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Tiled Multiply

Break up the execution of the
kernel into phases so that the
data accesses in each phase is
focused on one subset (tile) of
Md and Nd
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A Small Example
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Every Md and Nd Element is used

exactly twice in generating a 2X2 tile of P

AcCcess
order

I30,0 I:)1,0 I30,1 I31,1
thread,, | thread,, | thread,, | thread,
IVlo,o ” No,o IVlo,o ” @ Mo,1 ” No,o Mo,1 ” @
@)* NO,1 @)* N1,1 M1,1* NO,1 M1,1* N1,1
MZ,O : NO,2 MZ,O : N1,2 M2,1 : NO,2 M2,1 : N1,2
MS,O : NO,3 MS,O : N1,3 M3,1 : NO,3 M3,1 : N1,3
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Breaking Md and Nd into Tiles

* Break up the inner
product loop of each
thread into phases

« At the beginning of each
phase, load the Md and
Nd elements that
everyone needs during
the phase into shared
memory

* Everyone access the Md
and Nd elements from the
shared memory during
the phase
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Each phase of a Thread Block uses one
tile from Md and one from Nd

time
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Phase 1 Phase 2
TO,O IVldo,o Ndo,o PVaIueO,O += Mdz,0 Ndo’2 PVaIueo,0 +=
l | Mds, ,*"Ndsy o+ | | | Mds, ,*Nds, , +
Mdsyo | Nds,, Mds, ,"Nds, , Mds,, | Nds,, Mds, ,*Nds,, ,
T1,0 Mdl,o Nd]_,o %1’0 += Mds’o Nd1,2 Pvalue,]’o +=
| l Y Mdsy#Nds, , + ! ! I\/IdsO,O*Nds1,0+
Toq | Mdg, Nd, , PdValue, , += Md, , Nd, 5 PdValue, , +=
l N | —+Md 1:Ndso,o"‘ | ! Mdso’1:Ndso’0+
Mds, Nﬂ Mds, \Nds , Mds,,, |Nds, Mds, ,*Nds, ,
T1’1 Mdl,l Ndl,l Pdvalu% += Md3’1 Nd1,3 Pdvalue,]’,] +=
l l Mds, "Nds, o+ | | l Mds, ,*Nds, , +
|V|dS1’1 Nds1,1 Mds, ;*Nds; |V|dS1’1 NdSm Mds, ,*Nds, ,
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Tiled Matrix Multiplication Kernel

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

{

1. _ shared float MdAs[TILE_WIDTH][TILE WIDTH];
2. _ shared_ float NAsS[TILE WIDTH][TILE_WIDTH];
3. iInt bx = blockldx.x; int by = blockldx.y;
4. 1nt tx = threadldx.x; Int ty = threadldx.y;

// ldentify the row and column of the Pd element to work on
5. int Row = by * TILE WIDTH + ty;
6. 1int Col = bx * TILE WIDTH + tx;

7. float Pvalue = O;

// Loop over the Md and Nd tiles required to compute the Pd element
8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Coolaborative loading of Md and Nd tiles into shared memory

9. Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
10. Nds[ty][tx] = Nd[Col + (m*TILE WIDTH + ty)*Width];
11. __syncthreads();

11. for (int k = 0; k < TILE_WIDTH; ++k)
12. Pvalue += Mds[ty][k] * Nds[k][tx];
13. Synchthreads();

14. }

13. Pd[Row*Width+Col] = Pvalue;

}
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CUDA Code — Kernel Execution
Configuration

// Setup the execution configuration

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);
dim3 dimGraid(Width ~/ TILE _WIDTH,
Width /7 TILE WIDTH);
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First-order Size Considerations in G80

« Each thread block should have many threads
— TILE_WIDTH of 16 gives 16*16 = 256 threads

* There should be many thread blocks
— A 1024*1024 Pd gives 6464 = 4096 Thread Blocks

— TILE_WIDTH of 16 gives each SM 3 blocks, 768 threads (full
capacity)

« Each thread block perform 2*256 = 512 float loads from
global memory for 256 * (2*16) = 8,192 mul/add
operations.

— Memory bandwidth no longer a limiting factor
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Tiled Multiply

Each computes one

square sub-matrix Pd., of size
TILE_WIDTH

Each thread computes one
element of Pd

by

j--

TILE_WIDT

012 TILE _WIDTH-1
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G80 Shared Memory and Threading

« Each SM in G80 has 16KB shared memory
— SM size is implementation dependent!
— For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of
shared memory.
— The shared memory can potentially have up to 8 Thread Blocks actively
executing

« This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads per
block)

« The threading model limits the number of thread blocks to 3 so shared
memory is not the limiting factor here

— The next TILE_ WIDTH 32 would lead to 2*32*32*4B= 8KB shared
memory usage per thread block, allowing only up to two thread blocks
active at the same time

« Using 16x16 tiling, we reduce the accesses to the global memory by
a factor of 16

— The 86.4B/s bandwidth can now support (86.4/4)*16 = 347.6 GFLOPS!
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Tiled Matrix Multiplication Kernel

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

{

1. _ shared float MdAs[TILE_WIDTH][TILE WIDTH];
2. _ shared_ float NAsS[TILE WIDTH][TILE_WIDTH];
3. iInt bx = blockldx.x; int by = blockldx.y;
4. 1nt tx = threadldx.x; Int ty = threadldx.y;

// ldentify the row and column of the Pd element to work on
5. int Row = by * TILE WIDTH + ty;
6. 1int Col = bx * TILE WIDTH + tx;

7. float Pvalue = O;

// Loop over the Md and Nd tiles required to compute the Pd element
8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Coolaborative loading of Md and Nd tiles into shared memory

9. Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
10. Nds[ty][tx] = Nd[Col + (m*TILE WIDTH + ty)*Width];
11. __syncthreads();

11. for (int k = 0; k < TILE_WIDTH; ++k)
12. Pvalue += Mds[ty][k] * Nds[k][tx];
13. Synchthreads();

14. }

13. Pd[Row*Width+Col] = Pvalue;

}
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Tiling Size Effects

GFLOPS
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Summary- Typical Structure of a

CUDA Program

 Global variables declaration

__host__
__device__... global , constant , texture

* Function prototypes

__global__ void kernelOne(...)
float handyFunction(...)

« Main ()

allocate memory space on the device — cudaMalloc(&d_GlIblVarPtr, bytes )

transfer data from host to device — cudaMemCpy(d_GlIblvarPtr, h_Gl...)

execution configuration setup

kernel call — kernelOne<<<execution configuration>>>( args... ); repeat
transfer results from device to host - cudaMemCpy(h_GlblVarPtr,...) as needed
optional: compare against golden (host computed) solution

 Kernel - void kernelOne(type args,...)
— variables declaration - __local , shared

e automatic variables transparently assigned to registers or local memory
syncthreads()...

Other functions

float handyFunction(int inVar...);
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