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Abstract

This manual is a “quick start” guide to help new users get familiar with EGSnrc. A number
of complete tutorials are presented along with general guidance intended both for new users
and for those looking to update their EGSnrc skills. It is suggested that the reader follows
the document from top to bottom, as concepts are introduced gradually and through applied
examples. The expected outcome is to provide the reader with some practical skills, along
with a broader understanding of the capabilities of EGSnrc and the included tools. However,
the information provided here is not complete: it will be necessary to refer to the relevant
manuals for full technical descriptions.
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Getting Started with EGSnrc

1 What is EGSnrc?

EGSnrc is a software toolkit used to perform Monte Carlo simulation of ionizing radiation
transport through matter. It models the propagation of photons, electrons and positrons
with kinetic energies between 1 keV and 10 GeV, in homogeneous materials. EGSnrc is
an extended and improved version of the Electron Gamma Shower (EGS) software package
originally developed at the Stanford Linear Accelerator Center (SLAC) in the 1970s. Most
notably, it incorporates significant refinements in charged particle transport, better low en-
ergy cross sections, and the egs++ class library to model elaborate geometries and particle
sources.

EGSnrc is distributed with a wide range of applications (previously referred to as “user
codes”) that utilize the radiation transport physics to calculate specific quantities. These
codes have been developed by numerous authors over the lifetime of EGSnrc to support the
large user community. For a brief description of each application, see section 3.

2 Installation

For the most up-to-date installation instructions, see the wiki section of the EGSnrc github
page:

https://github.com/nrc-cnrc/EGSnrc/wiki/Installation-overview

If you have any issues with the installation process, the EGSnrc reddit community is a good
place to seek support:

https://www.reddit.com/r/EGSnrc/

https://github.com/nrc-cnrc/EGSnrc/wiki/Installation-overview
https://www.reddit.com/r/EGSnrc/
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3 EGSnrc overview: the applications

• EGSnrc is a collection of generic routines that simulate the transport and interactions
of photons, electrons and positrons in matter.

• The majority of users do not write their own applications - the codes distributed with
EGSnrc are useful for a wide range of calculations.

• Users can write their own applications that take advantage of the EGSnrc system,
or toolkit, by writing a program which specifies their particular problem in the MAIN

program and communicates with EGSnrc through the user-supplied routines AUSGAB,
HOWFAR and HOWNEAR and the EGSnrc routines HATCH and SHOWER.

• In principle, applications can be written in any programming language as long as it
can interface with the Fortran EGSnrc code-base.

• Most commonly, applications are written in MORTRAN3 (native EGSnrc language) or
C++, although they could also be written in FORTRAN or C.

EGSnrc source code: $HEN_HOUSE/src/egsnrc.mortran

EGSnrc global variables: $HEN_HOUSE/src/egsnrc.macros

GUI: ~/EGSnrc/HEN_HOUSE/gui/egs_gui



3.1 BEAMnrc Getting Started with EGSnrc

3.1 BEAMnrc

• Ideal for linear accelerator modelling and x-ray systems

• Includes geometries (called component modules) that can easily represent flattening
filters, collimators, MLCs, etc.

• Accelerators can be compiled as shared libraries to be used as a particle source for
other applications

• Includes time-synchronized capabilities (e.g. dynamic jaws and MLCs)

• Written in MORTRAN3

Documentation: PIRS-509a

Source code: $HEN_HOUSE/omega/beamnrc

Global variables: $HEN_HOUSE/omega/beamnrc/beamnrc_user_macros.mortran

GUI (launch with wish): $HEN_HOUSE/omega/progs/gui/beamnrc/beamnrc_gui.tcl

3.2 DOSXYZnrc

• Performs dose calculations in voxelized phantoms

• Includes a variety of source models (e.g. a BEAMnrc shared library)

• Includes time-synchronized capabilities

• Written in MORTRAN3

Documentation: PIRS-794

Source code: $HEN_HOUSE/user_codes/dosxyznrc

Global variables: $HEN_HOUSE/user_codes/dosxyznrc/dosxyznrc_user_macros.mortran

GUI (launch with wish): $HEN_HOUSE/omega/progs/gui/dosxyznrc/dosxyznrc_gui.tcl

3.1 BEAMnrc

http://nrc-cnrc.github.io/EGSnrc/doc/pirs509a-beamnrc.pdf
http://nrc-cnrc.github.io/EGSnrc/doc/pirs794-dosxyznrc.pdf
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3.3 The RZ applications (cylindrical symmetry)

These applications are based on cylindrically symmetric geometries and are written in
MORTRAN3. There is a dedicated GUI to compile these applications and write / edit input
files.

Documentation: PIRS-702

GUI documentation: PIRS-801

Source code: $HEN_HOUSE/user_codes

GUI: $HEN_HOUSE/gui/egs_inprz

3.3.1 DOSRZnrc

• Dose and kerma calculations

3.3.2 CAVRZnrc

• Calculates ionization chamber correction factors and relevant quantities

3.3.3 FLURZnrc

• Particle fluence calculations

3.3.4 SPRRZnrc

• Calculates Spencer-Attix spectrum averaged stopping-power ratios for arbitrary media

3.3 The RZ applications (cylindrical symmetry)

http://nrc-cnrc.github.io/EGSnrc/doc/pirs702-egsnrc-codes.pdf
http://nrc-cnrc.github.io/EGSnrc/doc/pirs801-egsinprz.pdf
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3.4 The SPH applications (spherical symmetry)

These applications are based on spherically symmetric geometries and are written in the
fortran preprocessor language MORTRAN3.

Documentation: PIRS-702

Source code: $HEN_HOUSE/user_codes

3.4.1 CAVSPHnrc

• Identical to CAVRZnrc but for spherical geometries

3.4.2 EDKnrc

• Calculates energy deposition kernels for photons or electrons forced to interact at the
centre of a spherical phantom

• Also calculates dose distributions in the entire phantom or the dose to specific regions
defined as the cavity of a spherical ion chamber

3.4 The SPH applications (spherical symmetry)

http://nrc-cnrc.github.io/EGSnrc/doc/pirs702-egsnrc-codes.pdf
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3.5 g

• Calculates the energy fraction lost to radiation when electrons slow down (if the inci-
dent beam is photons), or the radiative yield (if the incident beam is electrons)

• Calculates quantities such as mu tr, mu en and g-bar (the average fraction of energy
lost to radiation needed for the calculation of mu en)

• Written in MORTRAN3

Source code: $HEN_HOUSE/user_codes/g

3.6 egs chamber

• Calculates dose and energy deposited in regions/media

• Optimized for ionization chamber calculations

• Many relevant variance reduction techniques

• Written in c++ (egs++ application)

Documentation: PIRS-898/egs chamber

Source code: $HEN_HOUSE/user_codes/egs_chamber

3.7 egs cbct

• Main goal is the fast estimation of the scatter contribution to an ideal detector in a
cone-beam CT (CBCT) setup by means of sophisticated variance reduction techniques
and a smoothing algorithm

• Can also be used for estimating the total signal to the detector and its individual
components: transmitted and scattered

• Initially designed for the purpose of simulating a CBCT setup, but can be equally used
for modelling conventional CT scanner setups

• Written in c++ (egs++ application)

Documentation: PIRS-898/egs cbct

Source code: $HEN_HOUSE/user_codes/egs_cbct

3.5 g

http://nrc-cnrc.github.io/EGSnrc/doc/pirs898/egs_chamber.html
http://nrc-cnrc.github.io/EGSnrc/doc/pirs898/egs_cbct.html
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3.8 egs fac

• Designed for the purpose of calculating free air chamber (FAC) correction factors

• Written in c++ (egs++ application)

Documentation: PIRS-898/egs fac

Source code: $HEN_HOUSE/user_codes/egs_fac

3.9 cavity

• Calculates dose in ionization chamber and correction factors

• The predecessor of egs chamber and egs fac

• Written in c++ (egs++ application)

Documentation: PIRS-898/cavity

Source code: $HEN_HOUSE/user_codes/cavity

3.10 Tutorials (the tutor codes)

• Many tutorial applications are distributed, written both in MORTRAN3 and c++

• The codes are heavily documented and intended to teach the user how to write EGSnrc
applications

Source code: $HEN_HOUSE/user_codes

3.8 egs fac

http://nrc-cnrc.github.io/EGSnrc/doc/pirs898/egs_fac.html
http://nrc-cnrc.github.io/EGSnrc/doc/pirs898/cavity.html


4 GETTING DIRTY: WRITING YOUR FIRST EGSNRC APPLICATION 11

4 Getting dirty: writing your first EGSnrc application

Before approaching the more formal descriptions, let’s dive right in to actually writing a
simple application that will utilize the EGSnrc core physics to perform a Monte Carlo sim-
ulation. This hands-on approach will hopefully serve as an instructive lesson on what an
EGSnrc application really does, how to write input files and perform simulations, and how
to decipher the output.

During the installation, two directories were created and assigned to environment variables:
$HEN_HOUSE and $EGS_HOME. To write an application, navigate to $EGS_HOME using a file
browser, or on the terminal.

If you’re working on linux but unfamiliar with environment variables, now might be a good
time to do some quick research. Familiarize yourself with basic terminal commands, the shell
you are using and the shell configuration (e.g. the ~/.bashrc file if you are using the bash

shell).

4.1 Create a new egs++ application

Let’s create a new egs++ application called myapp. All EGSnrc applications—including the
ones you write yourself—must reside in a folder with the name of the application, within
$EGS_HOME. When we say egs++, we are referring to using the c++ class library that was
built to allow for c++ applications to directly interface with the MORTRAN3 EGSnrc core.

Start by creating a new directory for your application, myapp. Then copy the following files
from the existing application, tutor7pp: array_sizes.h, Makefile. We will provide the
linux commands to do this, using a bash shell (the first $ on the left represents the bash
shell command prompt, so don’t type it in):

$ cd $EGS_HOME

$ mkdir myapp

$ cd myapp

$ cp ../tutor7pp/array_sizes.h ./

$ cp ../tutor7pp/Makefile ./

Open the Makefile using your text editor of choice, and change instances of “tutor7pp” to
“myapp”. There are only two lines that need changing; they should now read:

USER_CODE = myapp

and

EGSPP_USER_MACROS = myapp.macros

Create a new file called myapp.macros , and just save it as an empty file. This file is just a
a placeholder for now - it may be used by more advanced applications.
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Finally, create a new file named myapp.cpp , and save the following source code in it:

#include "egs_advanced_application.h"

APP_MAIN (EGS_AdvancedApplication);

This is the smallest, fully functional EGSnrc application you can write ! You may consider
it a bit of a cheat - we are using the defined function macro APP_MAIN to write some code
for us.

Compile your application with the make command, which builds the executable myapp and
saves it under $EGS_HOME/bin/. For a given application, you only need to run make once
(unless you modify the source code). Note that on Windows (if you are using mingw as the
compiler) the compilation command will likely be mingw32-make instead.

$ make

4.2 Create an egs++ input file

Next we need to create an input file to define the conditions of the simulation. Create a new
file named slab.egsinp in the application directory, $EGS_HOME/myapp/ . Copy and paste
the following contents:

################################

#

# Simple slab simulation

#

################################

################################

### RUN CONTROL

################################

:start run control:

ncase = 1e3 # The number of histories to simulate

:stop run control:

################################

### GEOMETRY

################################

:start geometry definition: # Only 1 geometry definition block allowed

### Define a plate of tantalum

:start geometry: # Many geometry blocks can be defined

name = slab # This name can be anything you like

4.2 Create an egs++ input file
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library = egs_ndgeometry

type = EGS_XYZGeometry

x-planes = -5, 5 # in cm

y-planes = -5, 5 # in cm

z-planes = -10, 0, 0.1, 10 # in cm

:start media input:

media = vacuum tantalum # Indexed as 0 1

set medium = 1 1 # Set region 1 to medium 1 (tantalum)

# Other regions default to medium 0 (vacuum)

:stop media input:

:stop geometry:

### Use the geometry with this name for the simulation

simulation geometry = slab

:stop geometry definition:

################################

### MEDIA

################################

:start media definition: # Only 1 media definition block allowed

# Defining media in the input file like this is called "pegsless" mode

### Cutoff energies, in MeV

ae = 0.521 # lowest energy for electrons (kinetic+0.511)

ap = 0.01 # lowest energy for photons (kinetic)

ue = 50.511 # maximum energy for electrons (kinetic+0.511)

up = 50 # maximum energy for photons (kinetic)

### Tantalum

:start tantalum: # this name can be anything

density correction file = tantalum # name the file (no ext.)

:stop tantalum:

### Lead

:start lead:

density correction file = lead

:stop lead:

### Water

:start water:

density correction file = water_liquid

:stop water:

4.2 Create an egs++ input file
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:stop media definition:

################################

### SOURCE

################################

:start source definition: # Only 1 source definition block allowed

### Pencil beam

:start source:

name = pencil_beam # This name can be anything you like

library = egs_parallel_beam

charge = -1

direction = 0 0 1

:start spectrum:

type = monoenergetic

energy = 20 # in MeV

:stop spectrum:

:start shape:

type = point

position = 0 0 -10 # in cm

:stop shape:

:stop source:

### Use the source by this name for the simulation

simulation source = pencil_beam

:stop source definition:

################################

### VIEWER CONTROL

################################

:start view control:

# Here we are just assigning some colors for nice

# viewing in the egs_view application

set color = lead 120 120 200 200

set color = tantalum 120 255 120 255

set color = water 0 220 255 200

:stop view control:

################################

### AUSGAB OBJECTS

################################

:start ausgab object definition: # Only 1 ausgab definition block allowed

4.2 Create an egs++ input file
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### Particle tracks

:start ausgab object:

name = tracks

library = egs_track_scoring

:stop ausgab object:

:stop ausgab object definition:

We’ll get into the meaning of the various input parameters later! For now, let’s just run the
simulation and see what happens. The input file models a thousand 20 MeV electrons
incident on a 1 mm thick tantalum plate.

$ myapp -i slab.egsinp

Here myapp is the executable name, -i is a flag to specify the input file slab.egsinp.
This simulation runs in less than a second and prints results on the terminal. It also saves
information about the simulated particle tracks in the file slab.ptracks.

This command can actually be executed on the terminal from any directory! The myapp
executable is found automatically using your $PATH environment variable, and the input file
is must reside in the application directory ( $EGS_HOME/myapp )

Load the slab.egsinp input file and slab.ptracks in egs_view utility to understand
the geometry of the simulation. Click on the scene and drag with the left mouse button to
rotate the view. Zoom in and out with the mouse scroll wheel. Pan the view by holding
Ctrl and dragging with the left mouse button. For more controls, see the Controls section
on the Camera tab in the View Controls window.

$ egs_view slab.egsinp slab.ptracks

egs_view should display something like the following image. In the figure, a pencil beam of
electrons is impinging from the left (negative z), towards the right (positive z). Notice that
by hovering your mouse over the plate, you can investigate the region numbers that were
assigned to the geometry. Looking down a ray from your mouse, the numbers are displayed
in the top left. In this case, the first region the ray sees is the air above the plate (region 0),
then the Ta plate (region 1), then the air below the plate (region 2). These numbers that
are assigned to geometrical regions are important, as we will see later!

4.2 Create an egs++ input file
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Congratulations, you created your first egs++ application and ran your first simulation !

4.2.1 Questions

1 Aside from particle tracks, does the myapp application provide any useful
information when it runs, such as energy deposited, dose, spectrum, etc. ?

Not really. By default when an EGSnrc application runs it echoes to the terminal some
information about the simulation configuration, parameters, data initialization, media
definitions, etc. Finally, the simulation reports progress and some final timing statistics.
But in this first example the result is always zero (and the uncertainty 100%) because no
physical quantity has been scored yet:

Running 1000 histories

Batch CPU time Result Uncertainty(%)

==========================================================

1 0.08 0 100.00

2 0.16 0 100.00

3 0.23 0 100.00

4 0.31 0 100.00

5 0.40 0 100.00

6 0.49 0 100.00

7 0.56 0 100.00

8 0.64 0 100.00

9 0.72 0 100.00

10 0.80 0 100.00

Finished simulation

Total cpu time for this run: 0.80 (sec.) 0.0002(hours)

Histories per hour: 4.5e+06

Number of random numbers used: 13938479

Number of electron CH steps: 345747

Number of all electron steps: 1.2252e+06

4.2 Create an egs++ input file
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4.3 Compile and run using egs gui

All EGSnrc applications can be compiled and run using the GUI, egs_gui. Let’s rewind,
and repeat the myapp example using egs_gui instead of the command line.

1. Open egs_gui , the GUI for compiling and executing any EGSnrc application.

2. Notice that the Compile tab is selected by default. Use the selection box in the bottom
left of the GUI, and select myapp.

3. Click the Go button. It will take some time to compile. If you see ExitCode = 0

in the output, the application has compiled successfully! If you are recompiling an
application, make sure to clean first.

4. Switch to the Execute tab.

5. In the PEGS file section, check the pegsless checkbox. This means media are
defined in the input file.

6. In the Input file section, click the ... button, and select the input file we created
earlier: slab.egsinp.

7. To run the simulation, just click Start.

8. The output of the simulation is displayed in the egs_gui output textbox after exe-
cuting the simulation. Depending on the application, there may be additional output
in the corresponding application directory in $EGS_HOME.

4.4 Add a dose scoring object

The little application myapp does not really report any quantity of interest: by default the
egs++ application just transports the particles in the geometry. It is up to the user to
implement methods to extract information from the simulation.

The easiest way to get results is by adding a dose scoring objects in your input file. For
example, to get a report of the dose deposited in every region of the geometry at the end of the
simulation, add the following input block inside the existing ausgab object definition

delimiters at the end of your input file (you will learn more about the egs++ syntax later).
After this, you should only have a single ausgab object definition , containing two
ausgab object blocks.

If your text editor supports syntax highlighting, try setting the language to ruby. This does
not match our syntax exactly but still helps the eye.

:start ausgab object definition:

# ... there is an existing object here for ptracks

4.3 Compile and run using egs gui
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:start ausgab object:

name = dose

library = egs_dose_scoring

dose regions = 1

volume = 10

:stop ausgab object:

:stop ausgab object definition:

Run the simulation again, and find the “Summary of region dosimetry” in the output:

$ myapp -i slab.egsinp

4.4.1 Questions

1 How much energy is deposited inside the tantalum plate ? What is the dose ?

With a dose scoring object, the application echoes additional data to the screen at the end
of the simulation. The energy deposited in the tantalum plate is (2.5506±1.828%) MeV.
The dose is (2.4535× 10−12 ± 1.828%) Gy.

==> Summary of region dosimetry (per particle)

ir medium rho/[g/cm3] V/cm3 Edep/[MeV] D/[Gy]

-----------------------------------------------------------------------------

1 tantalum 16.654 10.0000 2.5506e+00 +/- 1.828 % 2.4535e-12 +/- 1.828 %

-----------------------------------------------------------------------------

4.4 Add a dose scoring object
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2 Can you manually convert the value of deposited energy to dose ?

Dose is defined as the energy deposited per unit mass, usually reported in Gray (J/kg).
The density of tantalum here is 16.654 g/cm3, and the volume of the plate is 10 cm3.
Therefore, the mass of the plate is 166.54 g, and the dose is:

D =
2.5506

166.54
= 0.015315 MeV/g = 2.4538× 10−12 J/kg.

3 What is the relative uncertainty on energy and dose, and why is it the same
for both ?

The relative uncertainty on the deposited energy and the dose is 1.828%. It is exactly
the same in both cases because dose is simply the energy divided the mass. The mass is
derived from simulation inputs which are considered exact (the density and the volume),
hence it does not contribute to the relative uncertainty.

4 Figure out how to increase the number of electrons by a factor 10 in the
input file and run the simulation again. Why has the deposited energy not
increased by a factor 10 ? What happened to the uncertainty ?

Changing the run control input to ncase = 1e4 simulates 104 incident electrons. The
deposited energy is now (2.5893 ± 0.572%) MeV. It has not increased by a factor 10
because Monte Carlo results are reported per incident particle. The relative uncertainty
has however decreased by a factor of about 3, which is typical of a random sampling
process, for which the uncertainty scales like 1/

√
N .

4.5 Change the type of incident particles

Figure out how to change the incident particle type to photons instead of electrons in
slab.egsinp. Save and run the simulation again for 104 incident photons. Load the particle
tracks in egs_view.

4.5.1 Questions

1 Is the simulation faster with electrons or with photons ?

Changing the charge of the source (charge = 0) runs the simulation for incident pho-
tons instead of electrons. The simulation is about 10 times faster with photons because
photons interact with matter much less than do electrons.

2 How did the dose change compared to electrons ?

The dose decreased by a factor of about 10 compared to electrons, again indicating that
photons interact less than do electrons. Correspondingly, the uncertainty is larger than
with electrons, because fewer events are sampled inside the plate.

4.5 Change the type of incident particles
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3 Are positrons generated in this simulation ? Is this expected ?

Yes, positrons are generated: they show up as blue tracks in the viewer. This is expected
because the incident photons have an energy of 20 MeV, well above the pair production
threshold of 1.022 MeV.

4.6 Change the energy of incident particles

Figure out how to change the incident particle energy to 1 MeV in slab.egsinp. Save and
run the simulation again for 104 incident photons. Load the particle tracks in egs_view.

4.6.1 Questions

1 What is the biggest qualitative difference with the 20 MeV scenario ?

The most striking difference is that there are much fewer secondary charge particles.
Note also that there are no positrons since the incident energy is now below the pair
production threshold of 1.022 MeV.

2 Did the dose increase or decrease ?

The dose is further decreased to (5.5088× 10−14 ± 3.613%) MeV per incident photon.

3 How about simulation time ?

The simulation time is reduced. As a general rule, lower energy simulations run faster
because there are fewer secondary particles to transport.

4.7 Change the material of the plate

Figure out how to change the material of the plate to lead in slab.egsinp. Use 100 keV
electrons and run the simulation again for 104 incident electrons. Load the particle tracks in
egs_view. Hint: the materials are set in the geometry definition. The media definition

defines the list of media that may (or may not) be used by geometries.

4.7.1 Questions

1 What is happening to the electrons hitting the lead plate ?

The electrons are either absorbed in the lead or backscattered in the −z direction.

2 Is that consistent with the deposited energy ?

Yes, indeed. The energy deposited in the lead plate by 100 keV electrons is found to be

4.6 Change the energy of incident particles
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(0.058803± 0.709%) MeV per incident electron. So on average only 60% of the incident
energy is deposited in the lead plate, owing to the significant backscatter.

3 What is the file size of slab.ptracks on disk ?

About 5.3 MB. Track files grow very quickly, but by default the number of events saved
to file is limited to 1024, even if you run more incident particles.

4 Run 20 MeV electrons striking a water plate and interpret the results. Is
deposited energy consistent with the known stopping power value of
2.45 MeV cm2/g for 20 MeV electrons in liquid water ?

Most electrons go through the water plate, depositing on average 175 keV in the process.
This is certainly less than the energy loss of 245 keV expected from the nominal electron
stopping power, because a lot of energy is carried away from the plate by secondary
particles, mostly bremsstrahlung photons.

4.7 Change the material of the plate
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5 Navigating egs++ input files

EGSnrc now includes egs++, a C++ class library that interfaces with the EGSnrc core
MORTRAN3 code. This allows for applications to be written in C++. To expand on what was
covered in the previous section, we will play with one of the egs++ tutorial applications,
tutor7pp, and experiment with making changes to the input file.

There is an example input file included with tutor7pp, test1.egsinp, found in the ap-
plication directory ($EGS_HOME/tutor7pp). Let’s run tutor7pp with this example. If you
look inside the test1.egsinp file, the geometry is defined as an infinite slab of tantalum,
1 mm thick. A parallel beam of 20 MeV electrons is directed at the slab, and the simula-
tion runs 1000000 particles. Additionally, tutor7pp has special scoring options that are not
available to other applications. Each application may define its own input parameters, but
generally nearly all of the inputs (e.g. geometries, sources) are the same. For tutor7pp, the
application requires some additional inputs that define regions in which to score pulse height
distributions (this is at the bottom of the example input file).

Compile and run tutor7pp using egs_gui, or on the command line.

If you choose to use the command line, the following commands are an example for linux
operating systems:

$ cd $EGS_HOME/tutor7pp

$ make clean

$ make

$ tutor7pp -i test1 -p tutor_data | tee test1.output

Notice that we have modified the execution line above to pipe the output to tee in order
to both display it in the terminal as well as save it in an output file. If you look in the
application directory after the simulation, it will contain some new files! Namely:

test1.egsdat

test1.output

The .egsdat file can generally be ignored - it is used by EGSnrc to restart jobs that crashed,
or combine parallel runs. The .output file is where we manually redirected the output from
the simulation (if you ran the simulation using the GUI, this file was not created). Looking
at the output, we can observe the reflected, deposited and transmitted energy fractions for
the simulation of electrons through a single slab. Below this, is the pulse height distribution
for region 1 (the slab itself).

5.1 Write a new input file

When writing an egs++ input file, you will find yourself frequently referencing the full online
documentation, PIRS-898:
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http://nrc-cnrc.github.io/EGSnrc/doc/pirs898/index.html

If you would prefer to have a local copy, download all of the manuals (EGSnrc-manuals.zip)
from the release page:

https://github.com/nrc-cnrc/EGSnrc/releases

All egs++ applications share the same common input format, though each application may
add new input blocks or new input parameters. It is strongly recommended to browse the
PIRS-898 documentation on common inputs. This will provide an overview of what to expect
in an input file:

http://nrc-cnrc.github.io/EGSnrc/doc/pirs898/common.html

To get started writing your first input file from scratch:

• Open your favourite text editor! On linux, some editor suggestions are kate, gedit,
vim, emacs, etc. On Windows, perhaps notepad++.

• There is not a standard syntax highlighter for .egsinp files. However, you may want
to try highlighting for the Ruby language - it does not match EGSnrc syntax exactly
but does do a reasonable job of helping the eye.

• Save a new file with the .egsinp extension, in the $EGS_HOME/tutor7pp directory.

To get started with egs++ input files, let’s work through an example for the tutor7pp

application. Of course, this example will largely translate to any egs++ application, with
the exception of the scoring options, which are specific to tutor7pp. If you read through
the PIRS-898 documentation on common input blocks, you will recognize that input files
contain:

• Geometries

• Particle sources

• Run control

• MC transport parameters

• Media (optional)

• Ausgab output (optional)

• Scoring options (application specific)

5.1.1 Define a cylindrical water phantom

The first step is to define the geometry, which must be placed between the
geometry definition start and stop delimiters in the input file.

5.1 Write a new input file

http://nrc-cnrc.github.io/EGSnrc/doc/pirs898/index.html
https://github.com/nrc-cnrc/EGSnrc/releases
http://nrc-cnrc.github.io/EGSnrc/doc/pirs898/common.html
http://nrc-cnrc.github.io/EGSnrc/doc/pirs898/common.html
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First define a cylinder with axis parallel to the z-axis and 5 cm radius. All distance units in
.egsinp files are in cm, and energy units in MeV.

:start geometry definition:

:start geometry:

library = egs_cylinders

type = EGS_ZCylinders

name = the_cylinder

midpoint = 0 0 0 # in cm

radii = 5 # in cm

:stop geometry:

:stop geometry definition:

How did we figure out what to type? By looking at the documentation for egs cylinders, of
course.

The above input block defines an infinitely long cylinder of 5 cm radius. To produce a
finite cylinder of 10 cm height with its front face at z = 0, first define bounding planes and
then put everything together using an ND geometry. Add these geometries to the geometry
definition block:

:start geometry:

library = egs_planes

type = EGS_Zplanes

name = the_planes

positions = 0 10 # in cm

:stop geometry:

:start geometry:

library = egs_ndgeometry

name = phantom

dimensions = the_planes the_cylinder

:start media input:

media = H2O521ICRU

:stop media input:

:stop geometry:

This is one way of creating a composite geometry. As described in the egs ndgeometry doc-
umentation, the egs ndgeometry creates regions where the listed geometries (dimensions)
intersect. Since the_planes contains only one region between z = 0 and z = 10, the
intersection with the_cylinder contains a cylinder that has been cut by those planes.

5.1 Write a new input file

http://nrc-cnrc.github.io/EGSnrc/doc/pirs898/classEGS__CylindersT.html
http://nrc-cnrc.github.io/EGSnrc/doc/pirs898/classEGS__NDGeometry.html
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Instead of defining media in the input file, we will be doing it the old way. The media used
above was H2O521ICRU, which corresponds to the name of a water material defined in an
external PEGS data file (HEN_HOUSE/pegs4/data/521icru.pegs4dat). In order to run the
simulation (we’ll get to this later), the 521icru PEGS4 data file will need to be included as
an argument.

Don’t forget to tell the EGS_Application which geometry is the simulation geometry:

simulation geometry = phantom

After placing all these blocks into the geometry definition block, visualize the geometry with
egs_view and enjoy the fruit of your hard work (of course, use the filename of the input file
you just created):

$ egs_view yourFile.egsinp

There is some description of how to use egs_view in the geometry module.

5.1.2 Define an isotropic point source

The next step to define the source. Similar to the geometry definition block, you can define
as many sources as desired, create composites, and choose the one to use for your simulation.

Define an isotropic point source of 100 keV photons. This source emits particles uniformly
in all directions. Position the source at −100 cm from the origin on the z-axis:

:start source definition:

:start source:

library = egs_point_source

name = the_point_source

position = 0, 0, -100 # in cm

:start spectrum:

type = monoenergetic

energy = 0.1 # in MeV

:stop spectrum:

charge = 0

:stop source:

simulation source = the_point_source

:stop source definition:

5.1 Write a new input file

http://nrc-cnrc.github.io/EGSnrc/doc/pirs898/group__Geometry.html#geometry_view
http://nrc-cnrc.github.io/EGSnrc/doc/pirs898/classEGS__IsotropicSource.html
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5.1.3 Define a dose scoring object

Score dose using the ausgab object egs dose scoring which must be defined between the
:start ausgab object definitions: delimiter and corresponding stop delimiter:

:start ausgab object definition:

:start ausgab object:

library = egs_dose_scoring

volume = 785.398163397 # in cm^3

region dose = yes

name = my_dose_scoring

:stop ausgab object:

:stop ausgab object definition:

The volume is provided for the cylindrical phantom to be able to compute the dose. By
default volumes are set to 1 cm3, so if you do not define the volume, the dose will be
incorrect! However, the energy deposited will still be correct, so it is easy to convert to dose
after the simulation is complete.

5.1.4 Define the run control

The last piece of input required for the simulation to run, albeit with many defaults, is the
number of histories to run, ncase. This value is defined in the run control block

:start run control:

ncase = 100000

:stop run control:

5.2 Run the simulation

To run the simulation type in the following command. The material data is included using
the -p flag, followed by the name of the PEGS4 data file.

$ tutor7pp -i myinput -p 521icru

Since the output goes to the screen by default, you can pipe the output to the tee command
to simultaneously save the terminal output to a file, for later analysis of the results:

$ tutor7pp -i myinput -p 521icru | tee myoutput.txt

5.2 Run the simulation

http://nrc-cnrc.github.io/EGSnrc/doc/pirs898/classEGS__DoseScoring.html
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5.2.1 Questions

1 Compare the energy deposited reported by the egs_dose_scoring object and
the one corresponding to the fraction of energy deposited reported by tutor7pp.
Are they the same ?

tutor7pp reports the total energy entering the geometry, Etot, and the fractions, fi, of
that energy deposited in the different regions i of the geometry. In this case there is only
one region. The energy deposited in that region, Edep, is obtained as

Edep = Etot · f0 = 104 MeV · 0.1934056 = 1934.056 MeV

The egs_dose_scoring scoring object reports the dose deposited in each region i divided
by the source’s normalization which could be the number of particles emitted or the
fluence. The isotropic point source uses the number of particles emitted as normalization.
Hence to obtain the energy deposited in the geometry, one has to multiply the reported

energy deposited per particle
(

Edep

N

)
by the number of particles emited, N (last case):

Edep =

(
Edep

N

)
·N = 1.2082 · 10−5 MeV · 160072124 = 1933.991 MeV

Note above that 105 is the number of particles hitting the geometry !

2 What is the solid angle, Ω, subtended by the isotropic source and the front
face of the geometry ?

The number of particles emited by the isotropic point source in 4π is 160072124, while
only 105 of these particles actually hit the front face of the cylinder. Hence Ω can be
obtained from

Ω =
105

160072124
· 4π = 0.00785 radians

3 Compute the efficiency ε based on the uncertainty in the energy deposited
calculated with the egs_dose_scoring object and take note of it for a later
comparison with the collimated source.

ε =
1

tCPU · σ2
=

1

0.4822 · 67.67s
= 0.0636 s−1

5.3 Simulate a collimated source

Run the same calculation using a collimated source. Add the following source definition
input to the source definition block

5.3 Simulate a collimated source
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:start source:

library = egs_collimated_source

name = my_collimated_source

distance = 100

:start source shape:

type = point

position = 0 0 -100

:stop source shape:

:start target shape:

library = egs_circle

radius = 5

:stop target shape:

:start spectrum:

type = monoenergetic

energy = 0.1

:stop spectrum:

charge = 0

:stop source:

Set the simulation source to be my_collimated_source. You may want to make a copy of
your input file.

Run the simulation again by issuing the following command (with your choice of names for
the input and output files):

$ tutor7pp -i myinput -p 521icru | tee myoutput.txt

5.3.1 Questions

1 Compare the fraction of energy deposited with the result obtained for the
isotropic point source. Are they the same ? Explain !

Although the normalization used by both sources is different, the fraction of energy
deposited in the geometry, f0, is the same within statistics since as a relative quantity,
it should be independent of the normalization.

f isotropic
0 = 0.1934, f collimated

0 = 0.1948

2 Compare the energy deposited reported by the egs_dose_scoring object with
the same result obtained earlier for the isotropic point source. Are they the
same ? Explain !

The collimated source uses the fluence F as normalization. For this reason, the values
reported by the egs_dose_scoring in this case will be numerically different from the

5.3 Simulate a collimated source
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value reported for the isotropic source:

Edep

F
= 1.5272 MeV cm2 rad.

To get the absolute energy deposited in the geometry, Edep, one must use the following
expression

Edep =
Edep

F
· NΩ

(Ω · d 2)
= 1.5272 · 105

0.00785 · 104
MeV = 1945.478 MeV

This value differs by 0.6 % from the value obtained for the isotropic point source which
is within the combined uncertainties of the calculations.

A side note : the value reported in this case for the total energy, called here E ′tot,
does not correspond to the actual total energy Etot. The quantity E ′tot is calculated in
tutor7pp as

E ′tot =

NΩ∑
i=1

w′i ei

which for the collimated source actually corresponds to

E ′tot = Etot · Ω .

Since the purpose of tutor7pp is to calculate the energy fractions, normalization is
irrelevant. To get the actual total energy deposited Edep from E ′tot, one needs to use the
expression

Edep =
E ′tot · f0

Ω
=

78.3926 MeV rad · 0.19482

0.00785 rad
= 1945.535 MeV

This value is in excellent agreement with the value obtained above from the output of
egs_dose_scoring.

3 Compute the efficiency based on the uncertainty in the energy deposited
calculated with the egs_dose_scoring object and compare it with the efficiency
of the isotropic source. Do you see any difference ?

ε =
1

tCPU · σ2
=

1

0.3622 · 3.02s
= 2.5268 s−1

The collimated source is about 40 times more efficient than the isotropic point source !

4 Can you think of a situation where the collimated source should not be used?

The collimated source does not emit particles in all directions, which may not be a good
model of reality. If an isotropic source was used instead, the particles directed away
from your region of interest may still contribute to it by scatter or secondary particles.
By collimating the source, these contributions are lost! Thus it is essential to consider
whether scatter from the geometry surrounding the source is important for the situation
you are modelling.

5.3 Simulate a collimated source
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5.4 Generate particles tracks

And now comes the fun part: particle tracks !

You will be generating particle tracks with the collimated source. To this end, you must
define an egs track scoring object between the ausgab object definition delimiters in our
input file. Here is an example:

:start ausgab object:

library = egs_track_scoring

name = tracker

score electrons = no

score positrons = no

score photons = yes

# start scoring = 0 # default is 0

# stop scoring = 1024 # default is 1024

# buffer size = 1024 # default is 1024

:stop ausgab object:

Tracks are only scored inside the geometry, hence particle tracks are only generated inside
the water cylinder. To see the particle track from the source all the way to the phantom,
you need to embed the cylinder and the source inside another geometrical object.

Use a large box of air as an envelope geometry. Add the following two geometries in your
geometry definition block:

:start geometry:

library = egs_box

box size = 500 500 500

name = air_box

:start media input:

media = AIR521ICRU

:stop media input:

:stop geometry:

:start geometry:

library = egs_genvelope

name = phantom_in_air

base geometry = air_box

inscribed geometries = phantom

:stop geometry:

and switch the simulation geometry to be phantom_in_air. Run the simulation once more
with 10 times fewer particles. This simulation should take a fraction of a second and produce
the particle track file myinput.ptracks. To visualize it launch egs_view with the name of
the tracks file:

5.4 Generate particles tracks

http://nrc-cnrc.github.io/EGSnrc/doc/pirs898/classEGS__TrackScoring.html
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$ egs_view myinput.egsinp myinput.ptracks

In the GUI, you can also load the track files afterwards with File->Open tracks.... To
get a better view of the tracks and geometry, make the air box transparent (on the Colors

tab) or define a clipping plane. Zoom in for a closer view using the mouse scroll wheel.

5.4 Generate particles tracks
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6 Modelling an ionization chamber

In section 4, we wrote the simplest of egs++ applications and used egs_view for the first
time. This geometry viewing tool turns out to be essential when writing complex geometries
- both to visually confirm the accuracy of the design, and to determine the number assigned
to regions in the geometry. In the following sections, use this tool frequently!

The egs_view tool actually uses the HOWFAR function of each geometry to render the view.
This means that what you see is what a particle in your simulation sees. Note that egs_view

is only compatible with egs++ input files (not the MORTRAN3 codes).

For more explanation of egs_view, refer to the online documentation for the geometry
module.

When trying to simulate a particular experiment, constructing the geometry is half the
battle! Take your time to learn what can be done; starting from a similar example and
tweaking it for your purposes is a key time-saver. There are geometry examples online, and
in the distribution:

$HEN_HOUSE/egs++/geometry/examples

Before building an ionization chamber, we’ll lay a bit more foundation in geometry design
and use of egs_view. In a text editor, create a new document with the following geometry
input, describing a cubic box:

:start geometry definition:

### a simple box definition

:start geometry:

name = my_box # this name is up to you

library = egs_box

box size = 10 # length units are cm

:start media input:

media = my_medium

:stop media input:

:stop geometry:

### name of the geometry to load in the viewer

simulation geometry = my_box

:stop geometry definition:

Note that white space is irrelevant—except for line returns because egs++ reads one input
per line. Comment your code as you go, and remember the simulation geometry input to
tell the viewer which geometry to load (by name).

Media names are up to you: the viewer merely assigns different colors to different media.
These names will ultimately have to be defined in the media definition input block (or a
PEGS4 data file) to run a simulation. However, the viewer displays media even if they are

http://nrc-cnrc.github.io/EGSnrc/doc/pirs898/group__Geometry.html#geometry_view
http://nrc-cnrc.github.io/EGSnrc/doc/pirs898/group__Geometry.html#geometry_view
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not yet defined.

For a description of the egs++ input syntax for each geometry, and for input examples,
refer to the online manual: http://nrc-cnrc.github.io/EGSnrc/doc/pirs898/index.html, in
the Geometries section, e.g., Geometries > EGS_Box.

6.1 Visualize your geometry with egs view

Save your box geometry input in a file named simple.egsinp. From the directory where
you saved the file, launch the geometry viewer:

$ egs_view simple.egsinp &

You should see a red square in the geometry window, along with a View Control window.
The viewer starts with the camera on the positive z-axis, but you can rotate the geometry
in 3D by dragging with the mouse, as shown in figure 1a.

You can pan the view by dragging while pressing the Ctrl key, and zoom in and out with
the middle mouse button or the mouse wheel. Note that these manipulations do not affect
your input: egs_view never writes to the input file.

Spend a few minutes exploring the tabs to get a feel for what controls are available. At any
time you can export the current view as an image with File->Save image.

Using File->Reload the input file will be read again, which is useful to update the view
after making changes. Just keep in mind that if there is a typo in your updated input file,
egs_view might crash!

6.1.1 Question

1 What are the region numbers inside and outside the cube ?

When hovering the mouse over the cube, a small red square appears in the top left corner
of the image window, indicating that the inside of the cube is region 0.

The region outside the cube is not displayed in the list. In egs++ everything outside
the defined geometry is region −1. Particles that reach region −1 in the simulation are
immediately discarded: they have reached the “end of the world” !

6.1 Visualize your geometry with egs view

http://nrc-cnrc.github.io/EGSnrc/doc/pirs898/index.html
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Figure 1: a) snapshot of the cube defined in the simple.egsinp input file. b) snapshot of
the point of view you are asked to reproduce using viewer clipping planes in Section 6.2.

6.1 Visualize your geometry with egs view
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6.2 Dig in with clipping planes

Edit your input file to add a second geometry (inside the same geometry definition input
block) defining a set of concentric spheres:

:start geometry:

name = my_spheres # this name is up to you

library = egs_spheres

radii = 0.3 1.8 2 # three concentric spheres

:start media input:

media = default shell center # names of media 0 1 2 ...

set medium = 2 1 # set region 2 to medium 1 (shell)

set medium = 0 2 # set region 0 to medium 2 (center)

:stop media input:

:stop geometry:

By default the whole geometry is filled with medium 0 (default, the first one in the media

list), so it is redundant to specify set medium for regions containing medium 0.

Change the simulation geometry to my_spheres (or the name you chose) and reload the
input in the viewer. You can play with transparency to reveal the internal structure of the
geometry, but clipping planes provide a more direct route. On the Display tab in egs_view,
see the clipping planes table. Apply a clipping plane oriented along the positive z-axis and
passing through the origin. Make the default medium partially transparent and rotate the
geometry around. Apply a clipping plane to get a view similar to the one shown in figure 1b.

For clipping planes, ax, ay and az define the unit normal to a planar surface. The surface
can then be offset from the origin by setting the distance d [cm]. After typing in the 4
parameters, hit Enter to apply the clipping plane, or click away. Use the checkbox to the
right of each clipping plane to toggle them on and off.

6.2.1 Questions

1 From this point of view, what is the list of regions when you hover your mouse
over the small central sphere ?

When hovering the mouse over the central sphere—with a clipping plane as shown in the
figure—the list of regions is {1, 0, 1, 2}. These are all the regions under the mouse
pointer, from the nearest to the farthest. Regions clipped by clipping planes are not
included in the list.

2 What is the region number outside the defined geometry ?

As always in egs++, the space outside the defined geometry is region −1, and it is not
included in the list of regions in the image window.

6.2 Dig in with clipping planes
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6.3 Build an egs++ model of the 3C chamber

Use your newly acquired expertise in egs++ syntax to model the geometry of NRC’s refer-
ence ionization chamber ”3C”, the schematic of which is reproduced in figure 2. This is a
cylindrically symmetric geometry with 4 distinct layers along its axis, so the natural option
is a conestack geometry. Put the conestack along the z-axis, and position it according to
the numbers given in the diagram. Below is an input template to get you started. Inspect
the geometry with egs_view.

Read the conestack documentation for more information.

You can expect to end up with 4 layers in the conestack. Since there are no sloped surfaces
(all of the cones are in fact cylinders), the top and bottom radii will be the same within each
layer. Layer 1 requires a single radius, 1.175 for top and bottom. Layer 2 requires two radii
for air and graphite, 0.7919 and 1.175, respectively. And so on...

Figure 2: Simplified schematic of NRC’s 3C ionization chamber which is Canada’s primary
standard for air kerma in a 60Co beam. Dimensions are in centimetres. Drawing is not to
scale.

:start geometry:

name = 3C

library = egs_cones

type = EGS_ConeStack

axis = # ... figure out the input for ’axis’

6.3 Build an egs++ model of the 3C chamber
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### top layer

:start layer:

thickness = # ...

top radii = # ...

bottom radii = # ...

media = graphite

:stop layer:

:stop geometry:

6.3.1 Questions

1 What are the region numbers which correspond to the air cavity ?

The air cavity comprises regions 3 and 7.

2 Where are regions 1 and 2 ?

Regions 1 and 2 are not visible in this geometry: they are virtual regions. In some cases,
egs++ attributes region numbers in a way that is more efficient internally. But the
algorithm is deterministic: the same geometry always yields the same region numbers.

3 Can you figure out the conestack region numbering scheme ?

In the case of the conestack, egs++ attributes a fixed number of regions to each layer.
This is more efficient because only a single modulo operation is then needed to convert
the region number to the layer index.

In the 3C conestack, there are at most three radii per layer, so egs++ attributes 3 regions
per layer, whether or not they are used. The first layer has only one radial dimension—
region 0—hence regions 1 and 2 are not used: they become virtual regions and don’t
show up in the viewer. The next layer in the conestack then starts at region 3, and the
same logic applies the virtual region 5.

6.4 Build an Exradin A12 chamber

The Exradin A12 is a thimble ionization chamber, shown schematically in figure 3. The
basic strategy to model such an instrument is to use a conestack for most of the chamber,
which is cylindrically symmetric, except for the spherical tip. Build the chamber tip with
spheres (as shown by dashed lines in the diagram) and join it with the 7-layer conestack
chamber body, using a composite cd geometry.

6.4.1 Model the spherical chamber tip

Start a new input file for this chamber geometry. Save this input file in the
$EGS_HOME/egs_chamber directory. It is recommended to use the egs_chamber application

6.4 Build an Exradin A12 chamber
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Figure 3: Simplified schematic of an Exradin A12 thimble chamber, based on information
from the manufacturer’s product brochure. All units are in centimetres. Radial dimensions
are given, as well as the position of the various points along the chamber’s axis (with the
centroid of the collecting volume at 0 cm). The central electrode, the thimble shell and the
chamber body are made of C552 plastic.

for ionization chamber simulations due to its useful suite of variance reduction parameters.
There are a number of useful features, found in the egs chamber documentation.

Define a geometry for the chamber tip using 2 concentric spheres, as in Section 6.2.
The smallest sphere will become the spherical tip of the central electrode ! The outer sphere
should be water - the entire chamber will be placed in water and we will end up using a small
water shell surrounding the chamber for a variance reduction technique called cross section
enhancement. Position the midpoint of the set of spheres on axis in their final location at
x = 0.935 cm, as shown in figure 3.

#-------------------------------------------------------------------------

# Spherical chamber tip

#-------------------------------------------------------------------------

:start geometry:

name = chamber_tip

library = egs_spheres

midpoint = 0.935 0 0

radii = 0.05 0.305 0.355 2.0

:start media input:

media = c552 air water # media 0,1,2

set medium = 1 1 # set region 1 to air (1)

set medium = 3 2 # set region 3 to water (2)

# by default the rest of the regions are c552

:stop media input:

:stop geometry:

Include the following bounding box view control input block in your input file (outside

6.4 Build an Exradin A12 chamber
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the geometry definition block) to help the viewer find the spheres. Inspect the geometry in
egs_view.

:start view control:

xmin = -4

xmax = 4

ymin = -4

ymax = 4

zmin = -4

zmax = 4

:stop view control:

6.4.2 Model the chamber body

Use a conestack to define the cylindrically symmetric chamber body. Set the axis of the
conestack so that layers are added in the -x direction. In the next step you will join this
conestack to the spheres using a cd geometry plane located at x = 0.935 cm, so set the top
of the conestack at that point. Surround the chamber in water out to 2 cm radius. See if
you can design the chamber without copy-pasting the text below!

#-------------------------------------------------------------------------

# Main chamber body (as a conestack)

#-------------------------------------------------------------------------

:start geometry:

name = chamber_body

library = egs_cones

type = EGS_ConeStack

axis = 0.985 0 0 -1 0 0 # x-axis

### sensitive volume (cylindrical portion)

:start layer:

thickness = 2.03

top radii = 0.05 0.305 0.355 2.0

bottom radii = 0.05 0.305 0.355 2.0

media = c552 air c552 water

:stop layer:

### electrode base

:start layer:

thickness = 0.13

top radii = 0.15 0.305 0.355 2.0

bottom radii = 0.15 0.305 0.355 2.0

media = c552 air c552 water

:stop layer:

### up to first kink

:start layer:

6.4 Build an Exradin A12 chamber
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thickness = 0.11

top radii = 0.355 2.0

bottom radii = 0.355 2.0

media = c552 water

:stop layer:

### first widening

:start layer:

thickness = 0.08

bottom radii = 0.48 2.0

media = c552 water

:stop layer:

### up to second kink

:start layer:

thickness = 0.48

bottom radii = 0.48 2.0

media = c552 water

:stop layer:

### second widening

:start layer:

thickness = 0.08

bottom radii = 0.61 2.0

media = c552 water

:stop layer:

### to end

:start layer:

thickness = 2.0

bottom radii = 0.61 2.0

media = c552 water

:stop layer:

:stop geometry:

6.4.3 Join the chamber body to the chamber tip

Create a set of 3 planes perpendicular to the chamber axis, so as to define two regions,
numbered 0 and 1. The middle plane should be located at the joining point x = 0.935 cm.
The other two planes should be located beyond the chamber on either side.

### Planes for cd geometry base

:start geometry:

name = cd_planes

library = egs_planes

type = EGS_Xplanes

6.4 Build an Exradin A12 chamber
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# These 3 plane positions define 2 regions for us to use (0 and 1)

# the outer planes (-4 and 4) could be anything large

positions = -4 0.935 4

:stop geometry:

Finally, use a cd geometry to combine the chamber body and the chamber tip, using the
planes you just defined as the base geometry. Put the body in region 0, and the tip spheres
in region 1. Verify your geometry visually in egs_view. The cd geometry package is very
useful for combining and cutting geometries. Check out the relevant documentation for more
information.

:start geometry:

name = chamber

library = egs_cdgeometry

base geometry = cd_planes

set geometry = 0 chamber_body

set geometry = 1 chamber_tip

:stop geometry:

It is important to avoid having surfaces perfectly abutting (touching) in egs++, so start
your conestack at a location x > 0.935 cm to avoid touching the conestack surface to the
egs planes geometry. To do this, make the top layer slightly thicker (say 0.05 cm thicker,
making it 1.045+.935+.05 = 2.03 cm), and position the conestack at 0.935+0.05 = 0.985 cm
to effectively bleed the conestack into the other geometry. The cd geometry will cut this
extra bit off at the plane we define, giving priority to the chamber tip.

6.4 Build an Exradin A12 chamber
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6.4.4 Questions

1 What are the region numbers that correspond to the air cavity ? Hint: Use
a clipping plane (0,1,0,0) in egs view.

The air cavity is comprised of regions 1, 5 and 29.

2 Why is the region number for the spherical tip of the air cavity so large ?

The spherical tip of the air cavity is region 29, because the conestack is added first in the
cd geometry. Therefore, region numbers are attributed first to the conestack (regions 0
to 27, for 7 layers × 4 regions per layer), and only then to the spherical regions in the
chamber tip.

3 How many regions are there in total in this model ? How many real regions ?

There are 32 regions in this chamber model, ranging from 0 to 31. However, there are
many virtual regions in the chamber stem, where there are only two radii per conestack
layer. There are 10 virtual regions, hence there are only 22 real regions in the geometry.

4 What is the largest region number in this geometry ?

The largest region number in this geometry is 31 (the chamber tip shell). Keep in mind
that region numbering starts from 0, so if a geometry contains n regions, the largest
region number is n− 1.

6.4.5 Add a region label for the cavity

You have already determined the region numbers for the cavity, but what happens if you add
more components to the geometry? The global region number might change! For example, if
we inscribe the chamber in a box of water and look at the region numbers of the cavity again,
they will be different. If you need to know the cavity region numbers for scoring quantities
(we will), this can be quite inconvenient. Instead, use region labels. This assigns a series of
local region numbers within a given geometry to a label that you can reference elsewhere.

Local region numbers are what you find when viewing a particular geometry (e.g. our
geometry by the name of chamber). To find the local region numbers just set that geometry
as the calculation geometry, and open egs_view. In contrast, the global region numbers are
the numbers that get assigned to those same regions when the geometry gets included in
a more complex composite geometry. For example, the composite geometry of a chamber
inscribed in water.

To add a region label, place the following within a geometry block. In this example we give
the label the name chamber_cavity_label (make sure it’s unique!) and assign the local
regions 1, 5 and 29 (the air cavity regions). Now if we want to reference those regions
elsewhere in the input file, we can reference the label instead of the global region numbers
(which may change if other geometries in the input file are modified).

6.4 Build an Exradin A12 chamber
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set label = chamber_cavity_label 1 5 29

Add region labels both for the air cavity regions, and for the entire chamber. The latter of
these will be used for a variance reduction technique.

### Join tip and body, attached at the cd_planes

:start geometry:

name = chamber

library = egs_cdgeometry

base geometry = cd_planes

set geometry = 0 chamber_body

set geometry = 1 chamber_tip

# The label for the cavity regions

# View the chamber geometry alone to find these numbers

set label = chamber_cavity_label 1 5 29

set label = chamber_xcse 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 \\

18 19 20 21 22 23 24 25 26 27 28 29 30 31

:stop geometry:

6.4.6 Inscribe the chamber in air

Now that the chamber has the sensitive regions labelled, inscribe it in a box of water, then
in a larger box of air. There are many ways to do this! Name the new composite geometry
chamber_in_water_in_air, and set it to be the new simulation geometry (there can only
be one).

View the geometry in egs_view again, setting air and water transparent and using a clipping
plane. Notice how the region numbers of the sensitive volume of the chamber have changed
- this is the motivation for region labels.

#-------------------------------------------------------------------------

# A water and air box surrounding the chamber

#-------------------------------------------------------------------------

# Air outside whole structure

:start geometry:

name = outer_air_box

library = egs_box

box size = 15 15 210

:start media input:

media = air

:stop media input:

:stop geometry:

# Water outside the chamber

6.4 Build an Exradin A12 chamber
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:start geometry:

name = water_box

library = egs_box

box size = 10

:start media input:

media = water

:stop media input:

:stop geometry:

# Inscribe the chamber in the water

:start geometry:

name = chamber_in_water

library = egs_genvelope

base geometry = water_box

inscribed geometries = chamber

:stop geometry:

# Inscribe the water and chamber in the air

:start geometry:

name = chamber_in_water_in_air

library = egs_genvelope

base geometry = outer_air_box

inscribed geometries = chamber_in_water

:stop geometry:

simulation geometry = chamber_in_water_in_air

6.4.7 Add media definitions

Add media definitions to the input file (pegsless mode). Assign the same names that we
used to media in the geometry (air, c552, water), and set the density correction files appro-
priately. The full set of density correction files distributed with EGSnrc can be found in
$HEN_HOUSE/pegs4/density_corrections/. If the density correction file you are using re-
sides in that directory, or in $EGS_HOME/pegs4/density_corrections/, then the ‘.density‘
extension can be omitted. To use a density correction file located elsewhere, type the full
path and file extension.

The big benefit of this style of media definition is the ability to set AE and AP in the input
file. Previously it was necessary to generate a new pegs4 data file each time these parameters
were changed (the 521 in 521icru refers to the AE ).

##############################################################################

### Media definition

##############################################################################

:start media definition:

### Cutoff energies
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ae = 0.521 # lowest energy for electrons (kinetic+0.511)

ap = 0.01 # lowest energy for photons (kinetic)

ue = 50.511 # maximum energy for electrons (kinetic+0.511)

up = 50 # maximum energy for photons (kinetic)

# I chose the name ’air’, use something easy to type

:start air:

# .density extension omitted for density correction files located in

# $HEN_HOUSE/pegs4/density_corrections or $EGS_HOME/pegs4/

↪→ density_corrections

density correction file = air_dry_nearsealevel

:stop air:

:start c552:

density correction file = c-552air-equivalentplastic

:stop c552:

:start water:

density correction file = water_liquid

:stop water:

:stop media definition:

6.4.8 Add a particle source

Add a simple collimated 10 MeV photon source. The source shape should be a point,
positioned at -100 cm on the z-axis. Set the target shape to be a rectangle at the origin,
10× 10 cm2.

To model a linear accelerator instead, you will need to replace this with a BEAMnrc shared
library source, or a phase-space source.

##############################################################################

### Source definition

##############################################################################

:start source definition:

:start source:

name = photons

library = egs_collimated_source

charge = 0

:start source shape:

type = point

position = 0 0 -100

:stop source shape:

:start target shape:

library = egs_rectangle

rectangle = -5 -5 5 5

6.4 Build an Exradin A12 chamber

http://nrc-cnrc.github.io/EGSnrc/doc/pirs898/classEGS__BeamSource.html
http://nrc-cnrc.github.io/EGSnrc/doc/pirs898/classEGS__BeamSource.html
http://nrc-cnrc.github.io/EGSnrc/doc/pirs898/classEGS__PhspSource.html


6.4 Build an Exradin A12 chamber Getting Started with EGSnrc

:stop target shape:

:start spectrum:

type = monoenergetic

energy = 10

:stop spectrum:

:stop source:

simulation source = photons

:stop source definition:

6.4.9 Add transport parameters and run control

For ionization chamber simulation, it is OK to use most of the EGSnrc default settings.
There are two parameters that you should always set manually: the total energy cut-offs for
electrons and photons, ECUT and PCUT , respectively.

Why are these parameters so important? In short, they constitute a stage in the simulation
where approximations may occur. Particles whose total energy fall below the cut-off are
absorbed in the current region, depositing all energy and no longer being transported. This
means that secondary particles will no longer be produced, so even if the energy of the
particle was so low that it would not leave the current region, there is a loss of secondary
production. For this reason, it is essential to set ECUT and PCUT sufficiently low. However,
smaller cut-off values means longer simulation times, and in some cases result in negligible
changes to quantities of interest.

For now, use ECUT=0.521 and PCUT=0.01.

:start MC transport parameter:

Global Ecut = 0.521

Global Pcut = 0.01

:stop MC transport parameter:

:start run control:

ncase = 1e5 # simulate 10^5 source particles

:stop run control:

6.4.10 Add egs chamber scoring options

The scoring options in this section can be used only in input files for the egs_chamber

application.

Calculate the cavity mass (in grams) by determining the volume of each air cavity region,
then multiplying by the density of air. To be consistent with the simulation, use the density
that is the 3rd value in the air density correction file.
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To use the variance reduction technique photon cross-section enhancement, set the
enhance regions to all of the chamber regions, and the value of enhancement to −128.
The negative value of enhancement sets the same value to all of the regions. This will
cause photons to interact with 128 times higher probability within the chamber, resulting in
more electron production and energy deposition in the cavity region. This is a true variance
reduction technique and does not degrade accuracy in any way.

##############################################################################

### Scoring options

##############################################################################

:start scoring options:

:start calculation geometry:

geometry name = chamber_in_water_in_air # The simulation geometry

cavity regions = chamber_cavity_label # Air cavity regions

cavity mass = 0.00080152267 # g, used density = 1.20478997E-03 g/cm^3

cavity geometry = chamber # For russian roulette

enhance regions = chamber_xcse # All the chamber regions

enhancement = -128 # Use negative to set the same for all regions

:stop calculation geometry:

:stop scoring options:

6.4.11 Add variance reduction

Turn on photon cross section enhancement using the variance reduction input block. These
variance reduction parameters are valid only for egs chamber, and are designed specifically
for high efficiency in ionization chamber simulations.

Since a cross-section enhancement of 128 was set in the scoring options, turn on Russian
Roulette using the rejection input, setting it to 128. Then 1/128 will be the probability
for survival in a Russian Roulette game played with electrons that cannot reach the cavity.

We will not be using electron range rejection, so set Esave to the same value as ECUT.

##############################################################################

### Variance reduction

##############################################################################

:start variance reduction:

# Turn on photon cross-section enhancement (xcse)

cs enhancement = 1

# Turn on Russian Roulette for electrons that cannot reach the cavity

:start range rejection:

rejection = 128 # 1/128 is the Russian Roulette survival probability

Esave = 0.521 # The energy below which electrons that are in the

# cavity and cannot escape the current region

# are immediate discarded and energy deposited
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# 0.521 (same as ecut) implies no range rejection

cavity geometry = chamber

rejection range medium = air # Not using range rejection so this

# doesn’t matter

:stop range rejection:

:stop variance reduction:

6.4.12 Add ausgab (output) options

Of course the most useful part of a simulation is the output! This is done using ausgab

objects. Include one for track scoring and one for dose scoring.

Important note: currently, track scoring is incorrect when used with variance reduction
techniques turned on. The simulation results are unchanged, but the tracks paths are incor-
rect. In order to view tracks and avoid this problem, comment out the variance reduction
input block before running a very short simulation just for track generation. Comment out
the tracks ausgab object for long simulations.

To list the dose in each of the cavity regions, use the label that was defined as
chamber_cavity_label. Then, for the regions in order of increasing number, calculate and
provide the volume for each region. This is used to calculate dose from the energy deposited
in each region. If you are only interested in the energy deposited, you can neglect this input.

In the example below, notice that particle track scoring is commented out. It is possible to
comment out an entire input block by just commenting out the :start line.

##############################################################################

### Ausgab

##############################################################################

:start ausgab object definition:

#:start ausgab object:

name = tracks

library = egs_track_scoring

stop scoring = 1000

:stop ausgab object:

:start ausgab object:

library = egs_dose_scoring

name = doseScoring

medium dose = yes

# List of individual regions

dose regions = chamber_cavity_label

# List of each region volume (in same order), cm^3

volume = 0.57732 0.02880 0.05916

:stop ausgab object:

:stop ausgab object definition:
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6.4.13 Run the simulation

Run the simulation! Make sure that your input file resides in the $EGS_HOME/egs_chamber

directory, and has the .egsinp extension. It is only necessary to compile egs_chamber if
you have not done so previously. On linux systems, run egs_chamber using the following
command (replacing the input/output file names accordingly). Alternatively, use egs_gui.

$ egs_chamber -i yourInput.egsinp | tee yourOutput.txt

Once the simulation is complete, the output near the end should look something like the
following (the example simulated 106 histories).

last case = 1000000 fluence = 1e+06

Geometry Cavity dose

-----------------------------------------------

chamber_in_water_in_air 2.1911e-15 +/- 1.081 %

======================================================

Dose Scoring Object(doseScoring)

======================================================

=> last case = 1000000 fluence = 1e+06

==> Summary of region dosimetry (per particle)

ir medium rho/[g/cm3] V/cm3 Edep/[MeV] D/[Gy]

-------------------------------------------------------------------------------

3 air 0.001 0.5773 9.4809e-09 +/- 1.125 % 2.1836e-15 +/- 1.125 %

7 air 0.001 0.0288 4.7904e-10 +/- 2.005 % 2.2117e-15 +/- 2.005 %

31 air 0.001 0.0592 1.0028e-09 +/- 1.921 % 2.2538e-15 +/- 1.921 %

-------------------------------------------------------------------------------

==> Summary of media dosimetry (per particle)

medium Edep/[MeV] D/[Gy]

--------------------------------------------------------

c552 6.5399e-05 +/- 3.936 % 9.3737e-16 +/- 3.936 %

air 3.1250e-05 +/- 1.086 % 3.3441e-12 +/- 1.086 %

water 1.1111e-02 +/- 0.477 % 3.4258e-13 +/- 0.477 %

--------------------------------------------------------

======================================================

6.4.14 Questions

1 What is the total dose deposited to the ionization chamber cavity? Why is
this different from the total dose to air?

The total dose to the air cavity is NOT the sum of the dose to regions 3, 7 and 31.
Instead, there are two alternative methods. First is the pedagogical approach: use the
energy deposited and the mass (or density multiplied by volume) of the combined regions,
as well as the conversion factor for MeV/g to Gy, 1.602e-10.
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D =
E1 + E2 + E3

m1 +m2 +m3

= (
9.4809e− 09 + 4.7904e− 10 + 1.0028e− 09

0.001 ∗ (0.5773 + 0.0288 + 0.0592)
) ∗ 1.602e− 10 = 2.6398e− 15

The second method is to add the doses weighted by the volume. In theory this should
give the same answer, but due to the limited number of significant figures printed in the
output, the result is not the same. For that reason, this is the more accurate method.
Note that we have eliminated dependency on density because all the regions are of equal
density - it is left as an exercise to the reader to show the equivalency with the first
method.

D = D1 ∗
V1

V
+D2 ∗

V2

V
+D3 ∗

V3

V

= 2.1836e−15∗0.5773/0.6653+2.2117e−15∗0.0288/0.6653+2.2538e−15∗0.0592/0.6653 = 2.1911e−15

The total dose to the cavity is smaller than the total dose to air under Summary of media
dosimetry, because the total dose to air includes the dose to additional air regions outside
the chamber.

6.4 Build an Exradin A12 chamber
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Figure 4: BEAMnrc: Creating a new accelerator

7 Linear accelerator simulations

The BEAMnrc application has long been the workhorse for linear accelerator (LINAC) sim-
ulations using EGSnrc. It has been used by many clinical groups to build radiotherapy
modelling systems. In such situations BEAMnrc is typically coupled with a second applica-
tion to perform voxelized transport (e.g. patient modelling), like DOSXYZnrc, vmc++ or
any egs++ application.

BEAMnrc is distributed with a powerful GUI that enables the user to easily create new
accelerators, compile them, design input files and run simulations. It requires the tcl/tk
packages to be installed, as mentioned in the installation instructions. To launch the GUI,
either find the shortcut on your desktop or in a linux terminal type:

$ beamnrc_gui

7.1 Build a new BEAMnrc accelerator

In the BEAMnrc GUI, click File -> Specify a new accelerator (figure 4). In the win-
dow that pops up (figure 5), select SYNCJAWS and click >>. Type in any name for the
component module under CM Identifier , and click Add then Save & close.
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Figure 5: BEAMnrc: Selecting components

Save the accelerator module file as syncjaws.module - this will provide the name of the
accelerator. The next window (figure 6) allows you to select the material data to use. Click
Browse HEN_HOUSE and select 700icru.pegs4dat.

Compile the accelerator! In the main BEAMnrc GUI window, go to Execute -> Compile

and click Build & Compile , as in figure 7.

Now you are ready to start editing a new input file. To do this, click on
Edit main input parameters in the Selected components window. Set a title, and
change the parameters to match figure 8. When selecting source 1, set the parameters as in
figure 9. For scoring options, set a plane to be scored after the jaws (component 1) as in
figure 10.

Close the main input parameters, and instead click the Edit... button next to SYNCJAWS

to edit the input parameters for the jaws. Enter the parameters suggested in figure 11,
clicking the Define jaw orientation/media button to fill out the jaw settings. Set the
ECUT and PCUT of the jaw material to 10 MeV. This is an approximation, but will greatly
speed up the simulation for demonstration purposes.

For now, leave File containing jaw opening data: empty. We are setting up the com-
ponent module (CM) for dynamic mode - motion of the jaws that can be synchronized with
other components. Now would be a good time to save our progress
(File -> Save input parameters as...) giving the file a name like example.egsinp .

Create a new text file, that will provide the dynamic motion of the jaws. There are examples
for all of the syncronized CMs in $HEN_HOUSE/omega/beamnrc/CMs/sample_sequences/.
Copy the text at the end of this section and save the file as example.sequence in
$EGS_HOME/BEAM_syncjaws . Now go back to the settings of the SYNCJAWS CM, click the

7.1 Build a new BEAMnrc accelerator
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Figure 6: BEAMnrc: Selecting materials

Figure 7: BEAMnrc: Compiling an accelerator

7.1 Build a new BEAMnrc accelerator
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Figure 8: BEAMnrc: Main input parameters

Figure 9: BEAMnrc: Source 1 options

7.1 Build a new BEAMnrc accelerator
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Figure 10: BEAMnrc: Scoring options

Figure 11: BEAMnrc: Syncjaws definition

7.1 Build a new BEAMnrc accelerator
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Browse button and select the file (make sure the mode is set to Dynamic ). Click Preview

to view the first position of the jaws, before motion begins.

The format of the sequence file is described in section 15.3.8 of the BEAMnrc Users Manual
(PIRS509a). Using this file, it is possible to model motion like jaw tracking, based on the
index parameter (i.e. fractional MU or cumulative meterset weight). If multiple SYNC CMs
are included, the index is used to synchronize motion. Use a repeated index to simulate
motion with the beam off.

In the following, we define 2 static fields and 1 dynamic field in 6 steps. The upper y-jaws are
at 40 ≤ z ≤ 50 and x-jaws at 51 ≤ z ≤ 61. From index 0.0 to 3.0 (30% of the simulation),
the jaws are statically positioned. Similarly from 0.3 to 0.6. The repeated indices, 0.3 and
0.6, result in simulated collimator shifts while the beam is off. Finally, from index 0.6 to 1.0
(40%) there is a motion of the x-jaws from a nearly-closed position to a 2× 2 opening.

Ex: 2 static fields, 1 dynamic, for 2 jaws

6

0.0

40, 50, -1, -1, -2, -2

51, 61, -1, -1, -2, -2

0.3

40, 50, -1, -1, -2, -2

51, 61, -1, -1, -2, -2

0.3

40, 50, 2, 2, 1, 1

51, 61, 2, 2, 1, 1

0.6

40, 50, 2, 2, 1, 1

51, 61, 2, 2, 1, 1

0.6

40, 50, 1, 1, -1, -1

51, 61, 0.05, 0.05, -0.05, -0.05

1.0

40, 50, 1, 1, -1, -1

51, 61, 1, 1, -1, -1

7.2 Run a BEAMnrc simulation

In the BEAMnrc GUI, go to Execute -> Run and click the EXECUTE button. Since we only
set 100 histories to simulate, this will complete very quickly. Check the accelerator directory
to find the phase-space that was saved as output
( $EGS_HOME/BEAM_syncjaws/example.egsphsp1 ). The 1 in *.egsphsp1 refers to the scor-
ing plane number of the phase-space (we scored after CM 1, but if you had more CMs you
could score multiple phase-spaces in the same simulation). Additional output is recorded in
the *.egslst file.

7.2 Run a BEAMnrc simulation

https://nrc-cnrc.github.io/EGSnrc/doc/pirs509a-beamnrc.pdf
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Figure 12: BEAMDP: Mode selection

7.3 Analyze the phase-space with beamdp

Let’s do a sanity check on the output of the BEAMnrc simulation by analyzing the phase-
space using beamdp. Open the beamdp GUI. On linux this should be aliased:

$ beamdp_gui

Perform a scatter plot of the phase-space to observe how the jaws have collimated the source
(figure 12). Suggested settings are shown in figure 13, and the results in figure 14. As
expected, there are two off-axis fields, and one in the centre. Since the phase-space is scored
immediately below the second set of jaws, it is easy to confirm that the field openings appear
to match the collimator openings that were specified.

7.3 Analyze the phase-space with beamdp
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Figure 13: BEAMDP: Plotting options

Figure 14: BEAMDP: Example scatter plot

7.3 Analyze the phase-space with beamdp
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7.4 Convert CT DICOM data to egsphant

In order to perform a MC simulation on a patient phantom, measured images need to be
converted to the egsphant format. This is a rectilinear voxel format in a plain text file.
There is a tool distributed with EGSnrc called ctcreate that can be used to convert CT
DICOM files to the egsphant format.

A set of example CT DICOM files is provided in the EGSnrc-sample-data.zip file on the
release page. Extract the zip file, and navigate to the CT/DICOM directory.

Edit the CT_create_DICOM.inp file so that the path to the slice_files file is correct
(on line 2). Then open the slice_files file, and edit the paths to the ct files similarly.
Also adjust the input parameters so that a higher resolution phantom is created. Note that
this will use a default CT ramp that should be modified to agree with your imager (see the
ctcreate section in the DOSXYZnrc Users Manual).

DICOM

/yourPath/EGSnrc-sample-data/CT/DICOM/slice_files

-150.0, 150.0, -150.0, 150.0, -45.0, 45.0

0.4, 0.4, 0.1

0,0

There is no GUI for ctcreate , so it has to be run from the command line (even on windows).
From the directory containing the CT files, execute the command:

$ ctcreate CT_create_DICOM.inp

This should create a new file in the directory, named slice_names.egsphant. Open this
in a text editor to observe CT slices represented as 2D blocks of numbers. Each number
corresponds to the material index (in the order they are listed at the top of the file). Following
these blocks of integers are similar 2D blocks of floating point values - the density of each
voxel. This format is described in the DOSXYZnrc Users Manual.

Move the egsphant file into the $EGS_HOME/dosxyznrc directory for later use.

7.4 Convert CT DICOM data to egsphant

https://github.com/nrc-cnrc/EGSnrc/releases
https://nrc-cnrc.github.io/EGSnrc/doc/pirs794-dosxyznrc.pdf
https://nrc-cnrc.github.io/EGSnrc/doc/pirs794-dosxyznrc.pdf
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Figure 15: DOSXYZnrc: Start a new input file

7.5 Calculate dose with DOSXYZnrc

The next task in the radiotherapy simulation process is to perform the dose calculation. To
do this, create an input file for DOSXYZnrc and direct it to use a BEAMnrc source model
and the egsphant file that was just created.

In order to use a BEAMnrc accelerator as a dynamic shared library source in DOSXYZnrc,
the accelerator must be compiled as a shared library. This is an extra compilation step that
is not performed by default. This must be done via command line (there is not an option to
compile libraries in egs_gui ). Navigate to the accelerator directory on the command line
and type:

$ make library

Open the DOSXYZnrc GUI, and start a new input file (figure 15). Make sure to select the
same material data file that was used in BEAMnrc (i.e. 700icru from the HEN_HOUSE ).

$ dosxyznrc_gui

Set the input parameters as shown in figure 16. Select source 21, which can be a dynamically
synchronized source of particles from BEAMnrc. As long as the accelerator is compiled as
a shared library, each particle that DOSXYZnrc needs will be requested from BEAMnrc.
The accelerator model then simulates source particles until a particle reaches the scoring
plane, at which point the DOSXYZnrc simulation can continue. Each particle is assigned a
monitor unit value, to allow for the synchronization of time-dependent components. Notice
that large values of ECUT and PCUT were chosen - this is just to speed up the simulation

7.5 Calculate dose with DOSXYZnrc
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Figure 16: DOSXYZnrc: Set the main input parameters

while we test parameters! If you would like an accurate simulation, reduce them to ECUT=0.7

and PCUT=0.01 .

For the synchronized source parameters, set two static source positions (later, play around
with motion). From index 0.0 to 0.6, set the source to be incident along the negative z-axis.
From 0.6 to 1.0, set the source to be incident along the positive z-axis.

Run the simulation! The output file of interest is the example.3ddose . file - this contains
a 3D map of dose on the same grid as the *.egsphant file that we created from the CT
data. To view the dose distribution, use the dosxyz_show tool.

$ cd $EGS_HOME/dosxyznrc

$ dosxyz_show slice_files.egsphant example.3ddose

7.5 Calculate dose with DOSXYZnrc
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Figure 17: DOSXYZnrc: Set the synchronized source input parameters

7.5 Calculate dose with DOSXYZnrc
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Figure 18: dosxyz show: View the dose distribution

7.5 Calculate dose with DOSXYZnrc
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7.6 Extract dose profiles from 3ddose

It is commonly of interest to obtain profile and depth-dose curves from dose files. For the
3ddose format, there is a tool distributed with EGSnrc that can do this called statdose

(though many users design their own analysis software).

First, it may be necessary to adjust the statdose maximum array dimensions. Navigate to
$HEN_HOUSE/omega/progs/statdose and open statdose.mortran . Change the $MAXVOX

values to 300. The $MAXVOXEL parameter should be set to the maximum value of $MAXVOXX,
$MAXVOXY and $MAXVOXZ. The save the file and recompile statdose ( make clean; make ).

REPLACE {$MAXVOXX} WITH {200};

REPLACE {$MAXVOXY} WITH {200};

REPLACE {$MAXVOXZ} WITH {200};

REPLACE {$MAXVOXEL} WITH {200};

The statdose code does not have a GUI, so must be run from the command line. Navi-
gate to $EGS_HOME/dosxyznrc , and type statdose to launch the program. This software
uses text input - an example of both the output and input is shown below. Start with
Selection: 1 to read in dose distributions. In our directory we had 9 *.3ddose files
listed, but you will probably just have one to choose. The number to the left of example is
the file number to select (7 for us). Assign this file an internal reference number (use 1).

*****************************************

STATDOSE.MORTRAN

Max array dimensions: 200 200 200

Max # data sets: 15

*****************************************

MAIN MENU

--------

0 - Exit

1 - Read dose distributions

2 - Statistical analysis

3 - Normalization

4 - Rebinning

5 - Plot

6 - Save

Selection: 1

READ DOSE DISTRIBUTIONS

-----------------------

1 16MVp_h2o_phantom_beamsource_example

2 16MVp_h2o_phantom_phsp_example

3 5MeV-2

4 5MeV

5 CT_example_electron

6 edge_rot

7 example

8 tg195_test

9 tg195_validation

Input file number to Read in: (1- 9 or 0-Main Menu): 7

File number for temporary storage: (1-* or 0-Main Menu): 1

Number of voxels in X,Y,Z directions: 88 88 50

Voxel-boundary values in X-direction: -17.66 - 17.66

Voxel-boundary values in Y-direction: -17.66 - 17.66

Voxel-boundary values in Z-direction: -0.70 - 4.30

Reading dose distribution...

7.6 Extract dose profiles from 3ddose
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Reading in the uncertainties on DOSE Distribution...

After this, type 0 to return to the main menu, then select 5 to begin plotting. Plot profiles
of 1 file, and select the x-axis to plot 3 curves at different y-positions. If you have xmgrace
installed, it will launch automatically at this point to display the profiles. However, the data
is also saved to the output file selected (e.g. example.agr ). This is a plain text file, so
even if you do not have xmgrace it is easy to load into a spreadsheet for data analysis and
plotting.

Input file number to Read in: (1- 9 or 0-Main Menu): 0

MAIN MENU

--------

0 - Exit

1 - Read dose distributions

2 - Statistical analysis

3 - Normalization

4 - Rebinning

5 - Plot

6 - Save

Selection: 5

PLOT MENU

--------

0 - Main menu

1 - Plot profiles

2 - Comparison plot

Selection: 1

Data for dose plot

------------------

Files currently loaded

----------------------

1 - example

Number of file to Plot (0-PlotMenu): 1

Axis for Profile (0-PlotMenu,1-X,2-Y,3-Z): 1

Graph Title (default=Profile for example):

Output Filename (default=example):

Number of curves to Plot: 3

Generate Automatic Offset? (y/n) [n]:

Coordinates of Axis (y,z): 4,3

3D-dose distribution 1: example

Coordinates of Axis (y,z): 0,3

3D-dose distribution 1: example

Coordinates of Axis (y,z): -4,3

3D-dose distribution 1: example

Calling xmgrace...Please be patient!

If you have xmgrace installed, load the *.agr file later using the command:

$ xmgrace example.agr

7.6 Extract dose profiles from 3ddose
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8 Online resources

8.1 EGSnrc on github

• EGSnrc can be downloaded (or “cloned”) from the github page. Make sure to read
the installation instructions carefully!

https://github.com/nrc-cnrc/EGSnrc

• The annual releases can be found on the github release page. Additionally, pre-compiled
GUIs, manuals and sample data are available:

https://github.com/nrc-cnrc/EGSnrc/releases

• See the wiki page for release notes, technical instructions and links to online docu-
mentation:

https://github.com/nrc-cnrc/EGSnrc/wiki

8.2 How to get support

If you have a question, or encounter problems while using EGSnrc, seek support on the
EGSnrc reddit community! This is the best place to get answers to questions ranging from
the very simple to quite complex. There are 200+ members who regularly answer questions,
and the EGSnrc developers also contribute frequently.

https://www.reddit.com/r/EGSnrc/

To increase your chances of getting an answer, make sure to include as much information as
possible in your original post. This should include:

• The EGSnrc application and version (e.g. egs_chamber, EGSnrc 2018 master branch)

• Operating system

• A clear description of the problem

• Copy/pasted output including any errors

• Optionally: compiler version, screenshots, input files and figures

8.3 Bug reports

Have you found a bug? Report it on the github issues page! Make sure to include sufficient
information for us to reproduce the bug.

https://github.com/nrc-cnrc/EGSnrc/issues

https://github.com/nrc-cnrc/EGSnrc/wiki/Installation-overview
https://github.com/nrc-cnrc/EGSnrc
https://github.com/nrc-cnrc/EGSnrc/releases
https://github.com/nrc-cnrc/EGSnrc/wiki
https://www.reddit.com/r/EGSnrc/
https://github.com/nrc-cnrc/EGSnrc/issues
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8.4 Submitting your code

Have you added a feature or fixed a bug? Submit the changes as a pull request! This
requires learning the basics of “git” - if that is not feasible, you can also submit the changes
as an issue and allow one of us to create the pull request.

https://github.com/nrc-cnrc/EGSnrc/pulls

8.5 Documentation

Documentation for EGSnrc is available online! However, keep in mind that the documenta-
tion applies to the most recent release of EGSnrc. In other words, the documentation is
generated annually, at the same time as the release of the master branch (usually near the
start of the year).

The online documentation:

http://nrc-cnrc.github.io/EGSnrc/

Each release is posted with the full set of manuals in a zip file. Find this on the release page:

https://github.com/nrc-cnrc/EGSnrc/releases

If you are using an older version of EGSnrc, or if you are working on the develop experimen-
tal branch, you may not find the matching documentation on the release page. To obtain
the documentation that exactly matches your installation, find the documentation source
code within your installation:

$HEN_HOUSE/docs/src

Some additional steps are required to compile the documentation locally.

8.5.1 Compiling documentation locally

1. Install a suite that includes pdflatex, bibtex, texmf and makeindex (e.g. the texlive
suite includes all of these)

2. Install doxygen (for the egs++ documentation)

3. cd $HEN_HOUSE/docs/src (linux instructions)

4. ./makedoc.sh all (linux instructions)

8.4 Submitting your code

https://github.com/nrc-cnrc/EGSnrc/pulls
http://nrc-cnrc.github.io/EGSnrc/
https://github.com/nrc-cnrc/EGSnrc/releases
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9 EGSnrc file structure

• $HEN_HOUSE: Points to location of the EGSnrc system (user-defined)

• $EGS_HOME: Points to user’s working directory, where applications are copied (user-
defined)

BEWARE: Path to these folders cannot have spaces! EGSnrc relies on GNU make which
doesn’t handle blank spaces in names. Also avoid special characters like &.

9.1 The $HEN HOUSE

The $HEN_HOUSE directory contains all source code and data files for the EGSnrc system.
After installation, the contents of this directory generally remain unchanged.
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Table 1: The folder structure and contents of the HEN HOUSE.

Category Folder Description

EGSnrc core

omega

- BEAMnrc source code
- addphsp, beamdp, ctcreate, dosxyz show, readphsp,
and statdose
- tcl GUIs for beamdp, BEAMnrc and DOSXYZnrc

previewRZ
- tcl GUI for viewing geometries from DOSRZnrc,
CAVRZnrc, FLURZnrc and SPRRZnrc

src - EGSnrc core MORTRAN source code
user codes - Application source code (C++ and MORTRAN)
utils - Various MORTRAN tools

egs++ and Qt

cutils - C tools for parallel jobs and BEAMnrc sources

egs++
- C++ class library
- ausgab objects, geometries and sources

gui - Qt GUIs: egs configure, egs gui and egs inprz
iaea phsp - C++ tools for IAEA phase-spaces
interface - The code that connects C++ and MORTRAN

data

data

- photon cross section data
- bremsstrahlung cross section corrections
- eii cross sections
- molecular form factors

pegs4
- PEGS4 mortran code
- PEGS4 data files
- density correction files

spectra
- various energy spectrum data
- radionuclide decay data

configuration

makefiles - template application makefiles
mortran3 - the MORTRAN core code
pieces - system test code
scripts - configuration and support scripts
specs - configuration specifications

documentation docs - documentation source code

Medium composition, electron stopping powers, and electron interaction cross sections, for
media including with the EGSnrc distribution are contained in the pegs4 directory. The
density correction files for pegsless mode are found in pegs4/density_corrections and
the commonly used 521icru and 700icru pegs4 material data files are in pegs4/data.

There are a few example energy spectrum files contained in spectra/egsnrc. Radionuclide
decay data in ensdf format for the egs++ radionuclide source are found in spectra/lnhb.

There are some scripts that help with configuration and parallel runs in scripts.

Compiled utility executables are found in bin, such as ctcreate, beamdp, etc.

9.1 The $HEN HOUSE
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9.1.1 Configuring for different machines

To compile EGSnrc on linux, there is a command line script that can be used instead of
the installation GUI. This script is convenient to create different configurations that can be
switched between - for example changing compile flags, or compiling for different machines.

$HEN_HOUSE/scripts/configure

The configure script does not create the $EGS_HOME directory, unless you opt to run the
finalize_egs_foruser option at the end. Run the finalize script to create $EGS_HOME,
copy over application source and compile applications (this would overwrite an existing
$EGS_HOME). At the end of this script, the suggested environment variables are printed as
output to the terminal (to be copy/pasted into your shell environment, such as ~/.bashrc).

$HEN_HOUSE/scripts/finalize_egs_foruser

It is possible to have EGSnrc configured for execution on several servers, but sharing the
same installation. This means that the configuration script is run once on each machine, and
set to use a different configuration file (the *.conf file) each time. To do this, watch for the
prompt to set the configuration name and make sure to give it a unique identifier (usually
the default is linux.conf). On each server, the $EGS_CONFIG environment variable must
be set uniquely, and should point to the main configuration file created by the installation
script (but type it in as an absolute path, don’t use environment variables):

/full_path_to/HEN_HOUSE/specs/your_machine.conf

On linux systems, the $HEN_HOUSE and $my_machine environment variables are automatically
set using the $EGS_CONFIG environment variable that you provide.

9.2 The $EGS HOME

The $EGS_HOME directory contains all of the applications and data created or provided by the
user. Each application (previously called a user_code) has its own directory which contains
the source code, a Makefile, and the user’s input files. Output files from simulations are also
written to the application directories.

The user may store their own set of material data in $EGS_HOME/pegs4, which will automat-
ically supplement the data that is available in $HEN_HOUSE/pegs4.

BEAMnrc has a folder structure different from other applications. Each accelerator that
is built for BEAMnrc is assigned its own directory with the name BEAM_yourAccel, where
yourAccel is the name of the accelerator. In other words, each accelerator is compiled as an
independent EGSnrc application. The component module specifications for all accelerators
are contained in $EGS_HOME/beamnrc/spec_modules.

The compiled executables for applications reside in $EGS_HOME/bin/$my_machine.

9.2 The $EGS HOME
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9.2 The $EGS HOME
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