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Abstract—Microservice architecture has become a predomi-
nant paradigm in the software industry. This architecture neces-
sitates robust end-to-end testing to ensure seamless integration
of all components before deployment. Rapidly pinpointing issues
when test cases fail is crucial for enhancing software development
efficiency. However, in testing environments, the available trace
is often sparse, and the system is continuously upgrading, which
renders existing microservice-based root cause analysis (RCA)
ineffective. To address these challenges, we propose SparseRCA.
By assessing the abnormality of the exclusive latency, SparseRCA
directly determines the probability of the root cause, solving the
challenge of not being able to fully obtain the fault propagation
information, such as call relationships in sparse trace scenarios.
At the same time, by reconstructing the exclusive latency using
the decoupled atomic span units, it solves the problem of latency
prediction for new traces caused by frequent upgrades. We
evaluate SparseRCA on real-world datasets from a large e-
commerce system’s testing environment, where it demonstrates
significant improvements over existing models. Our findings
underscore the effectiveness of SparseRCA in addressing the
challenges of RCA in microservice testing environments.

Index Terms—root cause analysis, software testing, microser-
vice traces

I. INTRODUCTION

The microservice architecture, characterized by its design
dividing large systems into smaller, self-contained components
that communicate with each other, has emerged as a predomi-
nant architectural paradigm in the software industry, enhancing
scalability and flexibility in large-scale applications [1]–[5].

To maintain the reliability of microservices systems, con-
ducting end-to-end testing in microservices systems during
rapid software development iterations is crucial for ensuring
all components integrate seamlessly before full deployment
[6]. During these tests under microservice architecture, it is a
crucial step to perform root cause analysis (RCA) and localize
the underlying faulty microservice to improve the accuracy and
efficiency of subsequent interventions and maintain system in-
tegrity [7]–[10]. Typically, the process of localizing root causes
in microservices hinges on the system knowledge possessed
by operations engineers or on characteristics automatically
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Fig. 1: The traces are sparsely and unevenly distributed in
testing scenarios.

captured by RCA algorithms. This knowledge or these charac-
teristics are essential for diagnosing and troubleshooting newly
emerged faults.

To achieve efficient root cause localization, software engi-
neers extensively utilize various data sources (such as met-
rics [11]–[18], logs [19]–[22], traces [6], [23]–[27], or a
combination thereof [28]–[31]) to conduct automated, com-
prehensive incident analysis and fault diagnosis. While lo-
cating root causes among faulty microservices, tracing is a
widely employed tool to monitor and record the intricate
interactions within microservice architectures [6], [7], [27]. A
trace corresponding to a single user request includes multiple
spans, each recording information of a microservice call (e.g.,
the response time of each service), as shown in Fig. 2.
Compared to other data sources, tracing offers distinct ad-
vantages, including providing a highly detailed and contextual
visualization of a request’s exact path and processing timeline
through each microservice. Additionally, tracing facilitates
real-time, dynamic analysis and effective fault isolation by
delivering an end-to-end view of how requests traverse various
distributed components, which is crucial for diagnosing cross-
service issues in complex systems where single metrics or
logs may not provide a complete narrative. Utilizing traces or
metrics extracted from traces, many researchers have proposed
numerous effective methods for identifying the root causes in
microservice systems.

However, the previous methods mainly focus on perform-
ing RCA in production environments instead of the testing
environment, which has some distinct characteristics:



TABLE I: Comparison of trace sparsity between production
and testing scenarios. The dataset from the testing environ-
ment is collected from the datacenter of a large e-commerce
company in this study. The traces in testing environments are
significantly sparser than those in production environments.

Trace Dataset Source Traces Duration Services
AIOps-Challenge [32] Production 2.5m 50 days 22

Alibaba [33] Production 10b 7 days 20k
current study dataset Testing 6k 37 days 507

• Knowledge Obsolescence. In the testing environment,
system changes in microservices are more frequent. Pre-
viously accumulated knowledge about system character-
istics can easily become outdated, while knowledge of the
new system after changes is often not yet established or
fully analyzed. Furthermore, one result of these frequent
changes in characteristics is the frequent appearance of
new system features in the testing environment that have
never been seen in historical data, such as new and
previously unseen trace structures.

• Trace Sparsity. In the testing environment, because of
the high cost of constructing test cases [6], [34], traces
of microservices are significantly sparser than in the
production environment. Tab. I illustrates this difference,
showing a stark contrast between the density of traces in
production versus testing environments. Moreover, while
some key time series metrics, such as response success
rates and average microservice latency, are generally
obtained from aggregating a large number of traces, the
sparsity of traces in the testing environment results in
two further consequences: (1) First, due to the spar-
sity of traces, these trace-based aggregated metrics are
likely to become discontinuous, featuring many break-
points and null values. Fig. 1 shows the distribution
of traces collected from the testing environment of a
large e-commerce company’s data center, where traces are
sparsely and unevenly distributed, with long periods with-
out any traces, meaning that the mentioned trace-based
aggregated metrics cannot be calculated in these parts. (2)
Secondly, in the testing environment, the reduced number
of observation samples due to trace sparsity increases the
volatility of trace-aggregated metrics.

These two characteristics present unique challenges for root
cause localization in the testing environment, distinct from
those in the production environment:

Challenge 1: The infeasibility of human intervention for
RCA in the testing environment. In the testing environment,
actively introducing human intervention to assist with root
cause localization becomes very difficult. The traditional meth-
ods of introducing human knowledge designed for the produc-
tion environment become infeasible in the testing environment:
(1) Manual Annotation: Annotating traces and microservices
within a complex microservice architecture with numerous ser-
vices to perform RCA [6], [25] has always been challenging.
This problem becomes even more significant in the testing

environment due to more frequent system changes than in a
typical production environment. The information from direct
manual annotation might quickly become outdated in testing
environments, which increases the burden of maintaining an
annotated dataset. (2) Integrating Human Knowledge: In the
production environment, manually summarizing higher-level
knowledge, like setting rules [35] or constructing causality
graphs [30], [36], is a common solution. In the testing en-
vironment, however, the system characteristics and patterns
summarized in the production environment may no longer
apply after frequent software changes. Therefore, methods
integrating human intervention become much less unreliable
in testing scenarios.

Challenge 2: The limitations of traditional RCA meth-
ods in sparse trace environments. Previous RCA methods,
which rely on aggregating substantial trace data to summarize
knowledge automatically, encounter significant obstacles in
testing environments due to trace sparsity. On the one hand, the
substantial gaps and null segments in aggregated metrics hin-
der reliance on these metrics for RCA-related tasks, including
causality mining and microservice classification. On the other
hand, even if the RCA algorithms are successfully trained, the
volatility of time-series metrics due to the sparsity of samples
severely impacts the RCA algorithms’ ability to capture and
learn system characteristics and knowledge accurately. For
example, a microservice’s response success rate metric might
remain stable when there are abundant traces, but in scenarios
with fewer traces, even one or two failed responses can cause
dramatic fluctuations in the success rate metric. This limitation
greatly reduces the accuracy of the RCA models.

Challenge 3: The necessity for robust generalization and
data efficiency in dynamic testing environments. Frequent
changes in testing environments pose higher demands on the
generalization abilities and data efficiency of RCA models.
In these environments, previously unencountered trace struc-
tures may suddenly appear following system updates, subse-
quently being processed by the RCA algorithms. Conventional
methodologies [27], [29]–[31], [37] largely fail to address the
emergence of new topological changes or structural modifica-
tions within microservices. This demands that RCA algorithms
exhibit robust generalization abilities, enabling them not only
to elucidate internal patterns among existing microservices but
also to effectively perform analysis in zero-shot tasks where
they encounter completely novel trace structures.

To address the above challenges, we introduce SparseRCA.
This model boasts several distinctive features tailored to tackle
the issues previously highlighted. (1) SparseRCA is a trace-
based, unsupervised RCA model trained with historical traces
that carry microservice invocation topology and response times
recorded automatically by monitoring systems, eliminating the
need for manual fault annotation and trace classification. (2)
SparseRCA analyzes traces at the span granularity, processing
and analyzing each microservice’s response time recorded by
the spans within individual traces instead of relying on a
certain volume of trace data flow. It treats the trace spans
as atomic units for RCA and measures the anomaly levels of



{

{“TraceID”:“T1”, “SpanID”:“S1”, “parent”: “User”, “target”: “Service1”, “costTime”: 88ms},

{“TraceID”:“T1”, “SpanID”:“S2”, “parent”: “S1”, “target”: “Service2”, “costTime”:21ms},

{“TraceID”:“T1”, “SpanID”:“S3”, “parent”: “S1”, “target”: “Service3”, “costTime”:12ms},

{“TraceID”:“T1”, “SpanID”:“S4”, “parent”: “S1”, “target”: “Service3”, “costTime”:11ms},

{“TraceID”:“T1”, “SpanID”:“S5”, “parent”: “S1”, “target”: “Service3”, “costTime”:19ms},

}
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{

{“TraceID”:“T2”, “SpanID”:“S6”, “parent”: “User”, “target”: “Service1”, “costTime”: 80ms},

{“TraceID”:“T2”, “SpanID”:“S7”, “parent”: “S6”, “target”: “Service2”, “costTime”:24ms},

{“TraceID”:“T2”, “SpanID”:“S8”, “parent”: “S6”, “target”: “Service3”, “costTime”:19ms} 

{“TraceID”:“T2”, “SpanID”:“S9”, “parent”: “S6”, “target”: “Service3”, “costTime”:18ms},

}
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{

{“TraceID”:“T3”, “SpanID”:“S10”, “parent”: “User”, “target”: “Service1”, “costTime”: 60ms},

{“TraceID”:“T3”, “SpanID”:“S11”, “parent”: “S10”, “target”: “Service2”, “costTime”:22ms},

{“TraceID”:“T3”, “SpanID”:“S12”, “parent”: “S10”, “target”: “Service4”, “costTime”:30ms},

{“TraceID”:“T3”, “SpanID”:“S13”, “parent”: “S12”, “target”: “Service3”, “costTime”:13ms},

{“TraceID”:“T3”, “SpanID”:“S14”, “parent”: “S12”, “target”: “Service3”, “costTime”:15ms},

}
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Fig. 2: Examples of traces. Each trace corresponds to a specific
user request, consisting of a series of trace spans recording the
microservice calls during the request.
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(b) Performance Variability:
varying response times of
microservices across differ-
ent traces in our dataset.

Fig. 3: Illustration of some challenges for RCA in trace-sparse
scenarios from a real-world dataset. During certain periods, the
microservice is not accessed, making statistical metrics like
error rate or average latency unstable or discontinuous. Addi-
tionally, the microservice latencies, particularly the inclusive
latencies, vary across different traces.

these spans based on the span-specific latencies rather than
relying on statistical information across hundreds of accumu-
lated traces within a time window, addressing the problem of
possible sparse trace data flow in testing scenarios. (3) By
analyzing the exclusive latency which is closely related to the
probability of being root causes [38], SparseRCA investigates
consistent performance components across traces varying in
terms of trace structure and microservice performance, which
effectively minimizes the impact of variability in microservice
performance. (4) Furthermore, when encountering entirely
new trace structures, SparseRCA adeptly extrapolates the
parameters for these new configurations from the most similar
existing trace structures. This design ensures reliable root
cause analysis, even for trace structures that have not been
previously observed.

In summary, this paper makes the following contributions:

• We introduce an unsupervised model, SparseRCA, which
performs root cause analysis based on traces in mi-
croservice testing environments without needing manual
annotation or classification of traces.

• SparseRCA performs root cause analysis at the span
granularity, enabling effective root cause localization in
testing scenarios where the traces are sparse.

• SparseRCA investigates the exclusive latency components
of microservices, thereby enhancing robustness as per-
formance metrics and call structures evolve dynamically.
Notably, the model demonstrates a sophisticated capabil-
ity to estimate exclusive latency when confronted with
previously unencountered microservice call structures.
Furthermore, it incorporates topological information to
enhance the precision of root cause localization.

• Evaluation on datasets collected from the testing en-
vironment of a large e-commerce system shows that
SparseRCA outperforms the baselines, achieving a 4.9%-
46.8% improvement in top-1 accuracy and a 15.1%-
48.6% improvement in top-5 accuracy. Ablation studies
confirm the effectiveness of model components.

II. BACKGROUND

This section introduces the architecture and key concepts,
formulates the problem of trace-based RCA, and discusses the
related works.

A. Architecture and Key Concepts

1) Microservice Architecture: Microservice architecture
is an architectural style that structures an application as hun-
dreds or thousands of loosely coupled functional units called
microservices. The microservices are highly maintainable and
testable, independently deployable, and usually managed by
different small teams. This architecture is widely utilized in
large web companies like Twitter [4], Microsoft [38], and
Alibaba [33], [39].

2) Software Changes: Software changes refer to modifi-
cations made to a software system, including bug fixes, en-
hancements to existing features, or adding new features. Such
changes can potentially alter the behavior of microservice
interactions, such as introducing new calls unseen in history,
making models trained with data from history before these
changes are generally less reliable [40], [41].

3) Testing Environment: In software development, there
are Development Environment (DE), Testing Environment
(TE), and Production Environment(PE). Integration testing
and acceptance testing are usually conducted in TE, where
requests are fed into the software to test whether Service Level
Objectives (SLOs) are satisfied end-to-end. For example, if the
user authentication microservice is updated, testing in TE is
needed to ensure this microservice works seamlessly with all
other microservices in an end-to-end manner.

4) Traces, Spans, and Contexts: In microservice systems,
a trace represents the end-to-end journey of a user request
as it propagates through various services and components
in a system. A trace is composed of multiple spans, each



representing a single microservice call within a trace. As
illustrated in Fig. 2, each span includes the start and end time
of the call and other metadata, such as the callee microservice,
tag, and parent ID, providing detailed insight into the specific
segment of the request’s journey. We refer to the callee
microservice as the corresponding microservice to the span.

A span records its parent span ID, facilitating the recon-
struction of the trace topology. In this paper, given a specific
span in a trace, we refer to the list of all ancestor microservice
nodes and the microservice of the span as the context of the
span. Please note that while a service might be called for
multiple times, we distinguish these calls by different spans
although they share the same callee microservice.

5) Inclusive and Exclusive Latency: The latency of a span
refers to the time taken for a call to a microservice to be
processed. There are two types of latency measurements:

• Inclusive Latency (InL): The total time taken to com-
plete a microservice call, including the time spent in child
calls. It provides an overall measurement of the call. InL
is usually directly collected by comparing the start and
end timestamps of a microservice call.

• Exclusive Latency (ExL): The time taken to complete
a microservice call, excluding the time spent in child
calls. It measures the execution time of a microservice
and helps identify performance bottlenecks [27], [38].

B. Root Cause Analysis on Traces

In microservices systems, there are many Service Level
Objective (SLO) violations [42]. These violations include end-
to-end performance and reliability violations, such as high
user latency or service unavailability, and infrastructure metric
violations, such as continuously increasing memory usage and
abnormally frequent garbage collection. When SLO violations
are identified, the monitoring system reports the corresponding
traces as abnormal, triggering the Root Cause Analysis (RCA)
process to identify the microservice most likely responsible
for the violation. This is a common practice as in previous
studies [38], [43]–[45]. Trace-based RCA uses abnormal traces
as input, considering all microservice nodes within a trace as
potential root cause candidates. The process then outputs a
ranking of the suspected microservices, enabling operators to
perform targeted remediation and reducing the time needed
for SLO recovery [17].

While a microservice might be called multiple times in a
trace and, therefore, recorded in multiple spans, the highest
root cause score of these spans is usually taken as the root
cause score for this microservice. This service-level score is
then used in the service root cause ranking or performance
bottleneck analysis [27].

III. RELATED WORKS

It has been a long-standing and popular research topic
to perform RCA within software microservice architectures,
utilizing various data sources which include metrics [11]–[18],
logs [19]–[22], [50], traces [6], [23]–[27], and a combination
thereof [28]–[31]. Among these, traces have emerged as a

TABLE II: Related works on root cause analysis and their
disadvantages under testing scenarios. HI indicates the need
for direct human inspection of raw data. HE indicates the
need for human expertise in configurations and rules. TT
indicates that the model requires continuous stable traces
during training. TI indicates that the model requires multiple
traces during inference. UT indicates that the model cannot
process untrained trace topology. Checkmarks represent the
models that have these disadvantages.

Challenge 1 Challenge 2 Challenge 3
Works HI HE TT TI UT

Diagnosing [25] ✓ ✗ ✗ ✗ ✓
Manual [6] ✓ ✗ ✗ ✗ ✓

PDiagnose [35] ✗ ✓ ✗ ✓ ✗
Groot [30] ✗ ✓ ✗ ✗ ✓

KGroot [36] ✗ ✓ ✗ ✗ ✓
CoE [37] ✓ ✗ ✗ ✗ ✓

TraceDiag [38] ✓ ✗ ✗ ✗ ✗
MicroRCA [15] ✗ ✗ ✓ ✗ ✓
AutoMap [28] ✗ ✗ ✓ ✗ ✓
TraceRCA [46] ✗ ✗ ✓ ✓ ✓
AlertRCA [46] ✗ ✗ ✓ ✓ ✗

CIRCA [47] ✗ ✗ ✓ ✓ ✓
RCD [48] ✗ ✗ ✓ ✓ ✗

MicroHECL [16] ✗ ✗ ✓ ✓ ✗
tprof [27] ✗ ✗ ✓ ✗ ✓

Dejavu [49] ✓ ✗ ✓ ✓ ✓
CMDiagnostor [17] ✗ ✗ ✓ ✓ ✓

Nezha [31] ✗ ✗ ✓ ✓ ✓
Eadro [29] ✗ ✗ ✓ ✓ ✗

Microscope [24] ✗ ✗ ✗ ✗ ✓
MicroRank [23] ✗ ✗ ✗ ✓ ✗

SparseRCA (ours) ✗ ✗ ✗ ✗ ✗

particularly important and advantageous method due to their
detailed and sequential nature, capturing the flow of requests
through services. Some metric-based methods also rely on
metrics aggregated from traces, such as error rates and average
latency [17].

Several prior studies have proposed trace-based root cause
localization methods that require human intervention. Some
approaches [6], [25] rely on manual classification and la-
beling of traces before training the models. PDiagnose [35]
transforms original multi-modal data into multiple time se-
ries features and uses manually designed threshold-based
rules to detect and diagnose issues. Some other works [30],
[36] rely on an event-causal graph constructed with manual
configurations for event-level root cause inference. TraceArk
[51] involves human engineers for anomaly evaluation to
optimize alert generation strategies. TraceDiag [38] adopts
reinforcement learning to train a decision-maker using labeled
root cause information, constructing and pruning a service
dependency graph that is subsequently used for root cause
localization. However, the frequent system updates and trace
sparsity challenge the effectiveness of these traditional RCA
methods, which often require substantial trace data and stable
system characteristics that are not always available in rapid
testing cycles.

Another category of RCA methods uses statistical metrics,



such as average latency per minute and error rate per minute,
extracted or aggregated from a continuous trace data flow to
localize root causes. Some of these methods use predefined
rules or correlation mining algorithms (e.g., Pearson corre-
lation) to construct a weighted causality graph representing
fault propagation probabilities, which is then used for root
cause inference [15], [28], [48]. Some other algorithms directly
utilize these statistical metrics for classification and prediction,
determining whether microservices are in an anomalous state
and providing a comprehensive root cause ranking based on
the overall topology and anomaly states of all microservices
[16], [17], [24], [47], [49]. Furthermore, Nezha [31] converts
multi-modal data into events and computes event patterns
based on their co-occurrence ratios, comparing the patterns
under normal and fault conditions to indicate root causes. The
aforementioned methods generally rely on the assumption that
the extracted statistical metrics form a stable and continuous
time series for further mathematical operations like correlation,
convolution, or ratio calculation. However, when traces are
sparse, such as in testing scenarios, these statistical metrics
can fluctuate significantly or contain numerous null values (as
shown in Fig. 3a), affecting the accuracy and feasibility of
these mathematical operations.

Some researchers have focused on topology-based and
causality-based RCA algorithms with various search policies.
These methods mostly utilize performance indicators from
individual traces. Microscope [24] uses derived thresholds
(e.g., the 3-σ principle) based on the SLO characteristics
(such as latency) of the microservices to tell whether they
are anomalous and then identify the root cause microservice
from the anomalous subset with the topology information.
MicroRank [23] establishes a linear regression model based
on end-to-end latency and the number of various microservice
calls within a trace, setting end-to-end latency thresholds for
anomaly classification and using spectral analysis to rank
root cause microservices. However, both methods rely on the
assumption that the inclusive latency of the same microservice
remains consistent across different traces and invocations,
which actually contradicts the dynamic nature of microservice
inclusive latency in microservice environments [27], [38], [51],
as shown in Fig. 3b. Some other researchers propose tprof [27]
which decomposes spans into subspans based on the starting
and ending timestamps of child spans, and perform RCA by
analyzing the subspan durations. This method assumes that the
order of a microservice calling its child microservices remains
consistent from the past to the future, which might not be true
in evolving microservices. Furthormore, when encountering
previously unseen call structures, tprof cannot perform calcu-
lations due to the lack of corresponding historical subspans.
For example, tprof fails to estimate the corresponding subspan
duration expectations if a new trace includes ”Service A
calling B, C, and D” while historically only ”Service A calling
B and C” and ”Service A calling B and D” exist.

Inspired by tprof [27], we designed a trace-based, data-
efficient root cause localization algorithm named SparseRCA.
Similar to the third and fourth layers in tprof, our SparseRCA

Service B Service C

Service G

multiple calls multiple calls

Common codes

Service B-related Service C-related

Context List
[𝐺, 𝐴]

Children Set
{𝐵, 𝐶}

Service A

User request

Fig. 4: An example illustrating the ExL components. The
context of Service A is a list from the initial service to itself,
and the children set is the set of microservices called by
Service A. The exclusive latency of Service A (the block in
orange) is contributed by (1) the common components (in light
green) and (2) the components related to the call number of
child microservices (in dark green and light blue).

also decomposes trace span durations based on the relation-
ship between spans and related children spans. However,
SparseRCA makes several improvements: (1) SparseRCA de-
composes exclusive latency instead of inclusive latency to
ensure robustness and does not restrict the order of child
span invocation timestamps; (2) we propose a method in
SparseRCA to estimate the span ExL for unseen call struc-
tures; (3) a personalized PageRank is employed to incorporate
topological information to refine the performance-based RCA.

IV. EMPIRICAL STUDY

While the degree of abnormality in ExLs is often closely
related to the probability of a microservice being the root cause
[38], the ExL of spans is usually influenced by the control flow
of a microservice, including the upstream relevance (context)
and downstream relevance (child set). Empirical studies are
conducted to verify these relevances.

To understand whether the contexts influence the ExL
of the spans, we analyze the ExL and the different context
categories of each call. We conducted ANOVA tests [52] on
calls with different contexts to examine the relevance between
the context categories of a certain same call and the span
latencies, with the null hypothesis that the context categories
do not affect the ExL of the same call. The results show
that more than 44.8% of the calls have p-values below 0.05,
rejecting the null hypothesis and indicating that the latencies of
these calls are significantly related to their context. We define
the spans with the same context as context-aware spans.

Similarly, to further verify whether the child set influences
the ExL of the spans, we conducted relevance tests. To
eliminate the previously confirmed influence by context, we
perform the relevance tests across all context-aware spans with
different downstream call numbers. In addition to the ANOVA
test, we employed the Kruskal-Wallis H test [53] to provide
a more robust analysis in scenarios where sample sizes are
smaller and ANOVA’s variance of a certain category is not



reliable. The results show that 59.6% (ANOVA) and 63.4%
(Kruskal-Wallis) of the context-aware span ExLs reject the
null hypothesis with a p-value lower than 0.05, demonstrating
relevance with the number of downstream calls.

Therefore, our design of SparseRCA is inspired by the
following insights:

• Insight 1: Both the context and children set should be
considered to accurately model the ExL of spans.

• Insight 2: When a microservice performs a task, some
components of the ExL are related to the number of
downstream calls. This overhead may come from exe-
cuting pre-processing codes, information synchronization
codes, and post-processing codes after the calls to child
microservices.

• Insight 3: When a microservice performs a task, some
components of the ExL are unrelated to the number
of downstream calls. This overhead may come from
code blocks unrelated to calling child microservices or
from those code blocks always executed as common pre-
processing and post-processing, regardless of the number
of calls to child microservices.

Please note that Insight 2 and Insight 3 are general
assumptions that apply to both asynchronous and synchronous
architecture. An asynchronous architecture will only change
the portion of downstream-call-number-related components
in the ExL. We assume that the asynchrony of a specific
call between two microservices remains essentially unchanged
(i.e., there will not be both synchronous and asynchronous
calls between microservice A and microservice B during the
same period).

V. DESIGN

Based on the insights from previous empirical studies, this
section presents the details of the SparseRCA model. We begin
with an overview of the workflow. Next, we introduce the key
components of the workflow in detail.

A. Overview

SparseRCA is an unsupervised model designed for trace-
based root cause analysis. It leverages the normal trace data
to learn the distribution of ExL. The workflow is in Fig. 5.

The training and testing workflow for SparseRCA begins
with preprocessing the traces. This step maps each span of a
specific trace to three observation metrics: (1) the ExL derived
from the InLs of the spans, (2) the pattern of the span, and
(3) the number of calls to child microservices.

During both the training and root cause inference stages,
SparseRCA uses the pattern parameters and the number of
child calls in each span to estimate the ExL distribution of
each span. While the span pattern set is constructed based on
the training set, a span of the testing trace may not match
any existing pattern. To address this, we designed a pattern
prediction module that predicts pattern parameters for these
spans based on similar recorded patterns.

In the training stage, the estimated ExL distribution is com-
pared with the ExL observations to update the parameters. In

the root cause inference stage, this estimated ExL distribution
is compared with the ExL observations to generate the ExL
anomaly score for each span. This score is then fed into a
personalized PageRank algorithm to produce the final service
RCA scores.

B. Preprocessing

As the first step of both the training and root cause inference
stages, the SparseRCA takes the traces as input and outputs
the span pattern-based features.

In this step, while each span records its direct parent
and corresponding microservice, the process involves three
extractions for a span Si, which include:

1) The span ExL, ET(Si), is extracted by calculating the
difference between the InL of the span and the non-
overlapping InLs of its child spans.

2) The pattern of span, P (Si), is extracted by calculating
the span context and the set of child microservices.

3) The child calls are categorized by the targeted child
microservices and counted. The call number array is
denoted as N(Si)

Following the Insight 1 in Section IV, We define the
pattern of a span as the combination of its context and
children set, indicating both the upstream (context list) and
downstream (children set) microservice control flow.

Different spans within the same span pattern have the same
context list and children set. Empirically, their ExL distribu-
tion changes with the number of downstream calls similarly
because they execute the same code blocks and share similar
latency-contributing components (like queueing and network
delay). If the observed ExL of a specific span does not follow
this distribution, the span might be executing an abnormal
branch, experiencing unexpected abortion, or encountering
unwanted delays, which means this span is suspicious to be
the root cause of SLO violation.

Based on the previous discussion, we designed the prepro-
cessing module to extract the three types of measurements
from the training of testing traces. For example, if a span
records the InL of microservice B as 15ms, with the context
as A→ B, and there are 2 child calls from microservice B to
microservice D and 5 child calls from B to E which take 5ms
in total, we extract the ExL of the span as 10ms, the pattern of
this span as ([A,B], {D,E}), and the number of child calls
as [2, 5] to microservice D and E.

C. Span Exclusive Latency Modeling in Training

The Span ExL Modeling serves as the second step of the
training stage, as shown in Fig. 5.

Based on the Insight 2 and Insight 3 in Section IV, we
model the ExL of a microservice as two components: the ExL
influenced by or uninfluenced by the number of calls to child
microservices, which can be expressed as:

ET(Si) = R(θ(P (Si))) +C(θ(P (Si))) ·N(Si) (1)
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where θ(P (Si)) is the pattern parameters of a specific span
pattern, R is the distribution of latency component unrelated
to the number of calls to child microservices, and C is the
distribution of latency component increasing with N(Si), the
number of calls to child microservices.

Empirically, we assume the noises in R and C both follow
the Gaussian distribution, then:

R ∼N (tR(P (Si))), σ
2
R(P (Si))) (2)

C ∼N (tC(P (Si)), σ
2
C(P (Si))) (3)

where tR, σ2
R, tC and σ2

C are the Gaussian parameters
collectively referred to as the previously introduced θ(P (Si)).

To learn a distribution, a popular solution is to utilize
Variational Autoencoder (VAE) [54]. However, in our practice,
the trace sparsity in the testing scenario makes it difficult
to train a reliable VAE model. The varying density of the
observations under each span pattern often makes it overfit or
non-convergence. To learn the θ(P (Si)) in SparseRCA, the
Gaussian expectation can be easily obtained using the least
squares method [55], while the variance can be approximately
obtained using the EM algorithm [56].

D. Span Exclusive Latency Inferencing in Testing

During the root cause inference stage, the traces are pre-
processed in the same manner as in the training stage. Subse-
quently, the ExL distributions of the spans are estimated.

1) Recorded Span Patterns: For the span patterns in the
testing trace, if a pattern exists in the training traces, we can
directly derive the ExL distribution through Eq. (1) with the
pattern parameters obtained during the training stage.

2) Unrecorded Span Patterns: There are scenarios where a
testing span pattern does not match any patterns in the record.
To address this, we have designed a pattern prediction module
to estimate the parameters for unseen span patterns.

The pattern prediction is illustrated in Fig. 6. The algorithm
is in Alg. 1. In this module, we first identify recorded span

Algorithm 1: Unseen Pattern Prediction

1 def EstimatePattern(Pnew, Prec, q):
Input : Pnew, the new pattern; Prec, the set

of recorded patterns; q, filtering
percentile parameter.

Output : the pattern parameters θ(Pnew)
2 Prelated ← FilterRelated(Pnew, Prec);
3 ω ← SimilarityByEditDistance(Pnew, Prelated);
4 Pf , ωf ← FilterByWeights(Pnew, Prelated, ω, q);
5 θ(Pnew)← WeightedMean(θ(Pf ), ωf );
6 return θ(Pnew);

patterns related to the testing span pattern (line 2). Related
patterns refer to recorded span patterns that (1) share the
same microservice (as the orange block in Fig. 6) and (2)
share any child microservices (e.g., P1 and P3 both share the
child microservice C). When the testing pattern has no child
microservices, we only keep the first constraint. After identi-
fying the related recorded patterns, we calculate the similarity
of the patterns to the testing pattern by the reciprocals of the
Levenshtein edit distances and derive the filtered patterns, Pf ,
with the distance-based weights, ωf (line 3 - 4). Finally, we use
these threshold-filtered Levenshtein edit distances as weights
to estimate the parameters of the testing pattern by weighted
average (line 5). In practice, the filtering percentile parameter
q in Alg. 1 is set as five by experience, which means we filter
out the top-5% most dissimilar patterns if there are two or
more patterns that can be referenced for a specific parameter.

After the pattern prediction, the span ExL distribution is
derived from Eq. (1), utilizing the predicted parameters and
the number of calls extracted during the preprocessing step.

E. Root Cause Score Calculation and Modification

In the last step of the root cause inference stage, the root
cause scores of the spans and services are derived.
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1) Span ExL Anomaly Score: According to the Eq. 1, the
ExL of a specific span Si follows a Gaussian distribution
with the given N(Si). The expectation and variation of this
distribution are denoted as µ(Si) and σ2(Si), respectively.
The ExL anomaly score, Yraw(Si), is then calculated as the
product of standardized deviation and relative deviation:

Yraw(Si) =
(ET(Si)− µ(Si))

2

(µ(Si) + ϵ) ∗ (σ(Si) + ϵ)
(4)

where ϵ is a smoothing factor. An ablation study is conducted
to justify the design of the ExL anomaly score as in Eq. (4)
over other metric (e.g., relative deviation only).

2) Personlized PageRank: As performance abnormalities
might propagate from the downstream root cause microservice
to the parent microservices, making the root cause microser-
vices not necessarily the microservices with the highest ExL
abnormality [38]. To address this, we designed a topology-
based modification step to optimize the root cause scores. The
goal of this step is to reallocate a portion of the root cause
scores from ancestor nodes back to their child nodes. This
adjustment reduces the influence of performance anomalies
propagating from ground truth root cause microservices to
their parents and ancestors. For the whole span set S in a
trace, we denote the modified and final root cause score array
as Ymod(S) and Yfinal(S), respectively:

Y
(t+1)
mod (S) = αYraw(S) + (1− α)M×Y

(t)
mod(S) (5)

Y
(0)
mod(S) = Yraw(S) (6)

Yfinal(S) = Y
(L)
mod(S) (7)

Here, α is the transition probability, and M is the normalized
directed adjacency matrix of the spans in the trace. By
experience, α is assigned as 0.9, and L is 3 since most faulty
non-root-cause anomalies are observed to be near this length
to the ground truth root cause in our dataset and datasets
from other researches [46]. The root cause score of a specific
microservice is determined by the highest final span root cause
score of the spans corresponding to this microservice.

#Traces
(train)

#Traces
(test)

Overall
(Duration) #Services

AvgSrv
(per trace)

AvgSpn
(per trace)

6,080 120 29 days 507 10.6 38.7

TABLE III: Dataset Description. AvgSrv represents average
service number while AvgSpn represents average span number.

VI. EVALUATION

In this section, we will verify and analyze the performance
of SparseRCA on the testing scenario dataset. Our primary
research questions are as follows:

• RQ1: Effectiveness. How does SparseRCA improve the
accuracy of RCA compared to other baseline algorithms
on the real-world testing scenario dataset?

• RQ2: Ablation Study. What is the individual and com-
bined contribution of some designs in SparseRCA?

• RQ3: Trace Sparsity Robustness. How does our model
perform in scenarios with even sparser traces?

A. Experiment Design

1) Datasets: We trained and evaluated SparseRCA using a
dataset comprising approximately 6 thousand traces collected
from the test environment in a data center of a large e-
commerce company, as described in Table. III. The dataset
comprises traces collected over 29 days and covers around
507 microservices within the test environment of the data
center. Each trace records information including the service
call topology, service call InL, success status codes, and the
physical host IP of the microservices. Among the traces, 120
anomalous traces identified by SLO violation were labeled by
experts with root causes and were exclusively used as the test
set, while the remaining unlabeled traces in the dataset are the
full training set for SparseRCA.

In Section VI-B and Section VI-C, the entire training set
was employed to train both complete and incomplete versions
of the SparseRCA model. In Section VI-D, the size of the
training set was incrementally increased, with only a subset
of the training set used for SparseRCA training.

2) Evaluation Metric: Following existing works like [16],
[23], we use top-k accuracy to evaluate the RCA accuracy.
This metric indicates the probability of the true root cause



being among the top-k recommended options provided by
the RCA algorithm. We utilize the random strategy to break
the ties. Assuming there are m candidates having root cause
scores tied with the ground truth root cause, and the best root
cause ranking of these tied candidates is n, then the evaluation
metrics are as follows:

ai =

{
min(m, k − n+ 1)/m if n ≤ k

0 if n > k

A@k =
1

T

T∑
i=1

ai × 100%

Here, ai represents the top-k accuracy of the RCA algorithm
on the i-th trace, and T is the total number of traces in the
test set. A@k is the overall top-k accuracy of the algorithm.

3) Baselines: This section will briefly introduce several
trace-based unsupervised RCA algorithms selected as base-
lines for our study.
Microscope [24]. Microscope is a typical causal-graph-based
RCA algorithm with specified searching rules, depending on a
causal dependency graph to discover candidate nodes and then
detect connected abnormal nodes violating the SLO metrics.
MicroHECL [16]. MicroHECL is a typical topology-graph-
based RCA algorithm with specified searching rules. It con-
structs a fault propagation topology based on the interrela-
tionships of metrics and locates the root cause by sequentially
detecting the presence of faults in the topology.
AutoMap [28]. AutoMap is a typical causal-graph-based RCA
algorithm with a random walk strategy, depending on condi-
tional independence tests of monitoring metrics to determine
the causal relationships between microservice nodes.
MicroRank [23]. MicroRank is an RCA algorithm combining
end-to-end InL and spectral analysis techniques, which maps
the number of calls to various microservices to the end-to-end
InL to classify the traces and then performs spectral analysis.
While the vanilla MicroRank requires dense traces to perform
spectrum analysis, we perform the first step of MicroRank on
sub-traces when the traces are not rich enough in a specific
period.

Other algorithms that utilize logs or non-performance met-
rics were not selected as baselines, as they do not conform to
the format of our input data [19]–[22]. Additionally, certain
algorithms were excluded from our comparison because they
necessitate additional expert configuration or manual annota-
tion of the root causes [30], [35], [37]. Other trace-density-
dependent methods fail to train on our sparse trace dataset
[31], [47]. In detail, Nezha [31] fails to learn the event support
for many patterns in its construction and testing stage, and
CIRCA [47] fails to access continuous data traffic during
structural graph construction and hypothesis testing. Some
deep learning models fail to converge in time or produce
reliable non-null output [29], [57].

4) Environment: Our experiments run with 32GB RAM
and an AMD Ryzen 7 5800H with Radeon Graphics CPU,
featuring a base clock speed of 3,201 MHz and 4,096 KB of

TABLE IV: Performance of SparseRCA and Baselines

Model Category A@1
(%)

A@3
(%)

A@5
(%)

B
as

el
in

es

MicroHECL Stat-based
Topology 19.3 26.4 39.5

AutoMap Stat-based
Causality 40.7 50.6 61.5

MicroScope Stat-based
Causality 40.3 66.3 73.0

MicroRank Trace InL
& Spectrum 61.2 67.6 73.0

O
ur

s

SparseRCA Trace ExL
& Topology 66.1 86.4 88.1

L2 cache. SparseRCA takes 12 minutes to train on the full
trainset and about 0.2 seconds per trace in the inference stage.

B. RQ1: Effectiveness

The experiments were conducted under the previously intro-
duced settings, and Table IV illustrates the RCA performance
of SparseRCA and other baseline algorithms on the test set.

All the models presented in Table IV are unsupervised.
Among these, SparseRCA exhibited the highest accuracy,
significantly outperforming the baseline algorithms, which
include MicroScope [24], MicroHECL [16], AutoMap [28],
and MicroRank [23].

Notably, the baseline methods that rely on statistical-metric-
based causality discovery or topology elimination showed
poorer performance. This result suggests that causality derived
from statistics based on sparse trace data is rather inaccu-
rate. As a comparison, models that estimate the performance
metrics for a single trace (InL for MicroRank and ExL for
SparseRCA) generally achieved better results.

Further, MicroHECL’s poorest performance indicates that
the service correlation topology and service abnormality clas-
sifiers might be learned incorrectly in the testing environment
with sparse traces.

C. RQ2:Ablation study

In this section, an ablation study is performed to help ana-
lyze the effects of the following components in SparseRCA:

1) The Pattern-Based Modeling of the span ExLs (instead
of the call-based), denoted as PBM.

2) The Distribution-Based Anomaly score of ExL (instead
of expectation-based), denoted as DBA.

3) The topology-based Root Cause Modification through
personalized PageRank, denoted as RCM.

To set up the comparison, removing PBM refers to mod-
eling the ExL of all spans of the same call type without
distinguishing its context and child set; removing DBA refers
to utilizing only the expectation to generate the span ExL
anomaly score, which replaces the Yraw in Eq. (4) with Y ′

raw

in Eq. (8); removing RCM refers to replacing the Yfinal with
the Yraw in Eq. (4).

Y ′
raw(Si) =

|ET(Si)− µ(Si)|
µ(Si) + ϵ

(8)



TABLE V: The Performance of Complete and Partial
SparseRCA Models

Model PBM DBA RCM A@1 A@3 A@5
Complete SparseRCA ✓ ✓ ✓ 66.1 86.4 88.1

Partial

w/o (RCM) ✓ ✓ × 49.2 72.9 72.9
w/o (DBA) ✓ × ✓ 59.3 81.4 84.7
w/o (PBM) × ✓ ✓ 61.0 84.7 88.1

w/o (DBA,RCM) ✓ × × 42.4 69.5 72.9
w/o (PBM,DBA) × ✓ × 44.1 69.5 74.6
w/o (PBM,DBA) × × ✓ 47.5 72.9 84.7

w/o (PBM,DBA,RCM) × × × 27.1 61.0 72.9

Here, we discuss the results presented in Table. V: It’s im-
portant to note that whether or not certain steps in SparseRCA
are removed, modeling of execution time is performed on
the microservices. The experimental results are detailed in
Table V. The results suggest that the precision in ranking the
top-ranked candidate spans is predominantly shaped by the
RCM, enhancing mainly top-1 and top-3 accuracy, demon-
strating the effective utilization of topology relationships to
address inconsistencies arising from the separate calculation
of fault scores for each node. Furthermore, the experiment
suggests that employing DBA to generate the initial root
cause score and updating the score through the PBM leads to
improvements in accuracy across all metrics, including top-1,
top-3, and top-5. This is attributed to the PBM step consol-
idating similar call pattern instances, enabling the model to
learn from a more extensive pattern dataset and mitigating the
limitations associated with sparse incidents. The enhancements
achieved by using DBA underscore the significant fluctuation
characteristics in execution time, aligning with the previous
observations.

D. RQ3: Trace Sparsity Robustness

In this section, we examine the robustness of the model
under scenarios with sparser traces.

Our investigation centers on SparseRCA’s performance with
varying scales of training data. We trained the model on
different-sized subsets randomly sampled from the training
dataset’s related traces. These subsets varied in the number of
traces. We evaluated the top-k accuracy of the models trained
on these training subsets. This process was repeated three
times, and for each specific training dataset size, the accuracy
was averaged over the three rounds of experiments.

The results are presented in Table VI. For comparison, the
best baseline (MicroRank) is also included in the table and fig-
ure. Experiments show that SparseRCA achieves better A@1,
A@3, and A@5 accuracy than the best baseline utilizing only
about 40%, 15%, and 10% of the training traces, respectively.
These results suggest that SparseRCA maintains satisfying
top-k accuracy even as the trainset size decreases and the traces
become sparser.

VII. THREATS TO VALIDITY

External Validity SparseRCA has demonstrated promising
results in the testing environment of a large e-commerce com-
pany’s microservice system, suggesting potential applicability
across various industrial domains. However, further evaluation

TABLE VI: Accuracy of SparseRCA Under Sparser Traces.

trainset used (%) Model A@1 A@3 A@5

100 MicroRank 61.2 67.6 73.0
100 SparseRCA 66.1 86.4 88.1
50 SparseRCA 66.1 78.0 84.7
40 SparseRCA 66.1 79.7 83.1
25 SparseRCA 55.9 72.9 79.7
20 SparseRCA 59.3 71.2 79.7
15 SparseRCA 54.2 69.5 78.0
10 SparseRCA 54.2 66.1 74.6
5 SparseRCA 42.4 52.5 69.5

is needed to confirm its generalizability to other domains and
non-microservice architectures.

Additionally, the root cause labels in our test set, manually
annotated by operations engineers, reflect their own practical
expertise. Future work should consider incorporating univer-
sal labeling standards to enhance the generalizability of the
findings across different fields.

Internal Validity In SparseRCA, we assume the ExL of
a span increases approximately linearly with the number of
children calls. This assumption aligns well with our current
data scenario and has shown effective results. However, this
model assumption may not capture all the complexities of real-
world microservice interactions

Construct Validity In our scenario, the root cause is defined
as the specific microservice most responsible for a particular
trace being identified as abnormal due to SLO violations.
While this definition is robust and appropriate for our analysis
and widely adapted in many previous studies [38], [43]–[45],
we acknowledge that it may not capture every nuance of
root causes in a diverse range of microservice architectures.
However, it provides a clear and actionable framework for our
current study.

VIII. CONCLUSION

This paper introduces SparseRCA, a trace-based RCA algo-
rithm that addresses the unique challenges of software end-to-
end testing scenarios characterized by frequent system updates
and trace sparsity. SparseRCA performs RCA at span granu-
larity by analyzing the performance characteristics of trace
spans through exclusive latency decomposition, effectively
addressing the limitations posed by discontinuous metrics
typically aggregated from traces. Additionally, SparseRCA is
equipped to estimate pattern parameters for new trace span
patterns that have not been previously encountered, thereby
enabling it to infer exclusive latency anomalies with enhanced
accuracy.

Experiments conducted on a dataset collected from the
testing environment of a large e-commerce company’s data
center, which comprises over 6,000 traces, have demonstrated
that SparseRCA outperforms existing baseline algorithms in
terms of top-k accuracy, reflecting its superior capability to
adapt to and effectively manage the dynamic nature of modern
microservice testing environments.
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