
NASA/TM–20205000691/REV 2

October 2021

Core Flight System (cFS)Training

cFS Caelum

Flight Software Systems Branch, Code 582 Goddard Space
Flight Center, Greenbelt, MD

Since its founding, NASA has been dedicated to the advancement
of aeronautics and space science. The NASA scientific and
technical information (STI) program plays a key part in helping
NASA maintain this important role.

The NASA STI program operates under the auspices of the Agency
Chief Information Officer. It collects, organizes, provides for
archiving, and disseminates NASA’s STI. The NASA STI program
provides access to the NTRS Registered and its public interface,
the NASA Technical Reports Server, thus providing one of the
largest collections of aeronautical and space science STI in the
world. Results are published in both non-NASA channels and by
NASA in the NASA STI Report Series, which includes the following
report types:

• TECHNICAL PUBLICATION. Reports of completed research
or a major significant phase of research that present the
results of NASA Programs and include extensive data or
theoretical analysis. Includes compilations of significant
scientific and technical data and information deemed to be of
continuing reference value. NASA counter-part of peer-
reviewed formal professional papers but has less stringent
limitations on manuscript length and extent of graphic
presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are preliminary or of
specialized interest, e.g., quick release reports, working
papers, and bibliographies that contain minimal annotation.
Does not contain extensive analysis.

• CONTRACTOR REPORT. Scientific and technical findings by
NASA-sponsored contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and technical conferences,
symposia, seminars, or other meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific, technical, or historical
information from NASA programs, projects, and missions,
often concerned with subjects having substantial public
interest.

• TECHNICAL TRANSLATION.
English-language translations of foreign scientific and
technical material pertinent to
NASA’s mission.

Specialized services also include organizing and publishing
research results, distributing specialized research
announcements and feeds, providing information desk and
personal search support, and enabling data exchange services.

For more information about the NASA STI program, see the
following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Phone the NASA STI Information Desk at
757-864-9658

Write to:
NASA STI Information Desk
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

NASA STI Program ... in Profile

October 2021

NASA/TM–20205000691/REV 2

Core Flight System (cFS)Training

cFS Caelum

Flight Software Systems Branch, Code 582 Goddard Space
Flight Center, Greenbelt, MD

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

Trade names and trademarks are used in this report for identification only. Their usage does not constitute an
official endorsement, either expressed or implied, by the National Aeronautics and Space Administration.

Level of Review: This material has been technically reviewed by technical management.

Available from

NASA STI Program
Mail Stop 148
NASA’s Langley Research Center
Hampton, VA 23681-2199

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

703-605-6000

Available in electronic form at https://www.sti.nasa.gov and https://ntrs.nasa.gov

https://www.sti.nasa.gov/

1

National Aeronautics and Space Administration

Core Flight System (cFS)
Training

cFS Caelum

Module 1: Introduction

cFS Training- Page 2

Course Agenda

1. Introduction
2. cFE Services

a) Executive Services
b) Software Bus
c) Event Services
d) Time Services
e) Table Services

3. Application Layer
a) cFS Applications
b) cFS Libraries

cFS Training- Page 3

Course Audience & Prerequisites

• Audience: Flight Software Developers

• Prerequisites:
– C programming experience
– Linux experience

• System requirements for hands-on exercises:
– Linux build environment

• With sudo privileges or a /proc/sys/fs/mqueue/msg_max >= 1024

– git, gcc, cmake, clang
– Python 3.8, PyQt5, PyZMQ

cFS Training- Page 4

Course Learning Objectives

• Understand the architecture of the cFS
• Build and execute the cFS
• Interact with the cFS through a ground system
• Modify a cFS application

cFS Training- Page 5

Introduction Agenda

• What is cFS?
• cFS Community
• cFS Architectural Overview

6

National Aeronautics and Space Administration

What is cFS?

cFS Training- Page 7

cFS Overview

• A platform and project independent reusable software framework and
set of reusable software applications
– Platform Abstraction Layer supports portability
– Applications provide mission functionality
– Compile-time configuration parameters and run-time command/table parameters

add flexibility and scalability

• Key aspects:
– Dynamic run-time environment
– Layered architecture
– Component-based design

cFS Training- Page 8

cFS Architecture Layers

Limit Checker

CFDP

Memory Dwell

Checksum

Memory Mgr.

Data Storage

Scheduler

File Manager

SB Network

Housekeeping

Stored Cmds.

Health/Safety Tools

Core Flight
Executive

Platform
Abstraction

RTOS / Boot

Application

OSAL Open Source ReleasecFE Open Source Release Application Open Source Releases Mission Developed3rd Party

Core Flight Executive API

Core Flight Executive

OS Abstraction API

RTEMS VxWorks Linux

Platform Support Package API

Mcp750-
VxWorks • • •

PROM Boot FSW

Board Support PackageReal Time OS

Python
Ground System

Application
Generator

Performance
Tools

Performance
Analyzer

Unit Tests

Build System

cFS Training- Page 9

cFS Organization

Limit Checker

CFDP

Memory Dwell

Checksum

Memory Mgr.

Data Storage

Scheduler

File Manager

Housekeeping Stored Cmds.Health/Safety

Tools
Core Flight
Executive

Platform
Abstraction

Application

OSAL Open Source ReleasecFE Open Source Release Application Open Source Releases Framework Apps

Core Flight Executive API

Core Flight Executive

OS Abstraction API

RTEMS VxWorks Linux

Platform Support Package API

Mcp750-
VxWorks • • •

Python
Ground System

Application
Generator

Performance
Tools

Performance
Analyzer

Unit Tests

Build System

SCH Lab

CI Lab

Sample App

TO Lab

Sample Lib

Common GSFC cFS Apps cFS Framework

cFS Training- Page 10

Key Definitions

• Framework – The set of individual services, applications, tools, and
infrastructure supported by the open source community Configuration
Control Board (CCB).

• Bundle – An executable version of the framework configured for a
nominal Linux system. Links compatible versions of the framework
elements as a recommended starting point for new cFS-based systems.

• Component – An individual application, service, or tool that can be
used in a cFS-based system

• Distribution – A set of custom components packaged together with the
framework; generally created and provided by a cFS user (individual or
group) with specific needs (e.g. a NASA center, the GSFC SmallSat
Project Office)

• cFE vs cFS:
– cFE is the Core Flight Executive services and API
– cFS is a general collective term for the framework and the growing set of

components

11

National Aeronautics and Space Administration

cFS
Community

cFS Training- Page 12

Community-based Product Model

• A NASA multi-center configuration control board (CCB) manages releases
of the open source cFS Framework and component specifications

• Community members (regardless of affiliation)
• Supply applications, platforms, and tools
• Create cFS distributions

Tools

Apps

Service

Platform

NASA
cFS

Distributor

Components
Specifications

Component
Supplier

cFS
Distribution

cFS
Framework

Components
• Applications
• Platforms
• Tools

cFS Training- Page 13

Community-based Product Model

• Community component supplier value proposition
– As the number of supported platforms increases then apps become more

valuable
– As the number of apps increases then supporting a cFS platform becomes more

valuable

• In 2019 vendors started to offer processor boards integrated with the
cFS
– AI Tech partnering with Embedded Flight Systems to offer the cFS integrated on

the SP0-S Single Board Computer
– Genesis Engineering developing an integrated GEN6000 (SpaceCube 2.0) cFS

product
– Genesis pursuing a Space Act Agreement (SAA) that would include the creation

of a platform certification test suite

cFS Training- Page 14

User Responsibilities

• The cFS Framework has a NASA NPR-7150.2C Class E classification
“Software developed to explore a design concept or hypothesis but not used to
make decisions for an operational Class A, B, or C system or to-be-built Class A, B,
or C system”
– The cFS Framework provides artifacts to support Class B missions and a subset

of artifacts to support Class A missions
– End-users are responsible for classifying the software system that uses the cFS

Framework

• End-users are responsible for complying with International Traffic in
arms Regulations (ITAR)

• Projects are responsible for verifying all of their requirements
– Many projects treat cFS in the same way as operating systems

cFS Training- Page 15

Obtaining cFS “Products”

• cFS Bundle
– Contains the cFS Framework packaged with additional components to create a

system that can easily be built, executed, and unit tested on a Linux platform
– http://github.com/nasa/cFS

• User Components
– Search https://github.com/nasa/ or do a general web search on NASA cFS

• Distributions
– Listed on a later slide
– Some distributions contain many of the common apps which give you a good

starting point for apps

• Engage with the Community
– Ask the community mailing list (See backup slides)
– Contact a cFS team member (See backup slides)

http://github.com/nasa/cFS
https://github.com/nasa/

cFS Training- Page 16

cFS Product Model

App Library
Apps

App Libraries

OS
Abstract

PSPs

Applications
cFE Apps

Support
Tools

Unit Test Tools

TableBuild Tools

Core Flight
Executive

Platform
Abstraction

cFE

PSPsOS
Abstract

Platform Support
Package API

OS Abstraction
API

cFE API

App Library

OS
Abstractions

PSPs

cFE Apps

Unit Test

TableBuild Tools

cFE

Platform Support
Package API

OS Abstraction
API

cFE API

NASA cFS Framework cFS Distribution

cFS
Framework

• The NASA Configuration Control Board (CCB) manages the “cFS Framework”

• “cFS Distribution” created by augmenting the NASA cFS Framework with
components (platforms, apps, and tools) to create an operational system

cFS Training- Page 17

cFS Distributions

Name/Link Intended Audience Overview

cFS Framework-101 cFS Framework training
package

This is a training tool for individuals to learn how to develop software
with NASA-developed Core Flight software (CFS) framework. No
agreement is necessary through this catalog. Training is created by JSC
and is open source.

cFS Bundle Initial cFS build for a
developer or a project

This repository contains submodules for the cFE, OSAL, and apps, as
well as instructions for building the system. This distribution has been
compiled/linked but has not been verified as an operational system.

NASA Operational
Simulator for Small
Satellites (NOS3)

Initial cFS platform for a
project

NOS3 provides a complete cFS system designed to support satellite
flight software development throughout the project life cycle. It includes
• 42 Spacecraft dynamics and visualization, NASA GSFC
• cFS – core Flight System, NASA GSFC
• COSMOS – Ball Aerospace
• ITC Common – Loggers and developer tools, NASA IV&V ITC
• NOS Engine – Middleware bus simulator, NASA IV&V ITC

OpenSatKit (OSK) cFS training platform for new
cFS developers

OSK provides a complete cFS system to simplify the cFS learning curve,
cFS deployment, and application development. The kit combines three
open source tools to achieve these goals:

• cFS – core Flight System, NASA GSFC
• COSMOS – command and control platform for embedded systems,
Ball Aerospace
• 42 dynamic simulator, NASA GSFC

https://software.nasa.gov/software/MSC-26323-1
https://github.com/nasa/cFS
https://github.com/nasa/nos3
https://github.com/OpenSatKit/OpenSatKit/wiki

cFS Training- Page 18

Community Operational Procedures

• Version Control
– Main Branch – always has the latest code
– Integration Candidates – updated after the weekly CCB meeting
– Release Candidates – periodically tagged from master

• User Contributions
– A Contributor License Agreement (CLA) is required for each contributor to the

open source

• Feature Deprecation
– Mark feature as deprecated on any release
– Provide tools/process that will warn applications when a feature is marked as

deprecated
– Only deprecate on major versions

19

National Aeronautics and Space Administration

Core Flight System
Architectural Overview

cFS Training- Page 20

Architecture Goals

1. Reduce time to deploy high quality flight software

2. Reduce project schedule and cost uncertainty

3. Directly facilitate formalized software reuse

4. Enable collaboration across organizations

5. Simplify sustaining engineering (AKA. On Orbit FSW
maintenance) Missions last 10 years or more

6. Scale from small instruments to Hubble class missions

7. Build a platform for advanced concepts and prototyping

8. Create common standards and tools across the center

cFS Training- Page 21

cFS Architecture Layers

Limit Checker

CFDP

Memory Dwell

Checksum

Memory Mgr.

Data Storage

Scheduler

File Manager

SB Network

Housekeeping

Stored Cmds.

Health/Safety

Core Flight
Executive

Platform
Abstraction

RTOS / Boot

Application

OSAL Open Source ReleasecFE Open Source Release Application Open Source Releases Mission Developed3rd Party

Core Flight Executive API

Core Flight Executive

OS Abstraction API

RTEMS VxWorks Linux

Platform Support Package API

Mcp750-
VxWorks • • •

PROM Boot FSW

Board Support PackageReal Time OS

Python
Ground
System

Application
Generator

Performance
Tools

Performance
Analyzer Unit Tests Build System

Development Tools
& Ground Systems

cFS Training- Page 22

Operating System / Boot Layer

Limit Checker

CFDP

Memory Dwell

Checksum

Memory Mgr.

Data Storage

Scheduler

File Manager

SB Network

Housekeeping

Stored Cmds.

Health/Safety

Core Flight
Executive

Platform
Abstraction

RTOS / Boot

Application

OSAL Open Source ReleasecFE Open Source Release Application Open Source Releases Mission Developed3rd Party

Core Flight Executive API

Core Flight Executive

OS Abstraction API

RTEMS VxWorks Linux

Platform Support Package API

Mcp750-
VxWorks • • •

PROM Boot FSW

Board Support PackageReal Time OS

Python
Ground
System

Application
Generator

Performance
Tools

Performance
Analyzer Unit Tests Build System

Development Tools
& Ground Systems

Provides the commercial, open-source, or custom software interface between
the processor and the FSW. Real-time multi-tasking preemptive scheduling

operating systems used for flight applications.

cFS Training- Page 23

Platform Abstraction - OSAL

Limit Checker

CFDP

Memory Dwell

Checksum

Memory Mgr.

Data Storage

Scheduler

File Manager

SB Network

Housekeeping

Stored Cmds.

Health/Safety

Core Flight
Executive

Platform
Abstraction

RTOS / Boot

Application

OSAL Open Source ReleasecFE Open Source Release Application Open Source Releases Mission Developed3rd Party

Core Flight Executive API

Core Flight Executive

OS Abstraction API

RTEMS VxWorks Linux

Platform Support Package API

Mcp750-
VxWorks • • •

PROM Boot FSW

Board Support PackageReal Time OS

Python
Ground
System

Application
Generator

Performance
Tools

Performance
Analyzer Unit Tests Build System

Development Tools
& Ground Systems

The OS Abstraction Layer (OSAL) is a software library that provides a single
Application Program Interface (API) to the core Flight Executive (cFE)

regardless of the underlying real-time operating system.

cFS Training- Page 24

Platform Abstraction - PSP

Limit Checker

CFDP

Memory Dwell

Checksum

Memory Mgr.

Data Storage

Scheduler

File Manager

SB Network

Housekeeping

Stored Cmds.

Health/Safety

Core Flight
Executive

Platform
Abstraction

RTOS / Boot

Application

OSAL Open Source ReleasecFE Open Source Release Application Open Source Releases Mission Developed3rd Party

Core Flight Executive API

Core Flight Executive

OS Abstraction API

RTEMS VxWorks Linux

Platform Support Package API

Mcp750-
VxWorks • • •

PROM Boot FSW

Board Support PackageReal Time OS

Python
Ground
System

Application
Generator

Performance
Tools

Performance
Analyzer Unit Tests Build System

Development Tools
& Ground Systems

The Platform Support Package (PSP) is a software library that provides a
single Application Program Interface (API) to underlying avionics hardware

and board support package.

cFS Training- Page 25

Core Flight Executive

Limit Checker

CFDP

Memory Dwell

Checksum

Memory Mgr.

Data Storage

Scheduler

File Manager

SB Network

Housekeeping

Stored Cmds.

Health/Safety

Core Flight
Executive

Platform
Abstraction

RTOS / Boot

Application

OSAL Open Source ReleasecFE Open Source Release Application Open Source Releases Mission Developed3rd Party

Core Flight Executive API

Core Flight Executive

OS Abstraction API

RTEMS VxWorks Linux

Platform Support Package API

Mcp750-
VxWorks • • •

PROM Boot FSW

Board Support PackageReal Time OS

Python
Ground
System

Application
Generator

Performance
Tools

Performance
Analyzer Unit Tests Build System

Development Tools
& Ground Systems

The cFE is a portable, platform-independent framework that creates an
application runtime environment by providing services that are common to

most flight applications.

cFS Training- Page 26

Applications

Limit Checker

CFDP

Memory Dwell

Checksum

Memory Mgr.

Data Storage

Scheduler

File Manager

SB Network

Housekeeping

Stored Cmds.

Health/Safety

Core Flight
Executive

Platform
Abstraction

RTOS / Boot

Application

OSAL Open Source ReleasecFE Open Source Release Application Open Source Releases Mission Developed3rd Party

Core Flight Executive API

Core Flight Executive

OS Abstraction API

RTEMS VxWorks Linux

Platform Support Package API

Mcp750-
VxWorks • • •

PROM Boot FSW

Board Support PackageReal Time OS

Python
Ground
System

Application
Generator

Performance
Tools

Performance
Analyzer Unit Tests Build System

Development Tools
& Ground Systems

Applications provide mission functionality using a combination of cFS
community apps and mission-specific apps.

cFS Training- Page 27

Development Tools & Ground Systems

Limit Checker

CFDP

Memory Dwell

Checksum

Memory Mgr.

Data Storage

Scheduler

File Manager

SB Network

Housekeeping

Stored Cmds.

Health/Safety

Core Flight
Executive

Platform
Abstraction

RTOS / Boot

Application

OSAL Open Source ReleasecFE Open Source Release Application Open Source Releases Mission Developed3rd Party

Core Flight Executive API

Core Flight Executive

OS Abstraction API

RTEMS VxWorks Linux

Platform Support Package API

Mcp750-
VxWorks • • •

PROM Boot FSW

Board Support PackageReal Time OS

Python
Ground
System

Application
Generator

Performance
Tools

Performance
Analyzer Unit Tests Build System

Development Tools
& Ground Systems

Development tools and ground systems are used to test and run the cFS. A
variety of ground systems can be used with cFS. Ground system and tool

selection generally vary by project.

cFS Training- Page 28

cFS Applications

• Can run anywhere the cFS framework has been deployed

• GSFC has released 12 applications that provide common command and
data handling functionality such as
‒ Stored command management and execution
‒ Onboard data storage file management

• Missions use a combination of custom and reused applications

cFS Training- Page 29

Mission Application Example

Inter-app Message Router (Software Bus)

EVS

SC

SCH

HK

ESTIME

FM

Cmd &
Tlm

S-Comm

SBCommand
Ingest

Telemetry
Output

SBC
1553

DS

Spacecraft
Data

Recorder

TBL

CFCS MM MD Space
Wire

1553 Bus
Controller

S/C
Data

HS

EDAC
Memory
Scrub

DIO

Time
Registers

Instr.
Data

Recorder
Manager

Power &
Support

MAC, BME,
& PSE

LC

GPS

Cmd &
Tlm

Time
Manager

Mission C&DH AppcFE ServiceCFS App Hardware

cFS Training- Page 30

cFS Mission Directory Structure

cFS Distribution

docs psp

toolsapps
Each app is

in a separate
subdirectory

build
Contains
cmake-

generated
files

cfe
cFE

source
files

osal
OSAL
source

files
_defs

cmake
configuration

files

cFS Training- Page 31

cFE Directory Structure

cFE

docs
• VDD
• Users Guide
• App Developers

Guide

modules cmake
• Files required by

build system

cFS Training- Page 32

cFE Module Structure

• cFE core components are organized as modules
• Modular structure allows advanced users to add, remove, or

override entire core services as necessary to support their
particular mission requirements

• cFE “out of the box” provides reference implementations that
meet the needs of most missions

New in
Caelum

cFS Training- Page 33

Module Directory Structure

<Module Name>

eds
Command and
Telemetry interface
description as a
CCSDS Electronic
Data Sheet

fsw
ut-stubsut-

coverage
Coverage tests to
provide line and
branch testing

Stubs to support
coverage testing of
other components

inc
Public/Interface
headers for the
component

src
Source files and
private headers for
the component

cFS Training- Page 34

Current Modules

Module Purpose/Content

cfe_assert A CFE-compatible library wrapping the basic UT assert library.

cfe_testcase A CFE-compatible library implementing test cases for CFE core apps.

core_api Contains the public interface definition of the complete CFE core -
public API/headers only, no implementation.

core_private Contains the inter-module interface definition of the CFE core -
internal API/headers only, no implementation.

es Implementation of the Executive Services (ES) core module.

evs Implementation of the Event Services (EVS) core module.

fs Implementation of the File Services (FS) core module.

msg Implementation of the Message (MSG) core module.

resourceid Implementation of the Resource ID core module.

sb Implementation of the Software Bus (SB) core module.

sbr Implementation of the Software Bus (SB) Routing module.

tbl Implementation of the Table Services (TBL) core module.

time Implementation of the Time Services (TIME) core module.

35

National Aeronautics and Space Administration

Module 1: Backup Charts

cFS References

cFS Training- Page 36

• cFS Framework, http://github.com/nasa/cFS
– Source code
– Requirements and user guides

• OSAL, https://github.com/nasa/osal
– Source code
– Requirements and user guides
– Tools

• Links to GSFC applications, https://cfs.gsfc.nasa.gov

Where is the cFS?

http://github.com/nasa/cFS
https://github.com/nasa/osal
https://cfs.gsfc.nasa.gov/

cFS Training- Page 37

GSFC Open Source Apps
Application Function
CFDP Transfers/receives file data to/from the ground

Checksum Performs data integrity checking of memory, tables and files

Command Ingest Lab Accepts CCSDS telecommand packets over a UDP/IP port

Data Storage Records housekeeping, engineering and science data onboard for downlink

File Manager Interfaces to the ground for managing files

Housekeeping Collects and re-packages telemetry from other applications.

Health and Safety Ensures critical tasks check-in, services watchdog, detects CPU hogging, calculates CPU
utilization

Limit Checker Provides the capability to monitor values and take action when exceed threshold

Memory Dwell Allows ground to telemeter the contents of memory locations. Useful for debugging

Memory Manager Provides the ability to load and dump memory

Software Bus Network Passes Software Bus messages over various “plug-in” network protocols

Scheduler Schedules onboard activities via (e.g. HK requests)

Scheduler Lab Simple activity scheduler with a one second resolution

Stored Command Onboard Commands Sequencer (absolute and relative)

Stored Command Absolute Allows concurrent processing of up to 5 (configurable) absolute time sequences

Telemetry Output Lab Sends CCSDS telemetry packets over a UDP/IP port

https://github.com/nasa/cf
https://github.com/nasa/cs
https://github.com/nasa/ci_lab/
https://github.com/nasa/ds
https://github.com/nasa/fm
https://github.com/nasa/hk
https://github.com/nasa/hs
https://github.com/nasa/lc
https://github.com/nasa/md
https://github.com/nasa/mm
https://github.com/nasa/sbn
https://github.com/nasa/sch
https://github.com/nasa/sch_lab/
https://github.com/nasa/sc
https://github.com/nasa/sca
https://github.com/nasa/to_lab/

38

National Aeronautics and Space Administration

Module 1: Backup Charts

Architecture

cFS Training- Page 39

Quality Analysis - 1

• Operability
– The architecture must enable the flight system to operate in an efficient and

understandable way

• Reliability
– The architecture implementation must be known to behave correctly in nominal

and expected off-nominal situations

• Robustness
– The architecture implementation must be predictable and safe in the presence of

unexpected conditions

• Performance
– The architecture implementation must be efficient in runtime resources given the

targeted processing environments

• Testability
– The architecture implementation must be easily and comprehensively testable in

situ in flight like scenarios

• Maintainability
– The architecture implementation must be maintainable in the operational

environment

cFS Training- Page 40

Quality Analysis - 2

• Effective Reuse
– The architecture must support an effective reuse approach. This includes the

software and artifacts (e.g. requirements, design, code, review presentations,
tests, operations guides, command and telemetry databases). The goal is to
achieve 100% reuse of a software component with no code changes.

• Composability
– Properties established at the component level, such as interfaces, timeliness or

testability, also hold at the system level. For an application or node to be
composable the architecture and process must support:

• Independent development of nodes
• Integration of the node into a system should not invalidate services in the value and

temporal domains
• Integration of an additional node into a functioning system should not disturb the correct

operation of the existing nodes
• Replica determinism – identical copies of nodes must produce identical results in an

identical order, within a specified time interval

• Predictable Development Schedule
– Development estimates provided by the FSW team should be reliable

cFS Training- Page 41

Quality Analysis - 3

• Scalability
– The FSW must scale with mission requirements. (Example: instruments or

subsystem processor may only need a small amount of message buffer space.
This should be configurable to avoid wasting memory resources.)

• Adaptability
– The FSW must be capable of supporting a range of platforms and missions.

• Minimized Development Cost
– Costs for mission functions should be as low as possible. The teams must

consider the difference between NRE and costs for a given mission.

• Technology infusion
– The FSW should support the infusion of new hardware and software technologies

with minimal side effects.

cFS Training- Page 42

Layered Service Architecture

• Each layer and service has a
standard API.

• Each layer “hides” its
implementation and
technology details.

• Internals of a layer can be
changed -- without affecting
other layers’ internals and
components.

• Provides Middleware, OS and
HW platform-independence.

Files, Tables

cFS Training- Page 43

Plug and Play

Plug and Play
• cFE APIs support add and remove functions.
• SW components can be switched in and out at

runtime, without rebooting or rebuilding the
system SW.

• Qualified Hardware and cFS-compatible
software both “plug and play”.

Impact
• Changes can be made dynamically during

development, test and on-orbit even as part of
contingency management.

• Technology evolution/change can be taken
advantage of later in the development cycle.

• Testing environment is flexible (can use
different GSE, test apps, simulators, etc.).

This powerful paradigm allows SW components to be switched in and out
at runtime, without rebooting or rebuilding the system SW.

cFS Training- Page 44

44

Reusable Components

Reusable Components
• Common FSW functionality has been

abstracted into a library of reusable
components and services.

• Components are tested and
documented.

• A system is built from:
– Core services
– Reusable components
– Custom mission specific components
– Adapted legacy components

Impact:
• Reuse of tested, certified components

supplies savings in each phase of the
software development cycle.

• Reduces risk.
• Teams focus on the custom aspects of

their project and don’t “reinvent the
wheel”.

Image
Processor

Proximity
Sensor

Science
Process

TLM +
Command

HW
Comp

Orbit
Control

HW
Comp

HW
Comp

45

National Aeronautics and Space Administration

Core Flight System (cFS)
Training

Module 2: Core Flight Executive
(cFE)

Services

August 3, 2019

cFS Training- Page 46

Course Agenda

1. Introduction
2. cFE Services

a) Executive Services
b) Software Bus
c) Event Services
d) Time Services
e) Table Services

3. Application Layer
a) cFS Applications
b) cFS Libraries

cFS Training- Page 47

cFE Services - cFS Context

Limit Checker

CFDP

Memory Dwell

Checksum

Memory Mgr.

Data Storage

Scheduler

File Manager

SB Network

Housekeeping

Stored Cmds.

Health/Safety

Core Flight
Executive

Platform
Abstraction

RTOS / Boot

Application

OSAL Open Source ReleasecFE Open Source Release Application Open Source Releases Mission Developed3rd Party

Core Flight Executive API

Core Flight Executive

OS Abstraction API

RTEMS VxWorks Linux

Platform Support Package API

Mcp750-
VxWorks • • •

PROM Boot FSW

Board Support PackageReal Time OS

Python
Ground
System

Application
Generator

Performance
Tools

Performance
Analyzer Unit Tests Build System

Development Tools
& Ground Systems

cFS Training- Page 48

What are the cFE Services?

Executive Services (ES)
– Manages the software system and creates an application runtime environment

Software Bus (SB) Services
– Provides an application publish/subscribe messaging service

Event Services (EVS)
– Provides a service for sending, filtering, and logging event messages

Time Services (TIME)
– Manages spacecraft time

Table Services (TBL)
– Manages application table images

cFS Training- Page 49

Diagram Notation

Software Bus (SB)
Communications

Non-Software Bus
Information Flow cFS Application

External Hardware Entity
or Data Store (variable/table)

FileInternal Software Module,
Library, or Data Store

• Common data flows such as command inputs to an app and telemetry
outputs from an app are often omitted from context diagrams unless they
are important to the particular situation

cFS Training- Page 50

Common cFE Service Design

• Each cFE service has:
– A library that is used by applications
– An application that provides a ground interface for operators to manage the

service

Service API

Any cFS
App

cFE
Service

App
Service
Library

Commands

Telemetry

Function call

= Software Bus Message

cFS Training- Page 51

Application Runtime Environment

• cFE Services provide an Application Runtime Environment

• The cFE service API provides a functional interface to use the
services
– Very stable. No functional change since 2008

• Obtaining information beyond the housekeeping packet
– Commands to send one time telemetry packets

– Commands to write onboard service configuration data to files

cFS Training- Page 52

Application-Centric Architecture

• Applications are an architectural component that owns cFE and
operating system resources

• Resources are acquired during initialization and released when an
application terminates
– Helps achieve the architectural goal for a loosely coupled system that is scalable,

interoperable, testable (each app is unit tested), and maintainable

• Concurrent execution model
– Each app has its own execution thread and apps can spawn child tasks

• The cFE service and Platform Abstraction APIs provide a portable
functional interface

• Write once run anywhere the cFS framework has been deployed
– Defer embedded software complexities due to cross compilation and target

operating systems

– Framework provides seamless application transition from technology efforts to
flight projects

• Reload apps during operations without rebooting

cFS Training- Page 53

Configuration Parameter Scope

• Mission configuration parameters – used for ALL processors in a
mission (e.g. time epoch, maximum message size, etc.)

• Platform Configuration parameters – used for the specific processor
(e.g. time client/server config, max number of applications, max
number of tables, etc.)

• Just because something is configurable doesn’t mean you want to
change it
– E.g. CFE_EVS_MAX_MESSAGE_LENGTH

cFS Training- Page 54

Unique Identifier Configuration Parameters

• Software Bus Message Identifiers
– cfe_msgids.h (message IDs for the cFE should not have to change)
– app_msgids.h (message IDs for the Applications) are platform configurations

• Executive Service Performance Identifiers
– cFE performance IDs are embedded in the core
– app_perfids.h (performance IDs for the applications) are mission configuration

• Task priorities are not configuration parameters but must be managed
from a processor perspective

• Note cFE strings are case sensitive

cFS Training- Page 55

cFS Application Mission and Platform
Configuration Files

File Purpose Scope Notes

cfe_mission_cfg.h cFE core mission
wide configuration Mission

cfe_platform_cfg.h cFE core platform
configuration Platform Most cFE parameters

are here

cfe_msgids.h cFE core platform
message IDs Platform

Defines the message
IDs the cFE core will
use on that
Platform(CPU)

default_osconfig.cmake OSAL platform
configuration Platform

XX_mission_cfg.h
A cFS Application’s
mission wide
configuration

Mission

Allows a single cFS
application to be used
on multiple CPUs on
one mission

XX_platform_cfg.h Application platform
wide configuration Platform

XX_msgids.h Application message
IDs Platform

XX_perfids.h Application
performance IDs Platform

cFS Training- Page 56

Exercise 1 – Build and Run the cFE

Part 1 - Setup
To setup the cFS Bundle directly from the latest set of interoperable repositories:

git clone https://github.com/nasa/cFS.git

cd cFS

git checkout caelum-rc3

git submodule update --init

Copy in the default makefile and definitions:

cp cfe/cmake/Makefile.sample Makefile

cp -r cfe/cmake/sample_defs sample_defs

Subsequent exercises assume
that cFS was cloned into the

home directory (“~/cFS”)

cFS Training- Page 57

Exercise 1 – Build and Run the cFE

Part 2 – Build and Run
The cFS Framework, including sample applications, will build and run on the pc-linux platform support package (should
run on most Linux distributions), via the steps described in
https://github.com/nasa/cFE/tree/master/cmake/README.md. Quick-start is below:

To prep, compile, and run (from cFS directory above):

make SIMULATION=native prep

make

make install

cd build/exe/cpu1/

./core-cpu1

Should see startup messages and CFE_ES_Main entering OPERATIONAL state. Note the code must be executed from
the build/exe/cpu1 directory to find the startup script and shared objects.

Shortcut:
“make SIMULATION=native install” will do

the prep/make/install steps in one call.

cFS Training- Page 58

Exercise 1 Recap

cFS Distribution

docs psp

toolsapps
Each app is

in a separate
subdirectory

build
Contains
cmake-

generated
files

cfe
cFE

source
files

osal
OSAL
source

files
_defs

cmake
configuration

files

cFS Training- Page 59

Exercise 1 Recap

cFE

docs
• VDD
• Users Guide
• App Developers

Guide

modules cmake
• Files required by

build system

cFS Training- Page 60

Exercise 1 Recap

cFE
Services
Initialized

Version info
for each
module

61

National Aeronautics and Space Administration

Core Flight System (cFS)
Training

Module 2a: Executive Services

cFS Training- Page 62

Course Agenda

1. Introduction
2. cFE Services

a) Executive Services
b) Software Bus
c) Event Services
d) Time Services
e) Table Services

3. Application Layer
a) cFS Applications
b) cFS Libraries

cFS Training- Page 63

Executive Services - cFS Context

Limit Checker

CFDP

Memory Dwell

Checksum

Memory Mgr.

Data Storage

Scheduler

File Manager

SB Network

Housekeeping

Stored Cmds.

Health/Safety

Core Flight
Executive

Platform
Abstraction

RTOS / Boot

Application

OSAL Open Source ReleasecFE Open Source Release Application Open Source Releases Mission Developed3rd Party

Core Flight Executive API

Core Flight Executive

OS Abstraction API

RTEMS VxWorks Linux

Platform Support Package API

Mcp750-
VxWorks • • •

PROM Boot FSW

Board Support PackageReal Time OS

Python
Ground
System

Application
Generator

Performance
Tools

Performance
Analyzer Unit Tests Build System

Development Tools
& Ground Systems

cFS Training- Page 64

Executive Services (ES) – Overview

• Initializes the cFE

– Reports reset type
– Maintains an exception-reset log across processor resets

• Creates the application runtime environment

– Primary interface to underlying operating system task services
– Manages application resources
– Starts initial applications according to cfe_es_startup.scr
– Supports starting, stopping, and loading applications during runtime

• Manages Memory

– Provides a dynamic memory pool service
– Provides Critical Data Stores (CDSs) that are preserved across processor resets

cFS Training- Page 65

Executive Services - Boot Sequence

PROM
Boot

OS
Kernel
Boot

cFE
Boot

FSW
Init

Reset

• The PROM boots the OS kernel linked with the BSP, loader and EEPROM
file system.
‒ Accesses simple file system
‒ Selects primary and secondary images based on flags and checksum validation
‒ Copies OS image to RAM

• The OS kernel boots the cFE
‒ Performs self – decompression (optional)
‒ Attaches to EEPROM File System
‒ Starts up cFE

• cFE boots cFE interface apps and mission components (C&DH, GNC,
Science applications)
‒ Creates/Attaches to Critical Data Store (CDS)
‒ Creates/Attaches to RAM File System
‒ Starts cFE services (ES, EVS, TBL, SB, & TIME)
‒ Starts the applications based on cfe_es_startup.scr

cFS Training- Page 66

Executive Services - Startup

Initialize OS Data
structures (task table,

queues etc.)

Initialize Core
Applications*

Initialize
cFE Apps and shared

libraries (as specified in
ES startup script)

Start
Multitasking

From BSP
Startup

Initialize File Systems

The cFE core is started as one unit. The cFE Core is linked with the RTOS and support libraries and loaded into system
EEPROM as a static executable.

Volatile
File System

Non-Volatile
File System

Startup Script
And cFE Apps/Libs

cFE Core

cFS App 1

cFS App N

Exception and
Reset Log

Log entry

cFE Applications

RAM

*Note:
Service initialization order: ES, EVS, SB, TIME, TBL
Service start order: EVS, SB, ES, TIME, TBL

cFS Training- Page 67

Executive Services - Startup Script

• The startup script is a text file, written by the user that contains a list of
entries (one entry for each application)
– Used by the ES application for automating the startup of applications.
– ES application allows the use of a volatile and nonvolatile startup scripts. The

project may utilize zero, one or two startup scripts.

Object Type CFE_APP for an Application, or CFE_LIB for a library.
Path/Filename This is a cFE Virtual filename, not a vxWorks device/pathname
Entry Point This is the name of the "main" function for App.
CFE Name The cFE name for the APP or Library
Priority This is the Priority of the App, not used for a Library
Stack Size This is the Stack size for the App, not used for a Library

Load Address This is the Optional Load Address for the App or Library. It is currently not implemented
so it should always be 0x0.

Exception
Action

This is the Action the cFE should take if the Application has an exception.

• 0 = Do a cFE Processor Reset
• Non-Zero = Just restart the Application

cFS Training- Page 68

Executive Services – Example Script

cFS Training- Page 69

Executive Services – Logs

• Exception-Reset

– Logs information related to resets and exceptions

• System Log

– cFE apps use this log when errors are encountered during initialization before
the Event Services is fully initialized

– Mission apps can also use it during initialization

• Recommended that apps should register with event service immediately after
registering with ES so app events are captured in the EVS log

– Implemented as an array of bytes that has variable length strings produced by
printf() type statements

cFS Training- Page 70

Executive Services – Reset Behavior

• Power-on Reset
– Operating system loaded and started prior to cFE
– Initializes file system
– Critical data stores and logs cleared (initialized by hardware first)
– ES starts each cFE service and then the mission applications

• Processor Reset Preserves
– File system
– Critical Data Store (CDS)
– ES System Log
– ES Exception and Reset (ER) log
– Performance Analysis data
– ES Reset info (i.e. reset type, boot source, number of processor resets)
– Time Data (i.e. MET, STCF, Leap Seconds)

• A power-on reset will be performed after a configurable number of
processor resets
– Ground responsible for managing processor reset counter

cFS Training- Page 71

Executive Services – Retrieving Onboard State

• Telemetry
– Housekeeping Status

• Log file states, App, Resets, Performance Monitor, Heap Stats

• Telemetry packets generated by command
– Single App Information
– Memory Pool Statistics Packet

• Files generated by command
– System Log
– Exception-Reset Log
– Performance Monitor
– Critical Data Store Registry
– All registered apps
– All registered tasks

cFS Training- Page 72

Executive Services -
System Integration and App Development (1 of 2)

• Child Tasks
– Recommend creating during app initialization
– Relative parent priority depends on child’s role

• Performing lengthy process may be lower
• Servicing short duration I/O may be higher

OS Call
POSIX/Linux pthread_create()

RTEMS rtems_task_create()

VxWorks taskSpawn()

cFS Training- Page 73

Executive Services -
System Integration and App Development (2 of 2)

• Query startup type (Power On vs Processor)
– Not commonly used since CDS performs data preservation

• Critical Data Store (CDS)
– E.g. Data Storage maintains open file management data in a CDS
– Typical code idiom in app’s initialization

Result = CFE_ES_RegisterCDS()

if (Result == CFE_SUCCESS)

Populate CDS

else if (Result == CFE_ES_CDS_ALREADY_EXISTS)

Restore CDS data

… Continually update CDS as application executes

• Memory Pool
– Ideally apps would allocate memory pools during initialization but

there aren’t any restrictions
– cFE Examples: Software Bus, Tables, and Events
– App Examples: CFDP and Housekeeping

cFS Training- Page 74

Executive Services – APIs (1 of 6)

Resource ID APIs Purpose

CFE_ES_AppID_ToIndex Calculates a zero-based integer value that may be used for indexing into a local resource
table/array.

CFE_ES_LibID_ToIndex Calculates a zero-based integer value that may be used for indexing into a local resource
table/array.

CFE_ES_TaskID_ToIndex Calculates a zero-based integer value that may be used for indexing into a local resource
table/array.

CFE_ES_CounterID_ToIndex Calculates a zero-based integer value that may be used for indexing into a local resource
table/array.

Entry/Exit APIs Purpose

CFE_ES_Main This is the entry point into the cFE software.

CFE_ES_ResetCFE This API causes an immediate reset of the cFE Kernel and all cFE Applications.

Application Control APIs Purpose

CFE_ES_RestartApp This API causes a cFE Application to be unloaded and restarted from the same file as the
last start.

CFE_ES_ReloadApp This API causes a cFE Application to be stopped and restarted from the specified file.

CFE_ES_DeleteApp This API causes a cFE Application to be stopped deleted.

cFS Training- Page 75

Executive Services – APIs (2 of 6)

App Behavior APIs Purpose

CFE_ES_ExitApp This API is the "Exit Point" for the cFE application

CFE_ES_RunLoop This is the API that allows an app to check for exit requests from the system, or request
shutdown from the system.

CFE_ES_WaitForSystemState Allow an Application to Wait for a minimum global system state

CFE_ES_WaitForStartupSync Allow an Application to Wait for the "OPERATIONAL" global system state

CFE_ES_IncrementTaskCounter Increments the execution counter for the calling task

Child Task APIs Purpose

CFE_ES_CreateChildTask Creates a new task under an existing Application

CFE_ES_GetTaskIDByName Get a Task ID associated with a specified Task name

CFE_ES_GetTaskName Get a Task name for a specified Task ID

CFE_ES_DeleteChildTask Deletes a task under an existing Application

CFE_ES_ExitChildTask Exits a child task

cFS Training- Page 76

Executive Services – APIs (3 of 6)

cFE Information APIs Purpose

CFE_ES_GetResetType Return the most recent Reset Type

CFE_ES_GetAppID Get an Application ID for the calling Application

CFE_ES_GetTaskID Get the task ID of the calling context

CFE_ES_GetAppIDByName Get an Application ID associated with a specified Application name

CFE_ES_GetLibIDByName Get a Library ID associated with a specified Library name

CFE_ES_GetAppName Get an Application name for a specified Application ID

CFE_ES_GetLibName Get a Library name for a specified Library ID

CFE_ES_GetAppInfo Get Application Information given a specified App ID

CFE_ES_GetTaskInfo Get Task Information given a specified Task ID

CFE_ES_GetLibInfo Get Library Information given a specified Resource ID

CFE_ES_GetModuleInfo Get Information given a specified Resource ID

cFS Training- Page 77

Executive Services – APIs (4 of 6)

Miscellaneous APIs Purpose

CFE_ES_BackgroundWakeup Wakes up the CFE background task

CFE_ES_WriteToSysLog Write a string to the cFE System Log

CFE_ES_CalculateCRC Calculate a CRC on a block of memory

CFE_ES_ProcessAsyncEvent Notification that an asynchronous event was detected by the underlying OS/PSP

Critical Data Store APIs Purpose

CFE_ES_RegisterCDS Reserve space (or re-obtain previously reserved space) in the Critical Data Store (CDS)

CFE_ES_GetCDSBlockIDByName Get a CDS Block ID associated with a specified CDS Block name

CFE_ES_GetCDSBlockName Get a Block name for a specified Block ID

CFE_ES_CopyToCDS Save a block of data in the Critical Data Store (CDS)

CFE_ES_RestoreFromCDS Recover a block of data from the Critical Data Store (CDS)

cFS Training- Page 78

Executive Services – APIs (5 of 6)

Memory Manager APIs Purpose

CFE_ES_PoolCreateNoSem Initializes a memory pool created by an application without using a semaphore during
processing.

CFE_ES_PoolCreate Initializes a memory pool created by an application while using a semaphore during
processing.

CFE_ES_PoolCreateEx Initializes a memory pool created by an application with application specified block sizes.

CFE_ES_PoolDelete Deletes a memory pool that was previously created

CFE_ES_GetPoolBuf Gets a buffer from the memory pool created by #CFE_ES_PoolCreate or
#CFE_ES_PoolCreateNoSem

CFE_ES_GetPoolBufInfo Gets info on a buffer previously allocated via #CFE_ES_GetPoolBuf

CFE_ES_PutPoolBuf Releases a buffer from the memory pool that was previously allocated via
#CFE_ES_GetPoolBuf

CFE_ES_GetMemPoolStats Extracts the statistics maintained by the memory pool software

Performance Monitor APIs Purpose

CFE_ES_PerfLogEntry Entry marker for use with Software Performance Analysis Tool.

CFE_ES_PerfLogExit Exit marker for use with Software Performance Analysis Tool.

CFE_ES_PerfLogAdd Adds a new entry to the data buffer

cFS Training- Page 79

Executive Services – APIs (6 of 6)

Generic Counter APIs Purpose

CFE_ES_RegisterGenCounter This routine registers a generic thread-safe counter which can be used for inter-task
management.

CFE_ES_DeleteGenCounter This routine deletes a previously registered generic counter.

CFE_ES_IncrementGenCounter This routine increments the specified generic counter.

CFE_ES_SetGenCount This routine sets the specified generic counter to the specified value.

CFE_ES_GetGenCount This routine gets the value of a generic counter.

CFE_ES_GetGenCounterIDByName Get the Id associated with a generic counter name

CFE_ES_GetGenCounterName Get a Counter name for a specified Counter ID

cFS Training- Page 80

A Note on Resource IDs

• cFS Caelum builds on the resource IDs present in previous
versions

• Resource IDs are implemented as a separate module
• Resource IDs increase the type safety of cFE
• ES uses several Resource IDs extensively in its API calls:

– CFE_ES_AppId_t
– CFE_ES_LibId_t
– CFE_ES_TaskId_t
– CFE_ES_CounterId_t

• The ResourceID module provides utility functions to compare
IDs and convert between integer types and ResourceIDs

New in
Caelum

cFS Training- Page 81

Executive Services – Command List

Command List Purpose
CFE_ES_StartPerfDataCmd Start performance data
CFE_ES_StopPerfDataCmd Stop performance data
CFE_ES_SetPerfFilterMaskCmd Set performance filter mask
CFE_ES_SetPerfTriggerMaskCmd Set performance trigger mask
CFE_ES_HousekeepingCmd On-board command (HK request)
CFE_ES_NoopCmd ES task ground command (NO-OP)
CFE_ES_ResetCountersCmd ES task ground command (reset counters)
CFE_ES_RestartCmd Restart cFE (may reset processor)
CFE_ES_StartAppCmd Load (and start) single application
CFE_ES_StopAppCmd Stop single application
CFE_ES_RestartAppCmd Restart a single application
CFE_ES_ReloadAppCmd Reload a single application
CFE_ES_QueryOneCmd Request tlm packet with single app data
CFE_ES_QueryAllCmd Write all app data to file
CFE_ES_QueryAllTasksCmd Write all Task Data to a file
CFE_ES_ClearSyslogCmd Clear executive services system log
CFE_ES_OverWriteSyslogCmd Set syslog mode
CFE_ES_WriteSyslogCmd Process Cmd to write ES System Log to file
CFE_ES_ClearERLogCmd Clear The exception and reset log
CFE_ES_WriteERLogCmd Process Cmd to write exception & reset log to a file
CFE_ES_VerifyCmdLength Verify command packet length
CFE_ES_ResetPRCountCmd ES task ground command (Processor Reset Count)
CFE_ES_SetMaxPRCountCmd Set Maximum Processor reset count
CFE_ES_DeleteCDSCmd Delete Specified Critical Data Store
CFE_ES_SendMemPoolStatsCmd Telemeter Memory Pool Statistics
CFE_ES_DumpCDSRegistryCmd Dump CDS Registry to a file

cFS Training- Page 82

Executive Services –
Platform Configuration Parameters

Command List Purpose
CFE_PLATFORM_ES_MAX_APPLICATIONS Max Number of Applications
CFE_PLATFORM_ES_MAX_LIBRARIES Max Number of Shared libraries
CFE_PLATFORM_ES_ER_LOG_ENTRIES Max Number of ER (Exception and Reset) log entries
CFE_PLATFORM_ES_ER_LOG_MAX_CONTEXT_SIZE Maximum size of CPU Context in ES Error Log
CFE_PLATFORM_ES_SYSTEM_LOG_SIZE Size of the cFE System Log
CFE_PLATFORM_ES_OBJECT_TABLE_SIZE Number of entries in the ES Object table
CFE_PLATFORM_ES_MAX_GEN_COUNTERS Max Number of Generic Counters
CFE_PLATFORM_ES_APP_SCAN_RATE ES Application Control Scan Rate
CFE_PLATFORM_ES_APP_KILL_TIMEOUT ES Application Kill Timeout
CFE_PLATFORM_ES_RAM_DISK_SECTOR_SIZE ES Ram Disk Sector Size
CFE_PLATFORM_ES_RAM_DISK_NUM_SECTORS ES Ram Disk Number of Sectors
CFE_PLATFORM_ES_RAM_DISK_PERCENT_RESERVED Percentage of Ram Disk Reserved for Decompressing Apps
CFE_PLATFORM_ES_RAM_DISK_MOUNT_STRING RAM Disk Mount string
CFE_PLATFORM_ES_CDS_SIZE Critical Data Store Size
CFE_PLATFORM_ES_USER_RESERVED_SIZE User Reserved Memory Size
CFE_PLATFORM_ES_RESET_AREA_SIZE ES Reset Area Size
CFE_PLATFORM_ES_NONVOL_STARTUP_FILE ES Nonvolatile Startup Filename
CFE_PLATFORM_ES_NONVOL_DISK_MOUNT_STRING Default virtual path for persistent storage

CFE_PLATFORM_ES_VOLATILE_STARTUP_FILE ES Volatile Startup Filename
CFE_PLATFORM_ES_DEFAULT_APP_LOG_FILE Default Application Information Filename
CFE_PLATFORM_ES_DEFAULT_TASK_LOG_FILE Default Application Task Information Filename
CFE_PLATFORM_ES_DEFAULT_SYSLOG_FILE Default System Log Filename
CFE_PLATFORM_ES_DEFAULT_ER_LOG_FILE Default Exception and Reset (ER) Log Filename
CFE_PLATFORM_ES_DEFAULT_PERF_DUMP_FILENAME Default Performance Data Filename
CFE_PLATFORM_ES_DEFAULT_CDS_REG_DUMP_FILE Default Critical Data Store Registry Filename
CFE_PLATFORM_ES_DEFAULT_POR_SYSLOG_MODE Default System Log Mode following Power On Reset

cFS Training- Page 83

Command List Purpose

CFE_MISSION_ES_CDS_MAX_NAME_LENGTH Maximum Length of CDS Name

CFE_MISSION_ES_DEFAULT_CRC Mission Default CRC algorithm

CFE_MISSION_ES_MAX_APPLICATIONS Mission Max Apps in a message

CFE_MISSION_ES_PERF_MAX_IDS Define Max Number of Performance IDs for messages

CFE_MISSION_ES_POOL_MAX_BUCKETS Maximum number of block sizes in pool structures

CFE_MISSION_ES_CDS_MAX_FULL_NAME_LEN Maximum Length of Full CDS Name in messages

Executive Services –
Mission Configuration Parameters

cFS Training- Page 84

Command List Purpose
CFE_PLATFORM_ES_DEFAULT_PR_SYSLOG_MODE Default System Log Mode following Processor Reset
CFE_PLATFORM_ES_PERF_DATA_BUFFER_SIZE Max Size of Performance Data Buffer
CFE_PLATFORM_ES_PERF_FILTMASK_NONE Filter Mask Setting for Disabling All Performance Entries
CFE_PLATFORM_ES_PERF_FILTMASK_ALL Filter Mask Setting for Enabling All Performance Entries
CFE_PLATFORM_ES_PERF_FILTMASK_INIT Default Filter Mask Setting for Performance Data Buffer

CFE_PLATFORM_ES_PERF_TRIGMASK_NONE Default Filter Trigger Setting for Disabling All Performance
Entries

CFE_PLATFORM_ES_PERF_TRIGMASK_ALL Filter Trigger Setting for Enabling All Performance Entries
CFE_PLATFORM_ES_PERF_TRIGMASK_INIT Default Filter Trigger Setting for Performance Data Buffer
CFE_PLATFORM_ES_PERF_CHILD_PRIORITY Performance Analyzer Child Task Priority
CFE_PLATFORM_ES_PERF_CHILD_STACK_SIZE Performance Analyzer Child Task Stack Size
CFE_PLATFORM_ES_PERF_CHILD_MS_DELAY Performance Analyzer Child Task Delay

CFE_PLATFORM_ES_PERF_ENTRIES_BTWN_DLYS Performance Analyzer Child Task Number of Entries Between
Delay

CFE_PLATFORM_ES_DEFAULT_STACK_SIZE Default Stack Size for an Application
CFE_PLATFORM_ES_START_TASK_PRIORITY ES Task Priority
CFE_PLATFORM_ES_START_TASK_STACK_SIZE ES Task Stack Size
CFE_PLATFORM_ES_CDS_MAX_NUM_ENTRIES Maximum Number of Registered CDS Blocks
CFE_PLATFORM_ES_MAX_PROCESSOR_RESETS Number of Processor Resets Before a Power On Reset
CFE_PLATFORM_ES_CDS_MAX_BLOCK_SIZE ES Critical Data Store Max Memory Pool Block Size
CFE_PLATFORM_ES_MEMPOOL_ALIGN_SIZE_MIN Define Memory Pool Alignment Size
CFE_PLATFORM_ES_POOL_MAX_BUCKETS Maximum number of block sizes in pool structures
CFE_PLATFORM_ES_MAX_MEMORY_POOLS Maximum number of memory pools
CFE_PLATFORM_ES_STARTUP_SYNC_POLL_MSEC Poll timer for startup sync delay
CFE_PLATFORM_ES_STARTUP_SCRIPT_TIMEOUT_MSEC Startup script timeout

Executive Services –
Platform Configuration Parameters

cFS Training- Page 85

Exercise 2 - Command cFE Executive Service

Part 1 – Start the Ground System
The cFS-GroundSystem tool can be used to send commands and receive telemetry (see
https://github.com/nasa/cFS-GroundSystem/tree/master/Guide-GroundSystem.txt, the Guide-GroundSystem.txt).
Note it depends on PyQt5 and PyZMQ:

1. Ensure that cFE is running
2. Open a new terminal
3. Compile cmdUtil and start the ground system executable

cd ~/cFS/tools/cFS-GroundSystem/Subsystems/cmdUtil

make

cd ../..

python3 GroundSystem.py

4. Select "Start Command System"

4

cFS Training- Page 86

Exercise 2 - Command cFE Executive Service

Part 1 Continued

5. Select "Enable Tlm"
6. Enter IP address of system executing cFS

(127.0.0.1 if running locally) into the "Input"
field and click "Send"

7. In the original ground system window, select
"Start Telemetry System"

**At this point, telemetry should be visible in
the ground system**

5

6 7

cFS Training- Page 87

Exercise 2 – Part 1 Recap

cFS Terminal
Window

Python GUI
Terminal Window

cFS Training- Page 88

Exercise 2 – Part 1 Recap

After Step 7, cFE
housekeeping packet
counts should start
incrementing

cFS Training- Page 89

Exercise 2 - Command cFE Executive Service

Part 2 – Command Executive
Services

Send a No-Op Command
1. On the Command System Main Page, select
"ES No-Op".

• A no-op message should appear in the cFS
screen.

Restart an application
2. On the Command System Main Page, click the

"Display Page" button beside "Executive
Services CPU1".

12

cFS Training- Page 90

Exercise 2 - Command cFE Executive Service

Part 2 – Command Executive
Services - Continued

3. Click the "Send" button beside
“CFE_ES_RESTART_APP_CC".

4. Enter "SCH_LAB_APP" in the "Input" field.
5. Click "Send".

**NOTE: "SCH_LAB_APP" is the cFE name
specified for one of the apps in the
cfe_es_startup.scr file. Many cFE ES commands
require the cFE name of an application or library
as a parameter**

3

4

5

cFS Training- Page 91

Exercise 2 Part 2 Recap

ES No-Op
Command

ES
Restart

App
Command

92

National Aeronautics and Space Administration

Core Flight System (cFS)
Training

Module 2b: Software Bus
Services

cFS Training- Page 93

Course Agenda

1. Introduction
2. cFE Services

a) Executive Services
b) Software Bus
c) Event Services
d) Time Services
e) Table Services

3. Application Layer
a) cFS Applications
b) cFS Libraries

cFS Training- Page 94

Software Bus - cFS Context

Limit Checker

CFDP

Memory Dwell

Checksum

Memory Mgr.

Data Storage

Scheduler

File Manager

SB Network

Housekeeping

Stored Cmds.

Health/Safety

Core Flight
Executive

Platform
Abstraction

RTOS / Boot

Application

OSAL Open Source ReleasecFE Open Source Release Application Open Source Releases Mission Developed3rd Party

Core Flight Executive API

Core Flight Executive

OS Abstraction API

RTEMS VxWorks Linux

Platform Support Package API

Mcp750-
VxWorks • • •

PROM Boot FSW

Board Support PackageReal Time OS

Python
Ground
System

Application
Generator

Performance
Tools

Performance
Analyzer Unit Tests Build System

Development Tools
& Ground Systems

cFS Training- Page 95

• Provides a portable inter-application message service using a
publish/subscribe model

• Routes messages to all applications that have subscribed to the
message (i.e. broadcast model)
– Subscriptions are done at application startup
– Message routing can be added/removed at runtime
– Sender does not know who subscribes (i.e. connectionless)

• Reports errors detected during the transferring of messages

• Outputs Statistics Packet and the Routing Information when
commanded

Software Bus (SB) Services - Overview

cFS Training- Page 96

Software Bus - Context

Software
Scheduler

cFE
Software Bus

Receiving
cFS

App(s)

Sending
cFS
App

HK
Requests

CFE_SB_SendMsg()

CFE_SB_RcvMsg()

cFS Training- Page 97

Software Bus Terms

• Pipe – Destination to which SB Messages are sent; queues that
can hold SB Messages until they are read out and processed

• Message – A collection of data treated as a single entity.
• Buffer – The generic piece of data moved on the Software Bus

– Alignment is enforced at the buffer level
– In general, applications receive buffers and cast them to a specific

message type to use them

cFS Training- Page 98

Software Bus and Message Module

• cFS Caelum introduces a Message Module that encapsulates
the definition of messages passed by cFE SB

• cFE SB handles the routing of messages
• cFE Message Module handles the definition and parsing of

individual messages

New in
Caelum

cFS Training- Page 99

Software Bus – Messages (1 of 2)

• Messages are routed by a “MessageID”
– This should always be treated as opaque – applications should not try to directly

access the fields of a MessageID
– By default, the Message Module provides two implementations

(MISSION_MSG_V1 and MISSION_MSG_V2)
• MISSION_MSG_V1 maps directly to the CCSDS Stream ID

• CCSDS Primary Header (Always big endian)

cFS Training- Page 100

Software Bus – Messages (2 of 2)

• CCSDS Command Packets
– Secondary packet header contains a command function code
– cFS apps typically define a single command packet and use the function code to

dispatch a command processing function
– Commands can originate from the ground or from onboard applications

• CCSDS Telemetry Packets
– Secondary packet header contains a time stamp of when the data was produced
– Telemetry is sent on the software bus by apps and can be ingested by other apps,

stored onboard and sent to the ground

cFS Training- Page 101

Software Bus – Message Formats

• Message formats are defined in the Message Module, along with
functions to access message header fields (CFE_MSG_GetApId,
CFE_MSG_GetSequenceCount, etc.)

union CFE_MSG_Message {

CCSDS_SpacePacket_t CCSDS;

uint8 Byte[sizeof(CCSDS_SpacePacket_t)];

}

struct CFE_MSG_CommandHeader {

CFE_MSG_Message_t Msg;

CFE_MSG_CommandSecondaryHeader_t Sec;

}

struct CFE_MSG_TelemetryHeader {

CFE_MSG_Message_t Msg;

CFE_MSG_TelemetrySecondaryHeader_t Sec;

uint8 Spare[4];

}

cFS Training- Page 102

Software Bus – Reset Behavior

• No data is preserved for either a Power-On or Processor Reset
– All routing is reestablished as application create pipes and subscribe to messages
– Any packet in transit at the time of the reset is discarded
– All packet sequence counters reset to 1

cFS Training- Page 103

Software Bus – Retrieving Onboard State

• Telemetry
– Housekeeping Status

• Counters (No subscribers, send errors, pipe overflows, etc.), Memory Stats

• Telemetry packets generated by command
– Statistics
– Subscription Report

• Files generated by command
– Routing Info
– Pipe Info
– Message ID to Route

cFS Training- Page 104

Software Bus - System Integration

• Message IDs should be unique across the system if possible
• The software bus places no restrictions on who can send or receive

messages
– One-to-one
– One-to-many
– Many-to-one
– Many-to-many

• The Software Bus Network application can be used to extend the
software bus across multiple processors

cFS Training- Page 105

Software Bus – App Development (1 of 2)

• Apps must create a pipe in order to receive messages
– Apps can create multiple pipes if necessary

• Apps must subscribe to each individual message ID they want to
receive
– Apps typically subscribe to at least 2 MIDs: one for housekeeping requests and

one for commands
• Commands are typically grouped under a single MID with multiple command codes

– Apps can subscribe and unsubscribe to messages at any time

• Sending Messages:

• Receiving Messages:

CFE_MSG_Init CFE_MSG_SetFcnCode CFE_SB_TransmitMsg

CFE_SB_CreatePipe CFE_SB_Subscribe CFE_SB_ReceiveBuffer

CFE_SB_TimeStampMsg

cFS Training- Page 106

Software Bus – App Development (2 of 2)

• Must first subscribe to messages

• To receive messages, can pend or poll using the TimeOut
parameter
CFE_Status_t CFE_SB_ReceiveBuffer(CFE_SB_Buffer_t **BufPtr,

CFE_SB_PipeId_t PipeId,

int32 TimeOut);

Function Purpose

CFE_SB_Subscribe Subscribes to the message ID using
default parameters for Quality of
Service and Message Limit

CFE_SB_SubscribeEx Subscribes to the message ID
specifying custom parameters for
Quality of Service and Message Limit

cFS Training- Page 107

cFE Software Bus APIs

Pipe Management APIs Purpose

CFE_SB_CreatePipe Creates a new software bus pipe.

CFE_SB_DeletePipe Delete a software bus pipe.

CFE_SB_PipeId_ToIndex Obtain an index value correlating to an SB Pipe ID

CFE_SB_SetPipeOpts Set options on a pipe.

CFE_SB_GetPipeOpts Get options on a pipe.

CFE_SB_GetPipeName Get the pipe name for a given id.

CFE_SB_GetPipeIdByName Get pipe id by pipe name.

Message Subscription
Control APIs Purpose

CFE_SB_SubscribeEx Subscribe to a message on the software bus

CFE_SB_Subscribe Subscribe to a message on the software bus with default parameters

CFE_SB_SubscribeLocal Subscribe to a message while keeping the request local to a CPU

CFE_SB_Unsubscribe Remove a subscription to a message on the software bus

CFE_SB_UnsubscribeLocal Remove a subscription to a message on the software bus on the current CPU

cFS Training- Page 108

cFE Software Bus APIs

Send/Receive Message
APIs Purpose

CFE_SB_TransmitMsg Transmit a message

CFE_SB_ReceiveBuffer Receive a message from a software bus pipe

Message Characteristics
APIs Purpose

CFE_SB_SetUserDataLength Sets the length of user data in a software bus message.

CFE_SB_TimeStampMsg Sets the time field in a software bus message with the current spacecraft time.

CFE_SB_MessageStringSet Copies a string into a software bus message

CFE_SB_GetUserData Get a pointer to the user data portion of a software bus message.

CFE_SB_GetUserDataLength Gets the length of user data in a software bus message.

CFE_SB_MessageStringGet Copies a string out of a software bus message

Zero Copy APIs Purpose

CFE_SB_AllocateMessageBuffer Get a buffer pointer to use for "zero copy" SB sends.

CFE_SB_ReleaseMessageBuffer Release an unused "zero copy" buffer pointer.

CFE_SB_TransmitBuffer Transmit a buffer

cFS Training- Page 109

cFE Software Bus APIs

Message ID APIs Purpose

CFE_SB_IsValidMsgId Identifies whether a given CFE_SB_MsgId_t is valid

CFE_SB_MsgId_Equal Identifies whether two #CFE_SB_MsgId_t values are equal

CFE_SB_MsgIdToValue Converts a #CFE_SB_MsgId_t to a normal integer

CFE_SB_ValueToMsgId Converts a normal integer into a #CFE_SB_MsgId_t

cFS Training- Page 110

cFE Message Module APIs

Generic Message APIs Purpose

CFE_MSG_Init Initialize a message

Message Primary Header APIs Purpose

CFE_MSG_GetSize Gets the total size of a message.

CFE_MSG_SetSize Sets the total size of a message.

CFE_MSG_GetType Gets the message type.

CFE_MSG_SetType Sets the message type.

CFE_MSG_GetHeaderVersion Gets the message header version.

CFE_MSG_SetHeaderVersion Sets the message header version.

CFE_MSG_GetHasSecondaryHeader Gets the message secondary header boolean

CFE_MSG_SetHasSecondaryHeader Sets the message secondary header boolean

CFE_MSG_GetApId Gets the message application ID

CFE_MSG_SetApId Sets the message application ID

CFE_MSG_GetSegmentationFlag Gets the message segmentation flag

CFE_MSG_SetSegmentationFlag Sets the message segmentation flag

CFE_MSG_GetSequenceCount Gets the message sequence count

CFE_MSG_SetSequenceCount Sets the message sequence count

CFE_MSG_GetNextSequenceCount Gets the next sequence count value (rolls over if appropriate)

cFS Training- Page 111

cFE Message Module APIs

Message Extended Header
APIs Purpose

CFE_MSG_GetEDSVersion Gets the message EDS version

CFE_MSG_SetEDSVersion Sets the message EDS version

CFE_MSG_GetEndian Gets the message endian

CFE_MSG_SetEndian Sets the message endian

CFE_MSG_GetPlaybackFlag Gets the message playback flag

CFE_MSG_SetPlaybackFlag Sets the message playback flag

CFE_MSG_GetSubsystem Gets the message subsystem

CFE_MSG_SetSubsystem Sets the message subsystem

CFE_MSG_GetSystem Gets the message system

CFE_MSG_SetSystem Sets the message system

Message Secondary Header
APIs Purpose

CFE_MSG_GenerateChecksum Calculates and sets the checksum of a message

CFE_MSG_ValidateChecksum Validates the checksum of a message.

CFE_MSG_SetFcnCode Sets the function code field in a message.

CFE_MSG_GetFcnCode Gets the function code field from a message.

CFE_MSG_GetMsgTime Gets the time field from a message.

CFE_MSG_SetMsgTime Sets the time field in a message.

cFS Training- Page 112

cFE Message Module APIs

Message Id APIs Purpose

CFE_MSG_GetMsgId Gets the message id from a message.

CFE_MSG_SetMsgId Sets the message id bits in a message.

CFE_MSG_GetTypeFromMsgId Gets message type using message ID

cFS Training- Page 113

cFE Software Bus Command List

SB Command List Purpose
CFE_SB_NoopCmd Software Bus No-Op

CFE_SB_ResetCountersCmd Resets counters in the Software Bus housekeeping telemetry

CFE_SB_EnableSubReportingCmd Enable Subscription Reporting Command

CFE_SB_DisableSubReportingCmd Disable Subscription Reporting Command

CFE_SB_SendHKTlmCmd Function to send the SB housekeeping packet

CFE_SB_EnableRouteCmd Enable Software Bus Route

CFE_SB_DisableRouteCmd Disable Software Bus Route

CFE_SB_SendStatsCmd Send Software Bus Statistics

CFE_SB_WriteRoutingInfoCmd Write Software Bus Routing Info to a File

CFE_SB_WritePipeInfoCmd Write Pipe Info to a File

CFE_SB_WriteMapInfoCmd Write Map Info to a File

CFE_SB_SendPrevSubsCmd Generates a series of packets that contain information regarding all subscriptions
previously received by SB.

cFS Training- Page 114

Software Bus – Platform Configuration Parameters

Parameter Purpose

CFE_PLATFORM_SB_MAX_MSG_IDS Maximum Number of Unique Message IDs SB Routing Table can
hold

CFE_PLATFORM_SB_MAX_PIPES Maximum Number of Unique Pipes SB Routing Table can hold

CFE_PLATFORM_SB_MAX_DEST_PER_PKT Maximum Number of unique local destinations a single MsgId can
have

CFE_PLATFORM_SB_DEFAULT_MSG_LIMIT Default Subscription Message Limit

CFE_PLATFORM_SB_BUF_MEMORY_BYTES Size of the SB buffer memory pool

CFE_PLATFORM_SB_HIGHEST_VALID_MSGID Highest Valid Message Id

CFE_PLATFORM_SB_DEFAULT_ROUTING_FILENAME Default Routing Information Filename

CFE_PLATFORM_SB_DEFAULT_PIPE_FILENAME Default Pipe Information Filename

CFE_PLATFORM_SB_DEFAULT_MAP_FILENAME Default Message Map Filename

CFE_PLATFORM_SB_FILTERED_EVENT[1-8] SB Event Filtering

CFE_PLATFORM_SB_FILTER_MASK[1-8] SB Event Filtering Mask

CFE_PLATFORM_SB_MEM_BLOCK_SIZE_[01-16] Define SB Memory Pool Block Sizes

CFE_PLATFORM_SB_MAX_BLOCK_SIZE Defines Max SB Memory Pool Block Size

CFE_PLATFORM_SB_START_TASK_PRIORITY SB Task Priority

CFE_PLATFORM_SB_START_TASK_STACK_SIZE SB Task Stack Size

cFS Training- Page 115

Software Bus – Mission Configuration Parameters

Parameter Purpose

CFE_MISSION_SB_MAX_SB_MSG_SIZE Maximum SB Message Size

CFE_MISSION_SB_MAX_PIPES Maximum Number of pipes that SB command/telemetry messages
may hold

cFS Training- Page 116

Exercise 3 - Command cFE Software Bus

Part 1 – Send a No-Op Command
1. Ensure that cFE is running
2. Open a new terminal
3. Start the ground system executable (as in Exercise 2)
4. Enable Telemetry (as in Exercise 2)
5. Send an SB No-Op command

• Click the “SB No-Op" button beside "Software Bus"
• Click the "Send" button beside "Software Bus No-Op"
• Click "Send"

5

cFS Training- Page 117

Exercise 3 - Command cFE Software Bus

Part 2 – Write the Routing Map
1. Click the “Display Page” button beside “Software Bus”
2. In the "Software Bus" window, click the "Send" button

beside “CFE_SEND_MAP_INFO_CC"
3. Enter "/cf/map.bin" in the "Input" field next to "Filename"
4. Click "Send“

• Nothing appears in the cFE window unless debug
messages have been enabled, but the file "map.bin"
now exists in the build/exe/cpu1/cf directory. View
with "hexdump -C cf/map.bin"

**NOTE: The "Write Map Info to a File" command is one of
several commands that together provide the full routing
information for the software bus. This can be useful for
troubleshooting purposes**

1

2

3

4

cFS Training- Page 118

Exercise 3 Recap

SB No-Op
Command

cFS Training- Page 119

Exercise 3 Recap

File Header

Msg ID

Routing Table
Index

cFS Training- Page 120

CCSDS References

• Consultative Committee for Space Data Systems
• CCSDS Home: https://public.ccsds.org/default.aspx
• CCSDS Space Packet Protocol:

https://public.ccsds.org/Pubs/133x0b1s.pdf

https://public.ccsds.org/default.aspx
https://public.ccsds.org/Pubs/133x0b1s.pdf

121

National Aeronautics and Space Administration

Core Flight System (cFS)
Training

Module 2c: Event Services

cFS Training- Page 122

Course Agenda

1. Introduction
2. cFE Services

a) Executive Services
b) Time Services
c) Event Services
d) Software Bus
e) Table Services

3. Application Layer
a) cFS Applications
b) cFS Libraries

cFS Training- Page 123

Event Services - cFS Context

Limit Checker

CFDP

Memory Dwell

Checksum

Memory Mgr.

Data Storage

Scheduler

File Manager

SB Network

Housekeeping

Stored Cmds.

Health/Safety

Core Flight
Executive

Platform
Abstraction

RTOS / Boot

Application

OSAL Open Source ReleasecFE Open Source Release Application Open Source Releases Mission Developed3rd Party

Core Flight Executive API

Core Flight Executive

OS Abstraction API

RTEMS VxWorks Linux

Platform Support Package API

Mcp750-
VxWorks • • •

PROM Boot FSW

Board Support PackageReal Time OS

Python
Ground
System

Application
Generator

Performance
Tools

Performance
Analyzer Unit Tests Build System

Development Tools
& Ground Systems

cFS Training- Page 124

Event Services (EVS) - Overview

• Provides an interface for sending time-stamped text messages on the
software bus
– Considered asynchronous because they are not part of telemetry periodically

generated by an application
– Processor unique identifier
– Optionally logged to a local event log
– Optionally output to a hardware port

• Four event types defined
– Debug, Informational, Error, Critical

• Event message control
– Apps can filter individual messages based on identifier
– Enable/disable event types at the processor and application scope

cFS Training- Page 125

Event Services - Context

cFE
Event

Services

Event Message

Any cFS
Application

Event Message

CFE_EVS_SendEvent

Local
Event
Log

Output
Port

cFS Training- Page 126

Event Services – Message Format

• Spacecraft time
– Retrieved via CFE_TIME_GetTime()

• Event Type
– Debug, Informational, Error, Critical

• Spacecraft ID (not shown) defined in cfe_mission_cfg.h
• Processor ID defined in cfe_platform_cfg.h

14:14:40.500 ERROR CPU=CPU3 APPNAME=CFE_TBL EVENT ID=57 Unable to locate “TST_TBL.invalid_tbl_02 in Table Registry

14:14:40.500 ERROR CPU=CPU3 APPNAME=CFE_TBL EVENT ID=57 Unable to locate “TST_TBL.invalid_tbl_02 in Table Registry

14:14:40.500 ERROR CPU=CPU3 APPNAME=CFE_TBL EVENT ID=57 Unable to locate “TST_TBL.invalid_tbl_02 in Table Registry

cFS Training- Page 127

Event Services – Message Format

• Application
– cFE Service or app name defined in cfe_es_startup.scr

• Event ID is unique within an application

• Event Text is created using printf() format options
– “Short Format” platform option allows messages to be sent without text portion

14:14:40.500 ERROR CPU=CPU3 APPNAME=CFE_TBL EVENT ID=57 Unable to locate “TST_TBL.invalid_tbl_02 in Table Registry

14:14:40.500 ERROR CPU=CPU3 APPNAME=CFE_TBL EVENT ID=57 Unable to locate “TST_TBL.invalid_tbl_02 in Table Registry

14:14:40.500 ERROR CPU=CPU3 APPNAME=CFE_TBL EVENT ID=57 Unable to locate “TST_TBL.invalid_tbl_02 in Table Registry

cFS Training- Page 128

Event Services – Event Filtering
• Applications register events for filtering during initialization

– Registering immediately after ES app registration allows events to be used rather
than syslog writes

• Bit-wise AND “filter mask”
– Boolean AND performed on event ID message counter, if result is zero then the

event is sent
– Mask applied before the sent counter is incremented
– 0x0000 => Every message sent
– 0x0003 => Every 4th message sent
– 0xFFFE => Only first two messages sent

• CFE_EVS_MAX_FILTER_COUNT (cfe_evs_task.h) defines maximum
count for a filtered event ID
– Once reached event becomes locked
– Prevents erratic filtering behavior with counter rollover
– Ground can unlock filter by resetting or deleting the filter

cFS Training- Page 129

Event Services - Ports

• cFE supports up to 4 ports
– Port behavior can be customized in cfe_evs_utils.c
– By default, all ports call OS_printf

• Event messages are sent to enabled ports in addition to the software
bus

• By default, enabled ports are defined with the configuration parameter:
CFE_PLATFORM_EVS_PORT_DEFAULT
– Enabled ports can be changed in runtime with the command

CFE_EVS_EnablePortsCmd

cFS Training- Page 130

Event Services – Message Control

• Processor scope
– Enable/disable event messages based on type

• Debug, Information, Error, Critical

• Application scope
– Enable/disable all events
– Enable/disable based on type

• Event message scope
– During initialization apps can register events for filtering for up to

CFE_PLATFORM_EVS_MAX_EVENT_FILTERS defined in cfe_platform_cfg.h
– Filters can be modified by command

cFS Training- Page 131

Event Services – Reset Behavior

• Power-on Reset
– No data preserved
– Application initialization routines register with the service
– If configured local event log enabled

• Processor Reset
– If configured with an event log, preserves

• Messages
• Mode: Discard or Overwrite
• Log Full and Overflow status

cFS Training- Page 132

Event Services – Retrieving Onboard State

• Housekeeping Telemetry
– Log Enabled, Overflow, Full, Enabled
– For each App: AppID, Events Sent Count, Enabled

• Write application data to file. For each app
– Active flag – Are events enabled
– Event Count
– For each filtered event

• Event ID
• Filter Mask
• Event Count – Number of times Event ID has been issued

• Local event log
– If enabled, events are written to a local buffer
– Log “mode” can be set to overwrite or discard
– Serves as backup to onboard-recorder during initialization or error scenarios
– Suitable for multi-processor architectures
– Command to write log to file

cFS Training- Page 133

Event Services -
System Integration and App Development

• System Integration
– DEBUG logging level should be disabled in flight
– Telemetry Output should subscribe to and downlink event messages

• App Development
– Any app can subscribe to event messages (like any other software bus message)
– An app must register with event services before it can send any events

• Apps should write to the ES system log if event services cannot be registered

– Calls to any variety of CFE_EVS_SendEvent will have no effect if the app is not
registered with EVS

– cFE libraries cannot register with EVS

• Event Filtering in Apps
– Apps should limit the amount of filtering done with in the app (ground should have

ultimate control over filtering)
– Apps should avoid “spamming” event messages

cFS Training- Page 134

cFE Event Services APIs

Registration APIs Purpose

CFE_EVS_Register Register an application for receiving event services

Send Event APIs Purpose

CFE_EVS_SendEvent Generate a software event.

CFE_EVS_SendEventWithAppID Generate a software event given the specified Application ID.

CFE_EVS_SendTimedEvent Generate a software event with a specific time tag.

Reset Event Filter APIs Purpose

CFE_EVS_ResetFilter Resets the calling application's event filter for a single event ID.

CFE_EVS_ResetAllFilters Resets all of the calling application's event filters.

cFS Training- Page 135

Event Services – Command List

Command List Purpose

CFE_EVS_NoopCmd This function processes "no-op" commands received on the EVS
command pipe

CFE_EVS_ClearLogCmd This function processes "clear log" commands received on the EVS
command pipe

CFE_EVS_ReportHousekeepingCmd Request for housekeeping status telemetry packet

CFE_EVS_ResetCountersCmd This function resets all the global counter variables that are part of the
task telemetry

CFE_EVS_SetFilterCmd This routine sets the filter mask for the given event_id in the calling
task's filter array

CFE_EVS_EnablePortsCmd This routine sets the command given ports to an enabled state

CFE_EVS_DisablePortsCmd This routine sets the command given ports to a disabled state

CFE_EVS_EnableEventTypeCmd This routine sets the given event types to an enabled state across all
registered applications

CFE_EVS_DisableEventTypeCmd This routine sets the given event types to a disabled state across all
registered applications

CFE_EVS_SetEventFormatModeCmd This routine sets the Event Format Mode

CFE_EVS_EnableAppEventTypeCmd This routine sets the given event type for the given application identifier
to an enabled state

cFS Training- Page 136

Event Services – Command List

Command List Purpose

CFE_EVS_DisableAppEventTypeCmd This routine sets the given event type for the given application identifier
to a disabled state

CFE_EVS_EnableAppEventsCmd This routine enables application events for the given application
identifier

CFE_EVS_DisableAppEventsCmd This routine disables application events for the given application
identifier

CFE_EVS_ResetAppCounterCmd This routine sets the application event counter to zero for the given
application identifier

CFE_EVS_ResetFilterCmd This routine sets the application event filter counter to zero for the
given application identifier and event identifier

CFE_EVS_ResetAllFiltersCmd This routine sets all application event filter counters to zero for the
given application identifier

CFE_EVS_AddEventFilterCmd This routine adds the given event filter for the given application
identifier and event identifier

CFE_EVS_DeleteEventFilterCmd This routine deletes the event filter for the given application identifier
and event identifier

CFE_EVS_WriteAppDataFileCmd This routine writes all application data to a file for all applications that
have registered with the EVS

CFE_EVS_SetLogModeCmd Sets the logging mode to the command specified value.

CFE_EVS_WriteLogDataFileCmd Requests the Event Service to generate a file containing the contents
of the local event log.

cFS Training- Page 137

Event Services – Platform Configuration Parameters

Parameter Purpose

CFE_PLATFORM_EVS_START_TASK_PRIORITY Define EVS Task Priority

CFE_PLATFORM_EVS_START_TASK_STACK_SIZE Define EVS Task Stack Size

CFE_PLATFORM_EVS_MAX_EVENT_FILTERS Define Maximum Number of Event Filters per Application

CFE_PLATFORM_EVS_DEFAULT_LOG_FILE Default Event Log Filename

CFE_PLATFORM_EVS_LOG_MAX Maximum Number of Events in EVS Local Event Log

CFE_PLATFORM_EVS_DEFAULT_APP_DATA_FILE Default EVS Application Data Filename

CFE_PLATFORM_EVS_PORT_DEFAULT Default EVS Output Port State

CFE_PLATFORM_EVS_DEFAULT_TYPE_FLAG Default EVS Event Type Filter Mask

CFE_PLATFORM_EVS_DEFAULT_LOG_MODE Default EVS Local Event Log Mode

CFE_PLATFORM_EVS_DEFAULT_MSG_FORMAT_MODE Default EVS Message Format Mode

cFS Training- Page 138

Event Services – Mission Configuration Parameters

Parameter Purpose

CFE_MISSION_EVS_MAX_MESSAGE_LENGTH Maximum Event Message Length

cFS Training- Page 139

Exercise 4 - Command cFE Event Service

Part 1 – Test an Informational Event
Message

1. Ensure that cFE is running
2. Open a new terminal
3. Start the ground system executable (as in Exercise 2)
4. Enable Telemetry (as in Exercise 2)
5. Send an EVS No-Op command

• Click the “EVS No-Op“ button beside “Event
Services”

6. Send a CI_LAB No-Op command
• Click the “CI No-Op“ button beside “Command

Ingest”

cFS Training- Page 140

Exercise 4 - Command cFE Event Service

Part 2 – Disable Informational Messages
1. Click the “Display Page” button beside “Event Services”
2. In the Event Services command window, click the "Send" button

beside “CFE_EVS_DISABLE_EVENT_TYPE_CC"
3. Enter "2" as the "BitMask" Input and "0" as the "Spare" input.
4. Click send
5. Send a CI_LAB No-Op command

• On the “Command System Main Page” window, click the
“CI No-Op“ button beside “Command Ingest”

Unlike the first time, nothing should show up in the cFE window.
The CI_LAB no-op event message is an information level event
message. Therefore, it was enabled until step #7 disabled
informational messages.

1

2

3

4

cFS Training- Page 141

Exercise 4 - Command cFE Event Service

[Optional] Re-enable informational
messages

1. Click the “Display Page” button beside “Event Services”
2. In the Event Services command window, click the "Send" button

beside “CFE_EVS_ENABLE_EVENT_TYPE_CC"
3. Enter "2" as the "BitMask" Input and "0" as the "Spare" input.
4. Click send

3

4
2

cFS Training- Page 142

Exercise 4 Recap

CI No-Op
Command

143

National Aeronautics and Space Administration

Core Flight System (cFS)
Training

Module 2d: Time Services

cFS Training- Page 144

Course Agenda

1. Introduction
2. cFE Services

a) Executive Services
b) Software Bus
c) Event Services
d) Time Services
e) Table Services

3. Application Layer
a) cFS Applications
b) cFS Libraries

cFS Training- Page 145

Time Services - cFS Context

Limit Checker

CFDP

Memory Dwell

Checksum

Memory Mgr.

Data Storage

Scheduler

File Manager

SB Network

Housekeeping

Stored Cmds.

Health/Safety

Core Flight
Executive

Platform
Abstraction

RTOS / Boot

Application

OSAL Open Source ReleasecFE Open Source Release Application Open Source Releases Mission Developed3rd Party

Core Flight Executive API

Core Flight Executive

OS Abstraction API

RTEMS VxWorks Linux

Platform Support Package API

Mcp750-
VxWorks • • •

PROM Boot FSW

Board Support PackageReal Time OS

Python
Ground
System

Application
Generator

Performance
Tools

Performance
Analyzer Unit Tests Build System

Development Tools
& Ground Systems

cFS Training- Page 146

Time Services - Overview
• Provides time correlation, distribution and synchronization services

• Provides a user interface for correlation of spacecraft time to the
ground reference time (epoch)

• Provides calculation of spacecraft time, derived from mission elapsed
time (MET), a spacecraft time correlation factor (STCF), and optionally,
leap seconds

• Provides a functional API for cFE applications to query the time

• Distributes a “time at the tone” command packet, containing the
correct time at the moment of the 1Hz tone signal

• Distributes a “1Hz wakeup” command packet

• Forwards tone and time-at-the-tone packets

• Designing and configuring time is tightly coupled with the mission
avionics design

cFS Training- Page 147

Time Services – Time Formats

• Supports two formats

• International Atomic Time (TAI)

– Number of seconds and sub-seconds elapsed since the ground epoch

– TAI = MET + STCF

• Mission Elapsed Counter (MET) time since powering on the hardware containing the
counter

• Spacecraft Time Correlation Factor (STCF) set by ground ops

• Note STCF can correlate MET to any time epoch so TAI is mandated

• Coordinated Universal Time (UTC)

– Synchronizes time with astronomical observations

– UTC = TAI – Leap Seconds

– Leap Seconds account for earth’s slowing rotation

cFS Training- Page 148

Time Services - Context

Any cFS
Application

HK
Requests

Software
Scheduler

Time Requests

Time Data

Local Timing
Hardware

Local/External
Tone Source

Tone interrupt

Local Clock,
1Hz interrupt

Time
1Hz

Child Task

PSP

Time
1Hz Tone
Child Task

cFE
Time Services

Tone Message

1Hz Wakeup
Message

cFS Training- Page 149

Time Services – “Flywheeling”

• Flywheeling occurs when TIME is not getting a valid tone signal or
external "time at the tone" message. While this has minimal impact on
internal operations, it can result in the drifting apart of times being
stored by different spacecraft systems.

• Flywheeling occurs when at least one of the following conditions is
true:
– loss of tone signal
– loss of "time at the tone" data packet
– signal and packet not within valid window
– commanded into fly-wheel mode

cFS Training- Page 150

Time Services – Reset Behavior

• Power-On-Reset
– Initializes all counters in housekeeping telemetry
– Validity state set to Invalid
– STCF, Leap Seconds, and 1 Hz Adjustment set to zero

• Processor reset, preserves:
– MET
– STCF
– Leap Seconds
– Clock Signal Selection
– Current Time Client Delay (if applicable)
– Uses ‘signature’ to determine validity of saved time. If signature fails then power-

on-reset initialization is performed

cFS Training- Page 151

Time Services – Retrieving Onboard State

• Telemetry
– Housekeeping Status

• Clock state, Leap Seconds, MET, STCF 1Hz Adjust

• Telemetry packets generated by command
– Diagnostic Packet

• Files generated by command
– None

cFS Training- Page 152

Time Services – Configuration Considerations

• What is your time format?
• Are you setting time or receiving time?
• Is your MET provided by local hardware?
• Is time coming from an external source?
• How long can you go without synchronizing time?

cFS Training- Page 153

Time Services – Configuration Parameters

CFE_PLATFORM_TIME_CFG_SERVER
CFE_PLATFORM_TIME_CFG_CLIENT

Server Only Server and Client
CFE_PLATFORM_TIME_CFG_VIRTUAL
CFE_PLATFORM_TIME_CFG_SOURCE
CFE_PLATFORM_TIME_MAX_DELTA_SECS
CFE_PLATFORM_TIME_MAX_DELTA_SUBS

Source Only
CFE_PLATFORM_TIME_CFG_SRC_MET
CFE_PLATFORM_TIME_CFG_SRC_GPS
CFE_PLATFORM_TIME_CFG_SRC_TIME

CFE_PLATFORM_TIME_CFG_BIGENDIAN
CFE_PLATFORM_TIME_CFG_SIGNAL
CFE_PLATFORM_TIME_MAX_LOCAL_SECS
CFE_PLATFORM_TIME_MAX_LOCAL_SUBS
CFE_PLATFORM_TIME_CFG_TONE_LIMIT
CFE_PLATFORM_TIME_CFE_START_FLY
CFE_PLATFORM_TIME_CFE_LATCH_FLY

Only one
can be
TRUE

Only one
can be
TRUE

cFS Training- Page 154

cFE Time Services APIs

Get Current Time APIs Purpose

CFE_TIME_GetTime Get the current spacecraft time

CFE_TIME_GetTAI Get the current TAI (MET + SCTF) time

CFE_TIME_GetUTC Get the current UTC (MET + SCTF - Leap Seconds) time

CFE_TIME_GetMET Get the current value of the Mission Elapsed Time (MET)

CFE_TIME_GetMETseconds Get the current seconds count of the mission-elapsed time

CFE_TIME_GetMETsubsecs Get the current sub-seconds count of the mission-elapsed time

Get Time Information APIs Purpose

CFE_TIME_GetSTCF Get the current value of the spacecraft time correction factor (STCF)

CFE_TIME_GetLeapSeconds Get the current value of the leap seconds counter

CFE_TIME_GetClockState Get the current state of the spacecraft clock

CFE_TIME_GetClockInfo Provides information about the spacecraft clock

Time Arithmetic APIs Purpose

CFE_TIME_Add Adds two time values

CFE_TIME_Subtract Subtracts two time values

CFE_TIME_Compare Compares two time values

cFS Training- Page 155

cFE Time Services APIs

Time Conversion APIs Purpose

CFE_TIME_MET2SCTime Convert specified MET into Spacecraft Time

CFE_TIME_Sub2MicroSecs Converts a sub-seconds count to an equivalent number of microseconds

CFE_TIME_Micro2SubSecs Converts a number of microseconds to an equivalent sub-seconds count

External Time Source APIs Purpose

CFE_TIME_ExternalTone Provides the 1 Hz signal from an external source

CFE_TIME_ExternalMET Provides the Mission Elapsed Time from an external source

CFE_TIME_ExternalGPS Provide the time from an external source that has data common to GPS receivers

CFE_TIME_ExternalTime Provide the time from an external source that measures time relative to a known epoch

CFE_TIME_RegisterSynchCallback Registers a callback function that is called whenever time synchronization occurs

CFE_TIME_UnregisterSynchCallback Unregisters a callback function that is called whenever time synchronization occurs

Miscellaneous Time APIs Purpose

CFE_TIME_Print Print a time value as a string

CFE_TIME_Local1HzISR Drives the time processing logic from the system PSP layer.

cFS Training- Page 156

Time Services Commands

Command Functions Purpose
CFE_TIME_Add1HZAdjustmentCmd Add Delta to Spacecraft Time Correlation Factor each 1Hz

CFE_TIME_AddAdjustCmd Add Delta to Spacecraft Time Correlation Factor

CFE_TIME_AddDelayCmd Add Time to Tone Time Delay

CFE_TIME_SendDiagnosticTlm Request TIME Diagnostic Telemetry

CFE_TIME_NoopCmd Time No-Op

CFE_TIME_ResetCountersCmd Resets counters within the housekeeping telemetry

CFE_TIME_SetLeapSecondsCmd Set Leap Seconds

CFE_TIME_SetMETCmd Set Mission Elapsed Time

CFE_TIME_SetSignalCmd Set Tone Signal Source

CFE_TIME_SetSourceCmd Set Time Source

CFE_TIME_SetStateCmd Set Time State

CFE_TIME_SetSTCFCmd Set Spacecraft Time Correlation Factor

CFE_TIME_SetTimeCmd Set Spacecraft Time

CFE_TIME_Sub1HZAdjustmentCmd Subtract Delta from Spacecraft Time Correlation Factor each 1Hz

CFE_TIME_SubAdjustCmd Subtract Delta from Spacecraft Time Correlation Factor

CFE_TIME_SubDelayCmd Subtract Time from Tone Time Delay

cFS Training- Page 157

Time Services – Platform Configuration Parameters

Parameter Purpose

CFE_PLATFORM_TIME_CFG_[SERVER/CLIENT] Time Server or Time Client Selection

CFE_PLATFORM_TIME_CFG_BIGENDIAN Time Tone In Big-Endian Order

CFE_PLATFORM_TIME_CFG_VIRTUAL Local MET or Virtual MET Selection for Time Servers

CFE_PLATFORM_TIME_CFG_SIGNAL Include or Exclude the Primary/Redundant Tone Selection Cmd

CFE_PLATFORM_TIME_CFG_SOURCE Include or Exclude the Internal/External Time Source Selection
Cmd

CFE_PLATFORM_TIME_CFG_SRC_[MET/GPS/TIME] Choose the External Time Source for Server only

CFE_PLATFORM_TIME_MAX_DELTA_[SECS/SUBS] Define the Max Delta Limits for Time Servers using an Ext Time
Source

CFE_PLATFORM_TIME_MAX_LOCAL_[SECS/SUBS] Define the Local Clock Rollover Value in seconds and
subseconds

CFE_PLATFORM_TIME_CFG_TONE_LIMIT Define Timing Limits From One Tone To The Next

CFE_PLATFORM_TIME_CFG_START_FLY Define Time to Start Flywheel Since Last Tone

CFE_PLATFORM_TIME_CFG_LATCH_FLY Define Periodic Time to Update Local Clock Tone Latch

CFE_PLATFORM_TIME_START_TASK_PRIORITY Defines the cFE_TIME Task priority.

CFE_PLATFORM_TIME_TONE_TASK_PRIORITY Defines the cFE_TIME Tone Task priority.

CFE_PLATFORM_TIME_1HZ_TASK_PRIORITY Defines the cFE_TIME 1HZ Task priority.

cFS Training- Page 158

Time Services – Platform Configuration Parameters

Parameter Purpose

CFE_PLATFORM_TIME_START_TASK_STACK_SIZE Defines the cFE_TIME Main Task Stack Size

CFE_PLATFORM_TIME_TONE_TASK_STACK_SIZE Defines the cFE_TIME Tone Task Stack Size

CFE_PLATFORM_TIME_1HZ_TASK_STACK_SIZE Defines the cFE_TIME 1HZ Task Stack Size

cFS Training- Page 159

Time Services – Mission Configuration Parameters

Parameter Purpose

CFE_MISSION_TIME_CFG_DEFAULT_[TAI/UTC] Select either UTC or TAI as the default (mission specific) time format.

CFE_MISSION_TIME_CFG_FAKE_TONE Default Time Format

CFE_MISSION_TIME_AT_TONE_[WAS/WILL_BE] Default Time and Tone Order

CFE_MISSION_TIME_MIN_ELAPSED Min Time Elapsed

CFE_MISSION_TIME_MAX_ELAPSED Max Time Elapsed

CFE_MISSION_TIME_DEF_MET_[SECS/SUBS] Default Time Values

CFE_MISSION_TIME_DEF_STCF_[SECS/SUBS] Default Time Values

CFE_MISSION_TIME_DEF_DELAY_[SECS/SUBS] Default Time Values

CFE_MISSION_TIME_DEF_LEAPS Default Time Values

CFE_MISSION_TIME_EPOCH_YEAR Default ground time epoch values

CFE_MISSION_TIME_EPOCH_DAY Default ground time epoch values

CFE_MISSION_TIME_EPOCH_HOUR Default ground time epoch values

CFE_MISSION_TIME_EPOCH_MINUTE Default ground time epoch values

CFE_MISSION_TIME_EPOCH_SECOND Default ground time epoch values

CFE_MISSION_TIME_FS_FACTOR Define the s/c vs file system time conversion constant

cFS Training- Page 160

Exercise 5 - Command cFE Time Service

1. Ensure that cFE is running
2. Open a new terminal
3. Start the ground system executable (as in Exercise 2)
4. Enable Telemetry (as in Exercise 2)
5. Send a TIME No-Op command

• Click the “Time No-Op“ button beside “Time Services”

cFS Training- Page 161

Exercise 5 Recap

TIME
No-Op

Command

162

National Aeronautics and Space Administration

Core Flight System (cFS)
Training

Module 2e: Table Services

cFS Training- Page 163

Course Agenda

1. Introduction
2. cFE Services

a) Executive Services
b) Time Services
c) Event Services
d) Software Bus
e) Table Services

3. Application Layer
a) cFS Applications
b) cFS Libraries

cFS Training- Page 164

Table Services - cFS Context

Limit Checker

CFDP

Memory Dwell

Checksum

Memory Mgr.

Data Storage

Scheduler

File Manager

SB Network

Housekeeping

Stored Cmds.

Health/Safety

Core Flight
Executive

Platform
Abstraction

RTOS / Boot

Application

OSAL Open Source ReleasecFE Open Source Release Application Open Source Releases Mission Developed3rd Party

Core Flight Executive API

Core Flight Executive

OS Abstraction API

RTEMS VxWorks Linux

Platform Support Package API

Mcp750-
VxWorks • • •

PROM Boot FSW

Board Support PackageReal Time OS

Python
Ground
System

Application
Generator

Performance
Tools

Performance
Analyzer Unit Tests Build System

Development Tools
& Ground Systems

cFS Training- Page 165

Table Services (TBL) - Overview

• What is a table?
– Tables are logical groups of parameters that are managed as a named entity

• Parameters typically change the behavior of a FSW algorithm
– Examples include controller gains, conversion factors, and filter algorithm

parameters

• Tables service provides ground commands to load a table from a file
and dump a table to a file
– Table loads are synchronized with applications

• Tables are binary files
– Ground support tools are required to create and display table contents

• The cFE can be built without table support
– Note the cFE services don’t use tables

cFS Training- Page 166

Table Services – Managing Tables

• Active Table - Image accessed by app while it executes

• Inactive Table - Image manipulated by ops (could be stored commands)

• Load  Validate  Activate
– Loads can be partial or complete
– For partial loads current active contents copied to inactive buffer prior to updates from file
– Apps can supply a “validate function” that is executed when commanded

• Dump
– Command specifies whether to dump the active or inactive buffer to a file

• Table operations are synchronous with the application that owns the table to
ensure table data integrity

• Non-Blocking table updates allow tables to be used in Interrupt Service
Routines

File

Inactive
Buffer

Active
Buffer

Table Maintenance
Function

(Typically run on HK cycle)

Table
Service

Poll
Load

Run Loop ProcessingGet Pointer
Dump

cFS Training- Page 167

Table Services - Load Table

CFDP

Ground

Transfer
File to Flight

Time

Validate
Table

Activate
Table

Load
Table

File

Table Load Cmd

Inactive Table
Buffer

xfer File Cmd Validate
Table Cmd

Validate
Contents1

1. Apps typically validate & activate tables during their “housekeeping” execution cycle

2. In addition to instructing cFE to copy the contents, apps may have app-specific processing

Activate
Table1,2App

cFS
Active Table

Buffer

Activate
Table Cmd

TBL Service

cFS Training- Page 168

Table Services - Dump Table

CFDP

Ground

Transfer
File to Ground

Time

Dump
Table

File

Table Dump Cmd

Active or
Inactive Table

Buffer

xfer File Cmd

App

cFS

TBL Service

cFS Training- Page 169

Table Services –Table Buffer Types

• Single Buffer
– The active buffer is the only buffer dedicated to the application’s table
– Table service shares inactive buffers to service multiple app’s with single buffer

tables
• CFE_TBL_MAX_SIMULTANEOUS_LOADS defines the number of concurrent table load

sessions

– Most efficient use of memory and adequate for most situations
– Since

#define CFE_TBL_OPT_DEFAULT (CFE_TBL_OPT_SNGL_BUFFER | CFE_TBL_OPT_LOAD_DUMP)

• Double Buffer
– Dedicated inactive image for each double buffered table
– Useful for fast table image swaps (.e.g. high rate app and/or very large table) and

delayed activation of table’s content (e.g. ephemeris)
– E.g. Stored Command’s Absolute Time Command table

• Shared single buffer pool must be sized to accommodate the largest
single buffer image

cFS Training- Page 170

Table Services –Table Attributes

• Validation Function
– Applications register validation functions during initialization
– Table activates for tables with validation functions will be rejected if the validation

has not been performed
– Mission critical data table values are usually verified

• Critical Tables
– Table data is stored in a Critical Data Store (CDS)
– Contents updated for each table active command

• User Defined Address
– Application provides the memory address for the active table buffer
– Typically used in combination with a dump-only table

• Dump-Only
– Contents can’t be changed via the load/validate/activate sequence
– The dump is controlled by the application that owns the table so it can

synchronize the dump and avoid dumps that contain partial updates

cFS Training- Page 171

Table Services – Reset Behavior

• Table registry is cleared for power-on and processor resets
– Applications must register tables for any type of reset
– Applications must initialize their table data for any type of reset

• Critical Table Exception
– If a table is registered as critical then during a processor reset table service will

locate and load the preserved table data from a critical data store

cFS Training- Page 172

Table Services – Retrieving Onboard State

• Housekeeping Telemetry
– Table registry statistics (number of tables and pending loads)
– Last table validation results (CRC, validation status, total validations)
– Last updated table
– Last file loaded
– Last file dumped
– Last table loaded

• Telemeter Application Registry
– Telemeter the Table Registry contents for the command-specified table

• Dump Table Registry
– Write the pertinent table registry information to the command-specified file

cFS Training- Page 173

Table Services
System Integration and App Development (1 of 2)

• Commands are typically used to initiate an action; not tables
– For example, change a control mode

• Sometimes convenience commands are provided to change table
elements
– For example, scheduler app provides an enable/disable scheduler table entry

• Typically tables do not contain dynamic data computed by the FSW
– The cFE doesn’t preclude this and it has been used as a convenient method to collect

data, save to a file, and transfer it to the ground

– These are defined as dump-only tables

– Static tables can be checksummed

• Tables can be shared between applications but this is rare
– Tables are not intended to be an inter-application communication mechanism

cFS Training- Page 174

Table Services
System Integration and App Development (2 of 2)

• Load/dump files are binary files with the following sections:

{
uint32 Reserved; /**< Future Use: NumTblSegments in File? */
uint32 Offset; /**< Byte Offset at which load should commence */
uint32 NumBytes; /**< Number of bytes to load into table */
char TableName[CFE_TBL_MAX_FULL_NAME_LEN]; /**< Fully qualified name of table */

} CFE_TBL_File_Hdr_t;

cFE File Header

Table Header

Table Data

• Table header defined in cfe_tbl_internal.h

cFS Training- Page 175

cFE Table Services APIs

Registration APIs Purpose

CFE_TBL_Register Register a table with cFE to obtain Table Management Services

CFE_TBL_Share Obtain handle of table registered by another application

CFE_TBL_Unregister Unregister a table

Manage Table Content APIs Purpose

CFE_TBL_Load Load a specified table with data from specified source

CFE_TBL_Update Update contents of a specified table, if an update is pending

CFE_TBL_Validate Perform steps to validate the contents of a table image

CFE_TBL_Manage Perform standard operations to maintain a table

CFE_TBL_DumpToBuffer Copies the contents of a Dump Only Table to a shared buffer

CFE_TBL_Modified Notify cFE Table Services that table contents have been modified by the Application

Access Table Content APIs Purpose

CFE_TBL_GetAddress Obtain the current address of the contents of the specified table

CFE_TBL_ReleaseAddress Release previously obtained pointer to the contents of the specified table

CFE_TBL_GetAddresses Obtain the current addresses of an array of specified tables

CFE_TBL_ReleaseAddresses Release the addresses of an array of specified tables

cFS Training- Page 176

cFE Table Services APIs

Get Table Information APIs Purpose

CFE_TBL_GetStatus Obtain current status of pending actions for a table

CFE_TBL_GetInfo Obtain characteristics/information of/about a specified table

CFE_TBL_NotifyByMessage Instruct cFE Table Services to notify Application via message when table requires
management

cFS Training- Page 177

Table Services Commands

Command Functions Purpose

CFE_TBL_NoopCmd Table No-Op

CFE_TBL_ResetCountersCmd Resets the counters within the Table Services housekeeping telemetry

CFE_TBL_LoadCmd Loads the contents of the specified file into an inactive buffer for the table specified within
the file.

CFE_TBL_DumpCmd This command will cause the Table Services to put the contents of the specified table
buffer into the command specified file.

CFE_TBL_ValidateCmd Validate Table

CFE_TBL_ActivateCmd Activate Table

CFE_TBL_DumpRegistryCmd This command will cause Table Services to write some of the contents of the Table
Registry to the command specified file.

CFE_TBL_SendRegistryCmd This command will cause Table Services to telemeter the contents of the Table Registry
for the command specified table.

CFE_TBL_DeleteCDSCmd This command will delete the Critical Data Store (CDS) associated with the specified
Critical Table.

CFE_TBL_AbortLoadCmd This command will cause Table Services to discard the contents of a table buffer that was
previously loaded with the data in a file as specified by a Table Load command.

cFS Training- Page 178

Table Services – Platform Configuration Parameters

Parameter Purpose

CFE_PLATFORM_TBL_START_TASK_PRIORITY Defines the cFE_TBL Task priority

CFE_PLATFORM_TBL_START_TASK_STACK_SIZE Define TBL Task Stack Size

CFE_PLATFORM_TBL_BUF_MEMORY_BYTES Size of Table Services Table Memory Pool

CFE_PLATFORM_TBL_MAX_DBL_TABLE_SIZE Maximum Size Allowed for a Double Buffered Table

CFE_PLATFORM_TBL_MAX_SNGL_TABLE_SIZE Maximum Size Allowed for a Single Buffered Table

CFE_PLATFORM_TBL_MAX_NUM_TABLES Maximum Number of Tables Allowed to be Registered

CFE_PLATFORM_TBL_MAX_CRITICAL_TABLES Maximum Number of Critical Tables that can be Registered

CFE_PLATFORM_TBL_MAX_NUM_HANDLES Maximum Number of Table Handles

CFE_PLATFORM_TBL_MAX_SIMULTANEOUS_LOADS Maximum Number of Simultaneous Loads to Support

CFE_PLATFORM_TBL_MAX_NUM_VALIDATIONS Maximum Number of Simultaneous Table Validations

CFE_PLATFORM_TBL_DEFAULT_REG_DUMP_FILE Default Filename for a Table Registry Dump

CFE_PLATFORM_TBL_VALID_SCID_COUNT Number of Spacecraft ID's specified for validation

CFE_PLATFORM_TBL_VALID_SCID_[1/2] Spacecraft ID values used for table load validation

CFE_PLATFORM_TBL_VALID_PRID_COUNT Number of Processor ID's specified for validation

CFE_PLATFORM_TBL_VALID_PRID_[1/2/3/4] Processor ID values used for table load validation

cFS Training- Page 179

Table Services – Mission Configuration Parameters

Parameter Purpose

CFE_MISSION_TBL_MAX_NAME_LENGTH Maximum Table Name Length

CFE_MISSION_TBL_MAX_FULL_NAME_LEN Maximum Length of Full Table Name in messages

cFS Training- Page 180

Exercise 6 - Command cFE Table Service

1. Ensure that cFE is running
2. Open a new terminal
3. Start the ground system executable (as in Exercise 2)
4. Enable Telemetry (as in Exercise 2)
5. Send a TBL No-Op command

• Click the “TBL No-Op“ button beside “Table Services”
6. Send a "Load Table" command

• Click the “Display Page” button beside “Table Services”
• In the "Table Services" window, click the "Send" button beside “CFE_TBL_LOAD_CC"
• Enter “/cf/sample_app_tbl.tbl" in the "Input" field next to "LoadFilename"
• Click "Send"

7. Dump the table registry
• In the "Table Services " window, click the "Send" button beside “CFE_TBL_DUMP_REGISTRY_CC"
• Enter "/cf/tbl_reg.bin" in the "Input" field next to "DumpFilename"
• Click "Send"

**Nothing appears in the cFE window unless debug messages have been enabled, but the file "tbl_reg.bin" now
exists in the build/exe/cpu1/cf directory. View with "hexdump -C cf/tbl_reg.bin"**

cFS Training- Page 181

Exercise 6 - Recap

6

7

cFS Training- Page 182

Exercise 6 - Recap

TBL No-Op
Command

Tbl Load
Command

cFS Training- Page 183

Exercise 6 - Recap

3 Tables in
System

184

National Aeronautics and Space Administration

Core Flight System (cFS)
Training

Module 3: Application
Development

cFS Training- Page 185

Course Agenda

1. Introduction
2. cFE Services

a) Executive Services
b) Time Services
c) Event Services
d) Software Bus
e) Table Services

3. Application Layer
a) cFS Applications
b) cFS Libraries

cFS Training- Page 186

Applications - cFS Context

Limit Checker

CFDP

Memory Dwell

Checksum

Memory Mgr.

Data Storage

Scheduler

File Manager

SB Network

Housekeeping

Stored Cmds.

Health/Safety

Core Flight
Executive

Platform
Abstraction

RTOS / Boot

Application

OSAL Open Source ReleasecFE Open Source Release Application Open Source Releases Mission Developed3rd Party

Core Flight Executive API

Core Flight Executive

OS Abstraction API

RTEMS VxWorks Linux

Platform Support Package API

Mcp750-
VxWorks • • •

PROM Boot FSW

Board Support PackageReal Time OS

Python
Ground
System

Application
Generator

Performance
Tools

Performance
Analyzer Unit Tests Build System

Development Tools
& Ground Systems

cFS Training- Page 187

cFS Applications

• Can run anywhere the cFS framework has been deployed

• Provide “higher level” functions than the cFE itself
‒ Command and data handling
‒ Guidance, navigation, and control
‒ Onboard data processing

• GSFC has released 12 applications that provide common command and
data handling functionality such as
‒ Stored command management and execution
‒ Onboard data storage file management

• Missions use a combination of custom and reused applications

cFS Training- Page 188

cFS Libraries

• What is a library?

– A collection of utilities available for use by apps

– No main task execution in the library

– Exist at the application layer of the cFS

• Specified in the cfe_es_startup.scr script and loaded at cFE startup

• Libraries can’t use application services that require registration

– e.g. Event Services

• Checksum can’t do library code space

189

National Aeronautics and Space Administration

Application Build
Context

cFS Training- Page 190

cFS Mission Directory Structure

cFS Distribution

docs psp

toolsapps
Each app is

in a separate
subdirectory

build
Contains
cmake-

generated
files

cfe
cFE

source
files

osal
OSAL
source

files
_defs

cmake
configuration

files

cFS Training- Page 191

App Directory Structure

App XX

docs
• VDD
• Users Guide
• Requirements

fsw Test-and-
ground

• Build Test
Scenarios

• Build Test results

src

tables

mission_inc

platform_inc

unit_test

• Header files
• Source files

• Config parameters
• Message IDs

Default table
definitions

Unit test source and
data

• Config parameters
• Performance IDs

cFS Training- Page 192

cFS Mission Directory Structure

cFS Distribution

docs psp

toolsapps
Each app is

in a separate
subdirectory

build
Contains
cmake-

generated
files

cfe
cFE

source
files

osal
OSAL
source

files
_defs

cmake
configuration

files

cFS Training- Page 193

_def Directory Structure

• Targets.cmake
‒ Identifies the target architectures and configurations
‒ Identifies the apps to be built
‒ Identifies files that will be copied from *_def to platform specific

directories

• Copied file examples
‒ cpu1_cfe_es_startup.scr
‒ cpu1_msgids.h
‒ cpu1_osconfig.h

194

National Aeronautics and Space Administration

Application Runtime
Context

cFS Training- Page 195

Application Runtime Context

User
App

Scheduler

Command
Ingest

Telemetry
Output

Commands,
Telemetry Requests

Ground
Commands

Telemetry

Mission AppCFS App Ground System

Ground System

Ground
Commands

Telemetry

cFS Training- Page 196

Application Runtime Context
• SCH, CI, and TO provide a runtime context that can be tailored for a

particular environment

• Scheduler (SCH) App
– Sends software bus messages at pre-defined time intervals
– Apps often use scheduled messages as wakeup signals

• Command Ingest (CI) App
– Receives commands from an external source, typically the ground system, and

sends them on the software bus

• Telemetry Output (TO) App
– Receives telemetry packets from the software bus and sends them to an external

source, typically the ground system

cFS Training- Page 197

Mission Application Example

Inter-app Message Router (Software Bus)

EVS

SC

SCH

HK

ESTIME

FM

Cmd &
Tlm

S-Comm

SBCommand
Ingest

Telemetry
Output

SBC
1553

DS

Spacecraft
Data

Recorder

TBL

CFCS MM MD Space
Wire

1553 Bus
Controller

S/C
Data

HS

EDAC
Memory
Scrub

DIO

Time
Registers

Instr.
Data

Recorder
Manager

Power &
Support

MAC, BME,
& PSE

LC

GPS

Cmd &
Tlm

Time
Manager

Mission C&DH AppcFE ServiceCFS App Hardware

198

National Aeronautics and Space Administration

Existing Applications

cFS Training- Page 199

GSFC Open Source Apps
Application Function
CFDP Transfers/receives file data to/from the ground

Checksum Performs data integrity checking of memory, tables and files

Command Ingest Lab Accepts CCSDS telecommand packets over a UDP/IP port

Data Storage Records housekeeping, engineering and science data onboard for downlink

File Manager Interfaces to the ground for managing files

Housekeeping Collects and re-packages telemetry from other applications.

Health and Safety Ensures critical tasks check-in, services watchdog, detects CPU hogging, calculates CPU
utilization

Limit Checker Provides the capability to monitor values and take action when exceed threshold

Memory Dwell Allows ground to telemeter the contents of memory locations. Useful for debugging

Memory Manager Provides the ability to load and dump memory

Software Bus Network Passes Software Bus messages over various “plug-in” network protocols

Scheduler Schedules onboard activities (e.g. HK requests)

Scheduler Lab Simple activity scheduler with a one second resolution

Stored Command Onboard Commands Sequencer (absolute and relative)

Stored Command Absolute Allows concurrent processing of up to 5 (configurable) absolute time sequences

Telemetry Output Lab Sends CCSDS telemetry packets over a UDP/IP port

https://github.com/nasa/cf
https://github.com/nasa/cs
https://github.com/nasa/ci_lab/
https://github.com/nasa/ds
https://github.com/nasa/fm
https://github.com/nasa/hk
https://github.com/nasa/hs
https://github.com/nasa/lc
https://github.com/nasa/md
https://github.com/nasa/mm
https://github.com/nasa/sbn
https://github.com/nasa/sch
https://github.com/nasa/sch_lab/
https://github.com/nasa/sc
https://github.com/nasa/sca
https://github.com/nasa/to_lab/

cFS Training- Page 200

Fault Detection and Correction Apps

• Limit Checker (LC) – Monitors telemetry and responds to limit
violations

• Health & Safety (HS) – Ensures critical tasks check-in, services
watchdog, detects CPU hogging, calculates CPU utilization

• Checksum (CS) – Performs data integrity checking of memory, tables
and files

• Stored Commands (SC) – Onboard commands sequencer (absolute
and relative); used in combination with LC

cFS Training- Page 201

Operational Scenarios
Health & Safety

HS

1) HS monitors
applications

2) HS monitors event
messages

3) HS Table specified
actions are taken in
response to application
and event monitoring:
a) Reset applications

or the processor
b) Send Event

message
c) Initiate Stored

Command (SC)
recovery sequence

1

SC

cFE
Executive
Services

All
AppsStart ATS/RTS Cmd

Reset calls

Enable/Disable Monitor
Cmd

2
Start RTS Events

Application Info

Recovery
Cmds

TO

Health & Safety
Reporting Events

Not pictured: HS manages watchdog, reports CPU utilization & detects hogging, and outputs aliveness heartbeat to UART.

3a

3b

3c

Mission Specific Application

cFS Training- Page 202

Operational Scenarios
Fault Detection

1) LC monitors table
specified telemetry and
data (watchpoints)

2) LC evaluates
actionpoints and takes
action upon detected
failure condition:
a) Initiate Stored

Command (SC)
recovery sequence

b) Send failure event
messages

SC

LC

All
AppsStart ATS/RTS Cmd

Enable/Disable
Action/Watchpoint Cmds

2a

TO
Limit Fail
Events

Telemetry/Data
PacketsStart RTS

Recovery
Cmds

- Mission Specific Application

1

2b

cFS Training- Page 203

File & Data Management Apps

• File Manager (FM) – Provides onboard file system operations

• Data Storage (DS) – Records housekeeping, engineering and science
data onboard for downlink

• CFDP (CF) – Transfers/receives file data to/from the ground

• Housekeeping (HK) – Collects and re-packages telemetry from other
applications

cFS Training- Page 204

- CFDP Hot Directory

Copy, Move, etc.

File System Info

Delete File

File Info

Pwr DSB, Init SDR
Cmds

SDR

Operational Scenarios
File Management

FM

CFDP

File Management Cmds

Uplink/Downlink File/Directory Cmds

1) Stored commands sent to
initialize file system(s) and
create partitions

2) Applications create Science, HK,
and/or Engineering files

3) SC (typically via ATS) sends
CFDP downlink directory
commands

4) Ground commands sent to
uplink and downlink files

5) Ground commands sent to
manage the files and directories
in the file system(s).

5

SDR
App

1

Recorder Management
Cmds

5
Science, HK, Eng. Files

File Info

Any
App

SC

Downlink Directory Cmds

FM

3

2

- Mission Specific Application

- Optional Step

cFS Training- Page 205

1) Uplink table – table is written to File System
2) Optionally CRC the table file (via FM file info

command)
3) Disable background checksuming of the

table
4) Send Table commands:

− Load – reads table file and copies
contents into active buffer

− Validate – authenticates table data in
the active buffer

− Activate – writes/commits table data to
RAM

Application handshakes with Table Services
to read updated table data

5) Enable background checksumming of the
table

Operational Scenarios
Uplink System Tables

FM

cFE
Table
App

CS

File Systems

CFDP

Write File

File Info Cmd

Uplink File CmdDisable CS of
specific File Cmd

Read File

Processor RAM

Read File

Write Data

Enable CS of
specific File Cmd

Read Data

Table Load/Verify/Commit
Cmds

1

2

3 4

Read Data

5

- Optional Step

Any
App

Handshake

cFS Training- Page 206

cFE
Table
App

File Systems

CFDP

Read File

Downlink File Cmd

Processor RAM

Write File

Read Data

Table Dump Cmd

1) Send Table dump
command – table file is
written to File System

2) Downlink file – table is
written to ground File
System.

21

Operational Scenarios
Dump System Tables

cFS Training- Page 207

System Operations Applications

• Scheduler (SCH) – Schedules onboard activities; many other
applications depend on Scheduler

• Command Ingest (CI) – Receives ground commands, validates them,
and distributes them throughout the system; this app is often custom

• Telemetry Output (TO) – Downlinks telemetry; this app is often custom

• Stored Commands (SC) – Executes onboard command sequences
(absolute and relative)

cFS Training- Page 208

Application
Commands

Operational Scenarios
Uplink

Comm
App CIComm

Cards

Command
Database

Operator
Commands

Code
Blocks

RF
Uplink

Code Blocks

1

2 3

4

1) Commands sent from
ground system are received
by communication
hardware

2) Communication hardware
processes commands
received and sends code
blocks to receiving
application.

3) Communication application
strips off any hardware
protocol wrappers,
packages Code Blocks for
transfer over software bus ,
and forwards Code Blocks
to CI application

4) CI assembles command
packets, performs
command authentication,
and sends commands to
subscribed applications

Mission Specific Application

Any
App

cFS Training- Page 209

Operational Scenarios
Telemetry Packet Downlink

1) Telemetry is collected from
the various applications in
the system and routed to
TO application

2) TO collects, filters, and
builds real-time VCDUs for
downlink. The VCDU’s are
packaged and routed over
the software bus

3) Communication application
strips off software bus
headers, packages VCDUs
in hardware protocol
wrappers and outputs
VCDUs across hardware
link.

4) Telemetry is received by
the ground system from
communication hardware

Application
Telemetry

Comm
App TOComm

Cards

Telemetry
Database

VCDUs

RF
downlink

VCDUs

3 2

1

Mission Specific Application

4

Any
App

210

National Aeronautics and Space Administration

Application Design

cFS Training- Page 211

Application Design Resources

• cFE/docs/cFE Application Developers Guide.doc
– Provides a good description of how to use cFE services/features
– Provides one example of an application template

• sample_app
– Provides an operational example of a basic application
– https://github.com/nasa/sample_app/

• Application frameworks
– Organizations have created frameworks in C and C++ but they are not publically

available
• “Hello World” app generation tools

– Multiple tools exist, but none have been sanctioned as demonstrating best
practices

• Application design patterns
– There are patterns but they have not been formally captured
– When creating a new app look for an existing app that has similar operational

context

https://github.com/nasa/sample_app/

cFS Training- Page 212

Application Design Practices

• Allocate resources during initialization to help keep run loop
deterministic

• Use a lower priority child task for long operations like a memory dump
– Create child tasks during initialization

• Register with EVS immediately after registering app so local event log
can be used instead of system log

• NOOP command sends an informational event message with app’s
version number

• Use SCH app to periodically send a “send housekeeping” message
– Housekeeping data includes command counters and general app status
– 3 to 5 seconds is a common interval
– Attitude Determination and Control apps don’t typically use this pattern

cFS Training- Page 213

Generic App Design

• There are several variants in
terms of control/data flow.
For example

– Pend with time out
– Multiple input pipes

• Exiting an application should
not occur during normal
operations

– Stopping/starting an app has
been used for in-orbit
maintenance

Start
- Initialize App
- Register for
cFE services

Gnd
Cmd?

Pend on
SB Msg

Yes

No

Process
Command

Yes

NoHK Tlm
Request?

Send HK
Tlm Packet

App Specific
Processing

ES
Exit?Exit

Call ES Exit to
free resources

No

Yes

cFS Training- Page 214

I/O Application Design Pattern

• General control/data conceptual flow
– Each communication bus has a specific protocol

• Architectural role
– Read device data and publish on software bus
– Receive software bus messages and send to the device

Device
Hardware

Data

Buffer
or Queue

Recv
Child
Task

Semaphore

Interrupt
Service
Routine

Ctrl,
Data

Parent
App

Interrupt

Send
Child
Task

Device
Hardware

Ctrl,
Data

Interrupt

TelemetryCommands

Device
Data

Device
Commands

cFS Training- Page 215

Exercise 7 - Add a command to sample_app

Part 1 – Add new command code event message
1. Navigate to the sample_app source directory

cd apps/sample_app/fsw/src

2. Open the sample_app_msg.h file and add a new command code
#define SAMPLE_APP_HELLO_WORLD_CC 3

3. Open the sample_app_events.h file and add a new event message and update the number of events.
#define SAMPLE_APP_HELLO_WORLD_INF_EID 8

#define SAMPLE_APP_EVENT_COUNTS 8

4. Open the sample_app.c file and add the new event message to the event filter set up in SAMPLE_APP_Init
SAMPLE_APP_Data.EventFilters[7].EventID = SAMPLE_APP_HELLO_WORLD_INF_EID;

SAMPLE_APP_Data.EventFilters[7].Mask = 0x0000;

5. In sample_app.c, add a case for the new command code in SAMPLE_APP_ProcessGroundCommand
case SAMPLE_APP_HELLO_WORLD_CC:

if (SAMPLE_APP_VerifyCmdLength(&SBBufPtr->Msg, sizeof(SAMPLE_APP_NoopCmd_t))) {

SAMPLE_APP_HelloCmd((SAMPLE_APP_NoopCmd_t *)SBBufPtr);

}

break;

cFS Training- Page 216

Exercise 7 - Add a command to sample_app

Part 2 – Add code to handle new command

6. In sample_app.c, add a new function called SAMPLE_HelloCmd
int32 SAMPLE_APP_HelloCmd(const SAMPLE_APP_NoopCmd_t * Msg) {

SAMPLE_APP_Data.CmdCounter++;

CFE_EVS_SendEvent(SAMPLE_APP_HELLO_WORLD_INF_EID,

CFE_EVS_EventType_INFORMATION,

"Hello, World. This is sample_app!");

return CFE_SUCCESS;

}

7. Add a function prototype for the new function in sample_app.h
int32 SAMPLE_APP_HelloCmd(const SAMPLE_APP_NoopCmd_t * Msg);

8. Recompile cFS
make

make install

cFS Training- Page 217

Exercise 7 - Add a command to sample_app

Part 3 – Add ground command to GroundSystem.py
1. Navigate to the /cmdGui directory from the top level cFS directory

cd tools/cFS-GroundSystem/Subsystems/cmdGui

2. Open the CHeaderParser-hdr-paths.txt and uncomment only the ‘sample_app_msg.h’ line
#../../../../apps/to_lab/fsw/src/to_lab_msg.h

#../../../../apps/ci_lab/fsw/src/ci_lab_msg.h

../../../../apps/sample_app/fsw/src/sample_app_msg.h

#../../../../cfe/fsw/cfe-core/src/inc/cfe_es_msg.h

#../../../../cfe/fsw/cfe-core/src/inc/cfe_time_msg.h

3. Run the CHeaderParser.py script
python3 CHeaderParser.py

- When prompted, select a name for the command file to be saved as:
Example: APPS_SAMPLE_APP_CMD

- Respond ‘no’ when asked if any of the commands require parameters.

cFS Training- Page 218

Exercise 7 - Add a command to sample_app

Part 3 – Add ground command to GroundSystem.py (continued)
4. Edit the command-pages.txt file to update the name of the SAMPLE_APP cmd file with the name chosen on step 3.
Command Ingest, CI_LAB_CMD, 0x1884, LE, UdpCommands.py, 127.0.0.1, 1234

Telemetry Output, TO_LAB_CMD, 0x1880, LE, UdpCommands.py, 127.0.0.1, 1234

Sample App, APPS_SAMPLE_APP_CMD, 0x1882, LE, UdpCommands.py, 127.0.0.1, 1234

Spare, , 0x0000, LE, UdpCommands.py, 127.0.0.1, 1234

Spare, , 0x0000, LE, UdpCommands.py, 127.0.0.1, 1234

5. Navigate to /cFS-GroundSystem and launch GroundSystem.py
cd ../..

python3 GroundSystem.py

cFS Training- Page 219

Exercise 7 - Add a command to sample_app

Part 3 – Add ground command to GroundSystem.py (continued)

6. Launch Sample App Command Display Page and Send Command

cFS Training- Page 220

Exercise 7 Recap

Sample
App

Hello World
messages

221

National Aeronautics and Space Administration

ACRONYMS

cFS Training- Page 222

Acronyms
Acronym Definition Acronym Definition

API Application Programmer Interface CM Configuration Management

APID Application Process ID CMD Command

ATS Absolute Time Sequence COTS Commercial Off The Shelf

BC Bus Controller CRC Cyclic Redundancy Check

BSP Board Support Package CS Checksum

C&DH Command and Data Handling DS Data Storage

CCB Configuration Control Board EEPROM Electrically Erasable Programmable
Read-Only Memory

CCSDS Consultative Committee for Space
Data Systems ES Executive Services

CDS Critical Data Store EVS Event Services

CESE Center for Experimental Software
Engineering FDC Failure Detection and Correction

CFDP CCSDS File Delivery Protocol FDIR Failure Detection, Isolation, and
Recovery

cFE Core Flight Executive FM File Management, Fault
Management

cFS Core Flight Software System

cFS Training- Page 223

Acronyms
Acronym Definition Acronym Definition

FSW Flight Software ITC Independent Test Capability

GNC Guidance Navigation and Control ITOS Integration Test and Operations
System

GSFC Goddard Space Flight Center IV&V Independent Verification and
Validation

GOTS Government Off The Shelf LC Limit Checker

GPM Global Precipitation Measurement Mbps Megabits-per seconds

GPS Global Positioning System MD Memory Dwell

Hi-Fi High-Fidelity Simulation MET Mission Elapsed Timer

HK Housekeeping MM Memory Manager

HS Health & Safety MS Memory Scrub

HW Hardware NACK Negative-acknowledgement

Hz Hertz NASA National Aeronautics Space Agency

ITAR International Traffic in Arms
Regulations NOOP No Operation

ISR Interrupt Service Routine OS Operating System

cFS Training- Page 224

Acronyms
Acronym Definition Acronym Definition

OSAL Operating System Abstraction
Layer SC Stored Command

PSP Platform Support Package SCH Scheduler

PROM Programmable Read-Only Memory S-COMM S-Band Communication Card

RAM Random-Access Memory SDR Spacecraft Data Recorder

RT Remote Terminal SpW Spacewire

R/T Real-time STCF Spacecraft Time Correlation Factor

RTEMS Real-Time Executive for
Multiprocessor Systems (an RTOS) SW Software, Spacewire

RTOS Real-Time Operating System TAI International Atomic Time

RTS Relative Time Sequence TBD To be determined

SARB Software Architecture Review
Board TBL Table Services

S/C Spacecraft TLM Telemetry

SB Software Bus TO Telemetry Output

SBC Single-Board Computer UART Universal Asynchronous
Receiver/Transmitter

cFS Training- Page 225

Acronyms
Acronym Definition Acronym Definition

UDP User Datagram Protocol UTC Coordinated Universal Time

UT Unit Test VCDU Virtual Channel Data Unit

	Core Flight System (cFS)�Training��cFS Caelum
	Course Agenda
	Course Audience & Prerequisites
	Course Learning Objectives
	Introduction Agenda
	What is cFS?
	cFS Overview
	cFS Architecture Layers
	cFS Organization
	Key Definitions
	cFS�Community
	Community-based Product Model
	Community-based Product Model
	User Responsibilities
	Obtaining cFS “Products”
	cFS Product Model
	cFS Distributions
	Community Operational Procedures
	Core Flight System �Architectural Overview
	Architecture Goals
	cFS Architecture Layers
	Operating System / Boot Layer
	Platform Abstraction - OSAL
	Platform Abstraction - PSP
	Core Flight Executive
	Applications
	Development Tools & Ground Systems
	cFS Applications
	Mission Application Example
	cFS Mission Directory Structure
	cFE Directory Structure
	cFE Module Structure
	Module Directory Structure
	Current Modules
	Module 1: Backup Charts
	Where is the cFS?
	GSFC Open Source Apps
	Module 1: Backup Charts
	Quality Analysis - 1
	Quality Analysis - 2
	Quality Analysis - 3
	Layered Service Architecture
	Plug and Play
	Reusable Components
	Core Flight System (cFS)�Training
	Course Agenda
	cFE Services - cFS Context
	What are the cFE Services?
	Diagram Notation
	Common cFE Service Design
	Application Runtime Environment
	Application-Centric Architecture
	Configuration Parameter Scope
	Unique Identifier Configuration Parameters
	cFS Application Mission and Platform Configuration Files
	Exercise 1 – Build and Run the cFE
	Exercise 1 – Build and Run the cFE
	Exercise 1 Recap
	Exercise 1 Recap
	Exercise 1 Recap
	Core Flight System (cFS)�Training
	Course Agenda
	Executive Services - cFS Context
	Executive Services (ES) – Overview
	Executive Services - Boot Sequence
	Executive Services - Startup�
	Executive Services - Startup Script
	Executive Services – Example Script
	Executive Services – Logs
	Executive Services – Reset Behavior
	Executive Services – Retrieving Onboard State
	Executive Services - �System Integration and App Development (1 of 2)
	Executive Services -�System Integration and App Development (2 of 2)
	Executive Services – APIs (1 of 6)
	Executive Services – APIs (2 of 6)
	Executive Services – APIs (3 of 6)
	Executive Services – APIs (4 of 6)
	Executive Services – APIs (5 of 6)
	Executive Services – APIs (6 of 6)
	A Note on Resource IDs
	Executive Services – Command List
	Executive Services – �Platform Configuration Parameters
	Executive Services – �Mission Configuration Parameters
	Executive Services – �Platform Configuration Parameters
	Exercise 2 - Command cFE Executive Service�
	Exercise 2 - Command cFE Executive Service
	Exercise 2 – Part 1 Recap
	Exercise 2 – Part 1 Recap
	Exercise 2 - Command cFE Executive Service�
	Exercise 2 - Command cFE Executive Service�
	Exercise 2 Part 2 Recap
	Core Flight System (cFS)�Training
	Course Agenda
	Software Bus - cFS Context
	Slide Number 95
	Software Bus - Context
	Software Bus Terms
	Software Bus and Message Module
	Software Bus – Messages (1 of 2)
	Software Bus – Messages (2 of 2)
	Software Bus – Message Formats
	Software Bus – Reset Behavior
	Software Bus – Retrieving Onboard State
	Software Bus - System Integration
	Software Bus – App Development (1 of 2)
	Software Bus – App Development (2 of 2)
	cFE Software Bus APIs
	cFE Software Bus APIs
	cFE Software Bus APIs
	cFE Message Module APIs
	cFE Message Module APIs
	cFE Message Module APIs
	cFE Software Bus Command List
	Software Bus – Platform Configuration Parameters
	Software Bus – Mission Configuration Parameters
	Exercise 3 - Command cFE Software Bus
	Exercise 3 - Command cFE Software Bus
	Exercise 3 Recap
	Exercise 3 Recap
	CCSDS References
	Core Flight System (cFS)�Training
	Course Agenda
	Event Services - cFS Context
	Event Services (EVS) - Overview
	Event Services - Context
	Event Services – Message Format
	Event Services – Message Format
	Event Services – Event Filtering
	Event Services - Ports
	Event Services – Message Control
	Event Services – Reset Behavior
	Event Services – Retrieving Onboard State
	Event Services -�System Integration and App Development
	cFE Event Services APIs
	Event Services – Command List
	Event Services – Command List
	Event Services – Platform Configuration Parameters
	Event Services – Mission Configuration Parameters
	Exercise 4 - Command cFE Event Service�
	Exercise 4 - Command cFE Event Service�
	Exercise 4 - Command cFE Event Service�
	Exercise 4 Recap
	Core Flight System (cFS)�Training
	Course Agenda
	Time Services - cFS Context
	Time Services - Overview
	Time Services – Time Formats
	Time Services - Context
	Time Services – “Flywheeling”
	Time Services – Reset Behavior
	Time Services – Retrieving Onboard State
	Time Services – Configuration Considerations
	Time Services – Configuration Parameters
	cFE Time Services APIs
	cFE Time Services APIs
	Time Services Commands
	Time Services – Platform Configuration Parameters
	Time Services – Platform Configuration Parameters
	Time Services – Mission Configuration Parameters
	Exercise 5 - Command cFE Time Service�
	Exercise 5 Recap
	Core Flight System (cFS)�Training
	Course Agenda
	Table Services - cFS Context
	Table Services (TBL) - Overview
	Table Services – Managing Tables
	Table Services - Load Table
	Table Services - Dump Table
	Table Services –Table Buffer Types
	Table Services –Table Attributes
	Table Services – Reset Behavior
	Table Services – Retrieving Onboard State
	Table Services �System Integration and App Development (1 of 2)
	Table Services�System Integration and App Development (2 of 2)
	cFE Table Services APIs
	cFE Table Services APIs
	Table Services Commands
	Table Services – Platform Configuration Parameters
	Table Services – Mission Configuration Parameters
	Exercise 6 - Command cFE Table Service�
	Exercise 6 - Recap
	Exercise 6 - Recap
	Exercise 6 - Recap
	Core Flight System (cFS)�Training
	Course Agenda
	Applications - cFS Context
	cFS Applications
	cFS Libraries
	Application Build�Context
	cFS Mission Directory Structure
	App Directory Structure
	cFS Mission Directory Structure
	_def Directory Structure
	Application Runtime�Context
	Application Runtime Context
	Application Runtime Context
	Mission Application Example
	Existing Applications
	GSFC Open Source Apps
	Fault Detection and Correction Apps
	Operational Scenarios �Health & Safety
	Operational Scenarios �Fault Detection
	File & Data Management Apps
	Operational Scenarios�File Management
	Operational Scenarios �Uplink System Tables
	Operational Scenarios�Dump System Tables
	System Operations Applications
	Operational Scenarios �Uplink
	Operational Scenarios �Telemetry Packet Downlink
	Application Design
	Application Design Resources
	Application Design Practices
	Generic App Design
	I/O Application Design Pattern
	Exercise 7 - Add a command to sample_app
	Exercise 7 - Add a command to sample_app
	Exercise 7 - Add a command to sample_app
	Exercise 7 - Add a command to sample_app
	Exercise 7 - Add a command to sample_app
	Exercise 7 Recap
	Acronyms
	Acronyms
	Acronyms
	Acronyms
	Acronyms
	Template.pdf
	TM 20205000691 REV 1.pdf
	ADP60BF.tmp
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6

	Blank Page

