MODEL CATEGORIES PRIMER
% complete and cocomplete

Three subcategories:

W Weak equivalences (WE’s)
Cof Cofibrations

Z1b Fibrations

(1) All closed under retracts of maps
(2) 2 of 3 property for # (h = go f)
(3) Lifting: Consider a diagram with

© a cofibration and p a fibration:

L g
i, P
X g B
i or p acyclic (in #') = lift.
v has LLP wrt p

p has RLP wrt ¢

(Categorical orthogonality language: Sic)
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(4) Factorizations of f: X — Y

K)/ \@
NS

N

1 a cofibration

p an acyclic fibration

7 an acyclic cofibration

g a fibration.

Negotiable: tactorizations functorial.

Characterizations:

Cofibration < LLP wrt acyclic fibrations
Fibration < RLP wrt acyclic cofibrations
Acyclic cofibration < LLP wrt fibrations
Acyclic fibration < RLP wrt cofibrations
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Obsolete: “closed” model category
Cofibrant and fibrant objects
Cofibrant: @ — X a cofibration.

Cofibrant approximation factorization

QX ™X

m an acyclic fibration.

Fibrant: X — * a fibration

Fibrant approximation factorization
X “RX —x

¢ an acyclic cofibration.

Sometimes have simplifying feature:
All objects cofibrant (sSets)

All objects fibrant (Spaces)

All objects cofibrant and fibrant (% at)



A model structure on €at

Weak equivalence = equivalence

Cofibration = injective on objects
Fibration = RLP wrt * — £

* = trivial, # = two objects and
an isomorphism between them.
Acyclic cof = injective equivalence

Acyclic ib = surjective equivalence
= RLP wrt the three functors

) —x, 0 - & — 7.

# has two objects 0. = 0111 and
one arrow 0 — 1, & has same objects

and two parallel arrows 0 — 1.

Factorizations of ': € — & through
(€ x #)Up 2 and 27 x4 .



Topological spaces

Spaces compactly generated:

weak Hausdorft k-spaces.

h-model structure:

h-equivalence = homotopy equivalence

h-cofibration = Hurewicz cofibration

HEP = LLP wrt all pg: Y = YV

h-fibration = Hurewicz fibration
CHP =RLPwrtall¢g: X — X x [

General theory of h-model structures
on topologically enriched categories.

(Cole, Schwanzl-Vogt, M-Sigurdsson)
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g-model structure:

g-equivalence = weak equivalence

= Ty-1somorphism

g-cofibration = “I-cell retract”

(retract of a relative I-cell complex).
[ ={S"c D1

Relative I-cell complex:

f: X —colimY, =Y,

where Yy = X, Y01 =Y Ur L,

K — L a coproduct of maps in [.

g-fibration = Serre fibration
RLP wrt all maps in J,
J ={ig: D" — D" x I}



m-model structure (mixed):

m~equivalence = g-equivalence
m-fibration = h-fibration
m-cofibration = determined by LLP

m-~cofibrant = CW homotopy type

Theorem (Cole). Let
(W, Fiby, Cofp)

and

(W, Fiby, Gofyq)
be model structures on € such that
Wh C % and gzibh C gfibq.
Then there is also a model structure

(W Fiby, o).
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Compactly generated model categories

A set I of maps in € is compact
if, for domains K and relative [-cell
complexes X — colimY,, =Y,

colim % (K, Yy,) =EE(K,Y).

Theorem. % bicomplete, # a sub-
category closed under retracts and
satisfying 2 out of 3 property, I and
J compact sets of maps in €. If

—any J-cell complex is acyclic and
— RLP wrt [ iff (RLP wrt J) N%#,
then % is a model category with

— Fibration = RLP wrt J,

— Acyclic fibration = RLP wrt [,
— Cofibration = [-cell retract

— Acyclic cofibration = J-cell retract.



Simplicial sets

f a weak equivalence if | f| is so.
I ={0A, — Ay}
J = {A;L”L — An}
cofibration = monomorphism
fibration = Kan fibration
= RLP wrt J.
% at, Top (with g-model structure),

and sSet are compactly generated.

Cofibrantly generated model categories

Compact = sequentially small. More
general notion of smallness leads to
more generally applicable notion of
a cofibrantly generated model cate-
oory, based on transfinite relative I-
cell complexes. Ideas are unchanged.
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Basic homotopy theory

Cylinder: Factorization of V
XX beXxxDPlx

with p € #'. Good if i € €of.
Very good if also p € .#ib.

Very good cylinders exist.

Quillen: cylinder = good cylinder,
but then X x I in Top not allowed.

Cocylinder (= path object):

Factorization of A

X box PX x X

with ¢ € #'. Good if p € Fib.
Very good if also 7 € €of.

Very good cocylinders exist.
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Left homotopy: X X I — Y

for some cylinder X x I, f ~y g;
(good or very good if X x [ is so).
If X is cofibrant, there is a good left

homotopy and ~/ is an equivalence
relation between maps X — Y.

If X is cofibrant and Y is fibrant,
there is a very good left homotopy.

Right homotopy: X — vy

for some cocylinder Y, f ~,. g:
(good or very good if Y7 is so).

If X is cofibrant and Y is fibrant,

f 25 g A f =r g,
then written f ~ g.
m(X,Y)=%(X,Y)/(~)
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Can see ~ with any fixed good X x I
or any fixed good v (as classically).

Whitehead: f: X — Y, X and Y
fibrant and cofibrant. Then f € #
if and only if there exists g: ¥ — X
such that gf ~ idx and fg ~ idy-.

Homotopy category: Ho€ = €[# ).
v: ¢ — Ho%: identity on objects,
feW < ~v(f) is an isomorphism.

Morphism sets | X, Y.

T(QRX, QRY)
T(RQX, RQY)

XY

1211

X cofibrant, Y fibrant =
X, Y] =7(X.Y)
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Derived functors (Dwyer—Spalinski)
T:¢ — 9, model, ¥ any cat.

Left derived functor:

¢ —'—Ho¥
%
T
9
For any other such diagram

% ——Ho¥
S
T
9,

Hs5: 85— LT > tosy=s.

Unique up to equivalence it it exists.

Right derived functor:

RT:Ho® — 2, t: T — (RT)o~

For any other such pair (S, s),
Hs:RI"— S > syot=s.



F s0(P) = isomorphisms in Z.

[tT (W) C Fso(P), then
LT=T:Ho€ =€ "1 — 2
is unique such that LT oy =T

6. = full subcat of cofibrant objects
¢’y = tull subcat of fibrant objects
¢,y = their intersection.

It T(W NEof) C Fso(P), then
T(W N6 C Fso(P) and

LT=TQ, TQ: € — € — 2,
witht=T1m, m: () — Id.

It T(W N Fib) C Fso(Z), then
T(W Ne€y) C Iso(P) and

RT =TR, TR: € — €t — 2,
witht =T, ¢: Id — R.
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¢ and ¥ model categories
Quillen adjoint pair (T, U):

T(Cofg) CCofg
and

U(Fiby) C Fiby

TFAE for an adjoint pair (T,U).
(T, U) is a Quillen adjoint pair.

T preserves €of and # N€of.
U preserves .#ib and # N % ib.

(T, U) is a Quillen equivalence if, for
XebandY € Dy, [ TX =Y
s a WE ifff: X — UY is a WE.
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“Total” left derived functor (from T'Q))

LT = L(ygoT): Ho'¢ — HoZ

LT o~y — vgol.
WE on cofibrant objects.

Total right derived functor (from U R)
RU = R(yp oU): HoY — Ho®¥

Vg oU — RU oqg.
WE on fibrant objects.

(LT, RU) derived adjoint pair.

For (T,U), (T",U"), 7: T — T":
L7:LT — LT by Lty = 79x.
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2-category interpretation (Hovey)

2-category ‘Katadj of categories,
adjunctions (T, U), and natural

transformations T — T

2-category € at,,,q of model
categories, Quillen adjunctions,

and natural transformations.

Contravariant duality endo-2-functors
D on €at g and €atyy,,q that send

€ to €°P, (T,U) to (U, T), T to T,
7: U'" — U the conjugate of 7.

Pseudo-2-functor
Ho: €aty,0q — Cat g

via I on 1-cells and 2-cells, and

D oHo =HooD.
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Characterizations of Quillen equivalences

TFAE for a Quillen adjoint pair (T, U).
(T, U) is a Quillen equivalence.
(LT, RU) is an adjoint equivalence.

X —-UTX — URTX is a WE for
X €6, and TQUY — TUY — Y
is a WE forYE@f.

T reflects WE’s between cofibrant ob-
jects and TQUY — TUY — Y is
a WE for Y € @f

U reflects WE’s between fibrant ob-
jects and X — UTX — URTX is
a WE for X € €.

Theorem. (|—|,S)is a Quillen equiv-
alence between sSets and Top.
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Homotopy colimits and limits

D a “very small category”:
finitely many objects,

finitely many morphisms,

strings of composable non-identity

maps have bounded length.

A€ — €V

(colim, A) or (A,lim)

is a Quillen adjoint pair wrt model
structure on €2 given by levelwise

WE'’s and fibrations or by levelwise
WE’s and cofibrations.

hocolim or holim is the total left or
right derived functor of colim or lim.

Any D works if € is sSets or Top.
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Proper Model Categories

Consider pushout, ¢ a cofibration:

Lp

i
XqgY
i acyclic = 7 acyclic (clear)

Left proper: f acyclic = ¢ acyclic.

Consider pullback, p a fibration:

DLE
q p
ATB

p acyclic = q acyclic (clear)
Right proper: f acyclic = g acyclic.

Proper = left and right proper
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¥ -model categories

¥ closed symmetric monoidal.
€ 7 -enriched, tensored, cotensored.
¢ and 7 model categories.

1 X —Yandj:V—W
cofibrations in 4 and in 7.

XV id®; /X W
i®id (X @W)Uxer (Y ®V) i®id
Y @V " Y @ W.

¥ -model category: 7017 is a cofibra-

tion which is acyclicif ¢ or 7 is acyclic.

If id ® 7 and k are WE's, so is 21
(left proper relevant). Similarly with
roles of ¢ and j reversed.



Equivalent conditions for #-model.
p: /' — B a fibration in €.

(Y, E) p- (X, E)
w\ /
Dx Cg(Y, B) X€(X,B) CK(X, E) Dx
/
¢ (Y, B) ¢ (X, B)

Z‘*

€1, p) is a fibration which is acyclic
of 7 or p is.

H.E) H(V, B)
w /
p H(W, B) XH(V,B) H(V E) p
/
H(W, B) - H(V, B)

Here H = cotensor]. HY(j,p) is a
fibration which is acyclic if 7 or p is.
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Monoidal model structures

Given ® : € X ¥ — & relating three
model categories, one has the analog
of the #"-model structure condition.

For cofibrations

1 X — Y and and j7: V — W
in ¢ and 9,

i) (XW ) Uxey (YRV) = YW

is a cofibration in & which is acyclic
if ¢ or 7 is acyclic.
Defines pairings of model categories.

Given adjoint Hom functors, there
result equivalent adjoint analogues.



¢ = Y = &: this defines monoidal
model categories, symmetric monoidal
model categories, closed symmetric
monoidal model categories.

Ho% then inherits a monoidal, sym-
metric monoidal, or closed symmet-
ric monoidal structure.

Analogously, the case & ® € — &
gives ¢-modules &; #-model struc-
ture is a special case.

Detail. If the unit .S of € (or ¥') is not cofibrant, we
must also require X ® Q5 — X ® .S = X to be a
WE in the definitions above.

sSet and Top (h, q, m) are proper
Cartesian monoidal model categories.
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% at and sSets

€ at (equivalence model structure):

— Cartesian monoidal model category
— Quillen adjoint pair

(m,v): sSets — Cat
m K = fundamental groupoid of K

Objects K, generating isomorphisms
y: diy — doy for y € K1, relations

sor = id, for x € K,
dozdoz = dyz for z € Ko.

vE = Nerve(¥ so%)

— % at is a simplicial model category
Enriched in sSets:

Hom(€, 2) = v(2°)
Tensors and cotensors via

CRK =€xtK H(K,C)=%¢™"
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Realization model structure on €at
(Thomason): Adjunction (N, C')

N: €at — sSets (nerve functor)

C': sSets — € at (categorize)
C'K: Objects K, generating maps
y: diyy — doy for y € K1, relations
soxr = id, for x € K,
dozdoz = dqiz for z € Ko.

w K by localization to invert y’s.

(sd?, Ex?) endo-adjunction on sSets.

fis WE or fibration if Fz2N f is so.
fisaWEift Nfisa WEiff tNf
is an equivalence of groupoids and f
is an Hy—isomorphism.

Theorem (C'sd?, Ez*N) is a Quillen
equivalence between € at and sSets.
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Over and under model structures

€ a proper model category, B € €.
¢/B, B\¥¢, ¥p

Over, under, over and under cats.
Proper model categories whose weak
equivalences, cofibrations, fibrations
are those maps which are weak
equivalences, cofibrations, fibrations

in € (on underlying total objects).

Base change functors
Assume €, ¢ /B Cartesian closed.
f:A— B

Jii €y — B
f5 € — €y
fx1 €4 — €,
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Adjunctions (f!) f*>7 (f*a f*)

With generic notations

A5x4 and BLY-LB

for objects in €4 and €3,

ALB ALB
s F ) t
X—hXx fY—vy
p |q p| q
ATB ATB

B—*-Mappg(A, A)

t Map(id,s)
f*XHMapB(A7 X)
q Map(id,p)

B L MapB<A7 A)

First: top square a pushout.

Others: bottom square a pullback.
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Formal from proper model axioms:
(f1, f%) is a Quillen adjoint pair and
a Quillen equivalence if f is a WE.

For a pullback diagram

c<D
i i
ATB

j*f! = g!i* f*j* = i*g*

i =ag” 57 fe = gai.
If (f*, f«) is a Quillen adjoint pair,

all homotopy categories are trivial!!
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Pullback

0B

?, Jio

B -BxI

1
¢ and ¢y take *g to * g (initial objs).
(¢, ™) and (@™, P4) are Quillen pairs.
(i0)" o (i1) = 1o ¢”

(Both take any X over B to xp.)
If (21)) and (ig)* were both Quillen

left adjoints, we would get

L(ip)" o L(i1)) = L o Lo™.

Since IL(i1); and L(ig)* are equiva-
lences, this would imply that Ho%ép
1s trivial.

No theory of composites RU’ o LT



