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Recapitulation
Consider the prisoners’ dilemma game of Figure 1. The unique Nash equilibrium (in fact, the
dominance-solvable outcome) requires both players to Fink, which is Pareto dominated by both players
cooperating (i.e. playing Mum). We often observe cooperation in the real world; what must we add to
our model in order that cooperation become rational? Perhaps cooperation would be rational when
players acknowledge that they are in a repeated relationship: that there is actually a sequence of stage
games, where a player’s behavior in a stage can be conditioned upon the treatment she has received from
other players in the past.

                                                
Ù Û © 1996 by Jim Ratliff, <jim@virtualperfection.com>, <http://virtualperfection.com/gametheory>.
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Figure 1: A Prisoners’ Dilemma

Disconcertingly, when the prisoners’ dilemma is repeated a commonly known finite number of times,
a backwards induction argument implies that in the unique subgame-perfect equilibrium of this repeated
game the players will still Fink in every period.1,2 The key to sustaining cooperative behavior in this
game is to let the stage game be infinitely repeated.3 In particular, when we assumed that players’
preferences over stage-game payoff streams could be represented by the discounted sum of the stage-
game payoffs, we saw that cooperation by both players in every period was a subgame-perfect
equilibrium of the infinitely repeated prisoners’ dilemma, as long as the players were “sufficiently
patient”—their discount factors were sufficiently close to one.4

Cooperation was achieved in the infinitely repeated prisoners’ dilemma by having both players adopt
“grim trigger” strategies: Each starts out playing the desired Mum and continues to choose this
cooperative action as long as the other player has always played Mum as well. If her opponent ever
plays Fink, though, she switches to the open-loop strategy of Finking in every period.

To see that these trigger strategies constitute a Nash equilibrium of the repeated game we analyze the
tradeoff that a player faces when deciding whether to deviate from her appointed actions along the
alleged equilibrium path: Playing Fink rather than Mum benefits the deviant in that period because she
receives two instead of one.5 However, because upon a defection her opponent would switch to the
open-loop punishment phase of Fink every period, the deviant can do no better than accept zero in every
remaining period. So the prospective deviant asks herself which is more desirable: receiving two today
and zero forever afterward? or conforming and receiving one today and forever? The answer depends on
her discount factor ∂. If she is very impatient, valuing the future very little, i.e. ∂ is close to zero, the
single-period gain in the defecting period will outweigh the loss in later periods. If, on the other hand,
she is more patient, receiving one rather than zero in every subsequent period outweighs the temptation
of today grabbing two rather than one. We saw that in the infinitely repeated version of the game in
Figure 1 cooperation in every period was a Nash equilibrium as long as each player’s discount factor
exceeded one-half.

                                                
1 This is Theorem 4 of the “Repeated Games.” The result follows because there is a unique Nash-equilibrium payoff vector in the stage

game. As we saw in the two-period example in “Repeated Games,” it does not hold when the stage game has more than one Nash-
equilibrium payoff vector. See also Benoît and Krishna [1985].

2 In fact, (Fink, Fink) in every period is also the unique Nash equilibrium of the finitely repeated prisoners’ dilemma. This requires more
reasoning and relies upon the fact that the stage-game Nash equilibrium yields the minmax payoff vector. See Sorin [1986: 156,
Proposition 13] or Nalebuff [1988: 150, 153–154, Puzzle 3].

3 Or the game could be finitely repeated with probability one, but players are uncertain about how long the game will continue and in
every period they assess a positive probability to the game continuing at least one more period. See the “Infinitely Repeated Games
with Discounting” handout.

4 See the “Infinitely Repeated Games with Discounting” handout.
5 We analyze a deviation assuming that all other players choose the actions prescribed by the conjectured equilibrium strategies. In this

case, then, a player contemplating deviation in some period assumes that her opponent will play Mum that period.
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These trigger strategies constitute a subgame-perfect equilibrium of the repeated game, for the same
range of discount factors, because their restrictions to any subgame form a Nash equilibrium of the
subgame. In particular, in any subgame in which either player had ever deviated, the equilibrium
strategies dictate that the players choose (Fink, Fink) every period. Because this is just an open-loop
repetition of a stage-game Nash equilibrium, the restrictions of the repeated-game strategies to such a
subgame constitute a Nash equilibrium of the subgame.6,7

Introduction
So we have successfully shown how cooperation can arise in a repeated relationship where it could not
in a “single-shot” context. This raises additional questions. Can other outcomes besides “everyone
always cooperate” or “everyone always fink” (which remains equilibrium behavior for all discount
factors) be sustained in equilibrium in the infinitely repeated prisoners’ dilemma? What about other
games? What outcomes can be sustained in equilibrium when they are infinitely repeated? The original
motivation for developing a theory of repeated games was to show that cooperative behavior was an
equilibrium. The theoreticians were all too clever, for, as we will see, they showed that in many cases a
huge multiplicity of even very “noncooperative” stage-game payoffs could be sustained on average as an
equilibrium of the repeated game.

These findings are made precise in numerous folk theorems.8,9 Each folk theorem considers a class of
games and identifies a set of payoff vectors each of which can be supported by some equilibrium
strategy profile. There are many folk theorems because there are many classes of games and different
choices of equilibrium concept. For example, games may be repeated infinitely or only finitely many
times. There are many different specifications of the repeated game payoffs. For example, there is the
Cesaro limit of the means, the Abel limit (Aumann [1985: 210]), the overtaking criterion (Rubinstein
[1979]) as well as the average discounted payoff, which we have adopted. They may be games of
complete information or they might be characterized by one of many different specifications of
incomplete information. Some folk theorems identify sets of payoff vectors which can be supported by
Nash equilibria; of course, of more interest are those folk theorems which identify payoffs supported by
subgame-perfect equilibria.

The strongest folk theorems are of the following loosely stated form: “Any strictly individually
rational and feasible payoff vector of the stage game can be supported as a subgame-perfect equilibrium
average payoff of the repeated game.” These statements often come with qualifications such as “for
discount factors sufficiently close to 1” or, for finitely repeated games, “if repeated sufficiently many
times.”

                                                
6 See Theorem 1 of the “Repeated Games” handout.
7 Their restrictions to these deviation subgames are Nash equilibria of these subgames for all discount factors. The qualification on the

discount factor is inherited by the requirement that the strategy profile be a Nash equilibrium of the entire game.
8 They are so named because results of their type were widely believed by game theorists prior to published formal statements or proofs.

Myerson [1991: 332] suggests that these be called general feasibility theorems. He correctly points out that “naming a theorem for the
fact that it was once unpublished conveys no useful information to the uninitiated reader.” However, I wouldn’t hold my breath
waiting for Myerson’s suggestion to become universally accepted. Game theorists are a terminologically stubborn lot.

9 There is a large folk-theorem literature. For an introduction to it see Fudenberg and Tirole [1991: 150–160].



A Folk Theorem Sampler Page 4

jim@virtualperfection.com Jim Ratliff virtualperfection.com/gametheory

First we will precisely define the terms feasible and individually rational. A payoff vector’s
individual rationality relies on the concept of a player’s minmax  value—a number useful for
characterizing the worst punishment to which a deviating myopic player can be subjected in a single
player—so we will define it as well. Then we will state and prove two folk theorems, one Nash and one
perfect, which have the virtue of being relatively easy to prove because their proofs rely only on simple
“grim trigger” strategies. Then we will prove a perfect folk theorem stronger than the first two using
more complicated strategies.

Infinitely repeated games with discounting
We’ll call the stage game G and interpret it to be a simultaneous-move matrix game which remains
exactly the same through time. As usual we let the player set be I={1,…,n}. Each player has a pure
action space Ai. The space of action profiles is A=Xi˙IÙAi. Each player has a von Neumann-Morgenstern
utility function defined over the outcomes of G, gi:ÙA§Â. We let g be the n-tuple of players’ stage-
game payoff functions, i.e. g=Xi˙IÙgi so that gªaº=(g1ªaº,…,gnªaº).10

The stage game repeats each period, starting at t=0. At the conclusion of each period’s play, the
action profile which occurred is revealed to all the players. Combined with perfect recall, this allows a
player to condition her current action on all earlier actions of her opponents. A repeated-game strategy
si˙Si for player i is a sequence si=(si

0,si
1,…), where each si

t is a history-dependent stage-game strategy,
si

t:ÙAt§Ai. The history at time t, viz. ht˙At, is the sequence of action profiles ht=(a0,a1,…,at¥1).

We can think of the players as receiving their stage-game payoffs period-by-period, where the players
discount future payoffs according to a common discount factor ∂˙(0,1). We adopt the average
discounted payoff representation of players’ preferences over streams of stage-game payoffs. A player’s
average discounted payoff for an infinite stream of stage-game payoffs vi

∞fivi
0,vi

1,… is

Òªvi
∞,∂º=(1_∂) ∂tvi

t∑
t›0

∞

. (1)

(The ∂ may be suppressed as an argument if it is not a parameter of interesting variation.) This
formulation normalizes the repeated-game payoffs to be “on the same scale” as the stage-game payoffs.
We refer to the infinitely repeated game as G∞. Because the discount factor ∂ enters the players’ utility
functions, it is part of the definition of the game. When we need to emphasize the role of the discount
factor we more explicitly refer to the game as G∞ª∂º.

Any repeated-game strategy profile s generates a path h∞=(a0,a1,…), where each at=stªhtº and the
histories are generated recursively by concatenation as ht=(ht¥1;st¥1ªht¥1º). Player i’s repeated-game
payoff to player i along this path is, from (1),

                                                
10 See the “Infinitely Repeated Games with Discounting” handout. I want to reserve “s”, “S”, and “u” to refer to typical strategies,

strategy spaces, and utility functions, respectively, in the repeated game. So I’m using “a”, “A”, and “g” for the corresponding stage-
game entities.
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uiªsº=(1_∂) ∂tgiªa
tº∑

t›0

∞

. (2)

We denote the n-tuple of repeated-game payoff functions by u=(u1,…,un). If we need to emphasize the
role of the discount factor we will write uiªs;Ù∂º.

A useful formula for computing the infinite sums we will encounter is

∂t∑
t›T1

T2

=
∂T1_∂T2Á1

1_∂
, (3)

which, in particular, is valid for T2=∞.11 If the payoffs vi
t  a player receives are some constant payoff vi’

for the first t periods, viz. 0,1,2,…,t_1, and thereafter she receives a different constant payoff vi” in
each period t,t+1,t+2,…, the average discounted value of this payoff stream is12

1_∂t Ùvi‘+∂tvi“, (4)

i.e. a convex combination of the two stage-game payoffs. If she receives vi’ for the t periods 0,1,…,t_1
as before, then vi” only in period t, and viÉ every period thereafter, the average discounted value of this
three-valued payoff stream is

(1_∂t)vi’+∂t[(1_∂)vi”+∂viÉ]. (5)

The no one-stage improvement principle
In order to check whether a repeated-game strategy profile s˙S is a subgame-perfect equilibrium of a
repeated game, we in principle need to examine the restriction s |ht of that strategy profile s  to every
possible subgame defined by an arbitrary history ht. In order to check whether s|ht is a Nash equilibrium
of the subgame, we need to check whether any player i˙I has a profitable deviation from her part of s|ht.
A deviation can be very complicated; it can involve a counter-to-specification action at any or all of an
infinite number of histories. The set of possible such deviations can be huge.

Fortunately there is a result from dynamic programming which greatly simplifies our deviation-
checking task. We need only check every possible deviation of an extremely simple class. If none of
those deviations are profitable for a deviating player, then the strategy profile is subgame perfect. The
simple deviations we consider are called “one-stage” deviations. In a one-stage deviation, the deviating
player disobeys her component of the specified strategy profile at only a single history ht. At all other
information sets (i.e. histories), she obeys the prescription.

The intuition behind the result is loosely the following: The change in the repeated-game payoff due
                                                

11 See the “Appendix: Discounting Payoffs,” in the “Infinitely Repeated Games with Discounting” handout for a derivation of this
formula.

12 See the “Infinitely Repeated Games with Discounting” handout for the details.
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to a complicated deviation from the prescribed strategy is a sum of the changes due to one-stage
deviations. If a complicated deviation is to result in an increased repeated-game payoff, then some one-
stage deviation must also result in an increased repeated-game payoff. If no one-stage deviation does,
then no complicated deviation will be profitable either.

We say that the repeated-game strategy for player i, si˙Si, is a one-stage deviant of si˙Si if there
exist a time t and a history ht˙At such that 1  Åt≠t, si

t=si
t , 2  Å ht˙At\{ht} , si

tªhtº=si
tªhtº, and 3

si
tªhtº≠si

tªhtº. Let Siªsiº be the space of all one-stage deviants of si.

We say that s  satisfies the “no one-stage improvement (NOSI)” property if for all i˙I, for all one-
stage deviants si˙Siªsiº of si, for all t, and for all ht˙At, si is no better than si against s¥i, conditional on
reaching the history ht.

Let s be a strategy profile for a finitely repeated game or an infinitely repeated
game with discounting. Then s is a subgame-perfect equilibrium if and only if

s satisfies the no one-stage improvement property.

See Appendix.13

The sufficient-patience limit
In proofs of the various folk theorems we’ll be considering we will often be taking limits of average
discounted payoffs as the discount rate tends toward unity. If there is a point in time beyond which a
player receives some constant payoff for every period thereafter, such a limit is very simple: it is simply
that constant payoff. For example, we calculated in (4) the average discounted payoff to a player if she
received vi’ for a finite number of periods and vi” for all remaining periods. It is clear in (4) that, in the
limit as ∂§1, the first term vanishes leaving the limit to be the infinitely repeated payoff vi”. A similar
analysis shows that the limit of (5) is viÉ.

We say that a payoff sequence vi
∞fivi

0,vi
1,… has a terminal subsequence v i if there exists a time

period † such that, for all t>†, vi
t=vi.

Let vi
∞fivi

0,vi
1,… be an infinite sequence of payoffs with terminal

subsequence vi. Then

Òªvi
∞,∂ºlim

∂§1
=vi. (6)

The proof is left as an exercise for you. Hint: use (3). ó

Sometimes we will consider two infinite sequences of payoffs, e.g. one for conforming and one for
deviating, and we will wish to compare them in the infinite-patience limit. The following result can be

                                                
13 Warning! The proof I provide needs a lot of work to motivate it and make it more accessible.

Theorem

Proof

Lemma 1

Proof
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very useful for performing this comparison.

Let vi
∞ and vi

∞ be two infinite payoff sequences with terminal subsequences vi
and vi, respectively. If vi>vi, then, for a sufficiently patient player, the payoff

stream vi
∞ is strictly preferred to the payoff stream vi

∞. In other words, there exists a ∂˙(0,1) such that,
for all ∂˙(∂,1),

Òªvi
∞,∂º>Òªvi

∞,∂).14

(To simplify the notation, let’s suppress the “i” subscripts.) Let ´=™(v_v). From Lemma
1, we know that we can find ∂’,∂”˙(0,1) such that, for all ∂˙(∂’,1),

|Ùv_Òªv∞,∂ºÙ|<´, (™.1)

and, for ∂˙(∂”,1),

|Ùv_Òªv∞,∂ºÙ|<´. (™.2)

Let ∂=max Ù{∂’,∂”}. Then, for all ∂˙(∂,1),

Òªv∞,∂ºÙ>v_´, (™.3)

Òªv∞,∂ºÙ<v+´, (™.4)

from which we obtain

Òªv∞,∂ºÙ<™(v+v)<Òªv∞,∂ºÙ, (™.5)

as desired. (See Figure 18.) ó �

vi vi
vi+vi

2

Òªvi
∞,∂º Òªvi

∞,∂º”
´

”
´

”

”

vi+´vi_´

Figure 18: Taking ∂ sufficiently close to one ensures that the payoff with the higher terminal
subsequence is more preferred.

                                                
14 Note that the weak-inequality form of this theorem is not  true. In other words, if two payoff sequences have identical terminal

subsequences, they need not have identical average discounted values, no matter how patient the player is. (However, the limit, as
∂§1, of the difference between the two average discounted values will go to zero.)

Theorem 1

Proof
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Feasible stage-game payoffs
Say that we wish to support some payoff vector v˙Ân as an equilibrium of an infinitely repeated game
with discounting. We must find an equilibrium strategy profile of the repeated game which generates an
equilibrium-path history such that each player i˙I receives a repeated-game payoff, from (2), of vi.

We have already seen that the average discounted value of a constant stage-game payoff stream is
independent of the discount factor ∂. An analytical inconvenience arises if the equilibrium path
generates payoffs to player i which change from period to period, i.e. when giªatº varies with t. In this
case, unlike the constant-stream case, the value of the average discounted value in (2) depends on the
discount factor ∂. For example, say that the equilibrium path generates stage-game payoffs v’ in even
numbered periods and v” in odd numbered periods. The average discounted value of this stream is

(1_∂)(v’+∂v”+∂2v’+∂3v”+Ú)=v’+∂v”
1+∂ , (7)

which strictly increases (respectively, decreases) with ∂ when v”>v’ (respectively, v’>v”).

What’s so problematic about the dependence on ∂ of the average discounted value? In arguments we
will employ later, we fix an average-discounted payoff vector v˙Ân and take limits as ∂§1. If the
payoff vector for a given equilibrium path changed with ∂, we would have to adjust the equilibrium
strategies at every point in the limit so that, for each value of ∂, v was achieved by those strategies. That
would lead to a bona fide Excedrin™ intractability headache!

We can avoid this problem by limiting our attention to repeated-game strategy profiles whose
equilibrium paths prescribe the same stage-game action profile in every period; i.e. at=a for all t. Then
giªatº is constant in time, and we know that the average-discounted value of this path for player i is
simply giªaº, which is conveniently independent of the discount factor ∂.

But at what cost is this proposed restriction of attention to strategy profiles which prescribe exactly
the same stage-game profile in every period along the equilibrium path? Is this without loss of
generality? In other words might there not be payoff vectors which could be sustained by time-varying
equilibrium paths but which cannot be sustained by time-independent paths? The answer is: yes, this
could be the case. We will next see the origin of the problem, and then we will augment our model with
a public randomizing device in order to restore generality to our results. Of course, this augmentation
has its own cost—what if the economic situation being studied does not admit such a device? (See
Fudenberg and Tirole [1991: 152] for references to research which attacks this issue.)

Stage-game payoffs with uncorrelated randomization
Consider the game of Figure 2. The game’s three distinct pure-strategy payoff vectors are plotted in
“payoff space” in Figure 3. The union of the two shaded regions is the convex hull of these three
vectors.15 Note that the (0,1)§(1,0) edge can be achieved by player 1 choosing Down and player 2
                                                

15 Let X be a finite set of m vectors in a real topological linear space Y (e.g., Y=Ân), X={x1,…,xm}ÓY, and let Ç k be the k-dimensional
unit simplex. The convex hull of X , viz. co ÙX, is the set of vectors in Y each of which is a convex combination of the vectors in X. In
other words
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mixing between left and right. It can also be achieved by Column choosing left and Row mixing
between Up and Down. Similarly, the (0,0)§(1,0) edge can be achieved in either of two ways: 1 by
player 1 choosing Up and player 2 mixing between right and left and 2 player 2 choosing right and
player 1 mixing between Up and Down. In these cases each pair of adjacent extreme points of the
convex hull corresponds to a pair of strategy profiles such that one player chooses the same pure
strategy and one player chooses different pure strategies.16

However, this is not the case for the (0,0)§(0,1) edge. The (0,0) payoff vector is obtained only
from the strategy profile (U,r), and the (0,1) vector is obtained only from (D,l). In this case each player
chooses different pure strategies in the two strategy profiles.

                                                                                                                                                                        

16 Let X be a convex set. A point x˙X is an extreme point of X if x cannot be expressed as the midpoint of two distinct points in X; i.e. if
‰÷y,z˙X such that y≠z and x=(y+z)/2.
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It is immediate to see why this edge cannot be achieved by uncorrelated randomizations. This edge is
characterized by g1=0. The only way such a payoff can be assured by the first player is if the only two
strategy profiles receiving positive probability are (D,l) and (U,r). If a point (0,v2), v2˙(0,1), is to be
achieved, player 1 or player 2 must strictly mix. (The only values of g2 obtained by pure-strategy
profiles are 0 and 1.) Such a strategy profile always results in positive weight applied to a strategy
profile which yields player 1 a payoff of 1. Therefore an expected payoff for player 1 of zero cannot be

Figure 2: A game whose pure-strategy payoffs’ convex hull cannot
be achieved with uncorrelated mixed strategies.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(D,l)

(U,r)

(U,l), (D,r)

Unachievable
Payoffs

Achievable
Payoffs

g1

g2

g1=2 g2_g2

Figure 3: The payoff space for the game of Figure 1, indicating the unachievable
and achievable subsets of the convex hull of the pure-strategy payoffs.
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obtained for v2˙(0,1).17

Public randomization device
We saw that in the game of Figure 2 we could not achieve any payoff vector of the form (0,v2) where
v2˙(0,1) when both players were limited to independently randomized mixed strategies. So we now
introduce a publicly observable randomization device, which will allow the players to correlate their
randomized actions. Specifically, assume that there exists a unit roulette wheel which, when spun, lands
on a number between zero and one. Its pointer can be considered a random variable ∑ which is
uniformly distributed on [0,1]. It is perched atop A-Mountain and therefore visible to all players. Before
each period, the wheel is spun and all players observe the realization of ∑ before they choose their
actions for that period. Because ∑ becomes part of all players’ information, they can condition their
actions upon ∑.

For example, we could achieve the expected payoff vector (0,v2) if we could coax the players into
playing the action profile (D,l) with probability v2 and the action profile (U,r) with probability (1_v2).
The expected payoff vector from such correlated actions is, as desired,

gªv2œ(D,l)Ù⊕Ù(1_v2)œ(U,r)º=v2gª(D,l)º+(1_v2)gª(U,r)º=v2(0,1)+(1_v2)(0,0)=(0,v2). (8)

In order to implement this coordination we assign the players the following strategies:

(9)

Because ∑ is uniformly distributed on the unit interval, the probability that the pointer takes on a value
in some interval ¯c,d˘Ó[0,1] is simply d_c.18 Therefore the probability that ∑˙[0,v2) is v2. When this
event occurs, Row will choose D and Column will choose l; therefore the action profile (D,l) will occur
with probability v2. Similarly, (U,r) will occur with probability (1_v2). Therefore the pair of stage-
game strategies in (9) results in the expected payoff vector (0,v2) as calculated in (8), even when
v2˙(0,1).

More generally, consider the set of pure-action payoff vectors gªAºÓÂn.19 Let gªAº={v1,v2,…,vm},
where m=#gªAº.20 Each payoff vector vk can be achieved by some pure-action profile ak˙A; i.e.
gªakº=vk. Let V be the convex hull of these pure-action payoff vectors; i.e.

(10)

To achieve any vector v˙V as an expected payoff vector of the players’ stage-game correlated-action

                                                
17 You can show that the left-most frontier of the achievable payoffs in Figure 3 is defined by {(g1,g2):Ùg1=2( g2 _g2),Ùg2˙[0,1]}.
18 Interpret the “¯” as being either “(” or “[” and similarly for “˘”. In other words, because the probability distribution is continuous, it

doesn’t matter whether the interval includes none, one, or both of its endpoints.
19 Let f:ÙX§Y. The image of X under f, fªXº, is the set of values in the range of f which are achieved for some value in the domain. I.e.

fªXº={y˙Y:Ù‰x˙X, fªxº=y}.
20 Note that #gªAº≤#A.
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profile, we find a corresponding vector ∫ of convex coefficients and assign each player i the stage-game
strategy

(11)

For example, if the roulette wheel is spun and the realization ∑  lies in the interval
(∫1+Ú+∫k¥1,∫1+Ú+∫k), then each player i˙I will choose ai

k; i.e. the action profile ak will be chosen
by the players. We note that the probability that any given realization of ∑ falls in the interval
corresponding to the action profile ak, and thus to the payoff vector vk, is, as desired,

∫jS
j›1

k
_ ∫jS

j›1

k¥1
=∫k . (12)

Because every payoff in the convex hull of the pure-action payoffs can be achieved by some
correlated action profile aª∑º, we call V the set of feasible outcomes.

∑-augmented histories
Players can condition their current action upon everything they know. Before we introduced the public
randomization device, we assumed the only knowledge players gained in the course of play was their
observations of other players’ past pure actions. Now they also learn in each period the realization ∑t of
the random variable ∑ in that period. When a player is choosing her period-t action, then she knows all
of the action profiles played in previous periods as well as all realizations of ∑ in previous periods and
in the current period. (The current period’s realization is revealed prior to taking that period’s action.)
Therefore we write the history in period t as the (2t+1)-tuple

ht=(a0,a1,…,at¥1;∑0,∑1,…,∑t). (13)

Before we performed this augmentation, the space of period-t histories was simply At, the t-fold
Cartesian product of action-profile spaces. Now it is more complicated. Each ∑t is a number on the unit
interval. Therefore the space of augmented histories is

Ht=At˜[0,1]tÁ1. (14)

A repeated-game strategy for player i is still a sequence si=(si
0,si

1,…), but now each history-
dependent stage-game strategy in the sequence is a function si

t:ÙHt§Ai, where Ht is as defined in (14).
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Minmax punishments
In order to implement some payoff vector v˙V as an average discounted payoff of a repeated-game
equilibrium, we will first find a correlated-action profile aª∑º whose expected payoff is v (where the
expectation is taken with respect to ∑); i.e.

e∑Ùgªaª∑ºº=v. (15)

In equilibrium, then, in every period t we want each player i to choose the action aiª∑tº, where ∑t is the
realization of the random variable ∑ in period t.

However, we can’t necessarily just prescribe that each player choose aª∑º every period regardless of
what her opponents do. In other words, we can’t necessarily prescribe open-loop strategies to the
players. The reason is that it need not be the case that for all ∑ (or even for any ∑) the action profile
aª∑º is a Nash equilibrium of the stage game. Therefore there could be some ∑ for which some player i
would receive a higher stage-game payoff by playing some a i˙Ai rather than a iª∑º; i.e.
giªai,a¥iª∑ºº>giªaª∑ºº. If her opponents were playing open-loop strategies, she could deviate to this ai
with impunity because it would not affect her opponents’ future actions. Therefore the open-loop
prescription of aª∑º every period would not be an equilibrium of the repeated game.

To encourage each player i to play her part aiª∑º of the equilibrium-path prescription, the other
players must plan to punish her if she deviates. It will be useful to identify the most severe punishment
with which a player can be inflicted. Consider the case where all players other than i set out to punish
player i as severely as they can.

We will allow the punishers to choose mixed stage-game actions, so we denote by AjfiÇªAjº the
space of player-j mixed actions in the stage game.21 A typical mixed action for player j is åj˙Aj. A
typical deleted mixed-action profile by the punishers is å¥i˙A¥ifiXj˙I\{i}ÙAj.

The minmax vector
In any equilibrium all players know the strategies of the other players. Therefore whatever punishing
actions å¥i the punishers choose, player i knows å¥i and will play a best response to it. Player i will
therefore receive a payoff giªå¥iº defined by

giªå¥iºfi giªai,å¥iºmax
ai˙Ai

. (16)

[Make sure you understand why it is without loss of generality that we can restrict attention to player-i’s
pure-strategy space in solving (16).] Her punishers know that player i will choose ai which solves (16),
so they choose their deleted mixed-action punishment profile m¥i

i  to minimize the payoff player i
receives given that she optimizes against the punishment, i.e. to solve

                                                
21 “ÇªXº” denotes the set of all probability distributions over the finite set X.
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22 (17)

Player i’s best response to m¥i
i , then, is some mi

i˙Ai  satisfying

mi
i˙ giªai,m¥i

i ºargÙmax
ai˙Ai

, (18)

where we have substituted m¥i
i  for å¥i in (16). The mixed-action profile mi=(mi

i,m¥i
i ) is player i’s

minmax vector. For any j˙I, mj
i  is player j’s component of the minmax mixed-action stage-game action

profile which punishes player i as severely as possible (given that player i is myopically resisting the
punishment). Note that the minmax mixed-action profile is a strategic specification for both the
punished and the punishers. Player i’s minmax payoff vi is the lowest expected stage-game payoff to
which she can be held by players trying to punish her as severely as possible; this value is

(19)

We denote the n-tuple of the players’ minmax values, the minmax vector, by v=(v1,…,vn). (The
minmax vector need not be feasible; i.e. it could be the case that vâV.)

Example: Calculating the minmax vector in a 3˜2 game
Consider the two-player, 3˜2 stage-game below.

First let’s look for each player’s pure-action minmax value—the lowest payoff to which she can be
held if her opponents can only play pure actions. To find Row’s pure-action minmax value vR

p, we
consider each of Column’s pure strategies, finding Row’s best-response payoff for each. We have

gRªlº=1'and$gRªrº=1.

Therefore Row’s pure-action minmax payoff is

vR
p=minÙ{gRªlº,gRªrº}=1.

Similarly, Column’s pure-action minmax payoff is

vC
p=minÙ{gCªUº,gCªMº,gCªDº}=minÙ{2,1,1}=1.

Therefore the players’ pure-action minmax payoff vector is vp=(1,1). We will see that their mixed-
action minmax payoff vector is strictly lower.

                                                
22 The occurrence of “minÙmax” explains the origin of the term minmax.
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Let the probability with which Column chooses l be t, and let the probabilities with which Row
chooses U and M be p and q, respectively.

To find Row’s minmax value vR we compute Row’s expected utility for each of her pure actions as a
function of Column’s mixed action t. The upper envelope of these three functions of t is itself a function
of t and represents Row’s expected utility when she maximizes against Column’s action. The minimum
value of this upper envelope will be Row’s minmax value. Any minimizer (i.e. a value of t) of this upper
envelope will be a punish-Row minmax deleted action profile mC

R. We have

uRªU;tº=¥2t+(1_t)=1_3t,

uRªM;tº=t_2(1_t)=¥2+3t,

uRªD;tº=0.

See Figure Ex. 1.

-2

-1
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1

0.25 0.5 0.75 1

M

D
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uR

t

uRªU;tº uRªM;tº

uRªM;tº uRªU;tº

uRªD;tºuRªD;tº

uRªtº

Figure Ex. 1: Row’s expected payoffs to her pure actions
as a function of Column’s mixed action t.

The upper envelope of these functions is

The minimum value of this upper envelope is zero, which is achieved for any t˙[£,‹]. Therefore Row’s
minmax payoff is vR=0 . Therefore one minmax punish-Row deleted action profile would be
mC

R=™œlÄ™œr. Row’s best response to this mixed action of Columns is mC
C=D.
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To find Column’s minmax value vC we compute Column’s expected utility for each of her two pure
actions as a function of Row’s mixing probabilities p and q. We have

uCªl;p,qº=2p_2q+(1_p_q)=1+p_3q,

uCªr;p,qº=¥2p+2q+(1_p_q)=1_3p+q.

To determine the upper envelope of this function we note that uCªl;p,qº≥uRªr;p,qº if and only if
p≥q. Let Çfi{(p,q)˙Â+

2:p+q≤1}, Çl=ÇË{(x,y)˙Â2:x≥y}, and Çr=ÇË{(x,y)˙Â2:x<y}. (See
Figure Ex. 2.) The two triangles Çl and Çr form a partition of Ç such that 1 when restricted to Çl,
uCªl;p,qº≥uCªr;p,qº and 2 when restricted to Çr, uCªr;p,qº>uCªl;p,qº. Then

Figure Ex. 2: Row’s mixed-actions as points in a two-dimensional simplex.

To find the minimum of uC over Ç we can simply find the minimum of uC over each cell of the
partition and then take the minimum of these two minimum values. I.e.

Each of the simple minimization problems, viz. minÙ{uCªp,qº:(p,q)˙Ça} for a˙{l,r}, is simply a
minimization of a linear function over a convex polyhedron.23 The minimum value must occur at a
vertex of the convex polyhedron.24 The vertices of Çl are (0,0), (1,0), and (™,™). The values of uC at
these vertices are 1, 2, and 0, respectively. Therefore the minimum of uC over Çl is 0, which is achieved
                                                

23 A set is a convex polyhedron if it is the convex hull of a finite set.
24 See Intriligator [1971: 75].
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at (™,™). The vertices of Çr are (0,0), (0,1), and (™,™). The values of Çr at these vertices are 1, 2, and 0,
respectively. Therefore the minimum of uC over Çr is 0 which is achieved at (™,™). Therefore the
minimum of uC over Ç is 0, and is achieved at (™,™).

Therefore Column’s minmax payoff is vC=0. The minmax punish-Column deleted action profile then
is mR

C=™œUÄ™œM. Column is indifferent between l and r against this mR
C, so we can arbitrarily

choose any Column mixed action for mC
C.

Therefore the minmax payoff vector is v=(0,0), which is strictly less than the pure-action minmax
payoff vector; i.e. vïvp.

Individual rationality
A player’s minmax value vi establishes a lower bound for the payoff she can be forced to receive in any
stage-game Nash equilibrium as well as for the average discounted payoff she can receive in any
repeated-game equilibrium. More formally….

Let å˙A be a stage-game mixed-action profile such that åi is a best response
by player i to å¥i. Then, giªåº≥vi.

Because åi is a best response to å¥i,

giªåº=giªå¥iº≥ giªå¥iºmin
å¥i˙A¥i

=vi,

where we have used (16), the definition of the minimum, and (19).

Let å˙A be a stage-game Nash-equilibrium mixed-action profile. Then, for all
i˙I, giªåº≥vi, or equivalently, gªaº≥v.

For every i˙I, åi must be a best response to å¥i; therefore the conclusion follows
immediately from Lemma 2. ó

Let ß be a Nash-equilibrium mixed-strategy profile of an infinitely repeated
game with discounting. Then, for every i˙I, uiªßº≥vi.

Because ß is a Nash equilibrium, for all i˙I, ßi is a best response to ß¥i. Therefore for all
player-i repeated-game strategies si˙Si,

uiªßº≥uiªsi,ß¥iº. (¥.1)

Let BRi:ÙA¥iéAi, be player i’s stage-game pure-action best-response correspondence. Consider the
player-i repeated-game strategy si=(si

0,si
1,…), where in each period player-i chooses a myopic best

response to the actions of the other players, ß¥i
t ªhtº˙A¥i . I.e. for all t˙{0,1,…} and all ht˙At,

Lemma 2

Proof

Theorem 2

Proof

Theorem 3

Proof
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si
tªhtº˙BRiªß¥i

t ªhtºº. (¥.2)

From Lemma 2 we know that, for all t and ht,

giªsi
tªhtº,ß¥i

t ªhtºº=giªß¥i
t ªhtº≥vi . (¥.3)

Player i’s repeated-game payoff is

uiªsi,ß¥iº=(1_∂) ∂tgiªsi
tªhtº,ß¥i

t ªhtºº∑
t›0

∞

≥(1_∂) ∂tvi∑
t›0

∞

=vi, (¥.4)

where the ht are computed recursively in the usual fashion. The conclusion follows from (¥.1). ó

Theorem 3 tells us that it would be hopeless to try to sustain a payoff vector v as an equilibrium of the
repeated game if this would imply that some player were receiving less than her minmax value; i.e. that
‰i˙I such that vi<vi. Further, such a player would not even be optimizing against the strategies of her
opponents. So we say that a payoff vector v is individually rational if v≥v; i.e. if for all i˙I, vi≥vi. We
say that v is strictly individually rational if vîv; i.e. for all i˙I, vi>vi.25 We denote by VÆ  the
intersection of the set V of feasible payoffs and the set of strictly individually rational payoffs, i.e.

VÆ={v˙V:Ùvîv}. (20)

Grim trigger strategy folk theorems
We now present two folk theorems, which have the virtue of being particularly easy to prove. The
strategies they employ to sustain a given payoff vector as an equilibrium have the following form: Play
begins in the “normal phase,” in which all players repeat every period their part of a stage-game action
profile which achieves v. If a single player deviates from the normal phase, play switches to an open-
loop, punish-the-defector phase. If players are sufficiently patient, the threat of the punishment phase
will deter them from yielding to the temptation of normal-phase defection.

Adopting trigger strategies provides an important analytical simplification. The punishment phase
kicks in when a deviation occurs; however, the details of the punishment phase depend only on the
identity of the defector; they are independent of which particular deviation the deviator commits and
independent of when she commits it. Therefore we can just consider the myopically best single-period
deviation, because the punishment will be the same no matter what.

The first theorem chooses an arbitrary feasible and strictly individually rational payoff vector v˙VÆ
and uses minmax threats to enforce a Nash-equilibrium path which yields the players an expected payoff

                                                
25 My terminology is somewhat at variance with the published literature, I’m afraid. What I refer to as the strictly individually rational

set is usually called simply the individually rational set. However, there is nothing necessarily irrational about a player receiving
exactly her minmax payoff rather than something strictly greater than that. My terminology also highlights a theoretical lacuna: The
folk theorems we will study at most show that the strictly individually rational payoffs are equilibria. However, the larger set of
(weakly) individually rational payoffs cannot be ruled out as equilibria. Therefore the folk theorems do not necessarily fully
characterize the set of equilibrium payoffs.
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of v. However, as we have already observed, the minmax action profile need not be a Nash equilibrium
of the stage game. Therefore if a player does defect from the normal phase, the equilibrium strategies
can prescribe an open-loop repetition of a stage-game action profile which is not a Nash equilibrium of
the stage game. This behavior will not be a Nash equilibrium of that subgame.26 Therefore this theorem
will establish that the chosen payoff vector v is a Nash-equilibrium payoff but will not show that it is a
subgame-perfect equilibrium payoff. (We will later see a stronger folk theorem, which uses strategies
more complicated than grim trigger strategies, which will show that these same feasible and strictly
individually rational payoffs are subgame perfect.)

The second theorem focuses on a subset of the feasible and strictly individually rational payoffs VÆ.
We consider those payoffs which strictly Pareto dominate some stage-game Nash equilibrium payoff.
(We actually look at a somewhat larger set, but I’ll be more precise later.) Rather than punishing with
the minmax strategy profile, if a player defects from the normal phase, play switches to the open-loop
repetition of a stage-game Nash equilibrium which is worse for the deviator than her equilibrium payoff.
The disadvantage of using stage-game Nash equilibria as the punishment profiles is that this method
supports only a possibly proper subset of VÆ as equilibrium payoffs. The advantage is that now the
punishment phase is a repeated-game Nash equilibrium in any subgame in which a player previously
defected; therefore this subset of VÆ is shown to be composed not only of Nash-equilibrium payoffs but,
more strongly, of subgame-perfect payoffs.

Grim trigger strategies defined
Consider a payoff vector v˙VÆÓV=coÙgªAº. We know that there exists a correlated stage-game action
profile aª∑º which realizes the payoff vector v in expectation over the random variable ∑. In every
period t of the “normal phase” of the game we want each player i to choose her part of aª∑tº. We say
that player j was the solo deviator in period t if she alone did not play her part of aª∑tº, i.e. if the actual
stage-game action profile played in that period, at˙A, was such that a¥j

t =a¥jª∑tº but aj
t≠a jª∑tº. We say

that player j was the earliest solo deviator if in some period t’ player j was the solo deviator and, for all
prior periods t”˙{0,1,…,t’_1}, there was no player i˙I who was a solo deviator in period t”.

To be very formal… for any period t, define the earliest-solo-deviator function jÛt:ÙHt§(I¨{0}), so
that jtªhtº is the earliest solo deviator, if any, according to the augmented history ht. If no player ever
deviated solo in periods 0,1,…,t_1, set jtªhtº=0. You can see that jÛtªh0º=0, i.e. in period zero no
player has previously deviated. Further, once a player has earned the distinction of being the earliest solo
deviator, she always has that distinction. In other words, if jÛtªhtº˙I, then for every extension
htÁ†=(ht;ÙatÁ1,…,atÁ†¥1) of ht, jÛtÁ†ªhtÁ†º=jÛtªhtº.

Consider a set of n mixed-action profiles bi˙A, i˙I. The interpretation is that bi is a stage-game
profile intended to punish player i if she deviates from the normal phase. (“b” stands for “bad.”) We
define a grim trigger-strategy profile ß by specifying for each player i and each period t a history-
dependent stage-game action ßi

tªhtº according to
                                                

26 If s is an open-loop strategy profile for the infinitely repeated game, then s is a Nash equilibrium of the infinitely repeated game if and
only if every period’s stage-game action profile s t is a Nash equilibrium of the stage game.
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(21)

This says to begin in period zero by choosing your part of the equilibrium-path correlated action profile
aª∑tº. Continue to choose this ∑t-dependent stage-game action as long as no player has ever deviated
alone. If some player j ever deviates alone, then switch to your part of the stage-game mixed-action
profile bi

j  which punishes player j, and play that stage-game mixed-action forever, regardless of any
future developments. Player i’s strategy is shown in flowchart form in Figure 4.

Nash grim trigger-strategy folk theorem with minmax threats
Let’s discover under what conditions ß is a Nash equilibrium for sufficiently patient players. If all
players conform, aª∑tº is chosen every period. By construction the expectation with respect to the
random variable ∑ of gªaª∑ºº is v. Therefore the expected repeated-game payoff to each player i if she
conforms to ß, given that the other player are conforming as well, is vi. If instead she deviates in some
period, play will switch to the open-loop punishment phase. Given that her opponents are playing open-
loop strategies in the punishment phase, player i’s repeated-game best response is to choose myopic
stage-game best responses in each period. She thus receives giªb¥i

i º in every period after her deviation. In
other words her conformity and deviation payoff streams have terminal subsequences vi and giªb¥i

i º,
respectively. From Theorem 1 we know that a sufficiently patient player will weakly prefer to conform
to her part of ß as long as, for all i˙I,

vi>giªb¥i
i º. (22)

For a given set of n punishment vectors b1,…,bn, inequalities (22) fully characterize the set of
payoffs which can be sustained as Nash equilibria by grim trigger strategies of the form (21). How can
we choose the punishment vectors bi so as to make this equilibrium payoff set as large as possible?
Clearly we can do this by making the right-hand side of each inequality (22) as unrestrictive as possible,
which we accomplish by minimizing it through our choice of punishment strategy profile. We observe
from (17) that m¥i

i  is exactly the deleted action-profile which minimizes the right-hand side of (22).
Therefore by choosing bi=mi for each i˙I, we have giªb¥i

i º=giªm¥i
i º=vi and therefore establish that

every payoff vector vîv can be sustained as a Nash equilibrium of the repeated game for sufficiently
patient players. This is expressed in the following theorem.
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For any feasible and strictly individually rational payoff vector v˙VÆ, there exists a repeated-game
strategy profile which is a Nash equilibrium of the repeated game for sufficiently patient players and
yields the expected payoff vector v. I.e., Åv˙VÆ, ‰ß˙Í such that ‰∂˙(0,1) such that Å∂˙(∂,1), ß is a
Nash equilibrium of G∞ª∂º, and uªß;Ù∂º=v.

A remark about the definition of the equilibrium strategies is in order: The equilibrium strategy
profile ß  specified punishments only when exactly one player deviated from the equilibrium
prescription. Why isn’t punishment called for if two or more players deviate? When assessing whether
she would deviate from her part of an alleged equilibrium strategy profile, each player i asks whether
deviation would be profitable given that all other players faithfully fulfill their part of the profile. (This
is straight from the definition of Nash equilibrium.) In other words each player i’s calculations concern
only unilateral deviations by player i herself. The prescriptions in cases of multilateral deviations are of
no consequence; we could have assigned any actions in these cases. So why did we expend the effort to
define the earliest solo deviator concept? The punishments we specified were tuned to individual
players. Unless there was a solo deviator, the target of the punishment would have been ambiguous. In
order to use open-loop punishments, we could not allow the target of the punishment to change in
response to later player actions; therefore we employed the earliest solo deviator criterion, which has the
property that the identity of the punished player never changes.

Punish the
deviating player j

forever.

Did exactly one
player j deviate in

period t?

Play designated part
of equilibrium-path
stage-game action.

∑t determines this
period’s equilibrium-path

stage-game action.

Play
bi

j

t¶t+1

j˙I
?

t¶0

aiª∑tº
Play

Spin roulette wheel
to determine ∑t

j¶j tªhtº

F (i.e. j=0)

T

t¶t+1

Compute the earliest solo
deviator as of period t.

Figure 4: A grim trigger strategy for player i.

Theorem 4
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Perfect grim trigger-strategy folk theorem with Nash threats
The weakness of Theorem 4 is that it said nothing about whether any feasible and individually rational
payoffs are subgame-perfect equilibrium payoffs. We now address the perfection question, while staying
within the context of grim trigger strategies. Under what conditions will ß be a subgame-perfect
equilibrium? There are two types of subgames: A normal-phase subgames in which no player has ever
deviated solo from the equilibrium path and B punishment-phase subgames in which an open-loop
punishment is being played. We already established that no sufficiently patient player would deviate
from the normal phase as long as (22) were satisfied for all players. Consider the subgames in class B.
These can be further broken down into n groups on the basis of which bj profile is being played. When
all players choose open-loop strategies, the resulting repeated-game strategy profile is a Nash
equilibrium of the repeated game if and only if the stage-game action profile played in every period is a
Nash equilibrium of the stage game. Therefore, in order that every punishment phase be a Nash
equilibrium of that subgame, each bi must be a Nash-equilibrium action profile of the stage game. So, in
summary, ß is a subgame-perfect equilibrium if, for all i˙I,

vi>giªb¥i
i º'and$bi is a Nash equilibrium of the stage-game. (23)

Let NÓA be the set of stage-game mixed-action Nash equilibria. As we did above with respect to
Nash equilibria of the repeated game, we now seek the largest set of payoffs which can be sustained as
subgame-perfect equilibria for sufficiently patient players using grim trigger strategies of the form in
(21). Again we want to minimize for each player i the right-hand side of inequality (22) through our
choice of punishment profile, but now we are restrained to choose each bi from the Nash equilibrium set
N. For each player i, we say that a stage-game Nash equilibrium i˙N is worst-for-i if

i˙ giªºargÙmin
˙N

. (24)

For any Nash equilibrium , giªº=giª¥iº; therefore i
¥i is the minimizer of giªb¥i

i º. So choosing, for
each i˙I, bi=i, we obtain the following folk theorem.

For each player i˙I, let i be a stage-game mixed-action Nash equilibrium
which is worst-for-i. Define the payoff vector v by v=(g1ª1º,…,gnªnº). For

any feasible and strictly individually rational payoff vector v such that vîv, there exists a repeated-
game strategy profile which is a subgame-perfect equilibrium of the repeated game for sufficiently
patient players and yields the expected payoff vector v. I.e., Åv˙{v’˙V:v’îv}, ‰ß˙Í such that
‰∂˙(0,1) such that Å∂˙(∂,1), ß is a subgame-perfect equilibrium of G∞ª∂º and uªß;Ù∂º=v.

We know from Theorem 2 that any stage-game Nash equilibrium must give player i at least her
minmax value; therefore, for all i, vi≥vi, and therefore v≥v.27 Therefore the set of payoffs supported as
subgame-perfect equilibria for sufficiently patient players by Theorem 5 is weakly smaller than the set
VÆ supported as Nash equilibria by Theorem 4. This leaves open the question of whether the remainder

                                                
27 Recall that, for vectors x,y˙Âk, x≥y means that, for all i˙{1,…,k}, xi≥yi.

Theorem 5
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of VÆ can be supported in subgame-perfect equilibrium. This will be answered in the affirmative in our
last folk theorem.

A weaker version of Theorem 5 was proved by Friedman [1971]. He showed that any payoff vector
v˙VÆ which strictly Pareto dominates a Nash-equilibrium payoff vector can be supported as a subgame-
perfect equilibrium.28 His punishment phase was the open-loop repetition of a stage-game Nash
equilibrium which was dominated by v. In other words, he used the same Nash equilibrium to punish
any deviator.

For any stage-game Nash-equilibrium action profile , v≤gªº. There are games such that, for all
stage-game Nash equilibria ˙N, there is some player i˙I such that vi<giªº; in other words, the set of
payoffs supported in Theorem 5 is a strictly larger set than that supported by Friedman’s theorem.
Theorem 5 was able to support the larger set because its punishment profiles were chosen specifically
according to the identity of the deviator rather than being “one punishment fits all.”

The ultimate perfect folk theorem
We will now show, subject to a technical qualification concerning the dimensionality of the feasible
payoff set V, that any feasible and strictly individually rational payoff v˙VÆ can be supported as a
subgame-perfect equilibrium of an infinitely repeated game with discounting for sufficiently patient
players.

Here is the challenge we face…. In order to enforce some payoff vector v˙VÆ as an equilibrium, we
must be able to punish any deviating player i with a sequence of actions which yields her an average
discounted payoff strictly worse than vi. (Otherwise, she would deviate and gladly accept the
punishment, since the punishment alone is as least as good as what she would receive in equilibrium.)

Consider a feasible and strictly individually rational payoff vector v˙VÆ which we cannot support as
a subgame-perfect equilibrium for sufficiently patient players through the grim trigger strategies with
Nash-equilibrium threats of Theorem 5. In other words, there is some player i˙I for whom the payoff vi
she would receive in the specified payoff vector is weakly less than the payoff she would receive in any
stage-game Nash-equilibrium. Therefore there is no way that we could punish player i with a stage-game
Nash equilibrium so that she would receive a punishment payoff strictly less than vi. Therefore we
cannot support this v˙V as a subgame-perfect equilibrium average payoff in the repeated game using
open-loop repetitions of stage-game Nash equilibria for punishments. Therefore we cannot support v
using grim trigger strategies.

The perfect folk theorem of Fudenberg and Maskin [1986], which we discuss here, solves the
problem by punishing a deviator with her minmax profile for only a finite number of periods.

Let dimÙV=n. For any feasible and strictly individually rational payoff vector
v, there exists a repeated-game strategy profile which is a subgame-perfect

                                                
28 He actually claimed only that they were Nash-equilibrium payoffs. However, his strategies were subgame perfect, so the payoffs are

too.

Theorem 6
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equilibrium of the repeated game for sufficiently patient players and yields the expected payoff vector v.
I.e., Åv˙VÆ, ‰ ß˙Í such that ‰∂˙(0,1) such that Å∂˙(∂,1), ß  is a subgame-perfect equilibrium of
G∞ª∂º, and uªß;Ù∂º=v.

Besides the payoff vector v to be supported and the minmax vector v, which has already
been defined, we need to identify n+1 other payoff vectors in order to define the equilibrium strategies.
We pick a v˙VÆ which is strictly “between” the minmax vector v and the equilibrium payoff v, i.e.
vïvïv, or equivalently Åi˙I,

vi<vi<vi. (!.1)

Now fix some ´>0, and for each player i˙I define the vector vi˙Ân by

vj
i=

vj, j=i,
vj+´, j≠i, (!.2)

for all j˙I. In other words, vi is a payoff vector which is ´ better than v for every player except player i.
See Figure 5. We further require that every such vi be a feasible vector; i.e. Åi˙I, vi˙V. (The existence
of such a set of vectors for some v satisfying (! .1) and for some ´>0 is guaranteed by the full-
dimensionality assumption.)

In order to keep this presentation of the proof as simple as possible, we’ll assume that 1 there is a pure
action a˙A which yields v, i.e. gªaº=v, 2 each player i’s minmax profile mi is a pure-action profile, and
3 each of the vi can be achieved via some pure action ai˙A, i.e. gªaiº=vi.

The proposed strategies
The proposed equilibrium strategies si, i˙I, can best be thought of as specifying a particular stage-game
action for player i as a function of what phase the game is in. (The phase will be a function of the
history; therefore the phase-dependent strategies are history-dependent as well.) The game begins, and
in equilibrium remains, in the normal phase N. In the normal phase players play the action profile a each
period, which results in the equilibrium payoff vector v. If a player j ever deviates solo from her
equilibrium-strategy prescription at any point, play switches to the punish-j phase Pj. This consists of
some number † of periods of playing the minmax profile mj in order to punish player j for deviating.
(The value of † will be specified later.) If this phase ends successfully (no player deviates solo from
playing her part of mÛÛj during the † periods), the game switches to the reprieve-j phase Rj. In the Rj phase
the action profile aj is played each period. Note that play would switch to phase Pj if player j were the
sole deviator in any phase—whether she defected from her prescription in the normal phase, in the
punishment of another during Pi, i≠j, in her own punishment during Pj, or during a reprieve phase Ri or
Rj.

Proof
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We let ƒt be the phase at the beginning of period t, i.e. before the players choose their period-t action.
We propose the strategy profile s=(s1,…,sn), where each player i’s period-t phase-dependent stage-
game action is defined by

(!.3)

This rule tells us the action for each phase, but it does not specify how the phase changes during the
course of the game.

So we need a phase transition rule. First we define jªa,a’º as the solo deviator, if any, between the
pair of action profiles a and a’. I.e. jªa,a’º=j if aj≠aj’ and a¥j=a¥j’. If no player is the solo deviator,
then jªa,a’º=0. We also introduce a counter, ¬, for the punishment phases. We set ƒ0=N and define ƒt

for t˙{1,2,…} by

(!.4)

Let’s interpret all this notation a little. The first line says that if the game was in normal phase N in the
previous period and no player deviated alone from the normal-phase prescription a, then play remains in
the normal phase. The last line gives similar instructions if the previous period’s play had been in a

Figure 5: The minmax, equilibrium, and reprieve-phase payoffs.
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reprieve phase.29 The second line says that, if in the previous period some player j was the sole deviator
from whatever the equilibrium prescription was, viz. st¥1ªƒt¥1º, then switch to the punish-j phase and
start the punishment counter at ¬=1.30 The third line says that, if play was in a punish-j phase last
period and if no player deviated alone from the appropriate punishment profile mj, and as long as there is
at least one scheduled punishment unadministered (i.e. ¬<†), remain in that punishment phase but
increment the punishment counter ¬ by one. The fourth line says that if the last period was the last
scheduled punishment of a punishment phase and if that period’s punishment was successfully carried
out, then switch to the appropriate reprieve phase.

The easy arguments
Now we show that the strategy profile s defined by (!.3) and the phase-transition rule (!.4) is a
subgame-perfect equilibrium. We invoke the one-stage deviation principle: we check whether there is
any player i who can profit by deviating from si at a single period t and history ht and then returning to
her equilibrium strategy si. If there are no such i, t, and ht, s is a subgame-perfect equilibrium.

Consider what happens when some player i deviates from her equilibrium prescription in some
subgame. Play immediately switches to the punishment phase Pi. Because all the other players are
assumed to be choosing their equilibrium strategies and because we are looking only at one-stage
deviations for player i, the remainder of the play will be according to s. We can therefore predict that the
punishment phase Pi will be completed successfully and the reprieve phase Ri will be reached and
continue forever. This reprieve phase yields the players the payoff vector vi in every period. Therefore
any player i contemplating a single-stage deviation will face an infinite payoff sequence with a terminal
subsequence of vi

i=vi.

For many of this game’s subgames we will be able to establish that a sufficiently patient player i
would not wish to deviate from s i by the following technique: We will show that conformity leads to an
infinite payoff sequence with a terminal subsequence whose value is strictly higher than vi. Then
Theorem 1 tells us that a sufficiently patient player will prefer the conformity payoff stream.

For example, consider any subgame in the normal phase. Conformity to s implies that the game will
remain in phase N forever, which yields player i a constant payoff stream of vi. (This trivially has a
terminal subsequence of vi.) By construction, see (!.1), vi>vi, so no player i will wish to deviate from
the normal phase at any point. (I.e. we have shown that no player would deviate at any on-the-
equilibrium-path subgame.)

Similarly, consider any subgame in the reprieve phase Rj, where j≠i. Conformity would result in
player i receiving a payoff of vi

j=vi+´ forever. As before, deviation would result in an infinite sequence

                                                
29 The counter ¬ is not used in either the Normal phase or any reprieve phase, so setting it to zero is an arbitrary decision. The point was

just to have the ordered pair (ƒt,¬) completely defined.
30 The second argument of every occurrence of the jªæ,æº function could be replaced by st¥1ªƒt¥1º. I use this notation in the second line

so that a deviation will be caught, whatever the correct action profile for the phase is. In the other occurrences, on the other hand, I
more specifically state what s t¥1ªƒt¥1º should be for the previous period’s phase. This is intended to aid your comprehension, not to
puzzle you further.
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with a terminal subsequence of vi. Clearly the conformity terminal subsequence has a strictly higher
value than that offered by deviation. Therefore no player i would choose to deviate during any reprieve-
j, j≠i, phase.

The same argument can be made if the game is in the punishment phase Pj, j≠i. Conformity by player
i implies that the punishment phase will be successfully completed and then the game will switch to the
reprieve phase Rj, where it will remain. Therefore conformity will also result in player i receiving an
infinite payoff sequence with a terminal subsequence of vi+´, which strictly exceeds the vi offered by
deviation.

So we have shown that a sufficiently patient player i would never deviate from a subgame in phase N,
Rj, or Pj, when j≠i. However, we still need to investigate whether player i would deviate from a
subgame in phase Ri or P i. In other words, would player i participate in her own reprieve and
punishment? We cannot use the previous technique for the following reason. Assume the game is in
phase Ri or Pi. If player i conforms she faces an infinite stream of payoffs with a terminal subsequence
of vi. As we saw above, if she deviates in any subgame she also faces a terminal subsequence of vi. So
whether she conforms or deviates, her terminal subsequence is the same. Therefore Theorem 1 is
agnostic with respect to whether conformity or deviance is preferable.

It is particularly easy to see that player i would not deviate from her own punishment phase Pi, thanks
to the way the punishment profiles are constructed. When player i’s opponents are minmaxing her with
m¥i

i , s i instructs player i to choose her best response mi
i. So player i would gain nothing in the deviation

period—because she is already playing a best response—and in fact she would merely prolong the
duration of her punishment and postpone her reprieve. To see this more explicitly, assume the game is at
a subgame in which there are †’≤† periods remaining in the punishment phase. If player i conforms she
will earn a continuation payoff of

(1_∂†’)vi+∂†’vi. (!.5)

[See (4).] If she deviates this period, she will earn at most vi this period (since her opponents are
minmaxing her), she will earn vi for the next † periods of her renewed punishment phase, and then earn
vi forever. This continuation payoff is at most

(1_∂†Á1)vi+∂†Á1vi. (!.6)

Since †’<†+1, the deviation convex combination (!.6) puts more weight on the strictly lower, minmax
payoff than does the conformity payoff (!.5), therefore it is strictly lower. Therefore no player i would
deviate from her own punishment phase Pi.31 This argument is shown more graphically in Figure 6.
There we see that the conformity and deviation payoff streams are identical except for (†+1)_†’
periods in which the conformity stage-game payoff is strictly larger than the deviation stage-game
payoffs. Therefore the conformity stream dominates the deviation stream for all discount factors.

                                                
31 Note that this conclusion required no sufficient-patience limit argument.
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Figure 6: A player would never deviate from her own punishment because
the initial deviation gains her nothing and it only prolongs her punishment.

The harder argument
The only subgames we still have not checked for vulnerability to defection by player i are those in
player i’s reprieve phase Ri. Up to this point we have not needed to specify the duration † of the
punishment phases; now we will.

If player i conforms with Ri, she receives an infinite string of payoffs of vi. If she deviates in a single
stage and conforms thereafter, she receives some unspecified payoff in that period, followed by †
periods of her minmax payoff from the punishment phase, and then a terminal subsequence of vi. After
the first †+1 periods (including the deviation period), the two streams are the same: vi forever. To
determine which stream is preferable, then, we compare the finite discounted sum over the first †+1
periods.

During the reprieve-i phase the other players are choosing the deleted action profile ai
¥i. The

unspecified deviation-period payoff is certainly bounded above, using (16), by

vifigiªa¥i
i º. (!.7)

Using (3), we calculate the discounted sum of the payoffs during these †+1 periods for both deviation
and conformity and require that conformity be weakly preferable. This results in the inequality

vi+
∂(1_∂†)

1_∂ vi≥vi+
∂(1_∂†)

1_∂ vi, (!.8)

where the left-hand side is written unnecessarily expansively to make it more readily comparable to the
right-hand side. We rewrite this condition as

Ôª∂,†ºfi∂(1_∂†)
1_∂ ≥

vi_vi
vi_vi

fi®>0. (!.9)

The question we must answer in the affirmative, if conformity is to be weakly preferable for a
sufficiently patient player, is whether for arbitrary ®>0 there exist ∂ and † such that the left-hand side of
(!.9) exceeds ®. Two limits are illuminating:
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Ôª∂,†ºlim†§∞ = ∂
1_∂, (!.10)

Ôª∂,†ºlim
∂§1

= 1_(†+1)∂†

¥1lim
∂§1

=†, (!.11)

where we used l’Hôpital’s rule to evaluate the second limit.32

Although the left-hand side function Ôª∂,†º increases with † for fixed ∂, (!.10) shows that it is still
bounded above by ∂/(1_∂) which need not exceed ®. Therefore we cannot satisfy (!.9) for arbitrary
∂˙(0,1) just by taking the punishment duration † sufficiently large. Similarly, although, for fixed †,
Ôª∂,†º increases with the discount rate ∂, (!.11) shows that Ôª∂,†º is still bounded above by †, which
need not exceed ®. Therefore we cannot satisfy (!.9) for an arbitrary punishment duration † merely by
invoking a sufficient-patience argument.

So we need a combination of taking ∂ sufficiently close to 1 and † sufficiently large. Limit (!.11)
tells us that Ôª∂,†º can be made arbitrarily close to † by taking ∂ sufficiently close to one. By choosing
† strictly greater than ®, we guarantee that (!.9) is satisfied by a sufficiently patient player i. Hence
player i would not deviate from her own reprieve phase. ó

                                                
32 Alternatively, note that (1_∂†)/(1_∂)=1+∂+∂2+Ú+∂†¥1.
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Appendix: The No One-Stage
Improvement Principle

Let si= si
0,si

1,…,si
T ˙Si  be a repeated-game strategy for player i˙I in the repeated game “ending” in

period T, where T may be ∞, and where each si
t:ÙAt§Ai. Consider a period t˙tfi{0,1,…,T}, a history

ht=(a0,…,at¥1)˙At, and a strategy profile s˙SfiX i˙IÙSi. The payoff to player i to the profile s
conditional upon the history ht being reached is

uiªsÙ|Ùhtº= ∂†giªa†ºS
†›0

t¥1
+ ∂†giªs†ªh†ººS

†›t

T
, (1)

where the h†, for †>t, are defined recursively by concatenation as

h†=(h†¥1;Ùs†¥1ªh†¥1º). (2)

The continuation payoff to player i to the profile s for the subgame determined by the history ht is

uiªsÙ|Ùhtº= ∂†¥tgiªs†ªh†ººS
†›t

T
. (3)

We can relate player i’s continuation payoff in adjacent periods by observing from (3) that

uiªsÙ|Ùht¥1º= ∂†¥(t¥1)giªs†ªh†ººS
†›t¥1

T
=giªst¥1ªht¥1ºº+∂ ∂†¥tgiªs†ªh†ººS

†›t

T
, (4)

which is equivalent to

uiªsÙ|Ùht¥1º=giªst¥1ªht¥1ºº+∂uiªsÙ|Ù(ht¥1;Ùst¥1ªht¥1º)º, (5)

where we have used (2).

A repeated-game strategy profile s is a subgame-perfect equilibrium iff for all players i˙I, for all
periods t˙t, for all histories ht˙At, and for all player-i repeated-game strategies si˙Si,

uiª(si,s¥i)|Ùhtº≤uiªs|Ùhtº. (6)

Clearly, inequality (6) can be replaced by

uiª(si,s¥i)|Ùhtº≤uiªs|Ùhtº. (7)

We say that the repeated-game strategy for player i, si:ÙAT§Ai
TÁ1,33 is a one-stage deviant of si if

there exist a t and a history ht˙At such that 1 Åt≠t, si
t=si

t , 2 Åht≠ht, si
tªhtº=si

tªhtº, and 3 si
tªhtº≠si

tªhtº.
Let Siªsiº be the space of all one-stage deviants of si.

We say that s  satisfies the “no one-stage improvement (NOSI)” property if for all i˙I, for all one-
stage deviants si˙Siªsiº of si, for all t˙t, and for all ht˙At, si is no better than si against s¥i, conditional
                                                

33 This notation seems somewhat nonsensical when T=∞!
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on reaching the history ht, i.e.

uiª(si,s¥i)|Ùhtº≤uiªs|Ùhtº. (8)

It’s clear that (8) is a weaker condition than (7); therefore if s is subgame perfect, it satisfies NOSI.

We say that the repeated-game strategy for player i, si:ÙAT§Ai
TÁ1, is a finite-stage deviant of si if s i

differs from si in at most a finite number of stages. We denote by Siªsiº the space of finite-stage deviants
of si. Formally, s i˙Siªsiº  iff si≠si and there exists a T< ∞ such that for all t˙{T+1,T+2,…,T},
si

t=si
t.34

Let s˙S satisfy the no one-stage improvement property and let t˙{1,…,T} be
such that for all i˙I, for all ht˙At, and for all player-i repeated-game strategies

si˙Si,

uiª(si,s¥i)Ù|Ùhtº≤uiªsÙ|Ùhtº. (9)

Then for all i˙I, for all ht¥1˙At¥1, and for all si˙Si,

uiª(si,s¥i)Ù|Ùht¥1º≤uiªsÙ|Ùht¥1º. (10)

Assume not. Then there exist a player i˙I, a history ht¥1˙At¥1, and a player-i repeated
game strategy si˙Si such that

uiª(si,s¥i)Ù|Ùht¥1º>uiªsÙ|Ùht¥1º. (Æ.1)

Rewriting the left-hand side of (Æ.1), using (5), we obtain

uiª(si,s¥i)|Ùh
t¥1º=giª(si

t¥1,s¥i
t¥1)ªht¥1ºº+∂uiª(si,s¥i)|Ùh

tº, (Æ.2)

where we have defined

ht= ht¥1;Ù(si
t¥1,s¥i

t¥1)ªht¥1º . (Æ.3)

Focus now on the last term of (Æ.2). From (9) we have

uiªs|Ùhtº≥uiª(si,s¥i)Ù|Ùhtº. (Æ.4)

Therefore, using (Æ.2) and (Æ.1),

giª(si
t¥1,s¥i

t¥1)ªht¥1ºº+∂uiªsÙ|Ùhtº>uiª(si,s¥i)|Ùh
t¥1º>uiªsÙ|Ùht¥1º. (Æ.5)

Let si˙Siªsiº be the one-stage deviant of si defined by

si
t¥1ªht¥1º=si

t¥1ªht¥1º. (Æ.6)
                                                

34 For a finitely repeated game, just take T=T.

Lemma

Proof
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We observe from (5) that player i’s continuation payoff to si in the subgame determined by ht¥1,
uiª(si,s¥i)|Ùht¥1º, is exactly the left-hand side of (Æ.5), because si and s i agree for time periods from t
onward. Therefore from (Æ.5)

uiª(si,s¥i)|Ùht¥1º>uiªsÙ|Ùht¥1º; (Æ.7)

which contradicts that s satisfies NOSI because si is a one-stage deviant of si. ó

If the repeated-game strategy profile s satisfies the no one-stage improvement
property then, for every player i and in every subgame ht, s i is as good for

player i against s¥i as any finite-stage deviant s i˙Siªsiº, conditional upon ht being reached. In other
words, if s˙S satisfies NOSI, then Åi˙I, Åt˙t, Åht˙At, Ås i˙Siªsiº,

uiª(si,s¥i)|Ùhtº≤uiªsÙ|Ùht º. (11)

Let T'  be such that for all t˙{T'+1,T'+2,…,T}, si
t=si

t. Let TfiminÙ{T’,T}.35 We
establish the premise (9) of the Lemma for the last possibly distinct period T and use induction to
establish (7) for all t<T. (Inequality (9) is trivially satisfied for T<t≤T.)

Let t=T and assume that the premise of the Lemma is not satisfied; i.e. for some i˙I, history hT, and
finite-stage deviant si˙Siªsiº,

uiª(si,s¥i)Ù|ÙhTº>uiªsÙ|ÙhTº. (¥.1)

From (3) we see that (¥.1) is equivalent to

giª(si
T,s¥i

T)ªhTºº>giªs
TªhTºº, (¥.2)

because s i and si agree after period T . Let s i˙Siªsiº be the one-stage deviant of si defined by
si

TªhTº=si
TªhTº. We can now rewrite (¥.2) as

giª(si
T,s¥i

T)ªhTºº>giªs
TªhTºº. (¥.3)

Again appealing to (3) we rewrite (¥.3) as

uiª(si,s¥i)Ù|ÙhTº>uiªsÙ|ÙhTº, (¥.4)

because si and si agree after period T. However, (¥.4) would violate NOSI. Therefore the premise of the
Lemma must be satisfied for t=T.

Now, inductive use of the Lemma establishes (9) for all t˙t such t≤T and therefore for all t˙t. This
condition is exactly (11). ó

                                                
35 We did not require that T’ was the earliest such period. In particular, in a finitely repeated game, it could be the case that T’>T.

Theorem 1

Proof



A Folk Theorem Sampler Page 33

jim@virtualperfection.com Jim Ratliff virtualperfection.com/gametheory

Let s be a strategy profile for a finitely repeated game. The profile s is a
subgame-perfect equilibrium of the repeated game if and only if s satisfies the

no one-stage improvement property.

As we observed above, satisfaction of NOSI is necessary for s to be a subgame-perfect
equilibrium. In a finitely repeated game, every player-i strategy si≠si is a finite-stage deviant of s i.
Therefore condition (11) is exactly condition (7) for subgame perfection. ó

Now consider an infinitely repeated game and let h∞ and h∞ be any two infinite histories. Let ht and
ht be their respective restrictions to the first t periods. A game is continuous at infinity if

uiªh
∞º_uiªh

∞ºsup
h∞,h∞˙A∞

ht=ht

.lim
t§∞

(12)

It is easily verified that an infinitely repeated game with discounting is continuous at infinity.

Let s be a strategy profile for a finitely repeated game or an infinitely repeated
game with discounting. Then s is a subgame-perfect equilibrium if and only if

s satisfies the no one-stage improvement property.

As we observed above, satisfaction of NOSI is necessary for s to be a subgame-perfect
equilibrium. Corollary 1 proved sufficiency of NOSI for subgame perfection in the case of finitely
repeated games.

Consider an infinitely repeated game with discounting. Assume that s  satisfies NOSI but is not a
subgame perfect equilibrium. Then there exists a player i, a period t, a history ht, and a player-i repeated-
game strategy si such that, for some ´>0,

uiª(si,s¥i)|Ùhtº_uiªsÙ|Ùhtº=´>0. (™.1)

(We know that si is not a finite-stage deviant of si; this is ruled out by Theorem 1.)

Define

Ít1

t2= ∂† giª(si
†,s¥i)Ù|Ùh

tº_giªsÙ|ÙhtºS
†›t1

t2
. (™.2)

From (™.1), we have

´=Ít
∞=Ít

t-1+Ít
∞, (™.3)

for any ṫ {t,t+1,…}. Because the game is continuous at infinity, we can choose t sufficiently large

                                                                                                                                                                        
Forcing T≤T ensures that the strategies are defined for t=T.

Corollary 1

Proof

Theorem 2

Proof
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that Ít
∞<™´. Therefore Ít

t-1>™´.

Now construct a finite-stage deviant of si by defining

(™.4)

We observe that

uiª(si,s¥i)Ù|Ùh
tº_uiªsÙ|Ùhtº=Ít

t¥1>0, (™.5)

because si agrees with si prior to period t and agrees with si from t onward. Because (™.5) is positive, the
conclusion of Theorem 1 is violated and therefore, contrary to assumption, s must not satisfy NOSI. ó
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