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Abstract—A brief chronicle is given of the historical develop- ¢ Frequency Modulation (Armstrong, 1936);
ment of the central problems in the theory of fundamental limits » Pulse-Code Modulation (PCM) (Reeves, 1937-1939);
of data compression and reliable communication. « Vocoder (Dudley, 1939);
Index Terms—Channel capacity, data compression, entropy, ¢ Spread Spectrum (1940’s).
Egséior{y of Information Theory, reliable communication, source | those systems we find some of the ingredients that would
g be key to the inception of information theory: a) the Morse
code gave an efficient way to encode information taking into
LAUDE Shannon’s “A mathematical theory of commu-account the frequency of the symbols to be encoded; b)
nication” [1] published in July and October of 1948 issystems such as FM, PCM, and spread spectrum illustrated
the Magna Carta of the information age. Shannon’s discovehat transmitted bandwidth is just another degree of freedom
of the fundamental laws of data compression and transmiss@railable to the engineer in the quest for more reliable commu-
marks the birth of Information Theory. A unifying theory withnication; ¢) PCM was the first digital communication system
profound intersections with Probability, Statistics, Computersed to transmit analog continuous-time signals; d) at the
Science, and other fields, Information Theory continues to satpense of reduced fidelity, the bandwidth used by the Vocoder
the stage for the development of communications, data storg@ewas less than the message bandwidth.
and processing, and other information technologies. In 1924, H. Nyquist [3] argued that the transmission rate is
This overview paper gives a brief tour of some of theroportional to the logarithm of the number of signal levels
main achievements in Information Theory. It confines itself tm a unit duration. Furthermore, he posed the question of how
those disciplines directly spawned from [1]—now commonlynuch improvement in telegraphy transmission rate could be
referred to as Shannon theory. achieved by replacing the Morse code by an “optimum” code.
Section | frames the revolutionary nature of “A math- K. Kipfmiller [4] (1924), H. Nyquist [5] (1928), and
ematical theory of communication,” in the context of th&. Kotel'nikov [6] (1933) studied the maximum telegraph
rudimentary understanding of the central problems of comignaling speed sustainable by bandlimited linear systems.
munication theory available at the time of its publication. Unbeknownst to those authors, E. Whittaker [7] (1915) and J.
Section Il is devoted to lossless data compression: thkighittaker [8] (1929) had found how to interpolate losslessly
amount of information present in a source and the algorithrtiee sampled values of bandlimited functions. D. Gabor [9]
developed to achieve the optimal compression efficiency pi@946) realized the importance of the duration—bandwidth
dicted by the theory. product and proposed a time—frequency uncertainty principle.
Section Il considers channel capacity: the rate at which re-R. Hartley’'s 1928 paper [10] uses terms such as “rate of
liable information can be transmitted through a noisy channebmmunication,” “intersymbol interference,” and “capacity of
Section IV gives an overview of lossy data compressioa: system to transmit information.” He summarizes his main
the fundamental tradeoff of information rate and reproductiaccomplishment as
fidelity.
The paper concludes with a list of selected points of
tangency of Information Theory with other fields.

the point of view developed is useful in that it provides a
ready means of checking whether or not claims made for
the transmission possibilities of a complicated system lie

|. BEFORE 1948 within the range of physical possibility.

The major communication systems existing in 1948 wereintersymbol interference and basic observations Wit cir-

» Telegraph (Morse, 1830's); cuits lead Hartley to conclude that the capacity is proportional

* Telephone (Bell, 1876); to the bandwidth of the channel. But before being able to

* Wireless Telegraph (Marconi, 1887); speak of “capacity,” Hartley recognizes the need to introduce a

* AM Radio (early 1900’s); “guantitative measure of information.” He uses the lefieto

¢ Single-Sideband Modulation (Carson, 1922); denote the amount of information associated witbelections

 Television (1925-1927); and states that

¢ Teletype (1931); H=nlog s

wheres is the number of symbols available in each selection.
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The aforementioned papers by Nyquist and Hartley had We can think of a discrete source as generating the mes-
not quantified the effects of noise, nor had they modeled sage, symbol by symbol. It chooses successive symbols
sources of information probabilistically. Much of the credit according to certain probabilities depending, in general,
for importing random processes into the toolbox of the 1940’s on preceding choices as well as the particular symbols in
communications engineer is due to N. Wiener [14difd to S. guestion. A physical system, or a mathematical model
Rice [12]. of a system which produces such a sequence of sym-

Probabilistic modeling of information sources has in fact a bols governed by a set of probabilities is known as a
very long history as a result of its usefulness in cryptography. stochastic process. Conversely, any stochastic process
As early as 1380 and 1658, tables of frequencies of letters andwhich produces a discrete sequence of symbols chosen
pairs of letters, respectively, had been compiled for the purposefrom a finite set may be considered a discrete source.
of decrypting secret messages [23)t the conclusion of his

WWiII work on cryptography, Shannon prepared a classifiesdqannon recognizes that to exploit the redundancy of the

) . . ._source one should take into account not only the frequencies
report [14F where he included several of the notions (mcludmgf its symbols but its memory. But before progeeding t?) tackle

entropy and the phrase “information theory”) pioneered i . . ) .
[1] (cf. [16]). However, Shannon had started his work Oﬁhat problem, he considers a single random variable taking

information theory (and, in particular, on probabilistic model/21Ues With probabilitiepy - --, p, and defines itentropy®
ing of information sources) well before his involvement with i

cryptography* Having read Hartley’s paper [10] in his un- H= —pr, log p;. (1)
dergraduate days, Shannon, as a twenty-two-year-old graduate =1

student at MIT, came up with a ground-breaking abstraction 8hannon points out the similarity with Boltzmann’'s entropy
the communication process subject to a mean-square fidelitystatistical mechanics [29] and gives an axiomatic rationale
criterion [19]. After writing his landmark Master’'s thesisfor this measure of information, as the only measure that is
on the application of Boole’s algebra to switching circuit§ continuous in the probabilities, ii) increasing withif the

[20] and his Ph.D. dissertation on population dynamics [21fandom variable is equiprobable, and iii) additive, in the sense
Shannon returned to communication theory upon joining thieat if the random value is the result of two choices, its entropy
Institute for Advanced Study at Princeton and, then, Betlan be obtained by summing the entropy of the first choice and
Laboratories in 1941 [16]. the entropy of the second choice given the first.

By 1948 the need for a theory of communication en- Much more important than the axiomatic justification of
compassing the fundamental tradeoffs of transmission ragmtropy are the fundamental theorems that it satisfies. Shannon
reliability, bandwidth, and signal-to-noise ratio was recognizegbes on to consider memoryless sources, and proves the
by various researchers. Several theories and principles wekowing result using the law of large numbers:
put forth in the space of a few months by A. Clavier [22], , :
C. Earp [23], S. Goldman [24], J. Laplume [25], C. Shannogaﬁr}%ndn]%n SSJQ? (t)r:zx:ntﬁe[lgg\lﬁ:cily;? a%irrgrfg?hg ]v\\;e
[1], W. Tuller [26], and N. Wiener [27]. One of those theories 0 =0

: all into two classes
would prove to be everlasting.

1) A set whose total probability is less than
2) The remainder, all of whose members have probabilities
II. LossLESSDATA COMPRESSION [p] satisfying the inequality

logp—!

< 6. )

A. The Birth of Data Compression ‘H -

The viewpoint established by Hartley [10] and Wiener [11]
is echoed by Shannon in the Introduction of [1]: Shannon refers to the second class as the “typical sequences.”
They are characterized by probabilities that decrease ex-
ponentially with blocklengthyy = o=, with a ~ 2.
Shannon’s Theorem 3 states that the set of atypical sequences
has vanishing probability. The relevance of this result to
data compression is that for the purposes of coding we can
Shannon then makes the key observation that the sourceirefit the typical sequences as roughly equiprobable while
information should be modeled as a random process: disregarding the atypical sequences. The resulting code maps

source strings of lengtiV to strings of length slightly larger

1Originally a WWII classified report acknowledged in [1] to have influencenan HN. The decoder can recover the original source string

Shannon’s thinking. with probability at least —e. Thus the rate off encoded bits

2Even higher order statistics had been envisioned. Jonathan S@ii's 5 L . . .
liver's Travels(1726) describes a machine by which “the most ignorant person,_ Full and sole credit is due to Shannon for the introduction of entropy in
may write in philosophy, poetry and politics.” The machine selects words iformation theory. Wiener never worked with entropy; instead, he introduced,

random based on “the strictest computation of the general proportion betw&gparently at J. von Neumann's suggestion and independently of Shannon,
the numbers of particles, nouns and verbs.” the differential entropy [27] which he used in the context of Gaussian random

3 . variables. A distant relative of the differential entropy dating back to 1934 is
Later declassified and superseded by [1] and [15]. Fisher's information [28], which gives a fundamental limit on the achievable
4According to interviews with Claude Shannon recorded in [16]-[18]. mean-square error of parametric estimation.

[The] semantic aspects of communication are irrelevant
to the engineering problem. The significant aspect is that
the actual message is oselected from a setdf possible
messages.



VERDU: FIFTY YEARS OF SHANNON THEORY 2059

per source symbol ischievableprovided we are willing to Theorem 3 to Markov chains was given by A. Khinchin in the
tolerate a nonzero probability of failing to recover the origindirst Russian article on information theory [31].
sequence. By increasing the blocklength, and thus the delayn 1953, B. McMillan [32] used the statistical-mechanics
and complexity of encoding and decoding operations, we cphrase “asymptotic equipartition property” (AEP) to describe
make that probability as small as desired. the typicality property of Shannon’s Theorem 3: the set
But, is that the best we can do? Shannon’s Theorem 3 dadsatypical sequences has vanishing probability. Moreover,
not address that question, since it only suggests a suboptifd@Millan showed a fundamental generalization of Shannon’s
code. (The optimal code of rat® simply disregards all but Theorem 3 which is commonly referred to as the Shan-
the 2V ® most probable sequences of lengfh) Shannon finds non—-McMillan theorem: the asymptotic equipartition property
the answer in Theorem 4: as long as we require probability isf satisfied by evergtationary ergodicprocess with a finite
error strictly less thari, asymptotically, we cannot encode atlphabet. Unlike memoryless sources, for which the AEP is
rates below the entropy. This statement is commonly knoveqyuivalent to the weak law of large numbers, showing that
as the strongonversesource coding theorem. The converséhe AEP is satisfied for stationary ergodic sources requires a
(or weak converse) source coding theorem asserts that emontrivial use of the ergodic theorem. While the fundamental
probability cannot vanish if the compression rate is below tleportance of ergodic theory to information theory was made
entropy. evident by McMillan in 1953, the key role that entropy plays
The foregoing discussion was circumscribedixed-length in ergodic theory was revealed by A. Kolmogorov [33] in
codes (fixed-length source strings mapped to fixed-length €858 and would eventually culminate in D. Ornstein’s 1970
coded strings). Shannon also notices that by allowing encodwdof [34] of one of the pillars of modern ergodic theory: the
sequences ofariable length, it is possible to actually achieveisomorphy theorer.
zero error probability without increasing th@erageencoding Shannon’s Theorem 3 states that the normalized log-
rate. For example, this can be accomplished by representprgbability of the source string converges in probability
the typical sequences of lengtki with sequences of length as its length goes to infinity. Although this is enough for
roughly equal toHN, and leaving all the other sequencemost lossless source coding theorems of interest, almost-sure
uncompressed—a prefix bit indicating whether the encodednvergence also holds as shown in [38] and (with a simpler
sequence is typical. Many other possibilities arise in variablproof) in [39]. Generalizations of the Shannon—-McMillan
length data compression. Shannon gives the example othaorem to continuous-valued random processes and to other
memoryless source whose symbol probabilities are powersfofictionals of interest in information theory have been
1/2. In this special case, it is easy to find a code that encodmscomplished in [40]-[45].
theith symbol with a string of- log p; bits. Much less obvious  Sources that are either nonstationary or nonergodic need not
is what to do with arbitrary distributions. Shannon describestisfy Theorem % that is, some sources require less than the
an “arithmetic process,” discovered contemporaneously aedtropy rate to be encoded, some require more. It is shown in
independently by R. Fano, that assigns to each symbol {d&] that the AEP is not only sufficient but necessary for the
appropriately truncated binary expansion of the cumulatiwalidity of the source coding theorem (in the general setting
distribution function evaluated at the symbol. The average rai&finite-alphabet sources with nonzero entropy). Furthermore,
of that scheme is not optimal but is only slightly above thpt7] shows that the AEP is equivalent to the simpler statement
entropy. in which the absolute value in (2) is removed.

B. The Asymptotic Equipartition Property C. Fixed-to-Variable Source Coding

For memoryless sources, Shannon’s Theorem 3 is equivalenfs studied by Shannon, and used earlier in telegraphy,
to the weak law of large numbers for independent and idefixed-to-variable codes map individual information symbols
tically distributed random variables taking a finite number dpr, in general, fixed-length words of symbols) to unequal-
positive values. Because of its relevance to data compressi@hgth strings—with shorter strings assigned to the more likely
it is natural to investigate whether Theorem 3 applies &mbols. In 1948, Shannon had left open two major problems
sources with memory. This requires replacing the entropy i fixed-to-variable source coding: 1) the construction of a
an individual random variable by thentropy rate namely, the minimum average-length code, and 2) the converse variable-
limit of the entropy of anV-block divided byN. Shannon [1] length source coding theorem.
shows that the entropy rate of a stationary process is equalhe variable-length source code that minimizes average
to the limiting conditional entropy of a single source symbdength was obtained by D. Huffman [48], as an outgrowth of
given the past symbols. Having made the case that the statisiddomework problem assigned in R. Fano’s MIT information
of natural language can be approximated arbitrarily well Bjeory class [49]. The practicality of the Huffman code has
Markov chains of increasing ord&rShannon [1] notices that Withstood the test of time with a myriad applications ranging
Theorem 3 (and, thus, the achievability part of the sourd&®m facsimile [50] to high-definition television [51].
coding theorem) applies to stationary Markov chain sources. In

1953, a step-by-step proof of the generalization of Shannon’$Tutorials on the interplay between information theory and ergodic theory
can be found in [35]-[37].

8General coding theorems for nonstationary/nonergodic sources can be
6 A view challenged in [30] by N. Chomsky, the father of modern linguisticsfound in [46].
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No formula is known for the minimum average length iD. Variable-to-Fixed Source Coding
terms of the distribution of the source. In [1], Shannon showedgy 5 we have considered data-

that the mi_rgmum average length does not exceed the entroferepy fixed-size blocks of source symbols are encoded into
plus one bit; but he did not give a lower bound. either variable-length or fixed-length strings. The variable-to-
Before Huffman, another MIT student, L. Kraft, had atfjyeq source coding approach is advantageous whenever block

tacked the construction of minimum redundancy codes UnsyGematting of encoded data is required. The key notion here

cessfully. However, in his 1949 Master's thesis [54], Krafg 4t of parsing (i.e., inserting commas) the source sequence

gave a basic condition (known as the Kraft inequality) thafs consecutive variable-length phrases. In variable-to-fixed
must be satisfied by the codeword lengths of a pref');fgogﬁurce coding, those phrases belong to a predetermined fixed-
(ie., a code where no codeword is the prefix of another)g;,¢ gictionary. Given the size of the dictionary, the Tunstall

Seven years later, and apparently unaware of Kraft's thesigyqrithm [70] selects its entries optimally under the condition
McMillan [56] showed that that condition must hold not jusiat no phrase is the prefix of another and that every source

for prefix codes but for any uniquely decodable code. (Qequence has a prefix in the dictionary. For memoryless

particularly simple proof was given in [57].) It is immediatesq rces, the Tunstall algorithm maximizes the expected length
to show (McMillan [56] attributes this observation 0 J. Lot the parsed phrases. Further results on the behavior of the
Doob) that the average length of any code that satisfies Hgnstall algorithm for memoryless sources have been obtained

Kraft inequality cannot be less than the source entropy. Thig,171] and [72]. For Markov sources, optimal variable-to-fixed
in turn, implies the converse variable-length source codingqes have been found in [73] and [74].

theorem, which had already been proven by Khinchin [31] \/ariaple-to-fixed codes have been shown to have certain

using a method based on Shannon's Theorem 3. performance advantages over fixed-to-variable codes [75],
The optimality of the Huffman code must have seemed

the time to leave little room for further work in fixed-to-
variable source codintf. That, however, proved not to be thecaived as much attention as the other techniques (cf. [77]),

case, because of two major\;\(;ri]ﬁiculties: 1) the distribution 6f ¢ncompasses the popular technique of runlength encoding
the source may not be knownwhen the code is deS|gned[78]’ already anticipated by Shannon [1], [79], as well as

(Section II-E), and 2) although the Huffman algorithm needgyera| of the universal coding techniques discussed in the
not operate symbol by symbol, its complexity grows verya.: sybsection.

rapidly with the length of the source bloékThe incentive for
encoding blocks of source symbols stems from two importa@? Universal Source Coding
classes of sources for which symbol-by-symbol encoding may
be decidedly suboptimal: sources with memory and binary (orA- Kolmogorov [80] coined the term “universal” to refer
other small alphabet) sources. Both difficulties encountert® data-compression algorithms that do not kreriori the
by the Huffman code also apply to the Shannon—Fano codistribution of the source. Since exact statistical knowledge
mentioned in Section II-A. The second shortcoming is circun® the source is the exception rather than the rule, universal
vented by the arithmetic coding method of J. Rissanen [68urce coding is of great practical interest.
(generalized in [61] and [62] and popularized in [63]), whose If we apply a lossless data-compression algorithm tuned
philosophy is related to that of the Shannon-Fano dfdel® one source to a different source we still recover the
The use of arithmetic coding is now widespread in the datBlessage error-free but with degraded compression efficiency.
compression industry (and, in particular, in image and viddePr memoryless sources, the increase in rate for compressing
applications [69]). Much of the success of arithmetic COdin@ssuming distributior when the true source distribution is
is due to its rational exploitation of source memory by using’ iS equal to the divergenteof P with respect toQ for
the conditional probability of the next symbol to be encode@pth fixed-to-variable [81] and variable-to-fixed [82] coding.
given the observed past. If the uncertainty on the source distribution can be modeled
by a class of distributions, it was shown by B. Fitingof in
_ S [83] and by L. Davisson in [84] that for some uncertainty
*Tighter distribution-dependent bounds are known [52], [53]. classes there is no asymptotic loss of compression efficiency

10Kraft [54] credits the derivation of the inequality to R. M. Redheffer, “ o
who would later coauthor the well-known undergraduate text [55]. if we use a source code tuned to the “center of gravity of

11Minimum average-length source-coding problems have been solved wifi€ Uncertainty set. Constructive methods for various restricted
additional constraints such as unequal symbol lengths, infinite alphabeskasses of sources (such as memoryless and Markov) have been
lexicographic ordering of encoded strings, maximum codeword length, e&oposed by R. Krichevsky and V. Trofimov [59] and by T.

See [58] for a recent survey. . .
12As a result of its emphasis on asymptotic stationary settings, Shann lkens and F. Willems [85]'

theory has not been engulfed in the Bayesian/non-Bayesian schism that hal1 universal source coding, the encoder can exploit the
plagued the field of statistics. fact that it observes the source output and, thus, can “learn”

13For most Markov sources the minimum average length per letter aghe source distribution and adapt to it. The same is true for

roaches the entropy rate hyperbolically in the blocklength [59]. . . .
P 14 Py ypeth y gth [59] the decoder because its output is a lossless reconstruction of
The Shannon—Fano code is frequently referred to as the Sha

non—Fano—Elias code, and the arithmetic coding methods described in [é]l? source sequence. Adaptive Huffman coding was initially

and [65] are attributed to P. Elias therein. Those attributions are unfoundednsidered in [86] and [52], and madified in [87] and [88]. For
[66]. In addition to [1], other contributions relevant to the development of
modern arithmetic coding are [67] and [68]. 15¢f. Section IlI-G.

compression methods

Although variable-to-variable source coding has not re-



VERDU: FIFTY YEARS OF SHANNON THEORY 2061

large-alphabet sources, lower encoding/decoding complexitjalkens [110]. The method of [110] is devoted to the universal
can be achieved by the adaptive fixed-to-variable source cogstimation of the conditional probability of the next symbol
of B. Ryabko [89], [90]'® Showing experimental promise, thegiven the past, which is then fed to a standard arithmetic
nonprobabilistic sorting method of [93] preprocesses sourcascoder® The coding rate of the method of [110] achieves the
with memory so that universal codes for memoryless souroagtimum speed of approach to the entropy rate (established
achieve good compression efficiency. in [94]).

Suppose now that we adopt a parametric description of theCompression of memoryless sources with countably-infinite
source uncertainty, say a family of distributions indexed bgiphabets and unknown distributions has many practical appli-
a string of parameters. In practice, it is useful to consideations. Several methods for universal encoding of the integers
uncertainty classes that include distributions described by difave been proposed in [112]-[115].
ferent numbers of parameters (e.g., Markov chains of variousGermane to universal source coding is the topic of entropy
orders). We could envision a two-step universal compressiestimation pioneered by Shannon [1], [116] in the framework
procedure: first, using the source sequence, we estimate dhdenglish texts. The empirical estimation of the entropy of
unknown parameter string and describe it to the decodegtural language is surveyed in [117] and [118]. An obvious
second, we compress the source sequence using a code tapgioach to entropy estimation is to apply a universal data
to the source distribution with the estimated parameters. Wiwaimpressor and observe the rate at which bits are generated
criterion do we adopt in order to estimate the source modal®Pthe output. Representative references of the state-of-the-art
The choice of estimation criterion presents us with a tradeoift entropy estimation [119]-[121], [108] illustrate the recent
the more finely we estimate the distribution (i.e., the moiaterest in string-matching approaches.
complex the model) the more efficiently we can compress theNonprobabilistic measures of the compressibility of indi-
source, but also the longer it takes to describe the parametielual data strings can be defined as the length of the shortest
string to the decoder. Rissanen [94] showed that there aampression achievable by a given class of compression algo-
fundamental reasons to choose thimimum description length rithms. The methods and results are crucially dependent on the
(MDL) criterion for model selection. According to the MDL class of data compressors allowed. J. Ziv and A. Lempel [100],
principle, the parameter string is chosen to minimize the corf88] considered the class of finite-state machines, among which
pressed sequence length plfidog N if N is the length of the the Lempel-Ziv is asymptotically optimal for all sequences. In
source sequence and is the length of the parameter stringthe mid-1960’s, A. Kolmogorov [80], [122], G. Chaitin [123],
The relevance of the information-theoretic MDL principleand R. Solomonoff [124] considered the class of compressors
transcends data compression and is now established as a nthjatr output a binary program for a universal Turing machine.
approach in statistical inference [95]. The resulting measure, which suffers from the shortcoming

The most widely used universal source-coding method @ being noncomputable, is callé¢bimogorov complexityr
the algorithm introduced by A. Lempel and J. Ziv in slightlyalgorithmic complexityand its methods of study lie in recursive
different versions in 1976—-1978 [96]—-[98]. Unlike the methodfinction theory rather than Shannon theory. However, for
mentioned so far in this subsection, the Lempel-Ziv algoritheome random sources, the expected Kolmogorov complexity
is not based on approximating or estimating the source diste converges to the entropy rate [101], [125].
tribution. Like variable-to-fixed source coding, Lempel-Ziv
coding is based on parsing the source sequence. The simpléseparate Compression of Correlated Sources
Lempel-Ziv parsing rule (the next phrase is the shortest phras
not seen previously) can be encoded and decoded very &&sil,
Remarkably, the Lempel-Ziv algorithm encodes any stationary, . : . . .
ergodic source at its entropy rate as shown by Ziv [10 h|ev_ed by D. Slepian and J. Wolf in [126]._C0_n_5|der two in-
and Wyner—Ziv [101], [102]. The analysis of the statistica rmation sources compressed by separate individual encoders

properties of the Lempel—Ziv algorithm has proven to be Hat do not have access to the_output of the other source.
fertile research ground [98], [103]-[108]. oiseless separate decompression of the encoded streams

Despite its optimality and simplicity, the Lempel—Ziv algo_reqwres that the coding rates be equal to the individual

rithm is not the end of the story in universal source codinintmpies' If joint decoding were allowed would it be possible

Prior knowledge of general structural properties of the sour ilmprove compression efficiency? In particular, can the sum

?n the post-Shannon era, one of the most important advances
| the theory of fundamental limits of data compression was

can be exploited to give better transient (i.e., nonasymptot% ;[he .ratisLb? strictly smaltlﬁrttf;r?n the sum of tf(;e 'nd'(\j/'dl:alth
compression efficienc}® So far, the most fruitful effort in entropies? Let us assume that the sources are dependent (the

this direction has its roots in the finite-memory “contextaNSWer 1S obV|.0usI_y negatlve otherwise) an_d,.thus, the sum
tree” model introduced by Rissanen [109] and has led to t éthelr entropies is strictly larger than their joint entropy.

universal optimal method of F. Willems, Y. Starkov, and T. ad we allowed joint source encoding, the answer would be
' ' affirmative as the required rate-sum would be equal to the

16Rediscovered in [91] and [92] joint entropy. Slepian and Wolf's surprising result was that
"Practical issues on the implementation of the Lempel-Ziv algorithm afis conclusion holds even with separate encoding. Shortly
addressed in [99]. afterwards, T. Cover [127] introduced the powerful technique

18Reference [77] gives a survey of the interplay between delay and
redundancy for universal source coding with various knowledge of the19The connections between universal source coding and universal prediction
statistics of the source. are surveyed in [111].
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Fig. 1. Figure 1 of [1].

of random binning to generalize the Slepian—Wolf result ttm a world where modulation was generally thought of as an

jointly stationary/ergodic sources. instantaneous process and no error-correcting codes had been
Despite the existence of potential applications, the comvented® Shannon’s formulation of the problem of reliable

ceptual importance of Slepian-Wolf coding has not beammmunication was a stroke of genius.

mirrored in practical data compression. Not much progress onShannon first develops his results on reliable communication

constructive Slepian—Wolf schemes has been achieved beyauithin the context of discrete memoryless channels. He defines

the connection with error-correcting channel codes revealed inthe channel capacity by

[128]. Interestingly, channel coding presents another avenue

IETZg]oztgntial applications of Slepian—-Wolf coding as shown in C = Max (H(z) — Hy(x)) (3)
The combinatorial aspects of zero-error source coding [130] Where the maximum is with respect to all possible

are particularly interesting in the context of separate com- information sources used as input to the channel

pression of correlated sources or the more canonical settyjeq claims

of compression with decoder side-information. Pioneering ) ) )

contributions in this direction were made by H. Witsenhausen !t i possible to send information at the ratethrough

[131] and R. Ahlswede [132]. Inspired by the distributed- the ghannewuh as small afrequen_cy of €ITors or equiv-

computing applications envisioned in the late 1970igerac- ocation as desiretby proper encoding. This statement is

tive compressiomodels allow several rounds of communica- Ot true for any rate greater thari

tion between encoders so as to compute a function dependgghoting by N(T', q) the maximum codebook size of dura-

of remote edits to a common file is a typical applicatiorstgtement.

Achievability and converse results have been obtained by A.

Orlitsky et al. in [134]-[137]. Shannon’s Theorem 12 [1]:
log N(T'
[ll. RELIABLE COMMUNICATION Tlim OgT(’Q) =C (4)

A. The Birth of Channel Capacity where C is the channel capacity, provided thatdoes not
After fifty years, it is not easy to fully grasp the revolu-equal0 or 1.

tionary nature of Shannon’s abstraction of the fundamentalShannon justifies the achievability part of this statement

problem of communlcat|or_1 dep|cte(_1 n [1. F|_g. 1] (Fig. 1)'Fuc:cinctly and intuitively, introducing the celebrated technique
Shannon completes the picture he initiated nine years earlier

[19] by introducing a new concept: the “channel.” whicqo random encoding. Error probability is averaged with respect

accounts for any deterministic or random transformation car- the c_odebook ch0|_ce_ and shoyvn to vanish asymptotically
rupting the transmitted signal. The function of the transmittthh T if the _transmlssmn rate is lower thaﬁ. Shannon
is to add “redundancy:” ' Hotices that th_|s argumenfc Ieads_to _the conclusmn that not only
: does there exist a capacity-achieving code, but in fact almost
The redundancy must be introduced to combat the par-all codes are good. However,
ticular noise structure involved.. a delay is generally
required to approach the ideal encoding. It now has the
additional function of allowing a large sample of noise
to affect the signal before any judgment is made at the
receiving point as to the original message.

no explicit description of a series of approximation[s] to
the ideal has been found. Probably this is no accident
but is related to the difficulty of giving an explicit
construction for a good approximation to a random
seguence.

20For example, thanks to Slepian-Wolf coding, the branch from “receiver” 21With the possible exception of the Hammi(g, 4) code quoted in [1];
to “observer” in [1, Fig. 8] is redundant in order to achieve capacity. see also [138].
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Although all the foregoing claims would eventually bdlat transfer functioff*
shown to hold (Section 1lI-D), Shannon [1] does not prove,

P+ N
even informally, the converse part of Theorem 12 (i.in C = W10g< j\_f ) (5)
(4)), nor the weaker statement that the error probability of
codes with rate above capacity cannot varsfsh. whereW is the channel bandwidti® is the transmitted power,

and N is the noise power within the channel band. Taking

the limit of (5) as the bandwidth grows without bound [154],
B. Mutual Information a fundamental conclusion is reached: the minimum energy
In addition to the difference between unconditional ang@ecessary to transmit one bit of information lies 1.6 dB below
conditional entropy maximized in (3), [1, Part IV] introduceghe noise one-sided spectral density. Expressions similar to (5)

its counterpart for continuous random variables. were put forth in 1948 by Wiener [27] and Tuller [26] without
information-theoretic justification: Wiener simply takes the
// Pla.y) log Pz, y) dz dy difference between Gaussian differential entropies and Tuller
’ P(z)P(y) ’ arrives at the formula arguing that “i¥ is the rms amplitude

of the noise mixed with the signal, there are+ S/N sig-

Although no name is given in [1] for this quantity, Shannomnificant values of signal that may be determined.” By the mid-
realizes that it is “one of the central definitions in communica950’s, the explicit construction of channel codes with rates
tion theory.” By 1956, Shannon [140] refers to it as “mutuakpproaching (5) became the “holy grail” of information theory
information,” using a terminology attributed to Fano [141][155].
which is commonly accepted today. The geometric view of time-domain functions as points in a

Shannon gives the data-processing inequality in [1], andfiaite-dimensional space, now prevalent in communications en-
general approach to define mutual information encompassigigeering, was championed by Shannon [150] in 1949, where
the discrete and continuous definitions as special cases. Thesjustified the achievability of the rate in (5) using a sphere-
approach would be followed up by I. Gelfand, A. Yaglom, antardening reasoning. Since any strictly bandlimited signal has
A. Kolmogorov in [142]-[144], and by M. Pinsker (with spe-infinite duration, the rate of information of any finite codebook
cial emphasis on Gaussian random variables and processe®fihandlimited waveforms is, strictly speaking, equal to zero.
[145]. Early on, the Russian school realized the importance A&frigorous derivation of (5) requires a careful definition of
the random variable whose expectation is mutual informatidalmost-strict” bandwidth or duration (cf. [156]), and a heavy
(i.e., the log-likelihood ratio between joint and marginaldose of functional analysis. This was accomplished by A.
product distributions) and dubbediitformation density Wyner in [157] using the fundamental results of [158].

The optimization problem posed in Shannon’s formula was Referring to (5), Shannon [1] asserts that
initially tackled in [146] and [147]. An iterative algorithm
for computing the capacity of arbitrary discrete memoryless
channels was given independently by S. Arimoto [148] and R.
Blahut [149] in 1972.

to approximate this limiting rate of transmission the
transmitted signals must approximate in statistical prop-
erties a white noise.

A proof that capacity-achieving codes must have empirical
distributions that maximize input—output mutual information

C. Gaussian Channels was given in [159].
Undoubtedly, the channel that has yielded the biggest suc-The generalization of (5) to dispersive/nonwhite Gaussian
cesses in information theory is the Gaussian channel. channels is given by the “water-filing” formula obtained

Shannon [1] formulates the continuous-time ideal strictlpy Shannon in [150] using the differential entropy of a
bandlimited white Gaussian channel and uses the samplfggussian stationary process found in [1]. Rigorous justi-
theorem to show the equivalence to a discrete-time chanfigftions [160]-[162] of the water-filling formula for dis-
sampled at twice the bandwidth.As a formal analog of persive/nonwhite Gaussian channels usually appeal to the
the entropy of a discrete random variable, Shannon defina€plitz distribution theorem [163], [164], although it can be
the differential entropy of a continuous random variable, arffcumvented, as shown in [165].
shows that it is maximized, subject to a variance constraint,Shannon [1] also studies white Gaussian channels subject
by the Gaussian distribution. Taking the difference betwedp amplitude constraints, rather than power constraints. Not
the output differential entropy and the noise differential er@nly does he give bounds but he notices that for low signal-
tropy, Shannon goes on to obtain his famous formula for tfig-noise ratios the capacity is essentially given by (5). A
capacity of power-constrained white Gaussian channels whlgsed-form expression is not known to exist but algorithms for

the computation of amplitude-constrained capacity were given
22Alluding to [1], Shannon says in [139]: “I was confident | was correctin [166]’ and in [167] for the practically important quadrature-
not only in an intuitive way but in a rigorous way. | knew exactly what | wagnodulation channel. Gaussian channel capacity has been found

doing, and it all came out exactly right.” for models that incorporate structural constraints at the receiver
23|n contrast to the 1920’s papers by Nyquist andpkniiller (Section 1),

Shannon’s crisp statement [1] and proof [150] of the sampling theorem were?*Four months after the publication of [1], M. Golay [153] refers to (5)

instrumental in popularizing this result in engineering. Thus there is indeed “the now classical expression for the information reception capacity of a

some justification for the term “Shannon sampling theorem” [151], [152]. channel.”
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(e.g., quantized observations) and at the transmitter (e.g.A. Feinstein [183] gave the first step-by-step proof of the
specific modulation formats). Those results have underliadhievability part of the channel coding theofénm 1954.
much of the development of modem technology since the eaflfong with a deterministic greedy method to choose the
1960’s [168], [169]. codebook, Feinstein used a suboptimal decoder that selects the
The capacity of additive non-Gaussian channels is algtessage whose information density with the received signal
considered in [1]. For a fixed noise power, Gaussian nois&ceeds a given threshold; an error is declared if no such
is shown to be least favorabte.Moreover, Shannon gives message exists, and if more than one such message exists,
an upper bound on capacity which depends on the “notiten the message with lowest index is chosen. A combinatorial
Gaussianness” of the noise distribution through its entropyariation of Feinstein’s proof was proposed by J. Wolfowitz
power, i.e., the variance of a Gaussian distribution witfi82] for discrete memoryless channels. This marked the first
identical entropy. An equivalent bound can be given in termse of empirical distributions (types) in Shannon theory. Fully
of the divergence between the actual noise distribution andleveloped by I. Csisz and J. Krner in [185], the method of
Gaussian distribution with the same variance [173]. Shanntypes (surveyed in [186]), has been influential in the evolution
[1] states the deceptively simple “entropy-power inequalitydf the Shannon theory of discrete memoryless channels and
proved in [174]: the entropy-power of the sum of two indesources.
pendent random variables is lower-bounded by the sum of theArguably the most natural proof of the direct coding theorem
individual entropy-powers. The behavior of the capacity dbllows by formalizing the intuitive argument put forth by
additive non-Gaussian noise power-constrained channels v&nnon [1] that evaluates the average probability of the
investigated by V. Prelov for various asymptotic scenari@nsemble of all codes. In this case, the decoder is slightly
[175]-[178]. different from Feinstein’s: if more than one message satisfies
The development of the results on the capacity of addititke threshold test, then an error is decla&d.
Gaussian noise channels where the transmitted signals ar®ther proofs of the direct coding theorem were given by
subject to fading is surveyed in [179]. Shannon in [188] and R. Gallager in [189] by evaluating
the average performance of random encoding achieved by the
maximum-likelihood decoder. Popularized in [161], Gallager’'s
simple bounding method has found widespread use.
Aside from Shannon’s treatment of the nonwhite Gaussian
The major result left unproven in [1] was the conversghannel [150], the first works that dealt with the capacity of
channel coding theorem. This follows directly from Fano’shannels with memory did not appear until the late 1950's:
inequality [180]—a fundamental result in information thef190], [188], [191], [182], and [192]. The capacity of most
ory which gives a lower bound on the error probability othannels with memory is given by the limit of maximal
equiprobable hypotheses tests. normalized mutual informations. R. Dobrushin [193] showed
Actually, Fano’s inequality leads to a more general resulfiat such a limiting expression holds for a wide class of
if the messages to be transmitted through the channel gffinnels exhibiting a certain type of ergodic behavior. If the
not equiprobable but are generated by a source with entragpacity of memoryless channels is not always computable in
H > C, then reliable communication (i.e., vanishing erroglosed form, the limit present in the formula for channels with
probability) is impossible. The achievability counterpart of thifnemory poses yet another hurdle for explicit computation,
source-channel codingetting states that if the source entropwhich is, nevertheless, surmountable in cases such as the
is below channel capacity, then there exist codes that achigygtionary Gaussian channel (cf. Section I1I-C) and timing
vanishing error probability. This follows easily by separatinghannels [194], [195]. A general capacity formula that does
the source- and channel-coding operations. At the encoder, @ hinge on ergodicity or stationarity restrictions was obtained
source is compressed to a rate equal to its entropy and fedr{q196] by introducing a new way of proving the converse
a channel encoder which assumes equiprobable messagego@ing theorem. The approach of [196] shows a dual of
the receiver front-end a source-independent channel decodginstein’s result: the average error probability of any code
selects a codeword, which is then fed to a source decompresgogssentially lower-bounded by the cumulative distribution
independent of the channel statistics. Because of this structyigction of the input—output information density evaluated at
the source-channel coding theorem is also known as i code raté® In 1957, Shannon had given a precursor of

separation theoreff. this lower bound in the largely overlooked [188, Theorem 2].
The validity of the strong converse in Shannon’s Theorem
12 was established by J. Wolfowitz in 1957 [182] for binar¥ ?7U_r7like other approaches! _Feinstein’s proof Ie_ads to a stronger notion of
eliability where error probability is measured taking the worst case over all
memoryless channels. codewords—in lieu of the average. A proof of Feinstein’s result in abstract
measurable spaces was given in [184].

28The so-called “typical-sequences” proof follows this approach except that

25 . . o L . the decoder contains a superfluous (upper) threshold. Further unnecessary
In fact, the game between signal and noise distribution with fixed varianggmpjication results from considering typicality with respect to individual
and input-output mutual information as payoff has a saddle point achieved fyy joint entropies rather than mutual information [187], [168], [101].
Gaussian distributions. Information-theoretic games [170]-[172] are of interest,q
in jamming problems, for example.

D. The Channel Coding Theorem

Called theinformation spectrumin [46], the distribution function of

the information density replaces its average (mutual information) as the
260ther than for nonstationary sources/channels the separation theofendamental information measure when dealing with nonstationary/nonergodic

holds in wide generality [181]. channels [197].
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For channels with cost constraints (e.g., power limitation)reated single-handedly a new research field, this time within
capacity is given by the maximal mutual information over atombinatorial graph theory.
input random variables that satisfy a corresponding averageMost channels of practical interest have zero zero-error
cost constraint. A simpler formula exists for the minimum costapacity. Among channels with positive zero-error capacity,
per transmitted bit [198], which in the Gaussian case reduddg most difficult channel that has been solved corresponds to
to the —1.6 dB result quoted in Section IlI-C. a circular typewriter with five keys. Shannon [140] showed

In a departure from the conventional discrete-time mod#iat the zero-error capacity of this channel is no less than half
where there as many output symbols as input symbols, &t .that achievable by an infallible typidiog, 5 = 2.32 bits per
Dobrushin [199] and S. Stambler [200] showed coding thekeystroke). In 1979, L. Loasz [202] showed that Shannon’s
rems for channels subject to random deletions and insertidawer bound is in fact the zero-error capacity. In 1997, N.

of symbols at instants unknown to the decoder. Alon [203] disproved the conjecture in [140] that the zero-
error capacity of independent channels operating in parallel is
E. Constrained Sequences the sum of the zero-error capacities.

Under the heading “Capacity of the discrete noiseless chaq-A tutorial survey on _the results _and_ com_blnatorlal challenges
of zero-error information theory is given in [130].

nel,” [1] poses a nonprobabilistic problem quite different from
those discussed in data compression/transmission. Although
there is no evidence that Shannon had in mind recordi
applications when formulating this problem, this discipline has A school of Shannon theorists has pursued a refinement of
found a wealth of practical applications in magnetic and optictide channel coding theorem that studies the behavior of the
recording [201]. In those applications, certain sequences efor probability as a function of the blocklength instead of
bits are forbidden. For example, it may be required that thest focusing attention on the channel capacity. Rice [204]
transmitted sequence contain at ledsind at mosk 0’'s amid and Feinstein [205] observed the exponential decrease of
1's, or that the sequence satisfy certain spectral propertiestor probability as a function of blocklength in Gaussian
Shannon found the fundamental asymptotic limits on thend discrete memoryless channels, respectively. The exponent
amount of information that can be encoded per symbol, whehthe minimum achievable probability of error is a function
the allowable sequences are defined by a finite-state machiwfethe rate, which Shannon [206] christened as rid&bility

In the last fifty years, considerable progress has been achiefigattion Upper and lower bounds on the reliability function

in the design of constrained encoders that approach Shanndwkich coincide for all but low rates) were found in [207] for

Error Exponent

bounds (cf. [201]). binary-symmetric channels; in [208] for symmetric discrete
memoryless channels; and in [188], [209] for general discrete
F. Zero-Error Channel Capacity memoryless channels. The behavior of the reliability function

. . . ?f erasure channels was found in [210].
Any text typed by anyone other than an infaliible typis A new approach to upper-bounding the error probabilit
will have a nonzero probability of being erroneous, with bp PP 9 P y

the probability going to unity as the length increases. A%"eraged with respect to the choice of the encoder was found

. X ) . = y Gallager in [189]. In addition to the proof of the direct
information theorist can make this probability go to zero bXPding theorem (Section 11I-D), this result led to a general

handing the typist a redundant text derived from the ONIINg ver bound on the reliability function. Lower bounds on error

umsi'srlgkae;%de that takes into account the statistics of the tyIOISprS(')babiIity leading to improved upper bounds on the reliability

Imagine now that a certain typist makes mistakes bLlfnCtlon were obtained in [211] and [212]

onlv by occasionally mistvoing a neighboring letter in the Further improvements in bounding the reliability function
y 0y y yping 9 9 : Were shown in [213]-[216]. The power of the method of types
keyboard—¢ may becomer or g, but notu). This seemingly

ordinary tvoist onens a whole new world of informationjs illustrated by the proofs of bounds on the reliability function
y yp P givenin [185] and [217]. To this date, the reliability function of

theoretic problems. We can now encode/decode texts penfec crete memoryless channels (including the binary-symmetric
For example, the typist could be given texts drawn exclusive A

from the alphabetb, i,t,=s}. The probability of error does annel) is not known for all rates.

) : N . Other than the application of Chernoff's bound, the
not just go to zero asymptotically, ig zero. The rate at which . : . L .
. - : Do information-theoretic work on the reliability function evolved
information can be encoded infallibly is called the zero-error S o )
) . .. independent of the large-deviations work initiated in the
capacity. This measure no longer depends on the probabilities,." . : . : , .

. 4 . . . Statistical literature in the 1950’s. The important role played
with which mistakes are made—all the information relevant £o :
- : : . in_the error exponent problem by the divergence measure
finding the zero-error capacity can be summarized in a graph in . - i
which pairs of letters mistakable for each other are connecIn oduced in statistics by S. Kullback and R. Leibler

P 8]*! was made evident by R. Blahut in [214]. A more

by an edge. Exceedingly difficult and radically different fro undamental information measure than either entropy or

the nonzero error setting, the zero-error capacity problem WaStual information, divergence had been surprisingly slow in
formulated by Shannon [140] in 1956. Once again, Shannon . Lo gence ha surp gly siow
emerging to its rightful position in information theory, until it

plas, information theory has not made any inroads in this particuld¥as popularized in the texts [185] and [168]. The vacuum left

information technology, and typists continue to be rated by raw words per
minute rather than by Shannon capacity. S1Earlier, A. Wald had used the nonnegativity of divergence in [219].
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by this historical neglect has led to the overrated role play€dutput given input) distributions are known to belong to
by the differential entropy measure in information theory. an uncertainty class. Depending on whether the number of
Originating from the analysis of sequential decoders fgarameters describing the uncertainty class remains fixed or
convolutional codes [220], [221] and related to the reliabilitgrows with blocklength we have aompound channebr
function, thecutoff rateis a measure of the “noisiness” of thean arbitrarily varying channel respectively. These models
channel, which has received much attention in the developman¢ relevant to practical communications systems subject to
of information and coding theory. Progress in coding theojgmming, time-varying conditions, etc., and have received
has refuted the notion (e.g., [222]) that transmitting abovauch attention in the Shannon theory literature [241].
cutoff rate requires unwieldy decoding complexity. While The objective of the encoder/decoder is to guarantee reliable
there are appealing heuristics on the different behavior ecdmmunication regardless of the actual channel in effect. This
codes below and above cutoff rate (e.g. [168], [169]) the viel®ads to a minimax problem where the probability of error is
that cutoff rate is a key measure of the channel transmissimaximized over the uncertainty class and minimized over the
capabilities is not supported by the operational characterizaticimoice of encoder/decoder.
that has been discovered so far [223]. The compound discrete memoryless channel capacity prob-
Some applications, such as concatenated coding and trdas was posed and solved in 1959 by D. Blackwell, L.
mission of sources with residual redundancy, have spurrBdeiman, and A. Thomasian [242] and by R. Dobrushin [243].
work on a variant of Shannon’s channel coding setup whereByyear later, Wolfowitz [244] proved the strong converse (for
the decoder outputs not one but a fixed-size list of mestaximal error probability) using the method of [182]. The
sages. The problem of list decoding was introduced by fdrmula for compound channel capacity is similar to (3) except
Elias [224]. Capacity and error exponents have been studibdt for every input distribution, the mutual information is
in [225]-[228]. Zero-error list decoding (Section IlI-F) wasminimized with respect to the channels in the uncertainty class,

investigated in [229] and [230]. thus yielding a capacity that is less than or equal to the worst
capacity of the channels in the uncertainty 8ethe capacity
H. Channels with Feedback of compound channels with memory was investigated in [245]

) . o ind [246].
The first (and most widely used) feedback model in inform& Arbitrarily varying channef were introduced in [248]. The

tion theory was introduced by Shannon in [140]. It considers _ . .
an encoder that, before sending fkie symbol, knows without capacity was found by Ahlswede and Waliowitz [249] in the

error the(i — 1)th symbol received by the decoder. Shemnolﬂir.]ary output case qnder th? pessimi§tic maximal error proba-
[140] shows that even this kind of ideal feedback fails tBlItY criterion, in which the “jammer” is allowed to know the
increase the capacity of the discrete memoryless chanr® deword sent by the communicator. A partial generalization

Because of the lack of channel memory, not only is feedba tge ;olutmn in [$4|?] V\ia? obtafl?hed d'?y Cs:sand Kjrrller n
useless to predict the future behavior of the channel, but ]. However, a full solution of the discrete memoryless case

is futile for the encoder to try to compensate for previour?mams elusive. In contrast, if error probability is averaged

channel behavior, as far as channel capacity is concern@'&.h respect to the choice of codewords, the arbitrarily varying

: b . hannel capacity has been progressively solved in a series
However, feedback does increase the reliability function [23 : )
Moreover, a number of constructive schemes [232]_[23ngapers [251]—[254]..'Ahlswed.e ghowed in [252] t.hat if the
made evident that the availability of feedback may simpli erage-error-pr(_)bablllty capacity IS nonzero, then it does not
the coding and decoding operations. Elias and Shannon [1 rease further if the grror.probab_lhty is averaged over the
showed that the zero-error capacity of discrete memoryle _|(;]e 01:1 cc_)debo?jkz, "ﬁ" It the jammer does not know
channels could indeed increase with feedback. which code IS use y the commumcatqr. o .
Shannon [140] anticipated that feedback would help t The ca@pacr[y of the memoryles; Gaussian arbitrarily varying
increase the capacity of channels with memory, at a time wh a5nnel ('js "QOWF‘ zOth whenztgg jallmm_e;]r knows thﬁ cofcfieb oofk
the capacity of channels with memory had not yet been tackl ] and when it does not [256]. In either case, the efiect o

The ability of feedback to increase the capacity of channér%e power-constrained jammer is equivalent to an additional

with memory was studied by a number of authors in tpRource of Gaussian noise, except that the capacity is equal

late 1960's: [236]-[238]. In particular, P. Ebert [238] and M0 2610 If the jammer knows the codebook and has as much
Pinske?? independently showed that feedback may increaB88Wer as the transmitter. - . .

the capacity of a Gaussian channel by at most a factor ofR_ece_nt refe_rences on the capabilities 0 f list decoding for
two—a factor that was shown to be the best possible in [23§](b|trarlly varying cha_nnels can be found in [228] and [257].
The additive upper bound of [240] shows that the increase” the receiver has incomplete knowledge of the channel or

afforded by feedback cannot exceed half a bit-per-channel u%?complexity is constrained, it is of interest to investigate
the capacity degradation suffered when the decoder is not

maximum-likelihood. If the encoder does know both the
channel distribution and the suboptimal decoding rule, then

In parallel with the setting discussed in Section II-E, thg can partially compensate for the mismatch at the receiver.
channel description available to the encoder/decoder ma

be incomplete. Suppose that the actual channel conditiona Equality holds in special cases such as when the uncertainty is the
crossover probability of a binary-symmetric channel.

32Unpublished. 34The term “arbitrarily varying” was coined in [247].

I. Channels with Unknown Parameters
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Recent results on the capacity achievable with mismatchedShannon wrote no further papers on multiple-access
decoding have been obtained in [258]-[262]. channels and it is not known what solution he had found
Channel uncertainty at the receiver need not result far the multiple-access capacity region. But in a short span
loss of capacity. For example, known training sequence§time in the early 1970’s several independent contributions
can be used to probe the channel. Alternativelpjversal [274]-[278] found various characterizations of the capacity
decodingoperates in a “blind mode” and attains the sammegion of the two-user discrete memoryless multiple-access
asymptotic performance as a maximum-likelihood rule tunegthannel. Most useful among those is the expression found by
to the channel law. Universal decoders have been found fdr Liao [276] and R. Ahlswede [278] for the capacity region
various uncertainty models; foremost among them are the the convex hull of a union of pentagons. Shortly after,
maximum empirical mutual information decoder introduceyner [128] and Cover [279] showed (using the suboptimal
by V. Goppa in [263] and further studied in [185], thesuccessive cancellation decoder) that the memoryless Gaussian
Lempel-Ziv-based decoder introduced by J. Ziv in [264] anultiple-access channel admits a very simple capacity region:
further studied in [265], the independence decoding rule tife pentagon defined by the single-user capacities of the
I. Csisar and P. Narayan [266], and the merging decodehannels with powers equal to the individual powers and
introduced by M. Feder and A. Lapidoth in [267]. to the sum of the powerS. The generalization of the
. capacity region to (non-Gaussian) memoryless multiple-access
J. Multiuser Channels channels subject to power constraints did not take place until
1) Two-Way ChannelsPublished in 1961, Shannon’s las{282] (cf. [198]). The proof of the achievability part of the
single-authored technical contribution [268] marks the foumaultiple-access coding theorem is most easily carried out by
dation of the discipline of multiuser information theory. Unusing the formalization of Shannon’s approach discussed in
doubtedly inspired by telephony, [268] is devoted to th8ection IlI-D.
two-way channel subject to mutual interference between theln spite (or, maybe, because) of the simplicity of these
signals transmitted in opposite directions. A new dimensianodels, they lead to lessons pertinent to practical multiuser
arises: the tradeoff between the transmission speeds at ezmmmunication systems; for example, in many instances,
terminal, e.g., maximum speed in one direction is feasibtethogonal multiplexing strategies (such as time- or frequency-
when nothing is transmitted in the other direction. Thudivision multiplexing) incur a penalty in capacity. Thus letting
the transmission capabilities of the two-way channel are nisansmitted signals interfere with each other (in a controlled
described by a single number (capacity) as in the conventiomedy) increases capacity provided that the receiver takes into
one-way channel but by a two-dimensional “capacity regioriccount the multiaccess interference.
that specifies the set of achievable rate pairs. Shannon [268Noiseless feedback can increase the capacity of memoryless
gave a limiting expression for the capacity region of theultiple-access channels as shown in [283] and [284]. How-
discrete memoryless two-way channel. Unfortunately, it ®ver, the capacity region with feedback is not yet known except
not yet known how to explicitly evaluate that expressiom special cases such as the Gaussian multiple-access channel
even in “toy” examples. Of more immediate use were th@85]. The upper bounds on the capacity of single-user non-
inner and outer bounds found in [268], and later improveshite Gaussian channels with feedback (Section IlI-H) have
in [269]-[273]. been generalized to multiple-access channels in [286]-[288].
2) Multiaccess ChannelsShannon concludes [268] with The capacity region of multiple-access channels with mem-
ory was given in [289]. The counterpart of the water-filling
formula for the dispersive Gaussian channel was found ex-
: . _ plicitly in [290] for the two-user case and an algorithm for
termln_al with an ogtputonly, acase _for Wh'(.:h a complete its computation for an arbitrary number of users was given
and simple solution of the capacity region has been in [291]. The practical issue of transmitter asynchronism was
found. tackled in [292] and [293] at the frame level, and in [294] at
In the terminology of [268], “inputs” and “output” are tothe symbol level.
be understood as “inputs to the channel” and “output from The error exponents of multiple-access channels were in-
the channel.” Thus the channel Shannon had in mind wegstigated in [295]-[297].
what we now refer to as theaultiple-access channeseveral ~ When the message sources are correlated it is interesting
transmitters sending information to one receiver. to consider the problem of joint source-channel multiuser
Multiple-access communication dates back to the syste®icoding. This has been done in, among others, [298] and
invented in the 1870's by Thomas Edison and Alexand&99], where it is shown that the separation principle of single-
Graham Bell to transmit simultaneous telegraphic messagiger source-channel coding does not hold in the multiuser
through a single wire. Time-division and frequency-divisiofetting.
multiplexing methods were already well-known at the time 3) Interference Channelsin contrast to the multiple-
of the inception of information theory. Code-division multipleaccess setting in which the receiver is interested in decoding
access (CDMA) had also been suggested as one of the posditgeinformation sent by all the users, suppose now that we
applications of the spread-spectrum modulation technology,

that sprung up from World War II. In .faCt' one of the earl)f)roposed for the Gaussian multiple-access channel in [280] and for the discrete
proponents of CDMA was Shannon himself [16]. multiple-access channel in [281].

In another paper we will discuss the case of a channel
with two or more terminals having inputs only and one

Multiaccess error-control codes derived from single-user codes have been
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have as many receivers as transmitters and each recedefined. The maximal input—output mutual information is a
is interested in decoding only one of the sources. Thinkjeasure of the dissimilarity (“information radius”) of the
for example, of telephone channels subject to crosstalk. \igamily of distributions. More precisely, the maximal mutual
could take a multiple-access approach to this problem and ustrmation is the saddle point of a game whose payoff is the
codes that ensure that each receiver can reliably decode dheergence measure and which is maximized over the family
information sent by all the transmitters. However, higher rate$ distributions and minimized by a distribution that acts as
are possible if we take advantage of the fact that each receitleg center of gravity [161], [185], [316].
requires reliable decoding of only one of the transmitters.2) Minimax Redundancy in Universal Lossless Coding:
In spite of many efforts surveyed in [300] and exemplifie@€onsider a game between a source encoder and a source
by [301]-[304], the capacity region of even the simplestelector whose payoff is the difference between the expected
two-user memoryless Gaussian interference channel remaindelength and the source entropy. This is a special case of
an open problem. One of the practical lessons revealed thyg game in the previous paragraph. Thus its saddle point is
the study of the interference channel is the equivalentiege capacity of the parametrized family of source distributions
of powerful interference and no interference [301], [305]317]-[320].
unlike background noise, the known structure of a powerful 3) Identification: R. Ahlswede and G. Dueck [321] intro-
interfering signal makes it feasible to recover it at the receivduced the following seemingly innocuous variation of Shan-
with very high reliability and then subtract it from the receivedion’s channel-coding setting. Suppose that the recipient of
signal. the message is only interested in knowing whether a certain
4) Broadcast Channelsin [306], Cover introduced the preselected message is the true mes3adet us assume
dual of the multiaccess channel: one sender that transniiigt the encoder and decoder ignore which message was
one signal simultaneously to several receivers. If the sameeselected by the recipient; for, otherwise, the setting would
information is to be transmitted to each receiver, thdpecome a standard hypothesis-testing problem. The situation
the model reduces to a single-user (compound) chanriglsimilar to the familiar one except that the decoder is free
Otherwise, the problem becomes quite interesting at@ declare a list of several messages to be simultaneously
challenging. For example, in television broadcasting w#&ue.” The recipient simply checks whether the message
may want receivers within the coverage area of a stati®f interest is in the list or not. Erroneous information is
to receive high-definition signals, while more distant (lowedlelivered whenever the preselected message is in the list but
signal-to-noise ratio) receivers would be content to receii@ not the true message, or if the preselected message is the
low-definition television. By superposition of the encodetiue message but is not in the list. How many messages
streams it is possible to trade off the rate of information sef@n be transmitted while guaranteeing vanishing probability
to different types of receivers. Although a general solutiopf erroneous information? The surprising answer is that the
for the capacity region of the broadcast channel is nbtmber of messages grows doubly exponentially with the
yet known, considerable progress (surveyed in [307]) h&gmber of channel uses. Moreover, the second-order exponent
been made in exploring the fundamental limits of variou§ equal to the channel capacity. This result was shown in [321]
classes of memoryless broadcast channels. On the practigghievability) and [46] (converse).
side, superposition coding is gaining increasing attention for4) System SimulationRandom processes with prescribed
broadcast applications [308], [309] and other applications théistributions can be generated by a deterministic algorithm
require unequal error protection [310]. driven by a source of random bits (independent flips of a fair
For certain nonergodic single-user channels, maximizif@in). A key quantity that quantifies the “complexity” of the
average transmission rate makes more sense than the ovaefyerated random process is the minimal rate of the source
conservative coding strategy that guarantees reliability in tRé bits necessary to accomplish the task. Tesolvability
worst case channel conditions. Those situations are anotfE@ system is defined as the minimal randomness required
promising application of the broadcast channel approach [308], 9enerate any desired input so that the output distributions
[311]. are approximated with arbitrary accuracy. Under fairly general
5) Wiretap Channels:The methods of multiuser informa-conditions, [46] showed that the resolvability of a system is
tion theory have been successfully applied to channels subjggtial to its Shannon capacity.
to eavesdropping. The basic model was introduced by Wyner
[312] and gen.eralized in .[311_3]. Thg Shannon-theqretic Ilimits IV. LosSY DATA COMPRESSION
of secret sharing by public discussion have been investigated

by U. Maurer [314] and by Ahlswede and Csis4315]. Quantization (or analog-to-digital conversion) saw its first
practical applications with PCM in the 1930’s (Section I) and

K. Other Roles of Channel Capacity its evolution is chronicled elsewhere in this issue [322]. The

Channel capacity has proven to be the key quantity, nghannon-theoretic discipline of rate-distortion theory deals

only in reliable information transmission, but in a number ofith the fundamental limits of lossy data compression in the
other problems. asymptotic regime of long observations. Constructive methods

1) Information Radius:Any parametrized family of dis- . o -
For example, the message may be header information in a communication

tributions {_PYIH’ S @} can be viewed as a “Chan.nelnnetwork and the recipient is only interested in determining whether it is the
from the “input” space® to the output space wherg is addressee.
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and their relationship to the development of informatiorit the e-entropy [327]° The dual to Shannon’s water-filling

theoretic data compression limits are reviewed in [323] arfdrmula for channel capacity (Section IlI-C) is the “flooding”
[324]. formula® for the rate-distortion function of nonwhite Gaussian
processes. It was originally given by Kolmogorov [327],
with refined derivations due to Pinsker [330], [331], and B.
) o Tsybakov [332].

As we mentioned, in his 1939 letter to V. Bush [19], \when applied to Gaussian sources (with mean-square-error
Shannon had come up with an abstraction of the problem @fejity) and Gaussian channels (with power constraints), the
waveform transmission using a mean-square fidelity criteriofnaration theorem leads to particularly interesting conclu-
The closing chapter in [1] “Part V: The rate for a continuousjons. If the source and the channel have identical band-
source” returns to source coding but now with a basic n€jiqih and their spectra are flat, then the optimum encod-
ingredient: ing/decoding operations consist of simple instantaneous at-

Practically, we are not interested in exact transmission tenuation/amplification (or single-sideband modulation if fre-
when we have a continuous source, but only in trans- quency translation is required) [333], [334]. If the channel has
mission to within a given tolerance. The question is, can more bandwidth than the source, then the achievable signal-
we assign a definite rate to a continuous source whento-noise ratio (in decibels) is equal to that achievable in the
we require only a certain fidelity of recovery, measured identical-bandwidth case times the ratio of channel-to-source
in a suitable way. bandwidth. To achieve this limit, nontrivial encoding/decoding
i ) o ) _ is necessary; however, the original analog signal can still be
Shannon then considers an arbitrary fidelity (or distortioRlnt yncoded through a portion of channel bandwidth without
criterion and states t'ha't the minimum rate at wh|ch |nfor.m'at|qgsS of optimality [335].
can be encoded within a certain tolerance is the minimum a yery important rate-distortion function, found by Shannon
mutual information between the source and any other randegds), is that of a binary memoryless source with bit-error-
variable that satisfies the average dlstortlon_ constraint. Sh?&fe fidelity. Ordinarily, the communication engineer specifies
non also states the source/channel separation theorem with grtain tolerable end-to-end bit-error rate. This reliability
fidelity criterion (r_eprodu_ctlon_ with distortiod is pOSS|bI_e if measure is less stringent than the block-error probability
R(d) < €, and impossible ifR(d) > C). Shannon gives ygseq in the development of channel capacity. According to
a quick intuitive argument along the lines used to prove the separation theorem and Shannon’s binary rate-distortion
achievability part of the channel coding theorem and accepiSction, if the desired bit-error rate is then the maximum
:jh?" (??nves,e part as a straightforward consequence of i ,smission rate is equal to channel capacity times the factor
efinitions:
It is not until 1959 that Shannon, already at MIT, returns to (14 cloge+ (1 —¢)log (1 — )™
the fundamental limits of lossy data compression [325], and
refers to the function he defined in [1] as the “rate-distortiorOntemporaneously with Shannon [325], Erokhin [336] found
function R(d).” He proves the rate distortion theorem for disthe rate-distortion function (for low distortion) of equiprobable
crete memoryless sources (using the random coding approddiggrete sources under bit-error-rate fidelity. Further work on

and evaluates the rate-distortion function in several interestifit§ rate-distortion function in the low-distortion regime was
special cases. reported by Y. Linkov [337], [338] and by F. Jelinek [339].

Iterative algorithms for the computation of the rate-
. . . } distortion function of discrete sources have been proposed
B. Evaluation of Rate-Distortion Functions in [149] and [340].

In [1], Shannon solves the optimization problem posed by A number of other sources/fidelity criteria have been shown
the formula for the rate-distortion function in the case of ® admit explicit rate-distortion functions: the Wiener process
Gaussian bandlimited continuous-time random process un{®41], the Poisson process and other continuous-time Markov
the mean-square error criterion. He shows that the ratepiocesses [342], binary Markov chains with bit-error-rate
equal to the bandwidth times the logarithm of the signafidelity [343], and various sources with absolute error criterion
to-reconstruction-error ratit. Dealing with the discrete-time [344]-[346]. The rate-distortion function of random fields was
counterpart, Shannon [325] shows that the Gaussian rageidied in [347] and [348].
distortion function is equal to the positive part of one-half of The Shannon lower bound [325] on the rate-distortion
the logarithm of the signal-to-reconstruction-error ratio. Thiginction for difference-distortion measures has played a promi-
means that every additional bit of encoded information resulient role in rate-distortion theory (cf. [323]). Other lower
in an increase of 6 dB in fidelity. bounds can be constructed using Gallager’s technique [161].

But prior to 1959, the rate-distortion function had attracted formula for the minimum distortion achievable per encoded
the attention of Kolmogorov (and his disciples) who calledit was found in [198].

A. The Birth of Rate-Distortion Theory

. ) ) ) ] 391n addition to Shannon’s version with an average distortion constraint,
Such expediency is not far off the mark in contrast to the channel-codir@Imogorov [327] considered a maximum distortion constraint (cf. [328]). A
problem with reliability measured by block error probability. nonprobabilistic gauge of the size of subsets of metric spaces is also called

38|n 1948, Shannon authored (with B. Oliver and J. Pierce) a tutorial [326]€Ntropy [329].
on the bandwidth—fidelity tradeoff in PCM. 4Oysually referred to as “reverse water-filling.”
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C. Coding Theorems in the last two decadé$. The practical relevance of this
Setting stems from communications systems with diversity:

In addition to proving the lossy source coding theorem for-* A
memoryless sources, Shannon [325] sketched an approacﬁp{dncreased reliability, several channels are set up to connect

deal with sources with memory. A substantial class of sourcik@nsmitter and receiver. If those individual channels are prone
was encompassed by R. Dobrushin [193] in 1963, proviﬁa outage, we may consider sending the same compressed ver-
a general version of the source—channel separation theordff) Of the source through each channel in parallel. However,
with distortion. Several less ambitious generalizations (bgtch @ strategy is wasteful because the receiver could get a

with more explicit scope) were carried out in the West in thi@Wer distortion version of the source whenever more than
subsequent decade (cf. [323] and [322]). one channel is operational. By appropriate choice of codes it
By the mid-1970's, a shift in focus away from er_is possible to trade off the rates and distortions achievable for

godic/stationary sources was spearheaded by L. DavissBHe"Y subset of operational channels. Some of the more salient
R. Gray, J. Kieffer, D. Neuhoff, D. Omstein, and theidvances that have been reported in the two-channel case can
coworkers (see [35, Part ¥) who studied sliding-block and P€ found in [378]-{383]. - o
variable-length encoding methods in addition to the traditional A €l0S€é refative of multiple descriptions coding is the

fixed-length block-encoding approach used by Shannon [328f/ccessive refinememroblem. Sometimes, the decoder is
A 1993 survey of rate-distortion coding theorems can ggauired to provide a preliminary coarse rendition of the source
found in [351]. before proceeding to obtain a finer version after receiving

additional encoded data (e.g., a Web browser downloading
an image). To that end, it would be wasteful to use codes
D. Universal Lossy Data Compression for which the preliminary encoded data is of no use for the

Spurred by its practical importance and by the existen@gcompression of the higher definition versiqn. In fa_ct,_certain
results [352]-[357] proved in the 1970's, the quest for unpOUrces _have the property that no penalty in rate |s.|ncurred
versal lossy data compression algorithms that attain the rafd-réquiring the decoding of a preliminary coarse version. The
distortion function has attracted the efforts of many an irpuccessive refinement problem was introduced by V. Klesh
formation theorist during the 1990’s. The notable advanc&¥84]and by W. Equitz and T. Cover [385], and solved in more
in this topic are exemplified by [358]-[370]. In contrast t@enerality by B. Rimoldi in [386]. _
universal lossless data compression, we cannot yet state that @ther multiterminal lossy source-coding problems have
fully constructive optimum algorithm has been found. More2€€n studied by T. Berger and coworkers [387]-[389].
over, while objective distortion measures may serve as useful
design guidelines, the ultimate judges of the performance V. INFORMATION THEORY AND OTHER FIELDS

of most lossy data compression algorithms are the eye aner, conclude, we offer some pointers to the interactions of
the ear. Information Theory with various other scientific disciplines.

E. Multiterminal Lossy Data Compression 1) Probability

Consider a digital-to-analog converter operating on the ¢ Central Limit Theorem [390]
compressed version of the “left” audio source and having <« Large Deviations [391]-[393]
access to the uncompressed “right” audio source. How much ¢ Random Processes and Divergence [394]
improvement in compression efficiency can we expect due to ¢ Measure Concentration [395], [396]
the auxiliary information? If the analog-to-digital converterhas « Queueing Theory [194], [397]
access to the uncompressed “right” source then the proble .
is fairly easy to solve using standard rate-distortion theoryr.% Statistical Inferencq398], [399]
Otherwise, we face a counterpart of the problem of decoding « Minimum Description Length [95]
with side-information (Section II-F) in the lossy settiffg, « Hypothesis Testing [168]
which was solved by Wyner and Ziv [371], [372]. In contrast  « Decentralized Hypothesis Testing [400]
to the almost-lossless setting of the Slepian—-Wolf problem, . parameter Estimation [401]
in this case the absence of side-information at the encoder . pensjty Estimation [402]
does incur a loss of efficiency in general. Applications and . Minimax Nonparametric Estimation [403], [404]
generalizations of the Wyner—Ziv rate-distortion problem have Spectral Estimation [405]
been considered in [373]-[376], [335], and [377]. .
The multiple-descriptiongproblem is another multiterminal
lossy source-coding problem that has received much attention

Bayesian Statistics [406]
* Inverse Problems [407]
» Prediction of Discrete Time-Series [111]

41Also [349] and [350] for more recent references. * Pattern Recognition and Learning [408]

427 recent trend in high-fidelity audio recording is to carry out analog- * Neural Networks_ _[409]’ [410]
to-digital conversion at the microphone. The left and right digital-to-analog  * Speech Recognition [411]
converters could cooperate to lower the required rate of recorded information
even if the analog-to-digital converters had no access to each other’s source$3See [378] for an account of the early history of the results on multiple
The fundamental limit for this symmetrical setup is unknown. descriptions.
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3) Computer Science

(9

« Algorithmic Complexity [412], [413] [10]
« Data Structures: Retrieval and Hashing [59] [11]
« Cryptology [15], [414], [314]
« Computational Complexity [415], [439] [12]
* Quantum Computing [416] 13]
* Random Number Generation [417]-[419] [14]
4) Mathematics [15]
+ Ergodic Theory and Dynamical Systems [420], [37] [16]
» Combinatorics and Graph Theory [130] [17]
* Inequalities and Convex Analysis [421], [422]
* Harmonic Analysis [324] (18]
« Differential Geometry [423], [424]
« Stochastic Combinatorial Search [425]
» Number Theory [426] [19]
« Systems Control [427], [428]
5) Physics[429] [20]
e Thermodynamics [430] [21]
» Physics of Computation [431] [22]
« Statistical Mechanics [432]
e Quantum Information Theory [433] [23]
e Chaos [434]
6) Economics [24]
 Portfolio Theory [101], [440] -
» Econometrics [428] [25]
7) Biology [26]
» Molecular Biology [435]
» Sensory processing [436], [437] [27]
8) Chemistry[438] [28]
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