx)
9: for k from 0 to h′ − 1 do

10: ADRS.setTreeHeight(k + 1)� �
11: if idx/2k is even then
12: ADRS.setTreeIndex(ADRS.getTreeIndex()/2)
13: node[1] ← H(PK.seed,ADRS,node[0] ∥ AUTH[k])
14: else
15: ADRS.setTreeIndex((ADRS.getTreeIndex() − 1)/2)
16: node[1] ← H(PK.seed,ADRS,AUTH[k] ∥ node[0])
17: end if
18: node[0] ← node[1]
19: end for
20: return node[0]

25

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

7. The SLH-DSA Hypertree

As noted in Section 3, SLH-DSA requires a very large number of WOTS+ keys to sign FORS
public keys. As it would not be feasible for the parameter sets in this standard to have a single
XMSS key with so many WOTS+ keys, SLH-DSA uses a hypertree to sign the FORS keys. As
depicted in Figure 1, a hypertree is a tree of XMSS trees. The XMSS keys at the lowest layer are
used to sign FORS public keys (Section 8), and the XMSS keys at every other layer are used to
sign the XMSS public keys at the layer below.

The hypertree has d layers of XMSS trees with each XMSS tree being a Merkle tree of height
h′ , so the total height of the hypertree is h = d · h′ (see Table 1). The top layer (layer d − 1) is a
single XMSS tree, and the public key of this XMSS key pair (i.e., the root of the Merkle tree)
is the public key of the hypertree (PK.root). The next layer down has 2h′ XMSS trees, and the
public key of each of these XMSS keys is signed by one of the 2h′ WOTS+ keys that is part of
the top layer’s XMSS key. The lowest layer has 2h−h′ XMSS trees, providing 2h WOTS+ keys to
sign FORS keys.

7.1 Hypertree Signature Generation
A hypertree signature is (h + d · len) · n bytes in length and consists of a sequence of d XMSS
signatures, starting with one generated using an XMSS key at the lowest layer and ending with
one generated using the XMSS key at the top layer (see Figure 12).

Figure 12. HT signature data format

XMSS signature SIGXMSS (layer 0)
XMSS signature SIGXMSS (layer 1)

· · ·
XMSS signature SIGXMSS (layer d − 1)

(h′ + len) · n bytes
(h′ + len) · n bytes

(h′ + len) · n bytes

In addition to the n-byte message M,11

11In SLH-DSA, the message M that is provided to ht_sign is a FORS public key.

the ht_sign function (Algorithm 11) takes as input SK.seed
and PK.seed from the SLH-DSA private key, the index of the XMSS tree at the lowest layer that
will sign the message idxtree, and the index of the WOTS+ key within the XMSS tree that will
sign the message idxlea f .

Algorithm 11 begins in lines 1 through 4 by signing M with the specifed XMSS key using the
WOTS+ key within that XMSS key specifed by idxlea f . The XMSS public key is obtained (line
6 or 15) for each successive layer and signed by the appropriate key at the next higher level (lines
8 through 12).

26

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

Algorithm 11 ht_sign(M, SK.seed, PK.seed, idxtree, idxlea f)

Generate a hypertree signature.

Input: Message M, private seed SK.seed, public seed PK.seed, tree index idxtree,
leaf index idxlea f .

Output: HT signature SIGHT .
1: ADRS ← toByte(0,32)
2:
3: ADRS.setTreeAddress(idxtree)
4: SIGtmp ← xmss_sign(M,SK.seed, idxlea f ,PK.seed,ADRS)
5: SIGHT ← SIGtmp

6: root ← xmss_PKFromSig(idxlea f ,SIGtmp,M,PK.seed,ADRS)
7: for j from 1 to d − 1 do
8: idx h′ ′

lea f ← idxtree mod 2 ▷ h least signifcant bits of idxtree
 9: idxtree ← idxtree ≫ h′ ▷ Remove least signifcant h′ bits from idxtree

10: ADRS.setLayerAddress(j)
11: ADRS.setTreeAddress(idxtree)
12: SIGtmp ← xmss_sign(root,SK.seed, idxlea f ,PK.seed,ADRS)
13: SIGHT ← SIGHT ∥ SIGtmp

14: if j < d − 1 then
15: root ← xmss_PKFromSig(idxlea f ,SIGtmp,root,PK.seed,ADRS)
16: end if
17: end for
18: return SIGHT

27

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

802

803

804

805

806

807

808

809

810

811

812

7.2 Hypertree Signature Verifcation
Hypertree signature verifcation works by making d calls to xmss_PKFromSig (Algorithm 10)
and comparing the result to the public key of the hypertree.

In addition to the n-byte message M and the (h + d · len) · n-byte signature SIGHT , ht_verify
(Algorithm 12) takes as input PK.seed and PK.root from the SLH-DSA public key, the index of
the XMSS tree at the lowest layer that signed the message idxtree, and the index of the WOTS+

key within the XMSS tree that signed the message idxlea f .

At each layer, either the message M or the computed public key of the XMSS key at the lower
layer is provided along with the appropriate XMSS signature to xmss_PKFromSig in order to
obtain the layer’s computed XMSS public key. If the computed XMSS public key of the top layer
tree is the same as the known hypertree public key, PK.root, then verifcation succeeds.

Algorithm 12 ht_verify(M, SIGHT , PK.seed, idxtree, idxlea f , PK.root)

Verify a hypertree signature.

Input: Message M, signature SIGHT , public seed PK.seed, tree index idxtree, leaf index idxlea f ,
HT public key PK.root.

Output: Boolean.
1: ADRS ← toByte(0,32)
2:
3: ADRS.setTreeAddress(idxtree)
4: SIGtmp ← SIGHT .getXMSSSignature (0) ▷ SIGHT [0 : (h′+ len) · n]
5: node ← xmss_PKFromSig(idxlea f ,SIGtmp,M,PK.seed,ADRS)
6: for j from 1 to d − 1 do
7: idxlea f ← idx h′ ′

tree mod 2 ▷ h least signifcant bits of idxtree

idx idx h′ Remove least signifcant h′ 8: tree ← tree ≫ ▷ bits from idxtree

9: ADRS.setLayerAddress(j)
10: ADRS.setTreeAddress(idxtree)
11: SIGtmp ← SIGHT .getXMSSSignature(j) ▷ SIGHT [j · (h′+ len) · n : (j + 1)(h′ + len) · n]
12: node ← xmss_PKFromSig(idxlea f ,SIGtmp,node,PK.seed,ADRS)
13: end for
14: if node = PK.root then
15: return true
16: else
17: return false
18: end if

28

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

8. Forest of Random Subsets (FORS)

FORS is a few-time signature scheme that is used to sign the digests of the actual messages.
Unlike WOTS+, for which forgeries become feasible if a key is used twice [19], the security of a
FORS key degrades gradually as the number of signatures increases.

FORS uses two parameters: k and t = 2a (see Table 1). A FORS private key consists of k sets of t
n-byte strings, all of which are pseudorandomly generated from the seed SK.seed. Each of the k
sets is formed into a Merkle tree, and the roots of the trees are hashed together to form the FORS
public key. A signature on a ka-bit message digest consists of k elements from the private key,
one from each set selected using a bits of the message digest, along with the authentication paths
for each of these elements (see Figure 13).

Figure 13. FORS signature data format

private key value (tree 0)

AUTH (tree 0)

· · ·
private key value (tree k − 1)

AUTH (tree k − 1)

n bytes

a · n bytes

n bytes

a · n bytes

8.1 Generating FORS Secret Values
The fors_SKgen function (Algorithm 13) generates the n-byte strings of the FORS private key.
The function takes as input SK.seed and PK.seed from the SLH-DSA private key, an address,
and an index. The type in the address ADRS must be set to FORS_TREE, and the tree address and
key pair address must be set to the index of the WOTS+ key within the XMSS tree that signs the
FORS key. The layer address must be set to zero. The index idx is the index of the FORS secret
value within the sets of FORS trees.

Algorithm 13 fors_SKgen(SK.seed, PK.seed, ADRS, idx)
Generate a FORS private-key value.

Input: Secret seed SK.seed, public seed PK.seed, address ADRS, secret key index idx.
Output: n-byte FORS private-key value.

1: skADRS ← ADRS ▷ Copy address to create key generation address
2: skADRS.setTypeAndClear(FORS_PRF)
3: skADRS.setKeyPairAddress(ADRS.getKeyPairAddress())
4: skADRS.setTreeIndex(idx)
5: return PRF(PK.seed,SK.seed,skADRS)

8.2 Generating a Merkle Hash Tree
The fors_node function (Algorithm 14) computes the nodes of a Merkle tree. It is the same as
mss_ node, except that the leaf nodes are the hashes of the FORS secret values instead of WOTS+

29
x

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

public keys.

The fors_node function takes as input SK.seed and PK.seed from the SLH-DSA private key; a
target node index i, which is the index of node being computed; a target node height z, which
is the height within the Merkle tree of the node being computed; and an address. The address
ADRS must have the layer address set to zero (since the XMSS tree that signs a FORS key is
always at layer 0), the tree address set to the XMSS tree that signs the FORS key, the type set to
FORS_TREE, and the key pair address set to the index of the WOTS+ key within the XMSS tree
that signs the FORS key.

Each node in the Merkle tree is the root of a subtree, and Algorithm 14 computes the root of a
subtree recursively. If the subtree consists of a single leaf node, then the function simply returns a
hash of the node’s private n-byte string (lines 5 through 8). Otherwise, the function computes the
roots of the left subtree (line 10) and right subtree (line 11) and hashes them together (lines 12
through 14).

Algorithm 14 fors_node(SK.seed, i, z, PK.seed, ADRS)
Compute the root of a Merkle subtree of FORS public values.

Input: Secret seed SK.seed, target node index i, target node height z, public seed PK.seed,
address ADRS.

Output: n-byte root node.
1: if z > a or i ≥ k a z · 2(−) then
2: return NULL
3: end if
4: if z = 0 then
5: sk ← fors_SKgen(SK.seed,PK.seed,ADRS, i)
6: ADRS.setTreeHeight(0)
7: ADRS.setTreeIndex(i)
8: node ← F(PK.seed,ADRS,sk)
9: else

10: lnode ← fors_node(SK.seed,2i,z − 1,PK.seed,ADRS)
11: rnode ← fors_node(SK.seed,2i + 1,z − 1,PK.seed,ADRS)
12: ADRS.setTreeHeight(z)
13: ADRS.setTreeIndex(i)
14: node ← H(PK.seed,ADRS, lnode ∥ rnode)
15: end if
16: return node

8.3 Generating a FORS Signature

The fors_sign function (Algorithm 15) signs a ka-bit message digest md. In addition to the
message digest, fors_sign takes as input SK.seed and PK.seed from the SLH-DSA private key
and an address. The address ADRS must have the layer address set to zero (since the XMSS tree
that signs a FORS key is always at layer 0), the tree address set to the XMSS tree that signs the

12

� k a12For convenience, fors_sign takes as input a · byte message digest and then extracts k · a 8 bits to sign.

30

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

FORS key, the type set to FORS_TREE, and the key pair address set to the index of the WOTS+

key within the XMSS tree that signs the FORS key.

The fors_sign function splits ka bits of md into k a-bit strings (line 2), each of which is interpreted
as an integer between 0 and t − 1. Each of these integers is used to select a secret value from one
of the k sets (line 4). For each secret value selected, an authentication path is computed and added
to the signature (lines 6 through 10).

Algorithm 15 fors_sign(md, SK.seed, PK.seed, ADRS)
Generate a FORS signature.

Input: Message digest md, secret seed SK.seed, address ADRS, public seed PK.seed.
Output: FORS signature SIGFORS.

1: SIGFORS = NULL ▷ Initialize SIGFORS as a zero-length byte string
2: indices ← base_2b(md,a,k)
3: for i from 0 to k − 1 do ▷ Compute signature elements
4: SIGFORS ← SIGFORS ∥ afors_SKgen(SK.seed,PK.seed,ADRS, i · 2 + indices[i])
5:
6: for j from 0 a 1 Compute auth path � to − do � ▷
7: s ← indices[i]/2 j ⊕ 1
8: AUTH[j] ← fors_node(SK.seed, i · 2a− j + s, j,PK.seed,ADRS)
9: end for

10: SIGFORS ← SIGFORS ∥ AUTH
11: end for
12: return SIGFORS

8.4 Computing a FORS Public Key From a Signature
As noted in Section 3, verifying a FORS signature involves computing a public-key value from
a message digest and a signature value. Verifcation succeeds if the correct public-key value is
computed, which is determined by verifying the hypertree signature on the computed public-key
value using the SLH-DSA public key. This section describes fors_pkFromSig (Algorithm 16), a
function that computes a candidate FORS public key from a FORS signature and corresponding
message digest.

In addition to a message digest md and a k · (a + 1) · n-byte signature SIGFORS, fors_pkFromSig
takes as input PK.seed from the SLH-DSA public key and an address.13

As with fors_sign, fors_pkFromSig takes as input a k·a byte message digest and then extracts k · a 8 bits.

The address ADRS must
have the layer address set to zero (since the XMSS tree that signs a FORS key is always at layer
0), the tree address set to the XMSS tree that signs the FORS key, the type set to FORS_TREE,
and the key pair address set to the index of the WOTS+ key within the XMSS tree that signs the
FORS key.

The fors_pkFromSig function begins by computing the roots of each of the k Merkle trees (lines
2 through 21). As in fors_sign, ka bits of the message digest are split into k a-bit strings (line 1),
each of which is interpreted as an integer between 0 and t − 1. The integers are used to determine

�
13

31

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

873

874

875

876

877

the locations in the Merkle trees of the secret values from the signature (lines 3 through 5). The
hashes of the secret values are computed (line 6), and the hash values are used along with the
corresponding authentication paths from the signature to compute the Merkle tree roots (lines 8
through 20). Once all of the Merkle tree roots have been computed, they are hashed together to
compute the FORS public key (lines 22 through 25).

Algorithm 16 fors_pkFromSig(SIGFORS, md, PK.seed, ADRS)
Compute a FORS public key from a FORS signature.

Input: FORS signature SIGFORS, message digest md, public seed PK.seed, address ADRS.
Output: FORS public key.

1: indices ← base_2b(md,a,k)
2: for i from 0 to k − 1 do
3: sk ← SIGFORS.getSK(i) ▷ SIGFORS[i · (a + 1) · n : (i · (a + 1)+ 1) · n]
4: ADRS.setTreeHeight(0) ▷ Compute leaf
5: ADRS.setTreeIndex(i · 2a + indices[i])
6: node[0] ← F(PK.seed,ADRS,sk)
7:
8: auth ← SIGFORS.getAUTH(i) ▷ SIGFORS[(i · (a + 1)+ 1) · n : (i + 1) · (a + 1) · n]
9: for j from 0 to a − 1 do ▷ Compute root from leaf and AUTH

10: ADRS.setTreeHeight(j + 1)� � j 11: if indices[i]/2 is even then
12: ADRS.setTreeIndex(ADRS.getTreeIndex()/2)
13: node[1] ← H(PK.seed,ADRS,node[0] ∥ auth[j])
14: else
15: ADRS.setTreeIndex((ADRS.getTreeIndex() − 1)/2)
16: node[1] ← H(PK.seed,ADRS,auth[j] ∥ node[0])
17: end if
18: node[0] ← node[1]
19: end for
20: root[i] ← node[0]
21: end for
22: forspkADRS ← ADRS ▷ Compute the FORS public key from the Merkle tree roots
23: forspkADRS.setTypeAndClear(FORS_ROOTS)
24: forspkADRS.setKeyPairAddress(ADRS.getKeyPairAddress())
25: pk ← Tk(PK.seed, forspkADRS,root)
26: return pk;

32

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

9. SLH-DSA

SLH-DSA uses the hypertree and the FORS keys to create a stateless hash-based signature
scheme. The SLH-DSA private key contains a secret seed value and a secret PRF key. The public
key consists of a key identifer PK.seed and the root of the hypertree. A signature is created
by hashing the message, using part of the message digest to select a FORS key, signing other
bits from the message digest with the FORS key, and generating a hypertree signature for the
FORS key. The parameters for SLH-DSA are those specifed previously for WOTS+, XMSS, the
SLH-DSA hypertree, and FORS, which are given in Table 1.

SLH-DSA uses one additional parameter m, which is the length in bytes of the message digest. It
is computed as:

� � � � � �
h − h′ h′ k · a

m = + +
8 8 8

SLH-DSA uses h bits of the message digest to select a FORS key: h − h′ bits to select an XMSS
tree at the lowest layer and h′ bits to select a WOTS+ key (and corresponding FORS key) from
that tree. k · a bits of the digest are signed by the selected FORS key. While only h + k · a bits of
the message digest are used, implementation is simplifed by extracting the necessary bits from a
slightly larger digest.

9.1 SLH-DSA Key Generation
SLH-DSA public keys contain two elements (see Figure 15). The frst is an n-byte public seed
PK.seed, which is used in many hash function calls to provide domain separation between
different SLH-DSA key pairs. The second value is the hypertree public key (i.e., the root of the
top layer XMSS tree). PK.seed shall be generated using an approved random bit generator (see
the NIST SP 800-90 series of publications [16, 17, 18]), where the instantiation of the random bit
generator supports at least 8n bits of security strength.

The SLH-DSA private key contains two random, secret n-byte values (see Figure 14). SK.seed is
used to generate all of the WOTS+ and FORS private key elements. SK.prf is used to generate a
randomization value for the randomized hashing of the message in SLH-DSA. The private key
also includes a copy of the public key. Both SK.seed and SK.prf shall be generated using an
approved random bit generator, where the instantiation of the random bit generator supports at
least 8n bits of security strength.

Algorithm 17 generates an SLH-DSA key pair. Lines 1 through 3 generate the random values
for the private and public keys using an instantiation of an approved random bit generator that

Figure 14. SLH-DSA private key

SK.seed
SK.prf

PK.seed
PK.root

n bytes
n bytes
n bytes
n bytes

Figure 15. SLH-DSA public key

PK.seed n bytes
PK.root n bytes

33

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

supports at least 8n bits of security strength. Lines 5 through 7 then compute the root of the top
layer XMSS tree.

lgorithm 17 slh_keygen()
enerate an SLH-DSA key pair.

Input: (none)
Output: SLH-DSA key pair (SK, PK).

$
1: SK.seed ←− Bn ▷ Set SK.seed, SK.prf, and PK.seed to random n-byte
2: SK.prf $←− Bn ▷ strings using an approved random bit generator

$ n3: PK.seed ←− B

4:
5: ADRS ← toByte(0,32) ▷ Generate the public key for the top-level XMSS tree
6: ADRS.setLayerAddress(d − 1)
7: PK.root ← _ xmss node(SK.seed,0,h′,PK.seed,ADRS)
8:
9: return ((SK.seed, SK.prf, PK.seed, PK.root), (PK.seed, PK.root))

A
G

9.2 SLH-DSA Signature Generation
An SLH-DSA signature consists of a randomization string, a FORS signature, and a hypertree
signature, as shown in Figure 16.

Generating an SLH-DSA signature (Algorithm 18) begins by creating an m-byte message digest
(lines 3 through 10). A PRF is used to create a message randomizer (line 7), and it is hashed
along with the message to create the digest (line 10). Bits are then extracted from the message
digest to be signed by the FORS key (line 11), to select an XMSS tree (lines 12 and 15), and
to select a WOTS+ key and corresponding FORS key within that XMSS tree (lines 13 and 16).
Next, the FORS signature is computed (lines 18 through 21) and the corresponding FORS public
key is obtained (line 24). Finally, the FORS public key is signed (line 26).

The message randomizer may be set in either a deterministic or non-deterministic way, depending
on whether opt_rand is set to a fxed value (line 3) or a random value (line 5). If opt_rand
is set to PK.seed, then signing will be deterministic — signing the same message twice will
result in the same signature. For devices that are vulnerable to side-channel attacks and for
which deterministic signing would be a problem, opt_rand may be set to a random value. The
generation of a random value for opt_rand does not require the use of an approved random bit
generator.

Figure 16. SLH-DSA signature data format

Randomness R
FORS signature SIGFORS

HT signature SIGHT

n bytes
k(1 + a) · n bytes
(h + d · len) · n bytes

34

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

Algorithm 18 slh_sign(M, SK)
Generate an SLH-DSA signature.

Input: Message M, private key SK = (SK.seed, SK.prf, PK.seed, PK.root).
Output: SLH-DSA signature SIG.

1: ADRS ← toByte(0,32)
2:
3: opt_rand ← PK.seed ▷ Set opt_rand to either PK.seed
4: if (RANDOMIZE) then ▷ or to a random n-byte string
5: opt_rand

$ n←− B
6: end if
7: R ← PRFmsg(SK.prf,opt_rand,M) ▷ Generate randomizer
8: SIG ← R
9:

10: digest ← Hmsg(R� �,PK.seed,PK.root,M) ▷ Compute message digest � �
11: md ← digest 0 : k·a k·a▷ 8 frst bytesh� l mi l � 8 m

tmp_idx digest k·a : k·a h−h/dh 8 ne h−h/d12: tree ← + ▷ 8 8 xt bytes� l m � l m i 8

tmp_idx k·a h−h/d k·a h−h digest : /d � � h h13: lea f ← + + + ▷ 8 8 8 8 8d next 8d bytes
14: � l m�

idx tmp h−h/d _idx h h d 15: tree ← toInt tree, mod 2 − /� 8 � �
idx tmp_idx h h/d 16: lea f ← toInt lea f , 8d mod 2

17:
18: ADRS.setTreeAddress(idxtree)
19: ADRS.setTypeAndClear(FORS_TREE)
20: ADRS.setKeyPairAddress(idxlea f)
21: SIGFORS ← fors_sign(md,SK.seed,PK.seed,ADRS)
22: SIG ← SIG ∥ SIGFORS

23:
24: PKFORS ← fors_pkFromSig(SIGFORS,md,PK.seed,ADRS) ▷ Get FORS key
25:
26: SIGHT ← ht_sign(PKFORS,SK.seed,PK.seed, idxtree, idxlea f)
27: SIG ← SIG ∥ SIGHT

28: return SIG

35

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

928

929

930

931

932

933

934

935

936

937

938

939

9.3 SLH-DSA Signature Verifcation
As with signature generation, SLH-DSA signature verifcation (Algorithm 19) begins by com-
puting a message digest (line 9) and then extracting md (line 10), idxtree (lines 11 and 14), and
idxlea f (lines 12 and 15) from the digest. A candidate FORS public key is then computed (line
21), and the signature on the FORS key is verifed (line 23). If this signature verifcation succeeds,
then the correct FORS public key was computed, and the signature SIG on message M is valid.

Algorithm 19 slh_verify(M, SIG, PK)
Verify an SLH-DSA signature.

Input: Message M, signature SIG, public key PK = (PK.seed, PK.root).
Output: Boolean.

1: if |SIG|= (1 + k(1 + a)+ h + d · len) · n then
2: return false
3: end if
4: ADRS ← toByte(0,32)
5: R ← SIG.getR() ▷ SIG[0 : n]
6: SIGFORS ← SIG.getSIG_FORS() ▷ SIG[n : (1+ k(1 + a)) · n]
7: SIGHT ← SIG.getSIG_HT() ▷ SIG[(1 + k(1 + a)) · n : (1+ k(1 + a)+ h + d · len) · n]
8:
9: digest ← Hmsg(R,PK.seed,PK.root� � � ,M) ▷ Compute message digest �

10: md ← digest 0 : k·a k·a▷ 8 frst bytesh� l mi l 8 m
tmp_idx digest k· � a : k·a h h−h −h/d next /d11: tree ← + ▷8 8 8 bytesh� l m � l m i 8

tmp_idx digest k·a h−h/d : k·a h−h/d � � h

lea f ← h12: + + + ▷ 8 8 8 8 8d next 8d bytes
13: � l m�

x −h/d14: id h h−h/d
tree ← toInt tmp_idxtree, 8 mod 2� � �

15: idxlea f ← toInt tmp_idx h
lea f , mod 2h/d

8d
16:
17: ADRS.setTreeAddress(idxtree) ▷ Compute FORS public key
18: ADRS.setTypeAndClear(FORS_TREE)
19: ADRS.setKeyPairAddress(idxlea f)
20:
21: PKFORS ← fors_pkFromSig(SIGFORS,md,PK.seed,ADRS)
22:
23: return ht_verify(PKFORS,SIGHT ,PK.seed, idxtree, idxlea f ,PK.root)

̸

9.4 Prehash SLH-DSA
For some cryptographic modules that generate SLH-DSA signatures, performing lines 7 and 10
of Algorithm 18 may be infeasible if the message M is large. This may, for example, be the result
of the module having limited memory to store the message to be signed. Similarly, for some
cryptographic modules that verify SLH-DSA signatures, performing step 9 of Algorithm 19 may
be infeasible if the message M is large. For some use cases, these issues may be addressed by

36

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

940

941

942

943

944

945

946

947

948

949

950

signing a digest of the message rather than signing the message directly. In order to maintain the
same level of security strength, the digest that is signed needs to be generated using an approved
hash function or extendable-output function (XOF) (e.g., from FIPS 180-4 [12] or FIPS 202 [10])
that provides at least 8n bits of classical security strength against both collision and second
preimage attacks [10, Table 4].14

14Obtaining at least 8n bits of classical security strength against collision attacks requires that the digest to be signed
is at least 2n bytes in length.

Note that verifcation of a signature created in this way will
require the verify function to generate a digest from the message in the same way for input to the
verifcation function.

It should be noted that even if it is feasible to compute collisions on the hash functions (or XOF)
used to instantiate Hmsg, PRF, PRFmsg, F, H, and Tl , there is believed to be no adverse effect
on the security of SLH-DSA.15

15As noted in Section 10, applications that require message-bound signatures may be adversely affected if it is
feasible to compute collisions on . Hmsg

However, if the input to the signing function is a digest of the
message, then collisions on the function used to compute the digest can result in forged messages.

37

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

10. Parameter Sets

This standard approves 12 parameter sets for use with SLH-DSA. A parameter set consists of
parameters for WOTS+ (n and lgw), XMSS and the SLH-DSA hypertree (h and d), and FORS (k
and a), as well as instantiations for the functions Hmsg, PRF, PRFmsg, F, H, and Tl .

Table 1 lists the parameter sets that are approved for use. Each parameter set name indicates the
hash function family (SHA2 or SHAKE) that is used to instantiate the hash functions, the length
in bits of the security parameter n, and whether the parameter set was designed to create relatively
small signatures (‘s’) or to have relatively fast signature generation (‘f’). There are six sets of
values for n, lgw, h, d, k, and a that are approved for use.16

16In addition to n, lgw, h, d, k, and a, Table 1 also lists values for parameters that may be computed from these values
(h′ , m, public-key size, and signature size). The security level is the security category in which the parameter set is
claimed to be [4].

For each of the six sets of values,
the functions Hmsg, PRF, PRFmsg, F, H, and Tl may be instantiated using either SHAKE [10]
or SHA-2 [12]. For the SHAKE parameter sets, the functions shall be instantiated as specifed
in Section 10.1. For the SHA2 parameter sets, the functions shall be instantiated as specifed in
Section 10.2 if n = 16 and shall be instantiated as specifed in Section 10.3 if n = 24 or n = 32.

Table 1. SLH-DSA parameter sets

sec pk sig
n h d h′ a k lgw m level bytes bytes

SLH-DSA-SHA2-128s
SLH-DSA-SHAKE-128s

16 63 7 9 12 14 4 30 1 32 7 856

SLH-DSA-SHA2-128f
SLH-DSA-SHAKE-128f

16 66 22 3 6 33 4 34 1 32 17 088

SLH-DSA-SHA2-192s
SLH-DSA-SHAKE-192s

24 63 7 9 14 17 4 39 3 48 16 224

SLH-DSA-SHA2-192f
SLH-DSA-SHAKE-192f

24 66 22 3 8 33 4 42 3 48 35 664

SLH-DSA-SHA2-256s
SLH-DSA-SHAKE-256s

32 64 8 8 14 22 4 47 5 64 29 792

SLH-DSA-SHA2-256f
SLH-DSA-SHAKE-256f

32 68 17 4 9 35 4 49 5 64 49 856

In Sections 10.2 and 10.3, the functions MGF1-SHA-256 and MGF1-SHA-512 are MGF from
Section 7.2.2.2 of NIST SP 800-56B Revision 2 [9], where hash is SHA-256 or SHA-512,
respectively. The functions HMAC-SHA-256 and HMAC-SHA-512 are the HMAC function
from FIPS 198-1 [20], where H is SHA-256 or SHA-512, respectively.

The 12 parameter sets included in Table 1 were designed to meet certain security strength
categories defned by NIST in its original Call for Proposals [21] with respect to existential
unforgeability under chosen message attack (EUF-CMA) when each key pair is used to sign at
most 264 messages.17

17If a key pair were used to sign 10 billion (1010) messages per second it would take over 58 years to sign 264

messages.

These security strength categories are explained further in Appendix A.

38

975

980

985

990

995

1000

1005

1010

972

973

974

976

977

978

979

981

982

983

984

986

987

988

989

991

992

993

994

996

997

998

999

1001

1002

1003

1004

1006

1007

1008

1009

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

Using this approach, security strength is not described by a single number, such as “128 bits of
security.” Instead, each parameter set is claimed to be at least as secure as a generic block cipher
with a prescribed key size. More precisely, it is claimed that the computational resources needed
to break SLH-DSA are greater than or equal to the computational resources needed to break
the block cipher when these computational resources are estimated using any realistic model of
computation. Different models of computation can be more or less realistic and, accordingly,
lead to more or less accurate estimates of security strength. Some commonly studied models are
discussed in [22].

Concretely, the parameter sets with n = 16 are claimed to be in security category 1, the parameter
sets with n = 24 are claimed to be in security category 3, and the parameter sets with n = 32
are claimed to be in security category 5 [4]. For additional discussion of the security strength of
SLH-DSA, see [4, 23].

Some applications require a property known as message-bound signatures [24, 25], which
intuitively requires that it be infeasible for anyone to create a public key and a signature that
are valid for two different messages. Signature schemes are not required to have this property
under the EUF-CMA security defnition used in assigning security categories. In the case of
SLH-DSA, the key pair owner could create two messages with the same signature by fnding
a collision on Hmsg. Due to the length of the output of Hmsg, fnding such a collision would be
expected to require fewer computational resources than specifed for the parameter sets’ claimed
security levels in all cases except SLH-DSA-SHA2-128f and SLH-DSA-SHAKE-128f. Therefore,
applications that require message-bound signatures should either take the expected cost of fnding
collisions on Hmsg into account when choosing an appropriate parameter set or apply a technique,
such as the BUFF transformation [25], in order to obtain the message-bound signatures property.

10.1 SLH-DSA Using SHAKE
Hmsg(R,PK.seed,PK.root,M) = SHAKE256(R ∥ PK.seed ∥ PK.root ∥ M,8m)
PRF(PK.seed,SK.seed,ADRS) = SHAKE256(PK.seed ∥ ADRS ∥ SK.seed,8n)
PRFmsg(SK.prf,opt_rand,M) = SHAKE256(SK.prf ∥ opt_rand ∥ M,8n)
F(PK.seed,ADRS,M1) = SHAKE256(PK.seed ∥ ADRS ∥ M1,8n)
H(PK.seed,ADRS,M2) = SHAKE256(PK.seed ∥ ADRS ∥ M2,8n)
Tℓ(PK.seed,ADRS,Mℓ) = SHAKE256(PK.seed ∥ ADRS ∥ Mℓ,8n)

10.2 SLH-DSA Using SHA2 for Security Category 1
Hmsg(R,PK.seed,PK.root,M)= MGF1-SHA-256(R ∥ PK.seed ∥ SHA-256(R ∥ PK.seed ∥ PK.root ∥
M),m)
PRF(PK.seed c ,SK.seed,ADRS) = Truncn(SHA-256(PK.seed ∥ toByte(0,64 − n) ∥ ADRS ∥
SK.seed))
PRFmsg(SK.prf,opt_rand,M) = Truncn(HMAC-SHA-256(SK.prf,opt_rand ∥ M))
F(PK.seed,ADRS,M1) = Truncn(SHA-256(PK.seed ∥ toByte(0,64 c − n) ∥ ADRS ∥ M1))
H(PK.seed,ADRS,M2) = Truncn(SHA-256(PK.seed ∥ toByte(0 c,64 − n) ∥ ADRS ∥ M2))
Tℓ(PK.seed,ADRS,Mℓ) = c Truncn(SHA-256(PK.seed ∥ toByte(0,64 − n) ∥ ADRS ∥ Mℓ))

39

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

1011

1012

1013

1014

1015

1016

1017

1018

1019

10.3 SLH-DSA Using SHA2 for Security Categories 3 and 5
Hmsg(R,PK.seed,PK.root,M)= MGF1-SHA-512(R ∥ PK.seed ∥ SHA-512(R ∥ PK.seed ∥ PK.root ∥
M),m)
PRF(PK.seed c ,SK.seed,ADRS) = Truncn(SHA-256(PK.seed ∥ toByte(0,64 − n) ∥ ADRS ∥
SK.seed))
PRFmsg(SK.prf,opt_rand,M) = Truncn(HMAC-SHA-512(SK.prf,opt_rand ∥ M))
F(PK.seed,ADRS,M1) = Truncn(SHA-256(PK.seed ∥ toByte(0,64 c − n) ∥ ADRS ∥ M1))
H(PK.seed,ADRS,M2) = Truncn(SHA-512(PK.seed ∥ toByte(0 c,128 − n) ∥ ADRS ∥ M2))
Tℓ(PK.seed,ADRS,Mℓ) = c Truncn(SHA-512(PK.seed ∥ toByte(0,128− n) ∥ ADRS ∥ Mℓ))

40

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

02

02

02

02

02

02

02

02

02

03

03

03

03

03

03

03

03

03

03

04

04

04

04

04

04

04

04

04

04

05

05

05

05

05

05

05

05

05

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

1020 References

[1] National Institute of Standards and Technology. Digital signature standard (DSS). (U.S.
Department of Commerce, Washington, DC), Federal Information Processing Standards
Publication (FIPS) 186-5, February 2023. https://doi.org/10.6028/NIST.FIPS.186-5.

[2] Elaine Barker. Guideline for using cryptographic standards in the federal government:
Cryptographic mechanisms. (National Institute of Standards and Technology, Gaithersburg,
MD), NIST Special Publication (SP) 800-175B, Rev. 1, March 2020. https://doi.org/10.
6028/NIST.SP.800-175Br1.

[3] Elaine B. Barker. Recommendation for obtaining assurances for digital signature applica-
tions. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special
Publication (SP) 800-89, November 2006. https://doi.org/10.6028/NIST.SP.800-89.

[4] Jean-Philippe Aumasson, Daniel J. Bernstein, Ward Beullens, Christoph Dobraunig, Maria
Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, Andreas Hülsing, Panos Kampanakis,
Stefan Kölbl, Tanja Lange, Martin M. Lauridsen, Florian Mendel, Ruben Niederhagen,
Christian Rechberger, Joost Rijneveld, Peter Schwabe, and Bas Westerbaan. SPHINCS+ –
submission to the NIST post-quantum project, v.3.1, 2022.

[5] Jean-Philippe Aumasson, Daniel J. Bernstein, Ward Beullens, Christoph Dobraunig, Maria
Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, Andreas Hülsing, Panos Kampanakis,
Stefan Kölbl, Tanja Lange, Martin M. Lauridsen, Florian Mendel, Ruben Niederhagen,
Christian Rechberger, Joost Rijneveld, Peter Schwabe, and Bas Westerbaan. SPHINCS+ –
submission to the NIST post-quantum project, v.3, 2020.

[6] Morgan Stern. Re: Diversity of signature schemes. https://groups.google.com/a/list.nist.
gov/g/pqc-forum/c/2LEoSpskELs/m/LkUdQ5mKAwAJ, 2021.

[7] Sydney Antonov. Round 3 offcial comment: SPHINCS+. https://groups.google.com/a/list.
nist.gov/g/pqc-forum/c/FVItvyRea28/m/mGaRi5iZBwAJ, 2022.

[8] Ray Perlner, John Kelsey, and David Cooper. Breaking category fve SPHINCS+ with SHA-
256. In Jung Hee Cheon and Thomas Johansson, editors, Post-Quantum Cryptography,
pages 501–522, Cham, 2022. Springer International Publishing.

[9] Elaine B. Barker, Lily Chen, Allen L. Roginsky, Apostol Vassilev, Richard Davis, and
Scott Simon. Recommendation for pair-wise key-establishment using integer factorization
cryptography. (National Institute of Standards and Technology, Gaithersburg, MD), NIST
Special Publication (SP) 800-56B Revision 2, March 2019. https://doi.org/10.6028/NIST.
SP.800-56Br2.

41

[10] National Institute of Standards and Technology. SHA-3 standard: Permutation-based
hash and extendable-output functions. (U.S. Department of Commerce, Washington, DC),
Federal Information Processing Standards Publication (FIPS) 202, August 2015. https:
//doi.org/10.6028/NIST.FIPS.202.

[11] John Kelsey, Shu-jen Chang, and Ray Perlner. SHA-3 derived functions: cSHAKE, KMAC,
TupleHash and ParallelHash. (National Institute of Standards and Technology, Gaithersburg,

https://doi.org/10.6028/NIST.FIPS.186-5
https://doi.org/10.6028/NIST.SP.800-175Br1
https://doi.org/10.6028/NIST.SP.800-175Br1
https://doi.org/10.6028/NIST.SP.800-175Br1
https://doi.org/10.6028/NIST.SP.800-89
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/2LEoSpskELs/m/LkUdQ5mKAwAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/2LEoSpskELs/m/LkUdQ5mKAwAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/2LEoSpskELs/m/LkUdQ5mKAwAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/FVItvyRea28/m/mGaRi5iZBwAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/FVItvyRea28/m/mGaRi5iZBwAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/FVItvyRea28/m/mGaRi5iZBwAJ
https://doi.org/10.6028/NIST.SP.800-56Br2
https://doi.org/10.6028/NIST.SP.800-56Br2
https://doi.org/10.6028/NIST.SP.800-56Br2
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202

1060

1065

1070

1075

1080

1085

1090

1095

1059

1061

1062

1063

1064

1066

1067

1068

1069

1071

1072

1073

1074

1076

1077

1078

1079

1081

1082

1083

1084

1086

1087

1088

1089

1091

1092

1093

1094

1096

1097

1098

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

MD), NIST Special Publication (SP) 800-185, December 2016. https://doi.org/10.6028/
NIST.SP.800-185.

[12] National Institute of Standards and Technology. Secure hash standard (SHS). (U.S. Depart-
ment of Commerce, Washington, DC), Federal Information Processing Standards Publica-
tion (FIPS) 180-4, August 2015. https://doi.org/10.6028/NIST.FIPS.180-4.

[13] Andreas Hülsing, Denis Butin, Stefan-Lukas Gazdag, Joost Rijneveld, and Aziz Mohaisen.
XMSS: eXtended Merkle signature scheme, Internet Research Task Force (IRTF) request
for comments (RFC) 8391. https://doi.org/10.17487/RFC8391, May 2018.

[14] David A Cooper, Daniel Apon, Quynh H Dang, Michael S Davidson, Morris J Dworkin,
and Carl A Miller. Recommendation for stateful hash-based signature schemes. (National
Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP)
800-208, October 2020. https://doi.org/10.6028/NIST.SP.800-208.

[15] Ralph Charles Merkle. Secrecy, authentication, and public key systems. PhD thesis, Stanford
university, 1979.

[16] Elaine B. Barker and John M. Kelsey. Recommendation for random number generation
using deterministic random bit generators. (National Institute of Standards and Technology,
Gaithersburg, MD), NIST Special Publication (SP) 800-90A, Rev. 1, June 2015. https:
//doi.org/10.6028/NIST.SP.800-90Ar1.

[17] Meltem Sönmez Turan, Elaine B. Barker, John M. Kelsey, Kerry A. McKay, Mary L.
Baish, and Mike Boyle. Recommendation for the entropy sources used for random bit
generation. (National Institute of Standards and Technology, Gaithersburg, MD), NIST
Special Publication (SP) 800-90B, January 2018. https://doi.org/10.6028/NIST.SP.800-90B.

[18] Elaine B. Barker, John M. Kelsey, Kerry McKay, Allen Roginsky, and Meltem Sönmez
Turan. Recommendation for random bit generator (RBG) constructions. (National Institute
of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-
90C (Third Public Draft), September 2022. https://csrc.nist.gov/publications/detail/sp/800-
90c/draft.

[19] Leon Groot Bruinderink and Andreas Hülsing. “Oops, i did it again” – security of one-time
signatures under two-message attacks. In Carlisle Adams and Jan Camenisch, editors,
Selected Areas in Cryptography – SAC 2017, pages 299–322, Cham, 2018. Springer Interna-
tional Publishing.

[20] National Institute of Standards and Technology. The keyed-hash message authentication
code (HMAC). (U.S. Department of Commerce, Washington, DC), Federal Information
Processing Standards Publication (FIPS) 198-1, July 2008. https://doi.org/10.6028/NIST.
FIPS.198-1.

[21] National Institute of Standards and Technology. Submission requirements and evaluation
criteria for the post-quantum cryptography standardization process, 2016.

[22] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang, John Kelsey, Jacob
Lichtinger, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner, Angela
Robinson, and Daniel Smith-Tone. Status report on the third round of the NIST post-

42

https://doi.org/10.6028/NIST.SP.800-185
https://doi.org/10.6028/NIST.SP.800-185
https://doi.org/10.6028/NIST.SP.800-185
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.17487/RFC8391
https://doi.org/10.6028/NIST.SP.800-208
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-90B
https://csrc.nist.gov/publications/detail/sp/800-90c/draft
https://csrc.nist.gov/publications/detail/sp/800-90c/draft
https://csrc.nist.gov/publications/detail/sp/800-90c/draft
https://doi.org/10.6028/NIST.FIPS.198-1
https://doi.org/10.6028/NIST.FIPS.198-1
https://doi.org/10.6028/NIST.FIPS.198-1

1100

1105

1110

1115

1120

1125

1130

1099

1101

1102

1103

1104

1106

1107

1108

1109

1111

1112

1113

1114

1116

1117

1118

1119

1121

1122

1123

1124

1126

1127

1128

1129

1131

1132

1133

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

quantum cryptography standardization process. Technical Report NIST Interagency or
Internal Report (IR) 8413, National Institute of Standards and Technology, Gaithersburg,
MD, July 2022.

[23] Andreas Hülsing and Mikhail Kudinov. Recovering the tight security proof of SPHINCS+ .
In Shweta Agrawal and Dongdai Lin, editors, Advances in Cryptology – ASIACRYPT 2022,
pages 3–33, Cham, 2022. Springer Nature Switzerland.

[24] Jacques Stern, David Pointcheval, John Malone-Lee, and Nigel P. Smart. Flaws in applying
proof methodologies to signature schemes. In Moti Yung, editor, Advances in Cryptology —
CRYPTO 2002, pages 93–110, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[25] C. Cremers, S. Düzlü, R. Fiedler, C. Janson, and M. Fischlin. BUFFing signature schemes
beyond unforgeability and the case of post-quantum signatures. In 2021 IEEE Symposium
on Security and Privacy (SP), pages 1696–1714, Los Alamitos, CA, USA, may 2021. IEEE
Computer Society.

[26] Samuel Jaques, Michael Naehrig, Martin Roetteler, and Fernando Virdia. Implementing
Grover oracles for quantum key search on AES and LowMC. In Anne Canteaut and Yuval
Ishai, editors, Advances in Cryptology – EUROCRYPT 2020, pages 280–310, Cham, 2020.
Springer International Publishing.

[27] Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, page
212–219, New York, NY, USA, 1996. Association for Computing Machinery.

[28] Matthias J. Kannwischer, Aymeric Genêt, Denis Butin, Juliane Krämer, and Johannes
Buchmann. Differential power analysis of XMSS and SPHINCS. In Junfeng Fan and
Benedikt Gierlichs, editors, Constructive Side-Channel Analysis and Secure Design, pages
168–188, Cham, 2018. Springer International Publishing.

[29] Laurent Castelnovi, Ange Martinelli, and Thomas Prest. Grafting trees: A fault attack against
the SPHINCS framework. In Tanja Lange and Rainer Steinwandt, editors, Post-Quantum
Cryptography, pages 165–184, Cham, 2018. Springer International Publishing.

[30] Aymeric Genêt, Matthias J. Kannwischer, Hervé Pelletier, and Andrew McLauchlan. Practi-
cal fault injection attacks on SPHINCS. Cryptology ePrint Archive, Paper 2018/674, 2018.
https://eprint.iacr.org/2018/674.

[31] Dorian Amiet, Lukas Leuenberger, Andreas Curiger, and Paul Zbinden. FPGA-based
SPHINCS+ implementations: Mind the glitch. In 2020 23rd Euromicro Conference on
Digital System Design (DSD), pages 229–237, 2020.

[32] Aymeric Genêt. On protecting SPHINCS+ against fault attacks. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2023(2):80–114, Mar. 2023.

43

https://eprint.iacr.org/2018/674

1135

1140

1145

1150

1155

1160

1165

1170

1134

1136

1137

1138

1139

1141

1142

1143

1144

1146

1147

1148

1149

1151

1152

1153

1154

1156

1157

1158

1159

1161

1162

1163

1164

1166

1167

1168

1169

1171

1172

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

Appendix A — Security Strength Categories

NIST understands that there are signifcant uncertainties in estimating the security strengths of
post-quantum cryptosystems. These uncertainties come from two sources: frst, the possibility
that new quantum algorithms will be discovered, leading to new cryptanalytic attacks; and second,
our limited ability to predict the performance characteristics of future quantum computers, such
as their cost, speed, and memory size.

In order to address these uncertainties, NIST proposed the following approach in its original Call
for Proposals [21]. Instead of defning the strength of an algorithm using precise estimates of
the number of “bits of security,” NIST defned a collection of broad security strength categories.
Each category is defned by a comparatively easy-to-analyze reference primitive whose security
will serve as a foor for a wide variety of metrics that NIST deems potentially relevant to practical
security. A given cryptosystem may be instantiated using different parameter sets in order to ft
into different categories. The goals of this classifcation are:

• To facilitate meaningful performance comparisons between various post-quantum algo-
rithms by ensuring — insofar as possible — that the parameter sets being compared provide
comparable security

• To allow NIST to make prudent future decisions regarding when to transition to longer keys

• To help submitters make consistent and sensible choices regarding what symmetric prim-
itives to use in padding mechanisms or other components of their schemes that require
symmetric cryptography

• To better understand the security/performance trade-offs involved in a given design approach

In accordance with the second and third goals above, NIST based its classifcation on the range
of security strengths offered by the existing NIST standards in symmetric cryptography, which
NIST expects to offer signifcant resistance to quantum cryptanalysis. In particular, NIST defned
a separate category for each of the following security requirements (listed in order of increasing
strength):

1. Any attack that breaks the relevant security defnition must require computational resources
comparable to or greater than those required for key search on a block cipher with a 128-bit
key (e.g., AES-128).

2. Any attack that breaks the relevant security defnition must require computational resources
comparable to or greater than those required for collision search on a 256-bit hash function
(e.g., SHA-256/ SHA3-256).

3. Any attack that breaks the relevant security defnition must require computational resources
comparable to or greater than those required for key search on a block cipher with a 192-bit
key (e.g., AES-192).

4. Any attack that breaks the relevant security defnition must require computational resources
comparable to or greater than those required for collision search on a 384-bit hash function
(e.g., SHA-384/ SHA3-384).

5. Any attack that breaks the relevant security defnition must require computational resources

44

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

comparable to or greater than those required for key search on a block cipher with a 256-bit
key (e.g., AES-256).

Table 2. NIST Security Strength Categories

Security Category Corresponding Attack Type Example

1 Key search on block cipher with 128-bit key AES-128

2 Collision search on 256-bit hash function SHA3-256

3 Key search on block cipher with 192-bit key AES-192

4 Collision search on 384-bit hash function SHA3-384

5 Key search on block cipher with 256-bit key AES-256

Here, computational resources may be measured using a variety of different metrics (e.g., number
of classical elementary operations, quantum circuit size). In order for a cryptosystem to satisfy one
of the above security requirements, any attack must require computational resources comparable
to or greater than the stated threshold with respect to all metrics that NIST deems to be potentially
relevant to practical security.

NIST intends to consider a variety of possible metrics, refecting different predictions about the
future development of quantum and classical computing technology, and the cost of different
computing resources (such as the cost of accessing extremely large amounts of memory).18

18See the discussion in [22, Appendix B].

NIST
will also consider input from the cryptographic community regarding this question.

In an example metric provided to submitters, NIST suggested an approach where quantum attacks
are restricted to a fxed running time or circuit depth. Call this parameter MAXDEPTH. This
restriction is motivated by the diffculty of running extremely long serial computations. Plausible
values for MAXDEPTH range from 240 logical gates (the approximate number of gates that
presently envisioned quantum computing architectures are expected to serially perform in a year)
through 264 logical gates (the approximate number of gates that current classical computing
architectures can perform serially in a decade), to no more than 296 logical gates (the approximate
number of gates that atomic scale qubits with speed of light propagation times could perform in a
millennium). The most basic version of this cost metric ignores costs associated with physically
moving bits or qubits so they are physically close enough to perform gate operations. This
simplifcation may result in an underestimate of the cost of implementing memory-intensive
computations on real hardware.

The complexity of quantum attacks can then be measured in terms of circuit size. These numbers
can be compared to the resources required to break AES and SHA-3. During the post-quantum
standardization process, NIST gave the estimates in Table 3 for the classical and quantum gate
counts19

19Quantum circuit sizes are based on the work in [26].

for the optimal key recovery and collision attacks on AES and SHA-3, respectively,
where circuit depth is limited to MAXDEPTH.20

20NIST believes the above estimates are accurate for the majority of values of MAXDEPTH that are relevant to its

45

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

Table 3. Estimates for classical and quantum gate counts for the optimal key recovery and
collision attacks on AES and SHA-3

AES-128 2157/MAXDEPTH quantum gates or 2143 classical gates

SHA3-256 2146 classical gates

AES-192 2221/MAXDEPTH quantum gates or 2207 classical gates

SHA3-384 2210 classical gates

AES-256 2285/MAXDEPTH quantum gates or 2272 classical gates

SHA3-512 2274 classical gates

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

It is worth noting that the security categories based on these reference primitives provide substan-
tially more quantum security than a naïve analysis might suggest. For example, categories 1, 3,
and 5 are defned in terms of block ciphers, which can be broken using Grover’s algorithm [27]
with a quadratic quantum speedup. However, Grover’s algorithm requires a long-running serial
computation, which is diffcult to implement in practice. In a realistic attack, one has to run many
smaller instances of the algorithm in parallel, which makes the quantum speedup less dramatic.

Finally, for attacks that use a combination of classical and quantum computation, one may
use a cost metric that rates logical quantum gates as being several orders of magnitude more
expensive than classical gates. Presently envisioned quantum computing architectures typically
indicate that the cost per quantum gate could be billions or trillions of times the cost per classical
gate. However, especially when considering algorithms claiming a high security strength (e.g.,
equivalent to AES-256 or SHA-384), it is likely prudent to consider the possibility that this
disparity will narrow signifcantly or even be eliminated.

security analysis, but the above estimates may understate the security of SHA for very small values of MAXDEPTH
and may understate the quantum security of AES for very large values of MAXDEPTH.

46

FIPS 205 (DRAFT) STATELESS HASH-BASED DIGITAL SIGNATURE STANDARD

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

Appendix B — Implementation Considerations

This appendix discusses some implementation considerations for SLH-DSA.

Don’t support component use. As WOTS+, XMSS, FORS, and hypertree signature schemes
are not approved for use as standalone signature schemes, cryptographic modules should not
make interfaces to these components available to applications. NIST SP 800-208 [14] specifes
approved stateful hash-based signature schemes.

Side-channel and fault attacks. For signature schemes, secrecy of the private key is critical.
Care must be taken to protect implementations against attacks, such as side-channel attacks or
fault attacks [28, 29, 30, 31, 32]. A cryptographic device may leak critical information with
side-channel analysis or attacks that allow internal data or keying material to be extracted without
breaking the cryptographic primitives.

Floating-point arithmetic. Implementations of SLH-DSA should not use foating-point arith-
metic, as rounding errors in foating point operations may lead to incorrect results in some cases.
In all pseudocode in this standard in which division is performed (e.g., x/y), and y may not divide
x, either ⌊x/y⌋ or ⌈x/y⌉ is used. Both of these may be computed without foating-point arithmetic
as ordinary integer division x/y computes ⌊x/y⌋, and ⌈x/y⌉ = ⌊(x + y − 1)/y⌋.

While the value of len2 (see Equation 5.3) may be computed without using foating-point arith-
metic (see Algorithm 20), it is recommended that this value be precomputed. When lgw = 4 and
9 ≤ n ≤ 136, the value of len2 will be 3.

Algorithm 20 gen_len2(n, lgw)

Compute len2 (Equation 5.3).

Input: Security parameter n, bits per hash chain lgw.
Output: len2.

lg1: w ← 2 jw k ▷ Equation 5.1
len 8·n+lgw−12: 1 ← ▷ lg Equation 5.2

w

3: max_checksum = len1 · (w − 1) ▷ Maximum checksum value that may need to be signed
4:
5: len2 ← 1 ▷ Maximum value that may be signed using

len6: capacity ← w ▷ len 2 2 hash chains is w − 1 = capacity − 1
7: while capacity ≤ max_checksum do
8: len2 ← len2 + 1
9: capacity ← capacity · w

10: end while
11: return len2

47

	Stateless Hash-Based Digital Signature Standard
	Preamble
	Foreword
	Abstract
	Keywords

	Contents
	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms

	1 Introduction
	1.1 Purpose and Scope
	1.2 Context
	1.3 Differences From the SPHINCS+ Submission

	2 Glossary of Acronyms, Terms, and Mathematical Symbols
	2.1 Acronyms
	2.2 Terms and Definitions
	2.3 Mathematical Symbols

	3 Overview of the SLH-DSA Signature Scheme
	3.1 Additional Requirements

	4 Functions and Addressing
	4.1 Hash Functions and Pseudorandom Functions
	4.2 Addresses
	4.3 Member Functions
	4.4 Arrays, Byte Strings, and Integers

	5 One-Time Signatures
	5.1 WOTS+ Public-Key Generation
	5.2 WOTS+ Signature Generation
	5.3 Computing a WOTS+ Public Key From a Signature

	6 The eXtended Merkle Signature Scheme (XMSS)
	6.1 Generating a Merkle Hash Tree
	6.2 Generating an XMSS Signature
	6.3 Computing an XMSS Public Key From a Signature

	7 The SLH-DSA Hypertree
	7.1 Hypertree Signature Generation
	7.2 Hypertree Signature Verification

	8 Forest of Random Subsets (FORS)
	8.1 Generating FORS Secret Values
	8.2 Generating a Merkle Hash Tree
	8.3 Generating a FORS Signature
	8.4 Computing a FORS Public Key From a Signature

	9 SLH-DSA
	9.1 SLH-DSA Key Generation
	9.2 SLH-DSA Signature Generation
	9.3 SLH-DSA Signature Verification
	9.4 Prehash SLH-DSA

	10 Parameter Sets
	10.1 SLH-DSA Using SHAKE
	10.2 SLH-DSA Using SHA2 for Security Category 1
	10.3 SLH-DSA Using SHA2 for Security Categories 3 and 5

	References
	Appendix A — Security Strength Categories
	Appendix B — Implementation Considerations

