
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

1

ECE 498AL

Lecture 10: Control Flow

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

2

Objective

• To understand the implications of control flow on
– Branch divergence overhead

– SM execution resource utilization

• To learn better ways to write code with control flow

• To understand compiler/HW predication designed to
reduce the impact of control flow
– There is a cost involved.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

3

Quick terminology review
• Thread: concurrent code and associated state executed on the

CUDA device (in parallel with other threads)

– The unit of parallelism in CUDA

• Warp: a group of threads executed physically in parallel in
G80

• Block: a group of threads that are executed together and form
the unit of resource assignment

• Grid: a group of thread blocks that must all complete before
the next kernel call of the program can take effect

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

4

How thread blocks are partitioned

• Thread blocks are partitioned into warps
– Thread IDs within a warp are consecutive and increasing
– Warp 0 starts with Thread ID 0

• Partitioning is always the same
– Thus you can use this knowledge in control flow
– However, the exact size of warps may change from generation to

generation
– (Covered next)

• However, DO NOT rely on any ordering between warps
– If there are any dependencies between threads, you must

__syncthreads() to get correct results

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

5

Control Flow Instructions

• Main performance concern with branching is divergence
– Threads within a single warp take different paths
– Different execution paths are serialized in G80

• The control paths taken by the threads in a warp are traversed one at a
time until there is no more.

• A common case: avoid divergence when branch condition is a
function of thread ID
– Example with divergence:

• If (threadIdx.x > 2) { }
• This creates two different control paths for threads in a block
• Branch granularity < warp size; threads 0 and 1 follow different path

than the rest of the threads in the first warp
– Example without divergence:

• If (threadIdx.x / WARP_SIZE > 2) { }
• Also creates two different control paths for threads in a block
• Branch granularity is a whole multiple of warp size; all threads in any

given warp follow the same path

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

6

Parallel Reduction

• Given an array of values, “reduce” them to a single
value in parallel

• Examples
– sum reduction: sum of all values in the array

– Max reduction: maximum of all values in the array

• Typically parallel implementation:
– Recursively halve # threads, add two values per thread

– Takes log(n) steps for n elements, requires n/2 threads

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

7

A Vector Reduction Example

• Assume an in-place reduction using shared memory
– The original vector is in device global memory

– The shared memory used to hold a partial sum vector

– Each iteration brings the partial sum vector closer to the
final sum

– The final solution will be in element 0

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

8

A simple implementation

• Assume we have already loaded array into
– __shared__ float partialSum[]

unsigned int t = threadIdx.x;

for (unsigned int stride = 1;

stride < blockDim.x; stride *= 2)

{

__syncthreads();

if (t % (2*stride) == 0)

partialSum[t] += partialSum[t+stride];

}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

9

Vector Reduction with Bank Conflicts

0 1 2 3 4 5 76 1098 11

0+1 2+3 4+5 6+7 10+118+9

0...3 4..7 8..11

0..7 8..15

1

2

3

Array elements

iterations

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

10

Vector Reduction with Branch Divergence

0 1 2 3 4 5 76 1098 11

0+1 2+3 4+5 6+7 10+118+9

0...3 4..7 8..11

0..7 8..15

1

2

3

Array elements

iterations

Thread 0 Thread 8Thread 2 Thread 4 Thread 6 Thread 10

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

11

Some Observations

• In each iterations, two control flow paths will be sequentially
traversed for each warp
– Threads that perform addition and threads that do not
– Threads that do not perform addition may cost extra cycles depending

on the implementation of divergence

• No more than half of threads will be executing at any time
– All odd index threads are disabled right from the beginning!
– On average, less than ¼ of the threads will be activated for all warps

over time.
– After the 5th iteration, entire warps in each block will be disabled, poor

resource utilization but no divergence.
• This can go on for a while, up to 4 more iterations (512/32=16= 24), where

each iteration only has one thread activated until all warps retire

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

12

Short comings of the implementation

• Assume we have already loaded array into
– __shared__ float partialSum[]

unsigned int t = threadIdx.x;

for (unsigned int stride = 1;

stride < blockDim.x; stride *= 2)

{

__syncthreads();

if (t % (2*stride) == 0)

partialSum[t] += partialSum[t+stride];

}

BAD: Divergence
due to interleaved
branch decisions

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

13

A better implementation

• Assume we have already loaded array into
– __shared__ float partialSum[]

unsigned int t = threadIdx.x;

for (unsigned int stride = blockDim.x;

stride > 1; stride >> 1)

{

__syncthreads();

if (t < stride)

partialSum[t] += partialSum[t+stride];

}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

14

Thread 0

No Divergence until < 16 sub-sums

0 1 2 3 … 13 1514 181716 19

0+16 15+311

3

4

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

15

Some Observations About the New
Implementation

• Only the last 5 iterations will have divergence

• Entire warps will be shut down as iterations progress
– For a 512-thread block, 4 iterations to shut down all but one

warps in each block

– Better resource utilization, will likely retire warps and thus
blocks faster

• Recall, no bank conflicts either

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

16

A Potential Further Refinement
but bad idea

• For last 6 loops only one warp active (i.e. tid’s 0..31)
– Shared reads & writes SIMD synchronous within a warp
– So skip __syncthreads() and unroll last 5 iterations

unsigned int tid = threadIdx.x;
for (unsigned int d = n>>1; d > 32; d >>= 1) {

__syncthreads();
if (tid < d)

shared[tid] += shared[tid + d];
}
__syncthreads();
if (tid <= 32) { // unroll last 6 predicated steps

shared[tid] += shared[tid + 32];
shared[tid] += shared[tid + 16];
shared[tid] += shared[tid + 8];
shared[tid] += shared[tid + 4];
shared[tid] += shared[tid + 2];
shared[tid] += shared[tid + 1];

}

This would not work properly
is warp size decreases; need

__synchthreads() between each
statement!

However, having
___synchthreads() in if

statement is problematic.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

17

Predicated Execution Concept

<p1> LDR r1,r2,0

• If p1 is TRUE, instruction executes normally

• If p1 is FALSE, instruction treated as NOP

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

18

Predication Example

:

:

if (x == 10)

c = c + 1;

:

:

:

:

LDR r5, X

p1 <- r5 eq 10

<p1> LDR r1 <- C

<p1> ADD r1, r1, 1

<p1> STR r1 -> C

:

:

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

19

B

A

C

D

A
B
C
D

Predication very helpful for if-else

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

20

If-else example

:

:

p1,p2 <- r5 eq 10

<p1> inst 1 from B

<p1> inst 2 from B

<p1> :

:

<p2> inst 1 from C

<p2> inst 2 from C

:

:

:

:

p1,p2 <- r5 eq 10

<p1> inst 1 from B

<p2> inst 1 from C

<p1> inst 2 from B

<p2> inst 2 from C

<p1> :

:

schedule

The cost is extra instructions will be issued each time the code is
executed. However, there is no branch divergence.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

21

Instruction Predication in G80

• Comparison instructions set condition codes (CC)
• Instructions can be predicated to write results only when CC meets

criterion (CC != 0, CC >= 0, etc.)

• Compiler tries to predict if a branch condition is likely to produce many
divergent warps
– If guaranteed not to diverge: only predicates if < 4 instructions
– If not guaranteed: only predicates if < 7 instructions

• May replace branches with instruction predication

• ALL predicated instructions take execution cycles
– Those with false conditions don’t write their output

• Or invoke memory loads and stores

– Saves branch instructions, so can be cheaper than serializing divergent paths

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

22

For more information on instruction
predication

“A Comparison of Full and Partial Predicated Execution
Support for ILP Processors,”
S. A. Mahlke, R. E. Hank, J.E. McCormick, D. I. August, and
W. W. Hwu
Proceedings of the 22nd International Symposium on
Computer Architecture, June 1995, pp. 138-150

http://www.crhc.uiuc.edu/IMPACT/ftp/conference/isca-95-
partial-pred.pdf

Also available in Readings in Computer Architecture, edited by Hill,
Jouppi, and Sohi, Morgan Kaufmann, 2000

