
c⃝ ACM, 2012. This is the author’s version of the work. It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version was published in The International Conference on Functional Programming 2012,

ISBN 978-1-4503-1054-3, (10 Sep 2012)

Shake Before Building
Replacing Make with Haskell

Neil Mitchell
ndmitchell@gmail.com

Abstract
Most complex software projects are compiled using a build tool
(e.g. make), which runs commands in an order satisfying user-
defined dependencies. Unfortunately, most build tools require all
dependencies to be specified before the build starts. This restriction
makes many dependency patterns difficult to express, especially
those involving files generated at build time. We show how to
eliminate this restriction, allowing additional dependencies to be
specified while building. We have implemented our ideas in the
Haskell library Shake, and have used Shake to write a complex
build system which compiles millions of lines of code.

Categories and Subject Descriptors D.3 [Software]: Program-
ming Languages

General Terms Languages

Keywords build-system, compilation, Haskell

1. Introduction
A build tool, such as make (Feldman 1978), takes a set of build
rules, plus some input files, and produces some output files. Using
make, a build rule can be written as:

result.tar : file1 file2
tar -cf result.tar file1 file2

This rule says that the file result.tar depends on the inputs file1
and file2 (first line), and provides a command to build result.tar
(second line). Whenever file1 or file2 change, the command will be
run, and result.tar will be built.

But imagine we want to build result.tar from the list of files
stored in list.txt. The dependencies of result.tar cannot be spec-
ified in advance, but depend on the contents of list.txt. Unfortu-
nately, the make dependency system cannot express this pattern (for
workarounds see §7.5). Using the build tool we describe in this pa-
per, we can write:

“result.tar”∗> λ → do
need [“list.txt”]
contents← readFileLines“list.txt”
need contents
system′ “tar”$ [“-cf”,“result.tar”] ++ contents

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’12, September 9–15, 2012, Copenhagen, Denmark.
Copyright c⃝ 2012 ACM 978-1-4503-1054-3/12/09. . . $10.00

This rule describes how to build result.tar. We depend on
(need) the file list.txt. We read each line from list.txt into the
variable contents – being a list of the files that should go into re-
sult.tar. Next, we depend on all the files in contents, and finally
call the tar program. If either list.txt changes, or any of the files
listed by list.txt change, then result.tar will be rebuilt.

The key difference from make (and nearly all other build tools)
is that rather than specifying all dependencies in advance, we allow
further dependencies to be specified after examining the results
of previous dependencies. This difference is crucial to accurately
describe many dependency relationships.

Consider the problem of dependencies stemming from files in-
cluded by a C source file. Some build tools require these dependen-
cies to be specified manually. Other build tools allow two separate
phases, where dependencies are computed before the build starts.
But if the build system generates C files and then compiles them,
even a two phase system is insufficient, as the generated files are
not available during the first phase. Our build tool has no such lim-
itations – it is able to easily handle generated files, even generated
files which are only necessary due to being included by other gen-
erated files.

1.1 Contributions
We have implemented our build tool as a Haskell library, named
Shake, which is available online1. Shake provides a concise syntax
for writing build systems (§3), along with a high-performance im-
plementation (§4). By implementing Shake as a Haskell library we
allow rules to be written using the full power of Haskell, including
the use of modules and functions to structure large build systems.

In addition to more flexible dependencies (§2), Shake also in-
cludes the important features of make, such as minimal rebuilds
(running only a subset of the rules when some subset of the in-
puts change, §2.3.2), and parallelising the build (running multiple
independent rules at the same time, §4.3.2). We allow rules to op-
erate over any values, not limited to files, allowing us to track non-
file dependencies (§3.4) and properly handle commands producing
multiple outputs (§6.3). We have built a number of useful tools into
Shake, including build rule checking (§5.1), profiling (§5.2) and
dependency analysis (§5.3).

Various versions of Shake have been used at Standard Chartered
for the past three years (§6). The build system creates over 30,000
build objects, with more than a million lines of source code and a
million lines of generated code, in many programming languages.
We originally implemented this build system using make, but the
result was slow to run, hard to maintain, and frequently caused spu-
rious compile failures. Switching to Shake made our build system
ten times shorter, made builds run twice as fast, and has solved our
build system problems.

1 http://hackage.haskell.org/package/shake

2. Specifying Dependencies
Most make-like build tools start by constructing a graph from the
dependency information, then traverse the graph, running the rules
to build the required results (or use a topological sort, giving a sim-
ilar effect). However, any approach based on a static dependency
graph cannot permit additional dependencies to be specified while
running the rules. As we saw in §1, many examples require addi-
tional dependencies to be specified while running the rules. The
solution is simple – we reject the idea that build tools should use a
static dependency graph.

In this section we model the dependencies permitted by non-
recursive make (Miller 1998), along with our enhanced dependency
scheme. We describe what it means for a build system to be correct,
and how to support minimal rebuilds. In §3 and §4 we show how to
turn these ideas into a practical tool.

2.1 Moving Dependency Specification
While make is heavily file and IO based, we choose to model the
dependencies without these distractions. Our model uses the type
Key for things that can be created or are dependencies (e.g. file
names), and the type Value for the values associated with a Key
(i.e. file contents). With these types, we can define the main build
function as:

build :: Set Rule→ Key→ Value

The build function takes a set of rules and the target Key to
build, and returns the Value associated with that Key. We restrict
our model to building only one target, while make allows multiple
targets (i.e. a list of Keys to build). However, we can encode
multiple targets by creating a distinguished key whose rule depends
on the original targets and returns their values, and then use that key
as the new target.

Using build, we can model make with the Rule type:

data Rulem = Rulem
{creates :: Key
, depends :: [Key]
, action :: [Value]→ Value
}

A make Rule (Rulem) can be modelled as the Key it creates, the
Keys it depends on, and the action that takes the depended upon
Values and produces the result Value. Note that all dependencies
for a rule are specified before running the action.

Using the same build function, we can model our enhanced
dependency scheme as:

data Rules = Rules
{creates :: Key
, action :: Action
}

data Action = Finished Value
| Depends Key (Value→ Action)

A Shake Rule (Rules) can be modelled as the Key it creates,
and the action that creates the result. The Action either returns
the Finished Value, or requires a new dependency with Depends
– specifying the Key it depends on, plus a function that takes the
Value of that Key and produces a new Action.

The big difference from Rulem is the introduction of dynamic
dependencies. A rule can require additional dependencies, based
on the values of previous dependencies. We can easily translate
Rulem to Rules, but the reverse is not possible – Rules is strictly
more powerful than Rulem.

2.2 Correctness
Assuming a function which finds the Rule for a given Key, denoted
by the operator (!), we can write a function to build Rulem targets
as follows:

buildm rules target = run (rules ! target)
where run r = action r (map (buildm rules) (depends r))

Starting at the target Key, we find the associated Rulem, run
buildm on its dependencies, then run the action. A Rulem build
system is able to produce the result for a given target iff the
expression buildm rules target is well-defined. If we assume all
actions are total, then this expression is well-defined if you can
build a finite dependency graph for the target with the available
rules. This property can be checked without running any actions.

We can write a similar function to build Rules targets as follows:

builds rules target = run (action (rules ! target))
where run (Finished val) = val

run (Depends dep act) = run (act (builds rules dep))

Starting at the target Key, we find the action from the asso-
ciated Rules, and run it. Once we reach Finished we are done; if
we encounter a Depends we run buildm on that dependency be-
fore continuing. As before, a Rules build system is able to produce
a result for a given target iff the expression builds rules target
is well-defined. However, unlike before, there is no obvious way
to determine if the expression is well-defined in advance without
detailed information about the action functions.

2.3 Minimal Rebuilds
The build functions in the previous section may evaluate one rule
many times during a single run, but real build systems should
minimise the number of rules run. In a single build run, any rule
should be run at most once – a property that is easy to guarantee
with a simple cache. Additionally, if a rule’s dependencies have
not changed since the last time it was run, the rule should not be
rerun. In this section we describe how to avoid repeating Rulem
rules whose dependencies have not changed, enhancing the scheme
followed by make, then apply the same ideas to Rules.

2.3.1 Minimal Rebuilds with Rulem

To avoid repeating rules whose dependencies have not changed,
make does not run any rules where the dependent files have older
modification times than the result file. We use a similar scheme,
adapted for arbitrary Key/Value types. Whenever a rule is run, we
create a Resultm:

data Resultm = Resultm
{created :: Key
, result :: Value
, built :: Time
}
Resultm contains the Key the rule created, the result Value, and

the Time when the result was built. We store all Resultm values
between build runs using a database, and skip rerunning a Rulem if
the result was built more recently than its dependencies. In common
with make, we assume the rules do not change between runs (see
§6.2 for workarounds). To determine if we should skip, we require
the result for this rule’s key from the previous build run (named
old) and a way to demand results for this build run (named ask):

skipm :: Resultm → (Key→ Resultm)→ Rulem → Bool
skipm old ask r = all ((6 built old) ◦ built ◦ ask) (depends r)

The skipm function returns True if a rule does not need running.
We require the results for all dependencies, then check that they
were built before this rule was last run.

The make approach of relying on modification times can fail if
the system clock changes, if the clock resolution is too coarse, or
if a file has its modification time set to a time in the past (such as
when extracting a backup). Therefore, instead of using the system
time for built, we use the number of runs of this build system,
incrementing Time each run. This approach guarantees that Time
is monotonically increasing.

A convenient property of make is that no additional data need be
stored between runs, since the file system already stores modifica-
tion times. In contrast, we must store the Time and Resultm values
in a database (interestingly, an additional data store is required for
many advanced build systems, see §7). However, for some types of
rules, such as when Keys are filenames and Values are modifica-
tion times, the Values are stored in both the Resultm database and
the file system. If an inconsistency is detected, we must discard our
stored Resultm. To detect inconsistencies, we require the following
function:

validStored :: Key→ Value→ Bool

This function should return True if the Key’s Value is not stored
elsewhere, or if it is stored but the Value is consistent. As an
example for files, validStored should return True only if the file
exists, and has the same modification time.

2.3.2 Minimal Rebuilds with Rules

To achieve minimal rebuilds with Rulem we rely on having the
dependencies available without executing the action, something
that is not available with Rules. To solve this problem, we include
the list of dependencies in Results, and use them in skips:

data Results = Results
{created :: Key, result :: Value, built :: Time
, depends :: [Key]
}

skips old ask r = all ((6 built old) ◦ built ◦ ask) (depends old)

Compared to skipm, we have made one small change – instead
of using depends r, we use depends old. For the stored depends
to be valid we rely on the rule’s action not changing, and that the
action is pure (see §5.1 for necessary restrictions when we allow
IO actions). With this modification we are able to ensure minimal
rebuilds using Rules. We still require the validStored check from
the previous section.

2.3.3 Unchanging Results
The make tool has a requirement that a rule action must modify the
file it creates, otherwise the rule will be repeatedly rerun, as the
result will remain older than its dependencies. This requirement
stems from using the modification time as both the result and
the built time, but since we store these fields separately, we can
eliminate some unnecessary rebuilds.

Instead of storing just the built time, we also store the changed
time – when the result last changed. Whenever we create a result
we use the current time for built, but if the result Value is the same
as last time, we use the previous changed time. We can rewrite
skips to take advantage of this additional information:

data Results = Results
{created :: Key, result :: Value, built :: Time, depends :: [Key]
, changed :: Time
}

skips old ask r =
all ((6 built old) ◦ changed ◦ ask) (depends old)

import Development.Shake
import System.FilePath

main = shake shakeOptions $ do
want [“Main”]

“Main”∗> λout→ do
cs← getDirectoryFiles“.”“*.c”
let os = map (++“.o”) cs
need os
system′ “gcc”$ [“-o”, out] ++ os

“*.c.o”∗> λout→ do
let c = dropExtension out
need [c]
headers← cIncludes c
need headers
system′ “gcc” [“-o”, out,“-c”, c]

cIncludes :: FilePath→ Action [FilePath]
cIncludes x = do

(stdout,)← systemOutput“gcc” [“-MM”, x]
return $ drop 2 $ words stdout

Figure 1. A Shake build system for C code.

We have made one small change – instead of checking against
the built time of the dependencies, we check against their changed
time. It is important to still compare against built old because
running a rule may not update its changed time, but will always
update its built time, thus we avoid rebuilding repeatedly when the
result does not change. Since it is always the case that changed 6
built, skips will now return True more often.

In some situations, support for unchanging results can reduce
rebuild times from many minutes to seconds. As an example, con-
sider a file generated by the build system. If the generator changes
it is necessary to regenerate the file, but there is a chance the re-
sult will not have changed. By supporting unchanging files we can
avoid rebuilding everything depending on that file.

3. Shake in Haskell
In this section we use the theory from §2 to create a practical build
tool, implemented as a Haskell library. In particular, we describe
how to replace Key and Value with polymorphism, how to integrate
IO actions and how to define a set of rules. We present the developer
interface to Shake, but leave most implementation concerns to §4.

3.1 A Shake Example
Figure 1 shows an example build system in Shake. Running this
program will build Main from all the *.c files in the current direc-
tory. If we add or remove a .c file, or change any of the .c files or the
header files they #include, then the necessary files will be rebuilt.

The build system produces (wants) the file Main. To generate
Main we list all the C files in the current directory, add the exten-
sion .o (object files), require those files to be built (need them), then
call gcc to link them. To build an object file we take the associated
C file and call the function cIncludes to get the headers it requires.
We need those headers, then call gcc to do the compilation. The
cIncludes function works by calling gcc -MM, causing gcc to gen-
erate the dependency information on the standard output.

This example demonstrates a number of features of Shake based
build systems:

data ShakeOptions = ShakeOptions
{shakeFiles :: FilePath
, shakeThreads :: Int
, . . .
}

shakeOptions = . . . -- default set of options

data Rules α
instance Monad Rules
instance Monoid α⇒ Monoid (Rules α)

data Action α
instance Monad Action
instance MonadIO Action

class (
Typeable key,Typeable value,
Binary key,Binary value,
Eq key,Eq value,
Hashable key,Hashable value,
Show key,Show value,
NFData key,NFData value
)⇒ Rule key value where
validStored :: key→ value→ IO Bool

run :: ShakeOptions→ Rules ()→ IO ()

action :: Action ()→ Rules ()

rule, defaultRule :: Rule key value⇒
(key→ Maybe (Action value))→ Rules ()

apply :: Rule key value⇒ [key]→ Action [value]
apply1 :: Rule key value⇒ key → Action value

Figure 2. Primitive operations in Shake

It’s Haskell The main entry point can call shake directly, but it
can also do command line processing (§6.1), or anything else.
We have defined a local function, cIncludes, helping to split the
build system into components that can be reused. We make use
of the existing filepath library.

Expressive dependencies The call to getDirectoryFiles is tracked
(§3.4) – adding or removing files will trigger a rebuild. We track
the dependencies introduced by #include directives.

We use system commands We use gcc to compile, to link, and to
determine the headers required by the C files. We can freely use
both Haskell functions and system commands to generate build
results.

As a practical concern, for many larger projects there are often
multiple compilers that produce object files with the .o extension.
We solve this problem by making the C compiler use the extension
.c.o, the Haskell compiler use .hs.o etc, allowing different rules for
each type of object.

3.2 Core Shake
The core interface to Shake is given in Figure 2 – everything else
is defined on top. We can run the build system with run, specify
targets with action, create new rules with rule/defaultRule, and
express dependencies with apply/apply1.

We build the targets using the run function, which also takes
an options record. Typical options include which file to use for
the database (shakeFiles) and the number of processors to use
(shakeThreads). To specify the targets to build we use action,
specifying an action which is always run, typically calling apply
to require keys to be built.

Every key/value rule pair used in Shake must be a member
of the Rule class. The Rule class defines the method validStored
to determine whether a value is consistent with any value stored
externally (§2.3). Each key and value type must also be a member
of several type classes:

Typeable We allow multiple types of rules in a single build system.
To distinguish the types, we require a Typeable constraint,
allowing us to obtain an explicit TypeRep (Lämmel and Peyton
Jones 2003).

Binary We require Binary serialisation, allowing us to store the
results between runs, to achieve minimal rebuilds (§2.3).

Eq We require equality to look up results for keys and to test if
values have changed (§2.3.3).

Hashable We require Hashable to accelerate looking up results for
keys. The Hashable requirement for value is currently unused,
but is included for consistency.

Show We require Show for debugging messages, profiling and
analysis (§4.2, §5.2).

NFData We require NFData to ensure that values are fully evalu-
ated when they are computed, ensuring errors occur in a timely
manner (§4.2).

Most rules are defined with rule, whose argument is a function
which takes a single key value, and returns Nothing to indicate that
this rule does not build this key, or Just with the action that builds
the associated value. The function defaultRule allows a rule to be
defined with a lower priority, which is used if no rules match (see
§3.5). If two rules of the same priority match the same key then an
error is raised.

The Rules type is a commutative Monoid, allowing two sets of
rules to be joined to produce a new set of Rules. In practice, the
syntactic sugar supported by Monad offers a very natural way to
define rules, allowing a set of rules to be introduced with do and
then simply written below each other. To support a Monad instance
for Rules we add an additional type parameter α (almost always
instantiated to ()) and make (>>) join two sets of rules.

To define actions we use the Action type, which has a Monad
instance to allow actions to be executed sequentially. The Action
type has an instance for MonadIO, allowing users to call arbitrary
IO functions using liftIO to translate IO α to Action α. Depen-
dencies can be expressed using the function apply1 which takes a
key, ensures the key is built, and returns the associated value. The
apply function can be thought of as mapM apply1, but may build
the necessary keys in parallel (§4.3.2).

3.3 Wildcard File Patterns
The make tool supports the syntax %.c to match any files ending
with .c. We define a similar notation, allowing “*” to match any
part of a filename and “//” to match any number of directories,
using the definitions:

type FilePattern = String
(?≡) :: FilePattern→ FilePath→ Bool

As an example, “*.c” ?≡“foo.c” returns True, while “*.c” ?≡
“foo.h” returns False. We reuse the FilePattern type in several of
our rules.

import qualified System.Directory as IO

data Dir = Dir FilePath FilePattern
-- plus all necessary instances

go :: Dir→ IO [FilePath]
go (Dir dir pat) =

liftM (filter (pat?≡)) $ IO.getDirectoryContents dir

instance Rule Dir [FilePath] where
validStored q a = liftM (≡ a) $ go q

getDirectoryFiles :: FilePath→ FilePattern→ Action [FilePath]
getDirectoryFiles dir pat = apply1 $ Dir dir pat

defaultDir :: Rules ()
defaultDir = defaultRule $ Just ◦ liftIO ◦ go

Figure 3. Implementation of getDirectoryFiles.

3.4 Defining Rule Types
A typical Shake build system will use a handful of different Rule
instances, usually all provided by the Shake library. To aid end
users, we suggest that people defining rule types also define sugar
functions, as we have done for the rule types included with Shake.
As an example of defining a rule type, we give the code for
getDirectoryFiles in Figure 3. This function takes a directory, and
a file pattern (§3.3), and returns the list of files that match.

We start by defining a key data type (Dir), along with a func-
tion that computes the result (go). We define a Rule instance map-
ping from the Dir data type to the result type of [FilePath], which
uses equality to check if a previous result is still valid. We de-
fine getDirectoryFiles as a strongly typed wrapper around apply1,
and defaultDir as a wrapper around defaultRule. Anyone using
getDirectoryFiles must include defaultDir in their rule set, so the
defaultRule for Dir is available. We do not export the Dir construc-
tor, forcing people to use the wrappers.

3.5 File Based Rules
While our build system is not restricted to rules dealing with files,
in practice many build systems are file orientated. When imple-
menting file rules, the filename is an obvious key, but value could
be either modification time or a hash of the file contents (e.g.
SHA1). In practice, we found that using modification time is faster
(significantly faster for large files) and being able to force rebuilds
using the touch command is highly convenient while developing
build rules. Of course, our design allows anyone to define a new
type of file rule, based on file content hashes.

We define file rules in Figure 4. To force files to be built, we
define need and want. The need action adds a dependency on all
the modification times of the files, and is typically used before
performing some IO action that uses the files. We use want to
specify the targets of the build system, implemented by calling
need in an action that is always run.

We define defaultFile as a rule that checks if the file already
exists, and if so uses it. Source files will have no associated rules
to build them, so this rule just records their modification time. If
a file has no rules (since any rules would be run in preference to
the default rule), and does not exist, we raise an error. As with
defaultDir, anyone using want/need should include defaultFile in
their rule set.

We define new file rules using (?>), which takes a predicate
to match against the file name and an action to run. This function

import qualified System.Directory as IO

newtype File = File FilePath
-- plus all necessary instances

getFileTime :: FilePath→ IO (Maybe ClockTime)
getFileTime x = do

b← IO.doesFileExist x
if not b then return Nothing else

liftM Just $ IO.getModificationTime x

instance Rule File ClockTime where
validStored (File x) t = fmap (≡ Just t) $ getFileTime x

need :: [FilePath]→ Action ()
need xs = do

apply $ map File xs :: Action [ClockTime]
return ()

want :: [FilePath]→ Rules ()
want xs = action $ need xs

defaultFile :: Rules ()
defaultFile = defaultRule $ λ(File x)→ Just $ do

res← liftIO $ getFileTime x
let msg =“Error, file does not exist and no rule: ”++ x
return $ fromMaybe (error msg) res

(?>) :: (FilePath→ Bool)→ (FilePath→ Action ())→ Rules ()
(?>) test act = rule $ λ(File x)→

if not $ test x then Nothing else Just $ do
liftIO $ createDirectoryIfMissing True $ takeDirectory x
act x
res← liftIO $ getFileTime x
let msg =“Error, rule failed to build the file: ”++ x
return $ fromMaybe (error msg) res

(∗∗>) :: [FilePattern]→ (FilePath→ Action ())→ Rules ()
(∗∗>) test act = (λx→ any (?≡x) test) ?> act

(∗>) :: FilePattern→ (FilePath→ Action ())→ Rules ()
(∗>) test act = (test?≡) ?> act

Figure 4. Implementation of file rules.

ensures the correct key/value types, and obtains the modification
time afterwards. Before running the action we create the directory
containing the output file, an idea taken from the Ninja build system
(Martin 2011). We found that when running a large set of newly
written rules, often one rule would create the output directory while
another did not – meaning some rule execution orderings worked
while others failed. Automatically creating the output directory
removes this source of failure.

While (?>) is the ultimate file creation rule, we define two addi-
tional operators, using the file wildcard match operator (?≡) from
§3.3. We define (∗>) for matching a single pattern, for example
“*.c”∗> . . ., in a similar style to make. We define (∗∗>) for match-
ing any one of a set of patterns.

3.6 Automatically Include Default Rules
With the rule types already defined, users can write a build sys-
tem using Shake. Unfortunately, if the user forgets to include the

defaultFile rule, there is likely to be a runtime error. Instead of re-
quiring the user to remember to include the default rules, we define
a wrapper function shake which includes all the standard default
rules:

shake opts rules = run opts $ do
defaultDir -- §3.4
defaultFile -- §3.5
. . .
rules

In addition to the directory and file rules, we also include rules
that query the existence of files, always force a rule to rerun, store
arbitrary configuration data in a tracked manner and build multiple
files in one action. All these rules are defined similarly to the
directory and file rules.

The astute reader may be wondering why we can’t specify de-
fault rules as an additional member in the Rule type class, allowing
the default rule to be found from the type, and avoiding the need for
the shake wrapper around run. Alas, that solution doesn’t work be-
cause we need explicit rules of each type to deserialise dynamically
typed values (for full details see §4.1).

3.7 Additional Functions
The IO function readFile is only safe if the file being read has
previously had need called on it, tracking the dependency (for more
IO safety properties see §5.1). To help build system authors, we
define a safe wrapper, readFile′, which includes the call to need:

readFile′ :: FilePath→ Action String
readFile′ x = need [x]>> liftIO (readFile x)

We also define readFileLines which is like readFile′, but splits
the contents of the file into lines (therefore the first need call in the
example from §1 is unnecessary, but not harmful, as readFileLines
will also call need). We define writeFileLines for writing files
containing a list of lines. The function writeFileChanged writes a
file, but only if the contents have changed, avoiding some rebuilds
due to unchanging results (§2.3.3).

We define the system′ function which runs a system command,
but fails if the exit code represents failure, and also records pro-
filing information (see §5.2). The system′ function should be used
carefully, as it cannot tell which files the system command may
depend on, so explicit need commands must be used. We recom-
mend writing wrappers around system commands which insert the
appropriate need calls (see §5.1 for which need calls are required).

4. Implementing Shake
We have implemented Shake, and used it extensively. In this section
we sketch some of the main implementation challenges and how
they can be overcome. We first describe how to handle different
key/value types within a single build system, then how to deal
with errors, and finally how to execute the rules efficiently and
with maximum parallelism. Readers interested in more details are
encouraged to download the full implementation (see §1).

4.1 Dynamically Typed Values
A single Shake program can use multiple types for keys and values.
To work with heterogenous values in Haskell we define:

data Any = Any (∀ α •
(Typeable α,Binary α,Eq α
,Hashable α,Show α,NFData α)⇒ α)

This definition, using existentials (Läufer and Odersky 1994),
allows any type supporting all the required type classes to be stored
as type Any. We define Key and Value as synonyms for Any. We

can implement Eq, Hashable, Show and NFData instances for Any
without difficulty, often by appealing to the TypeRep provided by
the Typeable instance.

Implementing a Binary instance for Any is harder. Serialising
a value is easy, we serialise the TypeRep followed by the value.
However, deserialising is problematic – we can deserialise the
TypeRep, but to deserialise the value we need to obtain the Binary
instance for that type. Our solution is to keep a mapping from
TypeRep to Any, and after deserialising the TypeRep find the
associated Any and use that Binary instance. As a consequence,
we cannot deserialise any file containing a TypeRep not present
in our mapping. We generate the mapping from all rules defined
in the Rules set. Therefore we cannot move defaultRule into the
Rule type class, as then a type could be usefully used without being
present in the Rules set.

When deserialising, if we encounter a type not present in the
mapping, we ignore the entire database. This behaviour is pes-
simistic, but safe – if the set of rules has changed then the build
system must have changed, which is not tracked (see §6.2).

4.2 Handling Errors
To turn Shake into a practical system, we make a number of
changes from the natural implementation, designed to improve
error handling.

Tracking the stack We maintain a stack while executing rules,
listing the keys that cause a rule to be executed. Whenever an error
occurs, either when running a rule or finding a rule, we print the
stack. Whenever we execute an action, we force its result using the
NFData instance, ensuring any errors are raised with the correct
stack. We raise an error when trying to build a key that is already
on the stack, which would indicate a key depends on itself. This
last check provides a clear error message instead of executing an
infinite series of rules.

Tracing and diagnostics We provide options to print every rule
and system command run. Whenever a system command fails, we
reprint the command line after the failure. We provide a diagnostic
mode to print detailed information as the build progresses, helping
to debug build systems.

Resuming after errors When running a large build system, it is
common for it to fail before completing – either from a rule raising
an error, or the user killing the build process. In these situations
it is important that none of the work already done is lost. At
startup Shake loads its database into memory, and on successful
completion it saves the database to file. To ensure no results are
lost, every time a rule completes we immediately store the result in
a journal file. If Shake finishes successfully we delete the journal,
but if a journal is present on startup, we merge its results.

4.3 Build Algorithm
The internal state of Shake includes a mapping from each key
to one of six status values. Initially every key is either Loaded
(was found in the database) or Missing (is not known to the build
system). The build logic of Shake is implemented in a function
named build, which modifies the state to ensure that a given key is
either Ready (a result is available) or Error (there was an exception
when running the rule). The build function is parameterised by a
way to check a stored value is valid (using validStored from §3.2)
and a way to build a key (appealing to the defined rules for that
type). Using build, it is relatively easy to implement the core of
Shake – simply run all actions and make apply call build before
looking up the status of a key.

Our implementation of the build function takes 100 lines of
Haskell. When implementing build there are two goals, correctness
and efficiency.

Missing

Building

Ready Error

Loaded

Checking

Figure 5. Building state transitions.

4.3.1 Correctness
For an implementation of build to be correct, it must always execute
enough rules to ensure all results are correct, but never execute rules
that could have been safely skipped. We satisfy these constraints
with the status transition diagram in Figure 5. At the start of a build
run all keys are either Loaded or Missing, and after calling build on
a key, it is either Ready or Error. We use Checking for keys that are
being checked to see if they can be skipped, and Building for rules
that are currently being built. If a key is Missing and is required
we have no choice but to start Building it. After Building a key, the
action will either complete successfully making the result Ready,
or fail producing an Error.

Most of the complexity of build comes from the Checking
state, which is necessary to support unchanging results (§2.3.3).
When checking a key there are two possibilities – either the check
succeeds and the result is Ready, or the check fails and we start
Building it. We first check the stored result using validStored,
failing the check if the result is no longer valid. We then build each
dependency in order, and fail the check if any dependency is Error,
or has changed since we last built this key. If all dependencies are
checked successfully, we transition to Ready, without running the
rule.

To support unchanging results, it is necessary to build depen-
dencies before running the rule requiring them – only running the
rule if a dependency has changed. Since the value of earlier de-
pendencies may change subsequent dependencies, it is important
to check dependencies in the order they were required. However, if
the build system has been modified, and a rule no longer requires
its previous dependencies, these previous dependencies will still be
built, but not used. As a consequence, even if one of these unused
dependencies results in an Error, the build may still complete suc-
cessfully.

4.3.2 Efficiency
When implementing build there are two separate efficiency goals.
If no rules need to be run (a common case), build should strive for
low overhead, as the time taken by build is likely to be a significant
proportion of the total time. If rules do need running, build should
start the rules as early as possible, to maximise parallelism. In order
to expose parallelism we make build take a set of keys, and store
depends as [[Key]] instead of just [Key] – where each item comes
from one call to apply.

In some ways the goals of low overhead and high parallelism
are in conflict – the first is best served by being single threaded
(avoiding locks and thread contention), while the second suggests
spawning many threads whenever we encounter a set of activities

that could potentially be run in parallel. Our solution is to use a
thread pool for running rules, a single lock to protect the state (no
fine-grained locking) and a mutex for each Checking/Building state
to allow other threads to wait for a result to become available. The
build function takes the lock and, on a single thread, performs as
many transitions as it can without waiting on a mutex or running
any rules. Any waiting is performed after the state lock has been
released, and any rules are run by adding them to a thread pool and
waiting for the result. By using a thread pool we obtain high levels
of parallelism, and by having a single state lock we can perform a
build requiring no rules to be run with no thread contention.

Our thread pool obeys the shakeThreads setting (Figure 2),
ensuring no more than a given maximum number of rules run in
parallel. The thread pool is based around a pool of workers. If a
new task is added to the pool, and less than shakeThreads workers
are active, a new thread is spawned, otherwise it is queued until
a worker completes. When a rule is blocked in build, waiting for
dependencies to become available, we notify the thread pool to
temporarily spawn another worker, ensuring maximum parallelism.

In order to reduce contention between processes, we run tasks
added to the thread pool in a random order. Often different build
rules require different resources – for example a compiler uses a lot
of CPU while a linker does a lot of disk access. Running tasks in a
deterministic order has the potential to always run all compilers
followed by all linkers, resulting in lots of resource contention
between different processes. A random ordering avoids the worst
case scenario, and gives a noticeable speedup – up to 20% for some
real build systems.

5. User Tools
In this section we describe three features that have been built on top
of Shake – a dependency checking tool to ensure the build system
is correct, a profiling tool to determine what took most time and an
analysis tool to query the build dependencies.

5.1 Dependency checking
Build systems using the theory from §2 obtain dependencies us-
ing the Depends constructor, and cannot use a dependency without
explicitly requesting it. However, practical build systems must in-
tegrate with IO (§3), where dependencies are not always explicit.
One rule can store some IO state (e.g. create a file), and another
rule can use that state (e.g. read the file) without a tracked depen-
dency, leading to inconsistent builds. We have identified three re-
quirements Shake build systems must follow:

Requirement 1 If an IO action makes use of some IO state, then
the rule must depend on that IO state. As an example, if a rule
runs the copy command cp from to, then the rule must depend on
from. In practice, we weaken this requirement in two ways. Firstly,
we allow modification times as a proxy for the contents of a file,
which is safe assuming any changes to a file result in changes to
its modification time. Secondly, we only track file system changes
within a specified directory (the users project), allowing the rule
calling cp to omit the dependency on the cp executable, which is
rarely of interest.

Requirement 2 If an IO action makes use of some IO state that is
modified by the build system, then the rule must depend on that IO
state before performing the IO action. As an example, if a rule runs
cp from to, and from is generated by the build system, then the
dependency on from must be given before running cp. Looking
at the build system in §3.1, this build system first calls gcc on
the source files, then calls need, ensuring the header files are all
dependencies (requirement 1 is satisfied). However, if we generate
one of the header files, requirement 2 is violated because the need

call comes after the first use – we show how to solve this problem
in §6.4.

Requirement 3 After some IO state becomes a dependency it
must not change for the rest of the build run. As a result, there
cannot be two separate rules that modify the same file. Similarly,
after getDirectoryFiles is called (§3.4) the build system cannot
create new files matching the pattern.

Requirement 3 is simple to check – after building we run the
function validStored on all Ready results in the database (§4.3.2).
We have implemented this feature as an option to Shake.

To check requirements 1 and 2 requires knowing which IO state
is used by an IO action. For simple IO actions (e.g. readFile)
it is easy to determine which IO state will be used, but these
simple actions can usually be wrapped to provide versions which
are safe by construction (e.g. readFile′, §3.7). For more complex
IO actions, in particular the system′ command, determining the
dependencies in advance is impossible to do in a general way. The
only practical approach is to trace which IO state is used, using a
system tracing mechanism (such as strace). File system tracing
(such as inotify or checking file last-access times) can provide
an approximation of which IO state is used, but cannot determine
if the existence of a file is tested.

The challenge when tracing IO state is cross-platform portabil-
ity. Our first attempt was based around file last-access times, but
on modern versions of Windows access times are turned off by de-
fault (but can be turned back on by an administrator), only accurate
to one second (solvable by adding a one second delay after each
IO action), and buffered for up to one hour (no feasible solution).
There are no cross-platform tracing libraries, but other build sys-
tems which rely on tracing have been able to hook system libraries
on Windows (Shal 2009), requiring 2000 lines of C code (more
than the total size of Shake). We believe their approach could be
reused in Shake, but licensing restrictions prevent us from reusing
their code directly.

5.2 Profiling
Shake records two separate pieces of profiling information.

Rule execution times When running a rule we record the execu-
tion time, excluding any time building its dependencies. Execution
times can be combined from different build runs, allowing us to
estimate the total build time, ignoring parallelism.

Traced IO actions Most time consuming rules invoke IO actions,
typically system commands. To track these actions, we provide a
trace function:

traced :: String→ IO α→ Action α

All actions run by traced are recorded along with a human readable
message (the first argument), the key being built, and the start
and end times. We automatically call traced when running system
commands. If we examine traced actions from a single run, we can
determine how many traced actions were executing at each point
in time – allowing us to produce a parallelism graph as shown in
Figure 6.

We have built profiling support into the core of Shake. Since
running a rule is likely to take some time (most rules will be
spawning system processes), the overhead of recording profiling
information is negligible. In previous versions of Shake we only
recorded profiling information when explicitly asked, but found
that users often wanted to profile the build run that had just finished
– always recording profile information makes that possible.

0

1

2

3

4

Figure 6. Build parallelism.

5.3 Analysis
The Shake database records the dependencies of each key, allowing
a full dependency graph to be produced after the rules have been
run. However, for any project of moderate size, a picture of the
full dependency graph is rarely comprehensible – although with
judicious filtering it is possible to produce something useful (see
Figure 7 for an example). There has been some work on visualising
large build systems, for example by Adams et al. (2007), but we
have not yet tried applying it to Shake.

Our approach to analysing the database is to define queries
which allow end users to answer specific questions about their build
system. Some of the most useful queries include:

• Why was a particular file rebuilt? Shake shows the complete
path of dependencies, including the most recently changing
dependency.

• If I modify a file, what will rebuild? Shake computes the list of
rules that depend on that file, including indirect dependencies,
but assuming no unchanging results (§2.3.3).

• What is the most expensive file to modify? For each leaf of
the graph, Shake computes all dependencies, and then uses
execution times from profiling to determine which causes most
rebuilding.

• Do my dependencies follow some layering principle? Many
large projects are structured into isolated layers, this sepa-
ration can be validated by the build system. For example, I
would not expect any files outside Development.Shake.∗ to
import any modules from inside that module tree, other than
Development.Shake itself.

5.4 Profiling and Analysis
As an example of the profiling and analysis tools in practice, see
Figures 6 and 7. Both these diagrams are produced by building
the Shake library and test harness, a 24 module Haskell program,
from scratch with a maximum of four processors. The entire pro-
cess takes 7.41 seconds, but spends 12.91 seconds executing rules,
giving a parallel speed up of 1.7 times. Executing the build system
with one processor takes 11.83 seconds – the reduced rule execu-
tion time is likely due to reduced disk contention.

Figure 6 shows the number of traced system commands execut-
ing at any point during the build. We see a start up period where
zero commands are running and the build system is computing de-
pendencies, followed by three spikes of using four processors, fol-
lowed by a tail of using one processor.

The dependency graph in Figure 7 shows the dependencies of
the .hi files, after hiding three utility modules which are leaves
in the dependency graph (they add lots of lines, obscuring the

2

1

1

2

3

Figure 7. Dependency graph.

ghc Shake-1 Shake-2 make
Automatic dependencies Yes Yes Yes No
Tracks GHC installation Yes Yes No No
Build on 1 thread 7.69 11.83 11.77 11.75
Build on 4 threads 7.69 7.41 7.34 7.32
No rebuilding 0.54 0.10 0.04 0.02

All times are in seconds. Shake-1 includes a call to ghc-pkg list
to track dependencies on GHC package versions, while Shake-2
assumes the GHC installation does not change.

Figure 8. Build time comparisons.

underlying structure). It is clear the build proceeds in three stages,
with bottle-neck dependencies marked 1, 2 and 3. These three
bottlenecks account for the three periods of one processor usage.
The final tail of one processor includes both compilation of the
main module (which profiling tells us takes 0.23 seconds) and
linking (which takes 1.54 seconds).

This example shows how Shake’s profiling and analysis reports
can be used to improve build performance. If the bottleneck mod-
ules could be split up, or if their compilation time was reduced, the
overall build time would decrease. In practice, we have found that
for large build systems, where Shake is building multiple targets,
parallelism usually stays at the maximum (or fractionally below it)
for most of the build.

5.4.1 Comparison to ghc --make and make

Building the same project with the GHC compilation system (The
GHC Team 2011), namely ghc --make, takes 7.69 seconds, com-
pared to Shake with 11.83 seconds on one processor and 7.41 sec-
onds on four processors, see Figure 8. The reason GHC is quicker
on one processor is that GHC keeps all interface information and

package database information in memory, whereas running sepa-
rate ghc -c compilation commands requires reloading this infor-
mation each time. However, Shake is able to use parallelism to im-
prove the build time, while GHC cannot.

To run the build system when nothing needs compiling, GHC
takes 0.54 seconds and Shake takes 0.10 seconds. Of the 0.10
seconds required by Shake, 0.06 seconds are spent checking if
the GHC installation has changed (running ghc-pkg list) – if
the GHC installation is assumed to be constant Shake requires
only 0.04 seconds. Shake is faster because it reads in one file (the
database) then quickly checks validStored on a small number of
files. GHC must query at least the same file information, but also
has to construct a dependency graph, aggregating information from
many files. Of the 0.04 seconds taken by Shake, 0.03 seconds are
spent writing to the database – we suspect effort spent improving
the binary serialisation would reduce this overhead.

We can build the same project using make, generating depen-
dency information with ghc -M. Unlike Shake and ghc --make,
the end user is required to regenerate make rules whenever the
dependencies change, and to clean the build whenever the GHC
installation changes. Allowing make to cope with these changes
would be significantly harder, and would slow make down by at
least 0.12 seconds (ghc-pkg and ghc -M take 0.06 seconds each).
In all tests, the make solution is about 0.08 seconds faster than
Shake, or 0.02 seconds faster if Shake avoids tracking the GHC
installation. The consistency in the parallel speedup between make
and Shake suggests both systems are able to extract the maximum
parallelism in this example.

6. Evaluation
At Standard Chartered we have been using build systems based on
Shake for the last three years. Before Shake we used make, but
make was a poor fit for our project, primarily due to a large number
of generated files. In common with many large projects, we were
forced to split our build system into several phases, where one
phase generated some files and make rules which were then used
by a subsequent phase. Before we switched to Shake, we had over
10,000 lines of make rules which were brittle and hard to extend.
Our initial Shake based system was under 1,000 lines and compiled
our project twice as fast – primarily due to better parallelism from
removing phases, random execution order of dependencies (§4.3.2)
and faster scanning for dependencies (§6.4).

Our Shake based build system has been an unqualified success
– while the complexity of our project has increased (more files,
more compilers, more generators and more platforms), the build
system has coped well. The first version of our Shake build system
was under 1000 lines and matched everything the make system did.
Shake has been able to express all the dependencies correctly and
directly, resulting in a robust build system.

From experience implementing several build systems using
Shake we have learnt a number of lessons – both about best prac-
tices for structuring build systems, and how Shake can be used to
deal with the complexities of real software. In this section we share
some of those lessons.

6.1 Command Line Interface
While a build system can simply call shake, most systems add some
command line handling, such as options to control parallelism and
verbosity (see ShakeOptions in Figure 2). One common feature
is a clean command, to delete all build results. Using Shake
we could query the database to find all build results and delete
them. Alternatively, deleting the database will cause a full rebuild.
However, we have found the most convenient solution is to create
all build objects in a directory named .make, and perform a clean
by deleting that directory.

Using make, you can specify build targets on the command line.
We have implemented an enhanced version of this feature, allowing
both individual files and sets of files to be enabled/disabled. As an
example, a user may write mk !DOCS to disable building documen-
tation, or mk index.html to build only index.html. We control
these targets by passing a modified version of want to the functions
specifying rules, which consults the command line arguments:

documentation :: (String→ [FilePath]→ Rules ())→ Rules ()
documentation wants = do

wants“DOCS” [“index.html”]
“index.html”∗> λout→ . . .

6.2 Build rules that change
Throughout this paper, we assume the build rules do not change,
merely the dependencies of the rules, but that is not true in practice.
We use three techniques to minimise the impact of build rule
changes:

Use configuration files Most build information, such as which
files a C file includes, can be computed from source files. Where
such information is not available, such as which C files should
be linked together to form an executable, we use configuration
files to provide the information. The rule for linking can use these
configuration files, which can be properly tracked. By moving any
regularly changing configuration into separate files we significantly
reduce the number of build system changes.

Depend on the build source We should rerun a build rule if its
action has changed. Lacking equality for functions, one approach is
to depend on the build system source in each of the rules, then if any
actions change, everything will rebuild. While this option is safe, it
causes a significant number of redundant rebuilds. As a restricted
version of this technique, for a generated file we often include
a dependency on the generator source and use writeFileChanged
(§3.7). If the generator changes it will rerun, but typically only a
few generated files will change, so little is rebuilt.

Use a version number There is a field named shakeVersion in the
ShakeOptions record from Figure 2. If the build system changes in
a significant and incompatible way, we increment this field to force
a full rebuild. This option is a last resort, but ensures end users do
not need to be aware when the build system changes, and are never
required to explicitly clean their build after changes.

6.3 Multiple Outputs
Some programs, such as the Haskell compiler ghc (The GHC Team
2011), can produce two outputs with one command – compiling
Foo.hs produces both Foo.o and Foo.hi. As a first approximation,
the .o file depends on the entire contents of the source file, while the
.hi file depends only on the type signatures. A single ghc invocation
needs to do all the work to produce both, but often the .hi file will
be left unchanged. Unfortunately, many build systems (including
make) do not handle multiple outputs well.

In Shake, it is usually possible to describe multiple outputs in
terms of single outputs – in this example we can claim that Foo.hi
depends on Foo.o with no action and Foo.o depends on Foo.hs by
running ghc. Thanks to support for unchanging files (§2.3.3), if the
.hi file does not change then its dependencies will not be rebuilt.
However, this formulation has two problems:

• If Foo.hi is deleted without also deleting Foo.o, then Foo.hi
will not be rebuilt by running the .hi rule, and the build system
will raise an error.

• If ghc updates Foo.hi, but manages to determine it does not
need to update Foo.o, then Foo.hi will not be marked as dirty
and the build will be incorrect.

data Files = Files [FilePath]
data FileTimes = FileTimes [ClockTime]

instance Rule Files FileTimes where
validStored (Files xs) (FileTimes ys) = do

times← mapM getFileTime xs
return $ map Just ys ≡ times

multipleOutputs = do
rule $ λ(Files xs)→

if xs ̸≡ [“even.txt”,“odd.txt”] then Nothing else Just $ do
need [“numbers.txt”]
system′ “number-split” []
times← liftIO $ mapM getFileTime xs
return $ FileTimes $ map fromJust times

[“even.txt”,“odd.txt”] ∗∗> λ → do
apply1 (Files [“even.txt”,“odd.txt”]) :: Action FileTimes
return ()

Figure 9. Rule type to produce multiple outputs.

Despite these limitations, a fake dependency is often sufficient
in practice, provided we can assume Foo.hi is not updated indepen-
dently of Foo.o. However, consider a command that reads num-
bers.txt containing lines of numbers, and produces even.txt and
odd.txt – each containing only the even or odd numbers – but
does not update an output file that does not change. In this situa-
tion there is no fake dependency that adequately captures the real
dependency.

We can accurately capture the dependencies using the code in
Figure 9, which introduces a new type of rule for actions producing
multiple files. Inside multipleOutputs, the call to rule declares a
rule that can build both even.txt and odd.txt with a single action.
We call the number-split program, and get the file times for
the results. On the ∗∗> line we define two rules to produce the
output files, using the standard file creation rules from Figure 4,
whose action calls apply1 with the list of files to create. If the build
first requires even.txt then number-split will be invoked, but a
subsequent requirement for odd.txt will not rerun number-split.

The Shake library wraps up the Files rule type, providing a
simple interface using the (∗>>) operator, allowing an end user to
write:

[“even.txt”,“odd.txt”] ∗>> λ → do
need [“numbers.txt”]
system′ “number-split” []

6.4 Transitive Dependencies
In build systems, transitive dependencies are common – where
a rule depends on its children, plus their dependencies. As an
example, if foo.c includes bar.h, and bar.h in turn includes baz.h,
then foo.c should be recompiled if either bar.h or baz.h changes.
In §3.1 we saw a solution to C file dependencies, using gcc -MM to
find the transitive dependencies of a .c file then calling need on the
results. This solution has two potential problems:

• If bar.h is included by many files, then both it and any headers
it includes will be scanned many times. In most cases the
overhead is small, but for some projects it can be significant.

• If bar.h is generated by the build system, using gcc will not
cause bar.h to be built, since the need call is performed after
running gcc (violating requirement 2 from §5.1). If the file is

“*.c.o”∗> λout→ do
need=<< readFileLines (replaceExtension out“deps”)
system′ “gcc” [“-c”, dropExtension out,“-o”, out]

“*.deps”∗> λout→ do
dep← readFileLines $ replaceExtension out“dep”
deps← mapM (readFileLines ◦ (++“.deps”)) dep
writeFileLines out $ nub $ dep++ concat deps

[“*.c.dep”,“*.h.dep”] ∗∗> λout→ do
src← readFileLines $ dropExtension out
let incs = [init y | x← src

, Just y← [stripPrefix “#include \”” x]]
writeFileLines out incs

Figure 10. Rules to express transitive dependencies for C files.

missing gcc will fail, if it is present a stale value will be used
when finding its dependencies. For projects generating header
files, using gcc -MM to scan for headers is unworkable.

We can solve these problems by using the rule for *.c.o from
Figure 10. We use a .dep file to store the immediate dependencies
of a file, and a .deps file to store the transitive dependencies. For ex-
ample, foo.c.dep contains the dependency bar.h while foo.c.deps
contains both bar.h and baz.h. The three build rules we use are:

• The *.c.o rule depends on the associated .deps file (ensuring it
is up to date) and then depends on its contents.

• The *.deps rule takes the .dep file, and all the .deps it points at,
producing the transitive dependencies of its immediate depen-
dencies. This rule can be used to find the transitive dependen-
cies of anything with .dep rules, for example with Haskell files
it would produce the set of files required for linking (namely
the transitive dependencies of the imports).

• The *.c.dep/*.h.dep rule takes a source file and finds all
one-level dependencies by scanning for lines starting with
#include. This rule makes a number of assumptions about
the structure of the C files which are not true in general. In
particular, it assumes that includes are not skipped by #ifdef
commands, that there is no extra whitespace, and that local in-
cludes are quoted while system includes use angle brackets.
These assumptions can be relaxed, but are sufficient for many
projects.

7. Related Work
Build tools can be divided into two categories – those which target
single-language projects with fixed rules (e.g. ocamlbuild, ghc
--make, Visual Studio projects), and those which allow user speci-
fied rules (e.g. make and Shake). Focusing on the second category,
the defacto standard is make, but there are many make competitors
(notably Ant, CMake, Jam, Scons and Waf). Most of these tools
read a list of rules, generate a dependency graph, then execute com-
mands while traversing that graph.

Since the number of build tools is vast, we focus on four build
tools which take different approaches (Redo, Ninja, Tup and Fab-
ricate). Interestingly, one thing all four systems have in common is
that they require a database of build data, in addition to the rules
and the file system. Unlike Shake, all these build systems are lim-
ited to files.

7.1 Redo
The Redo build system (Pennarun 2011) has a similar dependency
theory to Shake. Rules are run starting at the target. A rule may call
redo-ifchange (similar to need) to ensure that this rule is repeated
if any of the file arguments change. A rule can build either a specific
named file, or a set of files ending with a particular extension.

While Redo has similarities to Shake, the practical implemen-
tation is significantly different. Instead of a single rule store, Redo
stores each rule in a separate file, and the script language is simply
shell script (allowing #! to change the interpreter). The advantage
of separate files is that Redo is able to depend on the actual rule
used to build a result, meaning that build system changes are prop-
erly tracked. However, separating build rules makes it harder to
reason about the build system, and eliminates many potential uses
of abstraction (de Jonge 2005). Redo does not work on Windows,
and has no support for unchanging files or multiple outputs.

7.2 Ninja
The Ninja build system (Martin 2011) is designed as a two-stage
build system – users specify their build rules in a high-level man-
ner, which is then translated to a set of Ninja build rules. As a re-
sult, the Ninja build system is not designed to be general purpose
and configuration choices are expected to be resolved by the first
level. The Ninja target language supports three dependency fea-
tures beyond make. Firstly, a rule can depend on the list of files
contained in another file, allowing additional dependencies at build
time. Secondly, the command line for each rule is tracked, resulting
in a rebuild if the rule itself changes. Thirdly, a rule can generate
multiple outputs, which are properly tracked.

7.3 Tup
The Tup build system (Shal 2009) is designed as an incremental
build system. Tup has a similar dependency structure to make, but
a significantly different implementation. Instead of scanning all
dependencies, it expects the operating system to supply a list of
changed files, avoiding the overhead of checking which files have
changed. For large build systems the result can be a significant
speed improvement when rebuilding only a few files. We believe
a similar implementation strategy could be applied to Shake.

Another difference from make is the treatment of dead build
results. If a rule to build foo is deleted from the rule list, then Tup
automatically deletes the file foo. The problem of dead build results
is serious, resulting in builds succeeding that should have failed,
and that will fail as soon as a clean build is performed (to reduce
this risk, we suggest an overnight build which starts from scratch).
However, it is often useful to have build modes which generate
skeleton files which are then modified by the user – deleting these
files would be most unwelcome. It would be easy to add support
for deleting dead build results to Shake, but we choose not to.

7.4 Fabricate
The key innovation in the Fabricate build system (Hoyt et al. 2009)
is that dependencies do not need to be stated explicitly. A build
system is a Python program, which primarily executes system com-
mands in order. While executing the commands, Fabricate uses sys-
tem tracing (strace on Linux) to record which files are accessed. In
future runs, if the same system command is reached but none of
the files it used have changed, the command is skipped. The result-
ing build systems are simple, and avoid the difficulties of correctly
specifying dependencies.

There are two inherent difficulties for build systems without ex-
plicit dependencies. Firstly, the system tracing mechanisms on dif-
ferent platforms are varied, and on Windows are somewhat fragile
(see §5.1). Secondly, parallelism cannot be inferred automatically –
Fabricate requires explicit grouping annotations to use parallelism.

7.5 Extending Make Dependencies
Specifying additional dependencies while building is critical for
many projects. As a result, a number of techniques have been
developed to specify additional dependencies in make. Most of
these techniques rely on generating some portion of the make rules
file, either before make starts, or invoking make multiple times.
Taking the example from §1, we can write it with make as:

result.tar : list.txt $(shell cat list.txt)
cat list.txt | xargs tar -cf result.tar
Here make is executing commands in two distinct phases – the

first phase generates the rules file, the second runs it. In many large
projects, the first phase becomes expensive or complex, resulting
in specific commands such as make depends to update the de-
pendencies (as required in §5.4.1 and §6). Another approach is for
make to restart itself partway through the build, after modifying the
build rules. However, multiple phases have many problems:

• There is no limit to the number of build phases required, espe-
cially when files are generated by the build system. Shake was
originally designed after determining a particular build system
required seven phases.

• The introduction of phases breaks compositionality, requiring
build system authors to globally separate rules by phase. The
above rule for result.tar fails if list.txt is itself built by the build
system, whereas the Shake rule in §1 works in all cases.

• These approaches require generating make rules as text, which
is then reinterpreted by make. As a result, while the Shake rule
from §1 can handle spaces in file names, the make rule cannot.

• If all phases are run every time then there is overhead due to
restarting make, rechecking previously checked rules and re-
ducing parallelism opportunities. If different phases are invoked
manually then the user has to be aware what has changed.

7.6 Haskell Build Libraries
There are a surprisingly large number of Haskell libraries imple-
menting a dependency aware build system – we know of ten in
addition to Shake (Abba, Blueprint, Coadjute, Cake × 2, Hake,
Hmk, Nemesis, OpenShake and Zoom). Of these, the two Cake li-
braries and OpenShake are based on an early presentation of the
principles behind Shake, before the source code was available. The
primary difference from the Cake libraries is that this paper allows
multiple types of build rule, while the Cake libraries only allow
file rules. Compared to OpenShake (Bolingbroke 2011), we have
opted to have rule/apply based on dynamic types, and then use sug-
ared versions to regain static guarantees of type safety. In contrast,
OpenShake uses type functions (Schrijvers et al. 2008) to statically
track the available rule types, making serialisation simpler (§4.1),
but complicating the rest of the library.

8. Conclusions and Future Work
We have presented a dependency model which allows additional
dependencies to be specified after the build system starts running
rules. This additional flexibility is essential for many build systems,
especially those where source files are generated by rules. We have
implemented our ideas in the Haskell library Shake, producing
a user-friendly interface combined with an efficient and robust
implementation. We have used Shake extensively and find it much
easier to use than make (§6).

Functional programming is important for Shake. The theory of
build systems is naturally expressed using higher-order functions,
where actions are functions from dependencies to results. Moving
towards a practical build system, a major consideration is the treat-
ment of IO – we use monads to restrict where IO can be used, while

also using monads to track state in a thread-safe way. We make use
of the flexible syntax of Haskell to allow Shake rules to be writ-
ten with minimal syntactic overhead. Laziness is not necessary for
Shake, and if ignored could cause problems, but restricting laziness
is simple (§4.2).

While we have optimised our build algorithms, saving the
database is a noticeable bottleneck for quick builds, taking upto
75% of the time. We suspect this step could be sped up, perhaps by
switching to a different binary serialisation library. We have pro-
vided some tools on top of Shake, but improvements to the analysis
feature would help Shake users, as would fully implementing de-
pendency checking. Some users have already begun work on gen-
eral purpose build rules for common types of source code, which
could reduce the effort required to make use of Shake.

The make tool has been ubiquitous for the last thirty years,
specifying dependencies in advance and defining actions with shell
scripting and a macro system. With Shake we offer more power-
ful dependencies, coupled with the Haskell language for defining
actions. The dependencies allow more complex build systems to
be specified in a more direct manner, while the use of Haskell al-
lows abstraction and reuse. We hope these advantages are powerful
enough to tempt many developers to consider Shake.

Acknowledgements Thanks to Standard Chartered, where Shake
was initially developed, and to Raphael Montelatici for the name
Shake. Thanks to Max Bolingbroke and Evan Laforge for many
discussions about build systems. Thanks to Sönke Hahn, Evan
Laforge, Roman Leshchinskiy and Raphael Montelatici for com-
ments on drafts of this paper.

Neil Mitchell is employed by Standard Chartered Bank. This paper has been
created in a personal capacity and Standard Chartered Bank does not accept
liability for its content. Views expressed in this paper do not necessarily
represent the views of Standard Chartered Bank.

References
Bram Adams, Herman Tromp, Kris De Schutter, and Wolfgang De Meuter.

Design recovery and maintenance of build systems. In Proc. ICSM ’07,
pages 214–223. IEEE, October 2007.

Max Bolingbroke. OpenShake build system. https://github.com/
batterseapower/openshake, 2011.

Merijn de Jonge. Build-level components. IEEE Transactions on Software
Engineering, 31(7):588–600, 2005.

Stuart Feldman. Make – a program for maintaining computer programs.
Technical Report 5, Bell Laboratories, 1978.

Berwyn Hoyt, Bryan Hoyt, and Ben Hoyt. fabricate – the better build tool.
http://code.google.com/p/fabricate, 2009.

Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical
design pattern for generic programming. In Proc. TLDI ’03, pages 26–
37. ACM Press, March 2003.

Konstantin Läufer and Martin Odersky. Polymorphic type inference and
abstract data types. ACM Transactions on Programming Language
Systems, 16:1411–1430, September 1994.

Evan Martin. Ninja manual. http://martine.github.com/ninja/
manual.html, December 2011.

Peter Miller. Recursive make considered harmful. Journal of AUUG Inc,
19(1):14–25, 1998.

Avery Pennarun. redo: a top-down software build system. https://
github.com/apenwarr/redo, December 2011.

Tom Schrijvers, Simon Peyton Jones, Manuel Chakravarty, and Martin
Sulzmann. Type checking with open type functions. In Proc. ICFP
’08, pages 51–62. ACM Press, 2008.

Mike Shal. Build system rules and algorithms. http://gittup.org/
tup/build_system_rules_and_algorithms.pdf, 2009.

The GHC Team. The GHC compiler, version 7.2.2. http://www.
haskell.org/ghc/, November 2011.

