
Reliable and reproducible Earth System Model
data analysis with ESMValTool

Valeriu Predoi (NCAS-CMS University of Reading, UK)
and Bouwe Andela (Netherlands eScience Centre, The Netherlands)

for the ESMValTool Technical Lead Team

Documentation https://docs.esmvaltool.org/en/latest/
GitHub https://github.com/ESMValGroup
Website https://esmvaltool.org/
Video https://www.youtube.com/watch?v=sidM4EB6Sbo

https://docs.esmvaltool.org/en/latest/
https://github.com/ESMValGroup
https://esmvaltool.org/
https://www.youtube.com/watch?v=sidM4EB6Sbo

Documentation https://docs.esmvaltool.org/en/latest/
GitHub https://github.com/ESMValGroup
Website https://esmvaltool.org/
Video https://www.youtube.com/watch?v=sidM4EB6Sbo

https://docs.esmvaltool.org/en/latest/
https://github.com/ESMValGroup
https://esmvaltool.org/
https://www.youtube.com/watch?v=sidM4EB6Sbo

Software ecosystem: ESMValTool and ESMValCore

ESMValTool: scientific analysis and diagnostics library (written in Python, NCL, R,
and Julia) – contains reproducible recipes with scientific output (plots, data files
etc) → SCIENCE is the main output, LARGE and DIVERSE (coding skills,
technical knowledge) COLLABORATIVE group the developers

ESMValCore: Python package for working with CMIP(-like) data, responsible for
running ESMValTool recipes. It finds and optionally downloads the input data, applies
preprocessor functions (climate statistics, regridding, multi-model statistics etc) and
passes the resulting NetCDF files on to the scientific analysis codes→ COMPUTING
and DATA REDUCTION are the outputs, SMALLER TECHNICAL TEAM (strong
technical skills) the developers

Software ecosystem: ESMValCore and ESMValTool

ESMValTool

- lots of code (~200k lines)
- many dependencies (~100 direct
dependencies, ~600 indirect dependencies),
but should be easy to install
- provides ~100 recipes and diagnostics,
which are fairly independent of each other

ESMValCore
- relatively compact codebase
- only a few dependencies
- reliability is key because it is used by every
recipe

Testing is absolutely necessary to ensure correct functionality and portability,
over long development cycles, with widely varied developers’ skills and

interests

Overall testing strategy - ESMValCore

Reliable Python package, responsible for computationally-heavy pre-
processing of climate data (climate statistics, regridding, multi-model
statistics etc) → COMPUTING and DATA REDUCTION are the outputs,
SMALL TECHNICAL TEAM the developers

Testing needs to be technically diverse and comprehensive

Testing done for Linux and OSX and all recent Python versions

Both strict and in-depth testing

Overall testing strategy - ESMValCore

Both strict and in-depth testing:

Core system tests:
- software environment fitness (building the environment, and installing the
package in it, regularily)
- backup environment recipe build and installation tests (conda-lock)
- Python package build tests
- Docker container(s) build and deploy tests

General purpose tests:
- unit/integration/regression (with sample data) tests
- coding standards tests (mypy, pylint, and flake8)
- code coverage check by Codecov, 100% coverage required for changes

Documentation:
- documentaton build and deploy tests

Overall testing strategy (for separate packages)

Overall testing strategy - ESMValTool

ESMValTool: scientific analysis and diagnostics library (written in Python,
NCL, R, and Julia) – contains reproducible recipes with scientific output
(plots, data files etc) → SCIENCE is the main output, LARGE and DIVERSE
(coding skills, technical knowledge) COLLABORATIVE group the
developers

Testing needs to ensure scientific correctness and allow for variability of
developers’ skills (ie not too restrictive, definitely not too lax, or “not
great, not terrible”)

Basic testing done for all supported OS and Python versions

Scientific output-oriented tests

Still include some technical testing (like for ESMValCore, but less strict)

ESMValTool

Overall testing strategy - ESMValTool

Scientific output-oriented tests include:
 Numerical and graphical output comparisons with previous, scientifically

approved versions
 Dedicated tool for recipe output comparison which is smart enough to

handle small differences in numerical results in NetCDF files and small
differences in plots through image hashing

 Testing workflow is at the moment manual for every release, working on
automation by setting up a “recipe test workflow”

Mark I Eyeball testing (visualization of output) – comparison with figures in
papers
Input data specifications consistency tests
Still with some technical testing like for ESMValCore, but less strict:
 Limited unit/integration tests, only for a few shared components
 More relaxed on coding standards (pylint and flake8)
 No code coverage checks

ESMValTool

FAIR research software

- Software releases are stored on Zenodo with a DOI
- Docker containers for reproducible software environments for every release
- A recipe with fixed input data versions is recorded for each recipe run
- ESMValCore records provenance, which includes the filenames and global NetCDF
attributes of all input files used to create a figure.

For more information on FAIR research software, see:
Barker, M., Chue Hong, N.P., Katz, D.S. et al. Introducing the FAIR Principles for research software. Sci Data 9, 622 (2022).
https://doi.org/10.1038/s41597-022-01710-x

ESMValTool: take home message

The tools have a modular design in which community members of varying skill
level are able to contribute without compromising reliability and user
experience for others
Test and code quality requirements are adjusted to how many users and
developers will be affected if a component breaks
FAIR research software for doing open science

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

