
Paraphrase Detection Using Recursive Autoencoder

Eric Huang
Stanford University

ehhuang@stanford.edu

ABSTRACT
In this paper, we tackle the paraphrase detection task. We
present a novel recursive autoencoder architecture that learns
representations of phrases in an unsupervised way. Using
these representations, we are able to extract features for
classification algorithms that allow us to outperform many
results from previous works.

Keywords
paraphrase detection, computational semantics, autoencoders,
deep learning

1. INTRODUCTION
Computational semantics is the study of the process of

constructing meaning representations of natural language
expressions. This is important in many high-level appli-
cations, such as translation, summarization, information re-
trieval, question answering, and communicating with com-
puters using natural languages. Whereas statistical methods
can perform satisfactorily depending on the quality the ap-
plication requires, deep semantic understanding is required
to have high-quality results.

Paraphrase detection is one of the difficult tasks where
deep semantic understanding is required to achieve high per-
formance. Paraphrase is defined as the restatement of a text
or passages, in an alternative way. Paraphrase detection is
important for applications such as summarization, informa-
tion retrieval, information extraction and question answer-
ing, etc.

In this paper, We present a novel approach to learn phrasal
representations using recursive neural networks. These phrasal
representations are vectors in a n-dimensional semantic space,
where phrases with similar meanings are close to each other.
We extract features from these representations for use in this
task. We use the Microsoft Paraphrase Corpus [1] for eval-
uating our method.

Many previous works have studied paraphrase detection.
Most adopt carefully hand-engineer lexical or semantic sim-
ilarity features or use heuristics. Dolan et. al. [1] uses
string edit distance and a heuristic that pairs sentences from
different stories in the same cluster. Islam and Inkpen [3]
uses a modified version of the longest common subsequence
string matching algorithm. Kozareva and Montoyo [4] eval-
uated three machine learning algorithms using several hand-

designed lexical and semantic similarity features. Mihalcea
et. al. [5] also used corpus-based and knowledge- based
measures of similarity. Our approach differs in that we
learn general task-independent phrasal representations in
an unsupervised way, without hand-designing the represen-
tations. These representations could be easily adopted for
other tasks, such as sentiment analysis. However, in this
paper, we focus on paraphrase detection.

Fernando and Stevenson [2] proposes a similarity matrix
approach, which inspired one of our methods for using the
representations in this task. While they use similarity mea-
sures extracted from the WordNet dataset, we use the dis-
tance between our representations as the similarity measure.

Qiu et. al. [6] took a different approach that classifies
paraphrases based on how dissimilar two sentences are. This
is another method that could easily make use of our repre-
sentations and could be explored in the future.

Collobert and Weston [7] created word feature represen-
tations using a deep neural network architecture. In our
recursive autoencoder model, we bootstrap using these rep-
resentations to construct phrasal representations.

2. RECURSIVE AUTOENCODER
In this section, we first present the learning problem we

study. We then provide the background on autoencoders.
Finally, we describe how to use recursiveness to obtain one
representation for sentences of variable lengths.

2.1 Learning Problem
The learning problem we consider is as follows: Given a

set of sentences of variable lengths, we want to construct
a fixed n-dimensional representation for each sentence with
the desired property that sentences that are closer in this
n-dimensional space are more similar semantically.

2.1.1 Input Representation
Using a dictionary of size d, we represent a sentence of

m words as a d × m matrix, M , where the i-th column is
a d-dimensional vector with the entry corresponding to the
dictionary index of the i-th word set to 1, and 0 elsewhere.
Using this index matrix, we assign each word its continuous
feature representation as in Collobert and Weston [7] by
simply multiplying the two matrices,

X = LM

where the i-th column in L is the representation of the
i-th word in the dictionary, M is the index matrix, and
X is the n × m matrix representing the sentence. This X



Figure 1: An autoencoder [9].

will be the final input to our model. Note that sentences of
different lengths, m and m′, would have matrices of different
dimensions, n×m and n×m′. Our model needs to construct
a continuous n-dimensional representation from an n × m
matrix for any positive-valued m.

2.2 Background: Autoencoder
The autoencoder learning algorithm is one approach to au-

tomatically extract features from inputs in an unsupervised
way [9]. Similar to typical neural networks, it has layers of
nodes and represents a hypothesis hθ(x) = y, where x is the
input, y is the output, and θ are all the weights of the con-
nections. The output is obtained by the feedforward process
as in neural networks,

z(l+1) = W (l)a(l) + b(l) (1)

a(l+1) = f(z(l+1)) (2)

The a(l+1) is a vector whose values are the activations of
hidden nodes at layer (l + 1). The matrix W (l+1) are the
weights of connections between layer l nodes and layer (l+1)

nodes. The vector b(l) is the bias term for layer l. f is an
element- wise sigmoid-like function such as logit or tanh.

While typical neural networks are often used in supervised
learning, an autoencoder is a neural network with a specific
architecture that learns in an unsupervised way, by aiming to
set output values to be equal to input values of each training
instance i, i.e. y(i) = x(i). In other words, the autoencoder
learning algorithm tries to learn an identity function to re-
produce its inputs. Specifically, an autoencoder has three
layers: input layer, hidden layer, and output layer, where
the output layer has the same number of nodes as the input
layer (see Figure 1). The idea is that by using a smaller
number of hidden nodes, as the network will learn to “en-
code” the inputs with the hidden nodes, then “decode” using
the hidden nodes to reconstruct the inputs. If the number of
hidden nodes are smaller than the number of input nodes,

the activations of the hidden nodes would try to capture
most of the information from the input nodes.

2.3 Recursive Autoencoder
One problem with computing representations for sentences

is that sentences have variable lengths. The model needs
to produce fixed-dimensional representations from inputs of
different dimensions. Our approach to the problem is to ap-
ply autoencoders recursively to the input. Specifically, we
use an autoencoder with 2n input nodes, n hidden nodes,
and 2n output nodes. The autoencoder collapses the sen-
tence by first taking two neighboring words, concatenating
the two n-dimensional vector representations to form one
2n-dimensional input vector to the autoencoder. After ap-
plying the encoding process, the activations at the hidden
layer will be an n-dimensional vector representing the two
words jointly. Then, we replace the two words with this
joint representation and repeat until there is only one rep-
resentation for the entire sentence (see Figure 2). Note that
because the representations of the sub-phrases constructed
in this process have same dimensions as the single word rep-
resentations, the autoencoder can join two words, one word
and a phrase, or two phrases together. We leave the discus-
sion of the different ways by which we make the decisions
for the order the words and phrases are joined until a later
section.

2.4 Learning
Let Ti be the set of all non-leaf nodes in the tree structure

for sentence i. We define the cost function for each sentence
i to be the sum of reconstruction errors at each node of its
tree structure:

J(i)(W, b) =
∑
d∈T (i)

1

2
‖[c(i)1 ; c

(i)
2 ](d) − hW,b([c(i)1 ; c

(i)
2 ](d))‖2



Figure 2: An example RAE tree of a four-word sentences. Autoencoders are stacked on top of one another
where the hidden node activations computed by the lower ones are used as inputs to higher autoencoders.

where c
(i)
1 is the representation of the left child, and c

(i)
2

is that of the right child. [c
(i)
1 ; c

(i)
2 ](d) is the concatenation of

the representations of the two children and is the input to

the autoencoder at node d. hW,b([c
(i)
1 ; c

(i)
2 ](d)) is the values

at the output layer.
Our training objective is to minimize the sum of the costs

for every training sentence i plus the regularization term:

min
W,b

∑
i

J(i)(W, b) + λ
1

2
‖W‖2

In order to minimize this objective, we efficiently compute
the gradients using backpropagation through structure. For
updating W2, we derived the following equations:

δ(d,i)r = −([c1; c2](d,i) − a(3)(d,i)) • f ′(z(3)(d,i))
∇W2J

(d,i) = δ(d,i)r (a(2)(d,i))T

∇b2J
(d,i) = δ(d,i)r

where the superscript (d, i) denote that the value is for
node d in sentence i. The above is simply backpropagating
the reconstruction error for which W2 is only responsible.
For W1, we need to backpropagate errors coming from the
node’s parent, as well as the reconstruction error at the node
because W1 directly affects those errors. We have the fol-
lowing equations:

δ(2)(d,i) = (WT
2 δ

(d,i)
r ) • f ′(z(2)(d,i)) + [δ(p(d),i)]1:n

∇W1J
(d,i) = δ(2)(d,i)([c1; c2](d,i))T

∇b1J
(d,i) = δ(2)(d,i)

δ(d,i) = (WT
1 δ

(2)(d,i) +

([c1; c2](d,i) − a(3)(d,i))) • f ′([c1; c2](d,i))

where [c1; c2] ∈ R2n×1 is the input to the autoencoder

at node d. [·]1:n denotes the first n elements of a vector.
p(d) denotes the parent node immediately above node d. In
the above equations, we consider d to be the left child of its
parent. For the right child, we use n+1 : 2n, instead of 1 : n.
The gradients are then summed over all non-leaf nodes and
over all sentences plus the derivative of the regularization
term:

∇WjJ :=
∑
i

∑
d∈T

∇WjJ
(i) + λWj

∇bjJ :=
∑
i

∑
d∈T

∇bjJ
(i)

With these gradients computed, we use the L-BFGS algo-
rithm to perform the optimization.

2.5 Determining Tree Structure
Here we discuss several ways for determining the tree

structure for the recursive autoencoder.

2.5.1 Greedy
In the greedy approach, we first compute the reconstruc-

tion error of the autoencoder for each adjacent pair of words
in the sentence. We choose the pair with the lowest re-
construction error, then replace those two words with the
computed representation. We repeat the process until we
have one representation. This method is greedy because it
chooses the pair with the lowest reconstruction error first.
The idea is that if we combine words for which we can most
confidently represent, we would lose little information as we
collapse the sentence.

2.5.2 Global
Another approach we implement uses the CKY algorithm

to find the globally optimal tree structure for combining
words. However, we have a very general grammar, X →
XX where X can be any string. Essentially, we utilize the



bottom-up dynamic-programming approach to compute all
possible tree structures and pick the one whose sum of recon-
struction errors at all nodes is minimal. However, because
the CKY is very computationally intensive, especially with
the general grammar, we only keep one node with the lowest
reconstruction error at each entry in the CKY table, instead
of keeping all possible splits at that entry. This gives us a
near-optimal tree structure, which is better than the greedy
approach.

2.5.3 Parsed Tree
Because we are interested in capturing the semantics of

the sentences rather than syntax, it makes sense to sepa-
rate semantics and syntax by using parse trees of the sen-
tences, determined by either humans or any off-the-shelf
parsers. The intuition is that syntax often captures informa-
tion blocks in a sentence, so it makes sense for the RAE to
reconstruct phrase-by-phrase from the bottom up according
to the parse tree. By relieving the responsibility to decide
tree structures from the RAE, it can focus better on recon-
structing the meaning of the sentence.

2.6 Cost Weighting
In the above section on learning, we define the cost func-

tion at each node to be the sum of the reconstruction errors
of each input word/phrase. However, we may want to weight
the errors of each input differently because often the two in-
puts do not carry the same weight in terms of the meaning
of the combined phrase.

2.6.1 Weighting 1: Number of Leaf Nodes Below
In Weighting 0, we weight the error of the input based on

how many leaf nodes are below it. Let n1, n2 be the number
of leaf nodes under the left and right input respectively, and
recErr1, recErr2 be the reconstruction error of the left and
right input respectively. Cost at the node is weighted as:

n1

n1 + n2
recErr1 +

n2

n1 + n2
recErr2

The idea is that the input representing more words should
be more important and so the autoencoder should try harder
in reconstructing that input versus the other.

2.6.2 Weighting 2: Average Counts of Leaf Nodes
One problem we might face with training is that words in

the corpus follow a power-law distribution. Stop words such
as ‘the’, ‘a’, etc. appear far more often than other words in
training sentences. This presents a problem because in the
training objective the reconstruction errors each word con-
tributes is proportional to the number of occurrences in the
corpus. That is, the more a word appears, the more times
the RAE tries to reconstruct the word, the more error terms
the word contributes to the objective. Thus, to minimize
the objective, the optimization might make the RAE very
good at reconstructing these more frequent words in order
to make the overall cost lower.

Weighting 2 responds to this problem by weighting the re-
construction error of each input by the average of the counts
of the words under the input. Let c1, ..., cn be the counts of
the n words under the left child, and c′1, ..., c

′
m be the counts

of the m words under the right child. The cost at each node
is thus:

f2
f1 + f2

recErr1 +
f1

f1 + f2
recErr2

where f1 =
∑

j cj

n
and f2 =

∑
j c

′
j

m
. This weighting says

that the reconstruction error of the input whose words are
more frequent will be weighted less.

2.6.3 Weighting 3: Frequency of n-gram
In dealing with the same frequency problem described

above, Weighting 3 weights each reconstruction error based
on the count of the n-gram. Let c1 be the count of the
n-word sequence represented by the left- input, and c2 the
m-word sequence represented by the right-input. The cost
at each node is:

1

c1
recErr1 +

1

c2
recErr2

Because each n-gram will be reconstructed c times, this
weighting will make each n-gram contribute to the overall
cost with exactly one term, which is the average reconstruc-
tion error over all the errors for each reconstruction. Thus,
the RAE tries equally hard at reconstructing each n-gram
that appears in the corpus. To conserve memory, we only
keep the counts for phrases with fewer than five words, and
assign a count of one to longer n-grams.

3. DATASETS
In this section, we describe the two datasets that are used

in our experiments.

3.1 Microsoft Research Paraphrase Corpus
We use the Microsoft Research Paraphrase Corpus (Dolan

et al., 2004), which is a standard resource for the paraphrase
detection task. There are 5801 sentence pair in the dataset,
which are hand labeled by human judges whether the sen-
tence pair are paraphrases of one another. The sentence
pairs are selected from Web news sources specifically for
evaluating paraphrase detection algorithms. Thus, many of
the negative pairs are not completely unrelated sentences,
but rather only exhibit subtle distances. Below is a positive
pair that is clearly semantically equivalent,

• Amrozi accused his brother, whom he called the wit-
ness, of deliberately distorting his evidence.

• Referring to him as only the witness, Amrozi accused
his brother of deliberately distorting his evidence.

One sentence in a positive example could contain extra
information that’s not in the other sentence:

• They had published an advertisement on the Internet
on June 10, offering the cargo for sale, he added.

• On June 10, the ship ’s owners had published an ad-
vertisement on the Internet, offering the explosives for
sale.

Below is one negative pair example:

• Gyorgy Heizler, head of the local disaster unit, said
the coach was carrying 38 passengers.

• The head of the local disaster unit, Gyorgy Heizler,
said the coach driver had failed to heed red stop lights.



These examples illustrate the difficulty of this dataset and
suggest that simple methods such as counting word overlap
between sentences would not work well.

The data is unbalanced with 67% of the pairs being posi-
tive examples and 33% being negative examples. The dataset
is split into the training set with 4,076 sentence pairs, and
the test set with 1,725 sentence pairs. This partition is used
by all previous published work on this data. We further
split the training set into the training set we use in this pa-
per with 3,261 sentence pairs, and the validation set with
815 sentence pairs, which is used to tune model parameters.

3.2 English Gigaword
In order to train the RAE to learn phrasal representations

well, we use 152,487 sentences from the English Gigaword
Corpus, in addition to the 6,522 sentences from the 3,261
training sentence pairs in the MSRP corpus. In the com-
bined set of 159,009 sentences, there are a total of 50,002
words that can be found in the vocabulary used by Col-
lobert and Weston [7]. Other words are mapped to the UN-
KNOWN token.

4. DETAILS OF TRAINING THE RAE
We choose to use tanh as the sigmoid-like activation func-

tion f in the autoencoder because its range includes both
positive and negative numbers, which are both found in the
word representations. We use the 100-dimensional word rep-
resentations learned by Collobert and Weston [7] and we
pre-processed this lookup table of word representations by
applying tanh to each value, making each value to be in the
range of -1 and 1, consistent with the values of the nodes
in the autoencoder. To parse the sentences in the corpus
for use in the parsed tree approach for obtaining the tree
structure, we used the Stanford Parser [8].

Because the RAE is very computationally intensive and
the training set contains a large number of examples, in or-
der to speed up convergence, we train the RAE using batches
of the training sentences. Specifically, we split the training
set into batches of 5,000 sentences each. We train on the
first batch of sentences using L-BFGS for twenty iterations.
Then, we move on to use the next batch of 5,000 sentences.
We repeat this process in a round-robin fashion until each
batch has been trained on twice, equivalent to a total of
forty iterations on each batch. As we train the RAE, we
examined the reconstruction error of the validation set and
observed that the value indeed decreases in number of iter-
ations until convergence, suggesting that this batch training
method is approximately minimizing the objective.

5. QUALITY OF LEARNED PHRASAL REP-
RESENTATIONS

Before we dive into evaluating our model on the para-
phrase detection task, we would like to first examine quali-
tatively what representations the RAE can produce, both as
a sanity check that the RAE has desirable properties and so
that we can better understand the model. To do so, we train
the RAE as described above. With the trained parameters,
we construct representations for each phrase as determined
by the parse tree in the training set we used. We compute
the euclidean distance between each pair of the representa-
tions. Below are some phrases and their nearest neighbors
listed in order:

• the U.S.

– Weighting 0: the French, the Swiss, the Japanese

– Weighting 1: the French, the Swiss, the Chinese

– Weighting 2: a U.S., the second biggest U.S., the
most experienced U.S.

– Weighting 3: a U.S., a 36-year-old U.S., a recent
U.S.

We see that Weighting 0 and 1, which do not take
frequency of words into account, matches “the U.S.”
with “the <country>”. From the single-word repre-
sentations, the RAE knows the countries are closer to-
gether in the semantic space; however, it tries too hard
to reconstruct “the”, which really does not carry much
meaning. With Weighting 2 and 3, which do take fre-
quency of words into account, the RAE realizes that
“U.S.” is the more important word than “the”. Thus,
the nearing neighbors it finds are “<adjective> U.S.”.

• the late

– Weighting 0: the early, the next, the last

– Weighting 1: the early, the next, the last

– Weighting 2: a late, ... in a joint statement late,
the day ’s late

– Weighting 3: a late, a 26-point lead late, a wicket
late

Similarly, for“the late”, the frequency weightings place
more weight on “late”, which is the more significant
word than “the” in the phrase.

• executive director

– Weighting 0: executive editor, executive secre-
tary, council director

– Weighting 1: executive secretary, executive edi-
tor, council director

– Weighting 2: council director, general director,
assistant director

– Weighting 3: council director, assistant director,
Managing director

In this example, we observe that Weighting 0 and 1
finds nearest neighbors that match the first word, “ex-
ecutive”, while nearest neighbors found by Weighting
2 and 3 match the second word, “director”. This might
be an interesting artifact of the frequency weighting:
because stop words like “the” and “a” are often in the
beginning of a phrase, the RAEs with frequency weight-
ing learn to weight the second input more in the com-
bined representation.

• began Wednesday

– Weighting 0: began Monday, began Friday, began
Tuesday

– Weighting 1: began Friday, began Monday, began
Tuesday

– Weighting 2: began Friday, began Monday, began
Tuesday



– Weighting 3: arrived Wednesday, *UNKNOWN*
p.m. Wednesday, claimed Wednesday

Nearest neighbors using Weighting 2 and 3 are mostly
the same except in some examples. The above ex-
ample shows that Weighting 3 chooses nearest neigh-
bors based on the day in the week, while Weighting 2
chooses by the action.

• Fourteen people were wounded when a war plane fired
a missile at the town Wednesday

– Weighting 0: Fourteen people were killed and 150
wounded at the mosque and in unrest that spilled
over to other parts of the city / Fourteen people
were killed and 150 wounded in the violence /
Fourteen people were killed and over 150 wounded
in the worst internal violence since self-rule began
in May

– Weighting 1: Fourteen people were killed and 150
wounded at the mosque and in unrest that spilled
over to other parts of the city / Fourteen people
were killed and 150 wounded in the violence /
Fourteen people were killed and over 150 wounded
in the worst internal violence since self-rule began
in May

– Weighting 2: Fourteen people were killed and 150
wounded at the mosque and in unrest that spilled
over to other parts of the city / Fourteen people
were killed and over 150 wounded in the worst
internal violence since self-rule began in May /
Seventeen people were killed , including a promi-
nent political figure , in the latest wave of sniper
shootings in Pakistan ’s troubled business capital

– Weighting 3: Fourteen people were killed and 150
wounded in the violence / Fourteen people were
killed and 150 wounded at the mosque and in un-
rest that spilled over to other parts of the city /
Fourteen people were killed and over 150 wounded
in the worst internal violence since self-rule began
in May

This examples shows that our models can capture mean-
ing even for longer phrases. However, since it is clearly
more difficult to obtain good representations for longer
phrases, many of the nearest neighbors do not look
quite as good as those for the bigrams and trigrams.

6. CLASSIFICATION APPROACHES
Using the RAE, not only do we have the representation

for the entire sentence, but we also obtain representations
for each of the subphrase in the tree structure. The question
now is how we can use these representations for paraphrase
detection. Again, since the sentences in each sentence pair
have variable lengths, we need some ways to extract the
same number of features for different sentence pairs. We do
so by two approaches.

6.1 Aggregate Features
The first method is to aggregate the representations into

one single feature. For each sentence, we consider taking
the average, maximum or minimum of each element in a
group of representations. For example, given a group of n

representations, {X(1), X(2), ..., X(n)}, the average feature

would be Y = [y1, y2, ..., yd] where yj =
x
(1)
j +x

(2)
j +...+x

(n)
j

n
.

There are four groupings we consider. The first is only
using the representation of the top node, which is the rep-
resentation for the entire sentence after the RAE collapses
it. The second group is using all leaf nodes, which are the
single-word representations we get from Collobert and We-
ston. The third is using all non-leaf nodes. These are the
subphrase representations computed by the RAE in the pro-
cess of collapsing the sentence. The final grouping is using
representations of all nodes in the tree structure.

6.2 Similarity Matrix
The other method we use is adopted from Fernando et.

al. [2]. We use a similarity matrix to calculate the distance
for pairs of representations between words and phrases in
a sentence pair. Given sentences s(1) and s(2) in a sen-
tence pair, we compute representations of words and sub-
phrases for each sentence to get {s1(1), s2(1), ..., s2n−1

(1)}
and {s1(2), s2(2), ..., s2m−1

(2)}, where n andm are the lengths

of s(1) and s(2) respectively. We then remove the words that
appear over some threshold of times in the corpus, because
these words do not carry much meaning. We found the
threshold with best performance to correspond to the ten
most frequent words in the dictionary, which includes “the”,
“a”, etc. We then construct a matrix W where Wij is the
Euclidean distance between the representations of si

(1) and
sj

(2).
Because we want similar words or phrases to have a num-

ber close to 1 in the matrix and close to 0 for dissimilar
words or phrases, we transform each entry by applying the
function f(n) = 2sigmoid(−n) so large n approaches 0 and
small n approaches 1. For pairs that are really dissimilar,
these are words or phrases that have little relation to each
other, so we do not want them to contribute to the final
similarity score for the sentence pair. Therefore, we apply
another threshold that if the value for a pair is below the
threshold we set it to 0. We try 200 threshold values for
the cutoff, so as to retain as much information as possible.
Finally, we sum up the entries in the matrix and normalize
by the number of words in the sentence pair. In the end,
we have 200 similarity numbers that are used as features to
classification algorithms.

7. RESULTS
For the aggregate features, we used SVMs as the classi-

fier. For similarity matrix, we used logistic regressions. For
all settings, we used Weighting 3, which we judge to have
best quality nearest neighbors. We cross-validated using the
validation set that was split from the original training set to
choose the best-performing parameters and features. The
best-performing aggregate feature reported is the average of
all nodes in the tree structure. Then, we train on both the
training set and validation set, and evaluated the perfor-
mance on the test set. Table 1 summarizes our results.

We compare our models against three baselines. The first
is the naive baseline which simply predicts every sentence
pair to be paraphrases. This achieves 66.49% accuracy be-
cause the test set is unbalanced. The second baseline uses
the aggregate feature of the average of only the leaf nodes,
which achieves 68.06%. This suggests that using the single-
word representations alone provides signal for this task. This



Accuracy
Baseline (all positive) 66.49%

Leaf Node only - Aggregate 68.06%
Random RAE - Aggregate 68.12%

Greedy - Aggregate 68.57%
CKY - Aggregate 68.75%

Parsed - Aggregate 70.55%
Leaf Node Only- SimMatrix 73.04%

Parsed - SimMatrix 73.33%

Table 1: Testing accuracies.

Accuracy
Mihalcea et al. (2006) 70.30%

Rus et al. (2008) 70.60%
Qiu et al. (2006) 72.00%

Islam and Inkpen (2007) 72.60%
Fernando and Stevenson (2008) 74.10%

Wan et al. (2006) 75.60%
Kozareva and Montoyo (2006) 76.60%

Parsed - Aggregate 70.55%
Parsed - SimMatrix 73.33%

Table 2: Previous results.

is similar to counting the number of word overlaps in the
sentence pair, but more flexible because it uses the distance
between the words instead of a binary match. The third
baseline is a RAE with randomly initialized parameters, us-
ing the average of all nodes aggregate feature. This performs
slightly better than using only leaf nodes, but could be just
due to chance.

Using the RAE to create the tree structures for sentences
with the greedy and CKY approaches produces better re-
sults than all three baselines. However, when examining the
trained parameters, we noticed that the encoding and the
decoding matrices are heavily skewed. That is, either the
right half or the left half has much bigger norms than the
other side for the encoding matrix, and the top half or the
bottom has bigger norms than the other in the decoding ma-
trix. This causes the RAE to produce entirely left-to-right
or right-to-left trees, depending on the initialization of the
parameters. This might be because these approaches allow
the RAE to freely choose the tree structure, the optimization
causes the RAE to focus on always reconstructing one of the
inputs really well in order to get a low overall reconstruction
error.

Observing this problem, we use the Stanford Parser to
parse the dataset and fix the tree structure of each sentence,
so that the RAE can focus more on the semantics instead
of the syntax. With this pre-parsing, we get a boost in
performance to 70.55%.

Using the similarity matrix method, we see large improve-
ments on accuracy up to 73.33% because it is able to retain
more information in the representations that the RAE pro-
duces. The aggregate feature approach, which simply take
the average of the representations, could potentially lose a
lot of information, as we can imagine two very far represen-
tations losing its characteristics when we take the average.
On the other hand, the similarity matrix compares the rep-

resentations of each word/phrase pair and is able to keep
more information.

Note that when we use features that include the represen-
tations of the non-leaf nodes, the performance beats when
we only use the representations of the leaf nodes for features.
This suggests that the phrase representations produced by
the RAE model does provide signal for the paraphrase de-
tection task.

Finally, Table 2 compares our results with previous works’.
Although we are not able to achieve state-of-the-art perfor-
mance on this dataset, our method beats many of results
from previous works.

8. CONCLUSION
In this paper, we presented a novel method for learning

phrasal representations in semantic space in an unsupervised
way. We show that these representations are decent by ex-
amining their nearest neighbors. We extract features from
these representations for the paraphrase detection task and
outperform several previous works’ methods.

8.1 Future Work
There are many possible directions for future work. First,

the phrasal representations for longer phrases are still not
as good as we hope them to be. We would like to try other
tweaks, such as other weighting schemes or training objec-
tives. Second, we would like to investigate more effective
ways to extract features from the representations to achieve
higher accuracy. Finally, we would like to explore other tasks
where these representations could help.

9. COLLABORATION STATEMENT
This is joint work with the CS294 project. This work is

done in collaboration with Jeffrey Pennington, along with



valuables advice from Professor Andrew Ng and Richard
Socher. The original idea of the RAE comes from Richard,
while Jeffrey and I jointly implemented the framework for
the RAE. Jeffrey went on to focus on sentiment analysis us-
ing the RAE, while I focused on the paraphrase detection.

10. REFERENCES
[1] Dolan, B., Quirk, C., and Brockett, C. Unsupervised

construction of large paraphrase corpora: Exploiting
massively parallel news sources Proceedings of the 20th
international conference on Computational Linguistics
(COLING 2004), Geneva, Switzerland, pp. 350-356.

[2] Fernando, S., and Stevenson, M. A semantic similarity
approach to paraphrase detection Computational
Linguistics UK (CLUK 2008) 11th Annual Research
Colloquium.

[3] Islam, A., and Inkpen, D. Semantic similarity of short texts
Proceedings of the International Conference on Recent
Advances in Natural Language Processing (RANLP 2007),
Borovets, Bulgaria, pp. 291-297.

[4] Kozareva, Z., and Montoyo, A. Paraphrase identification
on the basis of supervised machine learning techniques
Advances in Natural Language Processing: 5th
International Conference on NLP (FinTAL 2006), Turku,
Finland, 524-533.

[5] Mihalcea, R., Corley, C., and Strapparava, C.
Corpus-based and knowledge-based measures of text
semantic similarity Proceedings of the National Conference
on Artificial Intelligence (AAAI 2006), Boston,
Massachusetts, pp. 775-780.

[6] Qiu, L. and Kan, M.Y. and Chua, T.S. Paraphrase
recognition via dissimilarity significance classification
Proceedings of the 2006 Conference on Empirical Methods
in Natural Language Processing (EMNLP 2006), pp. 18-26.

[7] Collobert, R. and Weston, J. A unified architecture for
natural language processing: deep neural networks with
multitask learning In ICML, pages 160-167, 2008.

[8] Klein, D. and Manning, C. Accurate unlexicalized parsing.
Proceedings of the 41st Meeting of the Association for
Computational Linguistics, pp. 423-430.

[9] Andrew Ng. Sparse autoencoder (CS294A Lecture notes).


