
Network UPS Tools User Manual

Russell Kroll, Arnaud Quette and Arjen de Korte

Network UPS Tools User Manual ii

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

2.8.2.986 2.8.2.986-
986-gf31b1ebf7

2024-08-23 Current release snapshot of Network UPS Tools
(NUT).

2.8.2 2024-04-01 Some changes to docs and recipes, libnutscan
API and functionality. Added nutconf (library and
tool). Fixed some regressions and added
improvements for certain new device series.

JK

2.8.1 2023-10-31 Some changes to API, docs and recipes, in
particular to simplify local builds and tests (e.g. to
help end-users check if current NUT codebase
trunk has already fixed an issue they see with a
packaged installation). Revived NUT for
Windows effort, further improved other OS
integrations. NUT became reference for "UPS
management protocol", Informational RFC 9271.
Documentation files refactored to ease
maintenance. More drivers and new driver
categories introduced.

JK

2.8.0 2022-04-26 Change of maintainer. Many changes to API,
docs (both style and content), and recipes, with a
stress on non-regression test-ability, run-time
debug-ability, general codebase maintainability,
as well as OS integrations (notably
nut-driver-enumerator for systemd and SMF
service instance maintenance). Added a lot in
area of CI support and documented pre-requisite
package lists for numerous platforms, and CI
agent set-up. Added libusb-1.x support and
many new driver categories (and drivers), and
daisychain device connection support. Instant
commands enhanced with TRACKING to enable
protocol-based waiting for completion of a
particular INSTCMD or SET operation.

JK

2.7.4 2016-03-09 NUT variables namespace updated, in particular
for outlet groups, alarms and thresholds, ATS
devices, and battery.charger.status to supersede
CHRG and DISCHRG flags published in
ups.status readings. NUT network protocol
extended with NUMBER type; some API
changes.

AQ

Network UPS Tools User Manual iii

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

2.7.3 2015-04-22 Documentation revised, including some API
changes. Added NUT DDL links. NUT variables
namespace updated.

AQ

2.7.2 2014-04-17 The nut-website project was offloaded into a
separate repository. FreeDesktop HAL support
was removed (obsoleted in GNOME consumer).
Introduced nutdrv_atcl_usb driver.

AQ

2.7.1 2013-11-19 NUT source codebase migrated from SVN to Git
(and from Debian infrastructure to GitHub source
code hosting). jNut binding split into a separate
project. Introduced libnutclient (C++ binding),
al175, apcupsd-ups and nutdrv_qx drivers,
Mozilla NSS support for simpler licensing than
OpenSSL, and a newer apcsmart
implementation. Documentation support
enhanced with a spell checker, contents
massively updated to reflect project changes.

CL

2.6.5 2012-08-08 New macosx-ups driver, new implementation of
mge-shut driver. NUT variables namespace
updated. Docs cleaned up and revised.

AQ

2.6.4 2012-05-31 New NUT network protocol commands (LIST
CLIENTS, LIST RANGE and NETVER), and
socket protocol commands (ADDRANGE,
DELRANGE). NUT variables namespace
updated. Introduced nut-recorder tool.

AQ

2.6.3 2012-01-04 No substantial changes to documentation. AQ

2.6.2 2011-09-15 Introduced nut-scanner tool and nut-ipmipsu
driver, systemd support, and a new apcsmart
implementation.

AQ

2.6.1 2011-06-01 Introduced default.* and override.* optional
settings in ups.conf, an ups.efficiency report, and
outlet.0 special handling.

AQ

2.6.0 2011-01-14 First release of AsciiDoc documentation for
Network UPS Tools (NUT).

AQ

Network UPS Tools User Manual iv

Network UPS Tools User Manual v

Contents

1 Introduction 1

2 Network UPS Tools Overview 1

2.1 Description . 1

2.2 NUT and the ecosystem . 1

2.3 Installing . 2

2.4 Upgrading . 2

2.5 Configuring and using . 2

2.6 Documentation . 2

2.7 Network Information . 2

2.8 Manifest . 3

2.9 Drivers . 3

2.9.1 Extra Settings . 3

2.9.2 Hardware Compatibility List . 4

2.9.3 Generic Device Drivers . 4

2.9.4 UPS Shutdowns . 4

2.9.5 Power distribution unit management . 5

2.10 Network Server . 5

2.11 Monitoring client . 5

2.11.1 Primary . 5

2.11.2 Secondary . 5

2.11.3 Additional Information . 6

2.12 Clients . 6

2.12.1 upsc . 6

2.12.2 upslog . 6

2.12.3 upsrw . 6

2.12.4 upscmd . 7

2.13 CGI Programs . 7

2.13.1 Access Restrictions . 8

2.13.2 upsstats . 8

2.13.3 upsimage . 8

2.13.4 upsset . 8

2.14 Version Numbering . 8

2.15 Backwards and Forwards Compatibility . 8

2.16 Support / Help / etc. 8

2.17 Hacking / Development Info . 9

2.18 Acknowledgements / Contributions . 9

Network UPS Tools User Manual vi

3 Features 10

3.1 Multiple manufacturer and device support . 10

3.2 Multiple architecture support . 10

3.3 Layered and modular design with multiple processes . 11

3.4 Redundancy support — Hot swap/high availability power supplies . 11

3.5 Security and access control . 11

3.6 Web-based monitoring . 11

3.7 Free software . 12

3.8 UPS management and control . 12

3.9 Monitoring diagrams . 12

3.9.1 "Simple" configuration . 12

3.9.2 "Advanced" configuration . 13

3.9.3 "Big Box" configuration . 13

3.9.4 "Bizarre" configuration . 14

3.10 Image credits . 14

3.11 Compatibility information . 14

3.11.1 Hardware . 14

3.11.2 Operating systems . 14

4 Download information 15

4.1 Source code . 15

4.1.1 Stable tree: 2.8 . 15

4.1.2 Development tree: . 15

Code repository . 15

Browse code . 16

Snapshots . 16

4.1.3 Older versions . 16

4.2 Binary packages . 16

4.3 Java packages . 17

4.4 Virtualization packages . 17

4.4.1 VMware . 17

5 Installation instructions 17

5.1 Installing from source . 18

5.1.1 Prepare your system . 18

System User creation . 18

5.1.2 Build and install . 18

Configuration . 19

Build the programs . 19

Network UPS Tools User Manual vii

Installation . 19

State path creation . 19

Ownership and permissions . 20

5.2 Building NUT for in-place upgrades or non-disruptive tests . 20

5.2.1 Overview . 20

Pre-requisites . 21

Getting the right sources . 21

5.2.2 Testing with CI helper . 21

5.2.3 Replacing a NUT deployment . 22

Replacing any NUT deployment . 22

Replacing a systemd-enabled NUT deployment . 22

Iterating with a systemd deployment . 23

5.2.4 Next steps after an in-place upgrade . 23

5.3 Installing from packages . 23

5.3.1 Debian, Ubuntu and other derivatives . 24

5.3.2 Mandriva . 24

5.3.3 SUSE / openSUSE . 24

5.3.4 Red Hat, Fedora and CentOS . 25

5.3.5 FreeBSD . 25

Binary package . 25

Port . 25

USB UPS on FreeBSD . 25

5.3.6 Windows . 26

Windows binary package . 26

Building for Windows . 26

5.3.7 Runtime configuration . 26

6 Configuration notes 27

6.1 Details about the configuration files . 27

6.1.1 Generalities . 27

6.1.2 Line spanning . 28

6.2 Basic configuration . 28

6.2.1 Driver configuration . 28

6.2.2 Starting the driver(s) . 29

6.2.3 Driver(s) as a service . 30

6.2.4 Data server configuration (upsd) . 30

6.2.5 Starting the data server . 31

6.2.6 Check the UPS data . 32

Status data . 32

Network UPS Tools User Manual viii

All data . 32

6.2.7 Startup scripts . 33

6.3 Configuring automatic shutdowns for low battery events . 33

6.3.1 Shutdown design . 33

6.3.2 How you set it up . 35

NUT user creation . 35

Reloading the data server . 35

Power Off flag file . 35

Securing upsmon.conf . 36

Create a MONITOR directive for upsmon . 36

Define a SHUTDOWNCMD for upsmon . 36

Start upsmon . 36

Checking upsmon . 37

Startup scripts . 37

Shutdown scripts . 37

Testing shutdowns . 38

6.3.3 Using suspend to disk . 38

6.3.4 RAID warning . 39

6.4 Typical setups for enterprise networks and data rooms . 39

6.5 Typical setups for big servers with UPS redundancy . 40

6.5.1 Example configuration . 40

6.5.2 Multiple UPS shutdowns ordering . 41

6.5.3 Other redundancy configurations . 42

7 Advanced usage and scheduling notes 42

7.1 The simple approach, using your own script . 42

7.1.1 How it works relative to upsmon . 42

7.1.2 Setting up everything . 42

7.1.3 Using more advanced features . 43

7.1.4 Suppressing notify storms . 43

7.2 The advanced approach, using upssched . 43

7.2.1 How upssched works relative to upsmon . 43

7.2.2 Setting up your upssched.conf . 44

The big picture . 44

Establishing timers . 44

Executing commands immediately . 44

7.2.3 Writing the command script handler . 45

7.2.4 Early Shutdowns . 45

7.2.5 Background . 46

Network UPS Tools User Manual ix

8 NUT outlets management and PDU notes 46

8.1 Introduction . 46

8.2 NUT outlet data collection . 46

8.3 Outlets on PDU . 47

8.4 Outlets on UPS . 47

8.5 Other type of devices . 47

9 NUT daisychain support notes 47

9.1 Introduction . 48

9.2 Implementation notes . 48

9.2.1 General specification . 48

Devices status handling . 48

Devices alarms handling . 48

Example . 49

9.2.2 Information for developers . 49

Base support . 49

Templates with multiple definitions . 50

Devices alarms handling . 50

10 Notes on securing NUT 51

10.1 How to verify the NUT source code signature . 51

10.2 How to verify the NUT source code checksum . 52

10.3 System level privileges and ownership . 53

10.4 NUT level user privileges . 53

10.5 Network access control . 53

10.5.1 NUT LISTEN directive . 53

10.5.2 Firewall . 54

Uncomplicated Firewall (UFW) support . 54

10.5.3 TCP Wrappers . 55

10.6 Configuring SSL . 55

10.6.1 OpenSSL backend usage . 55

Install OpenSSL . 55

Recompile and install NUT . 55

Create a certificate and key for upsd . 55

Figure out the hash for the key . 56

Install the client-side certificate . 56

Create the combined file for upsd . 56

Note on certification authorities (CAs) and signed keys . 56

Install the server-side certificate . 57

Network UPS Tools User Manual x

Clean up the temporary files . 57

Restart upsd . 57

Point upsmon at the certificates . 57

Recommended: make upsmon verify all connections with certificates 57

Recommended: force upsmon to use SSL . 57

10.6.2 NSS backend usage . 58

Install NSS . 58

Recompile and install NUT . 58

Create certificate and key for the host . 58

Create a self-signed CA certificate . 58

Install the server-side certificate . 59

upsd (required): certificate database and self certificate . 59

upsd (optional): client authentication . 59

upsmon (required): upsd authentication . 59

upsmon (optional): certificate database and self certificate . 60

10.6.3 Restart upsd . 60

10.6.4 Restart upsmon . 60

10.6.5 Recommended: sniff the connection to see it for yourself . 60

10.6.6 Potential problems . 61

10.6.7 Conclusion . 61

10.7 chrooting and other forms of paranoia . 61

10.7.1 Generalities . 61

10.7.2 symlinks . 62

10.7.3 upsmon . 62

10.7.4 Config files . 63

A Glossary 63

B Acknowledgements / Contributions 63

B.1 The NUT Team . 63

B.1.1 Active members . 63

B.1.2 Retired members . 64

B.2 Supporting manufacturers . 64

B.2.1 UPS manufacturers . 64

B.2.2 Appliances manufacturers . 65

B.3 Other contributors . 65

B.4 Older entries (before 2005) . 66

Network UPS Tools User Manual xi

C NUT command and variable naming scheme 66

C.1 Structured naming . 67

C.2 Time and Date format . 67

C.3 Variables . 67

C.3.1 device: General unit information . 67

C.3.2 ups: General unit information . 68

C.3.3 input: Incoming line/power information . 69

C.3.4 output: Outgoing power/inverter information . 70

C.3.5 Three-phase additions . 71

Phase Count Determination . 71

DOMAINs . 71

Specification (SPEC) . 71

CONTEXT . 71

Valid CONTEXTs . 72

Valid SPECs . 72

C.3.6 EXAMPLES . 73

C.3.7 battery: Any battery details . 73

C.3.8 ambient: Conditions from external probe equipment . 75

C.3.9 outlet: Smart outlet management . 76

outlet.group: groups of smart outlets . 77

C.3.10 driver: Internal driver information . 78

C.3.11 server: Internal server information . 78

C.4 Instant commands . 78

D Hardware Compatibility List 79

E Documentation 79

E.1 User Documentation . 79

E.2 Developer Documentation . 79

E.3 Data dumps for the DDL . 80

E.4 Offsite Links . 80

E.5 News articles and Press releases . 81

F Support instructions 81

F.1 Documentation . 81

F.2 Mailing lists . 81

F.2.1 Request help . 81

F.2.2 Post a patch, ask a development question, . 82

F.2.3 Discuss packaging and related topics . 82

F.3 IRC (Internet Relay Chat) . 82

F.4 GitHub Issues . 82

Network UPS Tools User Manual xii

G Cables information 82

G.1 APC . 82

G.1.1 940-0024C clone . 82

G.1.2 940-0024E clone . 83

G.1.3 940-0024C clone for Macs . 83

G.2 Belkin . 83

G.2.1 OmniGuard F6C***-RKM . 83

G.3 Eaton . 84

G.3.1 MGE Office Protection Systems . 84

DB9-DB9 cable (ref 66049) . 84

DB9-RJ45 cable . 85

NMC DB9-RJ45 cable . 86

USB-RJ45 cable . 86

DB9-RJ12 cable . 87

G.3.2 Powerware LanSafe . 89

G.3.3 SOLA-330 . 89

G.4 HP - Compaq . 90

G.4.1 Older Compaq UPS Family . 90

G.5 Phoenixtec (Best Power) . 90

G.6 Tripp-Lite . 91

H Configure options 91

H.1 Keeping a report of NUT configuration . 92

H.2 In-place replacement defaults . 92

H.3 Driver selection . 93

H.3.1 Serial drivers . 93

H.3.2 USB drivers . 93

H.3.3 SNMP drivers . 93

H.3.4 XML drivers and features . 93

H.3.5 LLNC CHAOS Powerman driver . 93

H.3.6 IPMI drivers . 94

H.3.7 I2C bus drivers . 94

H.3.8 GPIO bus drivers . 94

H.3.9 Modbus drivers . 94

H.3.10 Manual selection of drivers . 94

H.4 Optional features . 95

H.4.1 CGI client interface . 95

H.4.2 Pretty documentation and man pages . 95

H.4.3 Python support . 96

Network UPS Tools User Manual xiii

H.4.4 Development files . 97

H.4.5 Options for developers . 97

H.4.6 I want it all! . 98

H.4.7 Networking transport security . 98

H.4.8 Networking access security . 98

H.4.9 Networking IPv6 . 98

H.4.10 AVAHI/mDNS . 98

H.4.11 LibLTDL . 98

H.5 Other configuration options . 99

H.5.1 NUT data server port . 99

H.5.2 Daemon user accounts . 99

H.5.3 Syslog facility . 99

H.6 Installation directories . 99

H.7 Directories used by NUT at run-time . 102

H.8 Things the compiler might need to find . 102

H.8.1 LibGD . 102

H.8.2 LibUSB . 103

H.8.3 Various . 103

I Upgrading notes 103

I.1 Changes from 2.8.2 to 2.8.3 . 104

I.2 Changes from 2.8.1 to 2.8.2 . 105

I.3 Changes from 2.8.0 to 2.8.1 . 105

I.4 Changes from 2.7.4 to 2.8.0 . 107

I.5 Changes from 2.7.3 to 2.7.4 . 109

I.6 Changes from 2.7.2 to 2.7.3 . 109

I.7 Changes from 2.7.1 to 2.7.2 . 109

I.8 Changes from 2.6.5 to 2.7.1 . 109

I.9 Changes from 2.6.4 to 2.6.5 . 110

I.10 Changes from 2.6.3 to 2.6.4 . 110

I.11 Changes from 2.6.2 to 2.6.3 . 110

I.12 Changes from 2.6.1 to 2.6.2 . 110

I.13 Changes from 2.6.0 to 2.6.1 . 110

I.14 Changes from 2.4.3 to 2.6.0 . 110

I.15 Changes from 2.4.2 to 2.4.3 . 110

I.16 Changes from 2.4.1 to 2.4.2 . 110

I.17 Changes from 2.4.0 to 2.4.1 . 110

I.18 Changes from 2.2.2 to 2.4.0 . 111

I.19 Changes from 2.2.1 to 2.2.2 . 111

Network UPS Tools User Manual xiv

I.20 Changes from 2.2.0 to 2.2.1 . 111

I.21 Changes from 2.0.5 to 2.2.0 . 111

I.22 Changes from 2.0.4 to 2.0.5 . 112

I.23 Changes from 2.0.3 to 2.0.4 . 112

I.24 Changes from 2.0.2 to 2.0.3 . 112

I.25 Changes from 2.0.1 to 2.0.2 . 112

I.26 Changes from 2.0.0 to 2.0.1 . 112

I.27 Changes from 1.4.0 to 2.0.0 . 112

I.28 File trimmed here on changes from 1.2.2 to 1.4.0 . 113

J Project history 113

J.1 Prototypes and experiments . 113

J.1.1 May 1996: early status hacks . 113

J.1.2 January 1997: initial protocol tests . 113

J.1.3 September 1997: first client/server code . 114

J.2 Smart UPS Tools . 114

J.2.1 March 1998: first public release . 114

J.2.2 June 1999: Redesigned, rewritten . 114

J.3 Network UPS Tools . 115

J.3.1 September 1999: new name, new URL . 115

J.3.2 June 2001: common driver core . 115

J.3.3 May 2002: casting off old drivers, IANA port, towards 1.0 . 115

J.4 Leaving 0.x territory . 116

J.4.1 August 2002: first stable tree: NUT 1.0.0 . 116

J.4.2 November 2002: second stable tree: NUT 1.2.0 . 116

J.4.3 April 2003: new naming scheme, better driver glue, and an overhauled protocol 116

J.4.4 July 2003: third stable tree: NUT 1.4.0 . 117

J.4.5 July 2003: pushing towards 2.0 . 117

J.5 Backwards and Forwards Compatibility (NUT v1.x vs. v2.x) . 117

J.6 networkupstools.org . 118

J.6.1 November 2003: a new URL . 118

J.7 Second major version . 118

J.7.1 March 2004: NUT 2.0.0 . 118

J.8 The change of leadership . 118

J.8.1 February 2005: NUT 2.0.1 . 118

Network UPS Tools User Manual xv

K Prerequisites for building NUT on different OSes 119

K.1 General call to Test the ability to configure and build . 119

K.2 Build prerequisites to make NUT from scratch on various Operating Systems 120

K.2.1 Debian 10/11/12 . 120

K.2.2 CentOS 6 and 7 . 122

Prepare CentOS repository mirrors . 122

Set up CentOS packages for NUT . 123

K.2.3 Arch Linux . 125

K.2.4 Slackware Linux 15 . 127

K.2.5 FreeBSD 12.2 . 129

K.2.6 OpenBSD 6.5 . 131

K.2.7 NetBSD 9.2 . 133

K.2.8 OpenIndiana 2021.10 . 135

K.2.9 OmniOS CE (as of release 151036) . 137

K.2.10 Solaris 8 . 138

K.2.11 MacOS with homebrew . 139

K.2.12 Windows builds . 140

Windows with mingw . 141

Windows with MSYS2 . 141

L CI Farm configuration notes 144

L.1 Setting up the multi-arch Linux LXC container farm for NUT CI . 144

L.1.1 Common preparations . 144

L.1.2 Setup a container . 145

Initial container installation (for various guest OSes) . 146

Initial container-related setup . 148

L.1.3 Shepherd the herd . 149

L.1.4 Further setup of the containers . 150

Arch Linux containers . 151

L.1.5 Troubleshooting . 151

L.2 Connecting Jenkins to the containers . 152

L.2.1 Agent Labels . 152

Labels for QEMU . 152

Labels for native builds . 153

L.2.2 Generic agent attributes . 153

L.2.3 Where to run agent.jar . 153

Using Jenkins SSH Build Agents . 154

Using Jenkins Swarm Agents . 155

L.2.4 Sequentializing the stress . 155

Running one agent at a time . 155

Sequentializing the git cache access . 155

Network UPS Tools User Manual 1 / 155

1 Introduction

The primary goal of the Network UPS Tools (NUT) project is to provide support for Power Devices, such as Uninterruptible
Power Supplies, Power Distribution Units and Solar Controllers.

NUT provides many control and monitoring features, with a uniform control and management interface.

More than 170 different manufacturers, and several thousands of models are compatible.

This software is the combined effort of many individuals and companies.

This document intend to describe how to install software support for your Power Devices (UPS, PDU, . . .), and how to use the
NUT project. It is not intended to explain what are, nor distinguish the different technologies that exist. For such information,
have a look at the General Power Devices Information.

If you wish to discover how everything came together, have a look at the Project History.

2 Network UPS Tools Overview

2.1 Description

Network UPS Tools is a collection of programs which provide a common interface for monitoring and administering UPS, PDU
and SCD hardware. It uses a layered approach to connect all of the parts.

Drivers are provided for a wide assortment of equipment. They understand the specific language of each device and map it back
to a compatibility layer. This means both an expensive high end UPS, a simple "power strip" PDU, or any other power device
can be handled transparently with a uniform management interface.

This information is cached by the network server upsd, which then answers queries from the clients. upsd contains a number
of access control features to limit the abilities of the clients. Only authorized hosts may monitor or control your hardware if you
wish. Since the notion of monitoring over the network is built into the software, you can hang many systems off one large UPS,
and they will all shut down together. You can also use NUT to power on, off or cycle your data center nodes, individually or
globally through PDU outlets.

Clients such as upsmon check on the status of the hardware and do things when necessary. The most important task is shutting
down the operating system cleanly before the UPS runs out of power. Other programs are also provided to log information
regularly, monitor status through your web browser, and more.

2.2 NUT and the ecosystem

NUT comes pre-packaged for many operating systems and embedded in storage, automation or virtualization appliances, and
is also often shipped as the software companion by several UPS vendors. Of course, it is quite normal and supported to build
your own — whether for an operating system which lacks it yet, or for an older distribution which lacks the current NUT version;
whether to take advantage of new features or to troubleshoot a new UPS deployment with a debugger in hand.

Given its core position at the heart of your systems’ lifecycle, we make it a point to have current NUT building and running
anywhere, especially where older releases did work before (including "abandonware" like the servers and OSes from the turn of
millennium): if those boxes are still alive and in need of power protection, they should be able to get it.

Tip
If you like how the NUT project helps protect your systems from power outages, please consider sponsoring or at least "starring"
it on GitHub at https://github.com/networkupstools/nut/ - these stars are among metrics which the larger potential sponsors
consider when choosing how to help FOSS projects. Keeping the lights shining in such a large non-regression build matrix is a
big undertaking!
See acknowledgements of organizations which help with NUT CI and other daily operations for an overview of the shared effort.

https://github.com/networkupstools/nut/

Network UPS Tools User Manual 2 / 155

As a FOSS project, for over a quarter of a century we welcome contributions of both core code (drivers and other features),
build recipes and other integration elements to make it work on your favourite system, documentation revisions to make it more
accessible to newcomers, as well as hardware vendor cooperation with first-hand driver and protocol submissions, and just about
anything else you can think of.

2.3 Installing

If you are installing these programs for the first time, go read the installation instructions to find out how to do that. This document
contains more information on what all of this stuff does.

2.4 Upgrading

When upgrading from an older version, always check the upgrading notes to see what may have changed. Compatibility issues
and other changes will be listed there to ease the process.

2.5 Configuring and using

Once NUT is installed, refer to the configuration notes for directions.

2.6 Documentation

This is just an overview of the software. You should read the man pages, included example configuration files, and auxiliary
documentation for the parts that you intend to use.

2.7 Network Information

These programs are designed to share information over the network. In the examples below, localhost is used as the host-
name. This can also be an IP address or a fully qualified domain name. You can specify a port number if your upsd process runs
on another port.

In the case of the program upsc, to view the variables on the UPS called sparky on the upsd server running on the local
machine, you’d do this:

/usr/local/ups/bin/upsc sparky@localhost

The default port number is 3493. You can change this with "configure --with-port" at compile-time. To make a client talk to upsd
on a specific port, add it after the hostname with a colon, like this:

/usr/local/ups/bin/upsc sparky@localhost:1234

This is handy when you have a mixed environment and some of the systems are on different ports.

The general form for UPS identifiers is this:

<upsname>[@<hostname>[:<port>]]

Keep this in mind when viewing the examples below.

Network UPS Tools User Manual 3 / 155

2.8 Manifest

This package is broken down into several categories:

• drivers - These programs talk directly to your UPS hardware.

• server - upsd serves data from the drivers to the network.

• clients - They talk to upsd and do things with the status data.

• cgi-bin - Special class of clients that you can use with your web server.

• scripts - Contains various scripts, like the Perl and Python binding, integration bits and applications.

2.9 Drivers

These programs provide support for specific UPS models. They understand the protocols and port specifications which define
status information and convert it to a form that upsd can understand.

To configure drivers, edit ups.conf. For this example, we’ll have a UPS called "sparky" that uses the apcsmart driver and is
connected to /dev/ttyS1. That’s the second serial port on most Linux-based systems. The entry in ups.conf looks like
this:

[sparky]
driver = apcsmart
port = /dev/ttyS1

To start and stop drivers, use upsdrvctl of upsdrvsvcctl (installed on operating systems with a service management framework
supported by NUT). By default, it will start or stop every UPS in the config file:

/usr/local/ups/sbin/upsdrvctl start
/usr/local/ups/sbin/upsdrvctl stop

However, you can also just start or stop one by adding its name:

/usr/local/ups/sbin/upsdrvctl start sparky
/usr/local/ups/sbin/upsdrvctl stop sparky

On operating systems with a supported service management framework, you might wrap your NUT drivers into individual
services instances with:

/usr/local/ups/sbin/upsdrvsvcctl resync

and then manage those service instances with commands like:

/usr/local/ups/sbin/upsdrvsvcctl start sparky
/usr/local/ups/sbin/upsdrvsvcctl stop sparky

To find the driver name for your device, refer to the section below called "HARDWARE SUPPORT TABLE".

2.9.1 Extra Settings

Some drivers may require additional settings to properly communicate with your hardware. If it doesn’t detect your UPS by
default, check the driver’s man page or help (-h) to see which options are available.

For example, the usbhid-ups driver allows you to use USB serial numbers to distinguish between units via the "serial" configura-
tion option. To use this feature, just add another line to your ups.conf section for that UPS:

[sparky]
driver = usbhid-ups
port = auto
serial = 1234567890

Network UPS Tools User Manual 4 / 155

2.9.2 Hardware Compatibility List

The Hardware Compatibility List is available in the source directory (nut-X.Y.Z/data/driver.list), and is generally distributed with
packages. For example, it is available on Debian systems as:

/usr/share/nut/driver.list

This table is also available online.

If your driver has vanished, see the FAQ and Upgrading notes.

2.9.3 Generic Device Drivers

NUT provides several generic drivers that support a variety of very similar models.

• The genericups driver supports many serial models that use the same basic principle to communicate with the computer.
This is known as "contact closure", and basically involves raising or lowering signals to indicate power status.

This type of UPS tends to be cheaper, and only provides the very simplest data about power and battery status. Advanced
features like battery charge readings and such require a "smart" UPS and a driver which supports it.

See the genericups(8) man page for more information.

• The usbhid-ups driver attempts to communicate with USB HID Power Device Class (PDC) UPSes. These units generally
implement the same basic protocol, with minor variations in the exact set of supported attributes. This driver also applies
several correction factors when the UPS firmware reports values with incorrect scale factors.

See the usbhid-ups(8) man page for more information.

• The nutdrv_qx driver supports the Megatec / Q1 protocol that is used in many brands (Blazer, Energy Sistem, Fenton
Technologies, Mustek, Voltronic Power and many others).

See the nutdrv_qx(8) man page for more information.

• The snmp-ups driver handles various SNMP enabled devices, from many different manufacturers. In SNMP terms, snmp-ups
is a manager, that monitors SNMP agents.

See the snmp-ups(8) man page for more information.

• The powerman-pdu is a bridge to the PowerMan daemon, thus handling all PowerMan supported devices. The PowerMan
project supports several serial and networked PDU, along with Blade and IPMI enabled servers.

See the powerman-pdu(8) man page for more information.

• The apcupsd-ups driver is a bridge to the Apcupsd daemon, thus handling all Apcupsd supported devices. The Apcupsd
project supports many serial, USB and networked APC UPS.

See the apcupsd-ups(8) man page for more information.

2.9.4 UPS Shutdowns

upsdrvctl can also shut down (power down) all of your UPS hardware.

Warning
if you play around with this command, expect your filesystems to die. Don’t power off your computers unless they’re
ready for it:

/usr/local/ups/sbin/upsdrvctl shutdown
/usr/local/ups/sbin/upsdrvctl shutdown sparky

You should read the Configuring automatic UPS shutdowns chapter to learn more about when to use this feature. If called at the
wrong time, you may cause data loss by turning off a system with a filesystem mounted read-write.

https://www.networkupstools.org/stable-hcl.html
https://www.networkupstools.org/docs/man/genericups.html
https://www.networkupstools.org/docs/man/usbhid-ups.html
https://www.networkupstools.org/docs/man/nutdrv_qx.html
https://www.networkupstools.org/docs/man/snmp-ups.html
https://www.networkupstools.org/docs/man/powerman-pdu.html
https://www.networkupstools.org/docs/man/apcupsd-ups.html

Network UPS Tools User Manual 5 / 155

2.9.5 Power distribution unit management

NUT also provides an advanced support for power distribution units.

You should read the NUT outlets management and PDU notes chapter to learn more about when to use this feature.

2.10 Network Server

upsd is responsible for passing data from the drivers to the client programs via the network. It should be run immediately after
upsdrvctl in your system’s startup scripts.

upsd should be kept running whenever possible, as it is the only source of status information for the monitoring clients like
upsmon.

2.11 Monitoring client

upsmon provides the essential feature that you expect to find in UPS monitoring software: safe shutdowns when the power fails.

In the layered scheme of NUT software, it is a client. It has this separate section in the documentation since it is so important.

You configure it by telling it about UPSes that you want to monitor in upsmon.conf. Each UPS can be defined as one of two
possible types: a "primary" or "secondary".

2.11.1 Primary

The monitored UPS possibly supplies power to this system running upsmon, but more importantly — this system can manage
the UPS (typically, this instance of upsmon runs on the same system as the upsd and driver(s)): it is capable and responsible
for shutting it down when the battery is depleted (or in another approach, lingering to deplete it or to tell the UPS to reboot its
load after too much time has elapsed and this system is still alive — meaning wall power returned at a "wrong" moment).

The shutdown of this (primary) system itself, as well as eventually an UPS shutdown, occurs after any secondary systems ordered
to shut down first have disconnected, or a critical urgency threshold was passed.

If your UPS is plugged directly into a system’s serial or USB port, the upsmon process on that system should define its relation
to that UPS as a primary. It may be more complicated for higher-end UPSes with a shared network management capability
(typically via SNMP) or several serial/USB ports that can be used simultaneously, and depends on what vendors and drivers
implement. Setups with several competing primaries (for redundancy) are technically possible, if each one runs its own full stack
of NUT, but results can be random (currently NUT does not provide a way to coordinate several entities managing the same
device).

For a typical home user, there’s one computer connected to one UPS. That means you would run on the same computer the whole
NUT stack — a suitable driver, upsd, and upsmon in primary mode.

2.11.2 Secondary

The monitored UPS may supply power to the system running upsmon (or alternatively, it may be a monitoring station with zero
PSUs fed by that UPS), but more importantly, this system can’t manage the UPS — e.g. shut it down directly (through a locally
running NUT driver).

Use this mode when you run multiple computers on the same UPS. Obviously, only one can be connected to the serial or USB
port on a typical UPS, and that system is the primary. Everything else is a secondary.

For a typical home user, there’s one computer connected to one UPS. That means you run a driver, upsd, and upsmon in
primary mode.

Network UPS Tools User Manual 6 / 155

2.11.3 Additional Information

More information on configuring upsmon can be found in these places:

• The upsmon(8) man page

• Typical setups for big servers

• Configuring automatic UPS shutdowns chapter

• The stock upsmon.conf that comes with the package

2.12 Clients

Clients talk to upsd over the network and do useful things with the data from the drivers. There are tools for command line
access, and a few special clients which can be run through your web server as CGI programs.

For more details on specific programs, refer to their man pages.

2.12.1 upsc

upsc is a simple client that will display the values of variables known to upsd and your UPS drivers. It will list every variable
by default, or just one if you specify an additional argument. This can be useful in shell scripts for monitoring something without
writing your own network code.

upsc is a quick way to find out if your driver(s) and upsd are working together properly. Just run upsc <ups> to see what’s
going on, i.e.:

morbo:~$ upsc sparky@localhost
ambient.humidity: 035.6
ambient.humidity.alarm.maximum: NO,NO
ambient.humidity.alarm.minimum: NO,NO
ambient.temperature: 25.14
...

If you are interested in writing a simple client that monitors upsd, the source code for upsc is a good way to learn about using
the upsclient functions.

See the upsc(8) man page and NUT command and variable naming scheme for more information.

2.12.2 upslog

upslog will write status information from upsd to a file at set intervals. You can use this to generate graphs or reports with
other programs such as gnuplot.

2.12.3 upsrw

upsrw allows you to display and change the read/write variables in your UPS hardware. Not all devices or drivers implement
this, so this may not have any effect on your system.

A driver that supports read/write variables will give results like this:

$ upsrw sparky@localhost

(many skipped)

https://www.networkupstools.org/docs/man/upsmon.html
https://www.networkupstools.org/docs/man/upsc.html

Network UPS Tools User Manual 7 / 155

[ups.test.interval]
Interval between self tests
Type: ENUM
Option: "1209600"
Option: "604800" SELECTED
Option: "0"

(more skipped)

On the other hand, one that doesn’t support them won’t print anything:

$ upsrw fenton@gearbox

(nothing)

upsrw requires administrator powers to change settings in the hardware. Refer to upsd.users(5) for information on defining
users in upsd.

2.12.4 upscmd

Some UPS hardware and drivers support the notion of an instant command - a feature such as starting a battery test, or powering
off the load. You can use upscmd to list or invoke instant commands if your hardware/drivers support them.

Use the -l command to list them, like this:

$ upscmd -l sparky@localhost
Instant commands supported on UPS [sparky@localhost]:

load.on - Turn on the load immediately
test.panel.start - Start testing the UPS panel
calibrate.start - Start run time calibration
calibrate.stop - Stop run time calibration
...

upscmd requires administrator powers to start instant commands. To define users and passwords in upsd, see upsd.users(5).

2.13 CGI Programs

The CGI programs are clients that run through your web server. They allow you to see UPS status and perform certain adminis-
trative commands from any web browser. Javascript and cookies are not required.

These programs are not installed or compiled by default. To compile and install them, first run configure --with-cgi,
then do make and make install. If you receive errors about "gd" during configure, go get it and install it before continuing.

You can get the source here:

• http://www.libgd.org/

In the event that you need libpng or zlib in order to compile gd, they can be found at these URLs:

• http://www.libpng.org/pub/png/pngcode.html

• http://www.zlib.net/

https://www.networkupstools.org/docs/man/upsd.users.html
https://www.networkupstools.org/docs/man/upsd.users.html
http://www.libgd.org/
http://www.libpng.org/pub/png/pngcode.html
http://www.zlib.net/

Network UPS Tools User Manual 8 / 155

2.13.1 Access Restrictions

The CGI programs use hosts.conf to see if they are allowed to talk to a host. This keeps malicious visitors from creating queries
from your web server to random hosts on the Internet.

If you get error messages that say "Access to that host is not authorized", you’re probably missing an entry in your hosts.conf.

2.13.2 upsstats

upsstats generates web pages from HTML templates, and plugs in status information in the right places. It looks like a distant
relative of APC’s old Powerchute interface. You can use it to monitor several systems or just focus on one.

It also can generate IMG references to upsimage.

2.13.3 upsimage

This is usually called by upsstats via IMG SRC tags to draw either the utility or outgoing voltage, battery charge percent, or load
percent.

2.13.4 upsset

upsset provides several useful administration functions through a web interface. You can use upsset to kick off instant
commands on your UPS hardware like running a battery test. You can also use it to change variables in your UPS that accept
user-specified values.

Essentially, upsset provides the functions of upsrw and upscmd, but with a happy pointy-clicky interface.

upsset will not run until you convince it that you have secured your system. You must secure your CGI path so that random
interlopers can’t run this program remotely. See the upsset.conf file. Once you have secured the directory, you can enable
this program in that configuration file. It is not active by default.

2.14 Version Numbering

The version numbers work like this: if the middle number is odd, it’s a development tree, otherwise it is the stable tree.

The past stable trees were 1.0, 1.2, 1.4, 2.0, 2.2 and 2.4, with the latest such stable tree designated 2.6. The development trees
were 1.1, 1.3, 1.5, 2.1 and 2.3. Since the 2.4 release, there is no real separate development branch anymore since the code is
available through a revision control system (namely, Git — or actually Subversion back then) and its snapshots become published
releases.

Since 2.7 line of releases, sources are tracked in Git revision control system, with the project ecosystem being hosted on GitHub,
and any code improvements or other contributions merged through common pull request approach and custom NUT CI testing
on multiple platforms.

Major release jumps are mostly due to large changes to the features list. There have also been a number of architectural changes
which may not be noticeable to most users, but which can impact developers.

2.15 Backwards and Forwards Compatibility

The network protocol for the current version of NUT should be backwards-compatible all the way back to version 1.4. A newer
client should fail gracefully when querying an older server.

If you need more details about cross-compatibility of older NUT releases (1.x vs. 2.x), please see the Project history chapter.

2.16 Support / Help / etc.

If you are in need of help, refer to the Support instructions in the user manual.

Network UPS Tools User Manual 9 / 155

2.17 Hacking / Development Info

Additional documentation can be found in:

• the Developer Guide,

• the Packager Guide.

2.18 Acknowledgements / Contributions

The many people who have participated in creating and improving NUT are listed in the user manual acknowledgements ap-
pendix.

We would like to highlight some organizations which provide continuous support to the NUT project (and many other FOSS
projects) on technological and organizational sides, such as helping keep the donations transparent, NUT CI farm afloat, and
public resources visible. Thanks for keeping the clocks ticking, day and night:

The "NetworkUPSTools" organization on GitHub arranges a lot of things,
including source code hosting for NUT itself and several related projects, team
management, projects, issue and pull request discussions, sponsorship,
nut-website rendering and hosting, some automated actions, and more. . .

The Jenkins CI project and its huge plugin ecosystem provides the
technological foundation for the largest island of the self-hosted NUT CI farm.
There is a fair amount of cross-pollination between the upstream project and
community, and the development done originally for the NUT CI farm.
See more at Jenkins is the way to build multi-platform NUT article.

Fosshost provided virtual machines where the multi-platform NUT CI farm
with a jenkins-dynamatrix setup runs to arrange builds in numerous operating
environments and a lot of toolkit versions and implementations. Some workers
running on NUT community members’ machines can also dial in to provide an
example of their favourite platforms. Literally hundreds of NUT builds run for
each iteration, to make sure NUT can always build and work everywhere.
This allows us to ensure that NUT remains portable across two decades’ worth
of operating systems, compilers, script interpreters, tools and third-party
dependencies.

https://github.com/networkupstools/
https://www.jenkins.io/
https://ci.networkupstools.org/
https://stories.jenkins.io/user-story/jenkins-is-the-way-for-networkupstools/
https://github.com/networkupstools/jenkins-dynamatrix/
https://github.com/networkupstools/nut/blob/master/Jenkinsfile-dynamatrix

Network UPS Tools User Manual 10 / 155

The CircleCI NUT pipeline allows us to test NUT CI builds on MacOS.

The AppVeyor NUT pipeline allows us to test NUT CI builds on Windows (and
publish preview tarballs with binaries).

The DigitalOcean droplets allow us to host NUT CI farm Jenkins controller and
the build agents for multiple operating systems.

Gandi.Net took up the costs of NUT DNS hosting.

https://opencollective.com/networkupstools allows us to arrange monetary
donations and spending, with public transparency of everything that happens.

3 Features

NUT provides many features, and is always improving. Thus this list may lag behind the current code.

Features frequently appear during the development cycles, so be sure to look at the release notes and change logs to see the latest
additions.

3.1 Multiple manufacturer and device support

• Monitors many UPS, PDU, ATS, PSU and SCD models from more than 170 manufacturers with a unified interface (Hardware
Compatibility List).

• Various communication types and many protocols are supported with the same common interface:

– serial,

– USB,

– network (SNMP, Eaton / MGE XML/HTTP, IPMI).

3.2 Multiple architecture support

• Cross-platform — different flavors of Unix can be managed together with a common set of tools, even crossing architectures.

• This software has been reported to run on Linux distributions, the BSDs, Apple’s OS X, commercial Solaris and open-source
illumos distros, IRIX, HP/UX, Tru64 Unix, and AIX.

https://app.circleci.com/pipelines/github/networkupstools/nut/
https://ci.appveyor.com/project/nut-travis/nut/
https://www.digitalocean.com/?refcode=d2fbf2b9e082&utm_campaign=Referral_Invite&utm_medium=Referral_Program&utm_source=badge
https://www.gandi.net/
https://opencollective.com/networkupstools
https://www.networkupstools.org/download.html
stable-hcl.html
stable-hcl.html

Network UPS Tools User Manual 11 / 155

• Windows users may be able to build it directly with MSYS2, MinGW or Cygwin. There is also a port of the client-side
monitoring to Windows called WinNUT.

• Your system will probably run it too. You just need a good C compiler and possibly some more packages to gain access to the
serial ports. Other features, such as USB / SNMP / whatever, will also need extra software installed.

3.3 Layered and modular design with multiple processes

• Three layers: drivers, server, clients.

• Drivers run on the same host as the server, and clients communicate with the server over the network.

• This means clients can monitor any UPS anywhere as long as there is a network path between them.

Warning
Be sure to plug your network’s physical hardware (switches, hubs, routers, bridges, . . .) into the UPS!

3.4 Redundancy support — Hot swap/high availability power supplies

• upsmon can handle high-end servers which receive power from multiple UPSes simultaneously.

• upsmon won’t initiate a shutdown until the total power situation across all source UPSes becomes critical (on battery and low
battery).

• You can lose a UPS completely as long as you still have at least the minimum number of sources available. The minimum
value is configurable.

3.5 Security and access control

• Manager functions are granted with per-user granularity. The admin can have full powers, while the admin’s helper can only
do specific non-destructive tasks such as a battery test (beware that with a worn-out battery whose replacement is a few years
overdue, a "capacity/remaining runtime" test can still be destructive by powering off the load abruptly — and also such a test
can cause hosts to hide into graceful shutdowns when the battery state does get critical as part of the test).

• The drivers, server, and monitoring client (upsmon) can all run as separate user IDs if this is desired for privilege separation.

• Only one tiny part of one program has root powers. upsmon starts as root and forks an unprivileged process which does the
actual monitoring over the network. They remain connected over a pipe. When a shutdown is necessary, a single character is
sent to the privileged process. It then calls the predefined shutdown command. In any other case, the privileged process exits.
This was inspired by the auth mechanism in Solar Designer’s excellent popa3d.

• The drivers and network server may be run in a chroot jail for further security benefits. This is supported directly since version
1.4 and beyond with the chroot= configuration directive.

• IP-based access control relies on the local firewall and TCP Wrapper.

• SSL is available as a build option ("--with-ssl"). It encrypts sessions with upsd and can also be used to authenticate servers.

3.6 Web-based monitoring

• Comes stock with CGI-based web interface tools for UPS monitoring and management, including graphical status displays.

• Custom status web pages may be generated with the CGI programs, since they use templates to create the pages. This allows
you to have status pages which fit the look and feel of the rest of your site.

http://en.wikipedia.org/wiki/TCP_Wrapper

Network UPS Tools User Manual 12 / 155

3.7 Free software

• That’s free beer and free speech. Licensed under the GNU General Public License version 2 or later.

• Know your systems — all source code is available for inspection, so there are no mysteries or secrets in your critical monitoring
tools.

3.8 UPS management and control

• Writable variables may be edited on higher end equipment for local customization

• Status monitoring can generate notifications (email/pager/SMS/. . .) on alert conditions

• Alert notices may be dampened to only trigger after a condition persists. This avoids the usual pager meltdown when something
happens and no delay is used.

• Maintenance actions such as battery runtime calibration are available where supported by the UPS hardware.

• Power statistics can be logged in custom formats for later retrieval and analysis

• All drivers are started and stopped with one common program. Starting one is as easy as starting ten: upsdrvctl start.

• For operating systems with a supported service management framework, you can manage the NUT drivers wrapped into
independent service instances using the upsdrvsvcctl instead, and gain the benefits of automated restart as well as possibility
to define further dependencies between your OS components.

• Shutdowns and other procedures may be tested without stressing actual UPS hardware by simulating status values with the
dummy-ups pseudo-driver. Anything that can happen in a driver can be replicated with dummy-ups.

3.9 Monitoring diagrams

These are the most common situations for monitoring UPS hardware. Other ways are possible, but they are mostly variations of
these four.

Note
these examples show serial communications for simplicity, but USB or SNMP or any other monitoring is also possible.

3.9.1 "Simple" configuration

One UPS, one computer. This is also known as "Standalone" configuration.

This is the configuration that most users will use. You need at least a driver, upsd, and upsmon running.

Network UPS Tools User Manual 13 / 155

3.9.2 "Advanced" configuration

One UPS, multiple computers. Only one of them can actually talk to the UPS directly. That’s where the network comes in:

• The Primary system runs the relevant driver, upsd, and upsmon in "primary" mode.

• The Secondary systems only run upsmon in "secondary" mode which all connect to upsd on Primary.

This is useful when you have a very large UPS that’s capable of running multiple systems simultaneously. There is no longer the
need to buy a bunch of individual UPSes or "sharing" hardware, since this software will handle the sharing for you.

3.9.3 "Big Box" configuration

Some systems have multiple power supplies and cords. You typically find this on high-end servers that allow hot-swap and other
fun features. In this case, you run multiple drivers (one per UPS), a single upsd, and a single upsmon (as a primary for both
UPS 1 and UPS 2)

This software understands that some of these servers can also run with some of the supplies gone. For this reason, every UPS is
assigned a "power value" — the quantity of power supplies that it feeds on this system.

The total available "power value" is compared to the minimum that is required for that hardware. For example, if you have 3
power supplies and 3 UPSes, but only 2 supplies must be running at any given moment, the minimum would be 2.

This means that you can safely lose any one UPS and the software will handle it properly by remaining online and not causing a
shut down.

Network UPS Tools User Manual 14 / 155

3.9.4 "Bizarre" configuration

You can even have a UPS that has the serial port connected to a system that it’s not feeding. Sometimes a PC will be close to a
UPS that needs to be monitored, so it’s drafted to supply a serial port for the purpose. This PC may in fact be getting its own
power from some other UPS. This is not a problem for the set-up.

The first system ("mixed") is a Primary for UPS 1, but is only monitoring UPS 2. The other systems are Secondaries of UPS 2.

3.10 Image credits

Thanks to Eaton for providing shiny modern graphics.

3.11 Compatibility information

3.11.1 Hardware

The current list of hardware supported by NUT can be viewed here.

3.11.2 Operating systems

This software has been reported to run on:

• Linux distributions,

• the BSDs,

• Apple’s OS X,

• Sun Solaris,

• SGI IRIX,

• HP/UX,

• Tru64 Unix,

Network UPS Tools User Manual 15 / 155

• AIX.

There is also a port of the client-side monitoring to Windows called WinNUT. Windows users may be able to build it directly
with Cygwin.

Your system will probably run it too. You just need a good C compiler and possibly some more packages to gain access to the
serial ports. Other features, such as USB / SNMP / whatever, will also need extra software installed.

Success reports are welcomed to keep this list accurate.

4 Download information

This section presents the different methods to download NUT.

4.1 Source code

Note
You should always use PGP/GPG to verify the signatures before using any source code.
You can use the following procedure. to do so.

4.1.1 Stable tree: 2.8

•

•

•

•

•

• ChangeLog

You can also browse the stable source directory.

4.1.2 Development tree:

Code repository

The development tree is available through a Git repository hosted at GitHub.

To retrieve the current development tree, use the following command:

$ git clone git://github.com/networkupstools/nut.git

The configure script and its dependencies are not stored in Git. To generate them, ensure that autoconf, automake and libtool are
installed, then run the following script in the directory you just checked out:

$./autogen.sh

Note
it is optionally recommended to have Python 2.x or 3.x, and Perl, to generate some files included into the configure script,
presence is checked by autotools when it is generated. Neutered files can be just "touched" to pass the autogen.sh if
these interpreters are not available, and effectively skip those parts of the build later on —autogen.sh will then advise which
special environment variables to export in your situation and re-run it.

Then refer to the NUT user manual for more information.

https://www.networkupstools.org/source/2.8/ChangeLog
https://www.networkupstools.org/source/2.8/
https://github.com/

Network UPS Tools User Manual 16 / 155

Browse code

You can browse the "vanilla NUT" code at the Main GitHub repository for NUT sources, and some possibly modified copies as
part of packaging recipe sources of operating system distributions, as listed below.

Snapshots

GitHub has several download links for repository snapshots (for particular tags or branches), but you will need a number of tools
such as autoconf, automake and libtool to use these snapshots to generate the configure script and some other files.

After you configure the source workspace, a make dist-hash recipe would create the snapshot tarballs which do not
require the auto* tools, and their checksum files, such as those available on the NUT website and attached to GitHub Releases
page.

4.1.3 Older versions

Browse source directory

4.2 Binary packages

Note
The only official releases from this project are source code.

NUT is already available in the following operating systems (and likely more):

• Repology report on NUT lists 745 entries about NUT, as of this writing

• Linux:

– 42ITy.org packaging recipes for Debian-based releases

– Debian Salsa recipes and Debian packages

– Ubuntu packages

– Fedora Rawhide recipes and Red Hat / Fedora packages

– Arch Linux recipe and Arch Linux package info

– Gentoo Linux recipe and Gentoo Linux package info

– Novell SUSE / openSUSE official package base recipe and Novell SUSE / openSUSE official package development recipe,
and Novell SUSE / openSUSE official package overview

– Numerous other recipes on Open Build System (not only by SUSE)

– OpenWRT recipes

– Slackware package overview

– Void Linux recipes

• BSD systems:

– FreeBSD package recipe (devel), FreeBSD package recipe and FreeBSD package overview

– NetBSD recipe and NetBSD package overview

– OpenBSD recipe

– FreeNAS iocage-ports recipe, FreeNAS 9.3 docs on UPS integration and FreeNAS 11.3-U5 docs on UPS integration

• Mac OS X:

https://github.com/networkupstools/nut/
https://github.com/networkupstools/nut/releases
https://github.com/networkupstools/nut/releases
https://www.networkupstools.org/source/
https://github.com/networkupstools/nut/wiki/Links-to-distribution-packaging-recipes-and-repository-sections
https://repology.org/project/nut/versions
https://github.com/42ity/nut/tree/FTY/obs
https://salsa.debian.org/debian/nut/
http://packages.debian.org/nut
http://packages.ubuntu.com/nut
https://src.fedoraproject.org/rpms/nut/tree/rawhide
https://src.fedoraproject.org/rpms/nut
https://aur.archlinux.org/cgit/aur.git/tree/PKGBUILD?h=network-ups-tools-git
https://aur.archlinux.org/packages/network-ups-tools-git
https://gitweb.gentoo.org/repo/gentoo.git/tree/sys-power/nut
http://packages.gentoo.org/package/sys-power/nut
https://build.opensuse.org/package/show/openSUSE%3AFactory/nut
https://build.opensuse.org/package/show/hardware/nut
http://software.opensuse.org/package/nut
https://build.opensuse.org/search?search_text=nut
https://github.com/openwrt/packages/tree/master/net/nut
http://sotirov-bg.net/slackpack/search.cgi?q=nut
https://github.com/void-linux/void-packages/tree/master/srcpkgs/network-ups-tools
https://cgit.freebsd.org/ports/tree/sysutils/nut-devel
https://cgit.freebsd.org/ports/tree/sysutils/nut
http://www.FreeBSD.org/cgi/ports.cgi?query=^nut-&stype=name
http://cvsweb.netbsd.org/bsdweb.cgi/pkgsrc/sysutils/ups-nut/
https://pkgsrc.se/sysutils/ups-nut
http://cvsweb.openbsd.org/cgi-bin/cvsweb/ports/sysutils/nut/
https://github.com/freenas/iocage-ports/tree/master/sysutils/nut
http://doc.freenas.org/9.3/freenas_services.html#ups
https://www.ixsystems.com/documentation/freenas/11.3-U5/services.html#ups

Network UPS Tools User Manual 17 / 155

– Fink recipe and Fink package overview

– MacPorts recipe

• illumos/Solaris:

– OpenIndiana oi-userland recipe and OpenIndiana latest rolling builds

• Windows (complete port, Beta):

– Windows MSI installer 2.6.5-6

4.3 Java packages

• The jNut package has been split into its own GitHub repository.

• NUT Java support (client side, Beta) jNUT 0.2-SNAPSHOT

• NUT Java Web support (client side using REST, Beta) jNutWebAPI 0.2-SNAPSHOT (sources)

4.4 Virtualization packages

4.4.1 VMware

• NUT client for VMware ESXi (several versions of both; offsite, by René Garcia). Since the hypervisor manager environment
lacks access to hardware ports, this package only includes the upsmon client integration, and a NUT server must run in a VM
with passed-through ports.

See NUT and VMware (ESXi) page on NUT Wiki for more community-contributed details.

Note that the VIB package versioning is independent of NUT or VMware versions, they are however mentioned in download-
able file names. As of this writing, there are builds spanning VMware ESXi 5.0-8.0 and NUT 2.7.4-2.8.0.

Warning
This module is provided "as is" and is not approved by VMware, you may lose VMware support if you install it. Use it
at your own risks.

– GitHub repository with build recipes, including binary releases

– Original blog entry (French)

– Historic details of the recipe evolution

– VIB package (in fact automatically redirects to latest build)

5 Installation instructions

This chapter describes the various methods for installing Network UPS Tools.

Whenever it is possible, prefer installing from packages. Packagers have done an excellent and hard work at improving NUT
integration into their operating system. On the other hand, distributions and appliances tend to package "official releases" of
projects such as NUT, and so do not deliver latest and greatest fixes, new drivers, bugs and other features.

https://github.com/fink/fink-distributions/blob/master/10.9-libcxx/stable/main/finkinfo/net/nut.info
http://pdb.finkproject.org/pdb/package.php/nut
http://trac.macports.org/browser/trunk/dports/sysutils/nut/Portfile
https://github.com/OpenIndiana/oi-userland/tree/oi/hipster/components/sysutils/nut
https://pkg.openindiana.org/hipster/en/search.shtml?token=nut&action=Search
https://www.networkupstools.org/package/windows/NUT-Installer-2.6.5-6.msi
https://github.com/networkupstools/jNut
https://www.networkupstools.org/package/java/jNut-0.2-SNAPSHOT.tar.gz
https://www.networkupstools.org/package/java/jNutWebAPI-0.2-SNAPSHOT-src.tar.gz
https://github.com/networkupstools/nut/wiki/NUT-and-VMware-(ESXi)
https://github.com/rgc2000/NutClient-ESXi
https://github.com/rgc2000/NutClient-ESXi/releases
https://rene.margar.fr/2012/05/client-nut-pour-esxi-5-0/
https://rene.margar.fr/2012/05/client-nut-pour-esxi-5-0/comment-page-22/#comment-13325
https://rene.margar.fr/downloads/NutClient-ESXi500-1.4.0.tar.gz

Network UPS Tools User Manual 18 / 155

5.1 Installing from source

These are the essential steps for compiling and installing this software from distribution archives (usually "release tarballs")
which include a pre-built copy of the configure script and some other generated source files.

To build NUT from a Git checkout you may need some additional tools (referenced just a bit below) and run ./autogen.sh
to generate the needed files. For common developer iterations, porting to new platforms, or in-place testing, running the
./ci_build.sh script can be helpful. The "Building NUT for in-place upgrades or non-disruptive tests" section details
some more hints about such workflow, including some systemd integration.

The NUT Packager Guide, which presents the best practices for installing and integrating NUT, is also a good reading.

The Prerequisites for building NUT on different OSes document suggests prerequisite packages with tools and dependencies
available and needed to build and test as much as possible of NUT on numerous platforms, written from perspective of CI testing
(if you are interested in getting updated drivers for a particular device, you might select a sub-set of those suggestions).

Note
This "Config Prereqs" document for latest NUT iteration can be found at https://github.com/networkupstools/nut/blob/master/-
docs/config-prereqs.txt or as docs/config-prereqs.txt in your build workspace (from Git or tarball).

Keep in mind that. . .

• the paths shown below are the default values you get by just calling configure by itself. If you have used --prefix or similar,
things will be different. Also, if you didn’t install this program from source yourself, the paths will probably have a number of
differences.

• by default, your system probably won’t find the man pages, since they install to /usr/local/ups/man. You can fix this by editing
your MANPATH, or just do this:

man -M /usr/local/ups/man <man page>

• if your favorite system offers up to date binary packages, you should always prefer these over a source installation (unless
there are known deficiencies in the package or one is too obsolete). Along with the known advantages of such systems for
installation, upgrade and removal, there are many integration issues that have been addressed.

5.1.1 Prepare your system

System User creation

Create at least one system user and a group for running this software. You might call them "ups" and "nut". The exact names
aren’t important as long as you are consistent.

The process for doing this varies from one system to the next, and explaining how to add users is beyond the scope of this
document.

For the purposes of this document, the user name and group name will be ups and nut respectively.

Be sure the new user is a member of the new group! If you forget to do this, you will have problems later on when you try to
start upsd.

5.1.2 Build and install

Note
See also Building NUT for in-place upgrades or non-disruptive tests.

https://github.com/networkupstools/nut/blob/master/docs/config-prereqs.txt
https://github.com/networkupstools/nut/blob/master/docs/config-prereqs.txt

Network UPS Tools User Manual 19 / 155

Configuration

Configure the source tree for your system. Add the --with-user and --with-group switch to set the user name and group that you
created above.

./configure --with-user=ups --with-group=nut

If you need any other switches for configure, add them here. For example:

• to build and install USB drivers, add --with-usb (note that you need to install libusb development package or files).

• to build and install SNMP drivers, add --with-snmp (note that you need to install libsnmp development package or files).

• to build and install CGI scripts, add --with-cgi.

See Configure options from the User Manual, docs/configure.txt or ./configure --help for all the available options.

If you alter paths with additional switches, be sure to use those new paths while reading the rest of the steps.

Reference: Configure options from the User Manual.

Build the programs

make

This will build the NUT client and server programs and the selected drivers. It will also build any other features that were selected
during configuration step above.

Installation

Note
you should now gain privileges for installing software if necessary:

su

Install the files to a system level directory:

make install

This will install the compiled programs and man pages, as well as some data files required by NUT. Any optional features selected
during configuration will also be installed.

This will also install sample versions of the NUT configuration files. Sample files are installed with names like ups.conf.sample
so they will not overwrite any existing real config files you may have created.

If you are packaging this software, then you will probably want to use the DESTDIR variable to redirect the build into another
place, i.e.:

make DESTDIR=/tmp/package install
make DESTDIR=/tmp/package install-conf

State path creation

Create the state path directory for the driver(s) and server to use for storing UPS status data and other auxiliary files, and make it
group-writable by the group of the system user you created.

mkdir -p /var/state/ups
chmod 0770 /var/state/ups
chown root:nut /var/state/ups

Network UPS Tools User Manual 20 / 155

Ownership and permissions

Set ownership data and permissions on your serial or USB ports that go to your UPS hardware. Be sure to limit access to just the
user you created earlier.

These examples assume the second serial port (ttyS1) on a typical Slackware system. On FreeBSD, that would be cuaa1. Serial
ports vary greatly, so yours may be called something else.

chmod 0660 /dev/ttyS1
chown root:nut /dev/ttyS1

The setup for USB ports is slightly more complicated. Device files for USB devices, such as /proc/bus/usb/002/001, are usually
created "on the fly" when a device is plugged in, and disappear when the device is disconnected. Moreover, the names of these
device files can change randomly. To set up the correct permissions for the USB device, you may need to set up (operating system
dependent) hotplugging scripts. Sample scripts and information are provided in the scripts/hotplug and scripts/udev directories.
For most users, the hotplugging scripts will be installed automatically by "make install".

(If you want to try if a driver works without setting up hotplugging, you can add the "-u root" option to upsd, upsmon, and drivers;
this should allow you to follow the below instructions. However, don’t forget to set up the correct permissions later!).

Note
if you are using something like udev or devd, make sure these permissions stay set across a reboot. If they revert to the old
values, your drivers may fail to start.

You are now ready to configure NUT, and start testing and using it.

You can jump directly to the NUT configuration.

5.2 Building NUT for in-place upgrades or non-disruptive tests

Note
The NUT GitHub Wiki article at https://github.com/networkupstools/nut/wiki/Building-NUT-for-in%E2%80%90place-upgrades-
or-non%E2%80%90disruptive-tests may contain some more hints as contributed by the community.

5.2.1 Overview

Since late 2022/early 2023 NUT codebase supports "in-place" builds which try their best to discover the configuration of an
earlier build (configuration and run-time paths and OS accounts involved, maybe an exact configuration if stored in deployed
binaries).

This optional mode is primarily intended for several use-cases:

• Test recent GitHub "master" branch or a proposed PR to see if it solves a practical problem for a particular user;

• Replace an existing deployment, e.g. if OS-provided packages deliver obsolete code, to use newer NUT locally in "production
mode".

– In such cases ideally get your distribution, NAS vendor, etc. to provide current NUT — and benefit from a better integrated
and tested product.

Note that "just testing" often involves building the codebase and new drivers or tools in question, and running them right from the
build workspace (without installing into the system and so risking an unpredictable-stability state). In case of testing new driver
builds, note that you would need to stop the normally running instances to free up the communications resources (USB/serial
ports, etc.), run the new driver program in data-dump mode, and restart the normal systems operations.

Such tests still benefit from matching the build configuration to what is already deployed, in order to request same configuration
files and system access permissions (e.g. to own device nodes for physical-media ports involved, and to read the production
configuration files).

https://github.com/networkupstools/nut/wiki/Building-NUT-for-in%E2%80%90place-upgrades-or-non%E2%80%90disruptive-tests
https://github.com/networkupstools/nut/wiki/Building-NUT-for-in%E2%80%90place-upgrades-or-non%E2%80%90disruptive-tests

Network UPS Tools User Manual 21 / 155

Pre-requisites

The Prerequisites for building NUT on different OSes document details tools and dependencies that were added on NUT CI build
environments, which now cover many operating systems. This should provide a decent starting point for the build on yours (PRs
to update the document are welcome!)

Note that unlike distribution tarballs, Git sources do not include a configure script and some other files — these should be
generated by running autogen.sh (or ci_build.sh that calls it).

Getting the right sources

To build the current tip of development iterations (usually after PR merges that passed CI, reviews and/or other tests), just clone
the NUT repository and "master" branch should get checked out by default (also can request that explicitly, per example posted
below).

If you want to quickly test a particular pull request, see the link on top of the PR page that says ... wants to merge
... from : ... and copy the proposed-source URL of that "from" part.

For example, in some PR this says jimklimov:issue-1234 and links to https://github.com/jimklimov/nut/tree/issue-1234.
For manual git-cloning, just paste that URL into the shell and replace the /tree/ with "-b" CLI option for branch selection,
like this:

:; cd /tmp
Checkout https://github.com/jimklimov/nut/tree/issue-1234
:; git clone https://github.com/jimklimov/nut -b issue-1234

5.2.2 Testing with CI helper

Note
this uses the ci_build.sh script to arrange some rituals and settings, in this case primarily to default the choice of drivers to
auto-detection of what can be built, and to skip building documentation. Also note that this script supports many other scenarios
for CI and developers, managed by BUILD_TYPE and other environment variables, which are not explored here.

An "in-place" testing build and run would probably go along these lines:

:; cd /tmp
:; git clone -b master https://github.com/networkupstools/nut
:; cd nut
:; ./ci_build.sh inplace
Temporarily stop your original drivers
:; ./drivers/nutdrv_qx -a DEVNAME_FROM_UPS_CONF -d1 -DDDDDD \

-x override...=... -x subdriver=...
Can start back your original drivers
Analyze and/or post back the data-dump

Note
To probe a device for which you do not have an ups.conf section yet, you must specify -s name and all config options
(including port) on command-line with -x arguments, e.g.:

:; ./drivers/nutdrv_qx -s temp-ups \
-d1 -DDDDDD -x port=auto \
-x vendorid=... -x productid=... \
-x subdriver=...

Network UPS Tools User Manual 22 / 155

5.2.3 Replacing a NUT deployment

While ci_build.sh inplace can be a viable option for preparation of local builds, you may want to have precise control
over configure options (e.g. choice of required drivers, or enabled documentation).

A sound starting point would be to track down packaging recipes used by your distribution (e.g. RPM spec or DEB rules files,
etc.) to detail the same paths if you intend to replace those, and copy the parameters for configure script from there —
especially if your system is not currently running NUT v2.8.1 or newer (which embeds this information to facilitate in-place
upgrade rebuilds).

Note that the primary focus of in-place automated configuration mode is about critical run-time options, such as OS user accounts,
configuration location and state/PID paths, so it alone might not replace your driver binaries that the package would put into an
obscure location like /lib/nut. It would however install init-scripts or systemd units that would refer to new locations specified
by the current build, so such old binaries would just consume disk space but not run.

Replacing any NUT deployment

Note
For deployments on OSes with systemd see the next section.

This goes similar to usual build and install from Git:

:; cd /tmp
:; git clone https://github.com/networkupstools/nut
:; cd nut
:; ./autogen.sh
:; ./configure --enable-inplace-runtime # --maybe-some-other-options
:; make -j 4 all && make -j 4 check && sudo make install

Note that make install does not currently handle all the nuances that packaging installation scripts would, such as customiz-
ing filesystem object ownership, daemon restarts, etc. or even creating locations like /var/state/ups and /var/run/nut
as part of the make target (but e.g. the delivered systemd-tmpfiles configuration can handle that for a large part of the
audience). This aspect is tracked as issue #1298

At this point you should revise the locations for PID files (e.g. /var/run/nut) and pipe files (e.g. /var/state/ups) that
they exist and permissions remain suitable for NUT run-time user selected by your configuration, and typically stop your original
NUT drivers, data-server (upsd) and upsmon, and restart them using the new binaries.

Replacing a systemd-enabled NUT deployment

For modern Linux distributions with systemd this replacement procedure could be enhanced like below, to also re-enable
services (creating proper symlinks) and to get them started:

:; cd /tmp
:; git clone https://github.com/networkupstools/nut
:; cd nut
:; ./autogen.sh
:; ./configure --enable-inplace-runtime # --maybe-some-other-options
:; make -j 4 all && make -j 4 check && \

{ sudo systemctl stop nut-monitor nut-server || true ; } && \
{ sudo systemctl stop nut-driver.service || true ; } && \
{ sudo systemctl stop nut-driver.target || true ; } && \
{ sudo systemctl stop nut.target || true ; } && \
sudo make install && \
sudo systemctl daemon-reload && \
sudo systemd-tmpfiles --create && \

https://src.fedoraproject.org/rpms/nut/blob/rawhide/f/nut.spec
https://salsa.debian.org/debian/nut/-/blob/debian/debian/rules
https://github.com/networkupstools/nut/issues/1298

Network UPS Tools User Manual 23 / 155

sudo systemctl disable nut.target nut-driver.target \
nut-monitor nut-server nut-driver-enumerator.path \
nut-driver-enumerator.service && \

sudo systemctl enable nut.target nut-driver.target \
nut-monitor nut-server nut-driver-enumerator.path \
nut-driver-enumerator.service && \

{ sudo systemctl restart udev || true ; } && \
sudo systemctl restart nut-driver-enumerator.service \

nut-monitor nut-server

Note the several attempts to stop old service units — naming did change from 2.7.4 and older releases, through 2.8.0, and up to
current codebase. Most of the NUT units are now WantedBy=nut.target (which is in turn WantedBy=multi-user.target
and so bound to system startup). You should only systemctl enable those units you need on this system — this allows it to
not start the daemons you do not need (e.g. not run upsd NUT data server on systems which are only upsmon secondary
clients).

The nut-driver-enumerator units (and corresponding shell script) are part of a new feature introduced in NUT 2.8.0,
which automatically discovers ups.conf sections and changes to their contents, and manages instances of a nut-driver@.service
definition.

You may also have to restart (or reload if supported) some system services if your updates impact them, like udev for updates
USB support (note also PR #1342 regarding the change from udev.rules to udev.hwdb file with NUT v2.8.0 or later —
you may have to remove the older file manually).

Iterating with a systemd deployment

If you are regularly building NUT from GitHub "master" branch, or iterating local development branches of your own, you may
get away with shorter constructs to just restart the services after installing newly built files (if you know there were no changes
to unit file definitions and dependencies), e.g.:

:; cd /tmp
:; git clone https://github.com/networkupstools/nut
:; cd nut
:; git checkout -b issue-1234 ### your PR branch name, arbitrary
:; ./autogen.sh
:; ./configure --enable-inplace-runtime # --maybe-some-other-options
Iterate your code changes (e.g. PR draft), build and install with:
:; make -j 4 all && make -j 4 check && \

sudo make install && \
sudo systemctl daemon-reload && \
sudo systemd-tmpfiles --create && \
sudo systemctl restart \

nut-driver-enumerator.service nut-monitor nut-server

5.2.4 Next steps after an in-place upgrade

You can jump directly to the NUT configuration if you need to revise the settings for your new NUT version, take advantage of
new configuration options, etc.

Check the linkdoc:NEWS and Upgrade Notes files in your Git workspace to review features that should be present in your new
build.

5.3 Installing from packages

This chapter describes the specific installation steps when using binary packages that exist on various major systems.

https://github.com/networkupstools/nut/pull/1342

Network UPS Tools User Manual 24 / 155

5.3.1 Debian, Ubuntu and other derivatives

Note
NUT is packaged and well maintained in these systems. The official Debian packager is part of the NUT Team.

Using your preferred method (apt-get, aptitude, Synaptic, . . .), install the nut package, and optionally the following:

• nut-cgi, if you need the CGI (HTML) option,

• nut-snmp, if you need the snmp-ups driver,

• nut-xml, for the netxml-ups driver,

• nut-powerman-pdu, to control the PowerMan daemon (PDU management)

• nut-dev, if you need the development files.

Configuration files are located in /etc/nut. nut.conf(5) must be edited to be able to invoke /etc/init.d/nut

Note
Ubuntu users can access the APT URL installation by clicking on this link.

5.3.2 Mandriva

Note
NUT is packaged and well maintained in these systems. The official Mandriva packager is part of the NUT Team.

Using your preferred method (urpmi, RPMdrake, . . .), install one of the two below packages:

• nut-server if you have a standalone or netserver installation,

• nut if you have a netclient installation.

Optionally, you can also install the following:

• nut-cgi, if you need the CGI (HTML) option,

• nut-devel, if you need the development files.

5.3.3 SUSE / openSUSE

Note
NUT is packaged and well maintained in these systems. The official SUSE packager is part of the NUT Team.

Install the nut-classic package, and optionally the following:

• nut-drivers-net, if you need the snmp-ups or the netxml-ups drivers,

• nut-cgi, if you need the CGI (HTML) option,

• nut-devel, if you need the development files,

Note
SUSE and openSUSE users can use the one-click install method to install NUT.

https://www.networkupstools.org/docs/man/nut.conf.html
apt://nut
http://software.opensuse.org/search?baseproject=ALL&p=1&q=nut

Network UPS Tools User Manual 25 / 155

5.3.4 Red Hat, Fedora and CentOS

Note
NUT is packaged and well maintained in these systems. The official Red Hat packager is part of the NUT Team.

Using your preferred method (yum, Add/Remove Software, . . .), install one of the two below packages:

• nut if you have a standalone or netserver installation,

• nut-client if you have a netclient installation.

Optionally, you can also install the following:

• nut-cgi, if you need the CGI (HTML) option,

• nut-xml, if you need the netxml-ups driver,

• nut-devel, if you need the development files.

5.3.5 FreeBSD

You can either install NUT as a binary package or as a port.

Binary package

To install NUT as a package execute:

pkg install nut

Port

The port is located under sysutils/nut. Use make config to select configuration options, e.g. to build the optional CGI
scripts. To install it, use:

make install clean

USB UPS on FreeBSD

For USB UPS devices the NUT package/port installs devd rules in /usr/local/etc/devd/nut-usb.conf to set USB
device permissions. devd needs to be restarted for these rules to apply:

service devd restart

(Re-)connect the device after restarting devd and check that the USB device has the proper permissions. Check the last entries of
the system message buffer. You should find an entry like:

dmesg | tail
[...]
ugen0.2: <INNO TECH USB to Serial> at usbus0

The device file must be owned by group uucp and must be group read-/writable. In the example from above this would be

ls -Ll /dev/ugen0.2
crw-rw---- 1 root uucp 0xa5 Mar 12 10:33 /dev/ugen0.2

Network UPS Tools User Manual 26 / 155

If the permissions are not correct, verify that your device is registered in /usr/local/etc/devd/nut-usb.conf. The
vendor and product id can be found using:

usbconfig -u 0 -a 2 dump_device_desc

where -u specifies the USB bus number and -a specifies the USB device index.

5.3.6 Windows

Windows binary package

Note
NUT binary package built for Windows platform was last issued for a much older codebase (using NUT v2.6.5 as a baseline).
While the current state of the codebase you are looking at aims to refresh the effort of delivering NUT on Windows, the aim
at the moment is to help developers build and modernize it after a decade of blissful slumber, and packages are not being
regularly produced yet. Functionality of such builds varies a lot depending on build environment used. This effort is generally
tracked at https://github.com/orgs/networkupstools/projects/2/views/1 and help would be welcome!
It should currently be possible to build the codebase in native Windows with MSYS2/MinGW and cross-building from Linux
with mingw (preferably in a Debian/Ubuntu container). Refer to Prerequisites for building NUT on different OSes and scripts/-
Windows/README.adoc file for respective build environment preparation instructions.
Note that to use NUT for Windows, non-system dependency DLL files must be located in same directory as each EXE file
that uses them. This can be accomplished for FOSS libraries (copying them from the build environment) by calling make
install-win-bundle DESTDIR=/some/valid/location easily.
Archives with binaries built by recent iterations of continuous integration jobs should be available for exploration on the respec-
tive CI platforms.

Information below may be currently obsolete, but the NUT project wishes it to become actual and factual again :)

NUT binary package built for Windows platform comes in a .msi file.

If you are using Windows 95, 98 or Me, you should install Windows Installer 2.0 from Microsoft site.

If you are using Windows 2000 or NT 4.0, you can download it here.

Newer Windows releases should include the Windows Installer natively.

Run NUT-Installer.msi and follow the wizard indications.

If you plan to use an UPS which is locally connected to an USB port, you have to install libUSB-win32 on your system. Then
you must install your device via libusb’s "Inf Wizard".

Note
If you intend to build from source, relevant sources may be available at https://github.com/mcuee/libusb-win32 and keep in mind
that it is a variant of libusb-0.1. Current NUT supports libusb-1.0 as well, and that project should have Windows support out of
the box (but it was not explored for NUT yet).

If you have selected default directory, all configuration files are located in C:\Program Files\NUT\ups\etc

Building for Windows

For suggestions about setting up the NUT build environment variants for Windows, please see link:docs/config-prereqs.txt and/or
link:scripts/Windows/README.adoc files. Note this is rather experimental at this point.

5.3.7 Runtime configuration

You are now ready to configure NUT, and start testing and using it.

You can jump directly to the NUT configuration.

https://github.com/orgs/networkupstools/projects/2/views/1
config-prereqs.txt
scripts/Windows/README.adoc
scripts/Windows/README.adoc
http://www.microsoft.com/downloads/en/details.aspx?familyid=cebbacd8-c094-4255-b702-de3bb768148f&displaylang=en
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=4b6140f9-2d36-4977-8fa1-6f8a0f5dca8f&DisplayLang=en
https://sourceforge.net/projects/libusb-win32/files/
https://github.com/mcuee/libusb-win32

Network UPS Tools User Manual 27 / 155

6 Configuration notes

This chapter describe most of the configuration and use aspects of NUT, including establishing communication with the device
and configuring safe shutdowns when the UPS battery runs out of power.

There are many programs and features in this package. You should check out the NUT Overview and other accompanying
documentation to see how it all works.

Note
NUT does not currently provide proper graphical configuration tools. However, there is now support for Augeas, which will
enable the easier creation of configuration tools. Moreover, nut-scanner(8) is available to discover supported devices (USB,
SNMP, Eaton XML/HTTP and IPMI) and NUT servers (using Avahi or the classic connection method).

6.1 Details about the configuration files

6.1.1 Generalities

All configuration files within this package are parsed with a common state machine, which means they all can use a number of
extras described here.

First, most of the programs use an upper-case word to declare a configuration directive. This may be something like MONITOR,
NOTIFYCMD, or ACCESS. The case does matter here. "monitor" won’t be recognized.

Next, the parser does not care about whitespace between words. If you like to indent things with tabs or spaces, feel free to do it
here.

If you need to set a value to something containing spaces, it has to be contained within "quotes" to keep the parser from splitting
up the line. That is, you want to use something like this:

SHUTDOWNCMD "/sbin/shutdown -h +0"

Without the quotes, it would only see the first word on the line.

OK, so let’s say you really need to embed that kind of quote within your configuration directive for some reason. You can do that
too.

NOTIFYCMD "/bin/notifyme -foo -bar \"hi there\" -baz"

In other words, \ can be used to escape the ".

Finally, for the situation where you need to put the \ character into your string, you just escape it.

NOTIFYCMD "/bin/notifyme c:\\dos\\style\\path"

The \ can actually be used to escape any character, but you only really need it for \, ", and # as they have special meanings to
the parser.

When using file names with space characters, you may end up having tricky things since you need to write them inside "" which
must be escaped:

NOTIFYCMD "\"c:\\path with space\\notifyme\" \"c:\\path with space\\name\""

is the comment character. Anything after an unescaped # is ignored.

Something like this. . .

identity = my#1ups

will actually turn into identity = my, since the # stops the parsing. If you really need to have a # in your configuration,
then escape it.

https://www.networkupstools.org/docs/man/nut-scanner.html

Network UPS Tools User Manual 28 / 155

identity = my\#1ups

Much better.

The = character should be used with care too. There should be only one "simple" = character in a line: between the parameter
name and its value. All other = characters should be either escaped or within "quotes".

password = 123=123

is incorrect. You should use:

password = 123\=123

or:

password = "123=123"

6.1.2 Line spanning

You can put a backslash at the end of the line to join it to the next one. This creates one virtual line that is composed of more
than one physical line.

Also, if you leave the "" quote container open before a newline, it will keep scanning until it reaches another one. If you see
bizarre behavior in your configuration files, check for an unintentional instance of quotes spanning multiple lines.

6.2 Basic configuration

This chapter describes the base configuration to establish communication with the device.

This will be sufficient for PDU. But for UPS and SCD, you will also need to configure automatic shutdowns for low battery
events.

On operating systems with service management frameworks (such as Linux systemd and Solaris/illumos SMF), the life-cycle of
driver, data server and monitoring client daemons is managed respectively by nut-driver (multi-instance service), nut-server
and nut-monitor services. These are in turn wrapped by an "umbrella" service (or systemd "target") conveniently called nut
which allows to easily start or stop all those of the bundled services, which are enabled on a particular deployment.

6.2.1 Driver configuration

Create one section per UPS in ups.conf

Note
The default path for a source installation is /usr/local/ups/etc, while packaged installation will vary. For example,
/etc/nut is used on Debian and derivatives, while /etc/ups or /etc/upsd is used on RedHat and derivatives.

Network UPS Tools User Manual 29 / 155

To find out which driver to use, check the Hardware Compatibility List, or data/driver.list(.in) source file.

Once you have picked a driver, create a section for your UPS in ups.conf. You must supply values at least for "driver" and "port".

Some drivers may require other flags or settings. The "desc" value is optional, but is recommended to provide a better description
of what useful load your UPS is feeding.

A typical device without any extra settings looks like this:

[mydevice]
driver = mydriver
port = /dev/ttyS1
desc = "Workstation"

Note
USB drivers (such as usbhid-ups for non-SHUT mode, nutdrv_qx for non-serial mode, bcmxcp_usb,
tripplite_usb, blazer_usb, riello_usb and richcomm_usb) are special cases and ignore the port value.
You must still set this value, but it does not matter what you set it to; a common and good practice is to set port to auto, but you
can put whatever you like.
If you only own one USB UPS, the driver will find it automatically.
If you own more than one, refer to the driver’s manual page for more information on matching a specific device.

Note
On Windows systems, the second serial port (COM2), equivalent to "/dev/ttyS1" on Linux, would be "\\\\.\\COM2".

References: ups.conf(5), nutupsdrv(8), bcmxcp_usb(8), blazer_usb(8), nutdrv_qx(8), richcomm_usb(8), riello_usb(8), trip-
plite_usb(8), usbhid-ups(8)

6.2.2 Starting the driver(s)

Generally, you can just start the driver(s) for your hardware (all sections defined in ups.conf) using the following command:

upsdrvctl start

Make sure the driver doesn’t report any errors. It should show a few details about the hardware and then enter the background.
You should get back to the command prompt a few seconds later. For reference, a successful start of the usbhid-ups driver
looks like this:

upsdrvctl start
Network UPS Tools - Generic HID driver 0.34 (2.4.1)
USB communication driver 0.31
Using subdriver: MGE HID 1.12
Detected EATON - Ellipse MAX 1100 [ADKK22008]

If the driver doesn’t start cleanly, make sure you have picked the right one for your hardware. You might need to try other drivers
by changing the "driver=" value in ups.conf.

Be sure to check the driver’s man page to see if it needs any extra settings in ups.conf to detect your hardware.

If it says can’t bind /var/state/ups/... or similar, then your state path probably isn’t writable by the driver. Check
the permissions and mode on that directory vs. the user account your driver starts as.

After making changes, try the Ownership and permissions step again.

https://www.networkupstools.org/docs/man/ups.conf.html
https://www.networkupstools.org/docs/man/nutupsdrv.html
https://www.networkupstools.org/docs/man/bcmxcp_usb.html
https://www.networkupstools.org/docs/man/blazer_usb.html
https://www.networkupstools.org/docs/man/nutdrv_qx.html
https://www.networkupstools.org/docs/man/richcomm_usb.html
https://www.networkupstools.org/docs/man/riello_usb.html
https://www.networkupstools.org/docs/man/tripplite_usb.html
https://www.networkupstools.org/docs/man/tripplite_usb.html
https://www.networkupstools.org/docs/man/usbhid-ups.html

Network UPS Tools User Manual 30 / 155

6.2.3 Driver(s) as a service

On operating systems with init-scripts managing life-cycle of the operating environment, the upsdrvctl program is also
commonly used in those scripts. It has a few downsides, such as that if the device was not accessible during OS startup and the
driver connection timed out, it would remain not-started until an administrator (or some other script) "kicks" the driver to retry
startup. Also, startup of the upsd data server daemon and its clients like upsmon is delayed until all the NUT drivers complete
their startup (or time out trying).

This can be a big issue on systems which monitor multiple devices, such as big servers with multiple power sources, or adminis-
trative workstations which monitor a datacenter full of UPSes.

For this reason, NUT starting with version 2.8.0 supports startup of its drivers as independent instances of a nut-driver
service under the Linux systemd and Solaris/illumos SMF service-management frameworks (corresponding files and scripts may
be not pre-installed in packaging for other systems).

Such service instances have their own and independent life-cycle, including parallel driver start and stop processing, and retries
of startup in case of failure as implemented by the service framework in the OS. The Linux systemd solution also includes a
nut-driver.target as a checkpoint that all defined drivers have indeed started up (as well as being a singular way to
enable or disable startup of drivers).

In both cases, a service named nut-driver-enumerator is registered, and when it is (re-)started it scans the currently
defined device sections in ups.conf and the currently defined instances of nut-driver service, and brings them in sync
(adding or removing service instances), and if there were changes — it restarts the corresponding drivers (via service instances)
as well as the data server which only reads the list of sections at its startup. This helper service should be triggered whenever
your system (re-)starts the nut-server service, so that it runs against an up-to-date list of NUT driver processes.

Two service bundles are provided for this feature: a set of nut-driver-enumerator-daemon* units starts the script as
a daemon to regularly inspect and apply the NUT configuration to OS service unit wrappings (mainly intended for monitoring
systems with a dynamic set of monitored power devices, or for systems where filesystem events monitoring is not a clockwork-
reliable mechanism to 100% rely on); while the other nut-driver-enumerator.* units run the script once per triggering
of the service (usually during boot-up; configuration file changes can be detected and propagated by systemd most of the time,
but not by SMF out of the box).

A service-oriented solution also allows to consider that different drivers have different dependencies — such as that networked
drivers should begin startup after IP addresses have been assigned, while directly-connected devices might need nothing beside
a mounted filesystem (or an activated USB stack service or device rule, in case of Linux). Likewise, systems administrators can
define further local dependencies between services and their instances as needed on particular deployments.

This solution also adds the upsdrvsvcctl script to manage NUT drivers as system service instances, whose CLI mimics that
of upsdrvctl program. One addition is the resync argument to trigger nut-driver-enumerator, another is a list
argument to display current mappings of service instances to NUT driver sections. Also, original tool’s arguments such as the -u
(user to run the driver as) or -D (debug of the driver) do not make sense in the service context — the accounts to use and other
arguments to the driver process are part of service setup (and an administrator can manage it there).

Note that while this solution tries to register service instances with same names as NUT configuration sections for the devices,
this can not always be possible due to constraints such as syntax supported by a particular service management framework. In
this case, the enumerator falls back to MD5 hashes of such section names, and the upsdrvsvcctl script supports this to map
the user-friendly NUT configuration section names to actual service names that it would manage.

References: man pages: nutupsdrv(8), upsdrvctl(8), upsdrvsvcctl(8)

6.2.4 Data server configuration (upsd)

Configure upsd, which serves data from the drivers to the clients.

First, edit upsd.conf to allow access to your client systems. By default, upsd will only listen to localhost port 3493/tcp.
If you want to connect to it from other machines, you must specify each interface you want upsd to listen on for connections,
optionally with a port number.

LISTEN 127.0.0.1 3493
LISTEN ::1 3493

https://www.networkupstools.org/docs/man/nutupsdrv.html
https://www.networkupstools.org/docs/man/upsdrvctl.html
https://www.networkupstools.org/docs/man/upsdrvsvcctl.html

Network UPS Tools User Manual 31 / 155

As a special case, LISTEN * <port> (with an asterisk) will try to listen on "ANY" IP address for both and IPv6 (::0)
and IPv4 (0.0.0.0), subject to upsd command-line arguments, or system configuration or support. Note that if the system
supports IPv4-mapped IPv6 addressing per RFC-3493, and does not allow to disable this mode, then there may be one listening
socket to handle both address families.

Note
Refer to the NUT user manual security chapter for information on how to access and secure upsd clients connections.

Next, create upsd.users. For now, this can be an empty file. You can come back and add more to it later when it’s time to
configure upsmon or run one of the management tools.

Do not make either file world-readable, since they both hold access control data and passwords. They just need to be readable by
the user you created in the preparation process.

The suggested configuration is to chown it to root, chgrp it to the group you created, then make it readable by the group.

chown root:nut upsd.conf upsd.users
chmod 0640 upsd.conf upsd.users

References: man pages: upsd.conf(5), upsd.users(5), upsd(8)

6.2.5 Starting the data server

Start the network data server:

upsd

Make sure it is able to connect to the driver(s) on your system. A successful run looks like this:

upsd
Network UPS Tools upsd 2.4.1
listening on 127.0.0.1 port 3493
listening on ::1 port 3493
Connected to UPS [eaton]: usbhid-ups-eaton

upsd prints dots while it waits for the driver to respond. Your system may print more or less depending on how many drivers
you have and how fast they are.

Note
If upsd says that it can’t connect to a UPS or that the data is stale, then your ups.conf is not configured correctly, or you have
a driver that isn’t working properly. You must fix this before going on to the next step.

Note
Normally upsd requires that at least one driver section is defined in the ups.conf file, and refuses to start otherwise. If you
intentionally do not have any driver sections defined (yet) but still want the data server to run, respond and report zero devices
(e.g. on an automatically managed monitoring deployment), you can enable the ALLOW_NO_DEVICE true option in the
upsd.conf file.

Note
Normally upsd requires that at all LISTEN directives defined in the upsd.conf file are honoured (except for mishaps possible
with many names of localhost), and refuses to start otherwise. If you want to allow start-up in cases where at least one but
possibly not all of the LISTEN directives were honoured, you can enable the ALLOW_NOT_ALL_LISTENERS true option
in the upsd.conf file. Note you would have to restart upsd to pick up the LISTEN`ed IP address if it appears
later, so probably configuring `LISTEN * is a better choice in such cases.

https://www.networkupstools.org/docs/man/upsd.conf.html
https://www.networkupstools.org/docs/man/upsd.users.html
https://www.networkupstools.org/docs/man/upsd.html

Network UPS Tools User Manual 32 / 155

On operating systems with service management frameworks, the data server life-cycle is managed by nut-server service.

Reference: man page: upsd(8)

6.2.6 Check the UPS data

Status data

Make sure that the UPS is providing good status data. You can use the upsc command-line client for this:

upsc myupsname@localhost ups.status

You should see just one line in response:

OL

OL means your system is running on line power. If it says something else (like OB— on battery, or LB— low battery), your
driver was probably misconfigured during the Driver configuration step. If you reconfigure the driver, use upsdrvctl stop
to stop it, then start it again as shown in the Starting driver(s) step.

Reference: man page: upsc(8)

All data

Look at all of the status data which is being monitored.

upsc myupsname@localhost

What happens now depends on the kind of device and driver you have. In the list, you should see ups.status with the same
value you got above. A sample run on an UPS (Eaton Ellipse MAX 1100) looks like this:

battery.charge: 100
battery.charge.low: 20
battery.runtime: 2525
battery.type: PbAc
device.mfr: EATON
device.model: Ellipse MAX 1100
device.serial: ADKK22008
device.type: ups
driver.name: usbhid-ups
driver.parameter.pollfreq: 30
driver.parameter.pollinterval: 2
driver.parameter.port: auto
driver.version: 2.4.1-1988:1990M
driver.version.data: MGE HID 1.12
driver.version.internal: 0.34
input.sensitivity: normal
input.transfer.boost.low: 185
input.transfer.high: 285
input.transfer.low: 165
input.transfer.trim.high: 265
input.voltage.extended: no
outlet.1.desc: PowerShare Outlet 1
outlet.1.id: 2
outlet.1.status: on
outlet.1.switchable: no
outlet.desc: Main Outlet
outlet.id: 1

https://www.networkupstools.org/docs/man/upsd.html
https://www.networkupstools.org/docs/man/upsc.html

Network UPS Tools User Manual 33 / 155

outlet.switchable: no
output.frequency.nominal: 50
output.voltage: 230.0
output.voltage.nominal: 230
ups.beeper.status: enabled
ups.delay.shutdown: 20
ups.delay.start: 30
ups.firmware: 5102AH
ups.load: 0
ups.mfr: EATON
ups.model: Ellipse MAX 1100
ups.power.nominal: 1100
ups.productid: ffff
ups.serial: ADKK22008
ups.status: OL CHRG
ups.timer.shutdown: -1
ups.timer.start: -1
ups.vendorid: 0463

Reference: man page: upsc(8), NUT command and variable naming scheme

6.2.7 Startup scripts

Note
This step is not necessary if you installed from packages.

Edit your startup scripts, and make sure upsdrvctl and upsd are run every time your system starts. In newer versions of
NUT, you may have a nut.conf file which sets the MODE variable for bundled init-scripts, to facilitate enabling of certain features
in the specific end-user deployments.

If you installed from source, check the scripts directory for reference init-scripts, as well as systemd or SMF service methods
and manifests.

6.3 Configuring automatic shutdowns for low battery events

The whole point of UPS software is to bring down the OS cleanly when you run out of battery power. Everything else is roughly
eye candy.

To make sure your system shuts down properly, you will need to perform some additional configuration and run upsmon. Here
are the basics.

6.3.1 Shutdown design

When your UPS batteries get low, the operating system needs to be brought down cleanly. Also, the UPS load should be turned
off so that all devices that are attached to it are forcibly rebooted, and subsequently start in the predictable order and state suitable
for your data center.

Here are the steps that occur when a critical power event happens, for the simpler case of one UPS device feeding one or several
systems:

1. The UPS goes on battery

2. The UPS reaches low battery (a "critical" UPS), that is to say, upsc displays:

ups.status: OB LB

https://www.networkupstools.org/docs/man/upsc.html

Network UPS Tools User Manual 34 / 155

The exact behavior depends on the specific device, and is related to such settings and readings as:

• battery.charge and battery.charge.low

• battery.runtime and battery.runtime.low

3. The upsmon primary notices the "critical UPS" situation and sets "FSD" — the "forced shutdown" flag to tell all secondary
systems that it will soon power down the load.

Warning
By design, since we require power-cycling the load and don’t want some systems to be powered off while others
remain running if the "wall power" returns at the wrong moment as usual, the "FSD" flag can not be removed
from the data server unless its daemon is restarted. If we do take the first step in critical mode, then we intend to
go all the way — shut down all the servers gracefully, and power down the UPS.
Keep in mind that some UPS devices and corresponding drivers would latch the "FSD" again even if "wall power"
is available, but the remaining battery charge is below a threshold configured as "safe" in the device (usually if
you manually power on the UPS after a long power outage). This is by design of respective UPS vendors, since
in such situation they can not guarantee that if a new power outage happens, their UPS would safely shut down
your systems again. So it is deemed better and safer to stay dark until batteries become sufficiently charged.

(If you have no secondary systems, skip to step 6)

4. upsmon secondary systems see "FSD" and:

• generate a NOTIFY_SHUTDOWN event

• wait FINALDELAY seconds — typically 5

• call their SHUTDOWNCMD

• disconnect from upsd

5. The upsmon primary system waits up to HOSTSYNC seconds (typically 15) for the secondary systems to disconnect from
upsd. If any are still connected after this time, upsmon primary stops waiting and proceeds with the shutdown process.

6. The upsmon primary:

• generates a NOTIFY_SHUTDOWN event

• waits FINALDELAY seconds — typically 5

• creates the POWERDOWNFLAG file in its local filesystem — usually /etc/killpower

• calls the SHUTDOWNCMD

7. On most systems, init takes over, kills your processes, syncs and unmounts some filesystems, and remounts some read-
only.

8. init then runs your shutdown script. This checks for the POWERDOWNFLAG, finds it, and tells the UPS driver(s) to power
off the load by sending commands to the connected UPS device(s) they manage.

9. All the systems lose power.

10. Time passes. The power returns, and the UPS switches back on.

11. All systems reboot and go back to work.

Network UPS Tools User Manual 35 / 155

6.3.2 How you set it up

NUT user creation

Create a upsd user for upsmon to use while monitoring this UPS.

Edit upsd.users and create a new section. The upsmon will connect to upsd and use these user name (in brackets) and password
to authenticate (as specified in its configuration via MONITOR line).

This example is for defining a user called "monuser":

[monuser]
password = mypass
upsmon primary
or upsmon secondary

References: upsd(8), upsd.users(5)

Reloading the data server

Reload upsd. Depending on your configuration, you may be able to do this without stopping the upsd daemon process (if it
had saved a PID file earlier):

upsd -c reload

If that doesn’t work (check the syslog), just restart it:

upsd -c stop
upsd

For systems with integrated service management (Linux systemd, illumos/Solaris SMF) their corresponding reload or refresh
service actions should handle this as well. Note that such integration generally forgoes saving of PID files, so upsd -c <cmd>
would not work. If your workflow requires to manage these daemons beside the OS provided framework, you can customize it
to start upsd -FF and save the PID file.

NUT releases after 2.8.0 define aliases for these units, so if your Linux distribution uses NUT-provided unit definitions, systemctl
reload upsd may also work.

Note
If you want to make reloading work later, see the entry in the FAQ about starting upsd as a different user.

Power Off flag file

Set the POWERDOWNFLAG location for upsmon.

In upsmon.conf, add a POWERDOWNFLAG directive with a filename. The upsmon will create this file when the UPS needs to be
powered off during a power failure when low battery is reached.

We will test for the presence of this file in a later step.

POWERDOWNFLAG /etc/killpower

References: man pages: upsmon(8), upsmon.conf(5)

https://www.networkupstools.org/docs/man/upsd.html
https://www.networkupstools.org/docs/man/upsd.users.html
FAQ.html
https://www.networkupstools.org/docs/man/upsmon.html
https://www.networkupstools.org/docs/man/upsmon.conf.html

Network UPS Tools User Manual 36 / 155

Securing upsmon.conf

The recommended setting is to have it owned by root:nut, then make it readable by the group and not by the world. This file
contains passwords that could be used by an attacker to start a shutdown, so keep it secure.

chown root:nut upsmon.conf
chmod 0640 upsmon.conf

This step has been placed early in the process so you secure this file before adding sensitive data in the next step.

Create a MONITOR directive for upsmon

Edit upsmon.conf and create a MONITOR line with the UPS definition (<upsname>@<hostname>), username and password from
the NUT user creation step, and the "primary" or "secondary" setting.

If this system is the UPS manager (i.e. it’s connected to this UPS directly and can manage it using a suitable NUT driver), its
upsmon is the primary:

MONITOR myupsname@mybox 1 monuser mypass primary

If it’s just monitoring this UPS over the network, and some other system is the primary, then this one is a secondary:

MONITOR myupsname@mybox 1 monuser mypass secondary

The number 1 here is the "power value". This should always be set to 1, unless you have a very special (read: expensive) system
with redundant power supplies. In such cases, refer to the User Manual:

• typical setups for big servers,

• typical setups for data rooms.

Note that the "power value" may also be 0 for a monitoring (administrative) system which only observes the remote UPS status
but is not impacted by its power events, and so does not shut down when the UPS does.

References: upsmon(8), upsmon.conf(5)

Define a SHUTDOWNCMD for upsmon

Still in upsmon.conf, add a directive that tells upsmon how to shut down your system. This example seems to work on most
systems:

SHUTDOWNCMD "/sbin/shutdown -h +0"

Notice the presence of "quotes" here to keep it together.

If your system has special needs (e.g. system-provided shutdown handler is ungracefully time constrained), you may want to set
this to a script which does customized local shutdown tasks before calling init or shutdown programs to handle the system
side of this operation.

Start upsmon

upsmon

If it complains about something, then check your configuration.

On operating systems with service management frameworks, the monitoring client life-cycle is managed by nut-monitor
service.

https://www.networkupstools.org/docs/man/upsmon.html
https://www.networkupstools.org/docs/man/upsmon.conf.html

Network UPS Tools User Manual 37 / 155

Checking upsmon

Look for messages in the syslog to indicate success. It should look something like this:

May 29 01:11:27 mybox upsmon[102]: Startup successful
May 29 01:11:28 mybox upsd[100]: Client monuser@192.168.50.1
logged into UPS [myupsname]

Any errors seen here are probably due to an error in the config files of either upsmon or upsd. You should fix them before
continuing.

Startup scripts

Note
This step is not need if you installed from packages.

Edit your startup scripts, and add a call to upsmon.

Make sure upsmon starts when your system comes up. On systems with upsmon primary (also running the data server), do it
after upsdrvctl and upsd, or it will complain about not being able to contact the server.

You may delete the POWERDOWNFLAG in the startup scripts, but it is not necessary. upsmon will clear that file for you when it
starts.

Note
Init script examples are provide in the scripts directory of the NUT source tree, and in the various packages that exist.

Shutdown scripts

Note
This step is not need if you installed from packages.

Edit your shutdown scripts, and add upsdrvctl shutdown.

You should configure your system to power down the UPS after the filesystems are remounted read-only. Have it look for the
presence of the POWERDOWNFLAG (from upsmon.conf(5)), using this as an example:

if (/sbin/upsmon -K)
then

echo "Killing the power, bye!"
/sbin/upsdrvctl shutdown

sleep 120

uh oh... the UPS power-off failed
you probably want to reboot here so you don't get stuck!
*** see also the section on power races in the FAQ! ***

fi

https://www.networkupstools.org/docs/man/upsmon.conf.html

Network UPS Tools User Manual 38 / 155

Warning

• Be careful that upsdrvctl shutdown command will probably power off your machine and others fed by the
UPS(es) which it manages. Don’t use it unless your system is ready to be halted by force. If you run RAID, read the
RAID warning below!

• Make sure the filesystem(s) containing upsdrvctl, upsmon, the POWERDOWNFLAG file, ups.conf and your UPS
driver(s) are mounted (possibly in read-only mode) when the system gets to this point. Otherwise it won’t be able to
figure out what to do.

• If for some reason you can not ensure upsmon program is executable at this point, your script can (test -f
/etc/killpower) in a somewhat non-portable manner, instead of asking upsmon -K for the verdict according
to its current configuration.

Testing shutdowns

UPS equipment varies from manufacturer to manufacturer and even within model lines. You should test the shutdown sequence
on your systems before leaving them unattended. A successful sequence is one where the OS halts before the battery runs out,
and the system restarts when power returns.

The first step is to see how upsdrvctl will behave without actually turning off the power. To do so, use the -t argument:

upsdrvctl -t shutdown

It will display the sequence without actually calling the drivers.

You can finally test a forced shutdown sequence (FSD) using:

upsmon -c fsd

This will execute a full shutdown sequence, as presented in Shutdown design, starting from the 3rd step.

If everything works correctly, the computer will be forcibly powered off, may remain off for a few seconds to a few minutes
(depending on the driver and UPS type), then will power on again.

If your UPS just sits there and never resets the load, you are vulnerable to a power race and should add the "reboot after timeout"
hack at the very least.

Also refer to the section on power races in the FAQ.

6.3.3 Using suspend to disk

Support for suspend to RAM and suspend to disk has been available in the Linux kernel for a while now. For obvious reasons,
suspending to RAM isn’t particularly useful when the UPS battery is getting low, but suspend to disk may be an interesting
concept.

This approach minimizes the amount of disruption which would be caused by an extended outage. The UPS goes on battery, then
reaches low battery, and the system takes a snapshot of itself and halts. Then it is turned off and waits for the power to return.

Once the power is back, the system reboots, pulls the snapshot back in, and keeps going from there. If the user happened to
be away when it happened, they may return and have no idea that their system actually shut down completely in the middle
(although network connections will drop).

In order for this to work, you need to shutdown NUT (UPS driver, upsd server and upsmon client) in the suspend script and
start them again in the resume script. Don’t try to keep them running. The upsd server will latch the FSD state (so it won’t
be usable after resuming) and so will the upsmon client. Some drivers may work after resuming, but many don’t and some UPS
devices will require re-initialization, so it’s best not to keep them running either.

After stopping NUT driver, server and client you’ll have to send the UPS the command to shutdown only if the POWERDOWNFLAG
is present. Note that most likely you’ll have to allow for a grace period after calling upsdrvctl shutdown since the system
will still have to take a snapshot of itself after that. Not all drivers and devices support this, so before going down this road, make
sure that the one you’re using does.

FAQ.html

Network UPS Tools User Manual 39 / 155

• see if you can query or configure settings named like load.off.delay, ups.delay.shutdown, offdelay and/or
shutdown_delay

6.3.4 RAID warning

If you run any sort of RAID equipment, make sure your arrays are either halted (if possible) or switched to "read-only" mode.
Otherwise you may suffer a long resync once the system comes back up.

The kernel may not ever run its final shutdown procedure, so you must take care of all array shutdowns in userspace before
upsdrvctl shutdown runs.

If you use software RAID (md) on Linux, get mdadm and try using mdadm --readonly to put your arrays in a safe state.
This has to happen after your shutdown scripts have remounted the filesystems.

On hardware RAID or other kernels, you have to do some detective work. It may be necessary to contact the vendor or the author
of your driver to find out how to put the array in a state where a power loss won’t leave it "dirty".

Our understanding is that most if not all RAID devices on Linux will be fine unless there are pending writes. Make sure your
filesystems are remounted read-only and you should be covered.

6.4 Typical setups for enterprise networks and data rooms

The split nature of this UPS monitoring software allows a wide variety of power connections. This chapter will help you identify
how things should be configured using some general descriptions.

There are two main elements:

1. There’s a UPS attached to a communication (serial, USB or network) port on this system.

2. This system depends on a UPS for power.

You can play "mix and match" with those two to arrive at these descriptions for individual hosts:

• A: 1 but not 2

• B: 2 but not 1

• C: 1 and 2

A small to medium sized data room usually has one C and a bunch of Bs. This means that there’s a system (type C) hooked to
the UPS which depends on it for power. There are also some other systems in there (type B) which depend on that same UPS for
power, but aren’t directly connected to it communications-wise.

Larger data rooms or those with multiple UPSes may have several "clusters" of the "single C, many Bs" depending on how it’s
all wired.

Finally, there’s a special case. Type A systems are connected to an UPS’s communication port, but don’t depend on it for power.
This usually happens when an UPS is physically close to a box and can reach the serial port, but the power wiring is such that it
doesn’t actually feed that box.

Once you identify a system’s type, use this list to decide which of the programs need to be run for monitoring:

• A: driver and upsd

• B: upsmon (in secondary mode)

• C: driver, upsd, and upsmon (in primary mode, as the UPS manager)

Network UPS Tools User Manual 40 / 155

To further complicate things, you can have a system that is hooked to multiple UPSes, but only depends on one for power. This
particular situation makes it an A relative to one UPS, and a C relative to the other. The software can handle this — you just have
to tell it what to do.

Note
NUT can also serve as a data proxy to increase the number of clients, or share the communication load between several upsd
instances.

If you are running large server-class systems that have more than one power feed, see the next section for information on how to
handle it properly.

6.5 Typical setups for big servers with UPS redundancy

By using multiple MONITOR statements in upsmon.conf, you can configure an environment where a large machine with redundant
power monitors multiple separate UPSes.

6.5.1 Example configuration

For the examples in this section, we will use a server with four power supplies installed and locally running the full NUT stack,
including upsmon in primary mode — as the UPS manager.

Network UPS Tools User Manual 41 / 155

Two UPSes, Alpha and Beta, are each driving two of the power supplies (by adding up, we know about the four power supplies
of the current system). This means that either Alpha or Beta can totally shut down and the server will be able to keep running.

The upsmon.conf configuration which reflects this is the following:

MONITOR ups-alpha@myhost 2 monuser mypass primary
MONITOR ups-beta@myhost 2 monuser mypass primary
MINSUPPLIES 2

With such configuration, upsmon on this system will only shut down when both UPS devices reach a critical (on battery + low
battery) condition, since Alpha and Beta each provide the same power value.

As an added bonus, this means you can move a running server from one UPS to another (for maintenance purpose for example)
without bringing it down since the minimum sufficient power will be provided at all times.

The MINSUPPLIES line tells upsmon that we need at least 2 power supplies to be receiving power from a good UPS (on line
or on battery, just not on battery and low battery).

Note
We could have used a Power Value of 1 for both UPS, and have MINSUPPLIES set to 1 too. These values are purely arbitrary,
so you are free to use your own rules. Here, we have linked these values to the number of power supplies that each UPS is
feeding (2) since this maps better to physical topology and allows to throw a third or fourth UPS into the mix without much
configuration headache.

6.5.2 Multiple UPS shutdowns ordering

If you have multiple UPSes connected to your system, chances are that you need to shut them down in a specific order. The goal
is to shut down everything but the one keeping upsmon alive at first, then you do that one last.

To set the order in which your UPSes receive the shutdown commands, define the sdorder value in your ups.conf device
sections.

[bigone]
driver = usbhid-ups
port = auto
sdorder = 2

[littleguy]
driver = mge-shut
port = /dev/ttyS0
sdorder = 1

[misc]
driver = blazer_ser
port = /dev/ttyS1
sdorder = 0

The order runs from 0 to the highest number available. So, for this configuration, the order of shutdowns would be misc, littleguy,
and then bigone.

Note
If you have a UPS that shouldn’t be powered off when running upsdrvctl shutdown, set its sdorder to -1.

Network UPS Tools User Manual 42 / 155

6.5.3 Other redundancy configurations

There are a lot of ways to handle redundancy and they all come down to how many power supplies, power cords and independent
UPS connections you have. A system with a 1:1 cord:supply ratio has more wires stuffed behind it, but it’s much easier to move
things around since any given UPS drives a smaller percentage of the overall power.

More information can be found in the NUT user manual, and the various user manual pages.

7 Advanced usage and scheduling notes

upsmon can call out to a helper script or program when the device changes state. The example upsmon.conf has a full list of
which state changes are available — ONLINE, ONBATT, LOWBATT, and more.

There are two options, that will be presented in details:

• the simple approach: create your own helper, and manage all events and actions yourself,

• the advanced approach: use the NUT provided helper, called upssched.

7.1 The simple approach, using your own script

7.1.1 How it works relative to upsmon

Your command will be called with the full text of the message as one argument.

For the default values, refer to the sample upsmon.conf file.

The environment string NOTIFYTYPE will contain the type string of whatever caused this event to happen — ONLINE, ON-
BATT, LOWBATT, . . .

Making this some sort of shell script might be a good idea, but the helper can be in any programming or scripting language.

Note
Remember that your helper must be executable. If you are using a script, make sure the execution flags are set.

For more information, refer to upsmon(8) and upsmon.conf(5) manual pages.

7.1.2 Setting up everything

• Set EXEC flags on various things in upsmon.conf(5):

NOTIFYFLAG ONBATT EXEC
NOTIFYFLAG ONLINE EXEC

If you want other things like WALL or SYSLOG to happen, just add them:

NOTIFYFLAG ONBATT EXEC+WALL+SYSLOG

You get the idea.

• Tell upsmon where your script is

NOTIFYCMD /path/to/my/script

• Make a simple script like this at that location:

man/index.html
https://www.networkupstools.org/docs/man/upsmon.html
https://www.networkupstools.org/docs/man/upsmon.conf.html
https://www.networkupstools.org/docs/man/upsmon.conf.html

Network UPS Tools User Manual 43 / 155

#! /bin/bash
echo "$*" | sendmail -F"ups@mybox" bofh@pager.example.com

• Restart upsmon, pull the plug, and see what happens.

That approach is bare-bones, but you should get the text content of the alert in the body of the message, since upsmon passes the
alert text (from NOTIFYMSG) as an argument.

7.1.3 Using more advanced features

Your helper script will be run with a few environment variables set.

• UPSNAME: the name of the system that generated the change.

This will be one of your identifiers from the MONITOR lines in upsmon.conf.

• NOTIFYTYPE: this will be ONLINE, ONBATT, or whatever event took place which made upsmon call your script.

You can use these to do different things based on which system has changed state. You could have it only send pages for an
important system while totally ignoring a known trouble spot, for example.

7.1.4 Suppressing notify storms

upsmon will call your script every time an event happens that has the EXEC flag set. This means a quick power failure that
lasts mere seconds might generate a notification storm. To suppress this sort of annoyance, use upssched as your NOTIFYCMD
program, and configure it to call your command after a timer has elapsed.

7.2 The advanced approach, using upssched

upssched is a helper for upsmon that will invoke commands for you at some interval relative to a UPS event. It can be used to
send pages, mail out notices about things, or even shut down the box early.

There will be examples scattered throughout. Change them to suit your pathnames, UPS locations, and so forth.

7.2.1 How upssched works relative to upsmon

When an event occurs, upsmon will call whatever you specify as a NOTIFYCMD in your upsmon.conf, if you also enable the
EXEC in your NOTIFYFLAGS. In this case, we want upsmon to call upssched as the notifier, since it will be doing all the work
for us. So, in the upsmon.conf:

NOTIFYCMD /usr/local/ups/sbin/upssched

Then we want upsmon to actually use it for the notify events, so again in the upsmon.conf we set the flags:

NOTIFYFLAG ONLINE SYSLOG+EXEC
NOTIFYFLAG ONBATT SYSLOG+WALL+EXEC
NOTIFYFLAG LOWBATT SYSLOG+WALL+EXEC
... and so on.

For the purposes of this document I will only use those three, but you can set the flags for any of the valid notify types.

Network UPS Tools User Manual 44 / 155

7.2.2 Setting up your upssched.conf

Once upsmon has been configured with the NOTIFYCMD and EXEC flags, you’re ready to deal with the upssched.conf details.
In this file, you specify just what will happen when a given event occurs on a particular UPS.

First you need to define the name of the script or program that will handle timers that trigger. This is your CMDSCRIPT, and
needs to be above any AT defines. There’s an example provided with the program, so we’ll use that here:

CMDSCRIPT /usr/local/ups/bin/upssched-cmd

Then you have to define the variables PIPEFN and LOCKFN; the former sets the file name of the FIFO that will pass commu-
nications between processes to start and stop timers, while the latter sets the file name for a temporary file created by upssched
in order to avoid a race condition under some circumstances. Please see the relevant comments in upssched.conf for additional
information and advice about these variables.

Now you can tell your CMDSCRIPT what to do when it is called by upsmon.

The big picture

The design in a nutshell is:

upsmon ---> calls upssched ---> calls your CMDSCRIPT

Ultimately, the CMDSCRIPT does the actual useful work, whether that’s initiating an early shutdown with upsmon -c fsd, sending
a page by calling sendmail, or opening a subspace channel to V’ger.

Establishing timers

Let’s say that you want to receive a notification when any UPS has been running on battery for 30 seconds. Create a handler that
starts a 30 second timer for an ONBATT condition.

AT ONBATT * START-TIMER onbattwarn 30

This means "when any UPS (the *) goes on battery, start a timer called onbattwarn that will trigger in 30 seconds". We’ll come
back to the onbattwarn part in a moment. Right now we need to make sure that we don’t trigger that timer if the UPS happens to
come back before the time is up. In essence, if it goes back on line, we need to cancel it. So, let’s tell upssched that.

AT ONLINE * CANCEL-TIMER onbattwarn

Note
Timers are pure in-memory mechanisms, specific to upssched. Conversely to other mechanisms found in NUT, such as
upsmon→POWERDOWNFLAG, there is no file created on the filesystem.

Executing commands immediately

As an example, consider the scenario where a UPS goes onto battery power. However, the users are not informed until 30 seconds
later — using a timer as described above. Whilst this may let the logged in users know that the UPS is on battery power, it does
not inform any users subsequently logging in. To enable this we could, at the same time, create a file which is read and displayed
to any user trying to login whilst the UPS is on battery power. If the UPS comes back onto utility power within 30 seconds,
then we can cancel the timer and remove the file, as described above. However, if the UPS comes back onto utility power say 5
minutes later then we do not want to use any timers but we still want to remove the file. To do this we could use:

AT ONLINE * EXECUTE ups-back-on-power

This means that when upsmon detects that the UPS is back on utility power it will signal upssched. Upssched will see the above
command and simply pass ups-back-on-power as an argument directly to CMDSCRIPT. This occurs immediately, there are no
timers involved.

Network UPS Tools User Manual 45 / 155

7.2.3 Writing the command script handler

OK, now that upssched knows how the timers are supposed to work, let’s give it something to do when one actually triggers. The
name of the example timer is onbattwarn, so that’s the argument that will be passed into your CMDSCRIPT when it triggers.
This means we need to do some shell script writing to deal with that input.

#! /bin/sh

case $1 in
onbattwarn)

Send a notification mail
echo "The UPS has been on battery for awhile" \
| mail -s"UPS monitor" bofh@pager.example.com
Create a flag-file on the filesystem, for your own processing
/usr/bin/touch /some/path/ups-on-battery
;;

ups-back-on-power)
Delete the flag-file on the filesystem
/bin/rm -f /some/path/ups-on-battery
;;

*)
logger -t upssched-cmd "Unrecognized command: $1"
;;

esac

This is a very simple script example, but it shows how you can test for the presence of a given trigger. With multiple ATs creating
various timer names, you will need to test for each possibility and handle it according to your desires.

Note
You can invoke just about anything from inside the CMDSCRIPT. It doesn’t need to be a shell script, either — that’s just an
example. If you want to write a program that will parse argv[1] and deal with the possibilities, that will work too.

7.2.4 Early Shutdowns

One thing that gets requested a lot is early shutdowns in upsmon. With upssched, you can now have this functionality. Just set a
timer for some length of time at ONBATT which will invoke a shutdown command if it elapses. Just be sure to cancel this timer
if you go back ONLINE before then.

The best way to do this is to use the upsmon callback feature. You can make upsmon set the "forced shutdown" (FSD) flag on
the upsd so your secondary systems shut down early too. Just do something like this in your CMDSCRIPT:

/sbin/upsmon -c fsd

Note
the path to upsmon must be provided. The default for an installation built from sources is /usr/local/ups (so
/usr/local/ups/sbin/upsmon), while packaged installations will generally comply to FHS — Filesystem Hierarchy
Standard (so /sbin/upsmon).

It’s not a good idea to call your system’s shutdown routine directly from the CMDSCRIPT, since there’s no synchronization with
the secondary systems hooked to the same UPS. FSD is the primary’s way of saying "we’re shutting down now like it or not, so
you’d better get ready".

http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml

Network UPS Tools User Manual 46 / 155

7.2.5 Background

This program was written primarily to fulfill the requests of users for the early shutdown scenario. The "outboard" design of the
program (relative to upsmon) was intended to reduce the load on the average system. Most people don’t have the requirement of
shutting down after n seconds on battery, since the usual OB+LB testing is sufficient.

This program was created separately so those people don’t have to spend CPU time and RAM on something that will never be
used in their environments.

The design of the timer handler is also geared towards minimizing impact. It will come and go from the process list as necessary.
When a new timer is started, a process will be forked to actually watch the clock and eventually start the CMDSCRIPT. When a
timer triggers, it is removed from the queue. Canceling a timer will also remove it from the queue. When no timers are present
in the queue, the background process exits.

This means that you will only see upssched running when one of two things is happening:

1. There’s a timer of some sort currently running

2. upsmon just called it, and you managed to catch the brief instance

The final optimization handles the possibility of trying to cancel a timer when there’s none running. If there’s no process already
running, there are no timers to cancel, and furthermore there is no need to start a clock-watcher. As a result, it skips that step and
exits sooner.

8 NUT outlets management and PDU notes

NUT supports advanced outlets management for any kind of device that proposes it. This chapter introduces how to manage
outlets in general, and how to take advantage of the provided features.

8.1 Introduction

Outlets are the core of Power Distribution Units. They allow you to turn on, turn off or cycle the load on each outlet.

Some UPS models also provide manageable outlets (Eaton, MGE, Powerware, Tripplite, . . .) that help save power in various
ways, and manage loads more intelligently.

Finally, some devices can be managed in a PDU-like way. Consider blade systems: the blade chassis can be controlled remotely
to turn on, turn off or cycle the power on individual blade servers.

NUT allows you to control all these devices!

8.2 NUT outlet data collection

NUT provides a complete and uniform integration of outlets related data, through the outlet collection.

First, there is a special outlet, called main outlet. You can access it through outlet.{id, desc, . . . } without any index.

Any modification through the main outlet will affect all outlets. For example, calling the command outlet.load.cycle will cycle
all outlets.

Next, outlets index starts from 1. Index 0 is implicitly reserved to the main outlet. So the first outlet is outlet.1.*.

For a complete list of outlet data and commands, refer to the NUT command and variable naming scheme.

An example upsc output (data/epdu-managed.dev) is available in the source archive.

Note
The variables supported depend on the exact device type.

Network UPS Tools User Manual 47 / 155

8.3 Outlets on PDU

Smart Power Distribution Units provide at least various meters, related to current, power and voltage.

Some more advanced devices also provide control through the load.off, load.on and load.cycle commands.

8.4 Outlets on UPS

Some advanced Uninterruptible Power Supplies provide smart outlet management.

This allows to program a limited backup time to non-critical loads in order to keep the maximum of the battery reserve for critical
equipment.

This also allows the same remote electrical management of devices provided by PDUs, which can be very interesting in Data
Centers.

For example, on small setup, you can plug printers, USB devices, hubs, (. . .) into managed outlets. Depending on your UPS’s
capabilities, you will be able to turn off those loads:

• after some minutes of back-up time using outlet.n.delay.start,

• when reaching a percentage battery charge using outlet.n.autoswitch.charge.low.

This will ensure a maximum runtime for the computer.

On bigger systems, with bigger UPSs, this is the same thing with servers instead of small devices.

Note
If you need the scheduling function and your device doesn’t support it, you can still use NUT scheduling features.

Warning
don’t plug the UPS’s communication cable (USB or network) on a managed outlet. Otherwise, all computers will be
stopped as soon as the communication is lost.

8.5 Other type of devices

As mentioned in the introduction, some other devices can be considered and managed like PDUs. This is the case in most blade
systems, where the blade chassis offers power management services.

This way, you can control remotely each blade server as if it were a PDU outlet.

This category of devices is generally called Remote Power Controls — or "RPC" in NUT.

9 NUT daisychain support notes

NUT supports daisychained devices for any kind of device that proposes it. This chapter introduces:

• for developers: how to implement such mechanism,

• for users: how to manage and use daisychained devices in NUT in general, and how to take advantage of the provided features.

Network UPS Tools User Manual 48 / 155

9.1 Introduction

It’s not unusual to see some daisy-chained PDUs or UPSs, connected together in master-slave mode, to only consume 1 IP address
for their communication interface (generally, network card exposing SNMP data) and expose only one point of communication
to manage several devices, through the daisy-chain master.

This breaks the historical consideration of NUT that one driver provides data for one unique device. However, there is an actual
need, and a smart approach was considered to fulfill this, while not breaking the standard scope (for base compatibility).

9.2 Implementation notes

9.2.1 General specification

The daisychain support uses the device collection to extend the historical NUT scope (1 driver — 1 device), and provides data
from the additional devices accessible through a single management interface.

A new variable was introduced to provide the number of devices exposed: the device.count, which:

• defaults to 1

• if higher than 1, enables daisychain support and access to data of each individual device through device.X.{...}

To ensure backward compatibility in NUT, the data of the various devices are exposed the following way:

• device.0 is a special case, for the whole set of devices (the whole daisychain). It is equivalent to device (without .X
index) and root collections. The idea is to be able to get visibility and control over the whole daisychain from a single point.

• daisy-chained devices are available from device.1 (master) to device.N (slaves).

That way, client applications that are unaware of the daisychain support, will only see the whole daisychain, as it would normally
seem, and not nothing at all.

Moreover, this solution is generic, and not specific to the ePDU use case currently considered. It thus support both the current
NUT scope, along with other use cases (parallel / serial UPS setups), and potential evolution and technology change (hybrid
chain with UPS and PDU for example).

Devices status handling

To be clarified. . .

Devices alarms handling

Devices (master and slaves) alarms are published in device.X.ups.alarm, which may evolve into device.X.alarm. If
any of the devices has an alarm, the main ups.status will publish an ALARM flag. This flag is be cleared once all devices
have no alarms anymore.

Note
ups.alarm behavior is not yet defined (all devices alarms vs. list of device(s) that have alarms vs. nothing?)

Network UPS Tools User Manual 49 / 155

Example

Here is an example excerpt of three PDUs, connected in daisychain mode, with one master and two slaves:

device.count: 3
device.mfr: EATON
device.model: EATON daisychain PDU
device.1.mfr: EATON
device.1.model: EPDU MI 38U-A IN: L6-30P 24A 1P OUT: 36XC13:6XC19
device.2.mfr: EATON
device.2.model: EPDU MI 38U-A IN: L6-30P 24A 1P OUT: 36XC13:6XC19
device.3.mfr: EATON
device.3.model: EPDU MI 38U-A IN: L6-30P 24A 1P OUT: 36XC13:6XC19
...
device.3.ups.alarm: high current critical!
device.3.ups.status: ALARM
...
input.voltage: ??? (proposal: range or list or average?)
device.1.input.voltage: 237.75
device.2.input.voltage: 237.75
device.3.input.voltage: 237.75
...
outlet.1.status: ?? (proposal: "on, off, off)
device.1.outlet.1.status: on
device.2.outlet.1.status: off
device.3.outlet.1.status: off
...
ups.status: ALARM

9.2.2 Information for developers

Note
these details are dedicated to the snmp-ups driver!

In order to enable daisychain support for a range of devices, developers have to do two things:

• Add a device.count entry in a mapping file (see *-mib.c)

• Modify mapping entries to include a format string for the daisychain index

Optionally, if there is support for outlets and / or outlet-groups, there is already a template formatting string. So you have to tag
such templates with multiple definitions, to point if the daisychain index is the first or second formatting string.

Base support

In order to enable daisychain support on a mapping structure, the following steps have to be done:

• Add a "device.count" entry in the mapping file: snmp-ups will determine if the daisychain support has to be enabled (if more
than 1 device). To achieve this, use one of the following type of declarations:

a) point at an OID which provides the number of devices:

{ "device.count", 0, 1, ".1.3.6.1.4.1.13742.6.3.1.0", "1",
SU_FLAG_STATIC, NULL },

Network UPS Tools User Manual 50 / 155

b) point at a template OID to guesstimate the number of devices, by walking through this template, until it fails:

{ "device.count", 0, 1, ".1.3.6.1.4.1.534.6.6.7.1.2.1.2.%i", "1",
SU_FLAG_STATIC, NULL, NULL },

• Modify all entries so that OIDs include the formatting string for the daisychain index. For example, if you have the following
entry:

{ "device.model", ST_FLAG_STRING, SU_INFOSIZE,
".1.3.6.1.4.1.534.6.6.7.1.2.1.2.0", ... },

And if the last "0" of the the 4th field represents the index of the device in the daisychain, then you would have to adapt it the
following way:

{ "device.model", ST_FLAG_STRING, SU_INFOSIZE,
".1.3.6.1.4.1.534.6.6.7.1.2.1.2.%i", ... },

Templates with multiple definitions

If there already exist templates in the mapping structure, such as for single outlets and outlet-groups, you also need to specify the
position of the daisychain device index in the OID strings for all entries in the mapping table, to indicate where the daisychain
insertion point is exactly.

For example, using the following entry:

{ "outlet.%i.current", 0, 0.001, ".1.3.6.1.4.1.534.6.6.7.6.4.1.3.0.%i",
NULL, SU_OUTLET, NULL, NULL },

You would have to translate it to:

{ "outlet.%i.current", 0, 0.001, ".1.3.6.1.4.1.534.6.6.7.6.4.1.3.%i.%i",
NULL, SU_OUTLET | SU_TYPE_DAISY_1, NULL, NULL },

SU_TYPE_DAISY_1 flag indicates that the daisychain index is the first %i specifier in the OID template string. If it is the
second one, use SU_TYPE_DAISY_2.

Devices alarms handling

Two functions are available to handle alarms on daisychain devices in your driver:

• device_alarm_init(): clear the current alarm buffer

• device_alarm_commit(const int device_number): commit the current alarm buffer to "device.<device_number>.ups.alarm",
and increase the count of alarms. If the current alarms buffer is empty, the count of alarm is decreased, and the variable
"device.<device_number>.ups.alarm" is removed from publication. Once the alarm count reaches "0", the main (device.0)
ups.status will also remove the "ALARM" flag.

Network UPS Tools User Manual 51 / 155

Note
When implementing a new driver, the following functions have to be called:

• alarm_init() at the beginning of the main update loop, for the whole daisychain. This will set the alarm count to "0", and
reinitialize all alarms,

• device_alarm_init() at the beginning of the per-device update loop. This will only clear the alarms for the current
device,

• device_alarm_commit() at the end of the per-device update loop. This will flush the current alarms for the current
device,

• also device_alarm_init() at the end of the per-device update loop. This will clear the current alarms, and ensure that
this buffer will not be considered by other subsequent devices,

• alarm_commit() at the end of the main update loop, for the whole daisychain. This will take care of publishing or not the
"ALARM" flag in the main ups.status (device.0, root collection).

10 Notes on securing NUT

The NUT Team is very interested in providing the highest security level to its users.

Many internal and external mechanisms exist to secure NUT. And several steps are needed to ensure that your NUT setup meets
your security requirements.

This chapter will present you these mechanisms, by increasing order of security level. This means that the more security you
need, the more mechanisms you will have to apply.

Note
you may want to have a look at NUT Quality Assurance, since some topics are related to NUT security and reliability.

10.1 How to verify the NUT source code signature

In order to verify the NUT source code signature for releases, perform the following steps:

• Retrieve the NUT source code (nut-X.Y.Z.tar.gz) and the matching signature (nut-X.Y.Z.tar.gz.sig)

• Retrieve the NUT maintainer’s signature keyring:

$ gpg --fetch-keys https://www.networkupstools.org/source/nut-key.gpg

Note
As of NUT 2.8.0, a new release key is used, but the nut-key.gpg should be cumulative with older chain key files (includes
them). You can view the key list in a downloaded copy of the URL above with:

$ gpg --with-colons --import-options import-show --dry-run --import < nut-key. ←↩
gpg

. . . and as of this writing, it should contain two key sets for various identities of "Arnaud Quette" and one set of "Jim Klimov".

Just in case, the previous key file used since NUT 2.7.3 release is stored as NUT old maintainer’s signature for 2.7.3-2.7.4 releases

In order to verify an even older release, please use NUT old maintainer’s signature since 2002 until 2.7.3 release

https://www.networkupstools.org/download.html
https://www.networkupstools.org/source/nut-key.gpg
https://www.networkupstools.org/source/nut-key-2.7.3.gpg
https://www.networkupstools.org/source/nut-old-key.gpg

Network UPS Tools User Manual 52 / 155

• Launch the GPG checking using the following command:

$ gpg --verify nut-X.Y.Z.tar.gz.sig

• You should see a message mentioning a "Good signature", with formatting which depends on your gpg version, like:

gpg: Signature made Thu Jun 1 00:10:16 2023 CEST
...
gpg: Good signature from "Jim Klimov ..."
...
Primary key fingerprint: B834 59F7 76B9 0224 988F 36C0 DE01 84DA 7043 DCF7
...

Note
The previously used maintainer’s signatures would output (with markup of older gpg tools here):

gpg: Signature made Wed Apr 15 15:55:30 2015 CEST using RSA key ID 55CA5976
gpg: Good signature from "Arnaud Quette ..."
...

or:

gpg: Signature made Thu Jul 5 16:15:05 2007 CEST using DSA key ID 204DDF1B
gpg: Good signature from "Arnaud Quette ..."
...

10.2 How to verify the NUT source code checksum

As a weaker but simpler alternative to verifying a signature, you can verify just the accompanying checksums of the source
archive file. This is useful primarily to check against bit-rot in original storage or in transit. As far as disclaimers go: ideally, you
should cover all provided algorithms — e.g. MD5 and SHA256 — to minimize the chance that intentional malicious tampering
on the wire goes undetected. A myriad tools can check that on various platforms; some examples follow:

Example original checksum to compare with, from NUT website:
$ cat nut-2.8.0.tar.gz.sha256
c3e5a708da797b7c70b653d37b1206a000fcb503b85519fe4cdf6353f792bfe5 nut-2.8.0.tar.gz

Generate checksum of downloaded archive with perl (a NUT build dependency
generally, though you may have to install Digest::SHA module from CPAN):
$ perl -MDigest::SHA=sha256_hex -le "print sha256_hex <>" nut-2.8.0.tar.gz
c3e5a708da797b7c70b653d37b1206a000fcb503b85519fe4cdf6353f792bfe5

Generate checksum of downloaded archive with openssl (another optional
NUT build dependency):
$ openssl sha256 nut-2.8.0.tar.gz
SHA256(nut-2.8.0.tar.gz)= ←↩

c3e5a708da797b7c70b653d37b1206a000fcb503b85519fe4cdf6353f792bfe5

Generate checksum of downloaded archive with coreutils:
$ sha256sum nut-2.8.0.tar.gz
c3e5a708da797b7c70b653d37b1206a000fcb503b85519fe4cdf6353f792bfe5 nut-2.8.0.tar.gz

Auto-check downloaded checksum against downloaded archive with coreutils:
$ sha256sum -c nut-2.8.0.tar.gz.sha256
nut-2.8.0.tar.gz: OK

Network UPS Tools User Manual 53 / 155

Generate checksum of downloaded archive with GPG:
$ gpg --print-md SHA256 nut-2.8.0.tar.gz
nut-2.8.0.tar.gz: C3E5A708 DA797B7C 70B653D3 7B1206A0

00FCB503 B85519FE 4CDF6353 F792BFE5

10.3 System level privileges and ownership

All configuration files should be protected so that the world can’t read them. Use the following commands to accomplish this:

chown root:nut /etc/nut/*
chmod 640 /etc/nut/*

Finally, the state path directory, which holds the communication between the driver(s) and upsd, should also be secured.

chown root:nut /var/state/ups
chmod 0770 /var/state/ups

10.4 NUT level user privileges

Administrative commands such as setting variables and the instant commands are powerful, and access to them needs to be
restricted.

NUT provides an internal mechanism to do so, through upsd.users(5).

This file defines who may access instant commands and settings, and what is available.

During the initial NUT user creation, we have created a monitoring user for upsmon.

You can also create an administrator user in NUT with full power using:

[administrator]
password = mypass
actions = set
instcmds = all

For more information on how to restrict actions and instant commands, refer to upsd.users(5) manual page.

Note
NUT administrative user definitions should be used in conjunction with TCP Wrappers.

10.5 Network access control

If you are not using NUT on a standalone setup, you will need to enforce network access to upsd.

There are various ways to do so.

10.5.1 NUT LISTEN directive

upsd.conf(5).

LISTEN interface port

https://www.networkupstools.org/docs/man/upsd.users.html
https://www.networkupstools.org/docs/man/upsd.users.html
https://www.networkupstools.org/docs/man/upsd.conf.html

Network UPS Tools User Manual 54 / 155

Bind a listening port to the interface specified by its Internet address. This may be useful on hosts with multiple interfaces. You
should not rely exclusively on this for security, as it can be subverted on many systems.

Listen on TCP port port instead of the default value which was compiled into the code. This overrides any value you may have
set with configure --with-port. If you don’t change it with configure or this value, upsd will listen on port 3493 for
this interface.

Multiple LISTEN addresses may be specified. The default is to bind to 127.0.0.1 if no LISTEN addresses are specified (and
::1 if IPv6 support is compiled in).

LISTEN 127.0.0.1
LISTEN 192.168.50.1
LISTEN ::1
LISTEN 2001:0db8:1234:08d3:1319:8a2e:0370:7344

As a special case, LISTEN * <port> (with an asterisk) will try to listen on "ANY" IP address for both IPv6 (::0) and IPv4
(0.0.0.0), subject to upsd command-line arguments, or system configuration or support. Note that if the system supports
IPv4-mapped IPv6 addressing per RFC-3493, and does not allow to disable this mode, then there may be one listening socket to
handle both address families.

This parameter will only be read at startup. You’ll need to restart (rather than reload) upsd to apply any changes made here.

10.5.2 Firewall

NUT has its own official IANA port: 3493/tcp.

The upsmon process on secondary systems, as well as any other NUT client (such as upsc, upscmd, upsrw, NUT-Monitor,
. . .) connects to the upsd process on the system which manages the UPS, via this TCP port. Usually an upsmon process runs
on the latter system in "primary" mode for the devices connected to it.

The upsd process does not initiate outgoing connections.

Certain NUT drivers (for network-managed devices) can initiate their own connections to various ports according to correspond-
ing vendor protocol.

You should use this to restrict network access.

Uncomplicated Firewall (UFW) support

NUT can tightly integrate with Uncomplicated Firewall using the provided profile (nut.ufw.profile).

You must first install the profile on your system:

$ cp nut.ufw.profile /etc/ufw/applications.d/

To enable outside access to your local upsd, use:

$ ufw allow NUT

To restrict access to the network 192.168.X.Y, use:

$ ufw allow from 192.168.0.0/16 to any app NUT

You can also use graphical frontends, such as gui-ufw (gufw), ufw-kde or ufw-frontends.

For more information, refer to:

• UFW homepage,

• UFW project page,

• UFW wiki,

• UFW manual page, section APPLICATION INTEGRATION

http://en.wikipedia.org/wiki/Uncomplicated_Firewall
http://gufw.tuxfamily.org/
https://launchpad.net/ufw
https://wiki.ubuntu.com/UncomplicatedFirewall

Network UPS Tools User Manual 55 / 155

10.5.3 TCP Wrappers

If the server is build with tcp-wrappers support enabled, it will check if the NUT username is allowed to connect from the client
address through the /etc/hosts.allow and /etc/hosts.deny files.

Note
this will only be done for commands that require the user to be logged into the server.

hosts.allow:

upsd : admin@127.0.0.1/32
upsd : observer@127.0.0.1/32 observer@192.168.1.0/24

hosts.deny:

upsd : ALL

Further details are described in hosts_access(5).

10.6 Configuring SSL

SSL is available as a build option (--with-ssl).

It encrypts sessions between upsd and clients, and can also be used to authenticate servers.

This means that stealing port 3493 from upsd will no longer net you interesting passwords.

Several things must happen before this will work, however. This chapter will present these steps.

SSL is available via two back-end libraries : NSS and OpenSSL (historically). You can choose to use one of them by specifying
it with a build option (--with-nss or --with-openssl). If neither is specified, the configure script will try to detect one
of them, with a precedence for OpenSSL.

10.6.1 OpenSSL backend usage

This section describes how to enable NUT SSL support using OpenSSL.

Install OpenSSL

Install OpenSSL as usual, either from source or binary packages. If using binary packages, be sure to include the developer
libraries.

Recompile and install NUT

Recompile NUT from source, starting with configure --with-openssl.

Then install everything as usual.

Create a certificate and key for upsd

openssl (the program) should be in your PATH, unless you installed it from source yourself, in which case it may be in
/usr/local/ssl/bin.

Use the following command to create the certificate:

openssl req -new -x509 -nodes -out upsd.crt -keyout upsd.key

You can also put a -days nnn in there to set the expiration. If you skip this, it may default to 30 days. This is probably not
what you want.

It will ask several questions. What you put in there doesn’t matter a whole lot, since nobody is going to see it for now. Future
versions of the clients may present data from it, so you might use this opportunity to identify each server somehow.

http://www.openssl.org
http://www.openssl.org

Network UPS Tools User Manual 56 / 155

Figure out the hash for the key

Use the following command to determine the hash of the certificate:

openssl x509 -hash -noout -in upsd.crt

You’ll get back a single line with 8 hex characters. This is the hash of the certificate, which is used for naming the client-side
certificate. For the purposes of this example the hash is 0123abcd.

Install the client-side certificate

Use the following commands to install the client-side certificate:

mkdir <certpath>
chmod 0755 <certpath>
cp upsd.crt <certpath>/<hash>.0

Example:

mkdir /usr/local/ups/etc/certs
chmod 0755 /usr/local/ups/etc/certs
cp upsd.crt /usr/local/ups/etc/certs/0123abcd.0

If you already have a file with that name in there, increment the 0 part until you get a unique filename that works.

If you have multiple client systems (like upsmon instances in secondary mode), be sure to install this file on them as well.

We recommend making a directory under your existing confpath to keep everything in the same place. Remember the path you
created, since you will need to put it in upsmon.conf later.

It must not be writable by unprivileged users, since someone could insert a new client certificate and fool upsmon into trusting
a fake upsd.

Create the combined file for upsd

To do so, use the below commands:

cat upsd.crt upsd.key > upsd.pem
chown root:nut upsd.pem
chmod 0640 upsd.pem

This file must be kept secure, since anyone possessing it could pretend to be upsd and harvest authentication data if they get a
hold of port 3493.

Having it owned by root and readable by group nut allows upsd to read the file without being able to change the contents.
This is done to minimize the impact if someone should break into upsd. NUT reads the key and certificate files after dropping
privileges and forking.

Note on certification authorities (CAs) and signed keys

There are probably other ways to handle this, involving keys which have been signed by a CA you recognize. Contact your local
SSL guru.

Network UPS Tools User Manual 57 / 155

Install the server-side certificate

Install the certificate with the following command:

mv upsd.pem <upsd certfile path>

Example:

mv upsd.pem /usr/local/ups/etc/upsd.pem

After that, edit your upsd.conf and tell it where to find it:

CERTFILE /usr/local/ups/etc/upsd.pem

Clean up the temporary files

rm -f upsd.crt upsd.key

Restart upsd

It should come back up without any complaints. If it says something about keys or certificates, then you probably missed a step.

If you run upsd as a separate user id (like nutsrv), make sure that user can read the upsd.pem file.

Point upsmon at the certificates

Edit your upsmon.conf, and tell it where the CERTPATH is:

CERTPATH <path>

Example:

CERTPATH /usr/local/ups/etc/certs

Recommended: make upsmon verify all connections with certificates

Put this in upsmon.conf:

CERTVERIFY 1

Without this, there is no guarantee that the upsd is the right host. Enabling this greatly reduces the risk of man in the middle
attacks.

This effectively forces the use of SSL, so don’t use this unless all of your upsd hosts are ready for SSL and have their certificates
in order.

Recommended: force upsmon to use SSL

Again in upsmon.conf:

FORCESSL 1

If you don’t use CERTVERIFY 1, then this will at least make sure that nobody can sniff your sessions without a large effort.
Setting this will make upsmon drop connections if the remote upsd doesn’t support SSL, so don’t use it unless all of them have
it running.

Network UPS Tools User Manual 58 / 155

10.6.2 NSS backend usage

This section describes how to enable NUT SSL support using Mozilla NSS.

Install NSS

Install Mozilla NSS as usual, either from source or binary packages. If using binary packages, be sure to include the developer
libraries, and nss-tools (for certutil).

Recompile and install NUT

Recompile NUT from source, starting with configure --with-nss.

Then install everything as usual.

Create certificate and key for the host

NSS (package generally called libnss3-tools) will install a tool called certutil. It will be used to generate certificates and
manage certificate database.

Certificates should be signed by a certification authorities (CAs). Following commands are typical samples, contact your SSL
guru or security officer to follow your company procedures.

GENERATE A SERVER CERTIFICATE FOR UPSD :

• Create a directory where store the certificate database: mkdir cert_db

• Create the certificate database : certutil -N -d cert_db

• Import the CA certificate: certutil -A -d cert_db -n "My Root CA" -t "TC„" -a -i rootca.crt

• Create a server certificate request (here called "My nut server"): certutil -R -d cert_db -s "CN=My nut server,O=MyCompany,ST=MyState,C=US"
-a -o server.req

• Make your CA sign the certificate (produces server.crt)

• Import the signed certificate into server database: certutil -A -d cert_db -n "My nut server" -a -i server.crt
-t "„"

• Display the content of certificate server: certutil -L -d cert_db

Clients and servers in the same host could share the same certificate to authenticate them or use different ones in same or different
databases. The same operation can be done in same or different databases to generate other certificates.

Create a self-signed CA certificate

NSS provides a way to create self-signed certificate which can acting as CA certificate, and to sign other certificates with this CA
certificate. This method can be used to provide a CA certification chain without using an "official" certificate authority.

GENERATE A SELF-SIGNED CA CERTIFICATE:

• Create a directory where store the CA certificate database: mkdir CA_db

• Create the certificate database: certutil -N -d CA_db

• Generate a certificate for CA: certutil -S -d CA_db -n "My Root CA" -s "CN=My CA,O=MyCompany,ST=MyState,C=US"
-t "CT„" -x -2 (Do not forget to answer Yes to the question "Is this a CA certificate [y/N]?")

• Extract the CA certificate to be able to import it in upsd (or upsmon) certificate database: certutil -L -d CA_db -n
"My Root CA" -a -o rootca.crt

• Sign a certificate request with the CA certificate (simulate a real CA signature): certutil -C -d CA_db -c "My
Root CA" -a -i server.req -o server.crt -2 -6

http://www.mozilla.org/projects/security/pki/nss/
http://www.mozilla.org/projects/security/pki/nss/

Network UPS Tools User Manual 59 / 155

Install the server-side certificate

Just copy the database directory (just the directory and included 3 database .db files) to the right place, such as /usr/local/ups/etc/:

mv cert_db /usr/local/ups/etc/

upsd (required): certificate database and self certificate

Edit the upsd.conf to tell where find the certificate database:

CERTPATH /usr/local/ups/etc/cert_db

Also tell which is the certificate to send to clients to authenticate itself and the password to decrypt private key associated to
certificate:

CERTIDENT "certificate name" "database password"

Note
Generally, the certificate name is the server domain name, but is not a hard rule. The certificate can be named as useful.

upsd (optional): client authentication

Note
This functionality is disabled by default. To activate it, recompile NUT with WITH_CLIENT_CERTIFICATE_VALIDATION
defined:

make CFLAGS="-DWITH_CLIENT_CERTIFICATE_VALIDATION"

UPSD can accept three levels of client authentication. Just specify it with the directive CERTREQUEST with the corresponding
value in the upsd.conf file:

• NO: no client authentication.

• REQUEST: a certificate is request to the client but it is not strictly validated. If the client does not send any certificate, the
connection is closed.

• REQUIRE: a certificate is requested to the client and if it is not valid (no validation chain) the connection is closed.

Like CA certificates, you can add many "trusted" client and CA certificates in server’s certificate databases.

upsmon (required): upsd authentication

In order for upsmon to securely connect to upsd, it must authenticate it. You must associate an upsd host name to security
rules in upsmon.conf with the directive CERTHOST.

CERTHOST associates a hostname to a certificate name. It also determines whether a SSL connection is mandatory, and if the
server certificate must be validated.

CERTHOST "hostname" "certificate name" "certverify" "forcessl"

Network UPS Tools User Manual 60 / 155

If the flag forcessl is set to 1, and upsd answers that it can not connect with SSL, the connection closes.

If the flag certverify is set to 1 and the connection is done in SSL, upsd’s certificate is verified and its name must be the
specified "certificate name".

To prevent security leaks, you should set all certverify and forcessl flags to 1 (force SSL connection and validate all
certificates for all peers).

You can specify CERTVERIFY and FORCESSL directive (to 1 or 0) to define a default security rule to apply to all host not
specified with a dedicated CERTHOST directive.

If a host is not specified in a CERTHOST directive, its expected certificate name is its hostname.

upsmon (optional): certificate database and self certificate

Like upsd, upsmon may need to authenticate itself (upsd’s CERTREQUEST directive set to REQUEST or REQUIRE).

It must access to a certificate (and its private key) in a certificate database configuring CERTPATH and CERTIDENT in upsmon.conf
in the same way as upsd.

CERTPATH /usr/local/ups/etc/cert_db
CERTIDENT "certificate name" "database password"

10.6.3 Restart upsd

It should come back up without any complaints. If it says something about keys or certificates, then you probably missed a step.

If you run upsd as a separate user ID (like nutsrv), make sure that user can read files in the certificate directory. NUT reads
the keys and certificates after forking and dropping privileges.

10.6.4 Restart upsmon

You should see something like this in the syslog from upsd:

foo upsd[1234]: Client mon@localhost logged in to UPS [myups] (SSL)

If upsd or upsmon give any error messages, or the (SSL) is missing, then something isn’t right.

If in doubt about upsmon, start it with -D so it will stay in the foreground and print debug messages. It should print something
like this every couple of seconds:

polling ups: myups@localhost [SSL]

Obviously, if the [SSL] isn’t there, something’s broken.

10.6.5 Recommended: sniff the connection to see it for yourself

Using tcpdump, Wireshark (Ethereal), or another network sniffer tool, tell it to monitor port 3493/tcp and see what happens. You
should only see STARTTLS go out, OK STARTTLS come back, and the rest will be certificate data and then seemingly random
characters.

If you see any plaintext besides that (USERNAME, PASSWORD, etc.) then something is not working.

Network UPS Tools User Manual 61 / 155

10.6.6 Potential problems

If you specify a certificate expiration date, you will eventually see things like this in your syslog:

Oct 29 07:27:25 rktoy upsmon[3789]: Poll UPS [for750@rktoy] failed -
SSL error: error:14090086:SSL routines:SSL3_GET_SERVER_CERTIFICATE: certificate ←↩

verify failed

You can verify that it is expired by using openssl to display the date:

openssl x509 -enddate -noout -in <certfile>

It’ll display a date like this:

notAfter=Oct 28 20:05:32 2002 GMT

If that’s after the current date, you need to generate another cert/key pair using the procedure above.

10.6.7 Conclusion

SSL support should be considered stable but purposely under-documented since various bits of the implementation or configura-
tion may change in the future. In other words, if you use this and it stops working after an upgrade, come back to this file to find
out what changed.

This is why the other documentation doesn’t mention any of these directives yet. SSL support is a treat for those of you that
RTFM.

There are also potential licensing issues for people who ship binary packages since NUT is GPL and OpenSSL is not compatible
with it. You can still build and use it yourself, but you can’t distribute the results of it. Or maybe you can. It depends on what
you consider "essential system software", and some other legal junk that we’re not going to touch.

Other packages have solved this by explicitly stating that an exception has been granted. That is (purposely) impossible here,
since NUT is the combined effort of many people, and all of them would have to agree to a license change. This is actually a
feature, since it means nobody can unilaterally run off with the source — not even the NUT team.

Note that the replacement of OpenSSL by Mozilla Network Security Services (NSS) should avoid the above licensing issues.

10.7 chrooting and other forms of paranoia

It has been possible to run the drivers and upsd in a chrooted jail for some time, but it involved a number of evil hacks. From
the 1.3 series, a much saner chroot behavior exists, using BIND 9 as an inspiration.

The old way involved creating an entire tree, complete with libraries, a shell (!), and many auxiliary files. This was hard to
maintain and could have become an interesting playground for an intruder. The new way is minimal, and leaves little in the way
of usable materials within the jail.

This document assumes that you already have created at least one user account for the software to use. If you’re still letting it
fall back on "nobody", stop right here and go figure that out first. It also assumes that you have everything else configured and
running happily all by itself.

10.7.1 Generalities

Essentially, you need to create your configuration directory and state path in their own little world, plus a special device or two.

For the purposes of this example, the chroot jail is /chroot/nut. The programs have been built with the default prefix, so
they are using /usr/local/ups. First, create the confpath and bring over a few files.

Network UPS Tools User Manual 62 / 155

mkdir -p /chroot/nut/usr/local/ups/etc
cd /chroot/nut/usr/local/ups/etc
cp -a /usr/local/ups/etc/upsd.users .
cp -a /usr/local/ups/etc/upsd.conf .
cp -a /usr/local/ups/etc/ups.conf .

We’re using cp -a to maintain the permissions on those files.

Now bring over your state path, maintaining the same permissions as before.

mkdir -p /chroot/nut/var/state
cp -a /var/state/ups /chroot/nut/var/state

Next we must put /etc/localtime inside the jail, or you may get very strange readings in your syslog. You’ll know you
have this problem if upsd shows up as UTC in the syslog while the rest of the system doesn’t.

mkdir -p /chroot/nut/etc
cp /etc/localtime /chroot/nut/etc

Note that this is not cp -a, since we want to copy the content, not the symlink that it may be on some systems.

Finally, create a tiny bit of /dev so the programs can enter the background properly — they redirect file descriptors into the bit
bucket to make sure nothing else grabs fds 0-2.

mkdir -p /chroot/nut/dev
cp -a /dev/null /chroot/nut/dev

Try to start your driver(s) and make sure everything fires up as before.

upsdrvctl -r /chroot/nut -u nutdev start

Once your drivers are running properly, try starting upsd.

upsd -r /chroot/nut -u nutsrv

Check your syslog. If nothing is complaining, try running clients like upsc and upsmon. If they seem happy, then you’re done.

10.7.2 symlinks

After you do this, you will have two copies of many things, like the confpath and the state path. I recommend deleting the "real"
/var/state/ups, replacing it with a symlink to /chroot/nut/var/state/ups. That will let other programs reference
the .pid files without a lot of hassle.

You can also do this with your confpath and point /usr/local/ups/etc (or equivalent on your system) at /chroot/nut/usr/local/ups/etc
unless you’re worried about something hurting the files inside that directory. In that case, you should maintain a "golden" copy
and push it into the chroot path after making changes.

The upsdrvctl itself does not chroot, so the ups.conf still needs to be in the usual confpath.

10.7.3 upsmon

This has not yet been applied to upsmon, since it can be quite complicated when there are notifiers that need to be run. One
possibility would be for upsmon to have three instances:

• privileged root parent that listens for a shutdown command

• unprivileged child that listens for notify events

• unprivileged chrooted child that does network I/O

This one is messy, and may not happen for some time, if ever.

Network UPS Tools User Manual 63 / 155

10.7.4 Config files

You may now set chroot= and user= in the global section of ups.conf.

The upsd chroots before opening any config files, so there is no way to add support for that in upsd.conf at the present time.

A Glossary

This section document the various acronyms used throughout the present documentation.

ATS
Automatic Transfer Switch.

NUT
Network UPS Tools.

PDU
Power Distribution Unit.

PSU
Power Supply Units.

SCD
Solar Controller Device.

UPS
Uninterruptible Power Supply.

B Acknowledgements / Contributions

This project is the result of years of work by many individuals and companies.

Many people have written or tweaked the software; the drivers, clients, server and documentation have all received valuable
attention from numerous sources.

Many of them are listed within the source code, AUTHORS file, release notes, and mailing list archives, but some prefer to be
anonymous. This software would not be possible without their help.

B.1 The NUT Team

B.1.1 Active members

• Jim Klimov: project leader (since 2020), OpenIndiana and OmniOS packager, CI dev/ops and infra

• Arnaud Quette: ex-project leader (from 2005 to 2020), Debian packager and jack of all trades

• Charles Lepple: senior lieutenant

• Daniele Pezzini: senior developer

• Kjell Claesson: senior developer

• Alexander Gordeev: junior developer

• Michal Soltys: junior developer

• David Goncalves: Python developer

Network UPS Tools User Manual 64 / 155

• Jean Perriault: web consultant

• Eric S. Raymond: Documentation consultant

• Roger Price: Documentation specialist

• Oden Eriksson: Mandriva packager

• Stanislav Brabec: Novell / SUSE packager

• Michal Hlavinka: Redhat packager

• Antoine Colombier: trainee

For an up to date list of NUT developers, refer to GitHub.

B.1.2 Retired members

• Russell Kroll: Founder, and project leader from 1996 to 2005

• Arjen de Korte: senior lieutenant

• Peter Selinger: senior lieutenant

• Carlos Rodrigues: author of the "megatec" drivers, removing the numerous drivers for Megatec / Q1 protocol. These drivers
have now been replaced by blazer_ser and blazer_usb

• Niels Baggesen: ported and heavily extended upscode2 to NUT 2.0 driver model

• Niklas Edmundsson: has worked on 3-phase support, and upscode2 updates

• Martin Loyer: has worked a bit on mge-utalk

• Jonathan Dion: MGE internship (summer 2006), who has worked on configuration

• Doug Reynolds: has worked on CyberPower support (powerpanel driver)

• Jon Gough: has worked on porting the megatec driver to USB (megatec_usb)

• Dominique Lallement: Consultant (chairman of the USB/HID PDC Forum)

• Julius Malkiewicz: junior developer

• Tomas Smetana: former Redhat packager (2007-2008)

• Frederic Bohe: senior developer, Eaton contractor (2009-2013)

• Emilien Kia: senior developer

• Václav Krpec: junior developer

B.2 Supporting manufacturers

B.2.1 UPS manufacturers

• Eaton, has been the main NUT supporter in the past, between 2007 and 2011, continuing MGE UPS SYSTEMS efforts. As
such, Eaton has been:

– providing extensive technical documents (Eaton protocols library),

– providing units to developers of NUT and related projects,

– hosting the networkupstools.org webserver (from 2007 to August 2012),

– providing artwork,

https://github.com/networkupstools/nut/graphs/contributors
http://powerquality.eaton.com

Network UPS Tools User Manual 65 / 155

– promoting NUT in general,

– supporting its customers using NUT.

Warning
The situation has evolved, and since 2011 Eaton does not support NUT anymore.
This may still evolve in the future.
But for now, please do not consider anymore that buying Eaton products will provide you with official
support from Eaton, or a better level of device support in NUT.

• AMETEK Powervar, through Andrew McCartney, has added support for all AMETEK Powervar UPM models as usb-hid UPS.

• Gamatronic, through Nadav Moskovitch, has revived the sec driver (as gamatronic), and expanded a bit genericups for its UPSs
with alarm interface.

• EVER Power Systems added a USB HID subdriver for EVER UPSes (Sinline RT Series, Sinline RT XL Series, ECO PRO
AVR CDS Series).

• Microdowell, through Elio Corbolante, has created the microdowell driver to support the Enterprise Nxx/Bxx serial devices.
The company also proposes NUT as an alternative to its software for Linux / Unix.

• Powercom, through Alexey Morozov, has provided extensive information on its USB/HID devices, along with development
units.

• Riello UPS, through Massimo Zampieri, has provided all protocols information. Elio Parisi has also created riello_ser and
riello_usb to support these protocols.

• Tripp Lite, through Eric Cobb, has provided test results from connecting their HID-compliant UPS hardware to NUT. Some
of this information has been incorporated into the NUT hardware compatibility list, and the rest of the information is available
via the list archives.

• NAG, through Alexey Kazancev and Igor Ryabov, has added support for SNR-UPS-LID-XXXX models as usb-hid UPS.

• Ablere Electronics Co., Ltd. contributed the ablerex subdriver for blazer_usb, handling Ablerex MP, ARES Plus, MSII MSIII,
GRs and GRs Plus models.

B.2.2 Appliances manufacturers

• OpenGear has worked with NUT’s leader to successfully develop and integrate PDU support. Opengear, through Scott Burns,
and Robert Waldie, has submitted several patches.

B.3 Other contributors

• Pavel Korensky’s original apcd provided the inspiration for pursuing APC’s smart protocol in 1996

• Eric Lawson provided scans of the OneAC protocol

• John Marley used OCR software to transform the SEC protocol scans into a HTML document

• Chris McKinnon scanned and converted the Fortress protocol documentation

• Tank provided documentation on the Belkin/Delta protocol

• Potrans provided a Fenton PowerPal 600 (P series) for development of the safenet driver.

https://www.ametek.com/products/businessunits/powersystemsandinstruments/powervar
http://www.gamatronic.com
https://ever.eu/
http://www.microdowell.com
http://www.microdowell.com/fra/download.html
http://pcmups.com.tw
ups-protocols.html
http://www.riello-ups.com
ups-protocols.html
http://www.tripplite.com
http://article.gmane.org/gmane.comp.monitoring.nut.user/8173
https://nag.company/en
http://www.ablerex.com.tw/
http://www.opengear.com

Network UPS Tools User Manual 66 / 155

B.4 Older entries (before 2005)

• MGE UPS SYSTEMS was the previous NUT sponsor, from 2002 until its partial acquisition by Eaton. They provided protocols
information, many units for development of NUT-related projects. Several drivers such as mge-utalk, mge-shut, snmp-ups,
hidups, and usbhid-ups are the result of this collaboration, in addition to the WMNut, MGE HID Parser the libhid projects,
. . . through Arnaud Quette (who was also an MGE employee). All the MGE supporters have gone with Eaton (through MGE
Office Protection Systems), which was temporarily the new NUT sponsor.

• Fenton Technologies contributed a PowerPal 660 to the project. Their open stance and quick responses to technical inquiries
were appreciated for making the development of the fentonups driver possible. Fenton has since been acquired by Metapo.

• Bo Kersey of VirCIO provided a Best Power Fortress 750 to facilitate the bestups driver.

• Invensys Energy Systems provided the SOLA/Best "Phoenixtec" protocol document. SOLA has since been acquired by Eaton.

• PowerKinetics technical support provided documentation on their MiniCOL protocol, which is archived in the NUT protocol
library. PowerKinetics was acquired by the JST Group in June 2003.

• Cyber Power Systems contributed a 700AVR model for testing and development of the cyberpower driver.

• Liebert Corporation supplied serial test boxes and a UPStation GXT2 with the Web/SNMP card for development of the liebert
driver and expansion of the existing snmp-ups driver. Liebert has since been acquired by Emerson.

Note
If a company or individual isn’t listed here, then we probably don’t have enough information about the situation. Developers
are kindly requested to report vendor contributions to the NUT team so this list may reflect their help, as well as convey a
sense of official support (at least, that drivers were proposed according to the know-how coming from specs and knowledge
about hardware and firmware capabilities, and not acquired via reverse engineering with a certain degree of unreliability and
incompleteness). If we have left you out, please send us some mail or post a pull request to update this document in GitHub.

C NUT command and variable naming scheme

RFC 9271 Recording Document
This document is defined by RFC 9271 published by IETF at https://www.rfc-editor.org/info/rfc9271 and is referenced as the
document of record for the variable names and the instant commands used in the protocol described by the RFC.
On behalf of the RFC, this document records the names of variables describing the abstracted state of an UPS or similar
power distribution device, and the instant commands sent to the UPS using command INSTCMD, as used in commands and
messages between the Attachment Daemon (the upsd in case of NUT implementation of the standard) and the clients.

This document defines the standard names of NUT commands and variables (not to be confused with device status data described
in the docs/new-drivers.txt in NUT source codebase).

Developers should use the names recorded here, with dstate functions and data mappings provided in NUT drivers for interactions
with power devices.

If you need to express a state which cannot be described by any existing name, please make a request to the NUT developers’
mailing list for definition and assignment of a new name. Clients using unrecorded names risk breaking at a future update. If
you wish to experiment with new concepts before obtaining your requested variable name, you should use a name of the form
experimental.x.y for those states.

Put another way: if you make up a name that is not in this list and it gets into the source code tree, and then the NUT community
comes up with a better name later, clients that already use the undocumented variable will break when it is eventually changed.
An explicitly "experimental" data point is less surprising in this regard.

Similarly, some source files (drivers/*-mib.c and drivers/*-hid.c) may mention data point names following the
pattern of unmapped.x.y. These are generated by helper scripts which walk the reports from SNMP and USB HID devices, re-
spectively scripts/subdriver/gen-snmp-subdriver.sh and scripts/subdriver/gen-usbhid-subdriver.sh,

http://www.metapo.com
http://www.vircio.com
http://www.jst.cc
http://www.cyberpowersystems.com
http://www.liebert.com
http://www.emerson.com
https://www.rfc-editor.org/info/rfc9271

Network UPS Tools User Manual 67 / 155

and assign names based on strings in those reports. The unmapped entries should not be exposed in "production" builds of
the NUT drivers. They are an aid for developers to know that such entries are served by their device, so an existing stan-
dard NUT name can be assigned for the concept (or new name negotiated with the community), but are normally hidden with
#if WITH_UNMAPPED_DATA_POINTS clauses which can be enabled in custom NUT builds by use of ./configure
--with-unmapped-data-points option.

Note
In the descriptions, "opaque" means programs should not attempt to parse the value for that variable as it may vary greatly from
one UPS (or similar device) to the next. These strings are best handled directly by the user.

C.1 Structured naming

All standard NUT names of variables and commands are structured, with a certain domain-specific prefix and purpose-specific
suffix parts. NUT tools provide and interpret them as dot-separated strings (although third-party tools might restructure them
by cutting and pasting at the dot separation location, e.g. to represent as a JSON data tree or as data model classes for specific
programming languages).

If you would be making a parser of this information, please do also note that in some but not all cases there is a defined data
point for some reading or command at the "root level" of what evolved to be a collection of further structured related information
(and there are no guarantees for future evolution in this regard), for example:

• an input.voltage reports the momentary voltage level value and there is a input.voltage.maximum for a certain
related detail;

• conversely, there are several items like input.transfer.reason but there is no actual input.transfer report.

There may be more layers than two (e.g. input.voltage.low.warning), and in certain cases detailed below there may be
a variable component in the practical values (e.g. the n in ambient.n.temperature.alarm variable or outlet.n.load.off
command names).

C.2 Time and Date format

When possible, dates should be expressed in ISO 8601 and RFC 3339 compatible Calendar format, that is to say "YYYY-MM-
DD", or otherwise a Combined Date and Time representation (<date>T<time>, so "YYYY-MM-DDThh:mm"). Separators
for the date (hyphen) and time (colon) components are required to conform to both ISO 8601 "extended" format and RFC 3339
required format.

In the case of Date and Time representation, a timezone can be added as per RFC 3339 and the newer revisions of the ISO 8601
standard (which allow for negative offsets):

• by appending the letter Z for UTC (e.g. "YYYY-MM-DDThh:mmZ"), or

• by appending the complete "hours:minutes" positive or negative time offsets from UTC (e.g. "YYYY-MM-DDThh:mm+03:00").

For more details see examples at Wikipedia page on ISO 8601 and the publicly available RFC at RFC 3339.

Other representations from those specifications are not necessarily supported.

C.3 Variables

C.3.1 device: General unit information

Note
some of these data will be redundant with ups.* information during a transition period. The ups.* data will then be removed.

https://en.wikipedia.org/wiki/ISO_8601
http://tools.ietf.org/html/rfc3339

Network UPS Tools User Manual 68 / 155

Name Description Example value
device.model Device model BladeUPS
device.mfr Device manufacturer Eaton
device.serial Device serial number (opaque string) WS9643050926
device.type Device type (ups, pdu, scd, psu, ats) ups
device.description Device description (opaque string) Some ups
device.contact Device administrator name (opaque

string)
John Doe

device.location Device physical location (opaque
string)

1st floor

device.part Device part number (opaque string) 123456789
device.macaddr Physical network address of the device 68:b5:99:f5:89:27
device.uptime Device uptime in seconds 1782
device.count Total number of daisychained devices 1

Note
When present, device.count implies daisychain support. For more information, refer to the NUT daisychain support notes
chapter of the user manual and developer guide.

C.3.2 ups: General unit information

Name Description Example value
ups.status UPS status OL
ups.alarm UPS alarms OVERHEAT
ups.time Internal UPS clock time (opaque

string)
12:34

ups.date Internal UPS clock date (opaque
string)

01-02-03

ups.model UPS model SMART-UPS 700
ups.mfr UPS manufacturer APC
ups.mfr.date UPS manufacturing date (opaque

string)
10/17/96

ups.serial UPS serial number (opaque string) WS9643050926
ups.vendorid Vendor ID for USB devices 0463
ups.productid Product ID for USB devices 0001
ups.firmware UPS firmware (opaque string) 50.9.D
ups.firmware.aux Auxiliary device firmware 4Kx
ups.temperature UPS temperature (degrees C) 042.7
ups.load Load on UPS (percent) 023.4
ups.load.high Load when UPS switches to overload

condition ("OVER") (percent)
100

ups.id UPS system identifier (opaque string) Sierra
ups.delay.start Interval to wait before restarting the

load (seconds)
0

ups.delay.reboot Interval to wait before rebooting the
UPS (seconds)

60

ups.delay.shutdown Interval to wait after shutdown with
delay command (seconds)

20

ups.timer.start Time before the load will be started
(seconds)

30

ups.timer.reboot Time before the load will be rebooted
(seconds)

10

ups.timer.shutdown Time before the load will be shutdown
(seconds)

20

Network UPS Tools User Manual 69 / 155

Name Description Example value
ups.test.interval Interval between self tests (seconds) 1209600 (two weeks)
ups.test.result Results of last self test (opaque string) Bad battery pack
ups.test.date Date of last self test (opaque string) 07/17/12
ups.display.language Language to use on front panel (*

opaque)
E

ups.contacts UPS external contact sensors (*
opaque)

F0

ups.efficiency Efficiency of the UPS (ratio of the
output current on the input current)
(percent)

95

ups.power Current value of apparent power
(Volt-Amps)

500

ups.power.nominal Nominal value of apparent power
(Volt-Amps)

500

ups.realpower Current value of real power (Watts) 300
ups.realpower.nominal Nominal value of real power (Watts) 300
ups.beeper.status UPS beeper status (enabled, disabled

or muted)
enabled

ups.type UPS type (* opaque) offline
ups.watchdog.status UPS watchdog status (enabled or

disabled)
disabled

ups.start.auto UPS starts when mains is (re)applied yes
ups.start.battery Allow to start UPS from battery yes
ups.start.reboot UPS coldstarts from battery (enabled

or disabled)
yes

ups.shutdown Enable or disable UPS shutdown
ability (poweroff)

enabled

Note
When present, the value of ups.start.auto has an impact on shutdown.* commands. For the sake of coherence, shut-
down commands will set ups.start.auto to the right value before issuing the command. That is, shutdown.stayoff
will first set ups.start.auto to no, while shutdown.return will set it to yes.

Note
When possible, time-stamps and dates should be expressed as detailed above in the Time and Date format chapter.

C.3.3 input: Incoming line/power information

Name Description Example value
input.voltage Input voltage (V) 121.5
input.voltage.maximum Maximum incoming voltage seen (V) 130
input.voltage.minimum Minimum incoming voltage seen (V) 100
input.voltage.status Status relative to the thresholds critical-low
input.voltage.low.warning Low warning threshold (V) 205
input.voltage.low.critical Low critical threshold (V) 200
input.voltage.high.warning High warning threshold (V) 230
input.voltage.high.critical High critical threshold (V) 240
input.voltage.nominal Nominal input voltage (V) 120
input.voltage.extended Extended input voltage range no
input.transfer.delay Delay before transfer to mains

(seconds)
60

Network UPS Tools User Manual 70 / 155

Name Description Example value
input.transfer.reason Reason for last transfer to battery (*

opaque)
T

input.transfer.low Low voltage transfer point (V) 91
input.transfer.high High voltage transfer point (V) 132
input.transfer.low.min smallest settable low voltage transfer

point (V)
85

input.transfer.low.max greatest settable low voltage transfer
point (V)

95

input.transfer.high.min smallest settable high voltage transfer
point (V)

131

input.transfer.high.max greatest settable high voltage transfer
point (V)

136

input.sensitivity Input power sensitivity H (high)
input.quality Input power quality (* opaque) FF
input.current Input current (A) 4.25
input.current.nominal Nominal input current (A) 5.0
input.current.status Status relative to the thresholds critical-high
input.current.low.warning Low warning threshold (A) 4
input.current.low.critical Low critical threshold (A) 2
input.current.high.warning High warning threshold (A) 10
input.current.high.critical High critical threshold (A) 12
input.feed.color Color of the input feed (opaque string) 3831236
input.feed.desc Description of the input feed Feed A
input.frequency Input line frequency (Hz) 60.00
input.frequency.nominal Nominal input line frequency (Hz) 60
input.frequency.status Frequency status out-of-range
input.frequency.low Input line frequency low (Hz) 47
input.frequency.high Input line frequency high (Hz) 63
input.frequency.extended Extended input frequency range no
input.transfer.boost.low Low voltage boosting transfer point

(V)
190

input.transfer.boost.high High voltage boosting transfer point
(V)

210

input.transfer.trim.low Low voltage trimming transfer point
(V)

230

input.transfer.trim.high High voltage trimming transfer point
(V)

240

input.load Load on (ePDU) input (percent of full) 25
input.realpower Current sum value of all (ePDU)

phases real power (W)
300

input.realpower.nominal Nominal sum value of all (ePDU)
phases real power (W)

850

input.power Current sum value of all (ePDU)
phases apparent power (VA)

500

input.source The current input power source 1
input.source.preferred The preferred power source 1
input.phase.shift Voltage dephasing between input

sources (degrees)
181

C.3.4 output: Outgoing power/inverter information

Name Description Example value
output.voltage Output voltage (V) 120.9
output.voltage.nominal Nominal output voltage (V) 120

Network UPS Tools User Manual 71 / 155

Name Description Example value
output.frequency Output frequency (Hz) 59.9
output.frequency.nominal Nominal output frequency (Hz) 60
output.current Output current (A) 4.25
output.current.nominal Nominal output current (A) 5.0

C.3.5 Three-phase additions

The additions for three-phase measurements would produce a very long table due to all the combinations that are possible, so
these additions are broken down to their base components.

Phase Count Determination

input.phases (3 for three-phase, absent or 1 for 1phase)

output.phases (as for input.phases)

DOMAINs

Any input or output is considered a valid DOMAIN.

• input (should really be called input.mains, but keep this for compat)

– input.bypass

– input.servicebypass

• output (should really be called output.load, but keep this for compat)

– output.bypass

– output.inverter

– output.servicebypass

Specification (SPEC)

Voltage, current, frequency, etc are considered to be a specification of the measurement.

With this notation, the old 1phase naming scheme becomes DOMAIN.SPEC

Example: input.current

CONTEXT

When in three-phase mode, we need some way to specify the target for most measurements in more detail. We call this the
CONTEXT.

With this notation, the naming scheme becomes DOMAIN.CONTEXT.SPEC when in three-phase mode.

Example: input.L1.current

Network UPS Tools User Manual 72 / 155

Valid CONTEXTs

L1-L2 \
L2-L3 \
L3-L1 for voltage measurements
L1-N /
L2-N /
L3-N /

L1 \
L2 for current and power measurements
L3 /
N - for current measurement

Valid SPECs

Note
For cursory readers — the following couple of tables lists just the short SPEC component of the larger
DOMAIN.CONTEXT.SPEC naming scheme for phase-aware values, as discussed in other sections of this chapter.

Valid with/without context (i.e. per phase or aggregated/averaged)

Name Description
alarm Alarms for phases, published in ups.alarm
current Current (A)
current.maximum Maximum seen current (A)
current.minimum Minimum seen current (A)
current.status Status relative to the thresholds
current.low.warning Low warning threshold (A)
current.low.critical Low critical threshold (A)
current.high.warning High warning threshold (A)
current.high.critical High critical threshold (A)
current.peak Peak current
voltage Voltage (V)
voltage.nominal Nominal voltage (V)
voltage.maximum Maximum seen voltage (V)
voltage.minimum Minimum seen voltage (V)
voltage.status Status relative to the thresholds
voltage.low.warning Low warning threshold (V)
voltage.low.critical Low critical threshold (V)
voltage.high.warning High warning threshold (V)
voltage.high.critical High critical threshold (V)
power Apparent power (VA)
power.maximum Maximum seen apparent power (VA)
power.minimum Minimum seen apparent power (VA)
power.percent Percentage of apparent power related to maximum load
power.maximum.percent Maximum seen percentage of apparent power
power.minimum.percent Minimum seen percentage of apparent power
realpower Real power (W)
powerfactor Power Factor (dimensionless value between 0.00 and 1.00)
crestfactor Crest Factor (dimensionless value greater or equal to 1)
load Load on (ePDU) input

Network UPS Tools User Manual 73 / 155

Valid without context (i.e. aggregation of all phases):

Name Description
frequency Frequency (Hz)
frequency.nominal Nominal frequency (Hz)
realpower Current value of real power (Watts)
power Current value of apparent power (Volt-Amps)

C.3.6 EXAMPLES

Partial Three phase — Three phase example:

input.phases: 3
input.frequency: 50.0
input.L1.current: 133.0
input.bypass.L1-L2.voltage: 398.3
output.phases: 3
output.L1.power: 35700
output.powerfactor: 0.82

Partial Three phase — One phase example:

input.phases: 3
input.L2.current: 48.2
input.N.current: 3.4
input.L3-L1.voltage: 405.4
input.frequency: 50.1
output.phases: 1
output.current: 244.2
output.voltage: 120
output.frequency.nominal: 60.0

C.3.7 battery: Any battery details

Name Description Example value
battery.charge Battery charge (percent) 100.0
battery.charge.approx Rough approximation of battery

charge (opaque, percent)
<85

battery.charge.low Remaining battery level when UPS
switches to LB (percent)

20

battery.charge.restart Minimum battery level for UPS restart
after power-off

20

battery.charge.warning Battery level when UPS switches to
"Warning" state (percent)

50

battery.charger.status Status of the battery charger (see the
note below)

charging

battery.voltage Battery voltage (V) 24.84
battery.voltage.cell.max Maximum battery voltage seen of the

Li-ion cell (V)
3.44

battery.voltage.cell.min Minimum battery voltage seen of the
Li-ion cell (V)

3.41

battery.voltage.nominal Nominal battery voltage (V) 024

Network UPS Tools User Manual 74 / 155

Name Description Example value
battery.voltage.low Minimum battery voltage, that triggers

FSD status
21,52

battery.voltage.high Maximum battery voltage (i.e.
battery.charge = 100)

26,9

battery.capacity Battery capacity (Ah) 7.2
battery.capacity.nominal Nominal battery capacity (Ah) 8.0
battery.current Battery current (A) 1.19
battery.current.total Total battery current (A) 1.19
battery.status Health status of the battery (opaque

string)
ok

battery.temperature Battery temperature (degrees C) 050.7
battery.temperature.cell.max Maximum battery temperature seen of

the Li-ion cell (degrees C)
25.85

battery.temperature.cell.min Minimum battery temperature seen of
the Li-ion cell (degrees C)

24.85

battery.runtime Battery runtime (seconds) 1080
battery.runtime.low Remaining battery runtime when UPS

switches to LB (seconds)
180

battery.runtime.restart Minimum battery runtime for UPS
restart after power-off (seconds)

120

battery.alarm.threshold Battery alarm threshold 0 (immediate)
battery.date Battery installation or last change date

(opaque string)
11/14/20

battery.date.maintenance Battery next change or maintenance
date (opaque string)

11/13/24

battery.mfr.date Battery manufacturing date (opaque
string)

2005/04/02

battery.packs Number of internal battery packs 1
battery.packs.bad Number of bad battery packs 0
battery.packs.external Number of external battery packs 1
battery.type Battery chemistry (opaque string) PbAc
battery.protection Prevent deep discharge of battery yes
battery.energysave Switch off when running on battery

and no/low load
no

battery.energysave.load Switch off UPS if on battery and load
level lower (percent)

5

battery.energysave.delay Delay before switch off UPS if on
battery and load level low (min)

3

battery.energysave.realpower Switch off UPS if on battery and load
level lower (Watts)

10

NOTE: battery.charger.status replaces the historic flags CHRG and DISCHRG that were exposed through ups.status.
The battery.charger.status can have one of the following values:

• charging: battery is charging,

• discharging: battery is discharging,

• floating: battery has completed its charge cycle, and waiting to go to resting mode,

• resting: the battery is fully charged, and not charging nor discharging.

Note
When possible, time-stamps and dates should be expressed as detailed above in the Time and Date format chapter.

Network UPS Tools User Manual 75 / 155

C.3.8 ambient: Conditions from external probe equipment

Note
n stands for the sensors index. A special case is "ambient.0" which is equivalent to "ambient" (without index), and repre-
sents the default sensor of the device. This is not to be confused with the device embedded sensor, which is published as
ups.temperature. The most important data is "ambient.count", used to iterate over the whole set of outlets. For more informa-
tion, refer to the NUT sensors management notes chapter of the user manual.

Name Description Example value
ambient.count Total number of sensors 2
ambient.n.name Ambient sensor name sensor 1
ambient.n.id Ambient sensor identifier (opaque

string)
80f09325-2838-5637-b62a-
cef9cbe2747

ambient.n.address Ambient sensor address (opaque
string)

1

ambient.n.parent.serial Ambient sensor parent serial number
(opaque string)

U603E34000

ambient.n.mfr Ambient sensor manufacturer EATON
ambient.n.model Ambient sensor model EMPDT1H1C2
ambient.n.firmware Ambient sensor firmware 01.03.0011
ambient.n.present Ambient sensor presence yes
ambient.n.temperature Ambient temperature (degrees C) 25.40
ambient.n.temperature.alarm Temperature alarm (enabled/disabled) enabled
ambient.n.temperature.status Ambient temperature status relative to

the thresholds
warning-low

ambient.n.temperature.high Temperature threshold high (degrees
C)

60

ambient.n.temperature.high.warning Temperature threshold high warning
(degrees C)

40

ambient.n.temperature.high.critical Temperature threshold high critical
(degrees C)

60

ambient.n.temperature.low Temperature threshold low (degrees
C)

5

ambient.n.temperature.low.warning Temperature threshold low warning
(degrees C)

10

ambient.n.temperature.low.critical Temperature threshold low critical
(degrees C)

5

ambient.n.temperature.maximum Maximum temperature seen (degrees
C)

37.6

ambient.n.temperature.minimum Minimum temperature seen (degrees
C)

18.1

ambient.n.humidity Ambient relative humidity (percent) 038.8
ambient.n.humidity.alarm Relative humidity alarm

(enabled/disabled)
enabled

ambient.n.humidity.status Ambient humidity status relative to
the thresholds

warning-low

ambient.n.humidity.high Relative humidity threshold high
(percent)

80

ambient.n.humidity.high.warning Relative humidity threshold high
warning (percent)

70

ambient.n.humidity.high.critical Relative humidity threshold high
critical (percent)

80

ambient.n.humidity.low Relative humidity threshold low
(percent)

10

Network UPS Tools User Manual 76 / 155

Name Description Example value
ambient.n.humidity.low.warning Relative humidity threshold low

warning (percent)
20

ambient.n.humidity.low.critical Relative humidity threshold low
critical (percent)

10

ambient.n.humidity.maximum Maximum relative humidity seen
(percent)

60

ambient.n.humidity.minimum Minimum relative humidity seen
(percent)

13

ambient.n.contacts.x.status State of the dry contact sensor x open
ambient.n.contacts.x.config Configuration of the dry contact

sensor x
normal-open

ambient.n.contacts.x.name Name of the dry contact sensor x smoke-detector1

NOTE: - ambient.n.contacts.x.status may either be the raw status (open or closed), or may relate to ambient.n.contacts.x.config.
In this case, the value can be active or inactive.

C.3.9 outlet: Smart outlet management

Note
n stands for the outlet index. A special case is "outlet.0" which is equivalent to "outlet" (without index), and represent the whole
set of outlets of the device. The most important data is "outlet.count", used to iterate over the whole set of outlets. For more
information, refer to the NUT outlets management and PDU notes chapter of the user manual.

Name Description Example value
outlet.count Total number of outlets 12
outlet.switchable General outlet switch ability of the

unit (yes/no)
yes

outlet.n.id Outlet system identifier (opaque
string)

1

outlet.n.name Outlet name (opaque string) A1
outlet.n.desc Outlet description (opaque string) Main outlet
outlet.n.groupid Identifier of the group to which the

outlet belongs to
1

outlet.n.switch Outlet switch control (on/off) on
outlet.n.status Outlet switch status (on/off) on
outlet.n.alarm Alarms for outlets and PDU,

published in ups.alarm
outlet 1 low voltage warning

outlet.n.switchable Outlet switch ability (yes/no) yes
outlet.n.autoswitch.charge.low Remaining battery level to power off

this outlet (percent)
80

outlet.n.battery.charge.low Remaining battery level to power off
this outlet (percent)

80

outlet.n.delay.shutdown Interval to wait before shutting down
this outlet (seconds)

180

outlet.n.delay.start Interval to wait before restarting this
outlet (seconds)

120

outlet.n.timer.shutdown Time before the outlet load will be
shutdown (seconds)

20

outlet.n.timer.start Time before the outlet load will be
started (seconds)

30

outlet.n.current Current (A) 0.19
outlet.n.current.maximum Maximum seen current (A) 0.56

Network UPS Tools User Manual 77 / 155

Name Description Example value
outlet.n.current.status Current status relative to the

thresholds
good

outlet.n.current.low.warning Low warning threshold (A) 0.10
outlet.n.current.low.critical Low critical threshold (A) 0.05
outlet.n.current.high.warning High warning threshold (A) 0.30
outlet.n.current.high.critical High critical threshold (A) 0.40
outlet.n.realpower Current value of real power (W) 28
outlet.n.voltage Voltage (V) 247.0
outlet.n.voltage.status Voltage status relative to the

thresholds
good

outlet.n.voltage.low.warning Low warning threshold (V) 205
outlet.n.voltage.low.critical Low critical threshold (V) 200
outlet.n.voltage.high.warning High warning threshold (V) 230
outlet.n.voltage.high.critical High critical threshold (V) 240
outlet.n.powerfactor Power Factor (dimensionless, value

between 0 and 1)
0.85

outlet.n.crestfactor Crest Factor (dimensionless, equal to
or greater than 1)

1.41

outlet.n.power Apparent power (VA) 46
outlet.n.type Physical outlet type french

outlet.group: groups of smart outlets

This is a refinement of the outlet collection, providing grouped management for a set of outlets. The same principles and data
than the outlet collection apply to outlet.group, especially for the indexing n and "outlet.group.count".

Most of the data published for outlets also apply to outlet.group, including: id, name (similar as outlet "desc"), color, status, cur-
rent and voltage (including status, alarm and thresholds). Other actions and settings also apply ({delay,timer}.{shutdown,start})

Some specific data to outlet groups exists:

Name Description Example value
outlet.group.n.type Type of outlet group (OPAQUE) outlet-section
outlet.group.n.color Color-coding of the outlets in this

group (OPAQUE)
yellow

outlet.group.n.count Number of outlets in the group 12
outlet.group.n.phase Electrical phase to which the physical

outlet group (Gang) is connected to
L1

outlet.group.n.input Input to which an outlet group is
connected

1

Example:

outlet.group.1.current: 0.00
outlet.group.1.current.high.critical: 16.00
outlet.group.1.current.high.warning: 12.80
outlet.group.1.current.low.warning: 0.00
outlet.group.1.current.nominal: 16.00
outlet.group.1.current.status: good
outlet.group.1.id: 1
outlet.group.1.name: Branch Circuit A
outlet.group.1.phase: L1
outlet.group.1.status: on
outlet.group.1.voltage: 244.23
outlet.group.1.voltage.high.critical: 265.00
outlet.group.1.voltage.high.warning: 255.00

Network UPS Tools User Manual 78 / 155

outlet.group.1.voltage.low.critical: 180.00
outlet.group.1.voltage.low.warning: 190.00
outlet.group.1.voltage.status: good
...
outlet.group.count: 3.00

C.3.10 driver: Internal driver information

Name Description Example value
driver.name Driver name usbhid-ups
driver.version Driver version (NUT release) X.Y.Z
driver.version.internal Internal driver version 1.23.45
driver.version.data Version of the internal data mapping,

for generic drivers
Eaton HID 1.31

driver.version.usb USB library version libusb-1.0.21
driver.parameter.xxx Parameter xxx (ups.conf or cmdline

-x) setting
(varies)

driver.flag.xxx Flag xxx (ups.conf or cmdline -x)
status

enabled (or absent)

driver.state Current state in driver’s lifecycle,
primarily to help readers discern
long-running init (with full device
walk) or cleanup stages from the
stable working loop

init.starting, init.quiet, init.device,
init.info, init.updateinfo (first walk),
reconnect.trying,
reconnect.updateinfo, updateinfo,
quiet, dumping, cleanup.upsdrv,
cleanup.exit

C.3.11 server: Internal server information

Name Description Example value
server.info Server information Network UPS Tools upsd vX.Y.Z -

https://www.networkupstools.org/
server.version Server version X.Y.Z

C.4 Instant commands

Name Description
load.off Turn off the load immediately
load.on Turn on the load immediately
load.off.delay Turn off the load possibly after a delay
load.on.delay Turn on the load possibly after a delay
shutdown.return Turn off the load possibly after a delay and return when

power is back
shutdown.stayoff Turn off the load possibly after a delay and remain off even

if power returns
shutdown.stop Stop a shutdown in progress
shutdown.reboot Shut down the load briefly while rebooting the UPS
shutdown.reboot.graceful After a delay, shut down the load briefly while rebooting

the UPS
test.panel.start Start testing the UPS panel
test.panel.stop Stop a UPS panel test
test.failure.start Start a simulated power failure

https://www.networkupstools.org/

Network UPS Tools User Manual 79 / 155

Name Description
test.failure.stop Stop simulating a power failure
test.battery.start Start a battery test
test.battery.start.quick Start a "quick" battery test
test.battery.start.deep Start a "deep" battery test
test.battery.stop Stop the battery test
test.system.start Start a system test
calibrate.start Start runtime calibration
calibrate.stop Stop runtime calibration
bypass.start Put the UPS in bypass mode
bypass.stop Take the UPS out of bypass mode
reset.input.minmax Reset minimum and maximum input voltage status
reset.watchdog Reset watchdog timer (forced reboot of load)
beeper.enable Enable UPS beeper/buzzer
beeper.disable Disable UPS beeper/buzzer
beeper.mute Temporarily mute UPS beeper/buzzer
beeper.toggle Toggle UPS beeper/buzzer
outlet.n.shutdown.return Turn off the outlet possibly after a delay and return when

power is back
outlet.n.load.off Turn off the outlet immediately
outlet.n.load.on Turn on the outlet immediately
outlet.n.load.cycle Power cycle the outlet immediately
outlet.n.shutdown.return Turn off the outlet and return when power is back

D Hardware Compatibility List

Refer to the online HCL.

E Documentation

E.1 User Documentation

• FAQ - Frequently Asked Questions

• NUT user manual

• Cables information

• User manual pages

• Devices Dumps Library (DDL): Provides information on how devices are supported; see also the HCL

• Notes on NUT monitoring of USB devices in Solaris and related operating systems

• NUT Configuration Examples book maintained by Roger Price

• NUT GitHub Wiki

E.2 Developer Documentation

• NUT Developer Guide

• NUT Packager Guide

• NUT Release Notes

https://www.networkupstools.org/stable-hcl.html
../FAQ.html
../man/index.html#User_man
https://www.networkupstools.org/ddl/index.html#_supported_devices
https://www.networkupstools.org/stable-hcl.html
../solaris-usb.html
https://github.com/networkupstools/ConfigExamples/releases/latest/download/ConfigExamples.pdf
https://github.com/networkupstools/nut/wiki

Network UPS Tools User Manual 80 / 155

• NUT Change Log

• UPS protocols library

• Developer manual pages

• NUT Quality Assurance

• Devices Dumps Library (DDL): Provides simulation data to the dummy-ups(8) driver

E.3 Data dumps for the DDL

Note: both developers contributing a driver and users using an existing driver for device not previously documented as supported
by it, are welcome to report new data for the Devices Dumps Library (DDL) mentioned above. Best of all such "data dump"
reports can be prepared by the ./tools/nut-ddl-dump.sh script from the main NUT codebase, and reported on the NUT
mailing list or via NUT issues on GitHub or as a pull request against the NUT Devices Dumps Library following the naming and
other rules described in the DDL documentation page.

Data dumps collected by the tools above, or by upsc client, or by drivers in exploratory data-dumping mode (with -d 1
argument), can be compared by ./tools/nut-dumpdiff.sh script from the main NUT codebase, which strips away lines
with only numeric values (aiming to minimize the risk of losing meaningful changes like counters).

E.4 Offsite Links

These are general information about UPS, PDU, ATS, PSU and SCD:

• UPS HOWTO (The Linux Documentation Project)

• UPS on Wikipedia

• PDU on Wikipedia

• Automatic Transfer Switch

• Power Supply Units

• Solar controller on Wikipedia

• UPS on The PC Guide

These are writeups by users of the software.

• NUT Configuration Examples and helper scripts (Roger Price) (sources replicated in NUT GitHub organization as ConfigEx-
amples, TLS-UPSmon, and TLS-Shims)

• Deploying NUT on an Ubuntu 10.04 cluster (Stefano Angelone)

• Monitoring a UPS with nut on Debian or Ubuntu Linux (Avery Fay)

• Installation et gestion d’un UPS USB en réseau sous linux (Olivier Van Hoof, french)

• Network UPS Tools (NUT) on Mac OS X (10.4.10) (Andy Poush)

• Interfacing a Contact-Closure UPS to Mac OS X and Linux (David Hough)

• How to use UPS with nut on RedHat / Fedora Core (Kazutoshi Morioka)

• FreeBSD installation procedure (Thierry Thomas, from FreeBSD)

• Gestionando un SAI desde OpenBSD con NUT (Juan J. Martinez, spanish)

• HOWTO: MGE Ellipse 300 on gentoo (nielchiano)

ups-protocols.html
../man/index.html#Developer_man
nut-qa.html
https://www.networkupstools.org/ddl/index.html
https://www.networkupstools.org/docs/man/dummy-ups.html
https://github.com/networkupstools/nut/issues
https://github.com/networkupstools/nut-ddl
http://tldp.org/HOWTO/UPS-HOWTO/
http://en.wikipedia.org/wiki/Uninterruptible_power_supply
http://en.wikipedia.org/wiki/Power_distribution_unit
https://en.wikipedia.org/wiki/Transfer_switch
https://en.wikipedia.org/wiki/Power_supply_unit_%28computer%29
http://en.wikipedia.org/wiki/Solar_controller
http://www.pcguide.com/ref/power/ext/ups/over.htm
http://rogerprice.org/NUT
https://github.com/networkupstools/ConfigExamples
https://github.com/networkupstools/ConfigExamples
https://github.com/networkupstools/TLS-UPSmon
https://github.com/networkupstools/TLS-Shims
http://www.dimat.unina2.it/LCS/MonitoraggioUpsNutUbuntu10-eng.htm
http://blog.shadypixel.com/monitoring-a-ups-with-nut-on-debian-or-ubuntu-linux
http://linux.developpez.com/cours/upsusb/
https://github.com/networkupstools/nut/wiki/NUT-on-Mac-OS-X
http://www.llondel.org/ups.shtml
http://fedoranews.org/contributors/kazutoshi_morioka/nut/
http://people.freebsd.org/~thierry/nut_FreeBSD_HowTo.txt
http://www.usebox.net/jjm/ups-obsd/
http://forums.gentoo.org/viewtopic-p-2663684.html

Network UPS Tools User Manual 81 / 155

• Cum se configurează un UPS Apollo seria 1000F pe Linux (deschis, Romanian)

• Install a UPS (nut) on a Buffalo NAS (various authors)

• NUT Korean GuideBook (PointBre)

• USB UPS, notifications, and Home Assistant (James Ridgway)

• PowerWalker UPS on Fedora Server 36 (Michael Hirschler)

Video articles are also available:

• Network UPS Tools (NUT Server) Ultimate Guide (Techno Tim)

E.5 News articles and Press releases

• Linux UPS Without Tears (A. Lizard)

• Graceful UPS shutdowns on Linux (Carla Schroder)

F Support instructions

There are various ways to obtain support for NUT.

F.1 Documentation

• First, be sure to read the FAQ. The most common problems are already addressed there.

• Else, you can read the NUT user manual. It also covers many areas about installing, configuring and using NUT. The specific
steps on system integration are also discussed.

• Finally, User manual pages will also complete the User Manual provided information. At least, read the manual page related
to your driver(s).

F.2 Mailing lists

If you have still not found a solution, you should search the lists before posting a question.

Someone may have already solved the problem:

search on the NUT lists using Google

Finally, you can subscribe to a NUT mailing list to:

F.2.1 Request help

Use the NUT Users mailing list.

In this case, be sure to include the following information:

• OS name and version,

• exact NUT version,

• NUT installation method: package, or a custom build from source tarball or GitHub (which fork, branch, PR),

• exact device name and related information (manufacturing date, web pointers, . . .),

http://deschis.blogspot.com/2006/07/cum-se-configureaz-un-ups-apollo-seria.html
http://buffalo.nas-central.org/wiki/Install_a_UPS_%28nut%29
http://blog.pointbre.com/2903/nutnetwork-ups-tool-korean-guidebook.html
https://www.jamesridgway.co.uk/monitoring-eaton-5sc-ups-scripts-and-integration-network-tools-home-assistant/amp/
https://www.hirschler.solutions/posts/2022/06/powerwalker-ups-on-fedora-server-36
https://www.youtube.com/watch?v=vyBP7wpN72c
http://www.crn.com/news/channel-programs/199000818/linux-ups-without-tears.htm
http://www.enterprisenetworkingplanet.com/netsysm/article.php/3295841/Graceful-UPS-Shutdowns-on-Linux.htm
docs/FAQ.html
docs/man/index.html#User_man
http://www.google.com/search?as_q=&as_oq=nut-upsuser+nut-upsdev&domains=lists.alioth.debian.org&sitesearch=lists.alioth.debian.org&btnG=Search+NUT+lists
http://lists.alioth.debian.org/mailman/listinfo/nut-upsuser

Network UPS Tools User Manual 82 / 155

• complete problem description, with any relevant traces, like system log excerpts, and driver debug output. You can obtain the
latter using the following command, running as root and after having stopped NUT:

/path/to/driver -DD -a <upsname>

If you don’t include the above information in your help request, we will not be able to help you!

F.2.2 Post a patch, ask a development question, . . .

Use the NUT Developers mailing list.

Refer to the NUT Developer Guide for more information, and the chapter on how to submit patches.

Note that the currently preferable way for ultimate submission of improvements is to post a pull request from your GitHub fork
of NUT. Benefits of PRs include automated testing and merge-conflict detection and resolution, as well as tracking discussion
that is often needed to better understand, integrate or document the patch.

F.2.3 Discuss packaging and related topics

Use the NUT Packagers mailing list.

Refer to the NUT Packager Guide for more information.

F.3 IRC (Internet Relay Chat)

Yes, we’re open!

There is an official #nut channel on https://libera.chat/ network.

Feel free to hang out with whoever is on-line at the moment, or watch reports from the NUT CI farm as they come.

Please don’t forget the basics of netiquette, such as that any help is done on a best-effort basis, people have other obligations, and
are not always there even if their chat client is, and that respect and politeness are the norm (this includes doing some research
before asking, and explaining the context where it is not trivial).

F.4 GitHub Issues

See https://github.com/networkupstools/nut/issues for another venue of asking (and answering) questions, as well as proposing
improvements.

To report new Devices Dumps Library entries, posting an issue is okay, but posting a pull request is a lot better — easier for
maintainers to review and merge any time. For some more detailed instructions about useful DDL reports, please see NUT DDL
page.

G Cables information

G.1 APC

G.1.1 940-0024C clone

From D. Stimits

http://lists.alioth.debian.org/mailman/listinfo/nut-upsdev
../developer-guide.chunked/developers.html#_submitting_patches
https://github.com/networkupstools/nut/pulls
http://lists.alioth.debian.org/mailman/listinfo/nut-packaging
https://libera.chat/
https://github.com/networkupstools/nut/issues
https://github.com/networkupstools/nut-ddl/pulls
https://www.networkupstools.org/ddl/#_file_naming_convention
https://www.networkupstools.org/ddl/#_file_naming_convention

Network UPS Tools User Manual 83 / 155

Note
The original 940-0024C diagram was contributed by Steve Draper.

G.1.2 940-0024E clone

Reported by Jonathan Laventhol

This cable is said to use the same wiring as 940-0024C clone.

G.1.3 940-0024C clone for Macs

From Miguel Howard

G.2 Belkin

G.2.1 OmniGuard F6C***-RKM

From "Daniel"

A straight-through RS-232 cable (with pins 2-7 connected through) should work with the following models:

Network UPS Tools User Manual 84 / 155

• F6C110-RKM-2U

• F6C150-RKM-2U

• F6C230-RKM-2U

• F6C320-RKM-3U

G.3 Eaton

Documents in this section are provided courtesy of Eaton.

G.3.1 MGE Office Protection Systems

The three first cables also applies to MGE UPS SYSTEMS and Eaton.

DB9-DB9 cable (ref 66049)

This is the standard serial cable, used on most units.

Network UPS Tools User Manual 85 / 155

DB9-RJ45 cable

This cable is used on the more recent models, including Ellipse MAX, Protection Station, . . .

Network UPS Tools User Manual 86 / 155

NMC DB9-RJ45 cable

The following applies to the MGE 66102 NMC (Network Management Card), and possibly other models. The NMC connection
is an 8P8C RJ45-style jack.

Signal PC NMC
1,4,6

TxD 2 3
RxD 3 6
GND 5 4

7,8
shield shield

USB-RJ45 cable

This cable is used also on the more recent models, including Ellipse MAX, Protection Station, . . .

Network UPS Tools User Manual 87 / 155

DB9-RJ12 cable

This cable is used on some older Ellipse models.

Network UPS Tools User Manual 88 / 155

Network UPS Tools User Manual 89 / 155

G.3.2 Powerware LanSafe

G.3.3 SOLA-330

Just uses a normal serial cable, with pin 1-1 through to 9-9.

Network UPS Tools User Manual 90 / 155

G.4 HP - Compaq

G.4.1 Older Compaq UPS Family

This cable can be used with the following models:

T700, T1000, T1500, T1500j, T700h, T1000h, T1500h, R1500, R1500j, R1500h, T2000, T2000j, T2400h, T2400h-NA, R3000
/ R3000j, R3000h, R3000h-International, R3000h-NA, R6000h-NA, R6000i, R6000j.

UPS PC 9 pin connector

1 --------- 3
2 --------- 2

4 -\
4 --------- 5 |

6 -/
6 --------- 7

Contributed by Kjell Claesson and Arnaud Quette.

G.5 Phoenixtec (Best Power)

Many Best Power units (including the Patriot Pro II) have a female DB-9 socket with a non-standard pinout.

Signal PC UPS
1,4,6 NC

TxD 2 2
RxD 3 1
GND 5 4

7,8 NC

Sources:

Network UPS Tools User Manual 91 / 155

• http://pinoutsguide.com/UPS/best_power_pinout.shtml

• http://lit.powerware.com/ll_download.asp?file=m_patriotproii_jan99.pdf

• Stan Gammons

G.6 Tripp-Lite

From Tripp-Lite, via Bryan Kolodziej

This cable (black 73-0844 cable) is used on various models, using the "Lan 2.2 interface" and the genericups driver (upstype=5).

H Configure options

Note
For more information about build environment setup, see chapters below about Configuration prerequisites and CI Farm con-
figuration notes.

http://pinoutsguide.com/UPS/best_power_pinout.shtml
http://lit.powerware.com/ll_download.asp?file=m_patriotproii_jan99.pdf

Network UPS Tools User Manual 92 / 155

Note
When building NUT from Git sources rather than the distribution tarballs, you would have to generate the configure script
and some further needed files by running ./autogen.sh. This in turn may require additional tools and other dependencies
on your build environment (referenced just a bit below). For common developer iterations, porting to new platforms, or in-place
testing, running the ./ci_build.sh script can be a helpful one-stop solution.
+ The NUT Packager Guide, which presents the best practices for installing and integrating NUT, is also a good reading.
+ The Prerequisites for building NUT on different OSes document suggests prerequisite packages with tools and dependencies
available and needed to build and test as much as possible of NUT on numerous platforms, written from perspective of CI
testing (if you are interested in getting updated drivers for a particular device, you might select a sub-set of those suggestions).

There are a few options reviewed below that can be given to configure script to tweak your compilations. See also ./configure
--help for a current and complete listing for the current version of the codebase.

NUT tracks configure options used during build, so you can view them to produce a replacement by asking NUT programs
for --help or for --version with debugging enabled (first), e.g.:

:; upsd -DV
Network UPS Tools upsd 2.8.1
Network UPS Tools version 2.8.1 configured with flags: --with-all=auto --with-doc=skip ...

A more industrial approach is to use lib/libupsclient-config --config-flags where supported.

H.1 Keeping a report of NUT configuration

--enable-keep_nut_report_feature

If this option is enabled (not currently default), the report displayed by configure script will be kept in a file when the script
ends, and installed into the data directory.

H.2 In-place replacement defaults

A common situation for NUT builds is to verify whether current version of the codebase (e.g. recent and not-yet-packaged
release, or a Git branch) solves some issues of an existing deployment. Such tests are simplified if the new build of NUT plays by
the same systems integration rules as the already deployed (e.g. package-delivered) version, specifically about filesystem access
permissions and configuration file locations.

--enable-inplace-runtime

Tries to detect and pre-set configure defaults for run-time settings (which you can still override if needed, but no longer must
specify explicitly to be on same page as the existing setup), e.g.:

• --sysconfdir

• --with-user

• --with-group

If the installed NUT version supports reporting of CONFIG_FLAGS used during its build, the configure script will try to take
those values into account when running in this mode.

Note
This does not currently rely on the configuration report optionally installed by --enable-keep_nut_report_feature
above, but might do so eventually.

config-prereqs.txt

Network UPS Tools User Manual 93 / 155

H.3 Driver selection

H.3.1 Serial drivers

--with-serial

H.3.2 USB drivers

Build and install the serial drivers (default: yes)

--with-usb

Build and install the USB drivers (default: auto-detect)

Note that you need to install the libusb development package or files, and that both libusb 0.1 and 1.0 are supported. In case both
are available, libusb 1.0 takes precedence, and will be used by default. It is however possible to override this default choice by
explicitly calling --with-usb=libusb-0.1 or --with-usb=libusb-1.0. If you do specify the version to use (or yes
for auto-detection), this option would fail if requested (or any) libusb version was not found. The default auto value would not
fail in such case.

H.3.3 SNMP drivers

--with-snmp

Build and install the SNMP drivers (default: auto-detect)

Note that you need to install libsnmp development package or files.

--with-net-snmp-config

In addition to the --with-snmp option above, this one allows to provide a custom program name (in PATH) or complete path-
name to net-snmp-config (may have copies named per architecture, e.g. net-snmp-config-32 and net-snmp-config-64).

This may be needed on build systems which support multiple architectures, or in cases where your distribution names this
program differently. With a default value of yes it would mean preference of this program, compared to information from
pkg-config, if both are available.

H.3.4 XML drivers and features

--with-neon

Build and install the XML drivers (default: auto-detect)

Note that you need to install neon development package or files.

H.3.5 LLNC CHAOS Powerman driver

--with-powerman

Build and install Powerman PDU client driver (default: auto-detect)

This allows to interact with the Powerman daemon, and the numerous Power Distribution Units (PDU) supported by the power-
man project.

Note that you need to install powerman development package or files.

https://github.com/chaos/powerman
https://github.com/chaos/powerman

Network UPS Tools User Manual 94 / 155

H.3.6 IPMI drivers

--with-ipmi
--with-freeipmi

Build and install IPMI PSU driver (default: auto-detect)

This allows to monitor numerous Power Supply Units (PSU) found on servers.

Note that you need to install freeipmi (0.8.5 or higher, for nut-scanner; and 1.0.1 or higher, for nut-ipmipsu) development package
or files.

H.3.7 I2C bus drivers

--with-linux_i2c

Build and install i2c drivers (default: auto-detect)

Note that you need to install libi2c development package or files.

H.3.8 GPIO bus drivers

--with-gpio

Build and install GPIO drivers (default: auto-detect)

Note that on Linux you need to install libgpiod library and development package or files. This seems to be present in distributions
released after roughly 2018. Other platforms are not currently supported, but may be in the future.

H.3.9 Modbus drivers

--with-modbus

Build and install modbus (Serial, TCP) drivers (default: auto-detect)

Note that you need to install libmodbus development package or files.

H.3.10 Manual selection of drivers

--with-drivers=<driver>,<driver>,...

Specify exactly which driver or drivers to build and install (this works for serial, usb, and snmp drivers, and overrides the
preceding three options).

As of the time of original writing (2010), there are 46 UPS drivers available. Most users will only need one, a few will need two
or three, and very few people will need all of them.

To save time during the compile and disk space later on, you can use this option to just build and install a subset of the drivers.
For example, to select mge-shut and usbhid-ups, you’d do this:

--with-drivers=apcsmart,usbhid-ups

If you need to build more drivers later on, you will need to rerun configure with a different list. To make it build all of the
drivers from scratch again, run make clean before starting.

Network UPS Tools User Manual 95 / 155

H.4 Optional features

H.4.1 CGI client interface

--with-cgi (default: no)

Build and install the optional CGI programs, HTML files, and sample CGI configuration files. This is not enabled by default, as
they are only useful on web servers. See data/html/README for additional information on how to set up CGI programs.

H.4.2 Pretty documentation and man pages

--with-doc=<output-format(s)> (default: no)

Build and install NUT documentation file(s).

This feature requires AsciiDoc 8.6.3 or newer (see https://asciidoc.org).

The possible documentation type values are:

• html-single for single page HTML,

• html-chunked for multi-paged HTML,

• pdf for a PDF file, and

• man for the usual manpages.

Other values understood for this option are listed below:

• If the --with-doc argument is passed without a list, or specifies just =yes or =all, it enables all supported formats with
a =yes to require them.

• An (explicit!) --with-doc=auto argument tries to enable all supported formats with an =auto but should not fail the
build if something can not be generated.

• A --with-doc=no quietly skips generation of all types of documentation, including manpages.

• A --with-doc=skip is used to configure some of the make distcheck* scenarios to re-use man page files built and
distributed by the main build and not waste time on re-generation of those.

• A --with-doc=dist-auto allows to use pre-distributed MAN pages if present (should be in "tarball" release archives;
should not be among Git-tracked sources; may be left over from earlier builds in same workspace), or build those if we can (the
auto part). Practically this is implemented in detail only for --with-doc=man=dist-auto, as we do not dist HTML
and PDF products; it is a placeholder for those to simplify the generic configuration calls.

Multiple documentation format values can be specified, separated with comma. Each such value can be suffixed with =yes to
require building of this one documentation format (abort configuration if tools are missing), =auto to detect and enable if we
can build it on this system (and not abort if we can not), and =no (or =skip) to explicitly skip generation of this document
format even if we do have the tools to build it.

If a document format is mentioned in the list without a suffix, then it is treated as a =yes requirement.

Verbose output can be enabled using: ASCIIDOC_VERBOSE=-v make

Example valid formats of this flag:

• --with-doc without an argument, effectively same as --with-doc=yes

• --with-doc= is a valid empty list, effectively same as --with-doc=no

• --with-doc=auto

• --with-doc=pdf,html-chunked

• --with-doc=man=no,pdf=auto,html-single

https://asciidoc.org

Network UPS Tools User Manual 96 / 155

H.4.3 Python support

NUT includes a client binding PyNUT module, as well as an optional GUI application NUT-Monitor (not to be confused
with nut-monitor service name for upsmon as delivered by some OS distribution packages). Both python 2.7 and several
versions of python 3.x are supported and regularly tested by NUT CI farm builds; other versions may work or not.

Also some of the source configuration (including activity in autogen.sh script and later in certain Makefile`s during
build) relies on presence of `python (and perl) interpreters. If they are not available, e.g. on older operating
systems, certain features are skipped — but you may have to export special environment variables to signal to autogen.sh
that this is an expected situation (it would suggest which, for your current NUT version).

Note
For CI builds (or similar reproducible developer activity) performed with ci_build.sh— since this is an area which im-
pacts both configure script generation by the helper autogen.sh script and subsequently the choices made by the
configure script itself, settings can be made by exporting the PYTHON environment variable which should evaluate to some
way to call the correct interpreter (e.g. python2.7, /usr/bin/env python or /usr/bin/python3).

The configure script does support equivalent options, whose defaults come from detection of certain program names by
current PATH setting. Further use of these interpreter names and other paths during NUT build and installation is managed by
Makefile variable expansion, as prepared by the configure script.

Also note that it is not required to use the same PYTHON implementation for autogen.sh to do its job, and for the configure
script option.

As noted above, both python-2.x and python-3.x variants are supported. You can consult the m4/nut_check_python.m4
file for detection methods used. If both interpreter generations are present, and a particular un-versioned PYTHON is not specified
or detected, then selected/detected PYTHON3 is chosen as the ultimate PYTHON value.

For majority of uses in the build procedure and products, the generation of Python does not matter and the un-versioned PYTHON
value is substituted into files as the script shebang, used to find the site-packages location, etc.

One exception is generation of NUT-Monitor GUI application which has been separated for NUT-Monitor-py2gtk2 and
NUT-Monitor-py3qt5 due to further backend platform technical differences — these build products specifically use PYTHON2
and PYTHON3 substitutions. They may be co-installed on the same system. A dispatcher shell script NUT-Monitor is used to
launch the preferred (newest) or the only existing implementation.

Please note that by default NUT tries to make use of everything in your build environment, so if both Python generation are
detected — the binding module will be delivered into both, and two versions of NUT-Monitor GUI application will be installed.
If you want to avoid that behaviour on a build system with both interpreters present, you can explicitly specify to build e.g.
--without-python2 --with-python=/usr/bin/python-3.9.

The settings below may be of particular interest to non-distribution packaging efforts with their own dedicated directory trees:

--with-python=SHEBANG_PATH

Specify a definitive version you want used for majority of the Python code (except version-dependent scripts, see above).

The SHEBANG_PATH should be a full program pathname, optionally with one argument, e.g. /usr/bin/python-3.9 or
/usr/bin/env python2.

Defaults (in order): * python, python3 or python2 program if present in PATH by such name, * or the newest of PYTHON3
or PYTHON2 values (specified or detected below).

--with-python2=SHEBANG_PATH
--with-python3=SHEBANG_PATH

For version-dependent scripts (see above) or to default the newest Python version if not specified by --with-python option
or detected otherwise, you can provide the preferred version and implementation of Python 2 or 3 respectively.

Conversely, if neither of these configure options were specified, but some --with-python program was specified or detected,
and its report says it has Python major version 2 or 3, then the versioned interpreter string would point to that.

Network UPS Tools User Manual 97 / 155

--with-nut_monitor

Install the NUT-Monitor GUI application (depending on Python 2 or 3 version availability), and optional desktop-file-install
integration).

--with-pynut

Install the PyNUT module files for general consumption into "site-packages" location of the currently chosen Python inter-
preter(s): yes, no, auto. or dedicated as the required dependency of NUT-Monitor application (app).

Warning
The module files are installed into a particular Python version’s location such as
/usr/lib/python2.7/dist-packages even if you specify a relaxed or un-versioned interpreter like
python2 (which would be used in scripts for the NUT-Monitor application and possible other consumers of the
module). If the preferred Python version in the deployed system changes later (so the python2 symlink for this
example would point elsewhere) the module import would become not resolvable for such consumers, until it is installed
into that other Python’s "site-packages" location.

H.4.4 Development files

--with-dev (default: no)

Build and install the upsclient and nutclient library and header files, to build further projects against NUT (such as wmNUT
client and many others).

H.4.5 Options for developers

--enable-spellcheck (default: auto)

Activate recipes for documentation source file spelling checks with aspell tool. Default behavior depends on availability of
the tool, so if present — it would run for make check by default, to facilitate quicker acceptance of contributions.

--enable-check-NIT (default: no)

Add make check-NIT to default activity of make check to run the NUT Integration Testing suite. This is potentially
dangerous (e.g. due to port conflicts when running many such tests in same environment), so not active by default.

--enable-maintainer-mode (default: no)

Use maintainer mode to keep Makefile.in and Makefile in sync with ever-changing Makefile.am content after Git
updates or editing.

--enable-cppcheck (default: no)

Activate recipes for static analysis with cppcheck tools (if available).

--with-unmapped-data-points (default: no)

Build SNMP and USB-HID subdrivers with entries discovered by the scripts which generated them from data walks, but devel-
opers did not rename yet to NUT mappings conforming to docs/nut-names.txt standards. Production driver builds must
not include any non-standard names.

--enable-NUT_STRARG-always (default: auto)

Enable the NUT_STRARGmacro (to handle NULL string printing) even if the system libraries seem to safely support this behavior
natively? This flag should primarily help against overly zealous static analysis tools in recent compiler generations. The auto
value enables the flag for certain compiler versions known to complain about some of our use cases — even though those seem
to be false positives.

Network UPS Tools User Manual 98 / 155

H.4.6 I want it all!

--with-all (no default)

Build and install all of the above (the serial, USB, SNMP, XML/HTTP and PowerMan drivers, the CGI programs and HTML
files, and the upsclient library).

H.4.7 Networking transport security

--with-ssl (default: auto-detect)
--with-nss (default: auto-detect)
--with-openssl (default: auto-detect)

Enable SSL support, using either Mozilla NSS or OpenSSL.

If both are present, and nothing was specified, OpenSSL support will be preferred.

Read docs/security.txt for instructions on SSL support.

Note
Currently the two implementations differ in supported features.

H.4.8 Networking access security

--with-wrap (default: auto-detect)

Enable libwrap (tcp-wrappers) support.

Refer to upsd(8) man page for more information.

H.4.9 Networking IPv6

--with-ipv6 (default: auto-detect)

Enable IPv6 support.

H.4.10 AVAHI/mDNS

--with-avahi (default: auto-detect)

Build and install Avahi support, to publish NUT server availability using mDNS protocol. This requires Avahi development files
for the Core and Client parts.

H.4.11 LibLTDL

--with-libltdl (default: auto-detect)

Enable libltdl (Libtool dlopen abstraction) support.

This is required to build nut-scanner which loads third-party libraries dynamically, based on requested scanning options.
This allows to build and package the tool without requiring all possible dependencies to be installed in each run-time environment.

docs/security.txt
https://www.networkupstools.org/docs/man/upsd.html

Network UPS Tools User Manual 99 / 155

H.5 Other configuration options

H.5.1 NUT data server port

--with-port=PORT

Change the TCP port used by the network code. Default is 3493 as registered with IANA.

Ancient versions of upsd used port 3305. NUT 2.0 and up use a substantially different network protocol and are not able to
communicate with anything older than the 1.4 series.

If you have to monitor a mixed environment, use the last 1.4 version, as it contains compatibility code for both the old "REQ"
and the new "GET" versions of the protocol.

H.5.2 Daemon user accounts

--with-user=<username>
--with-group=<groupname>

See also --enable-inplace-runtime.

Programs started as root will setuid() to <username> for somewhat safer operation. You can override this with -u
<otheruser> in several programs, including upsdrvctl (and all drivers by extension), upsd, and upsmon. The "user"
directive in ups.conf overrides this at run time for the drivers.

Note
upsmon does not totally drop root because it may need to initiate a shutdown. There is always at least a stub process
remaining with root powers. The network code runs in another (separate) process as the new user.

The <groupname> is used for the permissions of some files, particularly the hotplugging rules for USB. The idea is that the
device files for any UPS devices should be readable and writable by members of that group.

The default value for both the username and groupname is nobody (or nogroup on systems that have it when configure
script runs). This was done since it’s slightly better than staying around as root. Running things as nobody is not a good idea,
since it’s a hack for NFS access. You should create at least one separate user for this software.

If you use one of the --with-user and --with-group options, then you have to use the other one too.

See the INSTALL.nut document and the FAQ for more on this topic.

H.5.3 Syslog facility

--with-logfacility=FACILITY

Change the facility used when writing to the log file. Read the man page for openlog to get some idea of what’s available on
your system. Default is LOG_DAEMON.

H.6 Installation directories

--prefix=PATH

This is a fairly standard option with GNU autoconf, and it sets the base path for most of the other install directories. The default is
/usr/local/ups, which puts everything but the state sockets in one easy place, and does not conflict with usual distribution
packaging.

If you like having things to be at more of a "system" level, setting the prefix to /usr/local or even /usr might be better.

INSTALL.nut

Network UPS Tools User Manual 100 / 155

--exec_prefix=PATH

This sets the base path for architecture dependent files. By default, it is the same as <prefix>.

--sysconfdir=PATH

Changes the location where NUT’s configuration files are stored. By default this path is <prefix>/etc. Setting this to
/etc/nut or /etc/ups might be useful. See also --enable-inplace-runtime.

The NUT_CONFPATH environment variable overrides this at run time.

--sbindir=PATH
--bindir=PATH

Where executable files will be installed. Files that are normally executed by root (upsd, upsmon, upssched) go to <sbindir>,
all others to <bindir>. The defaults are <exec_prefix>/sbin and <exec_prefix>/bin respectively.

See also --with-drvpath below.

--with-drvpath=PATH

The UPS drivers will be installed to this path. By default they install to <exec_prefix>/bin, i.e. /usr/local/ups/bin.

You would want a location that remains mounted when most of the system is prepared to turn off, so some distributions package
NUT drivers into /lib/nut or similar. See config-notes.txt detailing how to set up system shutdown.

The driverpath global directive in the ups.conf file overrides this at run time.

--datadir=PATH

Change the data directory, i.e., where architecture independent read-only data is installed. By default this is <prefix>/share,
i.e. /usr/local/ups/share. At the moment, this directory only holds two files — the optional cmdvartab and driver.list.

--mandir=PATH

Sets the base directories for the man pages. The default is <prefix>/man, i.e. /usr/local/ups/man.

--includedir=PATH

Sets the path for include files to be installed when --with-dev is selected. For example, upsclient.h is installed here.
The default is <prefix>/include.

--libdir=PATH

Sets the installation path for libraries. Depending on the build configuration, this can include the libupsclient, libnutclient,
libnutclientsub, libnutscan and their pkg-config metadata (see --with-pkgconfig-dir option). The default is
<exec_prefix>/lib.

--libexecdir=PATH

Sets the installation path for "executable libraries" — helper scripts or programs that are not intended for direct and regular
use by people, and rather are implementation details of services. Depending on the build configuration, this can include the
nut-driver-enumerator.sh, sockdebug, and others. The default is <exec_prefix>/libexec.

Package distributions may want to use this option to customize this path to include the package name, e.g. set it to <exec_prefix>/libexec/nut.

--with-pkgconfig-dir=PATH

Where to install pkg-config *.pc files. This option only has an effect if --with-dev is selected, and causes a pkg-config file
to be installed in the named location. The default is <exec_prefix>/pkgconfig.

Use --without-pkgconfig-dir to disable this feature altogether.

config-notes.txt

Network UPS Tools User Manual 101 / 155

--with-cgipath=PATH

The CGI programs will be installed to this path. By default, they install to <exec_prefix>/cgi-bin, which is usually
/usr/local/ups/cgi-bin.

Note
If you set the prefix to something like /usr, you should set the cgipath to something else, because /usr/cgi-bin is
pretty ugly and non-standard.

The CGI programs are not built or installed by default. Use ./configure --with-cgi to request that they are built and
installed.

--with-htmlpath=PATH

HTML files will be installed to this path. By default, this is <prefix>/html. Note that HTML files are only installed if
--with-cgi is selected.

--with-hotplug-dir=PATH

Where to install Linux 2.4 hotplugging rules. The default is to use /etc/hotplug, if that directory exists, and to not install it
otherwise. Note that this installation directory is not a subdirectory of <prefix> by default. When installing NUT as a non-root
user, you may have to override this option.

Use --without-hotplug-dir to disable this feature altogether.

--with-udev-dir=PATH

Where to install Linux 2.6 hotplugging rules, for kernels that have the "udev" mechanism. The default is to use /etc/udev, if
that directory exists, and to not install it otherwise. Note that this installation directory is not a subdirectory of <prefix> by
default. When installing NUT as a non-root user, you may have to override this option.

Use --without-udev-dir to disable this feature altogether.

--with-systemdsystemunitdir=PATH

Where to install Linux systemd unit definitions. Useless and harmless on other OSes, including Linux distributions without
systemd, just adding a little noise to configure script output.

Use --with-systemdsystemunitdir=auto (default) to detect the settings using pkg-config if possible.

Use --with-systemdsystemunitdir(=yes) to require detection of these settings with pkg-config, or fail configuration
if not possible.

Use --with-systemdsystemunitdir=no to disable this feature altogether.

--with-systemdshutdowndir=PATH

Where to install Linux systemd unit definitions for shutdown handling. Useless and harmless on other OSes, including Linux
distributions without systemd, just adding a little noise to configure script output.

Use --with-systemdshutdowndir to detect the settings using pkg-config.

Use --with-systemdshutdowndir=no to disable this feature altogether.

--with-systemdtmpfilesdir=PATH

Where to install Linux systemd configuration for tmpfiles handling (the automatically created locations for PID, state and similar
run-time files). Useless and harmless on other OSes, including Linux distributions without systemd, just adding a little noise to
configure script output.

Use --with-systemdtmpfilesdir to detect the settings using pkg-config.

Use --with-systemdtmpfilesdir=no to disable this feature altogether.

Network UPS Tools User Manual 102 / 155

--with-libsystemd=(auto|yes|no)
--with-libsystemd-includes=CFLAGS
--with-libsystemd-libs=LDFLAGS

If the build system provides libsystemd headers, NUT binaries can be built with tighter integration to this service management
framework. In this case NUT daemons (upsd, upsmon, upslog and drivers) would report their life-cycle milestones (READY,
RELOADING, STOPPING) and support the watchdog reports (if enabled in their respective units by end-user — not done by
default since the numbers depends on monitoring system performance). Default: "auto" (integration enabled if detected).

--with-augeas-lenses-dir=PATH

Where to install Augeas configuration-management lenses.

Only useful and valid if you use Augeas to parse and modify configuration files. The default is to use /usr/share/augeas/lenses,
if that directory exists, and to not install it otherwise.

H.7 Directories used by NUT at run-time

--with-pidpath=PATH

Changes the directory where NUT pid files are stored for processes running as root. By default this is /var/run. Certain
programs like upsmon will leave files here.

--with-altpidpath=PATH

Programs that normally don’t have root powers, like the drivers and upsd, write their pid files here. By default this is whatever
the statepath (below) is, as those programs should be able to write there.

The NUT_ALTPIDPATH environment variable overrides this at run time.

--with-statepath=PATH

Change the default location of the state sockets created by the drivers to interact with the data server upsd. Default is
/var/state/ups.

The NUT_STATEPATH environment variable overrides this at run time.

--with-powerdownflag=FILEPATH

Change the default location (full filename path) of the POWERDOWNFLAG created by upsmon (as root) to tell the late-
shutdown integration that this machine should tell all UPSes for which it is a "primary" NUT server to cut power to the load.
Default is /etc/killpower on POSIX systems and "C:\\killpower" (note the double backslashes) on Windows.

H.8 Things the compiler might need to find

H.8.1 LibGD

--with-pkg-config

This option allows to provide a custom program name (in PATH) or a complete pathname to pkg-config which describes
CFLAGS, LIBS and possibly other build-time options in *.pc files, to use third-party libraries. On build systems which support
multiple architectures you may also want to set PKG_CONFIG_PATH to match your current build.

--with-gd-includes="-I/foo/bar"

If you installed libgd in some place where your C preprocessor can’t find the header files, use this switch to add additional -I
flags.

Network UPS Tools User Manual 103 / 155

--with-gd-libs="-L/foo/bar -labcd -lxyz"

If your copy of libgd isn’t linking properly, use this to give the proper -L and -l flags to make it work. See LIBS= in gd’s
Makefile.

Note
the --with-gd switches are not necessary if you have gd 2.0.8 or higher installed properly. The gdlib-config script or
pkg-config manifest will be detected and used by default in that situation.

--with-gdlib-config

This option allows to provide a custom program name (in PATH) or a complete pathname to gdlib-config. This may be
needed on build systems which support multiple architectures, or in cases where your distribution names this program differently.

H.8.2 LibUSB

--with-libusb-config

This option allows to provide a custom program name (in PATH) or a complete pathname to libusb-config (usually delivered
only for libusb-0.1 version, but not for libusb-1.0). This may be needed on build systems which support multiple architectures or
provide several versions of libusb, or in cases where your distribution names this program differently.

H.8.3 Various

--with-ssl-includes, --with-usb-includes, --with-snmp-includes,
--with-neon-includes, --with-libltdl-includes,
--with-powerman-includes="-I/foo/bar"

If your system doesn’t have pkg-config and support for any of the above libraries isn’t found (but you know it is installed), you
must specify the compiler flags that are needed.

--with-ssl-libs, --with-usb-libs, --with-snmp-libs,
--with-neon-libs, --with-libltdl-libs
--with-powerman-libs="-L/foo/bar -labcd -lxyz"

If system doesn’t have pkg-config or it fails to provides hints for some of the settings that are needed to set it up properly and the
build in defaults are not right, you can specify the correct values for your system here.

I Upgrading notes

This file lists changes that affect users who installed older versions of this software. When upgrading from an older version, be
sure to check this file to see if you need to make changes to your system.

Note
For packaging (OS distribution or in-house) it is recommended to primarily ./configure --with-all and then excise
--without-something explicitly for items not supported on your platform, so you do not miss out on new NUT features
as they come with new releases. Some may require that you update your build environment with new third-party dependencies,
so a broken build of a new NUT release would let you know how to act.
This is a good time to point out that for stricter packaging systems, it may be beneficial to add
--enable-option-checking=fatal to the ./configure command line, in order to quickly pick up any other
removed option flags.

Network UPS Tools User Manual 104 / 155

I.1 Changes from 2.8.2 to 2.8.3

• PLANNED: Keep track of any further API clean-up?

• NUT development snapshots can now have more version components than the standard semantic versioning triplet, optionally
adding the amount of commits on the development trunk since previous release, and the amount of commits on a feature branch
that are unique to it. Release artifacts that have zeroes in both positions would have them stripped and still have the standard
"semver" exposed, but the development snapshots can now be more reasonably upgraded with automated tooling. A copy of the
current version information would be embedded into "dist" archives as a VERSION_DEFAULT file, so it can be used without
git. Certain distros can benefit from a VERSION_FORCED file or a NUT_VERSION_FORCED environment variable exported
from their build system, e.g. via echo NUT_VERSION_FORCED=1.1.1 > VERSION_FORCED. Unfortunately, some
appliances tag all software the same with their firmware version; if this is required, a (NUT_)VERSION_FORCED_SEMVER
envvar or file can help identify the actual NUT release version triplet used on the box. Please use it, it immensely helps with
community troubleshooting! [issue #1949]

• upsmon should now integrate natively with systemd-driven OS sleep events (built with systemd version 221 or newer "in-
hibitor interface"), so various hacks previously packaged into /usr/lib/systemd/system-sleep/ scripts or units
requiring/conflicting with the sleep.target may be obsolete. For fallback with older systemd, a nut-sleep.service
is provided now. [#1070, #2596, #2597]

• usbhid-ups subdriver PowerCOM HID subdriver sent UPS shutdown and stayoff commands in wrong byte order, at
least for devices currently in the field. Driver now sends the commands in a way that satisfies new devices; just in case a flag
toggle powercom_sdcmd_byte_order_fallback was added to set the old behavior (if some devices do need it). [PR
#2480]

• Added support for lbrb_log_delay_sec=N setting to delay propagation of LB or LB+RB state (buggy with APC BXnnnnMI
devices/firmwares issued circa 2023-2024 which flood the logs with spurious LOWBATT and REPLACEBATT events). This
may work better for some devices when combined with flags like onlinedischarge_calibration and lbrb_log_delay_without_calibrating.
[#2347]

• Enabled installation of built PDF and HTML (including man page renditions) files under the configured docdir. It seems
previously they were only built (if requested) but not installed via make, unlike the common man pages which are delivered
automatically. Packaging recipes can likely be simplified now. [#2445]

• A NUT_DEBUG_SYSLOG environment variable was introduced to tweak activation of syslog message emission (and related
detachment of stderr when daemons are backgrounding), which can be useful for systemd service units. It can be set via
nut.conf file for all standard consumers, or patched/dropped-in to systemd unit definitions specifically (less recommended,
but may be easier to package). The positive effect would be avoiding duplicate logging as both syslog and stderr ending
up in the same journal. [#2394]

• A CHANGELOG_REQUIRE_GROUP_BY_DATE_AUTHOR setting was added (for make calls and used by tools/gitlog2changelog.py.in
script), and it defaults to true allowing for better ordered documents at the cost of some memory during document generation.
Resource-constrained builders (working from a Git workspace, not tarball archives) may have to set it to false when calling
make for NUT. [#2510]

• NUT products like nut-scanner, which dynamically load shared libraries at run-time without persistent pre-linking, should
now know the library file names that were present during build (likely encumbered with version suffixes), and prefer them
over plain libname.so patterns used previously (which on some platforms are only delivered by development packages as
symlinks). Packaging recipes can likely be simplified now: some distros certainly did patch NUT source to similar effect).
[#2431]

• Numerous changes to nut-scanner and symbols that its libnutscan.so delivers have caused a library version bump.
New methods have been added and one structure (nutscan_ipmi_t) updated in a (hopefully) backwards compatible man-
ner. [PR #2523, issue #2244 and numerous PRs for it]

• Internal API change for sendsignalpid() and sendsignalfn() methods, which can impact NUT forks which build
using libcommon.la and similar libraries. Added new last argument with const char *progname (may be NULL)
to check that we are signalling an expected program name when we work with a PID. With the same effort, NUT programs

https://github.com/networkupstools/nut/issues/1949
https://github.com/networkupstools/nut/issues/1070
https://github.com/networkupstools/nut/issues/2596
https://github.com/networkupstools/nut/issues/2597
https://github.com/networkupstools/nut/pull/2480
https://github.com/networkupstools/nut/pull/2480
https://github.com/networkupstools/nut/issues/2347
https://github.com/networkupstools/nut/issues/2445
https://github.com/networkupstools/nut/issues/2394
https://github.com/networkupstools/nut/issues/2510
https://github.com/networkupstools/nut/issues/2431
https://github.com/networkupstools/nut/pull/2523
https://github.com/networkupstools/nut/issues/2244

Network UPS Tools User Manual 105 / 155

which deal with PID files to send signals (upsd, upsmon, drivers and upsdrvctl) would now default to a safety pre-
caution — checking that the running process with that PID has the expected program name (on platforms where we can de-
termine one). This might introduce regressions for heavily customized NUT builds (e.g. embedded in NAS or similar de-
vices) whose binary file names differ significantly from a progname defined in the respective NUT source file, so a boolean
NUT_IGNORE_CHECKPROCNAME environment variable support was added to optionally disable this verification. Also the
NUT daemons should request to double-check against their run-time process name (if it can be detected). [issue #2463]

• More environment variable support was added to NUT programs, primarily aimed at wrappers such as init scripts and service
unit definitions, allowing to tweak what (and whether) they write into debug traces, and so "make noise" or "bring invaluable
insights" to logs or terminal; they can generally be used for services and init scripts via nut.conf:

– See NUT_IGNORE_CHECKPROCNAME and NUT_DEBUG_SYSLOG above. [#1915]

– A NUT_QUIET_INIT_BANNER envvar (presence or "true" value) prevents tool name and NUT version banner from being
printed out when programs start. [issues #1789 vs. #316]

• A configure script option to --enable-NUT_STRARG-always was added to enable the NUT_STRARG macro (to
handle NULL string printing) even if system libraries seem to safely support this behavior natively. This should primarily help
against overly zealous static analysis tools in recent compiler generations. [#2585]

I.2 Changes from 2.8.1 to 2.8.2

• Builds requested with a specific C/C language standard revision via CFLAGS and CXXFLAGS should again
be honoured. There was a mishap with the m4 scripting for autoconf which could have
caused use of C11/C11 if compiler supported it, regardless of a request. [PR #2306]

• Added generation of FreeBSD/pfSense quirks for USB devices supported by NUT (may get installed to $datadir e.g.
/usr/local/share/nut and need to be pasted into your /boot/loader.conf.local). [#2159]

• nut-scanner now does not propose active bus, busport and device values when generating device configurations by
default. They may appear as comments, or enabled by specifying the -U command-line option several times. [#2221]

• The tools/gitlog2changelog.py.in script was revised, in particular to convert section titles (with contributor names)
into plain ASCII character set, for dblatex versions which do not allow diacritics and other kinds of non-trivial characters in
sections. A number of other projects seem to use the NUT version of the script, and are encouraged to look at related changes
in configure.ac and Makefile.am recipes. [PR #2360, PR #2366]

I.3 Changes from 2.8.0 to 2.8.1

• NUT documentation recipes were revised, so many of the text source files were renamed to *.adoc pattern. Newly, a
release-notes.pdf and HTML equivalents are generated. Packages which deliver documentation may need to update
the lists of files to ship. [#1953] Developers may be impacted by new configure --enable-spellcheck toggle
(should add spelling checks to make check by default, if tools are available) to facilitate quicker acceptance of contribu-
tions. Packaging systems may now want to explicitly disable it, if it blocks package building (pull requests to update the
docs/nut.dict are a better and welcome solution). [#2067]

• Several improvements regarding simultaneous support of USB devices that were previously deemed "identical" and so NUT
driver instances did not start for all of them:

– Some more drivers should now use the common USB device matching logic and the 7 ups.conf options for that [#1763],
and man pages were updated to reflect that [#1766];

– The nut-scanner tool should suggest these options in its generated device configuration [#1790]: hopefully these would
now suffice for sufficiently unique combinations;

– The nut-scanner tool should also suggest sanity-check violations as comments in its generated device configuration
[#1810], e.g. bogus or duplicate serial number values;

– The common USB matching logic was updated with an allow_duplicates flag (caveat emptor!) which may help
monitor several related no-name devices on systems that do not discern "bus" and "device" values (although without knowing
reliably which one is which. . . sometimes it is better than nothing) [#1756].

https://github.com/networkupstools/nut/issues/2463
https://github.com/networkupstools/nut/issues/1915
https://github.com/networkupstools/nut/issues/1789
https://github.com/networkupstools/nut/issues/316
https://github.com/networkupstools/nut/issues/2585
https://github.com/networkupstools/nut/pull/2306
https://github.com/networkupstools/nut/issues/2159
https://github.com/networkupstools/nut/issues/2221
https://github.com/networkupstools/nut/pull/2360
https://github.com/networkupstools/nut/pull/2366
https://github.com/networkupstools/nut/issues/1953
https://github.com/networkupstools/nut/issues/2067
https://github.com/networkupstools/nut/issues/1763
https://github.com/networkupstools/nut/issues/1766
https://github.com/networkupstools/nut/issues/1790
https://github.com/networkupstools/nut/issues/1810
https://github.com/networkupstools/nut/issues/1756

Network UPS Tools User Manual 106 / 155

• Work on NUT for Windows branch led to situation-specific definitions of what in POSIX code was all "file descriptors" (an
int type). Now such entities are named TYPE_FD, TYPE_FD_SER or TYPE_FD_SOCK with some helper macros to name
and determine "invalid" values (closed file, etc.) Some of these changes happened in NUT header files, and at this time
it was not investigated whether the set of files delivered for third-party code integration (e.g. C/C++ projects binding with
libnutclient or `libupsclient) is consistent or requires additional definitions/files. If something gets broken by this, it is a
bug to address in future [#1556]

• Further revision of public headers delivered by NUT was done, particularly to address lack of common data types (size_t,
ssize_t, uint16_t, time_t etc.) in third-party client code that earlier sufficed to only include NUT headers. Sort of
regression by NUT 2.8.0 (note those consumers still have to re-declare some numeric variable types used) [#1638]

– For practical example of NUT consumer adaptation (to cater to both old and new API types) please see https://github.com/-
collectd/collectd/pull/4043

• Added support for make install of PyNUT module and NUT-Monitor desktop application — such activity was earlier
done by packages directly; now the packaging recipes may use NUT source-code facilities and package just symlinks as
relevant for each distro separately [#1462, #1504]

• The upsd.conf listing of LISTEN addresses was previously inverted (the last listed address was applied first), which was
counter-intuitive and fixed for this release. If user configurations somehow relied on this order (e.g. to prioritize IPv6 vs IPv4
listeners), configuration changes may be needed. [#2012]

• The upsd configured to listen on IPv6 addresses should handle only IPv6 (and not IPv4-mappings like it might have done
before) to avoid surprises and insecurity — if user configurations somehow relied on this dual support, configuration changes
may be needed to specify both desired IP addresses. Note that the daemon logs will now warn if a host name resolves to several
addresses (and will only listen on the first hit, as it did before in such cases). [#2012]

• A definitive behavior for LISTEN * directives became specified, to try handling both IPv4 and IPv6 "any" address (subject
to upsd CLI options to only choose one, and to OS abilities). This use-case may be practically implemented as a single IPv6
socket on systems with enabled and required IPv4-mapped IPv6 address support, or as two separate listening sockets - logged
messages to this effect (e.g. inability to listen on IPv4 after opening IPv6) are expected on some platforms. End-users may
also want to reconfigure their upsd.conf files to remove some now-redundant LISTEN lines. [#2012]

• Added support for make sockdebug for easier developer access to the tool; also if configure --with-dev is in
effect, it would now be installed to the configured libexec location. A man page was also added. [#1936]

• NUT software-only drivers (dummy-ups, clone, clone-outlet) separated from serial drivers in respective Makefile and configure
script options - this may impact packaging decisions on some distributions going forward [#1446]

• GPIO category of drivers was added (--with-gpio configure script option) - this may impact packaging decisions on some
(currently Linux released 2018+) distributions going forward [#1855]

• An explicit configure --with-nut-scanner toggle was added, specifically so that build environments requesting
--with-all but lacking libltdl would abort and require the packager either to install the dependency or explicitly
forfeit building the tool (some distro packages missed it quietly in the past) [#1560]

• An upsdebugx_report_search_paths()method in NUT common code was added, and exposed in libnutscan.so
builds in particular - API version for the public library was bumped [#317]

• Some environment variable support was added to NUT programs, primarily aimed at wrappers such as init scripts and service
unit definitions, allowing to tweak what (and whether) they write into debug traces, and so "make noise" or "bring invaluable
insights" to logs or terminal:

– A NUT_DEBUG_LEVEL=NUM envvar allows to temporarily boost debugging of many daemons (upsd, upsmon, drivers,
upsdrvctl, upssched) without changes to configuration files or scripted command lines. [#1915]

– A NUT_DEBUG_PID envvar (presence) support was added to add current process ID to tags with debug-level identifiers.
This may be useful when many NUT daemons write to the same console or log file, such as in containers/plugins for Home
Assistant, storage appliances, etc. [#2118]

– A NUT_QUIET_INIT_SSL envvar (presence or "true" value) prevents libupsclient consumers (notoriously upsc)
from reporting whether they have initialized SSL support. [#1662]

https://github.com/networkupstools/nut/issues/1556
https://github.com/networkupstools/nut/issues/1638
https://github.com/collectd/collectd/pull/4043
https://github.com/collectd/collectd/pull/4043
https://github.com/networkupstools/nut/issues/1462
https://github.com/networkupstools/nut/issues/1504
https://github.com/networkupstools/nut/issues/2012
https://github.com/networkupstools/nut/issues/2012
https://github.com/networkupstools/nut/issues/2012
https://github.com/networkupstools/nut/issues/1936
https://github.com/networkupstools/nut/issues/1446
https://github.com/networkupstools/nut/issues/1855
https://github.com/networkupstools/nut/issues/1560
https://github.com/networkupstools/nut/issues/317
https://github.com/networkupstools/nut/issues/1915
https://github.com/networkupstools/nut/issues/2118
https://github.com/networkupstools/nut/issues/1662

Network UPS Tools User Manual 107 / 155

– A NUT_QUIET_INIT_UPSNOTIFY envvar (presence or "true" value) prevents daemons which can notify service man-
agement frameworks (such as systemd) about passing their lifecycle milestones, to not report loudly if they could not do
so (e.g. running on a system without a framework, or misconfigured so they could not report and the OS would restart the
false-positively "unresponsive" service). [#2136]

• configure script, reference init-script and packaging templates updated to eradicate @PIDPATH@/nut ambiguity in favor
of @ALTPIDPATH@ for the unprivileged processes vs. @PIDPATH@ for those running as root [#1719]

• The "layman report" of NUT configuration options displayed after the run of configure script can now be retained and
installed by using the --enable-keep_nut_report_feature option; packagers are welcome to make use of this, to
better keep track of their deliveries [#1826, #1708]

• Renamed generated nut-common.tmpfiles(.in) ⇒ nut-common-tmpfiles.conf(.in) to install a /usr/lib/systemd-tmpfiles/*.conf
pattern [#1755]

– If earlier NUT v2.8.0 package recipes for your Linux distribution dealt with this file, you may have to adjust its name for
newer releases.

– Several other issues have been fixed related to this file and its content, including #1030, #1037, #1117 and #1712

• Extended Linux systemd support with optional notifications about daemon state (READY, RELOADING, STOPPING) and
watchdog keep-alive messages. Note that WatchdogSec= values are currently NOT pre-set into systemd unit file templates
provided by NUT, this is an exercise for end-users based on sizing of their deployments and performance of monitoring station
[#1590, #1777]

• snmp-ups: some subdrivers (addressed using the driver parameter mibs) were renamed: pw is now eaton_pw_nm2, and
pxgx_ups is eaton_pxg_ups [#1715]

• The tools/gitlog2changelog.py.in script was revised, in particular to generate the ChangeLog file more consis-
tently with different versions of Python interpreter, and without breaking the long file paths in the resulting mark-up text. Due
to this, a copy of this file distributed with NUT release archives is expected to considerably differ on first glance from its earlier
released versions (not just adding lines for the new release, but changing lines in the older releases too) [#1945, #1955]

I.4 Changes from 2.7.4 to 2.8.0

• Note to distribution packagers: this version hopefully learns from many past mistakes, so many custom patches may be no
longer needed. If some remain, please consider making pull requests for upstream NUT codebase to share the fixes con-
sistently across the ecosystem. Also note that some new types of drivers (so package groups with unique dependencies)
could have appeared since your packaging was written (e.g. with modbus), as well as new features in systemd integration
(nut-driver@instances and the nut-driver-enumerator to manage their population), as well as updated Python
2 and Python 3 support (again, maybe dictating different package groups) as detailed below.

• Due to changes needed to resolve build warnings, mostly about mismatching data types for some variables, some structure
definitions and API signatures of several routines had to be changed for argument types, return types, or both. Primarily this
change concerns internal implementation details (may impact update of NUT forks with custom drivers using those), but a
few changes also happened in header files installed for builds configured --with-dev and so may impact upsclient and
nutclient (C++) consumers. At the very least, binaries for those consumers should be rebuilt to remain stable with NUT
2.8.0 and not mismatch int-type sizes and other arguments.

• libusb-1.0: NUT now defaults to building against libusb-1.0 API version if the configure script finds the development headers,
falling back to libusb-0.1 if not. Please report any regressions.

• apcupsd-ups: When monitoring a remote apcupsd server, interpret "SHUTTING DOWN" as a NUT "LB" status. If you were
relying on the previous behavior (for instance, in a monitor-only situation), please adjust your upsmon settings. Reference:
https://github.com/networkupstools/nut/issues/460

• Packagers: the AsciiDoc detection has been reworked to allow NUT to be built from source without requiring asciidoc/a2x
(using pre-built man pages from the distribution tarball, for instance). Please double-check that we did not break anything (see
docs/configure.txt for options).

https://github.com/networkupstools/nut/issues/2136
https://github.com/networkupstools/nut/issues/1719
https://github.com/networkupstools/nut/issues/1826
https://github.com/networkupstools/nut/issues/1708
https://github.com/networkupstools/nut/issues/1755
https://github.com/networkupstools/nut/issues/1030
https://github.com/networkupstools/nut/issues/1037
https://github.com/networkupstools/nut/issues/1117
https://github.com/networkupstools/nut/issues/1712
https://github.com/networkupstools/nut/issues/1590
https://github.com/networkupstools/nut/issues/1777
https://github.com/networkupstools/nut/issues/1715
https://github.com/networkupstools/nut/issues/1945
https://github.com/networkupstools/nut/issues/1955
https://github.com/networkupstools/nut/issues/460

Network UPS Tools User Manual 108 / 155

• Driver core: options added for standalone mode (scanning for devices without requiring ups.conf) - see docs/man/nutupsdrv.txt
for details.

• oldmge-shut has been removed, and replaced by mge-shut.

• New drivers for devices with "Qx" (also known as "Megatec Q*") family of protocols should be developed as sub-drivers in
the nutdrv_qx framework for USB and Serial connected devices, not as updates/clones of older e.g. blazer family and
bestups. Sources, man pages and start-up messages of such older drivers were marked with "OBSOLETION WARNING".

• liebert-esp2: some multi-phase variable names have been updated to match the rest of NUT.

• netxml-ups: if you have old firmware, or were relying on values being off by a factor of 10, consider the do_convert_deci
flag. See docs/man/netxml-ups.txt for details.

• snmp-ups: detection of Net-SNMP has been updated to use pkg-config by default (if present), rather than net-snmp-config(-32|-64)
script(s) as the only option available previously. The scripts tend to specify a lot of options (sometimes platform-specific) in
suggested CFLAGS and LIBS compared to the packaged pkg-config information which also works and is more portable. If
this change bites your distribution, please bring it up in https://github.com/networkupstools/nut/issues or better yet, post a PR.
Also note that ./configure --with-netsnmp-config(=yes) should set up the preference of the detected script
over pkg-config information, if both are available, and --with-netsnmp-config=/path/name would as well.

• snmp-ups: bit mask values for flags in earlier codebase were defined in a way that caused logically different items to have same
numeric values. This was fixed to surely use different definitions (so changing numbers behind some of those macro symbols),
and testing with UPS, ePDU and ATS hardware which was available did not expose any practical differences.

• usbhid-ups: numeric data conversion from wire protocol to CPU representation in GetValue() was completely reworked, aiming
to be correct on all CPU types. That said, regressions are possible and feedback is welcome.

• nut-scanner: Packagers, take note of the changes to the library search code in common/common.c. Please file an issue if this
does not work with your platform.

• dummy-ups can now specify mode as a driver argument, and separates the notion of dummy-once (new default for *.dev
files that do not change) vs. dummy-loop (legacy default for *.seq and others) [issue #1385]

– Note this can break third-party test scripts which expected *.dev files to work as a looping sequence with a TIMER
keywords to change values slowly; now such files should get processed to the end once. Specify mode=dummy-loop
driver option or rename the data file used in the port option for legacy behavior. Use/Test-cases which modified such files
content externally should not be impacted.

• Python: scripts have been updated to work with Python 3 as well as 2.

– PyNUT module (protocol binding) supports both Python generations.

– NUT-Monitor (desktop UI client) got separated into two projects: one with support for Python2 and GTK2, and another
for Python3 and Qt5. On operating systems that serve both environments, either of these implementation should be us-
able. For distributions that deprecated and removed Python2 support, it is a point to consider in NUT packages and
their build-time and installation dependencies. The historic filenames for desktop integration (NUT-Monitor script and
nut-monitor.desktop) are still delivered, but now cover a wrapper script which detects the environment capabilities
and launches the best suitable UI implementation (if both are available).

• apcsmart: updates to CS "hack" (see docs/man/apcsmart.txt for details)

• upsdebugx(): added [D#] prefix to log entries with level > 0 so if any scripts or other tools relied on parsing those messages
making some assumptions, they should be updated

• upsdebugx() and related methods are now macros, optionally calling similarly named implementations like s_upsdebugx() as
a slight optimization; this may show up in linking of binaries for some customized build scenarios

• libraries, tools and protocol now support a TRACKING ID to be used with an INSTCMD or SET VAR requests; for details see
docs/net-protocol.txt and docs/sock-protocol.txt

• upsrw: display the variable type beside ENUM / RANGE

• Augeas: new --with-augeas-lenses-dir configure option.

https://github.com/networkupstools/nut/issues
https://github.com/networkupstools/nut/issues/1385

Network UPS Tools User Manual 109 / 155

I.5 Changes from 2.7.3 to 2.7.4

• scripts/systemd/nut-server.service.in: Restore systemd relationship since it was preventing upsd from starting whenever one or
more drivers, among several, was failing to start

• Fix UPower device matching for recent kernels, since hiddev* devices now have class "usbmisc", rather than "usb"

• macosx-ups: the "port" driver option no longer has any effect

• Network protocol information: default to type NUMBER for variables that are not flagged as STRING . This point is subject
to improvements or change in the next release 2.7.5. Refer to docs/net-protocol.txt for more information

I.6 Changes from 2.7.2 to 2.7.3

• The nutdrv_qx(8) driver will eventually supersede bestups(8). It has been tested on a U-series Patriot Pro II. Please test the
new driver on your hardware during your next maintenance window, and report any bugs.

• If you are upgrading from a new install of 2.7.1 or 2.7.2, double-check the value of POWERDOWNFLAG in $prefix/etc/upsmon.conf
- it has been restored to /etc/killpower as in 2.6.5 and earlier.

• If you use upslog with a large sleep value, you may be interested in adding killall -SIGUSR1 upslog to any OB/OL
script actions. This will force upslog to write a log entry to catch short power transients.

• Be sure that your SSL keys are readable by the NUT system user. The SSL subsystem is now initialized after upsd forks, to
work around issues in the NSS library.

• The systemd nut-server.service does not Require nut-driver to be started successfully. This was previously preventing upsd
startup, even for just one driver failure among many. This also matches the behavior of sysV initscripts.

I.7 Changes from 2.7.1 to 2.7.2

• upsdrvctl is now installed to $prefix/sbin rather than $driverexec. This usually means moving from /bin to /sbin, apart from
few exceptions. In all cases, please adapt your scripts.

• FreeDesktop Hardware Abstraction Layer (HAL) support was removed. Please adapt your packaging files, if you used to
distribute the nut-hal-drivers package.

• This is a good time to point out that for stricter packaging systems, it may be beneficial to add "--enable-option-checking=fatal"
to the ./configure command line, in order to quickly pick up any other removed option flags.

I.8 Changes from 2.6.5 to 2.7.1

• The apcsmart(8) driver has been replaced by a new implementation. There is a new parameter, ttymode, which may help if you
have a non-standard serial port, or Windows. In case of issues with this new version, users can revert to apcsmart-old.

• The nutdrv_qx(8) driver will eventually supersede blazer_ser and blazer_usb. Options are not exactly the same, but are docu-
mented in the nutdrv_qx man page.

• Mozilla NSS support has been added. The OpenSSL configuration options should be unchanged, but please refer to the
upsd.conf(5) and upsmon.conf(5) documentation in case we missed something.

• upsrw(8) now prints out the maximum size of variables. Hopefully you are not parsing the output of upsrw - it would be easier
to use one of the NUT libraries, or implement the network protocol yourself.

• The jNut source is now here: https://github.com/networkupstools/jNut

https://www.networkupstools.org/docs/man/nutdrv_qx.html
https://www.networkupstools.org/docs/man/bestups.html
https://www.networkupstools.org/docs/man/apcsmart.html
https://www.networkupstools.org/docs/man/nutdrv_qx.html
https://www.networkupstools.org/docs/man/upsd.conf.html
https://www.networkupstools.org/docs/man/upsmon.conf.html
https://www.networkupstools.org/docs/man/upsrw.html
https://github.com/networkupstools/jNut

Network UPS Tools User Manual 110 / 155

I.9 Changes from 2.6.4 to 2.6.5

• users are encouraged to update to NUT 2.6.5, to fix a regression in upssched.

• mge-shut driver has been replaced by a new implementation (newmge-shut). In case of issue with this new version, users can
revert to oldmge-shut. UPDATE: oldmge-shut was dropped between 2.7.4 and 2.8.0 releases.

I.10 Changes from 2.6.3 to 2.6.4

• users are encouraged to update to NUT 2.6.4, to fix upsd vulnerability (CVE-2012-2944: upsd can be remotely crashed).

• users of the bestups driver are encouraged to switch to blazer_ser, since bestups will soon be deprecated.

I.11 Changes from 2.6.2 to 2.6.3

• nothing that affects upgraded systems.

I.12 Changes from 2.6.1 to 2.6.2

• apcsmart driver has been replaced by a new implementation. In case of issue with this new version, users can revert to
apcsmart-old.

I.13 Changes from 2.6.0 to 2.6.1

• nothing that affects upgraded systems.

I.14 Changes from 2.4.3 to 2.6.0

• users of the megatec and megatec_usb drivers must respectively switch to blazer_ser and blazer_usb.

• users of the liebertgxt2 driver are advised that the driver name has changed to liebert-esp2.

I.15 Changes from 2.4.2 to 2.4.3

• nothing that affects upgraded systems.

I.16 Changes from 2.4.1 to 2.4.2

• The default subdriver for the blazer_usb driver USB id 06da:0003 has changed. If you use such a device and it is no longer
working with this driver, override the subdriver default in ups.conf (see man 8 blazer).

• NUT ACL and the allowfrom mechanism has been replaced in 2.4.0 by the LISTEN directive and tcp-wrappers respectively.
This information was missing below, so a double note has been added.

I.17 Changes from 2.4.0 to 2.4.1

• nothing that affects upgraded systems.

Network UPS Tools User Manual 111 / 155

I.18 Changes from 2.2.2 to 2.4.0

• The nut.conf file has been introduced to standardize startup configuration across the various systems.

• The cpsups and nitram drivers have been replaced by the powerpanel driver, and removed from the tree. The cyberpower driver
may suffer the same in the future.

• The al175 and energizerups drivers have been removed from the tree, since these were tagged broken for a long time.

• Developers of external client application using libupsclient must rename their "UPSCONN" client structure to "UPSCONN_t".

• The upsd server will now disconnect clients that remain silent for more than 60 seconds.

• The files under scripts/python/client are distributed under GPL 3+, whereas the rest of the files are distributed under GPL 2+.
Refer to COPYING for more information.

• The generated udev rules file has been renamed with dash only, no underscore anymore (i.e. 52-nut-usbups.rules instead of
52_nut-usbups.rules)

I.19 Changes from 2.2.1 to 2.2.2

• The configure option "--with-lib" has been replaced by "--with-dev". This enable the additional build and distribution of the
static version of libupsclient, along with the pkg-config helper and manual pages. The default configure option is to distribute
only the shared version of libupsclient. This can be overridden by using the "--disable-shared" configure option (distribute
static only binaries).

• The UPS poweroff handling of the usbhid-ups driver has been reworked. Though regression is not expected, users of this driver
are encouraged to test this feature by calling "upsmon -c fsd" and report any issue on the NUT mailing lists.

I.20 Changes from 2.2.0 to 2.2.1

• nothing that affects upgraded systems. (The below message is repeated due to previous omission)

• Developers of external client application using libupsclient are encouraged to rename their "UPSCONN" client structure to
"UPSCONN_t" since the former will disappear by the release of NUT 2.4.

I.21 Changes from 2.0.5 to 2.2.0

• users of the newhidups driver are advised that the driver name has changed to usbhid-ups.

• users of the hidups driver must switch to usbhid-ups.

• users of the following drivers (powermust, blazer, fentonups, mustek, esupssmart, ippon, sms) must switch to megatec, which
replaces all these drivers. Please refer to doc/megatec.txt for details.

• users of the mge-shut driver are encouraged to test newmge-shut, which is an alternate driver scheduled to replace mge-shut,

• users of the cpsups driver are encouraged to switch to powerpanel which is scheduled to replace cpsups,

• packagers will have to rework the whole nut packaging due to the major changes in the build system (completely modified,
and now using automake). Refer to packaging/debian/ for an example of migration.

• specifying -a <id> is now mandatory when starting a driver manually, i.e. not using upsdrvctl.

• Developers of external client application using libupsclient are encouraged to rename the "UPSCONN" client structure to
"UPSCONN_t" since the former will disappear by the release of NUT 2.4.

Network UPS Tools User Manual 112 / 155

I.22 Changes from 2.0.4 to 2.0.5

• users of the newhidups driver: the driver is now more strict about refusing to connect to unknown devices. If your device was
previously supported, but fails to be recognized now, add productid=XXXX to ups.conf. Please report the device to the NUT
developer’s mailing list.

I.23 Changes from 2.0.3 to 2.0.4

• nothing that affects upgraded systems.

• users of the following drivers (powermust, blazer, fentonups, mustek, esupssmart, ippon, sms, masterguard) are encouraged to
switch to megatec, which should replace all these drivers by nut 2.2. For more information, please refer to doc/megatec.txt

I.24 Changes from 2.0.2 to 2.0.3

• nothing that affects upgraded systems.

• hidups users are encouraged to switch to newhidups, as hidups will be removed by nut 2.2.

I.25 Changes from 2.0.1 to 2.0.2

• The newhidups driver, which is the long run USB support approach, needs hotplug files installed to setup the right permissions
on device file to operate. Check newhidups manual page for more information.

I.26 Changes from 2.0.0 to 2.0.1

• The cyberpower1100 driver is now called cpsups since it supports more than just one model. If you use this driver, be sure to
remove the old binary and update your ups.conf driver= setting with the new name.

• The upsstats.html template page has been changed slightly to reflect better HTML compliance, so you may want to update
your installed copy accordingly. If you’ve customized your file, don’t just copy the new one over it, or your changes will be
lost!

I.27 Changes from 1.4.0 to 2.0.0

• The sample config files are no longer installed by default. If you want to install them, use make install-conf for the main
programs, and make install-cgi-conf for the CGI programs.

• ACCESS is no longer supported in upsd.conf. Use ACCEPT and REJECT.

– Old way:

ACCESS grant all adminbox
ACCESS grant all webserver
ACCESS deny all all

– New way:

ACCEPT adminbox
ACCEPT webserver
REJECT all

– Note that ACCEPT and REJECT can take multiple arguments, so this will also work:

ACCEPT adminbox webserver
REJECT all

Network UPS Tools User Manual 113 / 155

• The drivers no longer support sddelay in ups.conf or -d on the command line. If you need a delay after calling upsdrvctl
shutdown, add a call to sleep in your shutdown script.

• The templates used by upsstats have changed considerably to reflect the new variable names. If you use upsstats, you will need
to install new copies or edit your existing files to use the new names.

• Nobody needed UDP mode, so it has been removed. The only users seemed to be a few people like me with ancient asapm-ups
binaries. If you really want to run asapm-ups again, bug me for the new patch which makes it work with upsclient.

• make install-misc is now make install-lib. The misc directory has been gone for a long time, and the target was ambiguous.

• The newapc driver has been renamed to apcsmart. If you previously used newapc, make sure you delete the old binary and fix
your ups.conf. Otherwise, you may run the old driver from 1.4.

I.28 File trimmed here on changes from 1.2.2 to 1.4.0

For information before this point, start with version 2.4.1 and work back.

J Project history

This page is an attempt to document how everything came together.

The Network UPS Tools team would like to warmly thank Russell Kroll.

Russell initially started this project, maintaining and improving it for over 8 years (1996 — mid 2005).

J.1 Prototypes and experiments

J.1.1 May 1996: early status hacks

APC’s Powerchute was running on kadets.d20.co.edu (a BSD/OS box) with SCO binary emulation. Early test versions ran in
cron, pulled status from the log files and wrote them to a .plan file. You could see the results by fingering pwrchute@kadets.d20.co.edu
while it lasted:

Last login Sat May 11 21:33 (MDT) on ttyp0 from intrepid.rmi.net
Plan:
Welcome to the UPS monitor service at kadets.d20.co.edu.
The Smart-UPS attached to kadets generated a report at 14:24:01 on 05/17/96.
During the measured period, the following data points were taken:
Voltage ranged from 115.0 VAC to 116.3 VAC.
The UPS generated 116.3 VAC at 60.00 Hz.
The battery level was at 27.60 volts.
The load placed on the UPS was 024.9 percent.
UPS temperature was measured at 045.0 degrees Celsius.
Measurements are taken every 10 minutes by the upsd daemon.
This report is generated by a script written by Russell Kroll<rkroll@kadets>.
Modified for compatibility with the BSD/OS cron daemon by Neil Schroeder

This same status data could also be seen with a web browser, since we had rigged up a CGI wrapper script which called finger.

J.1.2 January 1997: initial protocol tests

Initial tests with a freestanding non-daemon program provided a few basic status registers from the UPS. The 940-0024C cable
was not yet understood, so this happened over the [attachment:apcevilhack.jpg evil two-wire serial hack].

Communicating with SMART-UPS 700 S/N WS9643050926 [10/17/96]
Input voltage range: 117.6 VAC - 118.9 VAC
Load is 010.9% of capacity, battery is charged to 100.0% of capacity

Note that today’s apcsmart driver still displays the serial number when it starts, since it is derived from this original code.

Network UPS Tools User Manual 114 / 155

J.1.3 September 1997: first client/server code

The first split daemon/client code was written. upsd spoke directly to the UPS (APC Smart models only) and communicated with
upsc by sending binary structures in UDP datagrams.

The first CGI interface existed, but it was all implemented with shell scripts. The main script would call upsc to retrieve status
values. Then it would cat a template file through sed to plug them into the page.

upsstats actually has since returned to using templates, despite having a period in the middle when it used hardcoded HTML.

The images were also created with shell scripts. Each script would call upsc to get the right value (utility, upsload, battcap).
It then took the value, plugged it into a command file with sed, and passed that into fly, a program which used an interpreted
language to create images. fly actually uses gd, just like upsimage does today.

This code later evolved into Smart UPS Tools 0.10.

J.2 Smart UPS Tools

J.2.1 March 1998: first public release

Version 0.10 was released on March 10, 1998. It used the same design as the pre-release prototype. This made expansion difficult
as the binary structure used for network communications would break any time a new variable was added. Due to byte-ordering
and struct alignment issues, the code usually couldn’t talk over the network to a system with a different architecture. It was also
hopelessly bound to one type of UPS hardware.

Five more releases followed with this design followed. The last was 0.34, released October 27, 1998.

J.2.2 June 1999: Redesigned, rewritten

Following a long period of inactivity and two months of prerelease testing versions, 0.40.0 was released on June 5, 1999.
It featured a complete redesign and rewrite of all of the code. The layering was now in three pieces, with the single driver
(smartups) separate from the server (upsd).

Network UPS Tools User Manual 115 / 155

Clients remained separate as before and still used UDP to talk to the server, but they now used a text-based protocol instead of
the brittle binary structs. A typical request like "REQ UTILITY" would be answered with "ANS UTILITY 120.0".

The ups-trust425-625 driver appeared shortly after the release of 0.40.0, marking the first expansion beyond APC hardware.

Over the months that followed, the backupspro driver would be forked from the smartups driver to handle the APC Back-UPS
Pro line. Then the backups driver was written to handle the APC Back-UPS contact-closure models. These drivers would later
be renamed and recombined, with smartups and backupspro becoming apcsmart, and backups became genericups.

The drivers stored status data in an array. At first, they passed this data to upsd by saving it to a file. upsd would reread this file
every few seconds to keep a copy for itself. This was later expanded to allow shared memory mode, where only a stub would
remain on the disk. The drivers and server then passed data through the shared memory space.

upsd picked up the ability to monitor multiple drivers on the system, and the "upsname@hostname" scheme was born. Access
controls were added, and then the network code was expanded to allow TCP communications, which at this point were on port
3305.

J.3 Network UPS Tools

J.3.1 September 1999: new name, new URL

Several visitors to the web page and subscribers to the mailing lists provided suggestions to rename the project. The old name
no longer accurately described it, and it was perilously close to APC’s "Smart-UPS" trademark. Rather than risk problems in the
future, the name was changed. Kern Sibbald provided the winner: Network UPS Tools, which captures the essence of the project
and makes for great short tarball filenames: nut-x.y.z.tar.gz.

The new name was first applied to 0.42.0, released October 31, 1999. This is also when the web pages moved from the old
http://www.exploits.org/~rkroll/smartupstools/URL to the replacement at http://www.exploits.org/nut/
to coincide with the name change.

More drivers were written and the hardware support continued to grow. upsmon picked up the concepts of what is now known as
"primary" and "secondary", and could now handle environments where multiple systems get power from a single UPS.

Manager mode was added to allow changing the value of read/write variables in certain UPS models.

J.3.2 June 2001: common driver core

Up to this point, all of the drivers compiled into freestanding programs, each providing their own implementation of main(). This
meant they all had to check the incoming arguments and act uniformly. Unfortunately, not all of the programs behaved the same
way, and it was hard to document and use consistently. It also meant that startup scripts had to be edited depending on what kind
of hardware was attached.

Starting in 0.45.0, released June 11, 2001, there was a new common core for all drivers called main.c. It provided the main
function and called back to the upsdrv_* functions provided by the hardware-specific part of the drivers. This allowed driver
authors to focus on the UPS hardware without worrying about the housekeeping stuff that needs to happen.

This new design provided an obvious way to configure drivers from one file, and so ups.conf was born. This eventually
spawned upsdrvctl, and now all drivers based on this common core could be started or stopped with one command. Startup
scripts now could contain "upsdrvctl start", and it didn’t matter what kind of hardware or how many UPSes you had on one
system.

Interestingly, at the end of this month, Arnaud Quette entered the UPS world, as a subcontractor of the now defunct MGE UPS
SYSTEMS. This marked the start of a future successful collaboration.

J.3.3 May 2002: casting off old drivers, IANA port, towards 1.0

During the 0.45.x series, both the old standalone drivers and the ones which had been converted to the common core were
released together. Before the release of 0.50.0 on May 24, 2002, all of the old drivers were removed. While this shrank the list
of supported hardware, it set the precedent for removing code which isn’t receiving regular maintenance. The assumption is that
the code will be brought back up to date by someone if they actually need it. Otherwise, it’s just dead weight in the tree.

Network UPS Tools User Manual 116 / 155

This change meant that all remaining drivers could be controlled with the upsdrvctl and ups.conf, allowing the documen-
tation to be greatly simplified. There was no longer any reason to say "do this, unless you have this driver, then do this".

IANA granted an official port number to the project, and the network code switched to port 3493. It had previously been on 3305
which is assigned to odette-ftp. 3305 was probably picked in 1997 because it was the fifth project to spawn from some
common UDP server code.

After 0.50.1, the 0.99 tree was created to provide a tree which would receive nothing but bug fixes in preparation for the release
of 1.0. As it turned out, very few things required fixing, and there were only three releases in this tree.

J.4 Leaving 0.x territory

J.4.1 August 2002: first stable tree: NUT 1.0.0

After nearly 5 years of having a 0.x version number, 1.0.0 was released on August 19, 2002. This milestone meant that all of
the base features that you would expect to find were intact: good hardware support, a network server with security controls, and
system shutdowns that worked.

The design was showing signs of wear from the rapid expansion, but this was intentionally ignored for the moment. The focus
was on getting a good version out that would provide a reasonable base while the design issues could be addressed in the future,
and I’m confident that we succeeded.

J.4.2 November 2002: second stable tree: NUT 1.2.0

One day after the release of 1.0.0, 1.1.0 started the new development tree. During that development cycle, the CGI programs
were rewritten to use template files instead of hard-coded HTML, thus bringing back the flexibility of the original unreleased
prototype from 5 years before. The multimon was removed from the tree, as the new upsstats could do both jobs by loading
different templates.

A new client library called upsclient was created, and it replaced upsfetch. This new library only supported TCP connections,
and used an opaque context struct to keep state for each connection. As a result, client programs could now do things that used
multiple connections without any conflicts. This was done primarily to allow OpenSSL support, but there were other benefits
from the redesign.

upsd and the clients could now use OpenSSL for basic authentication and encryption, but this was not included by default. This
was provided as a bonus feature for those users who cared to read about it and enable the option, as the initial setup was complex.

After the 1.1 tree was frozen and deemed complete, it became the second stable tree with the release of 1.2.0 on November 5,
2002.

J.4.3 April 2003: new naming scheme, better driver glue, and an overhauled protocol

Following an extended period with no development tree, 1.3.0 got things moving again on April 13, 2003. The focus of this tree
was to rewrite the driver-server communication layer and replace the static naming scheme for variables and commands.

Up to this point, all variables had names like STATUS, UTILITY, and OUTVOLT. They had been created as drivers were added
to the tree, and there was little consistency. For example, it probably should have been INVOLT and OUTVOLT, but there was
no OUTVOLT originally, so UTILITY was all we had. This same pattern repeated with ACFREQ — is it incoming or outgoing?
— and many more.

To solve this problem, all variables and commands were renamed to a hierarchical scheme that had obvious grouping. STATUS
became ups.status. UTILITY turned into input.voltage, and OUTVOLT is output.voltage. ACFREQ is input.frequency, and the
new output.frequency is also now supported. Every other variable or command was renamed in this fashion.

These variables had been shared between the drivers and upsd as values. That is, for each name like STATUS, there was a #define
somewhere in the tree with an INFO_ prefix that gave it a number. INFO_STATUS was 0x0006, INFO_UTILITY was 0x0004,
and so on, with each name having a matching number. This number was stored in an int within a structure which was part of the
array that was either written to disk or shared memory.

Network UPS Tools User Manual 117 / 155

That structure had several restrictions on expansion and was dropped as the data sharing method between the drivers and the
server. It was replaced by a new system of text-based messages over Unix domain sockets. Drivers now accepted a short list of
commands from upsd, and would push out updates asynchronously. upsd no longer had to poll the state files or shared memory.
It could just select all of the driver and client fds and act on events.

At the same time, the network protocol on port 3493 was overhauled to take advantage of the new naming scheme. The existing
"REQ STATUS@su700", "ANS STATUS@su700 OL" scheme was showing signs of age, and it really only supported the UPS
name (@su700) as an afterthought. The new protocol would now use commands like GET and LIST, leading to exchanges like
"GET VAR su700 ups.status" and "VAR su700 ups.status OL". These responses contain enough data to stand alone, so clients
can now handle them asynchronously.

J.4.4 July 2003: third stable tree: NUT 1.4.0

On July 25, 2003, 1.4.0 was released. It contained support for both the old "REQ" style protocol (with names like STATUS), and
the new "GET" style protocol (with names like ups.status). This tree is provided to bridge the gap between all of the old releases
and the upcoming 2.0.

2.0 will be released without support for the old REQ/STATUS protocol. The hope is that client authors and those who have
implemented their own monitoring software will use the 1.4 cycle to change to the new protocol. The 1.4 releases contain a lot
of compatibility code to make sure both work at the same time.

J.4.5 July 2003: pushing towards 2.0

1.5.0 forked from 1.4.0 and was released on July 29, 2003. The first changes were to throw out anything which was providing
compatibility with the older versions of the software. This means that 1.5 and the eventual 2.0 will not talk to anything older than
1.4.

This tree continues to evolve with new serial routines for the drivers which are intended to replace the aging upscommon code
which dates back to the early 0.x releases. The original routines would call alarm and read in a tight loop while fetching
characters. The new functions are much cleaner, and wait for data with select. This makes for much cleaner code and easier
strace/ktrace logs, since the number of syscalls has been greatly reduced.

There has also been a push to make sure the data from the UPS is well-formed and is actually usable before sending updates out
to upsd. This started during 1.3 as drivers were adapted to use the dstate functions and the new variable/command names. Some
drivers which were not converted to the new naming scheme or didn’t do sanity checks on the incoming UPS data from the serial
port were dropped from the tree.

This tree was released as 2.0.0.

J.5 Backwards and Forwards Compatibility (NUT v1.x vs. v2.x)

The old network code spans a range from about 0.41.1 when TCP support was introduced up to the recent 1.4 series. It used
variable names like STATUS, UTILITY, and LOADPCT. Many of these names go back to the earliest prototypes of this software
from 1997. At that point there was no way to know that so many drivers would come along and introduce so many new variables
and commands. The resulting mess grew out of control over the years.

During the 1.3 development cycle, all variables and instant commands were renamed to fit into a tree-like structure. There are
major groups, like input, output and battery. Members of those groups have been arranged to make sense - input.voltage and
output.voltage compliment each other. The old names were UTILITY and OUTVOLT. The benefits in this change are obvious.

The 1.4 clients can talk to either type of server, and can handle either naming scheme. 1.4 servers have a compatibility mode
where they can answer queries for both names, even though the drivers are internally using the new format.

When 1.4 clients talk to 1.4 or 2.0 (or more recent) servers, they will use the new names.

Here’s a table to make it easier to visualize:

Server version
Client version 1.0 1.2 1.4 2.0+

mailto:STATUS@su700

Network UPS Tools User Manual 118 / 155

Server version
1.0 yes yes yes no
1.2 yes yes yes no
1.4 yes yes yes yes
2.0+ no no yes yes

Version 2.0, and more recent, do not contain backwards compatibility for the old protocol and variable/command names. As a
result, 2.0 clients can’t talk to anything older than a 1.4 server. If you ask a 2.0 client to fetch "STATUS", it will fail. You’ll have
to ask for "ups.status" instead.

Authors of separate monitoring programs should have used the 1.4 series to write support for the new variables and command
names. Client software can easily support both versions as long as they like. If upsd returns ERR UNKNOWN-COMMAND to a
GET request, you need to use REQ.

J.6 networkupstools.org

J.6.1 November 2003: a new URL

The bandwidth demands of a project like this have slowly been forcing me to offload certain parts to other servers. The download
links have pointed offsite for many months, and other large things like certain UPS protocols have followed. As the traffic grows,
it’s clear that having the project attached to exploits.org is not going to work.

The solution was to register a new domain and set up mirrors. There are two initial web servers, with more on the way. The
main project URL has changed from http://www.exploits.org/nut/ to https://www.networkupstools.org. The actual
content is hosted on various mirrors which are updated regularly with rsync, so the days of dribbling bits through my DSL should
be over.

This is also when all of the web pages were redesigned to have a simpler look with fewer links on the left side. The old web
pages used to have 30 or more links on the top page, and most of them vanished when you dropped down one level. The links
are now constant on the entire site, and the old links now live in their own groups in separate directories.

J.7 Second major version

J.7.1 March 2004: NUT 2.0.0

NUT 2.0.0 arrived on March 23, 2004. The jump to version 2 shows the difference in the protocols and naming that happened
during the 1.3 and 1.5 development series. 2.0 no longer ships with backwards compatibility code, so it’s smaller and cleaner
than 1.4.

J.8 The change of leadership

J.8.1 February 2005: NUT 2.0.1

The year 2004 was marked by a release slowdown, since Russell was busy with personal subjects. But the patches queue was
still growing quickly.

At that time, the development process was still centralized. There was no revision control system (like the current Subversion
repository), nor trackers to interact with NUT development. Russell was receiving all the patches and requests, and doing all the
work on his own, including releases.

Russell was more and more thinking about giving the project leadership to Arnaud Quette, which finally happened with the 2.0.1
release in February 2005.

This marked a new era for NUT. . .

First, Arnaud aimed at opening up the development by creating a project on the Debian Alioth Forge. This allowed to build the
team of hackers that Russell dreamed about. It also allows to ensure NUT’s continuation, whatever happens to the leader. And
that would most of all boost the projects contributions.

https://www.networkupstools.org
http://www.debian.org/
http://alioth.debian.org/projects/nut/

Network UPS Tools User Manual 119 / 155

K Prerequisites for building NUT on different OSes

This chapter aims to list packages with the tools needed on a freshly minimally deployed worker to build as many targets of NUT
recipes as possible, mainly the diverse driver and documentation types.

NUT codebase generally should not depend on particular operating system or kernel technology and version, and with the
operating systems listed below one can benefit from use of containers (jails, zones) to build and test against numerous OS
distributions on one physical or virtual machine, e.g. to cover non-regression with older tool kits while taking advantage of new
releases.

• For Linux systems, we have notes on Setting up the multi-arch Linux LXC container farm for NUT CI

Some of the below are alternatives, e.g. compiler toolkits (gcc vs. clang) or SSL implementations (OpenSSL vs Mozilla NSS)
— no problem installing both, at a disk space cost.

Note
Some NUT branches may need additional or different software versions that are not yet included into master branch depen-
dencies, e.g. the DMF (Dynamic Mapping Files) sub-project needs LUA 5.1 for build and run-time, and some Python modules
for build, e.g. using OS packaging or custom call to pip install pycparser.
In case your system still provides a Python 2.x environment (and for some reason you want to use it instead of Python 3.x), but
does not anymore provide a pip nor pycparser packages for it, you may need to use an external bootstrap first, e.g.:

Fetch get-pip.py for python 2.7
:; curl https://bootstrap.pypa.io/pip/2.7/get-pip.py --output get-pip.py
:; python2 get-pip.py
:; python2 -m pip --version
:; python2 -m pip install pycparser

More packages and/or system setup may be needed to actually run NUT with all features enabled; chapters below concern just
with building it.

K.1 General call to Test the ability to configure and build

Check out from git, generate files and configure to tailor to your build environment, and build some tests:

:; mkdir -p nut && cd nut && \
git clone https://github.com/networkupstools/nut/ -b master .

:; ./autogen.sh && \
./configure --with-doc=all --with-all --with-cgi && \
make all && make check && make spellcheck

You can toggle some configure options to check different dependency variants, e.g. --with-ssl=nss vs. --with-ssl=openssl

For reproducible runs of various pre-sets of configuration during development, take a look at ci_build.sh script and different
BUILD_TYPE (and other) environment variable settings that it supports. A minimal run with it is just to call the script, e.g.:

:; mkdir -p nut && cd nut && \
git clone https://github.com/networkupstools/nut/ -b fightwarn .

:; ./ci_build.sh

ci-farm-lxc-setup.txt

Network UPS Tools User Manual 120 / 155

Note
To build older releases, such as "vanilla" NUT 2.7.4 and older, you may need to address some nuances:

• Ensure that python in PATH points to a python-2.x implementation (master branch is fixed to work with python 2 and 3)

• Ensure that bash is your user and maybe system shell (or ensure the generated configure script gets interpreted by it)

• Generally you may have better results with GNU Make newer than 3.81 than with other make implementations; however,
builds are regularly tested by CI with Sun dmake and BSD make as well, so recipes should not expect GNU-only syntax and
constructs to work

• Parallel builds should be okay in current development version and since NUT 2.8.0 (is a bug to log and fix, if not), but they
may be failure-prone in 2.7.4 and earlier releases

For intensive rebuilds, ccache is recommended. Note that instructions below detail how to provide its directory with symlinks
as /usr/lib/ccache which is not the default case in all OS distributions. Recent versions of the NUT ci_build.sh script
allow to override the location by using the CI_CCACHE_SYMLINKDIR environment variable, which is cumbersome and only
recommended for build agents with immutable system areas, etc.

K.2 Build prerequisites to make NUT from scratch on various Operating Systems

K.2.1 Debian 10/11/12

Being a popular baseline among Linux distributions, Debian is an important build target. Related common operating systems
include Ubuntu and customized distros for Raspberry Pi, Proxmox, as well as many others.

The package list below should largely apply to those as well, however note that some well-known package names tend to differ.
A few of those are noted below.

Note
While Debian distros I’ve seen (8 to 11) provide a "libusb-dev" for libusb-0.1 headers, the binary library package name is
specifically versioned package by default of the current release (e.g. "libusb-0.1-4"), while names of both the library and
development packages for libusb-1.0 must be determined with:

:; apt-cache search 'libusb.*1\.0.*'

yielding e.g. "libusb-1.0-0-dev" (string name was seen with different actual package source versions on both Debian 8 "Jessie"
and Debian 11 "Buster").

FUN NOTE
For development on the road (or a native ARM build) you can use the Termux project on Android. It provides a sufficiently
Debian-like operating environment for all intents and purposes, but you may have to use their pkg wrapper instead of apt
tooling directly.
You would need at least a couple of gigabytes available on the internal phone storage though, especially if using ccache or
setting up cross builds.

Debian-like package installations commonly start with an update of metadata about recently published package revisions:

:; apt-get update

:; apt-get install \
ccache time \
git perl curl \
make autoconf automake libltdl-dev libtool \

https://termux.dev/en/

Network UPS Tools User Manual 121 / 155

valgrind \
cppcheck \
pkg-config \
gcc g++ clang

NOTE: Older Debian-like distributions may lack a "libtool-bin"
:; apt-get install \

libtool-bin

See comments below, python version and package naming depends on distro
:; apt-get install \

python

NOTE: For python, you may eventually have to specify a variant like this
(numbers depending on default or additional packages of your distro):
:; apt-get install python2 python2.7 python-is-python2
and/or:
:; apt-get install python3 python3.9
You can find a list of what is (pre-)installed with:
:; dpkg -l | grep -Ei 'perl|python'
#
For localization maintenance (currently in Python NUT-Monitor app),
provide an `msgfmt` implementation, e.g.:
:; apt-get install gettext
#
To install the Python NUT-Monitor app, you may need some modules:
:; apt-get install pip
For Python3:
:; python3 -m pip install PyQt5 configparser

For spell-checking, highly recommended if you would propose pull requests:
:; apt-get install \

aspell aspell-en

For other doc types (man-page, PDF, HTML) generation - massive packages (TEX, X11):
:; apt-get install \

asciidoc source-highlight python3-pygments dblatex

For CGI graph generation - massive packages (X11):
:; apt-get install \

libgd-dev

Optionally for sd_notify integration:
:; apt-get install \

libsystemd-dev

NOTE: Some older Debian-like distributions, could ship "libcrypto-dev"
and/or "openssl-dev" instead of "libssl-dev" by its modern name
and may lack a libgpiod2 + libgpiod-dev altogether
:; apt-get install \

libcppunit-dev \
libssl-dev libnss3-dev \
augeas-tools libaugeas-dev augeas-lenses \
libusb-dev libusb-1.0-0-dev \
libi2c-dev \
libmodbus-dev \
libsnmp-dev \
libpowerman0-dev \
libfreeipmi-dev libipmimonitoring-dev \
libavahi-common-dev libavahi-core-dev libavahi-client-dev

For libneon, see below

Network UPS Tools User Manual 122 / 155

NOTE: Older Debian-like distributions may lack a "libgpiod-dev"
Others above are present as far back as Debian 7 at least
:; apt-get install \

libgpiod-dev

NOTE: Some distributions lack a lua*-dev and only offer the base package
:; apt-get install lua5.1
:; apt-get install lua5.1-dev || true

:; apt-get install \
bash dash ksh busybox

Alternatives that can depend on your system’s other packaging choices:

:; apt-get install libneon27-dev
... or
:; apt-get install libneon27-gnutls-dev

Over time, Debian and Ubuntu had different packages and libraries providing the actual methods for I2C; if your system lacks
the libi2c (and so fails to ./configure --with-all), try adding the following packages:

:; apt-get install build-essential git-core libi2c-dev i2c-tools lm-sensors

For cross-builds (note that not everything supports multilib approach, limiting standard package installations to one or another
implementation; in that case local containers each with one ARCH may be a better choice, with qemu-user-static playing
a role to "natively" run the other-ARCH complete environments):

:; apt-get install \
gcc-multilib g++-multilib \
crossbuild-essential \
gcc-10:armhf gcc-10-base:armhf \
qemu-user-static

Note
For Jenkins agents, also need to apt-get install openjdk-11-jdk-headless. You may have to ensure that
/proc is mounted in the target chroot (or do this from the running container).

K.2.2 CentOS 6 and 7

CentOS is another popular baseline among Linux distributions, being a free derivative of the RedHat Linux, upon which many
other distros are based as well. These systems typically use the RPM package manager, using directly rpm command, or yum or
dnf front-ends depending on their generation.

For CI farm container setup, prepared root filesystem archives from http://download.proxmox.com/images/system/ worked suffi-
ciently well.

Prepare CentOS repository mirrors

For CentOS 7 it seems that not all repositories are equally good; some of the software below is only served by EPEL (Extra
Packages for Enterprise Linux), as detailed at:

• https://docs.fedoraproject.org/en-US/epel/

• https://www.redhat.com/en/blog/whats-epel-and-how-do-i-use-it

• https://pkgs.org/download/epel-release

http://download.proxmox.com/images/system/
https://docs.fedoraproject.org/en-US/epel/
https://www.redhat.com/en/blog/whats-epel-and-how-do-i-use-it
https://pkgs.org/download/epel-release

Network UPS Tools User Manual 123 / 155

You may have to specify a mirror as the baseurl in a /etc/yum.repos.d/... file (as the aged distributions become less
served by mirrors), such as:

• https://www.mirrorservice.org/sites/dl.fedoraproject.org/pub/epel/7/x86_64/

e.g. for CentOS7 currently:
:; yum install https://download-ib01.fedoraproject.org/pub/epel/7/x86_64/Packages/e/epel- ←↩

release-7-14.noarch.rpm

And edit /etc/yum.repos.d/epel.repo to uncomment and set the baseurl=...
lines, and comment away the mirrorlist= lines (if yum hiccups otherwise)

For systemd support on CentOS 7 (no equivalent found for CentOS 6), you can use backports repository below:

:; curl https://copr.fedorainfracloud.org/coprs/jsynacek/systemd-backports-for-centos-7
> /etc/yum.repos.d/systemd-backports-for-centos-7.repo

For CentOS 6 (the oldest I could try) the situation is similar, with sites like https://www.getpagespeed.com/server-setup/how-
to-fix-yum-after-centos-6-went-eol detailing how to replace /etc/yum.repos.d/ contents (you can wholesale rename the
existing directory and populate a new one with curl downloads from the article), and additional key trust for EPEL packages:

:; yum install https://dl.fedoraproject.org/pub/archive/epel/6/x86_64/epel-release-6-8. ←↩
noarch.rpm

Set up CentOS packages for NUT

Instructions below apply to both CentOS 6 and 7 (a few nuances for 6 commented).

General developer system helpers mentioned in ci-farm-lxc-setup.txt:

:; yum update

:; yum install \
sudo vim mc p7zip pigz pbzip2 tar

To have SSH access to the build VM/Container, you may have to install and enable it:

:; yum install \
openssh-server openssh-clients

:; chkconfig sshd on
:; service sshd start

If there are errors loading generated host keys, remove mentioned files
including the one with .pub extension and retry with:
#:; service sshd restart

Note
Below we request to install generic python per system defaults. You may request specifically python2 or python3 (or
both): current NUT should be compatible with both (2.7+ at least).

Note
On CentOS, libusb means 0.1.x and libusbx means 1.x.x API version (latter is not available for CentOS 6).

https://www.mirrorservice.org/sites/dl.fedoraproject.org/pub/epel/7/x86_64/
https://www.getpagespeed.com/server-setup/how-to-fix-yum-after-centos-6-went-eol
https://www.getpagespeed.com/server-setup/how-to-fix-yum-after-centos-6-went-eol
ci-farm-lxc-setup.txt

Network UPS Tools User Manual 124 / 155

Note
On CentOS, it seems that development against libi2c/smbus is not supported. Neither the suitable devel packages were found,
nor i2c-based drivers in distro packaging of NUT. Resolution and doc PRs are welcome.

:; yum install \
ccache time \
file \
git perl curl \
make autoconf automake libtool-ltdl-devel libtool \
valgrind \
cppcheck \
pkgconfig \
gcc gcc-c++ clang

See comments below, python version and package naming depends on distro
:; yum install \

python

NOTE: For python, you may eventually have to specify a variant like this
(numbers depending on default or additional packages of your distro):
:; yum install python-2.7.5
and/or:
:; yum install python3 python3-3.6.8
You can find a list of what is (pre-)installed with:
:; rpm -qa | grep -Ei 'perl|python'
Note that CentOS 6 includes python-2.6.x and does not serve newer versions

For spell-checking, highly recommended if you would propose pull requests:
:; yum install \

aspell aspell-en

For other doc types (man-page, PDF, HTML) generation - massive packages (TEX, X11):
:; yum install \

asciidoc source-highlight python-pygments dblatex

For CGI graph generation - massive packages (X11):
:; yum install \

gd-devel

Optionally for sd_notify integration (on CentOS 7+, not on 6):
:; yum install \

systemd-devel

NOTE: "libusbx" is the CentOS way of naming "libusb-1.0" (not in CentOS 6)
vs. the older "libusb" as the package with "libusb-0.1"
:; yum install \

cppunit-devel \
openssl-devel nss-devel \
augeas augeas-devel \
libusb-devel libusbx-devel \
i2c-tools \
libmodbus-devel \
net-snmp-devel \
powerman-devel \
freeipmi-devel \
avahi-devel \
neon-devel

#?# is python-augeas needed? exists at least...
#?# no (lib)i2c-devel ...
#?# no (lib)ipmimonitoring-devel ... would "freeipmi-ipmidetectd" cut it at least for run- ←↩

Network UPS Tools User Manual 125 / 155

time?
#?# no (lib)gpio(d)-devel - starts with CentOS 8 (or extra repositories for later minor ←↩

releases of CentOS 7)

Some NUT code related to lua may be currently limited to lua-5.1
or possibly 5.2; the former is default in CentOS 7 releases...
:; yum install \

lua-devel

:; yum install \
bash dash ksh

Note
busybox is not packaged for CentOS 7 release; a static binary can be downloaded if needed. For more details, see
https://unix.stackexchange.com/questions/475584/cannot-install-busybox-on-centos

CentOS packaging for 64-bit systems delivers the directory for dispatching compiler symlinks as /usr/lib64/ccache. You
can set it up same way as for other described environments by adding a symlink /usr/lib/ccache:

:; ln -s ../lib64/ccache/ "$ALTROOT"/usr/lib/

Note
For Jenkins agents, also need to yum install java-11-openjdk-headless (not available for CentOS 6).

K.2.3 Arch Linux

Update the lower-level OS and package databases:

:; pacman -Syu

Install tools and prerequisites for NUT:

:; pacman -S --needed \
base-devel \
autoconf automake libtool libltdl \
clang gcc \
ccache \
git \
vim python perl \
pkgconf \
cppcheck valgrind

For spell-checking, highly recommended if you would propose pull requests:
:; pacman -S --needed \

aspell en-aspell

For man-page doc types generation:
:; pacman -S --needed \

asciidoc

For other doc types (PDF, HTML) generation - massive packages (TEX, X11):
:; pacman -S --needed \

source-highlight dblatex

For CGI graph generation - massive packages (X11):

https://unix.stackexchange.com/questions/475584/cannot-install-busybox-on-centos

Network UPS Tools User Manual 126 / 155

:; pacman -S --needed \
gd

Optionally for sd_notify integration:
:; pacman -S --needed \

systemd

:; pacman -S --needed \
cppunit \
openssl nss \
augeas \
libusb \
neon \
net-snmp \
freeipmi \
avahi

#?# no (lib)gpio(d)

:; pacman -S --needed \
lua51

:; pacman -S --needed \
bash dash busybox ksh93

Recommended for NUT CI farm integration (matching specific toolkit versions in a build matrix), and note the unusual location
of /usr/lib/ccache/bin/ for symlinks:

:; gcc --version
gcc (GCC) 12.2.0
...

Note: this distro delivers "gcc" et al as file names
so symlinks like this may erode after upgrades.
TODO: Rename and then link?..
:; (cd /usr/bin \

&& for V in 12 12.2.0 ; do for T in gcc g++ cpp ; do \
ln -fsr $T $T-$V ; \

done; done)
:; (cd /usr/lib/ccache/bin/ \

&& for V in 12 12.2.0 ; do for T in gcc g++ ; do \
ln -fsr /usr/bin/ccache $T-$V ; \

done; done)

:; clang --version
clang version 14.0.6
...

:; (cd /usr/bin && ln -fs clang-14 clang++-14 && ln -fs clang-14 clang-cpp-14)
:; (cd /usr/lib/ccache/bin/ \

&& for V in 14 ; do for T in clang clang++ ; do \
ln -fsr /usr/bin/ccache $T-$V ; \

done; done)

Also for CI build agents, a Java environment (JDK11+ since summer 2022) is required:

Search for available Java versions:
:; pacman -Ss | egrep 'jre|jdk'

Pick one:
:; pacman -S --needed \

Network UPS Tools User Manual 127 / 155

jre11-openjdk-headless

K.2.4 Slackware Linux 15

Another long-term presence in the Linux landscape, and sometimes the baseline for appliances, the Slackware project recently
hit release 15 in 2022, averaging two years per major release.

It can be installed e.g. in a VM, using ISO images from the project site; see:

• http://www.slackware.com/⇒ http://www.slackware.com/getslack/⇒ https://mirrors.slackware.com/slackware/slackware-iso/-
slackware64-15.0-iso/

• https://slackware.nl/slackware/slackware64-current-iso/

You would have to first log in as root and run cgdisk to define partitioning for your virtual HDD, such as the common
/boot, swap and / Linux layout, and run setup to install "everything".

Note that "out of the box" Slackware does not currently on networked package repositories and calculated dependency trees, so
one has to know exactly what they want installed.

Third-party projects for package managers are also available, e.g. slackpkg⇒ see also https://docs.slackware.com/slackware:slackpkg
and https://slackpkg.org/stable/ :

:; wget https://slackpkg.org/stable/slackpkg-15.0.10-noarch-1.txz && \
installpkg slackpkg-15.0.10-noarch-1.txz

Uncomment a mirror from /etc/slackpkg/mirrors according to your location and other preferences (or use the top-listed
default), and begin with:

:; slackpkg update

Note that packages may be only installed or re-installed/upgraded as separate explicit operations, so the procedure to bring your
system into needed shape is a bit cumbersome (and each command may by default be interactive with a choice menu), e.g.:

:; for P in \
bash mc vim sudo \
; do slackpkg info "$P" || slackpkg install $P || break ; done

For procedures below, this is automated via root profile to become a slackpkg-install command:

:; grep "slackpkg-install" ~/.profile || {
echo 'slackpkg-install() { for P in "$@" ; do echo "=== $P:"; slackpkg info "$P" || ←↩

slackpkg install "$P" || break ; done; }' >> ~/.profile
}

:; . ~/.profile

If something has a hiccup, it suggests to look for the right name, e.g.:

:; slackpkg search python

For NUT dependencies and build tools:

:; slackpkg update

Baseline toolkits:
Note there is no cppcheck, cppunit, valgrind...
Note clang compiler tools are part of llvm package
:; slackpkg-install \

ccache time \
coreutils diffutils \

http://www.slackware.com/
http://www.slackware.com/getslack/
https://mirrors.slackware.com/slackware/slackware-iso/slackware64-15.0-iso/
https://mirrors.slackware.com/slackware/slackware-iso/slackware64-15.0-iso/
https://slackware.nl/slackware/slackware64-current-iso/
https://slackpkg.org/documentation.html
https://docs.slackware.com/slackware:slackpkg
https://slackpkg.org/stable/

Network UPS Tools User Manual 128 / 155

git python3 perl curl \
make autoconf automake libtool binutils \
pkg-config \
gcc llvm

For spell-checking, highly recommended if you would propose pull requests:
:; slackpkg-install aspell{,-en}

Note there is no direct "asciidoc" nor "a2x", just the competing project
"rubygem-asciidoctor" that NUT currently has no recipes for, so you can
not compile man/html/pdf docs here, per the default repository. See below
for tools from alternative repositories, which seem to work well. Manpage
compilation would require docbook-xml resources; older versions are in
this package https://slackbuilds.org/repository/15.0/system/docbook-xml/
and recent ones are in not-installed part of main repository:
:; slackpkg-install linuxdoc-tools

More on Python (for NUT-Monitor UI):
:; slackpkg-install \

python-pip qt5 gettext-tools gettext

For CGI graph generation - massive packages (X11):
:; slackpkg-install \

gd

General dependencies:
:; slackpkg-install \

openssl openssl-solibs mozilla-nss \
libusb \
net-snmp \
neon

Shells:
:; slackpkg-install \

bash dash ksh93

Some more packages are available on the side, including Java (useful e.g. to make this environment into a fully fledged Jenkins
worker). Other common NUT dependencies absent from primary Slackware repositories can be found and downloaded (seek
*.txz package files, although a few are named *.tgz) from here, and passed to installpkg:

• http://www.slackware.com/~alien/slackbuilds/openjdk11/

• http://www.slackware.com/~alien/slackbuilds/asciidoc/

• http://www.slackware.com/~alien/slackbuilds/cppunit/

• http://www.slackware.com/alien/slackbuilds/lua/ (5.1 in "stable") and http://www.slackware.com/alien/slackbuilds/lua53/ (5.4 in "current" as of
Slackware 15.1 candidate in the works) — note that LUA is not needed for the current NUT code base, but may become needed
after import of features from forks

. . . and even the environment for Windows cross-builds, ancient compilers and modern toolkits to cover all bases:

• http://www.slackware.com/~alien/slackbuilds/MinGW-w64/

• http://www.slackware.com/~alien/slackbuilds/docker/

• http://www.slackware.com/~alien/slackbuilds/gcc34/

• http://www.slackware.com/~alien/slackbuilds/gcc5/

FWIW, another "more official" but older Java package seems to be at:

http://www.slackware.com/~alien/slackbuilds/openjdk11/
http://www.slackware.com/~alien/slackbuilds/asciidoc/
http://www.slackware.com/~alien/slackbuilds/cppunit/
http://www.slackware.com/
http://www.slackware.com/
http://www.slackware.com/~alien/slackbuilds/MinGW-w64/
http://www.slackware.com/~alien/slackbuilds/docker/
http://www.slackware.com/~alien/slackbuilds/gcc34/
http://www.slackware.com/~alien/slackbuilds/gcc5/

Network UPS Tools User Manual 129 / 155

• http://www.slackware.com/~alien/slackbuilds/openjdk/

• https://slackbuilds.org/repository/15.0/development/jdk/

An example routine to install the latest instance of a package could be like this:

:; wget -m -l1 http://www.slackware.com/~alien/slackbuilds/asciidoc/pkg/ && \
find . -name '*.t?z'

:; installpkg ./www.slackware.com/~alien/slackbuilds/asciidoc/pkg/asciidoc-8.1.0-noarch-2. ←↩
tgz

Upon community members’ recommendations, Sotirov’s SlackPack is also considered a reputable repository: https://sotirov-
bg.net/slackpack/ and should cover most if not all of the dependencies required for NUT building (including PowerMan, IPMI
etc.)

Note
If setting up a CI farm agent with builds in RAM disk, keep in mind that default mount options for /dev/shm preclude script
execution. Either set up the agent in a non-standard fashion (to use another work area), or if this is a dedicated machine —
relax the mount options in /etc/fstab. Here is an example with noexec which we must avoid for such use-case:

:; mount | grep /dev/shm
tmpfs on /dev/shm type tmpfs (rw,nosuid,nodev,noexec,relatime,inode64)

K.2.5 FreeBSD 12.2

Note that PATH for builds on BSD should include /usr/local/...:

:; PATH=/usr/local/libexec/ccache:/usr/local/bin:/usr/bin:$PATH
:; export PATH

Note
You may want to reference ccache even before all that, as detailed below.

:; pkg install \
git perl5 curl \
gmake autoconf automake autotools libltdl libtool \
valgrind \
cppcheck \
pkgconf \
gcc clang

See comments below, python version and package naming depends on distro
:; pkg install \

python

NOTE: For python, you may eventually have to specify a variant like this
(numbers depending on default or additional packages of your distro):
:; pkg install python2 python27
and/or:
:; pkg install python3 python37
You can find a list of what is (pre-)installed with:
:; pkg info | grep -Ei 'perl|python'

For spell-checking, highly recommended if you would propose pull requests:

http://www.slackware.com/~alien/slackbuilds/openjdk/
https://slackbuilds.org/repository/15.0/development/jdk/
https://sotirov-bg.net/slackpack/
https://sotirov-bg.net/slackpack/

Network UPS Tools User Manual 130 / 155

:; pkg install \
aspell en-aspell

For other doc types (man-page, PDF, HTML) generation - massive packages (TEX, X11):
:; pkg install \

asciidoc source-highlight textproc/py-pygments dblatex

For CGI graph generation - massive packages (X11):
:; pkg install \

libgd

:; pkg install \
cppunit \
nss \
augeas \
libmodbus \
neon \
net-snmp \
powerman \
freeipmi \
avahi

NOTE: At least on FreeBSD 12, system-provided crypto exists and is used
by libnetsnmp, libneon, etc. - but is not marked as a package. Conversely,
the openssl-1.1.1k (as of this writing) can be installed as a package into
/usr/local/lib and then causes linking conflicts. The core system-provided
build of openssl does include headers and is useful for NUT build "as is".
ONLY INSTALL THIS PACKAGE IF REQUIRED (may get problems to rectify later):
:; test -e /lib/libcrypto.so -a -e /usr/lib/libssl.so || \

pkg install openssl

:; pkg install \
lua51

:; pkg install \
bash dash busybox ksh93

Recommended:

:; pkg install ccache
:; ccache-update-links

For compatibility with common setups on other operating systems, can symlink /usr/local/libexec/ccache as /usr/lib/ccache
and possibly add dash-number suffixed symlinks to compiler tools (e.g. gcc-10 beside gcc10 installed by package).

Note
For Jenkins agents, also need to pkg install openjdk11 (11 or 17 required since summer 2022) — and do note its
further OS configuration suggestions for special filesystem mounts.

Due to BSD specific paths when not using an implementation of pkg-config or pkgconf (so guessing of flags is left to
administrator — TBD in NUT m4 scripts), better use this routine to test the config/build:

:; ./configure --with-doc=all --with-all --with-cgi \
--without-avahi --without-powerman --without-modbus \
CPPFLAGS="-I/usr/local/include -I/usr/include" \
LDFLAGS="-L/usr/local/lib -L/usr/lib"

Note the lack of pkg-config also precludes libcppunit tests, although they also tend to mis-compile/mis-link with GCC
(while CLANG seems okay).

Network UPS Tools User Manual 131 / 155

K.2.6 OpenBSD 6.5

Note that PATH for builds on BSD should include /usr/local/...:

:; PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin:$PATH
:; export PATH

Note
You may want to reference ccache even before all that, as detailed below.

OpenBSD delivers many versions of numerous packages, you should specify your pick interactively or as part of package name
(e.g. autoconf-2.69p2).

Note
For the purposes of builds with Jenkins CI agents, since summer 2022 it requires JDK11 which was first delivered with OpenBSD
6.5. Earlier iterations used OpenBSD 6.4 and version nuances in this document may still reflect that.

During builds, you may have to tell system dispatcher scripts which version to use (which feels inconvenient, but on the up-side
for CI — this system allows to test many versions of auto-tools in the same agent), e.g.:

:; export AUTOCONF_VERSION=2.69 AUTOMAKE_VERSION=1.13

To use the ci_build.sh don’t forget bash which is not part of OpenBSD base installation. It is not required for "legacy"
builds arranged by just autogen.sh and configure scripts.

Note
The OpenBSD 6.5 install65.iso installation includes a set of packages that seems to exceed whatever is available
on network mirrors; for example, the CD image included clang program while it is not available to pkg_add, at least not
via http://ftp.netbsd.hu/mirrors/openbsd/6.5/packages/amd64/ mirror. The gcc version on CD image differed notably from
that in the networked repository (4.2.x vs 4.9.x). You may have to echo a working base URL (part before "6.5/. . . " into the
/etc/installurl file, since the old distribution is no longer served by default site.

Optionally, make the environment comfortable, e.g.:
:; pkg_add sudo bash mc wget rsync

:; pkg_add \
git curl \
gmake autoconf automake libltdl libtool \
valgrind \
cppcheck \
pkgconf \
gcc clang

See comments below, python version and package naming depends on distro
:; pkg_add \

python

NOTE: For python, you may eventually have to specify a variant like this
(numbers depending on default or additional packages of your distro):
:; pkg_add python-2.7.15p0 py-pip
and/or:
:; pkg_add python-3.6.6p1 py3-pip
although you might succeed specifying shorter names and the packager
will offer a list of matching variants (as it does for "python" above).

http://ftp.netbsd.hu/mirrors/openbsd/6.5/packages/amd64/

Network UPS Tools User Manual 132 / 155

NOTE: "perl" is not currently a package, but seemingly part of base OS.
You can find a list of what is (pre-)installed with:
:; pkg_info | grep -Ei 'perl|python'

For spell-checking, highly recommended if you would propose pull requests:
:; pkg_add \

aspell

For other doc types (man-page, PDF, HTML) generation - massive packages (TEX, X11):
:; pkg_add \

asciidoc source-highlight py-pygments dblatex \
docbook2x docbook-to-man

For CGI graph generation - massive packages (X11):
:; pkg_add \

gd

:; pkg_add \
cppunit \
openssl nss \
augeas \
libusb1 \
net-snmp \
avahi

For netxml-ups driver the library should suffice; however for nut-scanner
you may currently require to add a `libneon.so` symlink (the package seems
to only deliver a numbered SO library name), e.g.:
:; pkg_add neon && \

if ! test -s /usr/local/lib/libneon.so ; then
ln -s "`cd /usr/local/lib && ls -1 libneon.so.* | sort -n | tail -1`" /usr/local/lib/ ←↩

libneon.so
fi

Select a LUA-5.1 (or possibly 5.2?) version
:; pkg_add \

lua

:; pkg_add \
bash dash ksh93

:; pkg_add \
argp-standalone \
freeipmi

Recommended:

:; pkg_add ccache
:; (mkdir -p /usr/lib/ccache && cd /usr/lib/ccache && \

for TOOL in cpp gcc g++ clang clang++ clang-cpp ; do \
ln -s ../../local/bin/ccache "$TOOL" ; \

done ; \
)

:; (cd /usr/bin && for T in gcc g++ cpp ; do ln -s "$T" "$T-4.2.1" ; done)
:; (cd /usr/lib/ccache && for T in gcc g++ cpp ; do ln -s "$T" "$T-4.2.1" ; done)

:; (cd /usr/bin && for T in clang clang++ clang-cpp ; do ln -s "$T" "$T-7.0.1" ; done)
:; (cd /usr/lib/ccache && for T in clang clang++ clang-cpp ; do ln -s "$T" "$T-7.0.1" ; ←↩

done)

Network UPS Tools User Manual 133 / 155

For compatibility with common setups on other operating systems, can add dash-number suffixed symlinks to compiler tools
(e.g. gcc-4.2.1 beside gcc installed by package) into /usr/lib/ccache.

Note
For Jenkins agents, also need to pkg_add jdk (if asked, pick version 11 or 17); can request pkg_add jdk%11. You
would likely have to update the trusted CA store to connect to NUT CI, see e.g. (raw!) download from https://gist.github.com/-
galan/ec8b5f92dd325a97e2f66e524d28aaf8 but ensure that you run it with bash and it does wget the certificates (maybe with
--no-check-certificate option if the OS does not trust current internet infrastructure either), and revise the suggested
certificate files vs. https://letsencrypt.org/certificates/ and/or comments to that gist.

Due to BSD specific paths when not using an implementation of pkg-config or pkgconf (so guessing of flags is left to
administrator — TBD in NUT m4 scripts), better use this routine to test the config/build:

:; ./configure --with-doc=all --with-all --with-cgi \
--without-avahi --without-powerman --without-modbus \
CPPFLAGS="-I/usr/local/include -I/usr/include"
LDFLAGS="-L/usr/local/lib -L/usr/lib"

Note the lack of pkg-config also precludes libcppunit tests, although they also tend to mis-compile/mis-link with GCC
(while CLANG seems okay).

K.2.7 NetBSD 9.2

Instructions below assume that pkgin tool (pkg-src component to "install binary packages") is present on the system. Text below
was prepared with a VM where "everything" was installed from the ISO image, including compilers and X11. It is possible that
some packages provided this way differ from those served by pkgin, or on the contrary, that the list of suggested tool installation
below would not include something a bare-minimum system would require to build NUT.

Note that PATH for builds on NetBSD should include local and pkg; the default after installation of the test system was:

:; PATH="/sbin:/usr/sbin:/bin:/usr/bin:/usr/pkg/sbin:/usr/pkg/bin:/usr/X11R7/bin:/usr/local ←↩
/sbin:/usr/local/bin"

:; export PATH

Note
You may want to reference ccache even before all that, as detailed below:

:; PATH="/usr/lib/ccache:$PATH"
:; export PATH

To use the ci_build.sh don’t forget bash which may be not part of NetBSD base installation. It is not required for "legacy"
builds arranged by just autogen.sh and configure scripts.

Also note that the install-sh helper added by autotools from OS-provided resources when generating the configure
script may be old and its directory creation mode is not safe for parallel-make installations. If this happens, you can work around
by make MKDIRPROG="mkdir -p" install -j 8 for example.

:; pkgin install \
git perl curl \
make gmake autoconf automake libltdl libtool \
cppcheck \
pkgconf \
gcc7 clang

See comments below, python version and package naming depends on distro

https://gist.github.com/galan/ec8b5f92dd325a97e2f66e524d28aaf8
https://gist.github.com/galan/ec8b5f92dd325a97e2f66e524d28aaf8
https://letsencrypt.org/certificates/

Network UPS Tools User Manual 134 / 155

:; pkgin install \
python27 python39

;; (cd /usr/pkg/bin && (ln -fs python2.7 python2 ; ln -fs python3.9 python3))
You can find a list of what is (pre-)installed with:
:; pkgin list | grep -Ei 'perl|python'

For spell-checking, highly recommended if you would propose pull requests:
:; pkgin install \

aspell aspell-en

For man-page doc types, footprint on this platform is moderate:
:; pkgin install \

asciidoc

For other doc types (PDF, HTML) generation - massive packages (TEX, X11):
:; pkgin install \

source-highlight py39-pygments dblatex

For CGI graph generation - massive packages (X11):
:; pkgin install \

gd openmp

:; pkgin install \
cppunit \
openssl nss \
augeas \
libusb libusb1 \
neon \
net-snmp \
avahi

Select a LUA-5.1 (or possibly 5.2?) version
:; pkgin install \

lua51

:; pkgin install \
bash dash ast-ksh oksh

Note
(TBD) On NetBSD 9.2 this package complains that it requires OS ABI 9.0, or that CHECK_OSABI=no is set in
pkg_install.conf. Such file was not found in the test system. . .

:; pkgin install \
openipmi

Recommended: For compatibility with common setups on other operating systems, can add dash-number suffixed symlinks to
compiler tools (e.g. gcc-7 beside the gcc installed by package) near the original binaries and into /usr/lib/ccache:

:; (cd /usr/bin && for TOOL in cpp gcc g++ ; do \
ln -s "$TOOL" "$TOOL-7" ; \

done)

Note that the one delivered binary is `clang-13` and many (unnumbered)
symlinks to it. For NUT CI style of support for builds with many
compilers, complete the known numbers:
:; (cd /usr/pkg/bin && for TOOL in clang-cpp clang++ ; do \

ln -s clang-13 "$TOOL-13" ; \

Network UPS Tools User Manual 135 / 155

done)

:; pkgin install ccache
:; (mkdir -p /usr/lib/ccache && cd /usr/lib/ccache && \

for TOOL in cpp gcc g++ clang ; do \
for VER in "" "-7" ; do \

ln -s ../../pkg/bin/ccache "$TOOL$VER" ; \
done ; \

done ; \
for TOOL in clang clang++ clang-cpp ; do \

for VER in "" "-13" ; do \
ln -s ../../pkg/bin/ccache "$TOOL$VER" ; \

done ; \
done ; \

)

Note
For Jenkins agents, also need to pkgin install openjdk11 (will be in JAVA_HOME=/usr/pkg/java/openjdk11).

K.2.8 OpenIndiana 2021.10

Note that due to IPS and pkg(5), a version of python is part of baseline illumos-based OS; this may not be the case on some
other illumos distributions which do not use IPS however. Currently they use python 3.7 or newer.

To build older NUT releases (2.7.4 and before), you may need to explicitly pkg install python-27.

Typical tooling would include:

:; pkg install \
git curl wget \
gnu-make autoconf automake libltdl libtool \
valgrind \
pkg-config \
gnu-binutils developer/linker

NOTE: For python, some suitable version should be available since `pkg(5)`
tool is written in it. Similarly, many system tools are written in perl
so some version should be installed. You may specify additional variants
like this (numbers depending on default or additional packages of your
distro; recommended to group `pkg` calls with many packages at once to
save processing time for calculating a build strategy):
:; pkg install runtime/python-27
and/or:
:; pkg install runtime/python-37 runtime/python-35 runtime/python-39
Similarly for perl variants, e.g.:
:; pkg install runtime/perl-522 runtime/perl-524 runtime/perl-534
You can find a list of what is available in remote repositories with:
:; pkg info -r | grep -Ei 'perl|python'

For spell-checking, highly recommended if you would propose pull requests:
:; pkg install \

aspell text/aspell/en

For other doc types (man-page, PDF, HTML) generation - massive packages (TEX, X11):
:; pkg install \

asciidoc libxslt \
docbook/dtds docbook/dsssl docbook/xsl docbook docbook/sgml-common pygments-39 \
graphviz expect graphviz-tcl

Network UPS Tools User Manual 136 / 155

For CGI graph generation - massive packages (X11):
:; pkg install \

gd

:; pkg install \
openssl library/mozilla-nss \
library/augeas python/augeas \
libusb-1 libusbugen system/library/usb/libusb system/header/header-usb driver/usb/ugen ←↩

\
libmodbus \
neon \
net-snmp \
powerman \
freeipmi \
avahi

:; pkg install \
lua

:; pkg install \
dash bash shell/ksh93

Maybe
:; pkg install \

gnu-coreutils

Maybe - after it gets fixed for GCC builds/linkage
:; pkg install \

cppunit

For extra compiler coverage, we can install a large selection of versions, although to meet NUT CI farm expectations we also
need to expose "numbered" filenames, as automated below:

:; pkg install \
gcc-48 gcc-49 gcc-5 gcc-6 gcc-7 gcc-9 gcc-10 gcc-11 \
clang-80 clang-90 \
ccache

As of this writing, clang-13 refused to link (claiming issues with
--fuse-ld which was never specified) on OI; maybe later it will:
:; pkg install \

developer/clang-13 runtime/clang-13

Get clang-cpp-X visible in standard PATH (for CI to reference the right one),
and make sure other frontends are exposed with versions (not all OI distro
releases have such symlinks packaged right), e.g.:
:; (cd /usr/bin && for X in 8 9 13 ; do for T in "" "++" "-cpp"; do \

ln -fs "../clang/$X.0/bin/clang$T" "clang${T}-${X}" ; \
done; done)

If /usr/lib/ccache/ symlinks to compilers do not appear after package
installation, or if you had to add links like above, call the service:
:; svcadm restart ccache-update-symlinks

We can even include a gcc-4.4.4-il version (used to build the illumos OS ecosystems, at least until recently, which is a
viable example of an old GCC baseline); but note that so far it conflicts with libgd builds at ./configure --with-cgi
stage (its binaries require newer ecosystem):

:; pkg install \
illumos-gcc@4.4.4

Network UPS Tools User Manual 137 / 155

Make it visible in standard PATH
:; (cd /usr/bin && for T in gcc g++ cpp ; do \

ln -s ../../opt/gcc/4.4.4/bin/$T $T-4.4.4 ; \
done)

If /usr/lib/ccache/ symlinks to these do not appear, call the service:
:; svcadm restart ccache-update-symlinks

OI currently also does not build cppunit-based tests well, at least not with GCC (they segfault at run-time with ostream
issues); a CLANG build works for that however.

It also lacks out-of-the-box Tex suite and dblatex in particular, which asciidoc needs to build PDF documents. It may be
possible to add these from third-party repositories (e.g. SFE) and/or build from sources.

No pre-packaged cppcheck was found, either.

Note
For Jenkins agents, also need to pkg install runtime/java/openjdk11 for JRE/JDK 11. Java 11 or 17 is required
to run Jenkins agents after summer 2022.

K.2.9 OmniOS CE (as of release 151036)

Being a minimal-footprint system, OmniOS CE provides very few packages out of the box. There are additional repositories
supported by the project, as well as third-party repositories such as SFE. For some dependencies, it may happen that you would
need to roll and install your own builds in accordance with that project’s design goals.

Note you may need not just the "Core" IPS package publisher, but also the "Extra" one. See OmniOS CE web site for setup
details.

:; pkg install \
developer/build/autoconf developer/build/automake developer/build/libtool \
build-essential ccache git developer/pkg-config \
runtime/perl \
asciidoc \
libgd

:; pkg install \
net-snmp

NOTE: For python, some suitable version should be available since `pkg(5)`
tool is written in it. You may specify an additional variant like this
(numbers depending on default or additional packages of your distro):
:; pkg install runtime/python-37
You can find a list of what is available in remote repositories with:
:; pkg info -r | grep -Ei 'perl|python'

Your OmniOS version may lack a pre-packaged libusb, however the binary build from contemporary OpenIndiana can be used
(copy the header files and the library+symlinks for all architectures you would need).

Note
As of July 2022, a libusb-1 package recipe was proposed for the omnios-extra repository (NUT itself and further
dependencies may also appear there, per issue #1498).

You may need to set up ccache with the same /usr/lib/ccache dir used in other OS recipes. Assuming your Build
Essentials pulled GCC 9 version, and ccache is under /opt/ooce namespace, that would be like:

https://github.com/networkupstools/nut/issues/1498

Network UPS Tools User Manual 138 / 155

:; mkdir -p /usr/lib/ccache
:; cd /usr/lib/ccache
:; ln -fs ../../../opt/ooce/bin/ccache gcc
:; ln -fs ../../../opt/ooce/bin/ccache g++
:; ln -fs ../../../opt/ooce/bin/ccache gcpp
:; ln -fs ../../../opt/ooce/bin/ccache gcc-9
:; ln -fs ../../../opt/ooce/bin/ccache g++-9
:; ln -fs ../../../opt/ooce/bin/ccache gcpp-9

Given that many of the dependencies can get installed into that namespace, you may have to specify where pkg-config will
look for them (note that library and binary paths can be architecture bitness-dependent):

:; ./configure PKG_CONFIG_PATH="/opt/ooce/lib/amd64/pkgconfig" --with-cgi

Note also that the minimal footprint nature of OmniOS CE precludes building any large scope easily, so avoid docs and "all
drivers" unless you provide whatever they need to happen.

Note
For Jenkins agents, also need to pkg install runtime/java/openjdk11 for JRE/JDK 11. Java 11 or 17 is required
to run Jenkins agents after summer 2022.

K.2.10 Solaris 8

Builds for a platform as old as this are not currently covered by CI, however since the very possibility of doing this was recently
verified, some notes follow.

For context: Following a discussion in the mailing list starting at https://alioth-lists.debian.net/pipermail/nut-upsuser/2022-
December/013051.html and followed up by GitHub issues and PR:

• https://github.com/networkupstools/nut/issues/1736

• https://github.com/networkupstools/nut/issues/1737 (about a possible but not yet confirmed platform problem)

• https://github.com/networkupstools/nut/pull/1738

. . . recent NUT codebase was successfully built and self-tested in a Solaris 8 x86 VM (a circa 2002 release), confirming the
project’s adherence to the goal that if NUT ran on a platform earlier, so roughly anything POSIX-ish released this millennium
and still running, it should still be possible — at least as far as our part of equation is concerned.

That said, platform shows its age vs. later standards (script interpreters and other tools involved), and base "complete install"
lacked compilers, so part of the tested build platform setup involved third-party provided package repositories.

One helpful project was extensive notes about preparation of the Solaris 8 VM (and our further comments there), which pointed
to the still active "tgcware" repository and contains scripts to help prepare the freshly installed system:

• https://github.com/mac-65/Solaris_8_x86_VM

• https://github.com/mac-65/Solaris_8_x86_VM/issues/1

• http://jupiterrise.com/tgcware/sunos5.8_x86/stable/

Note that scripts attached to the notes refer to older versions of the packages than what is currently published, so I ended up
downloading everything from the repository into the VM and using shell wildcards to pick the packages to install (mind the
package families with similar names when preparing such patterns).

After the OS, tools and feasible third-party dependencies were installed, certain environment customization was needed to prepare
for NUT build in particular (originally detailed in GitHub issues linked above):

https://alioth-lists.debian.net/pipermail/nut-upsuser/2022-December/013051.html
https://alioth-lists.debian.net/pipermail/nut-upsuser/2022-December/013051.html
https://github.com/networkupstools/nut/issues/1736
https://github.com/networkupstools/nut/issues/1737
https://github.com/networkupstools/nut/pull/1738
https://github.com/mac-65/Solaris_8_x86_VM
https://github.com/mac-65/Solaris_8_x86_VM/issues/1
http://jupiterrise.com/tgcware/sunos5.8_x86/stable/

Network UPS Tools User Manual 139 / 155

• For CONFIG_SHELL, system dtksh seems to support the syntax (unlike default /bin/sh), but for some reason segfaults
during configure tests. Alternatively /usr/tgcware/bin/bash (4.4-ish) can be used successfully. System-provided
bash 2.x is too old for these scripts.

• To run ci_build.shCI/dev-testing helper script, either the shebang should be locally fixed to explicitly call /usr/tgcware/bin/bash,
or the build environment’s PATH should point to this bash implementation as a first hit. If we want to primarily use OS-
provided tools, this latter option may need a bit of creative setup; I made a symlink into the /usr/lib/ccache directory
which has to be first anyway (before compilers).

• The system-provided default grep lacks the -E option which was preferred over generally obsoleted egrep since PR #1660
— however pre-pending /usr/xpg4/bin early in the PATH fixes the problem.

• The builds of gcc in TGCWARE repository were picky about shared objects linking as needed to run them, so LD_LIBRARY_PATH
had to refer to its library directories (generally this is frowned upon and should be a last resort).

• Due to lack of Python in that OS release, NUT augeas support had to be disabled when preparing the build from Git sources
(generated files may be available as part of distribution tarballs however): WITHOUT_NUT_AUGEAS=true; export
WITHOUT_NUT_AUGEAS; ./autogen.sh

Overall, the successful test build using the NUT standard CI helper script ci_build.sh had the following shell session
settings:

Common pre-sets from .profile or .bashrc:
bash-2.03$ echo $PATH
/usr/bin:/usr/dt/bin:/usr/openwin/bin:/bin:/usr/ucb:/usr/tgcware/bin:/usr/tgcware/gnu:/ ←↩

usr/tgcware/gcc42/bin:/usr/tgcware/i386-pc-solaris2.8/bin

bash-2.03$ echo $LD_LIBRARY_PATH
/usr/lib:/usr/tgcware/lib:/usr/tgcware/gcc42/lib:/usr/tgcware/i386-pc-solaris2.8/lib

Further tuning for the build itself:
:; git clean -fffdddxxx
:; CONFIG_SHELL=/usr/tgcware/bin/bash \

WITHOUT_NUT_AUGEAS=true \
PATH="/usr/xpg4/bin:$PATH" \
/usr/tgcware/bin/bash ./ci_build.sh

K.2.11 MacOS with homebrew

Some CI tests happen on MacOS using a mix of their default xcode environment for compilers, and Homebrew community
packaging for dependencies (including bash since the system one is too old for ci_build.sh script syntax).

See .travis.yml and .circleci/config.yml for practical details of the setup, and https://brew.sh if you want to install
it on your MacOS system (note that its default packaged locations known as HOMEBREW_PREFIX differ depending on archi-
tecture — see https://docs.brew.sh/Installation for more details; find via brew config | grep HOMEBREW_PREFIX: |
awk ’{print $2}’).

Note
The quickest pre-configuration for ci_build.sh integration with this non-default build system would be to add this line into
your shell profile:

eval "$(brew shellenv)"

Note
Homebrew is not the only build/packaging system available for MacOS, so NUT scripts do not make any assumptions nor try to
find a build system they were not told about (via HOMEBREW_PREFIX in this case).

https://github.com/networkupstools/nut/pull/1660
https://brew.sh
https://docs.brew.sh/Installation

Network UPS Tools User Manual 140 / 155

Currently known dependencies for basic build include:

Optional for a quick spin:
:; HOMEBREW_NO_AUTO_UPDATE=1; export HOMEBREW_NO_AUTO_UPDATE

Required:
:; brew install ccache bash libtool binutils autoconf automake git m4 \

pkg-config aspell asciidoc docbook-xsl cppunit gd \
libusb neon net-snmp \
nss openssl \
libmodbus freeipmi powerman

Note
for asciidoc/a2x to work, you should export XML_CATALOG_FILES with the location of packaged resources
(${HOMEBREW_PREFIX}/etc/xml/catalog). On one test system, man page builds spewed warnings like
<unknown>:1: SyntaxWarning: invalid escape sequence ’\S’ but seemed to produce reasonable re-
sults otherwise.

Note that ccache is installed in a different location than expected by default in the ci_build.sh script, so if your system
allows to add the symbolic link to /opt/homebrew/opt/ccache/libexec (/usr/local/opt/ccache/libexec
on x86) as /usr/lib/ccache— please do so as the easiest way out.

Alternatively, to prepare building sessions with ci_build.sh you can:

:; export CI_CCACHE_SYMLINKDIR="/opt/homebrew/opt/ccache/libexec"

...or for x86 builders:
#:; export CI_CCACHE_SYMLINKDIR="/usr/local/opt/ccache/libexec"

Note
For Jenkins agents, also need to brew install --cask temurin@21 for JRE/JDK 21. Java 17 or 21 (an LTS) is
required to run Jenkins agents after summer 2024.

Note that you would have to create symbolic links to version-numbered names of compilers, e.g. clang-14 and clang++-14
in both /usr/local/bin (pointing to /bin/clang(++) and in the ccache location prepared above (pointing to ../bin/ccache),
and repeat that in locations prepared by XCode installation such as /Library/Developer/CommandLineTools/usr/bin/
and /usr/local/Homebrew/Library/Homebrew/shims/mac/super/ just as ln -s clang{,-14} ; ln -s
clang++{,-14}. Apparently clang is the only compiler available; various names of gcc* are links to the same binaries.

Warning
Take care to NOT symlink a clang-cpp(-14) which is not a name recognized by XCode dispatcher program, so
requests to it freeze.

K.2.12 Windows builds

There have been several attempts to adjust NUT codebase to native builds for Windows, as well as there are many projects helping
to produce portable programs.

Further TODO for Windows would include:

• MSVCRT (ubiquitous) vs UCRT (more standards compliant, but since Windows 10) https://docs.microsoft.com/en-us/cpp/-
porting/upgrade-your-code-to-the-universal-crt?view=msvc-160

https://docs.microsoft.com/en-us/cpp/porting/upgrade-your-code-to-the-universal-crt?view=msvc-160
https://docs.microsoft.com/en-us/cpp/porting/upgrade-your-code-to-the-universal-crt?view=msvc-160

Network UPS Tools User Manual 141 / 155

• libusb-0.1 vs libusb-1.0

Note
Native mingw, MSYS2, etc. builds on Windows are known to suffer from interaction with antivirus software which holds exe-
cutable files open and so not writable by the linker. This may cause random steps in the configure script or later during the
build to fail. If that happens to you, disable the antivirus completely or exempt at least the NUT build area from protection.

Windows with mingw

See scripts/Windows/README.adoc for original recommendations for the effort, including possibilities of cross-builds
with mingw available in Linux.

Unfortunately these did not work for me at the time of testing, yielding some issues downloading mingw both in Windows and
Linux environments. So I explored other downloads, as detailed below.

See also:

• https://winlibs.com/

• https://azrael.digipen.edu/~mmead/www/public/mingw/

• https://www.mingw-w64.org/downloads/

Note
Seems the mingw installer has problems with current authentication and redirect on SourceForge. You can down-
load and unpack 7z archives from https://sourceforge.net/projects/mingw-w64/files/mingw-w64/mingw-w64-release/ into e.g.
C:\Progra~1\mingw-w64\x86_64-8.1.0-release-posix-seh-rt_v6-rev0 location on your Windows sys-
tem. Then for building further NUT dependencies see scripts/Windows/README.adoc.

Windows with MSYS2

The MSYS2 ecosystem is available at https://www.msys2.org/ and builds upon earlier work by MinGW-w64 (in turn a fork of
MinGW.org (aka mingw-w32)) and Cygwin projects, to name a few related efforts. It also includes pacman similar to that in
Arch Linux for easier dependency installation, and many packages are available "out of the box" this way.

The project is currently sponsored by Microsoft and seems to be supported by Visual Studio Code IDE for building and debugging
projects, for more details see https://code.visualstudio.com/docs/cpp/config-mingw

Notable pages of the project include:

• https://www.msys2.org/ with current download link and first-installation instructions

• https://www.msys2.org/wiki/MSYS2-introduction/ for general overview

• https://packages.msys2.org/search?t=binpkg for search in package repository

After downloading and installing MSYS2 archive for the first time, they suggest to start by updating the base ecosystem (using
their terminal):

:; pacman -Syu

Wait for metadata and base package downloads, agree that all MSYS2 programs including your terminal would be closed/restarted,
and wait for this stage to complete.

Run it again to refresh more of the ecosystem, now without restarting it:

:; pacman -Syu

https://winlibs.com/
https://azrael.digipen.edu/~mmead/www/public/mingw/
https://www.mingw-w64.org/downloads/
https://sourceforge.net/projects/mingw-w64/files/mingw-w64/mingw-w64-release/
https://www.msys2.org/
https://www.mingw-w64.org
https://sourceforge.net/projects/mingw/
http://cygwin.com/
https://code.visualstudio.com/docs/cpp/config-mingw
https://www.msys2.org/
https://www.msys2.org/wiki/MSYS2-introduction/
https://packages.msys2.org/search?t=binpkg

Network UPS Tools User Manual 142 / 155

Finally, install tools and prerequisites for building NUT; note that some of the recommended package names are "umbrellas" for
several implementations, and the pacman would ask you which (or "all") to install in those cases.

Note
Suggestions below use x86_64 generic variants where possible, and clang where available to try both build toolkits on the
platform. If you want to build i686 (32-bit) or alternate backends (e.g. ucrt instead of default msvcrt), poke the repository
search to see what is available.

Note
To build NUT with ci_build.sh (and generally — to help configure script find the dependencies listed below), start the
terminal session with "MSYS2 MinGW x64" shortcut. Other options set up the environment variables for toolkits listed in their
shortcut names, and so tend to prefer "wrong" flags and paths to dependencies (if you have several variants installed). The
"MSYS2 MinGW UCRT x64" was also reported to work.

To avoid toolkit variant mismatches, you may require to use their specific builds preferentially:

PATH="/mingw64/bin:$PATH"
export PATH

. . . and also add these lines to the ~/.bashrc file.

This covers most of the common FOSS development baseline, including
python, perl, autotools, gcc, clang, git, binutils, make, pkgconf...
:; pacman -S --needed \

base-devel mingw-w64-x86_64-toolchain \
autoconf-wrapper automake-wrapper libtool mingw-w64-x86_64-libltdl \
clang gcc \
ccache mingw-w64-x86_64-ccache \
git aspell aspell-en \
vim python \
mingw-w64-x86_64-python-pygments

PThreads come as an extra feature; note there are many variants,
see https://packages.msys2.org/search?t=binpkg&q=pthread
:; pacman -S --needed \

mingw-w64-x86_64-winpthreads-git \
mingw-w64-clang-x86_64-winpthreads-git

Note that MSYS2 includes libusb-1.0 "natively"
The NUT codebase adjustments for Windows might at this moment expect older
ecosystem via https://github.com/mcuee/libusb-win32 -- subject to fix then.
:; pacman -S --needed \

mingw-w64-x86_64-libusb \
mingw-w64-clang-x86_64-libusb

Seems that the older libusb-win32 (libusb-0.1) is also available as:
:; pacman -S --needed \

mingw-w64-x86_64-libusb-win32 \
mingw-w64-clang-x86_64-libusb-win32

Alternately there is libusb-compat (libusb-1.0 codebase exposing the older
libusb-0.1 API) which SHOULD NOT be installed along with the real libusb-0.1:
:; pacman -S --needed mingw-w64-x86_64-libusb-compat-git mingw-w64-clang-x86_64-libusb- ←↩

compat-git

This also pulls *-devel of several other projects:
:; pacman -S --needed \

mingw-w64-x86_64-neon libneon-devel

Network UPS Tools User Manual 143 / 155

Other dependencies:
:; pacman -S --needed \

mingw-w64-x86_64-libmodbus-git \
mingw-w64-clang-x86_64-libmodbus-git \
mingw-w64-x86_64-libgd \
mingw-w64-clang-x86_64-libgd

For C++ tests:
:; pacman -S --needed \

mingw-w64-x86_64-cppunit \
mingw-w64-clang-x86_64-cppunit

ccachewrapper scripts are available as e.g. /mingw64/lib/ccache/bin/gcc and lack a set for clang tools; easy-peasy
fix with:

:; cd /mingw64/lib/ccache/bin
:; for T in clang clang++ clang-cpp ; do sed "s/gcc/$T/" < gcc > "$T" ; chmod +x "$T" ; ←↩

done

Note that default ccache seems quirky on Windows MSYS2, possibly due to mixing of the path separator characters and/or
embedding and choking on the C: in path names. Overall it seems unable to create the cache files after it has created the cache
directory tree (though you might have to pre-create the ${HOME}/.ccache anyway, as NUT ci_build.sh script does. As
found in experimentation, setting the PATH consistently for toolkits involved is very important.

• https://github.com/ccache/ccache/discussions/784

• https://sourceforge.net/p/msys2/tickets/253/

Notable packages not found in the repo:

• snmp (net-snmp, ucd-snmp) — instructions in scripts/Windows/README.adoc document now covers building it from
source in MSYS2 MinGW x64 environment, essentially same as for Linux cross builds with proper ARCH and PREFIX

• libregex (C version, direct NUT configure script support was added by the Windows branch); MSYS2 however includes
libpcre pulled by some of the dependencies above. . .

• augeas

• avahi

• powerman

• ipmi

Not installed above (yet?):

• https://packages.msys2.org/search?t=binpkg&q=serial — for these need to first check if termios is part of baseline

Note that ccache symlinks for MSYS2 are installed into /usr/lib/ccache/bin directory (not plain /usr/lib/ccache
as elsewhere).

Note
After you successfully build NUT (perhaps using ci_build.sh), if you install it into a prototype area by make
DESTDIR=... install then you should add the third-party shared libraries involved, for that file set to be usable. Some-
thing along these lines:

https://github.com/ccache/ccache/discussions/784
https://sourceforge.net/p/msys2/tickets/253/
https://packages.msys2.org/search?t=binpkg&q=serial

Network UPS Tools User Manual 144 / 155

:; find "$DESTDIR" -name '*.exe' -type f | while read F ; do ldd "$F" \
| grep ' /mingw64/' ; done | awk '{print $3}' | sort | uniq \
| while read LIB ; do cp -pf "$LIB" "$DESTDIR/mingw64/bin/" ; done

Keep in mind that a similar trick (or links to *.dll— and symlinks are problematic on that platform) may be needed in other
directories, such as sbin and cgi-bin:

:; (cd "$DESTDIR/mingw64/bin/" && ln *.dll ../sbin && ln *.dll ../cgi-bin)

L CI Farm configuration notes

Note
This chapter contains information about NUT CI farm setup tricks that were applied at different times by the maintainer team to
ensure regular builds and tests of the codebase. Whether these are used in daily production today or not, similar setup should
be possible locally on developer and contributor machines.

L.1 Setting up the multi-arch Linux LXC container farm for NUT CI

Due to some historical reasons including earlier personal experience, the Linux container setup implemented as described below
was done with persistent LXC containers wrapped by LIBVIRT for management. There was no particular use-case for systems
like Docker (and no firepower for a Kubernetes cluster) in that the build environment intended for testing non-regression against
a certain release does not need to be regularly updated — its purpose is to be stale and represent what users still running that
system for whatever reason (e.g. embedded, IoT, corporate) have in their environments.

L.1.1 Common preparations

• Example list of packages for Debian-based systems may include (not necessarily is limited to):

:; apt install lxc lxcfs lxc-templates \
ipxe-qemu qemu-kvm qemu-system-common qemu-system-data \
qemu-system-sparc qemu-system-x86 qemu-user-static qemu-utils \
virt-manager virt-viewer virtinst ovmf \
libvirt-daemon-system-systemd libvirt-daemon-system \
libvirt-daemon-driver-lxc libvirt-daemon-driver-qemu \
libvirt-daemon-config-network libvirt-daemon-config-nwfilter \
libvirt-daemon libvirt-clients

TODO: Where to find virt-top - present in some but not all releases?
Can fetch sources from https://packages.debian.org/sid/virt-top and follow
https://www.linuxfordevices.com/tutorials/debian/build-packages-from-source
Be sure to use 1.0.x versions, since 1.1.x uses a "better-optimized API"
which is not implemented by libvirt/LXC backend.

Note
This claims a footprint of over a gigabyte of new packages when unpacked and installed to a minimally prepared OS. Much
of that would be the graphical environment dependencies required by several engines and tools.

• Prepare LXC and LIBVIRT-LXC integration, including an "independent" (aka "masqueraded) bridge for NAT, following
https://wiki.debian.org/LXC and https://wiki.debian.org/LXC/SimpleBridge

– For dnsmasq integration on the independent bridge (lxcbr0 following the documentation examples), be sure to mention:

https://wiki.debian.org/LXC
https://wiki.debian.org/LXC/SimpleBridge

Network UPS Tools User Manual 145 / 155

* LXC_DHCP_CONFILE="/etc/lxc/dnsmasq.conf" in /etc/default/lxc-net

* dhcp-hostsfile=/etc/lxc/dnsmasq-hosts.conf in/as the content of /etc/lxc/dnsmasq.conf

* touch /etc/lxc/dnsmasq-hosts.conf which would list simple name,IP pairs, one per line (so one per con-
tainer)

* systemctl restart lxc-net to apply config (is this needed after setup of containers too, to apply new items
before booting them?)

* For troubleshooting, see /var/lib/misc/dnsmasq.lxcbr0.leases (in some cases you may have to rename it
away and reboot host to fix IP address delegation)

• Install qemu with its /usr/bin/qemu-*-static and registration in /var/lib/binfmt

• Prepare an LVM partition (or preferably some other tech like ZFS) as /srv/libvirt and create a /srv/libvirt/rootfs
to hold the containers

• Prepare /home/abuild on the host system (preferably in ZFS with lightweight compression like lz4 — and optionally, only
if the amount of available system RAM permits, with deduplication; otherwise avoid it); account user and group ID numbers
are 399 as on the rest of the CI farm (historically, inherited from OBS workers)

– It may help to generate an ssh key without a passphrase for abuild that it would trust, to sub-login from CI agent sessions
into the container. Then again, it may be not required if CI logs into the host by SSH using authorized_keys and an
SSH Agent, and the inner ssh client would forward that auth channel to the original agent.

abuild$ ssh-keygen
accept defaults

abuild$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
abuild$ chmod 640 ~/.ssh/authorized_keys

• Edit the root (or whoever manages libvirt) ~/.profile to default the virsh provider with:

LIBVIRT_DEFAULT_URI=lxc:///system
export LIBVIRT_DEFAULT_URI

• If host root filesystem is small, relocate the LXC download cache to the (larger) /srv/libvirt partition:

:; mkdir -p /srv/libvirt/cache-lxc
:; rm -rf /var/cache/lxc
:; ln -sfr /srv/libvirt/cache-lxc /var/cache/lxc

– Maybe similarly relocate shared /home/abuild to reduce strain on rootfs?

L.1.2 Setup a container

Note that completeness of qemu CPU emulation varies, so not all distros can be installed, e.g. "s390x" failed for both debian10
and debian11 to set up the openssh-server package, or once even to run /bin/true (seems to have installed an older
release though, to match the outdated emulation?)

While the lxc-create tool does not really specify the error cause and deletes the directories after failure, it shows the pathname
where it writes the log (also deleted). Before re-trying the container creation, this file can be watched with e.g. tail -F
/var/cache/lxc/.../debootstrap.log

Note
You can find the list of LXC "template" definitions on your system by looking at the contents of the
/usr/share/lxc/templates/ directory, e.g. a script named lxc-debian for the "debian" template. You can see
further options for each "template" by invoking its help action, e.g.:

:; lxc-create -t debian -h

Network UPS Tools User Manual 146 / 155

Initial container installation (for various guest OSes)

• Install containers like this:

:; lxc-create -P /srv/libvirt/rootfs \
-n jenkins-debian11-mips64el -t debian -- \
-r bullseye -a mips64el

– to specify a particular mirror (not everyone hosts everything — so if you get something like "E: Invalid Release
file, no entry for main/binary-mips/Packages" then see https://www.debian.org/mirror/list for details,
and double-check the chosen site to verify if the distro version of choice is hosted with your arch of choice):

:; MIRROR="http://ftp.br.debian.org/debian/" \
lxc-create -P /srv/libvirt/rootfs \
-n jenkins-debian10-mips -t debian -- \
-r buster -a mips

– . . . or for EOLed distros, use the Debian Archive server.

* Install the container with Debian Archive as the mirror like this:

:; MIRROR="http://archive.debian.org/debian-archive/debian/" \
lxc-create -P /srv/libvirt/rootfs \
-n jenkins-debian8-s390x -t debian -- \
-r jessie -a s390x

* Note you may have to add trust to their (now expired) GPG keys for packaging to verify signatures made at the time the key
was valid, by un-symlinking (if appropriate) the debootstrap script such as /usr/share/debootstrap/scripts/jessie,
commenting away the keyring /usr/share/keyrings/debian-archive-keyring.gpg line and setting
keyring /usr/share/keyrings/debian-archive-removed-keys.gpg instead. You may further have
to edit /usr/share/debootstrap/functions and/or /usr/share/lxc/templates/lxc-debian to honor
that setting (the releasekeyring was hard-coded in version I had installed), e.g. in the latter file ensure such logic as
below, and re-run the installation:

...
If debian-archive-keyring isn't installed, fetch GPG keys directly
releasekeyring="`grep -E '^keyring ' "/usr/share/debootstrap/scripts/$release" | ←↩

sed -e 's,^keyring ,,' -e 's,[#].*$,,'`" 2>/dev/null
if [-z $releasekeyring]; then

releasekeyring=/usr/share/keyrings/debian-archive-keyring.gpg
fi
if [! -f $releasekeyring]; then

...

– . . . Alternatively, other distributions can be used (as supported by your LXC scripts, typically in /usr/share/debootstrap/scripts),
e.g. Ubuntu:

:; lxc-create -P /srv/libvirt/rootfs \
-n jenkins-ubuntu1804-s390x -t ubuntu -- \
-r bionic -a s390x

– For distributions with a different packaging mechanism from that on the LXC host system, you may need to install corre-
sponding tools (e.g. yum4, rpm and dnf on Debian hosts for installing CentOS and related guests). You may also need
to pepper with symlinks to taste (e.g. yum => yum4), or find a pacman build to install Arch Linux or derivative, etc.
Otherwise, you risk seeing something like this:

root@debian:~# lxc-create -P /srv/libvirt/rootfs \
-n jenkins-centos7-x86-64 -t centos -- \
-R 7 -a x86_64

Host CPE ID from /etc/os-release:
'yum' command is missing

https://www.debian.org/mirror/list

Network UPS Tools User Manual 147 / 155

lxc-create: jenkins-centos7-x86-64: lxccontainer.c:
create_run_template: 1616 Failed to create container from template

lxc-create: jenkins-centos7-x86-64: tools/lxc_create.c:
main: 319 Failed to create container jenkins-centos7-x86-64

Note also that with such "third-party" distributions you may face other issues; for example, the CentOS helper did not
generate some fields in the config file that were needed for conversion into libvirt "domxml" (as found by trial and error,
and comparison to other config files):

lxc.uts.name = jenkins-centos7-x86-64
lxc.arch = x86_64

Also note the container/system naming without underscore in "x86_64" — the deployed system discards the character when
assigning its hostname. Using "amd64" is another reasonable choice here. ** For Arch Linux you would need pacman tools
on the host system, so see https://wiki.archlinux.org/title/Install_Arch_Linux_from_existing_Linux#Using_pacman_from_the_host_system
for details. On a Debian/Ubuntu host (assumed ready for NUT builds per linkdoc:config-prereqs.txt) it would start like this:

:; apt-get update
:; apt-get install meson ninja-build cmake

Some dependencies for pacman itself; note there are several libcurl builds;
pick another if your system constraints require you to:
:; apt-get install libarchive-dev libcurl4-nss-dev gpg libgpgme-dev

:; git clone https://gitlab.archlinux.org/pacman/pacman.git
:; cd pacman

Iterate something like this until all needed dependencies fall
into line (note libdir for your host architecture):
:; rm -rf build; mkdir build && meson build --libdir=/usr/lib/x86_64-linux-gnu

:; ninja -C build
Depending on your asciidoc version, it may require that `--asciidoc-opts` are
passed as equation to a vale (not space-separated from it). Then apply this:
diff --git a/doc/meson.build b/doc/meson.build
- '--asciidoc-opts', ' '.join(asciidoc_opts),
+ '--asciidoc-opts='+' '.join(asciidoc_opts),
and re-run (meson and) ninja.

Finally when all succeeded:
:; sudo ninja -C build install
:; cd

You will also need pacstrap and Debian arch-install-scripts package does not deliver it. It is however simply
achieved:

:; git clone https://github.com/archlinux/arch-install-scripts
:; cd arch-install-scripts
:; make && sudo make PREFIX=/usr install
:; cd

+ It will also want an /etc/pacman.d/mirrorlistwhich you can populate for your geographic location from https://archlinux.org/-
mirrorlist/ service, or just fetch them all (don’t forget to uncomment some Server = lines):

:; mkdir -p /etc/pacman.d/
:; curl https://archlinux.org/mirrorlist/all/ > /etc/pacman.d/mirrorlist

+ And to reference it from your host /etc/pacman.conf by un-commenting the [core] section and Include instruction,
as well as adding [community] and [extra] sections with same reference, e.g.:

https://wiki.archlinux.org/title/Install_Arch_Linux_from_existing_Linux#Using_pacman_from_the_host_system
https://archlinux.org/mirrorlist/
https://archlinux.org/mirrorlist/

Network UPS Tools User Manual 148 / 155

[core]
SigLevel = Never
SigLevel = PackageRequired
Include = /etc/pacman.d/mirrorlist

[extra]
SigLevel = Never
SigLevel = PackageRequired
Include = /etc/pacman.d/mirrorlist

[community]
SigLevel = Never
SigLevel = PackageRequired
Include = /etc/pacman.d/mirrorlist

+ And just then you can proceed with LXC:

:; lxc-create -P /srv/libvirt/rootfs \
-n jenkins-archlinux-amd64 -t archlinux -- \
-a x86_64 -P openssh,sudo

+ In my case, it had problems with GPG keyring missing (using one in host system, as well as the package cache outside the
container, it seems) so I had to run pacman-key --init; pacman-key --refresh-keys on the host itself. Even so,
lxc-create complained about updating some keyring entries and I had to go one by one picking key servers (serving different
metadata) like this:

:; pacman-key --keyserver keyserver.ubuntu.com --recv-key 6D1655C14CE1C13E

+ In the worst case, see SigLevel = Never for pacman.conf to not check package integrity (seems too tied into thinking
that host OS is Arch). . .

+ It seems that pre-fetching the package databases with pacman -Sy on the host was also important.

Initial container-related setup

• Add the "name,IP" line for this container to /etc/lxc/dnsmasq-hosts.conf on the host, e.g.:

jenkins-debian11-mips,10.0.3.245

Note
Don’t forget to eventually systemctl restart lxc-net to apply the new host reservation!

• Convert a pure LXC container to be managed by LIBVIRT-LXC (and edit config markup on the fly — e.g. fix the LXC dir:/
URL schema):

:; virsh -c lxc:///system domxml-from-native lxc-tools \
/srv/libvirt/rootfs/jenkins-debian11-armhf/config \
| sed -e 's,dir:/srv,/srv,' \
> /tmp/x && virsh define /tmp/x

Note
You may want to tune the default generic 64MB RAM allocation, so your launched QEMU containers are not OOM-killed
as they exceeded their memory cgroup limit. In practice they do not eat that much resident memory, just want to have
it addressable by VMM, I guess (swap is not very used either), at least not until active builds start (and then it depends on
compiler appetite and make program parallelism level you allow, e.g. by pre-exporting MAXPARMAKES environment variable
for ci_build.sh, and on the number of Jenkins "executors" assigned to the build agent).

Network UPS Tools User Manual 149 / 155

– It may be needed to revert the generated "os/arch" to x86_64 (and let QEMU handle the rest) in the /tmp/x file, and re-try
the definition:

:; virsh define /tmp/x

• Then execute virsh edit jenkins-debian11-armhf (and same for other containers) to bind-mount the common
/home/abuild location, adding this tag to their "devices":

<filesystem type='mount' accessmode='passthrough'>
<source dir='/home/abuild'/>
<target dir='/home/abuild'/>

</filesystem>

– Note that generated XML might not conform to current LXC schema, so it fails validation during save; this can be bypassed
with i when it asks. One such case was however with indeed invalid contents, the "dir:" schema removed by example above.

L.1.3 Shepherd the herd

• Monitor deployed container rootfs’es with:

:; du -ks /srv/libvirt/rootfs/*

(should have non-trivial size for deployments without fatal infant errors)

• Mass-edit/review libvirt configurations with:

:; virsh list --all | awk '{print $2}' \
| grep jenkins | while read X ; do \
virsh edit --skip-validate $X ; done

– . . . or avoid --skip-validate when markup is initially good :)

• Mass-define network interfaces:

:; virsh list --all | awk '{print $2}' \
| grep jenkins | while read X ; do \
virsh dumpxml "$X" | grep "bridge='lxcbr0'" \
|| virsh attach-interface --domain "$X" --config \

--type bridge --source lxcbr0 ; \
done

• Verify that unique MAC addresses were defined (e.g. 00:16:3e:00:00:01 tends to pop up often, while 52:54:00:xx:xx:xx
are assigned to other containers); edit the domain definitions to randomize, if needed:

:; grep 'mac add' /etc/libvirt/lxc/*.xml | awk '{print $NF" "$1}' | sort

• Make sure at least one console device exists (end of file, under the network interface definition tags), e.g.:

<console type='pty'>
<target type='lxc' port='0'/>

</console>

• Populate with abuild account, as well as with the bash shell and sudo ability, reporting of assigned IP addresses on
the console, and SSH server access complete with envvar passing from CI clients by virtue of ssh -o SendEnv=’*’
container-name:

Network UPS Tools User Manual 150 / 155

:; for ALTROOT in /srv/libvirt/rootfs/*/rootfs/ ; do \
echo "=== $ALTROOT :" >&2; \
grep eth0 "$ALTROOT/etc/issue" || (printf '%s %s\n' \

'\S{NAME} \S{VERSION_ID} \n \l@\b ;' \
'Current IP(s): \4{eth0} \4{eth1} \4{eth2} \4{eth3}' \
>> "$ALTROOT/etc/issue") ; \

grep eth0 "$ALTROOT/etc/issue.net" || (printf '%s %s\n' \
'\S{NAME} \S{VERSION_ID} \n \l@\b ;' \
'Current IP(s): \4{eth0} \4{eth1} \4{eth2} \4{eth3}' \
>> "$ALTROOT/etc/issue.net") ; \

groupadd -R "$ALTROOT" -g 399 abuild ; \
useradd -R "$ALTROOT" -u 399 -g abuild -M -N -s /bin/bash abuild \
|| useradd -R "$ALTROOT" -u 399 -g 399 -M -N -s /bin/bash abuild \
|| { if ! grep -w abuild "$ALTROOT/etc/passwd" ; then \

echo 'abuild:x:399:399::/home/abuild:/bin/bash' \
>> "$ALTROOT/etc/passwd" ; \
echo "USERADDed manually: passwd" >&2 ; \

fi ; \
if ! grep -w abuild "$ALTROOT/etc/shadow" ; then \

echo 'abuild:!:18889:0:99999:7:::' >> "$ALTROOT/etc/shadow" ; \
echo "USERADDed manually: shadow" >&2 ; \

fi ; \
} ; \

if [-s "$ALTROOT/etc/ssh/sshd_config"]; then \
grep 'AcceptEnv *' "$ALTROOT/etc/ssh/sshd_config" || (\

(echo "" ; \
echo "# For CI: Allow passing any envvars:"; \
echo 'AcceptEnv *') \

>> "$ALTROOT/etc/ssh/sshd_config" \
) ; \

fi ; \
done

Note that for some reason, in some of those other-arch distros useradd fails to find the group anyway; then we have to
"manually" add them.

• Let the host know and resolve the names/IPs of containers you assigned:

:; grep -v '#' /etc/lxc/dnsmasq-hosts.conf \
| while IFS=, read N I ; do \
getent hosts "$N" >&2 || echo "$I $N" ; \

done >> /etc/hosts

L.1.4 Further setup of the containers

See NUT docs/config-prereqs.txt about dependency package installation for Debian-based Linux systems.

It may be wise to not install e.g. documentation generation tools (or at least not the full set for HTML/PDF generation) in each
environment, in order to conserve space and run-time stress.

Still, if there are significant version outliers (such as using an older distribution due to vCPU requirements), it can be installed
fully just to ensure non-regression — e.g. that when adapting Makefile rule definitions or compiler arguments to modern
toolkits, we do not lose the ability to build with older ones.

For this, chroot from the host system can be used, e.g. to improve the interactive usability for a population of Debian(-
compatible) containers (and to use its networking, while the operating environment in containers may be not yet configured or
still struggling to access the Internet):

:; for ALTROOT in /srv/libvirt/rootfs/*/rootfs/ ; do \
echo "=== $ALTROOT :" ; \
chroot "$ALTROOT" apt-get install \

Network UPS Tools User Manual 151 / 155

sudo bash vim mc p7zip p7zip-full pigz pbzip2 git \
; done

Similarly for yum-managed systems (CentOS and relatives), though specific package names can differ, and additional package
repositories may need to be enabled first (see config-prereqs.txt for more details such as recommended package names).

Note that technically (sudo) chroot ... can also be used from the CI worker account on the host system to build in the
prepared filesystems without the overhead of running containers as complete operating environments with any standard services
and several copies of Jenkins agent.jar in them.

Also note that externally-driven set-up of some packages, including the ca-certificates and the JDK/JRE, require that the
/proc filesystem is usable in the chroot environment. This can be achieved with e.g.:

:; for ALTROOT in /srv/libvirt/rootfs/*/rootfs/ ; do \
for D in proc ; do \

echo "=== $ALTROOT/$D :" ; \
mkdir -p "$ALTROOT/$D" ; \
mount -o bind,rw "/$D" "$ALTROOT/$D" ; \

done ; \
done

TODO: Test and document a working NAT and firewall setup for this, to allow SSH access to the containers via dedicated TCP
ports exposed on the host.

Arch Linux containers

Arch Linux containers prepared by procedure above include only a minimal footprint, and if you missed the -P pkg,list
argument, they can lack even an SSH server. Suggestions below assume this path to container:

:; ALTROOT=/srv/libvirt/rootfs/jenkins-archlinux-amd64/rootfs/

Let pacman know current package database:

:; grep 8.8.8.8 $ALTROOT/etc/resolv.conf || (echo 'nameserver 8.8.8.8' > $ALTROOT/etc/ ←↩
resolv.conf)

:; chroot $ALTROOT pacman -Syu
:; chroot $ALTROOT pacman -S openssh sudo
:; chroot $ALTROOT systemctl enable sshd
:; chroot $ALTROOT systemctl start sshd

This may require that you perform bind-mounts above, as well as "passthrough" the /var/cache/pacman/pkg from host to
guest environment (in virsh edit, and bind-mount for chroot like for /proc et al above).

It is possible that virsh console would serve you better than chroot. Note you may have to first chroot to set the root
password anyhow.

L.1.5 Troubleshooting

• Q: Container won’t start, its virsh console says something like:

Failed to create symlink /sys/fs/cgroup/net_cls: Operation not permitted

A: According to https://bugzilla.redhat.com/show_bug.cgi?id=1770763 (skip to the end for summary) this can happen when a
newer Linux host system with cgroupsv2 capabilities runs an older guest distro which only knows about cgroupsv1, such
as when hosting a CentOS 7 container on a Debian 11 server. ** One workaround is to ensure that the guest systemd does not
try to "join" host facilities, by setting an explicit empty list for that:

+

config-prereqs.txt
https://bugzilla.redhat.com/show_bug.cgi?id=1770763

Network UPS Tools User Manual 152 / 155

:; echo 'JoinControllers=' >> "$ALTROOT/etc/systemd/system.conf"

• Another approach is to upgrade systemd related packages in the guest container. This may require additional "backport"
repositories or similar means, possibly maintained not by distribution itself but by other community members, and arguably
would logically compromise the idea of non-regression builds in the old environment "as is".

– Q: Server was set up with ZFS as recommended, and lots of I/O hit the disk even when application writes are negligible
A: This was seen on some servers and generally derives from data layout and how ZFS maintains the tree structure of blocks.
A small application write (such as a new log line) means a new empty data block allocation, an old block release, and bubble
up through the whole metadata tree to complete the transaction (grouped as TXG to flush to disk).

• One solution is to use discardable build workspaces in RAM-backed storage like /dev/shm (tmpfs) on Linux, or /tmp
(swap) on illumos hosting systems, and only use persistent storage for the home directory with .ccache and .gitcache-dynamatrix
directories.

• Another solution is to reduce the frequency of TXG sync from modern default of 5 sec to conservative 30-60 sec. Check how
to set the zfs_txg_timeout on your platform.

L.2 Connecting Jenkins to the containers

To properly cooperate with the jenkins-dynamatrix project driving regular NUT CI builds, each build environment should be
exposed as an individual agent with labels describing its capabilities.

L.2.1 Agent Labels

With the jenkins-dynamatrix, agent labels are used to calculate a large "slow build" matrix to cover numerous scenarios
for what can be tested with the current population of the CI farm, across operating systems, make, shell and compiler implemen-
tations and versions, and C/C++ language revisions, to name a few common "axes" involved.

Labels for QEMU

Emulated-CPU container builds are CPU-intensive, so for them we define as few capabilities as possible: here CI is more inter-
ested in checking how binaries behave on those CPUs, not in checking the quality of recipes (distcheck, Make implementations,
etc.), shell scripts or documentation, which is more efficient to test on native platforms.

Still, we are interested in results from different compiler suites, so specify at least one version of each.

Note
Currently the NUT Jenkinsfile-dynamatrix only looks at various COMPILER variants for qemu-nut-builder
use-cases, disregarding the versions and just using one that the environment defaults to.

The reduced set of labels for QEMU workers looks like:

qemu-nut-builder qemu-nut-builder:alldrv
NUT_BUILD_CAPS=drivers:all NUT_BUILD_CAPS=cppunit
OS_FAMILY=linux OS_DISTRO=debian11 GCCVER=10 CLANGVER=11
COMPILER=GCC COMPILER=CLANG
ARCH64=ppc64le ARCH_BITS=64

https://github.com/networkupstools/jenkins-dynamatrix

Network UPS Tools User Manual 153 / 155

Labels for native builds

For contrast, a "real" build agent’s set of labels, depending on presence or known lack of some capabilities, looks something like
this:

doc-builder nut-builder nut-builder:alldrv
NUT_BUILD_CAPS=docs:man NUT_BUILD_CAPS=docs:all
NUT_BUILD_CAPS=drivers:all NUT_BUILD_CAPS=cppunit=no
OS_FAMILY=bsd OS_DISTRO=freebsd12 GCCVER=10 CLANGVER=10
COMPILER=GCC COMPILER=CLANG
ARCH64=amd64 ARCH_BITS=64
SHELL_PROGS=sh SHELL_PROGS=dash SHELL_PROGS=zsh SHELL_PROGS=bash
SHELL_PROGS=csh SHELL_PROGS=tcsh SHELL_PROGS=busybox
MAKE=make MAKE=gmake
PYTHON=python2.7 PYTHON=python3.8

L.2.2 Generic agent attributes

• Name: e.g. ci-debian-altroot--jenkins-debian10-arm64 (note the pattern for "Conflicts With" detailed below)

• Remote root directory: preferably unique per agent, to avoid surprises; e.g.: /home/abuild/jenkins-nut-altroots/jenkins-debian10-armel

– Note it may help that the system home directory itself is shared between co-located containers, so that the .ccache or
.gitcache-dynamatrix are available to all builders with identical contents

– If RAM permits, the Jenkins Agent working directory may be placed in a temporary filesystem not backed by disk (e.g.
/dev/shm on modern Linux distributions); roughly estimate 300Mb per executor for NUT builds.

• Usage: "Only build jobs with label expressions matching this node"

• Node properties / Environment variables:

– PATH+LOCAL⇒ /usr/lib/ccache

L.2.3 Where to run agent.jar

Depending on circumstances of the container, there are several options available to the NUT CI farm:

• Java can run in the container, efficiently (native CPU, different distro)⇒ the container may be exposed as a standalone host for
direct SSH access (usually by NAT, exposing SSH on a dedicated port of the host; or by first connecting the Jenkins controller
with the host as an SSH Build Agent, and then calling SSH to the container as a prefix for running the agent; or by using
Jenkins Swarm agents), so ultimately the build agent.jar JVM would run in the container. Filesystem for the abuild
account may be or not be shared with the host.

• Java can not run in the container (crashes on emulated CPU, or is too old in the agent container’s distro — currently Jenkins
requires JRE 8+, but eventually will require 11+)⇒ the agent would run on the host, and then the host would ssh or chroot
(networking not required, but bind-mount of /home/abuild and maybe other paths from host would be needed) called for
executing sh steps in the container environment. Either way, home directory of the abuild account is maintained on the host
and shared with the guest environment, user and group IDs should match.

• Java is inefficient in the container (operations like un-stashing the source succeed but take minutes instead of seconds)⇒ either
of the above

Network UPS Tools User Manual 154 / 155

Using Jenkins SSH Build Agents

This is a typical use-case for tightly integrated build farms under common management, where the Jenkins controller can log by
SSH into systems which act as its build agents. It injects and launches the agent.jar to execute child processes for the builds,
and maintains a tunnel to communicate.

Methods below involving SSH assume that you have configured a password-less key authentication from the host machine to the
abuild account in each guest build environment container. This can be an ssh-keygen result posted into authorized_keys,
or a trusted key passed by a chain of ssh agents from a Jenkins Credential for connection to the container-hoster into the container.
The private SSH key involved may be secured by a pass-phrase, as long as your Jenkins Credential storage knows it too. Note
that for the approaches explored below, the containers are not directly exposed for log-in from any external network.

• For passing the agent through an SSH connection from host to container, so that the agent.jar runs inside the container
environment, configure:

– Launch method: "Agents via SSH"
– Host, Credentials, Port: as suitable for accessing the container-hoster

Note
The container-hoster should have accessed the guest container from the account used for intermediate access, e.g.
abuild, so that its .ssh/known_hosts file would trust the SSH server on the container.

– Prefix Start Agent Command: content depends on the container name, but generally looks like the example below to report
some info about the final target platform (and make sure java is usable) in the agent’s log. Note that it ends with un-closed
quote and a space char:

ssh jenkins-debian10-amd64 '(java -version & uname -a ; getconf LONG_BIT; getconf ←↩
WORD_BIT; wait) &&

– Suffix Start Agent Command: a single quote to close the text opened above:

'

• The other option is to run the agent.jar on the host, for all the network and filesystem magic the agent does, and only
execute shell steps in the container. The solution relies on overridden sh step implementation in the jenkins-dynamatrix
shared library that uses a magic CI_WRAP_SH environment variable to execute a pipe into the container. Such pipes can be
ssh or chroot with appropriate host setup described above.

Note
In case of ssh piping, remember that the container’s /etc/ssh/sshd_config should AcceptEnv * and the SSH
server should be restarted after such configuration change.

– Launch method: "Agents via SSH"
– Host, Credentials, Port: as suitable for accessing the container-hoster
– Prefix Start Agent Command: content depends on the container name, but generally looks like the example below to report

some info about the final target platform (and make sure it is accessible) in the agent’s log. Note that it ends with a space
char, and that the command here should not normally print anything into stderr/stdout (this tends to confuse the Jenkins
Remoting protocol):

echo PING > /dev/tcp/jenkins-debian11-ppc64el/22 &&

– Suffix Start Agent Command: empty

• Node properties / Environment variables:

– CI_WRAP_SH⇒
ssh -o SendEnv='*' "jenkins-debian11-ppc64el" /bin/sh -xe

Network UPS Tools User Manual 155 / 155

Using Jenkins Swarm Agents

This approach allows remote systems to participate in the NUT CI farm by dialing in and so defining an agent. A single
contributing system may be running a number of containers or virtual machines set up following the instructions above, and each
of those would be a separate build agent.

Such systems should be "dedicated" to contribution in the sense that they should be up and connected for days, and sometimes
tasks would land.

Configuration files maintained on the Swarm Agent system dictate which labels or how many executors it would expose, etc.
Credentials to access the NUT CI farm Jenkins controller to register as an agent should be arranged with the farm maintainers,
and currently involve a GitHub account with Jenkins role assignment for such access, and a token for authentication.

The jenkins-swarm-nutci repository contains example code from such setup with a back-up server experiment for the NUT CI
farm, including auto-start method scripts for Linux systemd and upstart, illumos SMF, and OpenBSD rcctl.

L.2.4 Sequentializing the stress

Running one agent at a time

Another aspect of farm management is that emulation is a slow and intensive operation, so we can not run all agents and execute
builds at the same time.

The current solution relies on https://github.com/jimklimov/conflict-aware-ondemand-retention-strategy-plugin to allow co-located
build agents to "conflict" with each other — when one picks up a job from the queue, it blocks neighbors from starting; when it
is done, another may start.

Containers can be configured with "Availability⇒ On demand", with shorter cycle to switch over faster (the core code sleeps a
minute between attempts):

• In demand delay: 0;

• Idle delay: 0 (Jenkins may change it to 1);

• Conflicts with: ˆci-debian-altroot--.*$ assuming that is the pattern for agent definitions in Jenkins — not necessarily
linked to hostnames.

Also, the "executors" count should be reduced to the amount of compilers in that system (usually 2) and so avoid extra stress of
scheduling too many emulated-CPU builds at once.

Sequentializing the git cache access

As part of the jenkins-dynamatrix optional optimizations, the NUT CI recipe invoked via Jenkinsfile-dynamatrix
maintains persistent git reference repositories that can be used to cache NUT codebase (including the tested commits) and so
considerably speed up workspace preparation when running numerous build scenarios on the same agent.

Such .gitcache-dynamatrix cache directories are located in the build workspace location (unique for each agent), but on
a system with numerous containers these names can be symlinks pointing to a shared location.

To avoid collisions with several executors updating the same cache with new commits, critical access windows are sequentialized
with the use of Lockable Resources plugin. On the jenkins-dynamatrix side this is facilitated by labels:

DYNAMATRIX_UNSTASH_PREFERENCE=scm-ws:nut-ci-src
DYNAMATRIX_REFREPO_WORKSPACE_LOCKNAME=gitcache-dynamatrix:SHARED_HYPERVISOR_NAME

• The DYNAMATRIX_UNSTASH_PREFERENCE tells the jenkins-dynamatrix library code which checkout/unstash strat-
egy to use on a particular build agent (following values defined in the library; scm-ws means SCM caching under the agent
workspace location, nut-ci-src names the cache for this project);

• The DYNAMATRIX_REFREPO_WORKSPACE_LOCKNAME specifies a semi-unique string: it should be same for all co-located
agents which use the same shared cache location, e.g. guests on the same hypervisor; and it should be different for unrelated
cache locations, e.g. different hypervisors and stand-alone machines.

https://github.com/networkupstools/jenkins-swarm-nutci
https://github.com/jimklimov/conflict-aware-ondemand-retention-strategy-plugin
https://github.com/jenkinsci/lockable-resources-plugin

	Introduction
	Network UPS Tools Overview
	Description
	NUT and the ecosystem
	Installing
	Upgrading
	Configuring and using
	Documentation
	Network Information
	Manifest
	Drivers
	Extra Settings
	Hardware Compatibility List
	Generic Device Drivers
	UPS Shutdowns
	Power distribution unit management

	Network Server
	Monitoring client
	Primary
	Secondary
	Additional Information

	Clients
	upsc
	upslog
	upsrw
	upscmd

	CGI Programs
	Access Restrictions
	upsstats
	upsimage
	upsset

	Version Numbering
	Backwards and Forwards Compatibility
	Support / Help / etc.
	Hacking / Development Info
	Acknowledgements / Contributions

	Features
	Multiple manufacturer and device support
	Multiple architecture support
	Layered and modular design with multiple processes
	Redundancy support — Hot swap/high availability power supplies
	Security and access control
	Web-based monitoring
	Free software
	UPS management and control
	Monitoring diagrams
	"Simple" configuration
	"Advanced" configuration
	"Big Box" configuration
	"Bizarre" configuration

	Image credits
	Compatibility information
	Hardware
	Operating systems

	Download information
	Source code
	Stable tree: 2.8
	Development tree:
	Code repository
	Browse code
	Snapshots

	Older versions

	Binary packages
	Java packages
	Virtualization packages
	VMware

	Installation instructions
	Installing from source
	Prepare your system
	System User creation

	Build and install
	Configuration
	Build the programs
	Installation
	State path creation
	Ownership and permissions

	Building NUT for in-place upgrades or non-disruptive tests
	Overview
	Pre-requisites
	Getting the right sources

	Testing with CI helper
	Replacing a NUT deployment
	Replacing any NUT deployment
	Replacing a systemd-enabled NUT deployment
	Iterating with a systemd deployment

	Next steps after an in-place upgrade

	Installing from packages
	Debian, Ubuntu and other derivatives
	Mandriva
	SUSE / openSUSE
	Red Hat, Fedora and CentOS
	FreeBSD
	Binary package
	Port
	USB UPS on FreeBSD

	Windows
	Windows binary package
	Building for Windows

	Runtime configuration

	Configuration notes
	Details about the configuration files
	Generalities
	Line spanning

	Basic configuration
	Driver configuration
	Starting the driver(s)
	Driver(s) as a service
	Data server configuration (upsd)
	Starting the data server
	Check the UPS data
	Status data
	All data

	Startup scripts

	Configuring automatic shutdowns for low battery events
	Shutdown design
	How you set it up
	NUT user creation
	Reloading the data server
	Power Off flag file
	Securing upsmon.conf
	Create a MONITOR directive for upsmon
	Define a SHUTDOWNCMD for upsmon
	Start upsmon
	Checking upsmon
	Startup scripts
	Shutdown scripts
	Testing shutdowns

	Using suspend to disk
	RAID warning

	Typical setups for enterprise networks and data rooms
	Typical setups for big servers with UPS redundancy
	Example configuration
	Multiple UPS shutdowns ordering
	Other redundancy configurations

	Advanced usage and scheduling notes
	The simple approach, using your own script
	How it works relative to upsmon
	Setting up everything
	Using more advanced features
	Suppressing notify storms

	The advanced approach, using upssched
	How upssched works relative to upsmon
	Setting up your upssched.conf
	The big picture
	Establishing timers
	Executing commands immediately

	Writing the command script handler
	Early Shutdowns
	Background

	NUT outlets management and PDU notes
	Introduction
	NUT outlet data collection
	Outlets on PDU
	Outlets on UPS
	Other type of devices

	NUT daisychain support notes
	Introduction
	Implementation notes
	General specification
	Devices status handling
	Devices alarms handling
	Example

	Information for developers
	Base support
	Templates with multiple definitions
	Devices alarms handling

	Notes on securing NUT
	How to verify the NUT source code signature
	How to verify the NUT source code checksum
	System level privileges and ownership
	NUT level user privileges
	Network access control
	NUT LISTEN directive
	Firewall
	Uncomplicated Firewall (UFW) support

	TCP Wrappers

	Configuring SSL
	OpenSSL backend usage
	Install OpenSSL
	Recompile and install NUT
	Create a certificate and key for upsd
	Figure out the hash for the key
	Install the client-side certificate
	Create the combined file for upsd
	Note on certification authorities (CAs) and signed keys
	Install the server-side certificate
	Clean up the temporary files
	Restart upsd
	Point upsmon at the certificates
	Recommended: make upsmon verify all connections with certificates
	Recommended: force upsmon to use SSL

	NSS backend usage
	Install NSS
	Recompile and install NUT
	Create certificate and key for the host
	Create a self-signed CA certificate
	Install the server-side certificate
	upsd (required): certificate database and self certificate
	upsd (optional): client authentication
	upsmon (required): upsd authentication
	upsmon (optional): certificate database and self certificate

	Restart upsd
	Restart upsmon
	Recommended: sniff the connection to see it for yourself
	Potential problems
	Conclusion

	chrooting and other forms of paranoia
	Generalities
	symlinks
	upsmon
	Config files

	Glossary
	Acknowledgements / Contributions
	The NUT Team
	Active members
	Retired members

	Supporting manufacturers
	UPS manufacturers
	Appliances manufacturers

	Other contributors
	Older entries (before 2005)

	NUT command and variable naming scheme
	Structured naming
	Time and Date format
	Variables
	device: General unit information
	ups: General unit information
	input: Incoming line/power information
	output: Outgoing power/inverter information
	Three-phase additions
	Phase Count Determination
	DOMAINs
	Specification (SPEC)
	CONTEXT
	Valid CONTEXTs
	Valid SPECs

	EXAMPLES
	battery: Any battery details
	ambient: Conditions from external probe equipment
	outlet: Smart outlet management
	outlet.group: groups of smart outlets

	driver: Internal driver information
	server: Internal server information

	Instant commands

	Hardware Compatibility List
	Documentation
	User Documentation
	Developer Documentation
	Data dumps for the DDL
	Offsite Links
	News articles and Press releases

	Support instructions
	Documentation
	Mailing lists
	Request help
	Post a patch, ask a development question, …
	Discuss packaging and related topics

	IRC (Internet Relay Chat)
	GitHub Issues

	Cables information
	APC
	940-0024C clone
	940-0024E clone
	940-0024C clone for Macs

	Belkin
	OmniGuard F6C***-RKM

	Eaton
	MGE Office Protection Systems
	DB9-DB9 cable (ref 66049)
	DB9-RJ45 cable
	NMC DB9-RJ45 cable
	USB-RJ45 cable
	DB9-RJ12 cable

	Powerware LanSafe
	SOLA-330

	HP - Compaq
	Older Compaq UPS Family

	Phoenixtec (Best Power)
	Tripp-Lite

	Configure options
	Keeping a report of NUT configuration
	In-place replacement defaults
	Driver selection
	Serial drivers
	USB drivers
	SNMP drivers
	XML drivers and features
	LLNC CHAOS Powerman driver
	IPMI drivers
	I2C bus drivers
	GPIO bus drivers
	Modbus drivers
	Manual selection of drivers

	Optional features
	CGI client interface
	Pretty documentation and man pages
	Python support
	Development files
	Options for developers
	I want it all!
	Networking transport security
	Networking access security
	Networking IPv6
	AVAHI/mDNS
	LibLTDL

	Other configuration options
	NUT data server port
	Daemon user accounts
	Syslog facility

	Installation directories
	Directories used by NUT at run-time
	Things the compiler might need to find
	LibGD
	LibUSB
	Various

	Upgrading notes
	Changes from 2.8.2 to 2.8.3
	Changes from 2.8.1 to 2.8.2
	Changes from 2.8.0 to 2.8.1
	Changes from 2.7.4 to 2.8.0
	Changes from 2.7.3 to 2.7.4
	Changes from 2.7.2 to 2.7.3
	Changes from 2.7.1 to 2.7.2
	Changes from 2.6.5 to 2.7.1
	Changes from 2.6.4 to 2.6.5
	Changes from 2.6.3 to 2.6.4
	Changes from 2.6.2 to 2.6.3
	Changes from 2.6.1 to 2.6.2
	Changes from 2.6.0 to 2.6.1
	Changes from 2.4.3 to 2.6.0
	Changes from 2.4.2 to 2.4.3
	Changes from 2.4.1 to 2.4.2
	Changes from 2.4.0 to 2.4.1
	Changes from 2.2.2 to 2.4.0
	Changes from 2.2.1 to 2.2.2
	Changes from 2.2.0 to 2.2.1
	Changes from 2.0.5 to 2.2.0
	Changes from 2.0.4 to 2.0.5
	Changes from 2.0.3 to 2.0.4
	Changes from 2.0.2 to 2.0.3
	Changes from 2.0.1 to 2.0.2
	Changes from 2.0.0 to 2.0.1
	Changes from 1.4.0 to 2.0.0
	File trimmed here on changes from 1.2.2 to 1.4.0

	Project history
	Prototypes and experiments
	May 1996: early status hacks
	January 1997: initial protocol tests
	September 1997: first client/server code

	Smart UPS Tools
	March 1998: first public release
	June 1999: Redesigned, rewritten

	Network UPS Tools
	September 1999: new name, new URL
	June 2001: common driver core
	May 2002: casting off old drivers, IANA port, towards 1.0

	Leaving 0.x territory
	August 2002: first stable tree: NUT 1.0.0
	November 2002: second stable tree: NUT 1.2.0
	April 2003: new naming scheme, better driver glue, and an overhauled protocol
	July 2003: third stable tree: NUT 1.4.0
	July 2003: pushing towards 2.0

	Backwards and Forwards Compatibility (NUT v1.x vs. v2.x)
	networkupstools.org
	November 2003: a new URL

	Second major version
	March 2004: NUT 2.0.0

	The change of leadership
	February 2005: NUT 2.0.1

	Prerequisites for building NUT on different OSes
	General call to Test the ability to configure and build
	Build prerequisites to make NUT from scratch on various Operating Systems
	Debian 10/11/12
	CentOS 6 and 7
	Prepare CentOS repository mirrors
	Set up CentOS packages for NUT

	Arch Linux
	Slackware Linux 15
	FreeBSD 12.2
	OpenBSD 6.5
	NetBSD 9.2
	OpenIndiana 2021.10
	OmniOS CE (as of release 151036)
	Solaris 8
	MacOS with homebrew
	Windows builds
	Windows with mingw
	Windows with MSYS2

	CI Farm configuration notes
	Setting up the multi-arch Linux LXC container farm for NUT CI
	Common preparations
	Setup a container
	Initial container installation (for various guest OSes)
	Initial container-related setup

	Shepherd the herd
	Further setup of the containers
	Arch Linux containers

	Troubleshooting

	Connecting Jenkins to the containers
	Agent Labels
	Labels for QEMU
	Labels for native builds

	Generic agent attributes
	Where to run agent.jar
	Using Jenkins SSH Build Agents
	Using Jenkins Swarm Agents

	Sequentializing the stress
	Running one agent at a time
	Sequentializing the git cache access

