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Summary

Automation in all aspects of industrial activity is currently needed in today's

industries. Networks, which are the most essential elements of automation,

have been widely used in industrial sites to realize such needs. However, net-

work security threats and malfunctions at industrial sites can cause consider-

able physical damage. Damage can be prevented, and threats can be detected

through network traffic monitoring. However, industrial protocols use self-

developed protocols to ensure rapid and efficient data transfer, and most self-

developed protocols are private networking protocols. Efficient network traffic

monitoring requires a detailed understanding of the structure of industrial pro-

tocols. Studies on existing protocol reverse engineering methods for commer-

cial protocols have indicated that there are many limitations in applying these

methods to industrial protocols. Therefore, in this paper, we propose a method

of analyzing the structure of private protocols that can be employed as indus-

trial protocols. This methodology consists of six modules: traffic collection,

message extraction, message clustering by size, message clustering by similar-

ity, field extraction, and session analysis. We collect traffic using the Schneider

Modicon M580 and demonstrate the validity of the proposed methodology by

comparing collected traffic with existing protocol reverse engineering

methods.

1 | INTRODUCTION

An industrial control system (ICS) is a computer system that monitors and controls work processes based on the
manufacturing, production, power generation, processing, smelting, infrastructure, and facilities operations in an
industry. As existing industrial operations become impossible because of the scale of industrial sites, ICSs present prom-
ising solutions by automating industrial processes. Programmable logic controller (PLC) equipment have been recently
employed for automatic control of industrial processes in an ICS. PLC is a controller that moves equipment according
to user-generated logic circuits. In other words, PLC is a digitally controlled industrial power unit that performs control
actions such as logic operations, sequencing, timers, counters, and arithmetic operations based on digital and analog
input and output. PLC equipment is used to control the work processes in an ICS environment through an engineering
workstation (EWS).

PLC operations involve a structure that uses a network to transmit user-controlled logic circuits from the EWS to
the PLC. User operations involve PLC setup, security, and control. Self-developed protocols are employed to efficiently
transmit structures set up in EWS to PLC. Most of the protocols developed are not disclosed to prevent security
threats.1–3 However, PLC and EWS require security threat analysis derived from traffic monitoring, ICS status, and
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current settings check. Therefore, gaining insight into the structure of the network protocols used by PLC and EWS for
traffic monitoring is a crucial requirement.

Passive reasoning is traditionally executed to derive the structure of the protocol.4–20 However, there remains many
challenges because the types of protocols used by PLC equipment vary and the specifications of the protocols can vary
depending on the environmental situation. Therefore, automated protocol reverse engineering methods are actively
being studied. Many existing automated protocol reverse engineering technologies have been developed based on com-
mercial protocols and are insufficient for analyzing protocols in ICS environments. Unlike commercial protocols,
because peer-to-peer communication is usually involved between EWS and PLC, the EWS protocol sends and receives
all commands and all packets through a single flow from a single connection, rather than generating several flows dur-
ing the traffic collection process. For commercial protocols, a common field exists for each message, but for the EWS
protocol, a detailed structure of the EWS protocol can be difficult to determine using conventional methods because dif-
ferent messages are transmitted for each packet except for the part that has been partially disclosed.

Therefore, methods are needed to accurately analyze the EWS protocol. Security accidents are on the rise as net-
work technologies are becoming increasingly more prevalent in industrial sites.21 Network traffic monitoring is neces-
sary to prevent such accidents, and the structure of the protocol is essential. In this paper, we propose a system for
deriving the structure of the Modbus/TCP protocol using a Schneider Modicon equipment, including representative
PLC equipment. The system classifies protocol messages based on size and clusters the protocol messages using the
mean-shift algorithm. These grouped messages are defined as one type. For each type, this system uses contiguous
sequence pattern (CSP) algorithms to extract a common substring that defines the field.22 The structure of the messages
is analyzed after field definitions. Finally, the sequence and structure of the message types can be used to identify the
types of messages used at industrial sites, the meaning of the fields, and the commands transmitted by the network
traffic.

Following this introduction, this paper presents related research in Section 2. The proposed methods are described
in Section 3, and validation of the proposed methods through experiments and results is presented in Section 4. Conclu-
sions and future studies are included in Section 5.

2 | RELATED WORKS AND PROBLEM SCOPE

This paper focuses on two areas: industrial protocol and automatic protocol reverse engineering. There are many differ-
ent types of industrial protocols that use independently developed protocols for each equipment. There are countless
types of Modbus/TCP, PROFIBUS, CAN BUS, CANopen, DeviceNet, CC-Link, and so on. Automatic protocol reverse
engineering refers to a system that automatically proceeds with work to derive the structure, specifications, and so on
of a private protocol. Automatic protocol reverse engineering has been developed in a variety of ways.

2.1 | Industrial protocol

Currently, there are many industrial communication protocols used by industries. Industrial communication protocols
include equipment such as human machine interfaces (HMI), PLCs, motors, and sensors that are connected to each
other for expansion and efficiency. These industrial protocols are increasingly being used because they are simple and
fast to connect, exhibit long connections, and can connect to several equipment. In addition, with growing automation
in industries, the industrial protocol has become an essential element of industrial communication networks.

PROFIBUS is active in industrial automation systems, including factory automation and process automation.23

PROFIBUS employs digital communication methods for data processing and auxiliary data transmission. It can achieve
a maximum speed of 12 Mbps and supports up to 126 addresses. CAN BUS is a high-integrated serial bus system24

designed for the auto industry. The scope of CAN BUS has been extended to field buses for industrial automation. CAN
BUS ensures serial communications that provide physical link layers and data link layers at speeds of up to 1 Mbps.
The CANopen and DeviceNet protocols are an umbrella concept of CAN BUS, ensuring interoperability with devices
utilizing the same industrial network.25,26 The CANopen network supports up to 127 nodes. DeviceNet, on the other
hand, supports 64 nodes. Modbus is a simple, effective, and free serial bus27 wherein up to 247 nodes can be connected
within the same link. Modbus has an easy-to-deploy advantage. CC-Link is an open-structure industrial network
protocol developed by Mitsubishi of Japan.28 It has been widely used in Japan and other Asian regions.
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Recently developed industrial sites require high cost efficiency. Consequently, industrial Ethernet communication
protocols, which add Ethernet communication to industrial protocols, have been actively used. Ethernet protocols for
industrial use have reduced latency and increased deterministic responses by utilizing modified media access control
(MAC) layers. It provides flexibility in choosing a network topology and allows users to flexibly configure multiple
nodes in a single system.

EtherCAT, developed by Beckhoff, realizes rapid packet processing and extends the connectivity of automated sys-
tems from PLC to I/O and sensors by accessing real-time Ethernet in automated applications.29,30 Ethernet/IP, devel-
oped as the mainstay of Lockwell automation, is an application layer protocol, unlike EtherCAT, the MAC layer
protocol.31 PROFINET, developed by manufacturers of industrial equipment such as Siemens and GE, has three types
and is suitable for use in the environment.32 CC-Link IE is a protocol that introduces industrial Ethernet technology to
CC-Link.28 Finally, Modbus/TCP, which has been covered in this paper, is a new version that Modbus has recently
developed.33 Developed by Schneider Electric, this protocol implements Modbus message transmission using
TCP/IP. Modbus/TCP can be easily implemented over standard Ethernet networks.

Most of these industrial protocols are private or partially public. Therefore, the only way of determining the specifi-
cations of industrial protocols is to manually analyze them. However, because there are many different types of proto-
cols, it is impossible to manually analyze them whenever all protocols are used. Therefore, automated protocol reverse
engineering systems are required for deriving the structure of industrial protocols.

2.2 | Automatic protocol reverse engineering

Most existing protocol reverse engineering methods are manually analyzed. However, because there are limitations in
manually analyzing protocols as the types of protocols vary, several methods that automatically derive the structure of
protocols have been studied. Automatic protocol reverse engineering technologies typically include Netzob,
AutoReEngine, and FieldHunter.

Netzob is a semiautomatic methodology that automates some of the inference processes of the protocol structure
using a methodology proposed by Bosert in 2011.14 Netzob focuses on automating the inference process without involv-
ing the work of experts. Detailed vocabulary models and methodologies have been devised for this purpose. Netzob
clusters similar types of messages using an unweighted pair group method with arithmetic mean (UPGMA). Clustering
messages are defined as one Symbol. Symbol refers to a set of messages in the same format and role from a protocol
point of view. Each symbol sorts a common string using the Needleman–Wunsch algorithm. The common strings are
defined as static fields and alternative fields for the remainder of the messages. A field refers to a set of tokens that share
a common meaning from a protocol perspective. A symbol consists of several fields, and each field can accept a unique
value or multiple values.

AutoReEngine is a methodology proposed by Luo and Yu in 2013.16 AutoReEngine receives network traffic for a
single protocol as an input. AutoReEngine largely comprises four steps: “Data Pre-processing,” “Protocol Keyword
Extraction,” “Message Format Extraction,” and “State Machine Inference.” In the data preprocessing step, input traffic
is classified as a flow and packets in the flow are reassembled into messages. The protocol keyword extraction step
largely proceeds in two steps. In the first frequency strings extraction step, a sequence of messages is entered and
extracted from the field format candidate keyword using the Apriori algorithm. At this point, the length-1 items in the
Apriori algorithm comprise 1 byte, the transaction comprises each message sequence, and the units of support include
the session support rate (Rssr) and site-specific session set support rate (Rset). Rssr is the ratio of candidate sequences
that contain candidate sequences for the entire flow, and Rset denotes the ratio of site-specific sessions that contain can-
didate sequences for the entire site-specific session. A site-specific session refers to a set of flows with the same server.
In other words, Rsr and Rset are determined for candidates and for groups of items that occur gradually from length-1
to length-K, where the group of items that occur frequently are not extracted according to the default Apriori algorithm.
In addition, the two items that satisfy the two sets of the threshold session support rate (Tssr) and the threshold site-
specific session set (Tsets) are determined. A byte sequence, which includes a final collection of all frequently extracted
items, is extracted and closed strings are determined for these byte sequences.

FieldHunter is a methodology proposed by Bermudez et al. in 2015 that receives network traffic for a single protocol
as input.19 FieldHunter first receives network flow as an input and divides the network flow into network messages.
FieldHunter divides the units of network messages into PUSH flags for TCP and one packet for UDP. The syntax
inference step first checks whether it is a text-based or binary-based protocol and differently performs message
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tokenization in the message tokenizing module. A key step in FieldHunter is semantics inference. Locate the field that
corresponds to the type of meaning predefined in the semantics inference step in a heuristic way. There are six types of
predefined meanings used by FieldHunter: message type, message length, host identifier, session identifier, transaction
identifier, and accumulators. The primary means of determining whether the fields correspond to each type of meaning
is to use the notion that different field types are completely different in vertical analysis, that is, there exists statistical
characteristics for each field in different traces. For example, to deduce a field that corresponds to the host identifier,
this system presents a field that always includes a corresponding unique value for each source IP address of different
traces.

2.3 | Problem scope

As mentioned in this paper, protocol reverse engineering technologies developed for commercial protocols have been a
subject of focus for a long time. However, there are many limitations to using this methodology for industrial protocols.
First, Netzob and the proposed method follow a top-down approach, which involves setting the type of message and
extracting fields based on the type. Therefore, Netzob is most similar to the proposed method. However, UPGMA, a
core algorithm, is a method that recursively compares and determines the similarity between two messages, which is
an algorithm with very high computational and time complexity. In fact, using Netzob, it was determined that when a
large amount of data is entered, the system does not run, or it takes a long time to produce results.

AutoReEngine is a bottom-up method that extracts fields and derives the structure of messages from a combination
of fields. Although different from the method proposed in this paper, the Apriori algorithm used to find the common
substring in messages is similar. AutoReEngine searches for a common field in all messages. Therefore, there exists a
passive part where users must specify the appropriate threshold value. If a user does not specify the appropriate thresh-
old, the correct fields will not be extracted, nor would it be possible to derive the correct message structure without the
correct fields.

The proposed method divides the clustering of messages into two parts to address these problems. The first part
involves separating messages based on size. If industry protocols are of the same size, most messages are of the same
type. However, the clustering process that measures similarity is necessary because different types of messages may be
mixed despite of the same size. Therefore, the clustering algorithm mean-shift is applied only between messages
separated by the next step. This method enables rapid clustering because of the small number of messages being
clustered.

In addition, several types of messages are automatically inferenced using this methodology, even though semantic
inference methods are used in FieldHunter. In FieldHunter, various algorithms are used for semantic inference and for
finding matching fields. However, this method inferences the types of messages in the field extraction process. Message
type can be inferred from clustering in the proposed method. Message length also separates messages based on size,
which is the precluster stage, and so this method inferences the appropriate fields.

3 | THE PROPOSED METHOD

In this section, we present a description of the proposed automatic industrial protocol reverse engineering method. The
automatic industrial protocol reverse engineering method consists of six stages. The structure of this system consists of
the following steps: traffic collection, message extraction, message clustering based on size, message clustering based on
similarity, field extraction, and session analysis. Each step is executed as shown in Figure 1.

Figure 2 illustrates the overall structure of the automatic industrial protocol reverse engineering system. First, the
traffic collection phase collects traffic between the PLC equipment and the EWS program. Traffic associated with opera-
tions that performed the same function more than once is collected during this process. The nature of the connection

FIGURE 1 Sequence of

protocol reverse engineering for

industrial protocols
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between EWS and PLC generates one flow at the time of connection. Therefore, we execute at least two traffic collec-
tion processes to analyze the occurrence of one message in the next connection. The message extraction phase involves
extracting messages from the traffic collected. This step defines a packet as a single message, separated by directions.
Therefore, the outputs include request messages and response messages. The classification based on message size phase
defines the size of the messages and specifies the message type based on size. Type definitions are numbered in increas-
ing order of message size. The message clustering step recomposes similar messages by measuring their similarity. This
step classifies messages of the same size as other types. The field extraction phase defines a field based on a common
character string obtained from messages grouped into the same type. At this stage, commands, settings, and so on sent
using network traffic can be inferred and abnormal traffic can be detected. In addition, this step ultimately extracts each
type of message structure. In the last session analysis stage, the sequence of each type of message extracted is analyzed.
Therefore, the order of the messages can be derived when performing the functions.

3.1 | Traffic collection

This step collects traffic between the EWS and PLC equipment. When collecting traffic, EWS specifies the function and
executes that function to collect the traffic. At least two traffic sets must be collected by performing this process more
than once. Industrial protocols transmit different messages from one flow. This is a different point from commercial
protocols. For commercial protocols, the same message transmits multiple flows. Therefore, by analyzing the traffic set
of commercial protocols, the message type can be obtained in one function; however, this is not possible for industrial
protocols. Industrial protocols require more than one traffic set to extract both comparison from the same traffic sets
and the comparison from other traffic sets.

FIGURE 2 Overview of protocol reverse engineering for industrial protocol
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3.2 | Message extraction

The collected traffic set is stored in a pcap-type. This step extracts a pcap-type file as a message format used in this
method. When extracting in message form, divide by direction. Direction is a message sent from the EWS to the PLC
and from the PLC to the EWS. In other words, direction is divided into request and response messages. This is because
the message type in a request is different from the message type in a response. Information contained in the message
has been presented in the following table.

Figure 3 shows the configuration of the message. Message information includes a unique ID to distinguish between
different messages. Message information also includes the direction of the message as mentioned above. In addition, in
the next step, messages are primarily grouped based on their size, and so the messages include message size informa-
tion and type information to specify the type. In the current step, all types are zero values. The message source list
includes the location information of the message. This includes the flow and packet information where the message
was located because messages were extracted from flow information. This information will be used in the session analy-
sis step. Finally, the message content includes the payload content that the message holds.

3.3 | Message clustering based on size

This step specifies the type by separating messages extracted from the message extraction step based on size. Figure 4
shows the process of clustering messages by size. The extracted messages are divided into request and response. There-
fore, this step is performed twice. First, this step receives request messages. Messages entered are sorted based on size.
Sorted messages are sequentially formatted starting with messages with the smallest size. For example, when there are
six messages of sizes 5, 5, 5, 6, 7, and 8, messages of size 5 exhibit type 0 values, messages of size 6 exhibit type 1 values,
messages of size 7 exhibit type 2 values, and messages of size 8 exhibit type 3 values.

There are two reasons for which this step is necessary. First, there are not many fields of variable lengths in the
industrial protocol. In other words, messages of the same size are mostly of the same type. Second, clustering algo-
rithms are algorithms with relatively high computational and time complexity. Therefore, the first classification is per-
formed in the next step before the clustering algorithm is executed, reducing computational and time complexity.

3.4 | Message clustering based on similarity

This step measures the similarity between messages separated by size and performs more detailed clustering. In other
words, similarity between messages of the same size is measured and classified. At this step, we used several algorithms
to obtain clustering algorithms that best categorize messages. These algorithms include K-means, UPGMA, and mean-
shift algorithms. Experiments employing each algorithm are presented in Section 4.

K-means is an algorithm that binds given data into k clusters and works in a way that minimizes the variance of
each cluster and differences in distance.34 This algorithm is a type of self-learning and acts as a label for nonlabeled
input data. An advantage of this algorithm is that it runs fast and exhibits very good performance for certain types of
data. However, a difficulty associated with this system is that the user must specify the value of k, and the user does not
know how many data messages are classified. Therefore, the system uses the elbow method to employ K-means. The

FIGURE 3 Message information
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elbow method monitors the results by sequentially increasing the number of clusters and sets the number of previous
clusters as k if the addition of one cluster does not produce better results than previously.

UPGMA is a hierarchical clustering method. This algorithm is one of the arithmetic equations used to compare sim-
ilarities between data and data groups based on the qualitative results of the data.35 UPGMA is a proven algorithm in
the field of protocol reverse engineering used in Netzob. However, this algorithm is the weakest point of Netzob.
Because the distances of each message are sequentially and recursively calculated, the computational complexity is sig-
nificantly higher than other algorithms. Therefore, Netzob does not produce results when identifying the protocol struc-
ture of the data.

Mean-shift clustering is a centroid-based algorithm that focuses on finding the center point of each group that
operates by updating the candidates of the center point to the average of the points in the sliding window.36 The advan-
tages of this algorithm include rapid and relatively accurate clustering. In addition, in contrast to K-means clustering,
mean-shift is automatically detected in this algorithm, and so there is no need to select the number of clusters. How-
ever, a disadvantage includes the selection of a window size.

The proposed method uses the mean-shift algorithm. K-means is not available because it is not known that
messages can be classified into several types. To address these disadvantages, we must use the elbow method. However,
the elbow method is an algorithm that selects the maximum k. Therefore, messages of the same type are classified into
different types. UPGMA exhibits a high level of computational complexity. The proposed method reduced the number
of primary input data by grouping the data based on size. However, if there are many messages of the same type or a
large volume of data is entered, the system load will prevent the results from being achievable. In addition, UPGMA
requires a threshold such as K-means. It is not appropriate to apply UPGMA because it is not known in advance how
many types of messages are classified, including the value of K that is classified for each type. Therefore, we use the
mean-shift algorithm. Figure 5 shows the process of classifying messages by similarity through the mean-shift
algorithm.

By performing this step, the types of messages can be determined. That is, this step determines the number of mes-
sage types for the entered.

FIGURE 4 Messages type clustering based on size
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3.5 | Field extraction

The field extraction step derives static fields and dynamic fields for messages. A static field refers to a series of common
strings in the same type of messages. A dynamic field refers to the remainder of the except common strings in the same
type of messages. Therefore, the message type consists of static fields and dynamic fields.

At this step, the static field is extracted using the CSP algorithm. The CSP algorithm extracts a common string based
on the Apriori algorithm.37 The static field extraction process that uses the CSP algorithm extracts the same type of mes-
sages into a set of sequences. The CSP algorithm generates content of length 1 from a set of sequences. Content of
length 1 is divided into content that does not meet the minimum support through a minimum support examination
and content that satisfies the minimum support requirements. Content that does not satisfy the minimum support
requirement will be deleted, and content that satisfies the requirement will be created with a content length of 2. This
process is repeated until the length can no longer be increased. Figure 6 presents an example of the processes involved
in the extraction of static fields.

FIGURE 5 Clustering of message types based on similarity

FIGURE 6 The processes involved in extracting static fields
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The CSP algorithm requires minimum support. Minimum support is a condition in which candidate content can be
extended to the next length. In this study, the minimum support is always set to 100%; 100% refers to a common string
that is extracted from all messages of the same type.

3.6 | Session analysis

The session analysis step presents the order of defined message types that occur when executing a function by aligning
the sequence of deduced messages. Message information includes flow location and packet location information. There-
fore, this information can be used to implement a sequence of message types within a session. The implemented results
can analyze the structure of the protocol message in flow.

4 | EXPERIMENT AND RESULT

In this section, we evaluate the performance of the proposed method. The protocols used in this experiment are
Modbus/TCP, Ethernet/IP, and FTP. The proposed method evaluates the message clustering capabilities of the indus-
trial protocols Modbus/TCP and Ethernet/IP and evaluates objectivity by comparing the well-known protocol structures
and outcomes by adding FTP protocols to experiments. We use the Schneider Electric Modicon M580 (PLC) and Unity
Pro (EWS) for traffic collection. The Modicon M580 uses the industrial protocol, Modbus/TCP. Therefore, this
section presents a description of the architecture of Modbus/TCP, refers to the traffic information collected for the
experiment, and compares the results of applying different clustering algorithms to that traffic. The proposed method
evaluates performance based on the analysis results of the Modbus/TCP protocol. Finally, the same traffic proves the
validity of the proposed method using the comparative analysis and the results of Netzob and AutoReEngine.

4.1 | Modbus/TCP message structure

The Modbus/TCP is a typical industrial protocol with a partially public structure. The Modbus/TCP consists of six
fields, as shown in Figure 7. Transaction ID indicates the sequence number of tasks associated with queries and
responses. Protocol ID is fixed at 0x0000. Length indicates the distance between the length field and the end of that
frame. Unit ID is a field that occupies a fixed number of 1 byte. Function code (FC) refers to the Modbus/TCP
function code.

Function code is a command set code provided by the Modbus protocol. This service allows users to read or write
values to slave memory (Coil, Register) using the function code. Although the value between function code 1 and 127 is
used, the TCP Port supports the following values: 1, 2, 4, 5, 6, 15, and 16. For the following supported function codes,
the data part is open to the public in the document. However, the function code is fixed at 90 when sending and receiv-
ing data using EWS. Therefore, the data part is private when communicating with EWS, and the structure of the data
part with function code of 90 is extracted using the proposed method.

4.2 | Traffic collection information

The EWS can perform various functions. Typical functions include connecting with PLC, project transfer EWS to PLC,
and project transfer PLC to EWS. The connection to PLC is the most basic function of connecting EWS and PLC. The
function of project transfer EWS to PLC transmits project sets using EWS. The PLC, which receives the project, per-
forms the task in the logic set using EWS. The function of project transfer PLC to EWS involves sending project

FIGURE 7 Structure of Modbus/TCP
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information that is performed by existing PLC to EWS. We collect traffic and analyze protocol structures for the follow-
ing three typical functions. Traffic collection information is shown in Table 1.

4.3 | Results of the message clustering algorithm

In the proposed system, we categorized messages based on type using clustering algorithms. The proposed algorithms
are K-means, UPGMA, and mean-shift. This section applies each algorithm to protocols. The applied results were com-
pared to prove the validity of applying the mean-shift algorithm. We manually classified the message types by analyzing
the message types of the experimental data for accurate experimentation. The results of the classification are presented
in Table 2.

Table 3 presents the results of applying the message clustering algorithm. When applying each algorithm, input data
comprise messages classified by size. In other words, if there are five types of message sizes in the input data, clustering

TABLE 1 Information of evaluation traffic

Modbus/TCP Connection Transfer EWS to PLC Transfer PLC to EWS

File 29 23 28

Flow 29 46 28

Packet 3506 7532 4523

Bytes 571 314 2 168 519 1 419 958

Messages 3506 7532 4523

Ethernet/IP Connection Transfer EWS to PLC Transfer PLC to EWS

File 3 3 3

Flow 3 10 8

Packet 299 938 674

Bytes 30 314 89 010 88 935

Messages 299 938 674

FTP -

File 5

Flow 8

Packet 1139

Bytes 101 524

Messages 1139

TABLE 2 Number of ground-truth message types by functions

The ground truth message types

Modbus/TCP

Connection 32 (19 + 13)

Transfer EWS to PLC 66 (22 + 44)

Transfer PLC to EWS 74 (63 + 11)

Ethernet/IP

Connection 29 (16 + 13)

Transfer EWS to PLC 28 (15 + 13)

Transfer PLC to EWS 19 (11 + 8)

FTP

- 47 (24 + 23)
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algorithms are executed five times. We determined that the mean-shift algorithm is most similar to the results of manu-
ally classifying message types. K-means and UPGMA set the K value using the elbow value, and so the number of mes-
sage types is the same.

4.4 | Result of Modbus/TCP structure analysis of the proposed system

In this section, we present a description of the results of the Modbus/TCP protocol analysis using the proposed method.
We also present a comparison of the proposed method with existing protocol reverse engineering methods. Existing pro-
tocol reverse engineering methods include Netzob and AutoReEngine. Netzob and AutoReEngine are the most repre-
sentative protocol reverse engineering methods used for commercial protocols. Netzob and AutoReEngine require
initial setup values. Netzob must set a similarity percentage, and AutoReEngine must set a minimum support value
because it is based on the Apriori algorithm. We applied several values to obtain the best initial settings, and we deter-
mined that the value was 50%.

Indicators for evaluating performance were evaluated in terms of conciseness and coverage. Conciseness evaluates
the message type of input data to the manually generated ground-truth type and the message type extracted from each
methodology. Conciseness is always based on the number of ground truth message types. If the message types extracted
using each methodology are more than the number of ground truth message types, the result is a percentage of ground
truth message types among the extracted message types. In the opposite case, the result is the percentage of the
extracted message types among the ground truth message types.

Coverage evaluates the ability to cover all messages when a message type is extracted. The proposed method and
Netzob first classifies the message type. Therefore, the proposed method and Netzob define the classification of only
one message in the message type classification as uncoverable. This is because no field can be extracted if one message
is classified into one type. AutoReEngine defines messages that cannot be covered by extracted fields.

Conciseness =
The number of extracted message types

The number of ground truthmessage types
,

#GTmessage types> #extracted message typesð Þ

Conciseness =
The number of ground truth message types
The number of extracted message types

,

#GTmessage types<#extracted message typesð Þ

Coverage=
The number of covered messages

The number of messages
,

Table 4 represents the conciseness value of the Netzob, AutoReEngine, and the proposed method. The conciseness
results indicate that the message types are classified most similar to the number of ground-truth message types. For

TABLE 3 Result of message clustering by algorithms

Size K-means UPGMA Mean-shift

Modbus/TCP

Connection 23 (17 + 6) 76 (27 + 49) 76 (27 + 49) 43 (27 + 16)

Transfer EWS to PLC 29 (18 + 11) 83 (36 + 47) 83 (36 + 47) 65 (27 + 38)

Transfer PLC to EWS 26 (20 + 6) 44 (14 + 30) 44 (14 + 30) 53 (43 + 10)

Ethernet/IP

Connection 23 (13 + 10) 29 (16 + 13) 29 (16 + 13) 29 (16 + 13)

Transfer EWS to PLC 24 (13 + 11) 33 (17 + 16) 33 (17 + 16) 27 (14 + 13)

Transfer PLC to EWS 24 (12 + 12) 29 (14 + 15) 29 (14 + 15) 25 (13 + 12)

FTP

- 56 (31 + 25) 97 (54 + 43) 97 (54 + 43) 63 (33 + 30)
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Modbus/TCP, it does not categorize in more detail than Netzob and AutoReEngine or subdivide the message type with.
Netzob cannot analyze Ethernet/IP Protocol. Netzob uses a large amount of system resources because of the amount of
data entered and the length of the data. Although Ethernet/IP protocol has less data input than Modbus/TCP protocol,
it was not analyzed because Ethernet/IP payload contents are high. Although AutoReEngine was able to quickly ana-
lyze Ethernet/IP, the same message type was often divided into different message types. For the FTP protocol,
AutoReEngine performed best. This is because the proposed method was developed for industrial protocols that do not
have many variable lengths. However, the proposed method showed better performance than Netzob and confirmed
that the common protocol FTP could also inference of the protocol structure.

Table 5 represents the coverage value of the Netzob, AutoReEngine, and the proposed method. The results of cover-
age show that the message types categorized by the proposed method contain the most messages. Netzob and
AutoReEngine have high coverage, but given the result of conciseness, the other methods could see high coverage
because the other methods deduced a protocol structure that was not detailed. The proposed method also showed the
highest level of coverage for FTP, a commercial protocol.

Given only the results of coverage, it can be interpreted that the proposed method does not show values that differ
from Netzob and AutoReEngine. However, when analyzed in combination with the result of conciseness, the proposed
method is more similar to the correct message types than to other methods, and it can be confirmed that the content of
the categorized message types contains the most messages.

As we can observe from the results of the experiment, our proposed method exhibits higher performance compared
to existing methods. Netzob and AutoReEngine extract too many message types based on conciseness. These results
can present several challenges in protocol structure analysis. In addition, the proposed method covered more messages

TABLE 4 Conciseness (proposed method vs. Netzob vs. AutoReEngine)

Netzob AutoReEngine Proposed method

Modbus/TCP

Connection 36.36% (32/88) 62.75% (32/51) 74.41% (32/43)

Transfer EWS to PLC 27.27% (66/242) 57.89% (66/114) 98.48% (65/66)

Transfer PLC to EWS 33.64% (74/220) 19.27% (74/384) 71.62% (53/74)

Ethernet/IP

Connection - 40% (29/72) 90.63% (29/32)

Transfer EWS to PLC - 28.7% (28/99) 96.43% (27/28)

Transfer PLC to EWS - 56.06% (19/34) 76% (19/25)

FTP

36.17% (17/47) 97.92% (47/48) 74.60% (47/63)

TABLE 5 Coverage (proposed method vs. Netzob vs. AutoReEngine)

Netzob AutoReEngine Proposed method

Modbus/TCP

Connection 97.69% (3425/3506) 89.67% (3144/3506) 100% (3506/3506)

Transfer EWS to PLC 97.21% (4397/4523) 93.35% (4222/4523) 99.85% (4516/4523)

Transfer PLC to EWS 98.1% (7389/7532) 79.73% (6005/7532) 99.99% (7531/7532)

Ethernet/IP

Connection - 84.62% (253/299) 92.31% (276/299)

Transfer EWS to PLC - 93.18% (874/938) 97.44% (914/938)

Transfer PLC to EWS - 90.8% (612/674) 100% (674/674)

FTP

- 82.53% (940/1139) 84.99% (968/1139) 88.94% (1013/1139)
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than Netzob and AutoReEngine. Therefore, the proposed method to make inferences the message types that include
additional messages. And extracted message types are concise.

5 | CONCLUSION AND FUTURE WORK

Industrial protocols employed in industrial sites and infrastructure do not use standardized protocols but mostly indepen-
dently developed protocols. As most of the independently developed protocols cannot be disclosed for reasons such as
threats, it is very difficult to extract control device configuration information using the protocol's specifications or protocols.
In this paper, a method is proposed to analyze the structure of the closed-door protocol for industrial use. This methodol-
ogy can be used to enable efficient monitoring of network traffic for industrial protocols. Experiments have demonstrated
that existing protocol reverse engineering methods exhibit several limitations in analyzing industrial protocols.

This methodology consists of six modules: traffic collection, message extraction, message clustering based on size,
message clustering based on similarity, field extraction, and session analysis. The mean-shift algorithm was used for
message clustering based on the similarity module. This methodology demonstrated that the structural analysis of the
data part of the Modbus/TCP protocol, which was achievable. The proposed method contains the most messages from
the industrial private protocol through the results of the experiment and classifies them into the simplest message types.
This means that the most accurate message types can be classified, and information can be extracted about industrial
process commands and so on, which are passed through traffic based on the categorized message types. This process
enables monitoring of network traffic in industrial processes and can prevent network security threats.

As future work, we intend to apply more diverse industrial protocols to develop systems that can be used in indus-
trial sites. In addition, we aim to develop a system that is applicable to commercial, private, and industrial protocols.
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