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BENEFITS OF SWEPT AND LEANED STATORS

FOR FAN NOISE REDUCTION

Richard P. Woodward, David M. Elliott,

Christopher E. Hughes, and Jeffrey J. Berton
National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135

Abstract

An advanced high bypass ratio fan model was tested
in the NASA Lewis Research Center 9×15-Foot Low

Speed Wind Tunnel. The primary focus of this test was to

quantify the acoustic benefits and aerodynamic

performance of sweep and lean in stator vane design.
Three stator sets were used for this test series. A

conventional radial stator was tested at two rotor-stator

axial spacings. Additional stator sets incorporating sweep
+ lean, and sweep only were also tested. The hub axial

location for the swept + lean, and sweep only stators

corresponded to the location of the radial stator at the

upstream rotor-stator spacing, while the tip axial location

of these modified stators corresponded to the radial stator

axial position at the downstream position. The acoustic

results show significant reductions in both rotor-stator

interaction noise and broadband noise beyond what could

be achieved through increased axial spacing of the

conventional, radial stator. Theoretical application of these

results to acoustically quantify a fictitious 2-engine aircraft

and flight path suggested that about 3 EPNdB could be

achieved through incorporation of these modified stators.
This reduction would represent a significant portion of the

6 EPNdB noise goal of the current NASA Advanced

Subsonic Technology (AST) initiative relative to that of

1992 technology levels. A secondary result of this fan test

was to demonstrate the ability of an acoustic barrier wall
to block aft-radiated fan noise in the wind tunnel, thus

revealing the acoustic structure of the residual inlet-

radiated noise. This technology should prove valuable

toward better u nderstandi ng inlet l iher design, or wherever
it is desirable to eliminate aft-radiated noise from the fan

acoustic signature.

Introduction

A major source of aircraft engine noise comes from
interaction of the rotor viscous wake with the exit guide

vanes, or stalors. The most prominent component of this

interaction noise are tones at multiples of the rotor blade

passage frequency, although there also exists a broadband

component of this rotor-stator noise. Traditional methods
of reducing this interaction noise have been to select

blade/vane ratios to satisfy the cut off criterion for

propagation of the fundamental rotor tone t and increased

axial spacing between the rotor and stator. 2 Increased

rotor-stator axial spacing may somewhat degrade the fan

aerodynamic performance and increase the overall engine

weight.

The current Advanced Subsonic Technology ('AST)
noise initiative calls for a 6 EPNdB (Effective Perceived

Noise) engine noise reduction relative to 1992 technology

levels to be _Jchieved by 1999. This work calls for a

comprehensive understanding of engine noise generation
mechanisms accompanied by analytic and experimental
validations.

Stator vane lean and/or sweep have been suggested as

a mechanism to reduce the severity of the rotor wake

interaction with the stator vane. Vane sweep is the axial

displacement of the vane with radius such that the tip

region is further downstream than the hub.

Correspondingly, lean is a circumferential displacement

of the vane stacking line relative to the radial direction.
Both of these stator modifications have been proposed as

a means to reduce the stator response to the rotor downwash,

thereby reducing the rotor/stator acoustic response. Kazen 3
demonstrated rotor/stator interaction tone reductions

associated with a stator leaned 30 ° in the direction of fan
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rotation.Noisereductionsin the2BPFtonefrom1.5to
3.5dBwiththeleanedstatorwereobservedinthisstudy.

Analyticalstudies4havesuggestedthatbothstator
leanandsweep,if properlyapplied,maysignificantly
reducerotor/statorinteractiontonenoise.Optimalstator
leanandsweepoffersthepossibilityof reducingthe
overallengineweightthroughdecreasedaxialrotor-stator
spacingorachievingadditionaltonenoisereductionfora
particularrotor-statorspacing.

An advancedhighbypasssubsonicfanmodel
incorporatingstatorsweepandleanwasdesignedand
builtbytheAllisonEngineCompanyundercontractto
NASALewisResearchCenter(ContractNAS3-25950).
TheAllisonfanwastestedin theNASALewis9-by
15-FootLowSpeedWindTunnel5-7(9×i5LSWT),which
islocatedinthelow-speedreturnlegofthe8-by6-Foot
SupersonicWindTunnel(8×6SWT).Thesefantestswere
conductedatafreestreamMachNumberof0.10.The test

section walls are acoustically treated to provide anechoic

conditions down to a frequency of 250 Hz, which is lower

than the range of test fan acoustic tones.
The emphasis of this fan test was to evaluate the

aeroacoustic performance of the swept + leaned, and

swept only stator relative to that of a baseline radial stator.
All stators had the same vane number and were designed

for equivalent aerodynamic performance. Acoustic data

are presented in terms of sideline directivities and spectra.

These data were also used to generate flyover and sideline
EPNL estimates for a fictitious two-engine aircraft and

flight path to give an estimate of the EPNL benefit
associated with these stator modifications.

Description 9f Fan Test
ResearchFan. An advanced high bypass subsonic fan

model incorporating stator lean and sweep was designed

and built by the Allison Engine Company under contract
to NASA Lewis. 7 Figure 1 is a photograph of the fan
installed in the NASA Lewis 9×15 LSWT. The fan was

tested at a freestream Math Number of 0.10 in the test

section, which is sufficient to achieve acoustic flight

effect 8and provides acoustic data representative of takeoff/

approach operation. All data were taken at 0° fan axis

angle of attack.
The Allison fan was driven by the NASA Lewis Ultra

High Bypass (UHB) drive rig. The UHB drive rig was

powered by a high pressure air turbine drive with the drive

air and instrumentation supplied through the support strut,

shown in Fig. 1. The drive turbine exhaust air was ducted

downstream through an acoustically treaded diffuser and
exited the end of the treated test section. There was little

indication of acoustic contamination of the aft fan data

from the turbine exhaust.

Table I shows design characteristics of the Allison

Fan. The 18 blade rotor had a diameter of 55.9 cm (22 in.).

Three research stator sets were fabricated-a conventional

radial stator and modified stators with sweep + lean, and

sweep only. (A leaned only stator set would have been
desirable, but was eliminated from the contract due to cost

considerations.) All stator sets had 42 vanes and were

designed for equivalent fan stage aerodynamic

performance. The fan stage did not have a core flow
simulator. The baseline slator configuration was with the

radial stator at the closer axial rotor-stator spacing (Fig. 2).

The radial stator was also tested at a larger rotor-stator

axial spacing. The swept + leaned, and swept only stators

were designed such that the hub was located at the same

axial rotor-stator spacing as the baseline stator, and the tip

was located at an axial location corresponding to the radial

stator at the larger axial spacing, (Fig. 3). These stators

were designed with 30 ° of sweep and 30 ° of lean. The

swept + leaned stator was leaned in the direction of rotor
rotation.

Figures 4 to 7 are photographs of the partially

assembled fan stage. Figure 4 is a photograph of the stage

showing the rotor and the swept and leaned stator. Figure 5
shows the rotor and the swept-only stator. Figure 6 is a

downstream view of the swept and leaned stator. Figure 7
is a downstream view of the swept and leaned stator seen

through the rotor.
Anechoic Wind Tunnel and Aco0._ti¢ Instrumentation.

The NASA Lewis 9× 15 LSWT is located in the low speed

return leg of the 8×6 SWT (Fig. 8). The tunnel test section
walls, floor and ceiling had acoustic treatment to produce

an anechoic test environment. Figure 9 is a sketch of the
test fan installed in the 9× 15 LSWT. Sideline acoustic data

were acquired with a computer-controlled translating

microphone probe (also seen in the photograph of Fig. 1)

and with three aft microphone assemblies mounted to the

tunnel floor. The translating microphone probe acquired

data at 48 sideline geometric angles from 27.2 to 134.6 °
relative to the fan rotor plane. The translating probe

traverse was at 224 cm (88 in.) from the fan rotational axis

(four fan diameters). A wall microphone assembly placed

a reference microphone adjacent to the translating probe

home position (i34.6 '_,maximum aft travel). Three fixed

microphone assemblies were mounted to the tunnel flow
at this same axial position to acquire aft acoustic data at

geometric angles of 140, 150, and 160 °. The acoustic data
were acquired through a digital computer system and

stored for post-run analysis.

Rcsuhs and Discussion

Aerodynamic Performance
The three fan stator sets were designed for equivalent

aerodynamic performance. Figures 10 and 1 I present a

brief overview of the fan performance with the three stator
sets. The baseline radial stator showed the highest corrected
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weightflowasafunctionofcorrectedfanspeed,withthe
swept+ leanedstatorshowingthelowestweightflow
value(Fig.10).However,theweightflowdifferences
betweenstatorsetsat thesamefanspeedisrelatively
small,ontheorderof 1to1.5percent.

Figure! I showsthepercentsystemlossasafunction
ofpercentcorrectedfanspeedforthefanwithswept+
leaned,andsweptonlystators.Theresultsshownare

normalized to the baseline stator configuration

performance. The system losses with the swept + leaned

stator were 2.5 to three percent greater than losses with the

swept only stator. These losses are thought to be associated

with the high pressure and velocities due to the

supercharged nature of the flow in the hub region without

a core simulator. These flow conditions appear to be

causing large separated regions on the stators that increase

system losses. In addition, large viscous wall losses are
associated with the corner flow at the stator hub and tip for

the swept + leaned stator. A somewhat different design

methodology was employed for the swept only stator,

which was partially optimized using area ruling at the tip

region to help relieve the high velocity region there caused

by the flow stacking up in the outboard region of the stator.

Consequently, the swept only stator showed less system
losses.

These limited aerodynamic results are included to
better understand the associated acoustic performance of

the fan with the non-radial stators. A point for consideration

is that the swept + leaned and swept only stator designs

were not optimized for the fan or design point performance.

These were technology demonstrator, proof-of-concept

designs, and the aerodynamic performance losses

associated with them are not representative of the

performance potential for this technology. Encouragingly,

acoustic benefits associated with the swept + leaned stator

are in spite of the somewhat higher system losses associated

with this stator. A swept + leaned stator with lower system

losses may show additional noise reduction relative to the

results presented in this report.

Acgustiq Performance

All of the fan acoustic data were acquired at a tunnel

test section velocity of 0.10 Mach. Sideline data are

presented in terms of emission angles. The emission

angles are related to the geometric, or observed angles by

the relationship:

Oem = Ogeo m - sin -1 (M o sin Ogeom)

where ®era and ®geom are, respectively, the emission and
observed sideline angles, and M o is the test section Mach
number. The observed angles for the sideline translating

microphone probe are then 25 to 130'1,and the three fixed

microphones measure aft observed angles of 136, 147, and

158°. This angular range was sufficient to define the

sideline noise profile for this aft-dominated fan for

subsequent EPNL calculations.
Digital acoustic data were processed as constant

bandwidth spectra. Spectra were acquired and averaged at

each translating probe or fixed mie position with 6 and

59 Hz bandwidths. These constant bandwidth spectra

were electronically merged and used to generate 113

octave spectra. The results presented herein are in terms of

both constant bandwidth and 1/3 octave spectra.

Swept + leaned, and swept only stators were expected

to reduce rotor-stator interaction tones by relieving the

severity of the rotor wake interaction with the stator vanes.
An additional observed benefit was a reduction in fan

broadband noise. Two techniques were employed to

separate the interaction tone and broadband components

of the noise. A software technique was used with the

digital data reduction to produce constant bandwidth, and

consequently, I/3 octave spectra with minimal interaction

tone content. This technique investigated the spectra at

interaction tone frequencies and eliminated tones which
were 6 dB or more above adjacent spectral levels.
Broadband levels at the first four interaction tone

frequencies were also deduced by manually inspecting
selected constant bandwidth spectral arrays.

Effective Perceived Noise Levels. The effective

perceived noise level (EPNL) provides a subjective
measure of the aircraft flyover and sideline noise levels.

This value is derived from the flyover or sideline sound

pressure level profiles and is a function of frequency,
duration, and tone content.

Effective perceived noise levels were calculated for a

fictitious 2-engine aircraft and flight profile based on the
Allison fan model acoustic results. A 3.5 scaling factor

was assumed, and calculations were made for a 0.25 Mach

flight speed. EPNL calculations were made for the full
1/3 octave spectra, and for representative broadband noise

using the 1/3 octave spectra with the interactions tones
electronically removed. FAR 36 Stage 3 sideline EPNL
calculations are for an observer on a 450 m (1476 ft)

sideline. EPNLs were evaluated every 30.5 m (100 It)

along this line to ensure that the sideline noise reported

was indeed the maximum level. FAR36 Stage 3 culback
EPNL calculations are for an observer 6500 m (21325 ft)

from brake release in line with the runway.

Figure 12 shows the aircraft EPNL on the 450 m

(1476 ft) sideline. Although the throttle setting used at
takeoff would be at or near the fan design speed, the

sideline noise is evaluated for the range of speeds

investigated for illustrative purposes. There is about a
1.5 EPNdB decrease associated with moving the radial

stator from the forward position to the aft position at all fan

speeds except 110 percent of design, where the change in
noise level is negligible. However, the addition of sweep
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+lean,orsweeponlyresultsinabouta3EPNdBreduction
fromnoiselevelsrelativetothatfortheforwardradial
statoratfanspeedsuptoabout75percentofdesign.The
sweeponlystatormaintainsthis3EPNdbreductionrelative
tobaselineinthemidspeedrangeof 75to95percent
designspeed.Theswept+leanedstatorshowedthemost
noisereductionatdesignandabovefanspeeds.Similar
resultsareseenfor theflyoverEPNLcalculationsof
Fig.13.Theuseofarangeoffanspeedsismoreapplicable
forflyoverEPNL,sinceathrottlecutbackisoftenusedin
thatsegment.TheanalyticalEPNLpredictionsforsideline
andflyoverobserversdifferduetogeometricinputstothe
extragroundattenuationandgroundreflectionmodels.
Thesedifferences,however,donotsignificantlyaffectthe
trendswith respectto fanspeed.Thus,althoughthe
magnitudesof thesidelineandflyoverEPNLsareof
coursedifferent,thetrendsarenearlyidentical.

Therelativelypoorperformanceoftheswept+leaned
statoratfanspeedsnear90percentdesignmaybeexplained
bytherelativelyloweraerodynamicperformanceofthat
stator(Fig.i 1).Systemlossesassociatedwiththeswept+
leanedstatorarethoughttoarisefromlessthanoptimal
flownearthehubandtipregions.It isquitepossiblethat
refinementsin theaerodynamicdesignof theswept+
leanedstatorwouldresultinsuperiorperformanceforthis
conceptthroughoutthefanspeedrange.

ThetheoreticalstudyofRef.4concludesthatsweep
shouldbemostbeneficialattakeoffconditions,whilelean
shouldbemostbeneficialatapproachconditions.This
referencedoesconcludethatcombiningsweepandlean
shouldbecomplementarytowardoverallnoisereduction.
TheresultsofFigs.12and13areonlymarginallysupportive
ofthisprediction.Itwouldappearfromthedatathatsweep
alone,ratherthansweep+lean,achievedessentiallyallof
thenoisereductionatthelowerfanspeeds.At thehigher
fanspeedsadditionalnoisereductionwasachievedwith
sweep+leanbeyondwhatwasobservedbysweeponly.
However,it isclearfromthesefiguresthatincorporation
ofstatorsweep+leanresultsinsignificantnoisereductions
throughoutthefanoperatingrangerelativetowhatcould
beachievedthroughsimplyincreasingtheaxialspacingof
theradialstator.

Figures14and15presentcorrespondingbroadband
resultsfor thefictitious2-engineaircraftbasedonthe
acousticdatawith therotor-slatorinteractiontones
electronicallyremoved.Thiscomputertoneremoval
tcchniqueonlyremovedtoneswhichwere5dBormore
abovetheadjacentbroadband,andassuch,mayriotfully
representthespectralbroadbandlevels.Theoverallpattern
of thedataissimilarto whatwasgeneratedfromthe
inclusivespectra(Figs.12and13),althoughthenoise
reductionsaresomewhatless.Inparticular,noisereductions
associatedwithincreasingtheaxialspacingoftheradial
statorareonlyseenatfanspeedsbelow85percentof

design.Reference2notesthatexperimentalbroadband
noiselevelsshowedlittlechangewithrotor-statorspacing
(foraradialstator).Thismaybeanotherindicationthat
thereis sometonalcontaminationin thelowerspeed
resultsofFigs.14and15.

$oond Pressor¢ Level Directivities. Sideline sound

pressure level (SPL) dircctivities provide a useful tool for
evaluating acoustic differences associated with changes

in thc stator configuration. These directivities were

achieved by combining results from the traverse

microphone and the three aft fixed microphones, resulting

in 224 cm (88 in.) sideline directivities for 25 to 158 °

emission angles relative to the fan upstream axis and

centered on the fan rotor plane. These results are for

constant bandwidth (59 Hz) spectra.

Figure 16 shows representative SPL directivities for

the four test configurations. These results are for the fan

operating at 50 percent of corrected design speed. These
data are for the 2BPF tone, which falls within the 3150 Hz

1/3 octave band. Advanced high bypass ratio fans, such as

that reported herein, tend to have aft-dominated
directivities. The results of figure 16 clearly show that there

is a significant noise rcduction associated with increased
radial stator spacing, and additional noise benefits to be

realized with a swept + leaned, and swept only stator.

Thc noise reduction trends shown in Fig. ! 6, are more

easily understood in terms of changes in noise level
relative to that observed for the baseline radial stator in the

upstream position. The sound pressure level (SPL)

directivities for the four stator configurations will now be

explored in this manner at four representative fan speeds.
Constant bandwidth (59 Hz) spectra were used for this

analy sis to facilitate separation of the rotor-stator interaction

tone from adjacent broadband noise. The following test

conditions will be reported:

Percent corrected Corrected rotor tangential Tip Relative Mach

sf.ao...w_¢_
50 (approach) 152 m/s (500 ft/s) 0.507

84 (takeoff) 256 nJs (840 ft/s) 0.900

100 (sideline) 305 m/s (1000 ft/s) 1.080

I10 335 m/s (I 100 ft/s) 1.187

Results for each test speed will be presented in terms

ofrepresentative spectra at a 126° emission angle followed

with directivities showing the tone and broadband
reductions relative to noise levels observed for the baseline

radial stator in the forward axial position. The broadband

levels at rolor-stator interaction frequencies were manually

extracted through inspection of the individual noise spectra

and should provide a reasonably good representation of
these levels.

Figure 17 compares spectra acquired at 126° emission

angle along the 224 cm (88 in.) sideline for thc fan

NASA/TM--1998-208661
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operatingat50percentdesignspeed.The fundamental
rotor- stator interaction tone (BPF) is cut-offand essentially

not present in the spectra. Strong 2 and 3BPF tones are
evident for the radial stator in the upstream position. These

overtones are essentially attenuated either by moving the

radial stator to the aft position or employing sweep and/or

lean. However, there is clear indication that additional

broadband noise- on the order of 4 dB- is removed by the

modified stator sets.

Figures 18 and 19 show, respectively, the directivity
effects on the 2 and 3BPF fan overtones. SPL reductions

in the tone and broadband levels are plotted against the

sideline emission angle. Positive noise levels represent
noise reductions relative to what was observed for the

baseline configuration with the radial stator in the upstream

position. Tone reductions for the 2BPF tone (Fig. 18) are

greatest at aft angles, showing 12 dB reduction associated
with moving the radial stator to the downstream location.
Noise reductions of 15 and 19 dB were associated,

respectively, with the swept only, and swept + leaned stator.
There were also broadband noise reductions associated

with the swept + leaned, and swept only stators, showing

up to 4 dB broadband noise reduction. Moving the radial

stator to the downstream location produced little to no
reduction in broadband noise. This result is consistent

with that reported in the stator spacing study of Ref. 2,
which likewise noted little change in broadband noise

level with (radial) stator spacing.
There has been some concern regarding the periodic

nature of the tonal directivity data taken in the 9× 15 LSWT.

While it is possible that this behavior arises from tunnel
wall reflections, it is much more likely that the data

accurately shows a real interference pattern between aft
and forward radiated noise at a particular frequency.

There are several observations to support the second

interpretation. The fan is aft dominated, therefore one

would expect the cancellation pattern to be more

pronounced toward the forward angles where the relative

noise levels are more nearly equal in level. This is, in fact,
what is observed in the sideline data. An analytical study

of predicted sideline-noise levels was performed which
considered a case for inlet and exhaust radiation for an aft

dominated fan. Again, a similar noise interference pattern

was observed for these analytical results. Finally, results
for another advanced fan model which was tested in a

large anechoic free jet facility showed similar interference
in the sideline results-in this case there was no nearby

tunnel wall to provide possible reflections. This

phenomenon will be further explored in a later section of

this report in which an acoustic barrier wall was placed

adjacent to the fan model and effectively blocked aft-

radiated noise from reaching the sideline microphone.

The 3BPF results of Fig. 19 show significant tone

reductions, which are now greatest toward the forward

angles. Different tone orders are associated with different
radiation mode structure, and therefore changes in the

directivity patterns arc expected. In particular, acoustic
interaction modes which are just above cut-off tend to be

more forward radiating than more highly cut-on orders.
Tone reductions associated with simply moving the radial

stator downstream are nearly as great as those associated

with the swept + leaned stator (up to 18 dB). The swept

only stator was slightly less effective for tone removal at
forward radiation angles, but essentially equivalent to the

swept + leaned stator at the aft angles. The swept + leaned
stator was most effective in reducing broadband noise

levels at all measured sideline angles.

Figures 20 to 22 present corresponding acoustic results

for the fan operating at 84 percent design speed. The

spectral overlay of Fig. 20 is similar to the 50 percent

speed results of Fig. 17 in that the fundamental tone Is
essentially cut-off, and most overtone energy is associated

with the radial stator in the upstream position. The

"haystacking" nature of the swept + leaned spectra near
3BPF may be associated with flow disturbances caused by

the poorer aerodynamic performance of that stator.
Figure 21 shows sideline noise reductions for the

2BPF tone and broadband. The two modified stators were

essentially equivalent in terms of tonal noise reduction.
Tone reductions associated with the radial stator in the

downstream position were almost as good as those for the

modified stators except for downstream sideline angles

beyond 100°. Broadband noise reductions for the modified

stators were about 2 dB at upstream angles, increasing to

4 to 5 dB at further aft angles.
Tone reductions at 3BPF and 84 percent design speed

(Fig. 22) showed similar reductions for the modified and
further downstream radial stators. Broadband noise

reductions at 3BPF were greatest with the swept only
stator. The swept + leaned stator generated increased

broadband noise at sideline angles from 90 to 110 °.
The fundamental rotor-stator interaction tone

remained cut-off at 100 percent design speed (Fig. 23).

However, higher-order tones are now present in the spectra

for the radial stator in the downstream position and for the

swept and leaned stator. Data were not taken at this speed

for the swept only stator due to aeromechanical avoidance
zones for this stator and fan speed. There is essentially no

interaction tone for the swept + leaned stator until 4BPF

(and higher) harmonics.
Fundamental (BPF) tone and broadband reductions

as a function of emission angle are shown in Fig. 24. The

interesting observation here is that, although cut-off, there

is a significant noise increase associated with the swept +
leaned stator. Again, the suspect cause is the lesser

aerodynamic performance of that stator.
The swept + leaned stator had much more effect than

the radial stator in the downstream position in reducing

NASA/TM-- 1998-208661 5



2BPFtone noise at 100 percent fan speed (Fig. 25).

However there was essentially no broadband reduction at

2BPF. A similar result was observed at 3BPF (Fig. 26).

All stator configurations produced significant tone

noise at the 110 percent overspeed condition. The

fundamental rotor-stator interaction tone is now weakly
cut-on and is evident for the radial stator at the two axial

locations and for the swept only stator. However, this tone

is not evident for the swept + leaned stator (Fig. 27). The

swept + leaned stator essentially eliminated the 2 and

3BPF tones from the spectra. The swept only stator was

marginally effective in reducing acoustic energy at these
tone orders.

The fundamental tone directivity results of Fig. 28

likewise shows significant noise reductions associated

with the swept + leaned stator, with somewhat increased

noise levels (relative to the radial stator in the forward

position) seen for the swept only and radial stator in the

downstream position. The broadband levels at BPF were

essentially unchanged by stator configuration, except for

small reductions at upstream angles with the swept +

leaned stator. A corresponding noise increase was
associated with the downstream radial stator at these

forward angles.
The directivity results at 2 and 3BPF (Figs. 29 and 30)

were somewhat similar, showing that the swept + leaned

stator was most effective in reducing tone and broadband

energy at this fan speed.
These results for the constant bandwidth tone and

broadband directivities are consistent with those presented

earlier in this report for the fictitious aircraft effective

perceived noise levels (Figs. 12 to 15). Stators correctly

redcsigned with sweep + lean, or possibly sweep only

have been shown to significantly reduce both rotor-stator
interaction tone and broadband noise levels. However,

there is not a consistent story as to whether sweep + lean

or sweep only is the preferred modification. The relative

stator performance varied with fan speed. This story is

further complicated by the observation that the swept +
leaned stator showed greater aerodynamic losses than did

the other stators, suggesting that its acoustic performance,

likewise, was compromised. On the other hand, one could
infer that the expected acoustic benefits of a better designed

swept + leaned stator would be at least as good as were

shown herein, and perhaps better.

Data repeatability. The modified stator sets showed

significant reductions in fan tone levels, therefore there is
a need to validate the repeatability of these results. Repeat

data runs for two stator configurations were made to

quantify repeatability of the acoustic data. In each instance,
the second set of data represents a fan rebuild and was

acquired at a totally different test time. Thus, the following
comparisons are rather rigorous toward validating the

acoustic data. Successive data were taken for the swept +

leaned stator and for the radial stator in the downstream

axial position.

Sideline 1/3 octave directivities comparing repeat

data sets are shown in Figs. 31 and 32, respectively, for the

2500 and 20000 Hz frequency band. In each instance the

data repeatability is excellent.
Acoustic barrier wall. Noise levels for modern high-

bypass ratio subsonic turbofans tend to be aft-dominated.

That is, the highest flyover noise levels radiate from the
fan exit. Measurement of fan inlet sound radiation without

aft radiation contamination requires selective suppression
of the aft noise. An acoustic barrier was used in the NASA

Lewis 9xl5 LSWT to effectively isolate the inlet noise
field from the fan exit noise. The acoustic barrier was

mounted on tracks on the tunnel floor and ceiling at a

sideline distance of 15 cm (6 in.) from the fan nacelle.

Tests were made with the wall leading edge at the fan inlet

highlight plane and 15 cm (6 in.) further aft. The wall

extended downstream essentially to the end of the treated
tunnel test section. The barrier was constructed in sections

which were joined upon installation. The barrier was of

wood frame construction, 8 cm (3 in.) thick, with typically

0.64 cm (0.25 in.) tempered fiberboard skins. An elliptical

leading edge was faired into the upstream barrier section.

The barrier sections extended floor to ceiling and had an

axial length of 61 cm (24 in.). The upstream section had

nominal full height by 46 cm (18 in.) axial length acoustic

treatment on the fan side of the barrier just downstream of

the leading edge. This treatment consisted of a bulk
absorber with a perforated metal skin. Inlet airflow

computations indicated that the presence of the barrier
wall should have a minimal effect on fan aerodynamic

performance. The barrier wall was shown to structurally

sound up to 0.20 Mach tunnel velocity.
Figure 33 is a photograph of the Allison fan in the

NASA Lewis 9× 15 tunnel showing the acoustic barrier in

the upstream position. The sideline translating microphone

probe may be seen in the background. Figure 34 is a sketch
of the acoustic barrier wall installed in the 9xl5 LSWT.

Figures 35 to 38 show 1/3 octave directivities for the
baseline fan with the radial stator in the upstream

position, and with the acoustic barrier wall installed at the

two axial locations (leading edge at fan inlet highlight

and 15 cm (6 in.) further aft). Figures 35 and 36 show

1/3 octave directivities for the fan operating at 50 percent

design speed. Figure 35 shows representative broadband
results at 2500 Hz. The presence of the barrier wall

significantly reduced fan aft noise levels, with somewhat
better aft suppression with the wall leading edge located at

the fan inlet highlight. Similar results are seen in Fig. 36

for the 3BPF tone. Maximum wall shielding at this fan

speed is about 20 dB. It is interesting to note that acoustic
modal structure from (presumably) inlet radiation is now

exposed due to the barrier wall shielding.
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Figures37and38showcorrespondingdirectivity
resultsforthefanoperatingat100percentdesignspeed.
Thebarrierwallatbothaxiallocationssignificantlyreduced
aft-radiatedbroadbandnoise(Fig.37).Likewise, the wall

was quite effective in shielding aft-radiated 4BPF tone

noise. Maximum shielding of this strong tone (Fig. 23)
was about 25 dB.

Figures 39 to 43 show the effect of the barrier wall on

the fan acoustic power. Figure 39 shows the overall sound

power level (OAPWL) calculated with 1/3 octave data

from 2000 to 20000 Hz. The data are for the translating

microphone probe for emission angles from 25 to 130 ° .

The presence of the barrier wall reduced the OAPWL from

about 4 dB at the lower fan speeds to over 10 dB at thc

higher speeds. The fan noise directivity becomes

increasingly aft-dominated at higher speeds where the

barrier wall is shown to significantly reduce the measured

sound power. As expected, the barrier wall is slightly

more effective at its upstream location with the wall

leading edge at the fan inlet highlight.

Figures 40 and 41 show the corresponding fan OAPWL
for forward emission angles (25 to 61 °) and downstream

angles (61 to 130°), respectively. The upstream OAPWL
results of Fig. 40 show essentially no barrier wall effect at

fan speeds below 85 percent design, where the fan noise

directivity begins to become more aft dominated. There is

some wall-induced noise reduction at higher fan speeds,

showing that dominant aft-radiated fan noise is present at

these upstream angles. There was essentially no difference

in barrier wall effectiveness for the two wall axial positions.

The barrier wall was quite effective in reducing the

downstream OAPWL (Fig. 41), with reductions typically

about 10 dB at lower fan speeds, increasing to 15 dB at the

higher speeds. The aft noise levels were sensitive to wall

location, being about 1.5 dB lower with the wall at the
forward axial location at the inlet highlight. However, the
wall axial location had no effect on noise reduction at I00

and 105 percent fan design speed where the noise is highly
aft-dominant.

The fan first overtone (2BPF) was cuton at all fan

speeds. Figure 42 shows the sound power levels (PWL)

for the I/3 octave band containing this 2BPF tone as a

function off an speed. Again, the data are for the translating

microphone probe over an emission angle range from 25

to 130 °. These results are very similar to those seen for the

OAPWL in Fig. 39. Figure 43 shows the tone PWL
derived from 59 Hz narrowband data. The use of this finer

bandwidth facilitates better separation of the 2BPF tone
from other noise, such as broadband. These results are

similar to the I/3 octave tone results of Fig. 42, although
the actual noise reductions due to the wall are somewhat

higher, being 15 or more dB at the highest fan speeds.
These acoustic results show that the barrier wall can

be a useful tool for isolating inlet radiation from an aft-

dominated fan in the LeRC 9xl 5 LSWT. This technique

should have application for investigating inlet acoustic
treatment effects or wherever it is desirable to eliminate aft

noise from the acoustic signature in the 9x15 anechoic
wind tunnel.

Concluding Remarks

An advanced high bypass ratio fan model was tested

in the NASA Lewis 9- by 15-Foot Low Speed Wind
Tunnel. The primary focus of this test was to quantify the

acoustic benefits and aerodynamic performance of sweep
and lean in stator vane design. Three stator sets were used
for this test series. A conventional radial stator was tested at

two rotor-stator axial spacings-a relatively close spacing

and a more open spacing, axially downstream. Additional

stator sets incorporating sweep + lean, and sweep only were

also tested. The hub and tip axial locations for the swept+

leaned, and swept only stators corresponded to the hub and

tip locations of the radial stators at the two axial spacings.

In theory, the use of about 30° of sweep and lean should

significantly reduce the impact of rotor wake-stator

interaction, thus resulting in lower rotor-stator noise levels.

The results clearly showed that incorporation ofstator

sweep + lean, or sweep only can significantly reduce
rotor-stator tone levels. Tone levels for the modified

stators were significantly reduced beyond what was

achieved by simply relocating the conventional radial
stator to the downstream location. It is not clear if stator

sweep alone is typically adequate to achieve substantial
reductions in rotor-stator interaction noise, or if there are

significant additional benefits to be realized through

incorporation of both sweep + lean. In particular, the

aerodynamic performance of the swept + leaned stator

showed somewhat higher losses than that of the other

stators, suggesting that noise reductions associated with

this stator may be further improved through enhanced

aerodynamic design of a swept + leaned stator.

There is increasing interest in reducing broadband
noise levels of advanced subsonic turbofans. Noise

signatures of modern turbofan engines are increasingly

dominated by broadband noise rather than rotor-stator
tone noise. Increased axial spacing of a conventional

radial stator does not impact the fan broadband noise level,

except, perhaps, to increase the potential for broadband

noise generation through increased scrubbing surface, etc.

However, the results for the swept + leaned, and swept

only stators reported herein did show a significant reduction

(often on the order of 4 dB) of the broadband noise relative

to that generated with the radial stator.

Acoustic results scaled to a fictitious 2-engine aircraft

and flight path suggested that about 3 EPNdB could be

realized through incorporation of these modified stators-

a result which could represent a significant part of the
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currentASTinitiativegoalofa6EPNdBreductionrelative
to 1992 technology levels.

These results suggest that incorporation of some

combination of stator sweep and lean may significantly
reduce both tone and broadband noise levels for future

advanced turbofans. Additional research in this area should

further quantify the aeroacoustic performance of these

modified stators and give insights into methodology for

additional engine noise reduction.
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TABLE I.--ALLISON FAN DESIGN CHARACTERISTICS

Rotor diameter ......................................................................... 55.9 cm (22 in.)

Rotor blade number ........................................................................................ 18

Rotor hub/tip ratio ....................................................................................... 0.30

Rotor aspect ratio ....................................................................................... 1.754
Stator vane number ...................................................................... Call modes) 42

Stator aspect ratio ..................................................................................... 3.073

Swept and leaned stator ....................................................... 30 ° lean/30 ° sweep

Swept only stator ............................................................................... 30 ° sweep

Design stage pressure ratio ........................................ 1.378 (I .45 tip-1.20 hub)

Design specific weight flow .............................. 210.4 kg/slm2 (43.1 Ibm/s/ft 2)

Design corrected tangential tip speed .................................. 305 m/s (1000 ft/s)

Design tip relative Math number .............................................................. 1.080
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Figure 1 .--Photograph of the Allison fan installed in the NASA Lewis 9xl 5 LSWT.
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Figure 2.--Sketch of the Allison fan with the baseline radial stator in the
forward and aft positions. (a) Upstream position. (b) Downstream position.
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Figure 3.--Sketch of the Allison fan with the swept + leaned and swept only
stator. (a) Swept only stator. (b) Swept + leaned stator.

Figure 4.PPhotograph of the partially-assembled fan stage
showing the swept + leaned stator.
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Figure 5.RPhotograph of the partially-assembled fan
stage showing the swept-only stator.

Figure 6.--Downstream view of the swept + leaned stator.
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Figure 7.--Downstream view of the swept + leaned stator viewed through the rotor. The
fan direction of rotation is counter-clockwise.
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Figure 8.mNASA Lewis 9xl 5 Low Speed Anechoic Wind Tunnel.
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Figure 9.--Sketch of the Allison fan installed in the 9x15 wind tunnel anechoic test section. (All dimensions are in
cm (in.)).
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Figure 10.--Fan stage weight flow comparison for the radial
(baseline), swept + leaned, and swept only stator.
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Figure 11 .ESystem thrust loss relative to baseline (radial) stator.
(Note: Vanes not optimized for performance - no core flow and
sharp comer flows. Swept only vanes partially optimized using
area ruling at the tip.)
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Figure 12.ESideline EPNL for fictitious 2-engine aircraft and flight path. Maximum noise level for an
observer on a 610 m (2000 ft) sideline.
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Figure 13.--Flyover EPNL for fictitious 2-engine aircraft and flight path. Maximum noise level for an
observer 3.5 nautical miles from brake release in line with runway.
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Rgure 14.ESideline broadband EPNL for fictitious 2-engine aircraft and flight path. Maximum noise
level for an observer on a 610 m (2000 ft) sideline.
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Figure 15.--Flyover broadband EPNL for fictitious 2-engine aircraft and flight path. Maximum noise
level for an observer 3.5 nautical miles from brake release in line with runway.
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Figure 16.--One-third octave directivities along a 224 cm (88 in.) sideline (50 percent fan design speed,
2BPF tone).
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Figure 17.--Constant bandwidth (59 Hz) spectra on a 224 cm (88 in.) sideline at 126 ° from inlet axis.
Fan is operating at 50 percent design speed.
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Figure 18.--Sideline constant bandwidth (59 Hz) directivities showing noise reduction relative to base-
line configuration with the radial stator in the forward (upstream) position (50 percent fan design

speed, SPL at 2BPF).
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Figure 19.--Sideline constant bandwidth (59 Hz) directivities showing noise reduction relative to base-

line configuration with the radial stator in the forward (upstream) position (50 percent fan design
speed, SPL at 3BPF).
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Figure 20.wConstant bandwidth (59 Hz) spectra on a 224 cm (88 in.) sideline at 126 ° from inlet axis.
Fan is operating at 84 percent design speed.

NASA/TM--1998-208661 18

i_! I]



I
__ Swept + leaned stator

20 -----1 _ --i-- Swept only stator _

10

o

-5
20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Emission angles along a 224 cm (88 in.) sideline

,00  uation
t.. -5

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Emission angles along a 224 cm (88 in.) sideline

Figure 21 .--Sideline constant bandwidth (59 Hz) directivities showing noise reduction relative to base-
line configuration with the radial stator in the forward (upstream) position (84 percent fan design

speed, SPL at 2BPF).
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Figure 22.--Sideline constant bandwidth (59 Hz) directivities showing noise reduction relative to base-
line configuration with the radial stator in the forward (upstream) position (84 percent fan design

speed, SPL at 3BPF).
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Figure 24.--Sideline constant bandwidth (59 Hz) directivities showing noise reduction relative to base-
line configuration with the radial stator in the forward (upstream) position (100 percent fan design

speed, SPL at 1BPF).
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Figure 25.--Sideline constant bandwidth (59 Hz) directivities showing noise reduction relative to base-
line configuration with the radial stator in the forward (upstream) position (100 percent fan design
speed, SPL at 2BPF).
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Figure 26.--Sideline constant bandwidth (59 Hz) directivities showing noise reduction relative to base-
line configuration with the radial stator in the forward (upstream) position (100 percent fan design
speed, SPL at 3BPF).
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Figure 27.---Constant bandwidth (59 Hz) spectra on a 224 cm (88 in.) sideline at 126 ° from inlet axis.
Fan is operating at 110 percent design speed.
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Figure 28.--Sideline constant bandwidth (59 Hz) directivities showing noise reduction relative to base-
line configuration with the radial stator in the forward (upstream) position (110 percent fan design
speed, SPL at 1BPF).
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Figure 29.--Sideline constant bandwidth (59 Hz) directivities showing noise reduction relative to base-

line configuration with the radial stator in the forward (upstream) position (110 percent fan design

speed, SPL at 2BPF).
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Figure 30.--Sideline constant bandwidth (59 Hz) directivities showing noise reduction relative to base-
line configuration with the radial stator in the forward (upstream) position (110 percent fan design

speed, SPL at 3BPF).
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Figure 31 .--Data comparison for two builds of the same stator configuration showing data repeata-
bility. (1/3rd octave directivities at 2500 Hz, 84 percent design speed.)
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Figure 32.--Data comparison for two builds of the same stator configuration showing data repeata-
bility. (1/3rd octave directivities at 20 000 Hz, 84 percent design speed.)
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Figure 33.--Photograph of the Allison fan installed in the 9x15 LSWT with the acoustic
barrier wall in place. The wall is shown in its upstream position with the wall leading

edge at the fan inlet highlight.
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Figure 34.--Sketch of the acoustic barder wall installed in the 9xl 5 LSWT.
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Figure 35.--Effect of acoustic barrier wall (50 percent design speed, broadband at 2500 Hz).
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Figure 36.--Effect of acoustic barrier wall (50 percent design speed, 3BPF at 5000 Hz).
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Figure 37.--Effect of acoustic barrier wall (100 percent design speed, broadband at 4000 Hz).
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Figure 38.--Effect of acoustic barrier wall (100 percent design speed, 4BPF at 12 500 Hz).
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Figure 39.mEffect of barrier wall on 1/3rd octave overall sound power level measured form 2000 to
20 000 Hz. (Data from translating microphone probe.)
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Figure 40.mEffect of barrier wall on 1/3rd octave overall sound power level measured form 2000 to
20 000 Hz for emission angles from 25 to 61 °. (Data from translating microphone probe.)
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Figure 41 .DEflect of barrier wall on l/3rd octave overall sound power level measured form 2000 to
20 000 Hz for emission angles from 61 to 130 °. (Data from translating microphone probe.)
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Figure 42.DEflect of barrier wall on 1/3rd octave 2BPF tone sound power level. (Data from translating
microphone probe.)
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Figure 43.--Effect of barrier wall on 59 Hz narrowband 2BPF tone sound power level. (Data from
translating microphone probe.)
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