ECE 498AL

Programming Massively Parallel Processors

Lecture 6: CUDA Memories
Part 2

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign

Tiled Multiply

Break up the execution of the
kernel into phases so that the
data accesses in each phase is
focused on one subset (tile) of
Md and Nd

D —

>

A

© David Kirk/NVIDIA and Wen-mei \WW. Hwu, 2007-200 >
ECE498AL, University of Illinois, Urtana Champaign

A Small Example

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign

Every Md and Nd Element is used

exactly twice in generating a 2X2 tile of P

AcCcess
order

I30,0 I:)1,0 I30,1 I31,1
thread,, | thread,, | thread,, | thread,
IVlo,o ” No,o IVlo,o ” @ Mo,1 ” No,o Mo,1 ” @
@)* NO,1 @)* N1,1 M1,1* NO,1 M1,1* N1,1
MZ,O : NO,2 MZ,O : N1,2 M2,1 : NO,2 M2,1 : N1,2
MS,O : NO,3 MS,O : N1,3 M3,1 : NO,3 M3,1 : N1,3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign

Breaking Md and Nd into Tiles

* Break up the inner
product loop of each
thread into phases

« At the beginning of each
phase, load the Md and
Nd elements that
everyone needs during
the phase into shared
memory

* Everyone access the Md
and Nd elements from the
shared memory during
the phase

dy vid, id, I PO PR P P

MdO,lMdl,]MdZ,lMd3,] sz.l Pd3,1

' szlz Pd3'2

Pd0,3 Pd113 Pd213 Pd3'3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign

Each phase of a Thread Block uses one
tile from Md and one from Nd

time

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign

Phase 1 Phase 2
TO,O IVldo,o Ndo,o PVaIueO,O += Mdz,0 Ndo’2 PVaIueo,0 +=
l | Mds, ,*"Ndsy o+ | | | Mds, ,*Nds, , +
Mdsyo | Nds,, Mds, ,"Nds, , Mds,, | Nds,, Mds, ,*Nds,, ,
T1,0 Mdl,o Nd]_,o %1’0 += Mds’o Nd1,2 Pvalue,]’o +=
| l Y Mdsy#Nds, , + ! ! I\/IdsO,O*Nds1,0+
Toq | Mdg, Nd, , PdValue, , += Md, , Nd, 5 PdValue, , +=
l N | —+Md 1:Ndso,o"‘ | ! Mdso’1:Ndso’0+
Mds, Nﬂ Mds, \Nds , Mds,,, |Nds, Mds, ,*Nds, ,
T1’1 Mdl,l Ndl,l Pdvalu% += Md3’1 Nd1,3 Pdvalue,]’,] +=
l l Mds, "Nds, o+ | | l Mds, ,*Nds, , +
|V|dS1’1 Nds1,1 Mds, ;*Nds; |V|dS1’1 NdSm Mds, ,*Nds, ,
>

Tiled Matrix Multiplication Kernel

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

{

1. _ shared float MdAs[TILE_WIDTH][TILE WIDTH];
2. _ shared_ float NAsS[TILE WIDTH][TILE_WIDTH];
3. iInt bx = blockldx.x; int by = blockldx.y;
4. 1nt tx = threadldx.x; Int ty = threadldx.y;

// ldentify the row and column of the Pd element to work on
5. int Row = by * TILE WIDTH + ty;
6. 1int Col = bx * TILE WIDTH + tx;

7. float Pvalue = O;

// Loop over the Md and Nd tiles required to compute the Pd element
8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Coolaborative loading of Md and Nd tiles into shared memory

9. Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
10. Nds[ty][tx] = Nd[Col + (m*TILE WIDTH + ty)*Width];
11. __syncthreads();

11. for (int k = 0; k < TILE_WIDTH; ++k)
12. Pvalue += Mds[ty][k] * Nds[k][tx];
13. Synchthreads();

14. }

13. Pd[Row*Width+Col] = Pvalue;

}
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign

CUDA Code — Kernel Execution
Configuration

// Setup the execution configuration

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);
dim3 dimGraid(Width ~/ TILE _WIDTH,
Width /7 TILE WIDTH);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign

First-order Size Considerations in G80

« Each thread block should have many threads
— TILE_WIDTH of 16 gives 16*16 = 256 threads

* There should be many thread blocks
— A 1024*1024 Pd gives 6464 = 4096 Thread Blocks

— TILE_WIDTH of 16 gives each SM 3 blocks, 768 threads (full
capacity)

« Each thread block perform 2*256 = 512 float loads from
global memory for 256 * (2*16) = 8,192 mul/add
operations.

— Memory bandwidth no longer a limiting factor

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign

Tiled Multiply

Each computes one

square sub-matrix Pd., of size
TILE_WIDTH

Each thread computes one
element of Pd

by

j--

TILE_WIDT

012 TILE _WIDTH-1

© David Kirk/NVIDIA and Wen-mei \W. Hwu, 2007-200«
ECE498AL, University of Illinois, Urtana Champaign

v
A

G80 Shared Memory and Threading

« Each SM in G80 has 16KB shared memory
— SM size is implementation dependent!
— For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of
shared memory.
— The shared memory can potentially have up to 8 Thread Blocks actively
executing

« This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads per
block)

« The threading model limits the number of thread blocks to 3 so shared
memory is not the limiting factor here

— The next TILE_ WIDTH 32 would lead to 2*32*32*4B= 8KB shared
memory usage per thread block, allowing only up to two thread blocks
active at the same time

« Using 16x16 tiling, we reduce the accesses to the global memory by
a factor of 16

— The 86.4B/s bandwidth can now support (86.4/4)*16 = 347.6 GFLOPS!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 11
ECE498AL, University of Illinois, Urbana Champaign

Tiled Matrix Multiplication Kernel

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

{

1. _ shared float MdAs[TILE_WIDTH][TILE WIDTH];
2. _ shared_ float NAsS[TILE WIDTH][TILE_WIDTH];
3. iInt bx = blockldx.x; int by = blockldx.y;
4. 1nt tx = threadldx.x; Int ty = threadldx.y;

// ldentify the row and column of the Pd element to work on
5. int Row = by * TILE WIDTH + ty;
6. 1int Col = bx * TILE WIDTH + tx;

7. float Pvalue = O;

// Loop over the Md and Nd tiles required to compute the Pd element
8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Coolaborative loading of Md and Nd tiles into shared memory

9. Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
10. Nds[ty][tx] = Nd[Col + (m*TILE WIDTH + ty)*Width];
11. __syncthreads();

11. for (int k = 0; k < TILE_WIDTH; ++k)
12. Pvalue += Mds[ty][k] * Nds[k][tx];
13. Synchthreads();

14. }

13. Pd[Row*Width+Col] = Pvalue;

}
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign

Tiling Size Effects

GFLOPS

0,

o = =] o = =] o = =] o]
DS S D DS 5 DS 5 D
= S = S = S
= = =
not tiled 4x4 tiles 8x8 tiles 12x12 tiles

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign

>
= | 53
© B e
= S
>
16x16 tiles

13

Summary- Typical Structure of a

CUDA Program

 Global variables declaration

__host__
__device__... global , constant , texture

* Function prototypes

__global__ void kernelOne(...)
float handyFunction(...)

« Main ()

allocate memory space on the device — cudaMalloc(&d_GlIblVarPtr, bytes)

transfer data from host to device — cudaMemCpy(d_GlIblvarPtr, h_Gl...)

execution configuration setup

kernel call — kernelOne<<<execution configuration>>>(args...); repeat
transfer results from device to host - cudaMemCpy(h_GlblVarPtr,...) as needed
optional: compare against golden (host computed) solution

 Kernel - void kernelOne(type args,...)
— variables declaration - __local , shared

e automatic variables transparently assigned to registers or local memory
syncthreads()...

Other functions

float handyFunction(int inVar...);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 14
ECE498AL, University of Illinois, Urbana Champaign

