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Abstract 

In this paper,  we extend the  class of problenis t h a t  can be effcrtively m n -  
piled by parallelizing compilers. This is accornplislictl with the  doconsider coi l -  

st ruct  which would allow these compilers t o  paralldizc~ many prohlcnis i n  \v l i i t  11 
siil)staiitial loop-lcvel parallelisin is available h i t  cattnot bc tlctcctctl hy staiitl;irtl 
corn pile-t iriie analysis. \Ire describe and espcriincii till I J  analyze mcdia nisni.; I I  srd 
to parallclize the  work required for these types of loops. I n  each of t hcse met Iiotls. 
a new loop structure  is produced hy modifying the  loop to be parallclizcd. \\'P also 
prcscnt t he  rules by wliicli these loop transformations may be autoiiiatcd i n  oi t1c.r. 

tha t  they be  iriclridccl in  langiiage conipilers. Tlic i t i a i i i  application a1c.n of o u r  w- 
scarcli involves problems i n  scientific computations aittl engineering. The wot kIo;it l  

iiscd i n  our experirnents iitcludcs a mixture of real ~)i~)l)lcins as wc4l as synt 1101 i -  
rally gcncratetl inputs.  I2rorn our estcwsivc tests oii t l i t 1  I:iicorc hl i i l  t i i t t ; i s / : l~ (~ ,  IVV 

have reaclicd t he  conclusion tha t  for t he  types of \voi liloatls \vv  Iiavc. i t ivfs l igat  ( V I ,  
self-execution almost always perforins better tltitii ~~tc~-sc~l iccl i~l i~ig.  b'iirtlier. 1 I I V  i r i i -  

provcment in performance t h a t  accriics as a resiil t of global topological sori irig of 
indices as opposed to the less experisivc local sortiiig. is not very sigiiifirant i r i  t I I P  
case of self-execution. 

'This research was supported by the U.S. Office of Naval Research under Grant N00014- 
86K-0310, the United States Air Force Office of Scientific Research under Contract NO. 
AFOSR Grant No. AFOSR 88-0117, and the National Aeronautics and Space Administra- 
tion under NASA Contract No. NAS1-18107 while the first author was in residence a t  the 
Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley 
Research Center, Hampton, VA 23665. 
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1 Introduction 

There exist many problems in which substantial parallelism is i ) \dable  but wliere 
the parallelism cannot be exploited using the two principal concurrent loops described 
in the literature: doall and doacross [14] [6]. doall loops do not iiripose any ordering 
on loop iterations while doacross loops impose a partial execution order in the sense 
that some of the iterations are forced to wait for the partial or complete execution of 
some previous iterations. We propose a new type of loop, the doconsider construct. 
The doconsider loop allows loop iterations to be ordered in new ways that preserve 
dependency relations and increase concurrency. Often, these sorts of index reorderings 
can be done at very low cost and can have substantial benefits. 

A variety of systems for restructuring loops and reordering indices have been de- 
veloped in the functional language and systolic array generation communities. These 
methods rely on being able to detect the existence of uniform or quasi-uniform recur- 
rence relations at compile- time. The dependency vectors characterizing these recurrence 
relations are examined and a new, hopefully more efficient way of traversing the depen- 
dency graph is found. We are able to handle loops whose inter-iteration dependency 
may be complex or where the dependences may be determined by variables whose val- 
ues are not available until program execution begins. The methods we present here 
set up the framework, at compile-time, for performing a loop dependency analysis and 
produce a restructured loop that is reorderd on the basis of the information obtained 
from the dependency analysis. The actual dependency analysis is performed at the start 
of prograni execution. We will show that this kind of analysis can be performed very 
quickly and lias very substantial payoffs. 

Symbolic transformations are used to produce: ( 1) sched*uling procedures that re- 
order and rcpartition index sets of loops and (2) executors or transformed versions of 
source code loop structures. These transformed loop structures carry out the calcula- 
tions planned in the scheduling procedures. An executor may be regarded as a doacross 
loop that executes loop iterations in a modified order. 

The schcduling mechanisms we explore are based on a topological sort. The index 
set is partitioned into disjoint subsets of indices or wavefronts,  such that work pertaining 
to all indices in a wavefront may be carried out in parallel. One method called global 
scheduling, performs a topological sort of index set and assigns indices to processors 
in a way that evenly partitions the work in each wavefront. In each processor, indices 
are scheduled in order of increasing wavefront number. The othw iiiethod called lo- 
cal s c h e d u 1 i . r ~ ~  starts out with a fixed assignment of indices to processors and simply 
rearranges the local ordering of those indices to improve parallelisin. 

We investigate two types of executors in which indices belonging to each wavefront 
are partitioned among the processors. In the first executor, based upon pre-scheduling, 
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global synchronizations separate consecutive wavefronts. In the second executor, whcih 
we call self-executing, a shared array is used to indicate whether a solution variable has 
been calculated. Global synchronizations are replaced by busy wuits  that ensure that 
needed values have been produced before those values are used. 

We investigate the performance tradeoffs that characterize tlic different scheduling 
and execution methods we propose. The investigation uses a complete, commercial 
sparse matrix solver (PCGPAK [4]) used to solve a range of linear systems, a synthetic 
workload is also employed. We first clearly delineate the performance tradeoffs between 
pre-scheduletl and self-executing loops. To fully explain the performance tradeoffs be- 
tween these types of loops, we need to be able to quantitatively explain the performance 
we are observing. lye present a set of experiments and analysis able to account for how 
time is spent in the two different kinds of loops. 

The method used to rearrange the index set of the loop to be parallelized will de- 
termine both the potential performance benefits that can be gained and the overhead 
that must be paid. We study the tradeoffs between local and global index set scheduling 
and conclude that for self-executing loops, local scheduling appears to lead to multipro- 
cessor performance that is comparable to global scheduling in problems of interest at a 
significantly lower overhead cost. 

From the results of experiments, we have reached the conclusion that for the types of 
workloads we have investigated, self-execution almost always performs better than pre- 
scheduling. Further, the improvement in performance that accrues as a result of global 
topological sorting of indices as opposed to the less expensive local sorting, is not very 
significant in the case of self-execution. Thus, we are left with a 2-c-iimensional solution 
space, as delicted in Figure 1, which pictorially summarizes the findings reported in 
this paper. 

The rest of this paper is organized as follows: In Section 2, we provide simple rules 
that allow the transformation of certain types of loops into different parallel forms. 
These rules can be inserted into parallelizing compilers, extending the class of prob- 
lems that can be effectively compiled for parallel machines. We describe some of the 
related research in Section 3. A simple mathematical model which captures the tradeoff 
between load balance and synchronization costs is described in Section 4. The results 
of multiprocessor experiments are presented in Section 5 .  These experiments provide 
a quantitative performance study of the schedulers and executors under consideration. 
Finally, we suinmarize our findings in Section 6. 
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x ( i )  = x ( i )  + b ( i ) * x ( i a ( i ) )  
: end do 

2 

Figure 3: A simple loop 

The Automated Execution System 

2.1 Motivation 

In a broad sense, modules of code in parallel programs are either compile-time or run- 
time schediilable. In order that a code be compile-time schedulable, it needs to possess 
sufficient information so that the compiler is able to extract the parallelism and map 
and schediilc tlie code, e.g., doall type loops in Fortran[l5]. In certain other types 
of codes, esaiiiination of run-time data is absolutely critical in order to detect hidden 
parallelism. Tl’e have been interested in the study of such problems. Within this class of 
run-time sclicdulable codes. there are two main categories, i.e., thosc that are s tar t - t ime  
schedulable arid those that are not. 

Codes art’ s tar t - t ime  schedulable if all data dependences are resolved before the pro- 
gram begins execution and if these dependences do not change during the course of 
the cornputat ion. For codes that are not s tar t - t ime  schedulal>le, tlic (lata dependenccs 
may lw detcmiiined by fiinctions whose parameters are other functions, the values of 
which are only computed at some unknown point during the computation. In [ll], we 
present self-execution primitives that aid greatly in tlie on-the-fly detection of paral- 
lelism in such problems. In this present paper, we will only be conccriied with s tar t - t ime  
schedulable problems. 

Standard techniques developed by researchers in the field of parallel imperative com- 
pilcrs can determine when the data structure that describes the dependency relations 
is not cliniig,cd during thc course of the computation [ 11. 

2.2 Tramformation rules for automated system 

In this stbction, we tlcsc.ribe the rulcs by which an ailtomated syiii1)olic manipulator 
perfornis source to source transformation of a sequential iiser code into a suitable parallel 
version. Thcw rules can be included in a conventional parnllelizing compiler so that the 
class of prolh>ms that can be liaiidled by these compilers is extemlcd to include those 
that are start-time schedulable. 

-4 loop of the form slio\vn in Figure 3, may be executed many times during the run- 
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1: doconsider i=l,n 
2: x(i) = x(i) + b(i)*x(ia(i)) 

> 

1: do i=l,nlocal 

la: isched = schedule(i) 
lb : needed-index = ia(isched) 
2a : if (needed-index >= isched) then 
2b : x(isched) = xold(isched) + 

b (isched) *xold(needed-index) ; 

else 
3a : while (ready(needed,index) .ne. COMPLETED)) end while 
3b; x(isched) = xold(isched) + 

3c : ready(isched) = ready(isched)+l; 
b( isched) *x(needed-index) ; 

endif 
enddo 

Figure 4: -4 Self-Executing loop 
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la: do i=l,nlocal 
lb : isched = schedule(i) 

IC: if (isched .eq. NEWPHASE) then 
Id : call global synchronization 

else 
2a : needed-index = ia(isched) 
2b : if (needed-index .ge. isched) then 
2c : x(isched) = xold(isched) + 

b (isched) *xold (needed-index) 
else 

2d : x(isched) = xold(isched) + 
b(isched)*x(needed,index) 

endif 
endif 

enddo 

Figure 5:  .\ Pre-scheduled Loop 
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ning of a given program. We refer to this program as simple. Thc data dependences 
between the clemcnts of .x arc deterniined by the values assigned during program exe- 
clition t,o t l iv  (lata striic.ture in. A wiliic of tlic outer loop indm i ,  I lias a depcndence 
oil another viil1ie of tlic oiitcr. loop intlcx i z  if tlic con1l)utatioli o f  .r( i l )  requires r ( i2 ) .  

111 thc: f i n t  version of our system, user programs will nccd sinipl(. annotations which 
will direct tlie compiler to invoke its run-time parallelization modules. This will ap- 
ply to complete parallel languages as well as language extensions which have explicit 
parallel sections. lye propose to provide language extensions using constructs such as 
doconsider and f orconsider, depending upon the language bc-ing extended. An an- 
notated user code corresponding to Figure 2 is shown in Figure 3. These constructs 
will be used in addition to the doall and doacross type loops already provided in such 
systems. Details of thew language extensions are currently being finalized. The me- 
chanical process by which the run-time modules are invoked is described in [12]. Briefly 
however, an annotation of the type forconsider will generate code that is able to sort 
the indices on a processor in order of increasing wavefront number (details of this sort- 
ing procedure are provided in Section 3.3). Next, an appropriate transformation will be 
invoked to produce an executor to actually run the code using the newly created index 
ordering. 

The cxaiii1)le code sliown in Figurc 2 lias been chosen for ease of  cqkmation of the 
transformations we will present shortly. In tlie system that we arc tlcsigning, realistic 
codes that tend to be much more complex in structure can and will be handled. 

To parallclize such loops, the method we use is as follows: M'c first partition the 
indices of the outer loop of Figure 2 into disjoint sets S,,  such that row substitutions in a 
set S, may be carried out independently. To obtain the sets S,, we perform a topological 
sort of the directed acyclic dependence graph G that describes the dependences between 
the outer loop indices. Stage X: of this sort is performed by placing into set S k  all indices 
of G not poiiited to by graph edges. Following this all edges that crnanated from the 
indices in  SA are Xernovc~l. The elcments of S k  are said to belong t o  wavefront b .  A 
single prograrii multiple data niethod of problem decomposition is used; the wavefront 
information is used to prepare a schedule of outer loop indices to be executed by each 
p1""SSor. 

The main loop in Figtiif' 4 comespoiids to  the int1ic.c-s assigiicd t o  tliis processor (line 
1). The key point in Figure 4 has t o  do with line 3a and the while loop which ensures 
that an index is never used until i t  has been computetl. Finally, thc array ready is used 
to maintain the status of all the iridic-es. In Figure 5 .  we depict thc code transformed 
into one t l ia t  uses barrier synchronization at the end of cach phase. Before this code 
is executed, i t  is assumed that a topological sort of the data dependences is performed 
and the end of a phase is marked by a special flag with the appropriate index on every 
processor. A check is made to see if the end of phase is reached and if so, a call is 
made to global synchronization. The rest of the code is self-ex1)lanatory. It should 
be noted here that we first partition the index set. Given this static partition each 
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doconsider i=l,n 
temp = f ( i )  
do j=l,m 

enddo 
y(i> = y(i)+ temp*y(g(i,j>> 

enddo 

Figure 6:  A nested loop 

processor is informed when it should perform work associated with each of its assigned 
indices. 

2.3 Efficient Calculation of the Topological Sort 

The schedule of outer loop indices for each processor can be obtained by global schedul- 
ing, assigning indices to processors in a way that evenly partitions the work in each 
wavefront. In each processor, indices are scheduled in order of increasing wavefront 
number. Alternately using local scheduling, one begins with a fixed assignment of in- 
dices to processors and uses the wavefront information to simply rearrange the local 
ordering of those indices to improve parallelism. 

The loops in the source code can be transformed to assign a wavefront number to 
each loop index. For instance, a loop of the form depicted in Figure 6 is converted to 
the transformed loop in Figure 7. Since the wavefront number for each index is one 
plus the maximum of the wavefront numbers of the indices on which it depends, one 
can simply sweep sequentially through the indices and calculate the wavefront for each 
index. Figure 7 depicts a version of the topological sorting procedure. This process 
produces an array maxwf y. as shown in Figure 7. Array maxwf y must then be sorted to 
produce an execution schedule for the processors. 

On the hIultimax/320, the sequential execution time required for both these opera- 
tions tends to  be slightly less than the cost of a single triangular solve using the same 
matrix. The topological sort can be parallelized to a degree by striping consecutive in- 
dices across the processors and by using busy waits to assure that variable values have 
been produced before being used. 

While local scheduling is almost completely parallelizable, it is not clear how one 
would efficiently parallelize global scheduling. The interprocessor coordination required 
for this rather fine grained computation appears to be prohibitive in the absence of a 
fetch and add primitive. 
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do i=l,n 
temp = f ( i )  
mywf = 0 
f o r  do j = l , m  

enddo 
mywf = max (maxwf y (g ( i  , j ) 1 , mywf 1 

maxwfy(i) = mywf; 
enddo 

Figure 7: Computation of Wavefronts 

We now provide a short stepwise description of the automated procedure which ta.kes 
as input a code of the type shown in Figure 6 and restructures it into a suitable parallel 
version. Steps 1 through 3 are performed at compile-time, while steps 4 and 5 are 
performed at run-time. 

1. The indices of the computation are logically distributed among the processors in 
some specified manner. 

2. A topological sort code is then generated by the compiler, during program ezecu- 
tion this code which determines the wavefront number of each index (Figure 7). 

3. The loop in Figure 6 is transformed into a self-executing or pre-scheduled ver- 
sion, with the optional insertion of the code that repartitions indices among the 
processors. 

4. At start of execution, the wavefront numbers are computed and the indices are 
sorted on the basis of these wavefronts. The indices may or may not be reparti- 
tioned. 

5 .  The actual computation is now performed by each processor on its assigned subset 
of indices, using one of tlie executors that have been generatccl, as in step 3. 

3 Related Work 

The execution of parallel tasks using self-scheduling has received considerable attention. 
Lusk and Overbeek [ 101 implement a self-scheduled mechanism to dynamically allocate 
work to processors. While this method has the advantage of simplicity, many of the 
more complex dynamic problems that w e  are interested in solving do not seem to be 
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easily formulated in this framework. Polychronopoulos and Kuck [ 161 are concerned 
with the efficicwt execution of doall type loops using run-time self sclicduling. While the 
efficacy of self-scheduling for certain classes of problems on sliarc~l iiiemory machines 
is demonstratc,(l in that paper, more complex problems which cimiiot be formulated in 
a doull setting are not studied. Tang and Yew[lS] describe it nic.c.lianism to exccntc 
multiple nestcd doall loops, using self-scheduling. It is shown that for certain types of 
problems, self-scheduling is more efficient than pre-scheduling using static assignment of 
loop iterations to processors. Krothapalli and Sadayappan[S] describe a method which is 
able to remove anti- and output-dependences, by performing an analysis of the reference 
pattern generated and using multiple copies of variables in order to simulate a single 
assignment language. Cytron[6] discusses the problem of how to schedule doacross loops 
with lexically backward dependences by introducing delays in appropriate places in the 
code to ensure correctness. A linear programming problem is formulated and solved in 
order to calculate the minimum delays. 

Loop restructuring has been used successfully to allow parallelizing compilers to 
improve parallelism and enhance performance in memory hierarchies [14], [15],[2],[7]. 
To our knowledge, there has been no work in the automatic detection of run-time 
parallelism along with tlie restructuring of such loops for efficient scheduling. 

Numericd methods for solving sparse triangular systems have however employed 
closely related schemes to reorder operations to increase available parallelism, [3],[18],[5],[8],[17]. 

As far as performance improvement is concerned, we show the efficacy of our tech- 
niques, From a programming language standpoint, we believe that user codes for parallel 
machines ought not to include the details of scheduling and mapping. This has several 
advantages; program port ability will certainly become more feasible and program devel- 
opment time will decrease. We believe that robust transformations which automatically 
restructure programs to exploit parallelism will aid in reducing the effort required to 
program parallel machines. 

4 
' .  

Description and Analysis of Model Problems 

4.1 Model Problems 

There are sevcml ways to generate the workload needed to test the various aspects of 
the system. 111 our experiments, these model problems come from two main sources, i.e., 
the solutions of sparse linear systems arising from a variety of partkl differential equa- 
tions using preconditioned Iirylov methods and from parameterized synthetic workload 
generators. \Ye examine in particular detail the solution of sparse triangular systems 
obtained through incomplete factorizations of matrices arising from discretizations of 
the partial differential equations in question on a variety of two and three dimensional 
meshes. X description of the problems solved are found in Appendix 1. The solution of 
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S1: do i=l,n 
y ( i )  = r h s ( i )  

s2 : do j = i j a ( i )  , i j a ( i + l ) - l  
y ( i >  = y ( i >  - a ( j > * y ( i j a ( j > >  

end do 
end do 

Figure 8 :  Triangular Solve 

these sparse triangular systems accounts for a large fraction of the sequential execution 
time of these linear solvers. The dependences encountered in solving these systems in- 
hibit the parallelization of the outer loop of row substitutions (S1 in Figure 8). Typically 
the number of non-zero elements in a row is too small to allow efficient parallelization 
of the inner loop (S2 in Figure S). 

We also present overall performance results for a commercial preconditioned Iirylov 
solver PCGPXK which was completely parallelized. Parallelization was carried out 
using either the pre-scheduled or self-executing constructs presented here. Details of 
how the parallelization was carried out are presented in Appendix 2, a much more 
detailed account of the PCGPAIi results is presented in [4]. 

For a more general source of matrices, we utilize a a simple workload generator 
which is able to incorporate the important parameters such as locality of communica- 
tions, volume of communication between nodes etc, in the generation of matrices. The 
synthetic worliload generator should have the following properties: 

0 The output of the generator should approximately be able to describe approxi- 
mately some of the real prohlems we encounter, implying that the workload is not 
complc t ely random. 

0 It should be easy to vary the input parameters of the workload generator to test 
certain canonical features of the sofware system. 

Clearly, having such a generator will provide faster turnaround time for performance 
testing arid because it will be easy to vary the parameters, the testing of the software 
modules will Le more robust. 

Most of the problems that we have been interested in solving have the following 
character t i s t i cs : 

0 The computation is defined over a reasonably large index set of values. 

0 There exists a phase structure implicit in the computation such that not a.11 indices 
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can be executed a t  the same instant because of certain data dcpc:iidences that, must 
be satisfied. 

0 Usually. iiidiccs intcwtct with other indiccs that arc claw by, wlicrc closeness is a 
frB;ttiirc- ( ) f  the ~)liysic*;d 1)rol)Iciii bchg solvcd. 

In the first implementation of the workload generator, we have made the following 
approximations: The input domain consists of a 2-dimensional mesh of points whose 
connections have yet to be established. Each point in the mesh is a unique index of 
the computation to be performed using that mesh. The points are numbered using 
their natural ordering. lye use two probability distributions to model the workload; one 
determines the total number of dependency links between an index and other indices in 
the domain, the other is used to determine the locality of the links to be forged. 

The number of indices that any given index needs to conimunicate its output with 
is given by c? Poisson density function, with parameter A. The Poisson approximation 
is reasonable because several physical phenomena can be modeled using this random 
variable. The density function for this random variable is defined as follows: 

Depending upon the value of A, tlie probability density can be varied to suit the 
problem at hand. Further, the Poisson density function is often used as an approxi- 
mation to the Binoniial density function, which is normally much more expensive to 
conipu te. 

It is known that many problems in nature have the property that spatial regions of 
the problem domain tend to interact more intensely with adjacent or close-by regions. 
-1 probability density function that possesses such a property is the geometric density 
function. A random variable X has a range 1, 2, ... and density function 

Pr[X = I ]  = (1 - p ) y ' ,  Vi 2 O 

The interpretation that we ascribe to this density function is as follows: If an index 
value k is to communicate with an index that is i distant from itself, the set of indices 
that are i units away (using the Manhattan metric) from index k is determined. One of 
these indices ( i f  any) is selected in order to make a connection with k .  This process of 
making connections is continued until all the links are exhausted for each index. Thus, 
we can generate a data-dependency matrix wing the mesh generated by the above 
procedure. 

In the following subsection, we prescwt tlie rcsiilts of experiments by which we de- 
termine the performance of the schedulers and executors under consideration. 

12 



Sorted List = (1,2,8,3,9,15,4,10,16,22,5,1 1 ,I 7,2329, 
6,12,18,24,30,7,13,19,25,31,14,20,26,32 
2 1,27,33,28,34,35) 

Figure 9: Assignment of Indices to IVavefronts 

4.2 

We will use a model problem to illustrate the performancc differciice bettvec~1 iisiitg 1 ~ -  
scheduing and self-execution. We will examine this by estimating the time t h  r 1v0111d 
be required to solve a lower triangular system gencratc>tl l>y the zero fill factorisatioi~ :)f 
the matrix arising from a rectangular mesh with a five point t,emplate. We will usc a 771 

by 71 domain and p 5 min(m,n) processors. We will cxplicitly take into ac.co11nt oldy  
floating point and synchronization related computations. In Scction 5 we tl(mionstratc> 
experimentally that these assumptions can he usctl t o  1)redict rniilt iprocessor tinlings 
rather accurately. 

Analysis of a Model Problem 

We assume that all computations required to solve tlie problem would I c’cli i i i  ‘\ t iiiic 

S on a single processor, and that computation of cadi point takes time Tp =- S / ( m v ) ;  
This ignores the relatively minor disparities caused by the matrix rows reprcscntcvl 1q 
points on the lower and the left boundary of the donlain. 

To understand the relative performance of the two synchroiiization mccliniii.;iiis on 
this problem, w e  need to make clear how the indices are mapped onto t lw  iiia(*liiiic’s 
processors. The global topological sort produces it list of  incliccs sortctl hy wivcfront,. 
The points in a wavefront arise from an anti-diagonal strip of the domain. For iiistanrc, 

I 

iq Figure 9, we depict a five by seven domain with tho points in cacli wavcf’ront, liiilictl I 

13 I 



Figure 10: Assignmerlt of Indices to Processors 

by an antidiagonal stripe. %’hen the points in the domain are natllrally orch’rc’cl the topological sort produces a list L that picks points on thc 9 nti-diagonal stril) going from 
t,he upper right point in the strip to the lower left poilit. This corrcsponds to arranging 

the p&ts in each wat.efroIlt in ordcr of increasing illC\C’S IlWI~\Jcr. 

The indices in L are assigned in a wrapped iii;\nncr, as del>ictcd for the c>salnple 
problem in Figure 10. When pre-scheduling is used. the computation is dividcd into 
phases separated by global synchronizations. 

\Ve now proceed to calculate AfC(j). During phase j ,  a total of  j st,riI>s must be 
computed when 1 5 j < min(?n, 72) .  Since the strips arc assigned in a ~ v r a ~ l ) c c l  manner, 
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When miii(in,n) 5 j 5 n + m - niin(rn,n), a total of niin(m, H )  strips milst be 
completed clliring phasc j .  Duc: t o  thc wrapped assignment of st,ril)s t o  processors, 

min( rn , n )  

P 
1. M C ( j )  = r 

Finally when 72 + m - min(rn, n )  < j 5 n + m - 1, a total of n + 17) - j strips must be 
computed during phase j so 

The computation time requ 

n+m-1 

MC(j  
n + m - j  

) = f  1-  

Tc = Tp 'E M C ( j )  
j = 1  

red to complete the problem is 

1)  
n+m-1 

P c 
j=m+n-min(m,n)+l 

, I  

By assumption, the scquential time to solve the problem is S = rnnT,. The estimated 
efficiency Eopt we could achieve in the absence of any source of inefficiency unrelated to 
load inibalaiicc would be & or 

min(m,n)-1 min( 777, n )  1 +  j 
mn( 1-1 + ( n  + m - 2min(m, 12)  + 

j=1 P P 

11-1 rn, + n7 - j n+m-1 
-i- 

I /  
P 

L I 
j=m+n-min(m,n)+l  

We can derive a siinplcr expression that approximates Eopt by estimating the total 
amount of time all processors spend idle due to load inibalance. Let 7?2 and ii be equal 
to the largest multiples of p that are smaller than 771 and n respectively. During any 
phase j 5 inin(&, 6 )  - 1 when j is not a multiple of p ,  there are p - j mod p processors 
idle. When j is a multiple of p ,  no processors are idle. Thus thc ciimulative processor 
idle time for j 5 min(iii, f t )  - 1 is: 
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Through similar reasoning, the sum of the processor idle time for tlic last min(&, i i )  - 1 
phases is the same. 

Between the first and last min(m, n )  - 1 phases if i n i n ( m , ~ z )  is equal to p ,  no time 
is wasted, otherwise the time lost per phase is 

L,, = Tp(p - min(m, n)modp)  

We can use the above considerations to estimate the cumulative time wasted by all 
processors, and use this estimate to calculate the following approximate expression 
which gives Evpt = 

mn 
nzn + min(&, i i ) ( p  - 1) + (m + n + 1 - 2min(&, i i ) ) ( ( p  - min(m, n) )  mod p )  (4) 

Much of the load imbalance we observe above can be corrected. The failure to 
balance is essentially an end-effect; e.g., the phase has p + 1 work units with equal 
computational demands, but only p processors are available. In [13] we rearrange the 
global synchronizations in a way that obtains a tradeoff between improved load balance 
and the costs of the global synchronizations. While that mechanism is shown to be 
advantageous for some problems, rearrangement of the global synchronizations does 
require an extra stage of preprocessing. 

Self-execution also eliminates these end effects. In the model problem we are pre- 
senting here, we can see that any given row substitution in a wavefront requires only two 
solution values from the previous wavefront. It is possible to to concurrently compute 
row substitutions in consecutive wavefronts provided that we observe dependences. This 
is taken care of naturally since the self-execution busy wait synchronization mechanism 
ensures that dependences are in fact observed. 

Figure 11 depicts the data dependences between row substitutions in the model 
problem. Assume that solution values are available for indices in list L through the 
index corresponding to wavefront 20, domain strip s. All indices in L up to the index 
corresponding to wavefront to + 1, domain strip s will have their dependences satisfied 
and can be concurrently calculated. 

II'e can c h i v e  an expression for Eopt for the self-executing case. Assuming again 
that the tiiiic required to compute the solutions is identical for all indices, only the first 
and last p - 1 wavefronts contribute to load imbalance. By arguments similar to those 
made for tlic pre-scheduling case, the cumulative processor idle time is p ( p  - 1). Eopt is 
thus given Gy 

n i  n 
( 5 )  

If Tsynch is the cost, of a single global synchronization, the time required to synchronize 
the pre-schctluled computation is Tsynch times the number of synchronization needed, 
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Figure 11: Data Dependences between Indices 

i .e. T q n c h ( n  + m - 1). The self-executing prograin cnsiires glohal syuchroiiization by 
incrementing elements of a shared array when variahles are calciilatd. As r l f w t . i l w d  
earlier, the shared array is checked to find out which variables haw 1wc11 s r ) J ~ ~ d  for 
at  any given time. The cost of incrementing the array elements is givcii l)y 'f;,,?nn, 
where T,,, is the cost of incrementing a single array clement. Since coinltiitiriq c*nch 
solution value is assumed to need two other soliition values, the cost, o f  c*liwliing tlie 
array elements is estimated by 2Tcheckmn, where T c h r c k  is the cost of chccLng i? slimed 
memory location. Note that we have accounted separately for idle time clue to load 
imbalance; we assume here that we only have to verify that a required soliition value is 
available. 

By modifying the above expressions for E,,, to include the syiiclironization over- 
heads, we derive an expression for the ratio betwccii the time reqiiired to solve thc 
model problem using pre-scheduling to that required for solving the problem usitig ~ l f -  
execution, In the expression below, Rsynch = Ts y n c h  , Rittc= e and Rcllec~.- 

7; 

For large n and m = p +  1, we expect to find that slightly under half of tlie processors 
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arc idle diio t o  load iinlmlancc. The above ratio in tlic liinit, of largc, nz becomes 

2p + R s y n c h  

( P  + 1)(1 + R i n c  + 2 R c h r c k )  

The above expression suggests that the self-executing prograni niight be expected to 
perform substantially better than the pre-scheduled program as long as it is relatively 
inexpensive to check and to increment shared memory. In practice, one often obta.ins 
triangular systems that have a relatively large number of phases with modest amounts 
of work to be performed in each phase, as we will see in Section 5 .  The limit derived 
above sheds some insight into these cases. 

For m = n the situation is quite different; as n increases we obta,in the ratio 

1 
(7) 

If the problem size increases in both dimensions, the relative contribution of the end 
effect load imbalances diminish. The amount of computation to be performed grows 
as mn while the number of global synchronizations needed grow as n + m - 1. In 
this case, pre-scheduling is preferable to self-execution. In shared memory machines 
with fast access to shared memory, there will be only a small difference between the 
pre-scheduled and self-executing times. 

Many problems of practical interest are somewhat less sparse than the model prob- 
lem analyzed here. When such a problem is to be solved using many processors, we 
may expect dramatic performance differences between pre-scheduled and self-executing 
programs. To illustrate this, we present the rather extreme (from our point of view) 
example of solving a n by 72 dense triangular matrix having unit diagonals using n - 1 
processors. Xssume Tsazpy is the time required for a floating point multiply and add. The 
computation time required to solve this system using self-execution is Tsazpy(n - 1). No 
parallelism a t  all is obtained when one attempts to solve such a syst,em when row sub- 
stitutions arc separated by global synchronizations; each row substitution forms its own 
wavefront. The sequential computation time and the pre-scheduled computation time 
are both T s a r I ’ y w .  Calculated only on the basis of load balance, the self-executing 
efficiency E,,,t is while the pre-scheduled Eopt is - 1  z. 

( -1) 

5 Experimental Results 

5.1 Multiprocessor Timings 

The experixiicntal results in this section are organized in the following manner: We 
describe the performance of PCGPAK using the self-executing and pre-scheduled ex- 
ecutors. Next, we perforni a detailed analysis of the various timing losses that occur in 
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Table 1: Self-Execution vs Pre-Scheduling for PCGPAK 16 Processors of the Encore 
Multimax 

the code. This detailed analysis does not use PCGPAK, instead we use a separate set 
of programs written to study the issues we are investigating. The pre-scheduled execu- 
tor’s performance is compared using local and global sorting of the indices based upon 
their wavefronts. Because we see that the performance of the pre-scheduled executor 
is almost always worse than that of the self-executing version, we restrict some of our 
later studies to the self-execution system. 

In the case of the synthetic workload, a matrix represented as 65-4-3 implies the 
discretization of a 65*65 mesh where the average number of edges leaving a mesh point 
equals 4, with a Poisson distribution, and the avera.ge distance between connections 
being 3, with a geometric distribution. 

5.1.1 Pre-scheduled vs. self-execution 

Two versions of parallel PCGPAK, a Krylov space solver [4], were prodticed. In tlic 
first version. t lie triangular solves and the numeric factorization were implemented using 
self-scheduling; in the second the triangular solves and numeric factorization were pre- 
scheduled. In both cases, the index set of the outer loop of the appropriate procedure was 
partitioned in a wrapped manner. The timings were clone on an Encore Multimax/320 
with 13 megahertz APC/02 boards and version 2.1 of the FORTRAN compiler. 

In Table 1 we present time required to solve the test problems for the pre-scheduled 
and self-executing versions of PCGPAK, along with the parallel efficiencies achieved. 
Parallel efficiency is defined as the ratio between the time required to solve a problem 
by an optimized sequential version of PCGPAK and the product of the time required on 
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the same problem by the multiprocessor code multiplied by the number of processors. 
The self-executing version of the program yields the highest efficiencies and the lowest 
times for all test problems except the small and large problems using the seven point 
operator (7-PT and L7-PT). For many of the problems, the timing differences in favor 
of the self-executing version of the code are quite substantial. In the SPE problems 1,2 
and 4 the self-executing version PCGPAK completes in less than 70 percent of the time 
required by the pre-scheduled version. 

Overheads in the self-executing version of the program arise from the need to check 
and update the shared array which indicates whether needed solution variables or pivot 
rows have been computed. In the pre-scheduled version of the program, overheads arise 
from the cost of global synchronizations. Overheads aside, it is possible to show that 
the parallelism available from the self-executing version of the program is always better 
than in the pre-scheduled version. Measured efficiencies for all prnblems except 7-PT 
and LT-PT favor the self-executing version of the program. 

In section 5.1.2, we will explain the differing relative performance between the 
pre-scheduled and self-executing versions of PCGPAK. This will be done by showing 
that for the test problems, we can account in a quantitative manner for the timing 
differences between pre-scheduled and self-executing versions of the triangular solves. 
We also present in Table 1, the times required to perform the topological sort for each 
of the test problems. In each of these test problems, the time required to  perform the 
topological sort required for global index scheduling was quite small, compared to the 
total execution time. Since the scheduling had only to be performed once and was 
amortized over a substantial number of iterations, even the relatively expensive global 
scheduling did not represent a troublesome overhead. The cost of performing both global 
and local scheduling will be examined in much more detail in the following sections. 

5.1.2 Where Does the Time Go 

We performed an operation-count based analysis of the parallelism that could be ob- 
tained given a particular assignment of indices to processors. The analysis made the 
assumption that the load balance could be characterized solely by the distribution and 
scheduling of the floating point operations. The efficiency estimated 011 this basis will be 
called the sy7r~bolically estimated e f i c i ency .  In tables 2 and 3 respectively, are depicted 
symbolically cs timated cfficicncies for self-executing and pre-scheduled triangular solves. 
The estimatcts presented are for some of the previously discussed test problems on 16 
processors. The parallelisrn we anticipate obtaining through the iise of self-executing 
code is better, frequently by a wide margin. 

The efficiencies predicted by operation count based analysis are substantially higher 
than those w e  saw in Section 5.1.1. This is not surprising since the symbolically esti- 
mated efficiencies do not take into account a number of important sources of overhead. 
We will denionstrate that we can account for these overhead sources in a systematic 



way and IIW t licso o v ~ ~ I I i ~ ~ ~ i t 1  valiics t o  acciirately pr(dict tlw ~i l~~ l t i~ )~o( . c s so r  timings in 
both self-exwiting and l)rc-schcduled versions of a staiitlalone program for paralleling 
a sparse lowc~ triangular solve. 

In Table 3 and 3 we have the actual multiprocessor timings on 16 processors for 
lower triangular solves arising from the incompletely factored test problem matrices. 
An optimized sequential version of the program was also timed for each of the lower 
triangular systems. We depict sequential times divided by the product of the number 
of processors used and the symbolically estimated efficiencies (timings are denoted by 
1 PE seq. in tables 2 and 3). 

The estimates of multiprocessor times obtained in the estimate above are quite 
optimistic. To take into account the extra operations that had to be executed by 
the parallel version of the program, we timed the multiprocessor program on a single 
processor. Tables 2 and 3 show the single processor parallel code timing divided by the 
product of the number of processors used and the symbolically estimated efficiencies (1 
P E  Par.). In performing this calculation, we tacitly assume that load balance effects 
of the distribution of work in the multiprocessor program can still be estimated by 
taking into account only the distribution ofg loatinripoint calculations. In effect, we are 
assuming that the effect of the extra operations required in the multiprocessor program 
could be explained by simply adding a fixed overhead to each floating point operation. 

Contention for resources such as shared memory and bus access can cause ineffi- 
ciencies that are not accounted for by the above estimates. We ran a version of the 
multiprocessor code designed to simulate the memory and communications access pat- 
terns of the actual program. This version of the code is designed to have a perfect load 
balance. When executed on P processors, this program executes the schedules a total 
of P times. Each processor ends up esecuting the schedules assigned to all processors so 
that each processor ends up computing the work associated with all of the indices in the 
problem. The time required for this program to complete is called the rotating processor 
time because each processor takes on the work assigned to each other processor with 
control being shifted in a rotating fashion. 

No synchronization takes place in this version of the codes. The shared array reads 
and writes uscd in the busy wait coordination in the self-executing code still take place 
but the program is modified so that no waiting actually has to occur. In the pre- 
scheduled vcrsion of the program, global synchronizations are not employed. In the 
absence of r(h5ource contention. WP ~voultl espect that the time required for the above 
computation would lie vcxy close to  t l i r>  tiiric spent runniiig the parallel version of the 
codes on a single processor. 

In the self-executing case. the time estimate o lh ined  from dividing the rotating pro- 
cessor time Ly the product of the number of processors and the symbolically estimated 
efficiency gives a very close estimate of the actually observed multiprocessor time ( R o -  
tating Estimate). For the pe-scheduled case, we must include the time required for the 
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global synchronizations to obtain an accurate prediction of the act iial multiprocessor 
time (Rotating Estimate + Barrier). When this is done, we get a v ~ r y  good estimate 
of the pre-scheduled multiprocessor timings. In using the syiiilmlically estimated effi- 
ciencies, we again make the tacit assumption that the extra overhead (except the global 
synchronizations) could be explained by adding a fixed overhead to all floating point 
operations. Note that while more sophisticated models of overhead are certainly possi- 
ble and may be desirable in some cases; we find here that these simple techniques and 
assumptions adequately explain the timings we observe. 

The sources of the timing differences between pre-scheduled ant1 self-executing pro- 
grams beconies more apparent in comparing tables 2 and 3. For the 5-PT and SPEZ test 
problems, the difference in the load balance obtainable through the use of pre-scheduled 
and self-executing codes is large enough that the 1 PE Seq time for the pre-scheduled 
code is greater than the Parallel Time for the self-executing program. Even if we had 
a hypothetical pre-scheduled code with no overheads except for load imbalance, that 
code would still be less efficient than the self-executing program. Recall that the pre- 
scheduled program uses global synchronizations in between each phase but does not 
need to write into a shared array to keep track of which variables have been calculated. 
In a reasonably large problem such as 7-PT where there are relatively few global syn- 
chronizations, the overhead required for pre-scheduling is relatively small. Since little 
loss due to load imbalance is seen for 7-PT, we are able to see that pre-scheduling gives 
a slightly faster timing. 

In Table 2 we depict the time required for a doacross loop to execute each tri- 
angular solve. We see that the doacross loop is consistently less efficient than either 
the preschetluled or self-csecuting loops. For example in the SPE5 problem, the self- 
executing solve requires 23.4 milliseconds, the prescheduled solve (in Table 3) required 
29.0 milliseconds and the doacross version of the solve took 45.0 milliseconds. 

Recall that the self-executing loop is a doacross loop with a reordered index set. 
\Ye expect that the doacross loop will exhibit less concurrency than the self-executing 
loop. ~Siiice the doacross loop does not have to perform array references to access the 
reordered iiidex set, we expect that the doacross will also be accompanied by smaller 
overheads. The results of measurements not presented here confirm that while the 
concurrency obtained from doacross loops was quite limited, doacross loop execution 
was accompanied by less overhead. On the hfultimax/320 measurments indicate that 
accessing t h  reordered index set is relatively expensive and hence the performance 
differences lwtween thc doacross loops and the reordcrcd loops is attenuated to some 
degree. 

5.1.3 Ti iiii 11 g Pro j e c t io 11s 

Since we can accurately account for the execution time in the Encore Multimax/320, it 
is reasonable to make some timing projections. These projections make the assumption 
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Table 3: Parallel Time and Estimates for Self-Executing Triaiigular Solves 

Test 
Problem 

SPE2 
SPE5 
5-PT 
9-PT 
7-PT 

Phases Symbolic Parallel Rotating Rotating 1 P E  1 PE 
Efficiency Time Estimate Estimate Parallel Seq. 

+ Barrier 
60 0.52 32.7 32.8 30.0 26.6 25.6 
66 0.70 29.0 29.5 26.4 22.6 20.8 
124 0.61 31.1 31.0 25.2 20.2 1s.s 
31 1 0.78 80.3 83.9 63.5 56.7 53.9 
58 0.94 56.2 56.3 53.7 44.0 39.8 

that the costs of synchronization, the costs from the extra operations required to run 
the parallel versions of the codes and the costs due to contention do not change with the 
number of processors. If the load balance were perfect, the Best efficiencies in Table 4 
would Le oLt ained. 

The estimate of non load balance related loss (Best in table 4)  obtained from timings 
on 16 processors is clearly not valid for larger machines if we simply add more processors 
to the current machine. The estimate is reasonable if we assume that, the capabilities of 
the shared resources such as interprocessor communication are engineered to scale with 
the size of tlie machine. 

It is clcnrly easier to itssure performance characteristics that scale with the number 
of processors if one designs machines with distributed memory or a hierarchical shared 
memory. U'e are currently extending such projections to those types of machines, that 
work is beyolid the scope of this paper but some discussion of that issue can be found 
in [12]. 

In Table 4, we present efficiencies for 16 processors and projected efficiencies for 32 
and 64 processors. The projected performance of the pre-schedulcd programs deteri- 
orates much inore rapidly as one increases the number of processors. This difference 
is driven by the increasing disparity between symbolically estimated efficiencies in the 
two scheduling methods. The differences seen in the Best efficiencies in Table 4 reflect 
the varying relative costs of global synchronizations and array writes in problems with 



Test Best 16 Processors 

different structures, this issue was discussed in Section 5.1.2. 

32 Processors 64 Processors 

5.1.4 Effects of Local Reordering 

Problem S.E. I P.S. 

In Figure 12, we demonstrate the crucial role played by the synchronization mechanism 
in determining performance, when indices are not repartitioned after a topological sort. 
We compare the estimated efficiency of the same partition and schedule using global 
synchronization and self-executing synchronization in a matrix generated by a 65 by 
65 point mesh using a 5 point stencil. Indices were assigned to processors in a striped 
manner, i.e. for P processors index i was assigned to processor i modulo P. The 
schedule \vas produced by performing a topological sort and scheduling indices in each 
phase in ordcr of increasing index number. We can see that the results obtained through 
the use of glolml synchronization vary wildly with the number of processors used. This 
is understandable when we realize that the poor performance arises from the poor 
distribution of indices among processors in any given phase. All work assigned to a phase 
must be completed before any work corresponding to the next phase can commence. 
Often, many. if not all tlie indices in a phase get assigned to a single processor, resulting 
in sequential vsecution for that phase. lye saw this effect to a significant degree in all 
of the prohleiiis we exanlined although we carefully selected the 65 by 65 point mesh as 
the source of the dramatic performance fluctuations are particularly evident from the 
structurc of tlie problem. 

In Figurci 13, we also depict tlie perforniaiice obtained on tlie iiiodel problem when 
self-executing synchronization is employed. In a great niaiiy cases, data from all indices 
in a given wavefront are not actually required by each index in the nest wavefront. When 
self-executing synchronization is employed, a pipeline sort of cffec t may be generated 
and we see siibstantial performance benefits. Pre-scheduling on the other hand, appears 
to be much less robust. 

S.E. 1 P.S. S.E. I P.S. S.E. I P.S. I 
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5.1.5 Local V.S. Global Index Set Scheduling 

We performed a set of experiments to examine the performance tradeoffs between local 
and global index set scheduling defined in sections 1. We used only the self-executing 
loop structurcs in the expmiments in this section. Recall tliat wlicii global indm set 
scheduling is used, the index set is sorted in increasing wavefront order. The index set 
is then partitioned between processors in a striped manner. For the local sorting method 
is used, the initial partition of indices is maintained, but their ordering is changed based 
upon wavefront numbers. In Table 5 we present the sequential time required to solve 
each test problem, the times required to perform a sequential and a parallel version of 
the sort and the time required to rearrange indices globally. All times in this table are in 
milliseconds. We also depict the time required to perform local indcs set scheduling as 
well as the 1 G  processor hlultimax/320 timings obtained using these schedules. The time 
required to perform the sequential scheduling is slightly lower than the time needed for 
performing a sequential iteration. For example, in the case of SPES, the time required 
to perform the sequential sort plus the triangular solve adds up to 220 ms, while a 
completely sequential execution takes 240 ms. Because we pay for the sorting only 
once, subsequent iterations of the code will show a great advantage for the parallel 
code (30 ms vs. 240 ins on 16 processors). The time required to produce a parallelized 
global schedule ranged from 17 percent to 61 percent of the time needed for a sequential 
it eration. 

From Table 5, we can see that local index set scheduling overhead does turn out to be 
much less than global index set scheduling overhead, as is to be expected. However, as 
far as run times were concerned, local and global scheduling each yielded better results 
than the other for some test problems. For example, in the case of SPE2, global run 
time was 21.3 ms and local was 29.6 ms and for SPES, global gave a run time of 25.1 
while local was 22.3 ms. 

Conclusions and Future Work 

There is a liicrarchy of problems with different levels of scheduling complexity that are of 
interest to researchers in the field of parallel programming. When tlie data dependences 
of the probhii  are known at compile- time, task tleconiposition can automatically be 
perforriled 1):- the conipilcr. However. there are problems where workloads cannot be 
fully charact c.rized during compilation clue to data dependences tlia t liecome manifest 
at run-tinic.. 111 [12], we presented our initial results froni applying thcse ideas to pre- 
schedulable problems. 111 this paper, we have extended tlie class of problems that can be 
effectively compiled by parallelizing compilers. We presented the doconsider construct 
which would allow these compilers to effectively parallelize such problems. 

In this paper, we havc: reached the conclusion that for the types of workloads we have 
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investigated, self-execution almost always performs better than pre-scheduling. Further, 
the improvement in performance that accrues as a result of global topological sorting of 
indices as opposed to the less expensive local sorting, is not very significant in the case 
of self-execution. Thus, we are left with a 2-dimensional solution space, as depicted in 
Figure 1, which pictorially summarizes the findings reported in this paper. As regards 
program transformations are concerned, we have shown how simple annotations might 
be included in parallel languages in order to aid the compiler to create the appropriate 
scheduler and executor, given a shared memory architecture. 
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stat for helpful discussions and Scientific Computing Associates for use of PCGPAK 
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1. Appendix1 

1.1. Precondi t ioned  Krylov Methods Dackgronnd 
W e  briefly present the baaics of Krylov methods such ae are foilid in PCGPAK. 
Consider a large, sparse, system of linear equations of the form 

Mz=b (1.1) 
where M is a real matrix of order N, 
computed. 

Krylov space 2 0  + Ki where 

6 is a given vector of length N and t is unknown vect.or to be 

Given an initial guess 20, Krylov methods generate an approximate solution ti from the t,ranslated 

ICi c span(r0, MrO, ..., ~ ' - ' r o ]  

ti is usually chosen to minimize some norm of its residual b - A.f zi. 
The basic tasks involved in Krylov methods are sparse matrix-vector multiplies with matrix h.1, atlditions 

of scalar multiples of vectors to other vectors (SAXPYs), and vector inner-products. The latter arc rlsed in 
determining the linear combination of Krylov vectors to add to the initial guess so as to millinlize t Ile norm 
of the residual. 

Preconditioned Krylov methods consist of using an auxiliary matrix Q = QtQr to first gei1crrt.t.e tlte 
preconditioned system 

(cZ; 'MQ,' )Q,z  = Q ; ' b  

. The matrix Q is chosen to be an approximation to M for which it is easy to  c0mput.e Qr 'u  and Q; 'u  for 
a vector u. 

Approximate LU factorization preconditioners have been found to have very favorable convergence 
properties. Here we take Q to be LU where L is lower triangular and U is upper triangular. We form L and 
CJ by a process of incomplete factorization in which M is approximately factored in a way that allows only 
limited fill to occur. 

The  preconditioned matrix-vector multiply in the resulting Krylov method consist,s of doing a forward 
and backward sparse triangular solves using L and V as well as the sparse matrix multiplies by A4. 'I'lie cost 
of performing this incomplete factorization and the costs of s o l v i q  t.lw resulting triangular systems knds  
to be much smaller than the costs associated with an exact factorization because of the enforced sparsity of 
the matrices involved. 

The  computation in PCGPAK is carried out by (1) perfornhig a syinholic inconlp1et.e factorization to 
determine the sparsity structure of L and C J ,  (2) numeric calculation of the incomplete factorizat.ion rlsing the 
previously calculated sparsity structures and (3) matrix vector multiplies, SAXPYs, vector inner products 
and sparse triangular solves. 

1.2. The Test Problems 
We now present the eight test problems used in our experiments. 

Problem 1 
(SPEl) 

Problem 2 
( S P E 2 )  

Problem 3 
( S P E 3 )  

Problem 4 
(SPE4) 

This problem models the pressure equation in a seqiirtitial black oil sirrtrrlation. 'lhr grid is 
10 x 10 x 10 with one unknown per gridpoint for a tot.al af 1000 unknowns. 

This problem arises from the thermal simulation of a steam injection process. Thr grid is 
6 x 6 x 5 with 6 unknowns per grid point giving 1080 unknowns. The matrix is a block seven 
point operator with 6 x 6 blocks. 

This problem comes from an IhiPES simulation of a hlack oil model. The matrix is a seven 
point operator on a 35 x 11 x 13 grid yielding 5005 eqaations. 

This problem also comes from an IhlPES simulation of a black oil nlodel. The nintrix is a 
seven point operator on a 16 x 23 x 3 grid giving 1104 equations. 
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Problem 5 
(SPE5) 

This problem arises from a fully-implicit, simultaneous solution simulation of a black oil 
model. I t  is a block seven point operator on a 16 x 23 x 3 grid with 3 x 3 blocks yielding 3312 
equations. 

Problem 6 
(5-Pt) unit square: 

This problem is a five point central difference discretization of the following equation on the 

Problem 7 
(9-Pt) 

Problem 8 
(7-Pt) 

a a a 1 
u) - -(ezY-u) + 2(+ + y ) ( s u  + % + @ +  l + x + y  1. = f 

ay  

- - a (e- - a 
8 X  ax ay ay 

with Dirichlet boundary conditions and f chosen 80 that the exact solution is 

u = x ezY sin( AX) sin( ~ y )  

The discretization grid is 63 x 63 giving 3969 unknowns. The L b p t  problem is the same 
problem with a 200 x 200 grid. 

This problem is a nine point box scheme discretization for the following equation on the unit 
sauare: 

a2 a 2  a a - -u + -u) +2-u+ 2-u = f 
(ax2 8y2 8 X  8Y 

with Dirichlet boundary conditions and f chosen 80 that  the exact solution is 

u = x ezY sin( rx) sin( xy). 

The discretization grid is 63 x 63 giving 3969 equations. The L9-pt problem is the same 
problem with a 127 x 127 grid. 

This problem is a seven point central difference discretization of the following equation on the 
unit cube: 

a a a a a a a 1 
--(ety-u) 8~ 82 - -(eZy-u) ay ay - -(esY-u) 8% a z  + 80(x + y + z)-u ax + (40 + l + + + y + z  )u = f 

with Dirichlet boundary conditions and f chosen so that the exact solution is 

u = (1 - z)(l-  y)(l - z ) ( l  - e-=)( l  - e-l)(1 - e-'). 

The discretization grid is 20 x 20 x 20 yielding 8000 equations. The L7-pt problem is the same 
problem with a 30 x 30 x 30 grid. 

2. Appendix 11: Parallel Implementations of the Basic Krylov Method 

2.1. SAXPY operations, Vector inner-products, and Sparse matrix-vector 
The easily parallelizable procedures in the preconditioned Krylov methods implemented here are the 

SAXPY operations, the vector inner products and the sparse matrix-vector products. For p processors and 
a linear system of order n,  the indices from 1 to n are divided into p contiguous groups of roughly equal size. 
The it" group is assigned to the it" processor. 

2.2. Parallel Triangular Solves and Sparse Numeric Factorizations 

2.2.1. Triangular Solves 
The triangular solve and the sparse numeric factorization can often be efficiently parallelized once the 

matrix dependent data dependencies are known. Refer to Figure 8 for a description of the triangular solve 
code. 
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2.2.2. Sparse Factorizations 
In a straightforward sequential version of garissian elimination withorrt pivotitig, consecutive pi fro /  rows 

i are used to eliminat,e any non-zeros in colilmn i of all rows i + 1 to N. All non-zeros t,n the left. of row i ’ s  
diagonal are eliminated before a i becomes a pivot row. When all lion-zeros to the left of i ’s  diagorial are 
eliminated, we say that row t has been stabilircd. 

The elimination process tends to introduce new non-zeros or f i l l  into the t’actored matrix. A n  approxi- 
mate factorization can be carried out by selectively siipFressinp, the crcation of many of the non-zeros creat.ed 
during the factorization process. The suppression is pdormrrl on IIrc hasis of determining how zndi trr t  t.lie 
fill WM. For instance, all fill created by eliminations using tlie tirst matrix row as a pivot row arise (Jirectly 
from non-zeroe present in the original matrix. On the other hand, when row 2 is stabilized, noli zeros in 
that row may arise directly from a non-zero present in the original matrix o r  may arise as a result. from 
fill from row 1. There are a variety of methods used to  quantify the indirectness of fill; only fill t,lia.t is 
sufficiently direct is retained and is capable of generating further fill. The specifics of the algorithm used 
here to determine which elements are to be retained. 

During the course of the computation, each row t undergoes a number of transformations as noii-zero 
elements in consecutive columns j < i are eliminated by stabilized pivot rows j. When all noti zeros in  
columns j < i have been eliminated, row i itself is stabilized and may be used as a pivot row in other 
eliminations. 

The incomplete factorization procedure consists of a symbclic and a numeric factorization. The symholic 
factorization calculates the non-zero structure of the factored matrix, and the numeric factorization coiiiputes 
the numeric values for the incompletely factored matrix. 

The numeric factorization is parallelized in a way that is analogous to the triangular solve. Elimination 
in each row i requires the use of a sequence of stabilized pivot rows identified as before by the sparsp data 
structure i ja. (figure 13). In parallelizing the numeric factorization, a topological sort of the dependen- 
cies pertaining to the outer loop indices is performed. As was showii explicitly for the triangular solve, 
preacheduled and self-executing versions of the numeric factorization algoritliin can be formulated. 

S 1  d o i = l , n  

do j=ija( i),ija( i+ 1)-1 

Use pivot row ija(j) to perform elimination on row i 

end  do 

end do 

Figure 13 : Schematic Sparse Factorizatioii 

2.3. Sparse Symbolic Factorizations 
Because the pattern of fill is not known, the data dependencies in symbolic factorization cannot be 

analyzed before the algorithm executes. In our implementation of the algorithm, we distribute the rows of 
the matrix over processors in a wrapped manner and execute in a self-scheduled fashion. 

Since we are dealing with incomplete factorization of sparse matrices, the fill pattern will be sparsc. 
The columns of row i that are filled in at any given stage of the algorithm are kept sorted in increasing order 
in a linked list. Operations on row i with pivot row j require that the list of non-zeros pertaiiiiiig tc, row 
t be merged with the list of non-zeros pertaining to pivot row j. Note that because this is an iriroinplete 
factorization, some of the non-zero elements in the newly created merged list are omitted. 
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