
MODEL CATEGORIES PRIMER

C complete and cocomplete

Three subcategories:

W Weak equivalences (WE’s)

C of Cofibrations

F ib Fibrations

(1) All closed under retracts of maps

(2) 2 of 3 property for W (h = g◦f )

(3) Lifting: Consider a diagram with

i a cofibration and p a fibration:

A
i ��

f
// E

p
��

X g
//

>>}
}

}
}

B

i or p acyclic (in W ) =⇒ lift.

i has LLP wrt p

p has RLP wrt i

(Categorical orthogonality language: Sic)
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(4) Factorizations of f : X → Y :

W p
!!CC

CC
CC

CC

X
f

//

j !!CC
CC

CC
CC

i =={{{{{{{{

Y

Z
q

=={{{{{{{{

i a cofibration

p an acyclic fibration

j an acyclic cofibration

q a fibration.

Negotiable: factorizations functorial.

———————————————–

Characterizations:

Cofibration ⇔ LLP wrt acyclic fibrations

Fibration ⇔ RLP wrt acyclic cofibrations

Acyclic cofibration ⇔ LLP wrt fibrations

Acyclic fibration ⇔ RLP wrt cofibrations
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Obsolete: “closed” model category

Cofibrant and fibrant objects

Cofibrant: ∅ → X a cofibration.

Cofibrant approximation factorization

∅ //QX π //X

π an acyclic fibration.
———————————————–
Fibrant: X → ∗ a fibration

Fibrant approximation factorization

X ι // RX //∗

ι an acyclic cofibration.
———————————————–
Sometimes have simplifying feature:

All objects cofibrant (sSets)

All objects fibrant (Spaces)

All objects cofibrant and fibrant (C at)
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A model structure on C at

Weak equivalence = equivalence

Cofibration = injective on objects

Fibration = RLP wrt ∗ → J .

* = trivial, J = two objects and

an isomorphism between them.

Acyclic cof = injective equivalence

Acyclic fib = surjective equivalence

= RLP wrt the three functors

∅ → ∗, ∂I → I , E → I .

I has two objects ∂I = 0q 1 and
one arrow 0 → 1, E has same objects
and two parallel arrows 0 → 1.

———————————————–

Factorizations of F : C → D through

(C ×J ) ∪C D and DJ ×D C .
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Topological spaces

Spaces compactly generated:

weak Hausdorff k-spaces.

h-model structure:

h-equivalence = homotopy equivalence

h-cofibration = Hurewicz cofibration

HEP = LLP wrt all p0 : Y I → Y

h-fibration = Hurewicz fibration

CHP = RLP wrt all i0 : X → X×I

General theory of h-model structures
on topologically enriched categories.

(Cole, Schwänzl-Vogt, M-Sigurdsson)
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q-model structure:

q-equivalence = weak equivalence

= π∗-isomorphism

q-cofibration = “I-cell retract”

(retract of a relative I-cell complex).

I = {Sn ⊂ Dn+1}.

Relative I-cell complex:

f : X → colim Yn = Y ,

where Y0 = X , Yn+1 = Yn ∪K L,

K → L a coproduct of maps in I .

q-fibration = Serre fibration

RLP wrt all maps in J ,

J = {i0 : Dn −→ Dn × I}.
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m-model structure (mixed):

m-equivalence = q-equivalence

m-fibration = h-fibration

m-cofibration = determined by LLP

m-cofibrant = CW homotopy type

Theorem (Cole). Let

(Wh, Fibh, Cofh)

and
(Wq, Fibq, Cofq)

be model structures on C such that

Wh ⊂ Wq and Fibh ⊂ Fibq.

Then there is also a model structure

(Wq, Fibh, Cofm).
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Compactly generated model categories

A set I of maps in C is compact
if, for domains K and relative I-cell
complexes X → colim Yn = Y ,

colim C (K, Yn) ∼= C (K, Y ).

Theorem. C bicomplete, W a sub-
category closed under retracts and
satisfying 2 out of 3 property, I and
J compact sets of maps in C . If

– any J -cell complex is acyclic and

– RLP wrt I iff (RLP wrt J) ∩W ,

then C is a model category with

– Fibration = RLP wrt J ,

– Acyclic fibration = RLP wrt I ,

– Cofibration = I-cell retract

– Acyclic cofibration = J -cell retract.
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Simplicial sets

f a weak equivalence if |f | is so.

I = {∂∆n → ∆n}
J = {Λi

n → ∆n}
cofibration = monomorphism

fibration = Kan fibration

= RLP wrt J .

C at, Top (with q-model structure),

and sSet are compactly generated.

Cofibrantly generated model categories

Compact = sequentially small. More
general notion of smallness leads to
more generally applicable notion of
a cofibrantly generated model cate-
gory, based on transfinite relative I-
cell complexes. Ideas are unchanged.
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Basic homotopy theory

Cylinder: Factorization of ∇

X qX i //“X × I”
p

//X

with p ∈ W . Good if i ∈ C of .

Very good if also p ∈ F ib.

Very good cylinders exist.

Quillen: cylinder = good cylinder,

but then X × I in Top not allowed.

———————————————–

Cocylinder (= path object):

Factorization of ∆

X i //“XI”
p

//X ×X

with i ∈ W . Good if p ∈ F ib.

Very good if also i ∈ C of .

Very good cocylinders exist.
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Left homotopy: X × I → Y

for some cylinder X × I , f '` g;

(good or very good if X × I is so).

If X is cofibrant, there is a good left
homotopy and '` is an equivalence
relation between maps X → Y .

If X is cofibrant and Y is fibrant,
there is a very good left homotopy.

———————————————–

Right homotopy: X → Y I

for some cocylinder Y I , f 'r g;
(good or very good if Y I is so).

———————————————–

If X is cofibrant and Y is fibrant,

f '` g ⇔ f 'r g,

then written f ' g.

π(X, Y ) ≡ C (X, Y )/(')
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Can see' with any fixed good X×I
or any fixed good Y I (as classically).

———————————————–

Whitehead: f : X → Y , X and Y
fibrant and cofibrant. Then f ∈ W
if and only if there exists g : Y → X
such that gf ' idX and fg ' idY .

———————————————–

Homotopy category: HoC ≡ C [W −1].
γ : C → HoC : identity on objects,
f ∈ W ⇔ γ(f ) is an isomorphism.

Morphism sets [X, Y ].

[X, Y ] ∼= π(QRX, QRY )
∼= π(RQX, RQY )

X cofibrant, Y fibrant ⇒

[X, Y ] = π(X, Y )
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Derived functors (Dwyer–Spalinski)

T : C −→ D , C model, D any cat.
Left derived functor:

C
γ

//

T
""EEEEEEEEEEEEEEEEEE HoC

LT
��

tv~ vv
vvv

vvv
v

vvv
vvv

vvv

D
For any other such diagram

C
γ

//

T
""DD

DD
DD

DD
DD

DD
DD

DD
DD

HoC

S
��

sv~ vv
vvv

vvv
v

vvv
vvv

vvv

D ,

∃! s̃ : S → LT 3 t ◦ s̃γ = s.

Unique up to equivalence if it exists.

Right derived functor:

RT : HoC → D , t : T → (RT ) ◦ γ

For any other such pair (S, s),

∃! s̃ : RT → S 3 s̃γ ◦ t = s.
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I so(D) ≡ isomorphisms in D .

If T (W ) ⊂ I so(D), then

LT = T̃ : HoC = C [W −1] −→ D

is unique such that LT ◦ γ = T .
————————————————
Cc = full subcat of cofibrant objects

Cf = full subcat of fibrant objects

Ccf = their intersection.
————————————————
If T (W ∩ C of) ⊂ I so(D), then
T (W ∩ Cc) ⊂ I so(D) and

LT = T̃Q, TQ : C → Cc −→ D ,

with t = Tπ, π : Q → Id.
————————————————
If T (W ∩ F ib) ⊂ I so(D), then
T (W ∩ Cf ) ⊂ I so(D) and

RT = T̃R, TR : C → Cf −→ D ,

with t = Tι, ι : Id → R.
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C and D model categories

Quillen adjoint pair (T, U):

T (C ofC ) ⊂ C ofD

and

U(F ibD) ⊂ F ibC

TFAE for an adjoint pair (T, U).

(T, U) is a Quillen adjoint pair.

T preserves C of and W ∩ C of .

U preserves F ib and W ∩F ib.

(T, U) is a Quillen equivalence if, for

X ∈ Cc and Y ∈ Df , f : TX → Y

is a WE iff f̃ : X → UY is a WE.
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“Total” left derived functor (from TQ)

LT = L(γD ◦ T ) : HoC −→ HoD

LT ◦ γC → γD ◦ T.

WE on cofibrant objects.

Total right derived functor (from UR)

RU = R(γC ◦ U) : HoD −→ HoC

γC ◦ U → RU ◦ γD .

WE on fibrant objects.

(LT, RU) derived adjoint pair.

For (T, U), (T ′, U ′), τ : T −→ T ′:

Lτ : LT → LT ′ by LτX = τQX .
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2-category interpretation (Hovey)

2-category C atadj of categories,

adjunctions (T, U), and natural

transformations T → T ′.

2-category C atmod of model

categories, Quillen adjunctions,

and natural transformations.

Contravariant duality endo-2-functors
D on C atadj and C atmod that send

C to C op, (T, U) to (U, T ), τ to τ̃ ,
τ̃ : U ′ −→ U the conjugate of τ .

Pseudo-2-functor

Ho: C atmod → C atadj

via L on 1-cells and 2-cells, and

D ◦ Ho = Ho ◦D.
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Characterizations of Quillen equivalences

TFAE for a Quillen adjoint pair (T, U).

(T, U) is a Quillen equivalence.

(LT, RU) is an adjoint equivalence.

X → UTX → URTX is a WE for
X ∈ Cc and TQUY → TUY → Y
is a WE for Y ∈ Df .

T reflects WE’s between cofibrant ob-
jects and TQUY → TUY → Y is
a WE for Y ∈ Df .

U reflects WE’s between fibrant ob-
jects and X → UTX → URTX is
a WE for X ∈ Cc.

Theorem. (|−|, S) is a Quillen equiv-
alence between sSets and Top.
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Homotopy colimits and limits

D a “very small category”:

finitely many objects,

finitely many morphisms,

strings of composable non-identity

maps have bounded length.

∆: C −→ C D

(colim, ∆) or (∆, lim)

is a Quillen adjoint pair wrt model
structure on C D given by levelwise
WE’s and fibrations or by levelwise
WE’s and cofibrations.

hocolim or holim is the total left or
right derived functor of colim or lim.

Any D works if C is sSets or Top.
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Proper Model Categories

Consider pushout, i a cofibration:

A
f

//

i ��

B
j

��

X g
// Y

i acyclic ⇒ j acyclic (clear)

Left proper: f acyclic ⇒ g acyclic.

Consider pullback, p a fibration:

D
g

//

q
��

E
p

��

A f
// B

p acyclic ⇒ q acyclic (clear)

Right proper: f acyclic ⇒ g acyclic.

Proper = left and right proper
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V -model categories

V closed symmetric monoidal.

C V -enriched, tensored, cotensored.

C and V model categories.

i : X −→ Y and j : V −→ W

cofibrations in C and in V .

X ⊗ V
id⊗j

//

i⊗id

��

X ⊗W

i⊗id

��

tthhhhhhhhhhhhhhhhhh

(X ⊗W ) ∪X⊗V (Y ⊗ V )

i�j **VVVVVVVVVVVVVVVVVV

Y ⊗ V
id⊗j

//
k

44hhhhhhhhhhhhhhhhhhh

Y ⊗W.

V -model category: i�j is a cofibra-
tion which is acyclic if i or j is acyclic.

If id ⊗ j and k are WE’s, so is i�j
(left proper relevant). Similarly with
roles of i and j reversed.
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Equivalent conditions for V -model.

p : E → B a fibration in C .

C (Y,E)
i∗ //

C �(i,p)

**TTTTTTTTTTTTTTTTT

p∗

��

C (X, E)

p∗

��

C (Y,B)×C (X,B) C (X, E)

ttjjjjjjjjjjjjjjjjj

44jjjjjjjjjjjjjjjjj

C (Y,B)
i∗

// C (X, B)

C �(i, p) is a fibration which is acyclic
of i or p is.

H(W, E)
j∗

//

H�(j,p)

**TTTTTTTTTTTTTTTT

p∗

��

H(V, E)

p∗

��

H(W, B)×H(V,B) H(V, E)

ttjjjjjjjjjjjjjjjj

55jjjjjjjjjjjjjjjjj

H(W, B)
j∗

// H(V, B)

[Here H = cotensor]. H�(j, p) is a
fibration which is acyclic if j or p is.



23

Monoidal model structures

Given⊗ : C×D → E relating three
model categories, one has the analog
of the V -model structure condition.

For cofibrations

i : X −→ Y and and j : V −→ W

in C and D ,

i�j : (X⊗W )∪X⊗V (Y⊗V ) → Y⊗W

is a cofibration in E which is acyclic
if i or j is acyclic.

Defines pairings of model categories.

Given adjoint Hom functors, there
result equivalent adjoint analogues.
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C = D = E : this defines monoidal
model categories, symmetric monoidal
model categories, closed symmetric
monoidal model categories.

HoC then inherits a monoidal, sym-
metric monoidal, or closed symmet-
ric monoidal structure.

Analogously, the case E ⊗ C → E
gives C -modules E ; V -model struc-
ture is a special case.

Detail. If the unit S of C (or V ) is not cofibrant, we

must also require X ⊗ QS → X ⊗ S ∼= X to be a

WE in the definitions above.

————————————————

sSet and Top (h, q, m) are proper
Cartesian monoidal model categories.
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C at and sSets

C at (equivalence model structure):

– Cartesian monoidal model category

– Quillen adjoint pair

(π, ν) : sSets → C at

πK = fundamental groupoid of K

Objects K0, generating isomorphisms
y : d1y → d0y for y ∈ K1, relations

s0x = idx for x ∈ K0,

d0zd2z = d1z for z ∈ K2.

νC = Nerve(I soC )

– C at is a simplicial model category

Enriched in sSets:

Hom(C , D) = ν(DC )

Tensors and cotensors via π:

C⊗K = C×πK H(K, C) = C πK
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Realization model structure on C at

(Thomason): Adjunction (N, C)

N : C at → sSets (nerve functor)

C : sSets −→ C at (categorize)

CK: Objects K0, generating maps

y : d1y → d0y for y ∈ K1, relations

s0x = idx for x ∈ K0,

d0zd2z = d1z for z ∈ K2.

πK by localization to invert y’s.

(sd2, Ex2) endo-adjunction on sSets.

f is WE or fibration if Ex2Nf is so.

f is a WE iff Nf is a WE iff πNf
is an equivalence of groupoids and f
is an H∗–isomorphism.

Theorem (Csd2, Ex2N) is a Quillen
equivalence between C at and sSets.
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Over and under model structures

C a proper model category, B ∈ C .

C /B, B\C , CB

Over, under, over and under cats.

Proper model categories whose weak

equivalences, cofibrations, fibrations

are those maps which are weak

equivalences, cofibrations, fibrations

in C (on underlying total objects).

Base change functors

Assume C , C /B Cartesian closed.

f : A −→ B

f! : CA −→ CB

f∗ : CB −→ CA

f∗ : CA −→ CB,
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Adjunctions (f!, f
∗), (f∗, f∗).

With generic notations

A s // X
p

// A and B t // Y
q

// B

for objects in CA and CB,

A
s

��

f
// B

t��
X
p

��

// f!X
q

��

A f
// B

A
s

��

f
// B

t
��

f∗Y //

p
��

Y
q

��

A f
// B

B
t

��

ι // MapB(A, A)
Map(id,s)

��

f∗X
q

��

// MapB(A, X)
Map(id,p)

��

B ι
// MapB(A, A).

First: top square a pushout.

Others: bottom square a pullback.
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Formal from proper model axioms:

(f!, f
∗) is a Quillen adjoint pair and

a Quillen equivalence if f is a WE.

For a pullback diagram

C
g

//

i ��

D
j

��

A f
// B

j∗f!
∼= g!i

∗ f∗j∗ ∼= i∗g∗

f∗j!
∼= i!g

∗ j∗f∗ ∼= g∗i∗.

If (f∗, f∗) is a Quillen adjoint pair,

all homotopy categories are trivial!!
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Pullback

∅ φ
//

φ
��

B
i0��

B i1
// B × I

φ! and φ∗ take ∗∅ to ∗B (initial objs).

(φ!, φ
∗) and (φ∗, φ∗) are Quillen pairs.

(i0)
∗ ◦ (i1)!

∼= φ! ◦ φ∗

(Both take any X over B to ∗B.)

If (i1)! and (i0)
∗ were both Quillen

left adjoints, we would get

L(i0)
∗ ◦ L(i1)!

∼= Lφ! ◦ Lφ∗.

Since L(i1)! and L(i0)
∗ are equiva-

lences, this would imply that HoCB
is trivial.

No theory of composites RU ′ ◦ LT !


