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Abstract—A brief chronicle is given of the historical develop-
ment of the central problems in the theory of fundamental limits
of data compression and reliable communication.
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CLAUDE Shannon’s “A mathematical theory of commu-
nication” [1] published in July and October of 1948 is

the Magna Carta of the information age. Shannon’s discovery
of the fundamental laws of data compression and transmission
marks the birth of Information Theory. A unifying theory with
profound intersections with Probability, Statistics, Computer
Science, and other fields, Information Theory continues to set
the stage for the development of communications, data storage
and processing, and other information technologies.

This overview paper gives a brief tour of some of the
main achievements in Information Theory. It confines itself to
those disciplines directly spawned from [1]—now commonly
referred to as Shannon theory.

Section I frames the revolutionary nature of “A math-
ematical theory of communication,” in the context of the
rudimentary understanding of the central problems of com-
munication theory available at the time of its publication.

Section II is devoted to lossless data compression: the
amount of information present in a source and the algorithms
developed to achieve the optimal compression efficiency pre-
dicted by the theory.

Section III considers channel capacity: the rate at which re-
liable information can be transmitted through a noisy channel.

Section IV gives an overview of lossy data compression:
the fundamental tradeoff of information rate and reproduction
fidelity.

The paper concludes with a list of selected points of
tangency of Information Theory with other fields.

I. BEFORE 1948

The major communication systems existing in 1948 were

• Telegraph (Morse, 1830’s);
• Telephone (Bell, 1876);
• Wireless Telegraph (Marconi, 1887);
• AM Radio (early 1900’s);
• Single-Sideband Modulation (Carson, 1922);
• Television (1925–1927);
• Teletype (1931);
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• Frequency Modulation (Armstrong, 1936);
• Pulse-Code Modulation (PCM) (Reeves, 1937–1939);
• Vocoder (Dudley, 1939);
• Spread Spectrum (1940’s).

In those systems we find some of the ingredients that would
be key to the inception of information theory: a) the Morse
code gave an efficient way to encode information taking into
account the frequency of the symbols to be encoded; b)
systems such as FM, PCM, and spread spectrum illustrated
that transmitted bandwidth is just another degree of freedom
available to the engineer in the quest for more reliable commu-
nication; c) PCM was the first digital communication system
used to transmit analog continuous-time signals; d) at the
expense of reduced fidelity, the bandwidth used by the Vocoder
[2] was less than the message bandwidth.

In 1924, H. Nyquist [3] argued that the transmission rate is
proportional to the logarithm of the number of signal levels
in a unit duration. Furthermore, he posed the question of how
much improvement in telegraphy transmission rate could be
achieved by replacing the Morse code by an “optimum” code.

K. Küpfmüller [4] (1924), H. Nyquist [5] (1928), and
V. Kotel’nikov [6] (1933) studied the maximum telegraph
signaling speed sustainable by bandlimited linear systems.
Unbeknownst to those authors, E. Whittaker [7] (1915) and J.
Whittaker [8] (1929) had found how to interpolate losslessly
the sampled values of bandlimited functions. D. Gabor [9]
(1946) realized the importance of the duration–bandwidth
product and proposed a time–frequency uncertainty principle.

R. Hartley’s 1928 paper [10] uses terms such as “rate of
communication,” “intersymbol interference,” and “capacity of
a system to transmit information.” He summarizes his main
accomplishment as

the point of view developed is useful in that it provides a
ready means of checking whether or not claims made for
the transmission possibilities of a complicated system lie
within the range of physical possibility.

Intersymbol interference and basic observations with cir-
cuits lead Hartley to conclude that the capacity is proportional
to the bandwidth of the channel. But before being able to
speak of “capacity,” Hartley recognizes the need to introduce a
“quantitative measure of information.” He uses the letterto
denote the amount of information associated withselections
and states that

where is the number of symbols available in each selection.
The principle that “information” is the outcome of a selection
among a finite number of possibilities is firmly established
in [10].
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The aforementioned papers by Nyquist and Hartley had
not quantified the effects of noise, nor had they modeled
sources of information probabilistically. Much of the credit
for importing random processes into the toolbox of the 1940’s
communications engineer is due to N. Wiener [11]1 and to S.
Rice [12].

Probabilistic modeling of information sources has in fact a
very long history as a result of its usefulness in cryptography.
As early as 1380 and 1658, tables of frequencies of letters and
pairs of letters, respectively, had been compiled for the purpose
of decrypting secret messages [13].2 At the conclusion of his
WWII work on cryptography, Shannon prepared a classified
report [14]3 where he included several of the notions (including
entropy and the phrase “information theory”) pioneered in
[1] (cf. [16]). However, Shannon had started his work on
information theory (and, in particular, on probabilistic model-
ing of information sources) well before his involvement with
cryptography.4 Having read Hartley’s paper [10] in his un-
dergraduate days, Shannon, as a twenty-two-year-old graduate
student at MIT, came up with a ground-breaking abstraction of
the communication process subject to a mean-square fidelity
criterion [19]. After writing his landmark Master’s thesis
on the application of Boole’s algebra to switching circuits
[20] and his Ph.D. dissertation on population dynamics [21],
Shannon returned to communication theory upon joining the
Institute for Advanced Study at Princeton and, then, Bell
Laboratories in 1941 [16].

By 1948 the need for a theory of communication en-
compassing the fundamental tradeoffs of transmission rate,
reliability, bandwidth, and signal-to-noise ratio was recognized
by various researchers. Several theories and principles were
put forth in the space of a few months by A. Clavier [22],
C. Earp [23], S. Goldman [24], J. Laplume [25], C. Shannon
[1], W. Tuller [26], and N. Wiener [27]. One of those theories
would prove to be everlasting.

II. L OSSLESSDATA COMPRESSION

A. The Birth of Data Compression

The viewpoint established by Hartley [10] and Wiener [11]
is echoed by Shannon in the Introduction of [1]:

[The] semantic aspects of communication are irrelevant
to the engineering problem. The significant aspect is that
the actual message is oneselected from a setof possible
messages.

Shannon then makes the key observation that the source of
information should be modeled as a random process:

1Originally a WWII classified report acknowledged in [1] to have influenced
Shannon’s thinking.

2Even higher order statistics had been envisioned. Jonathan Swift’sGul-
liver’s Travels(1726) describes a machine by which “the most ignorant person
may write in philosophy, poetry and politics.” The machine selects words at
random based on “the strictest computation of the general proportion between
the numbers of particles, nouns and verbs.”

3Later declassified and superseded by [1] and [15].
4According to interviews with Claude Shannon recorded in [16]–[18].

We can think of a discrete source as generating the mes-
sage, symbol by symbol. It chooses successive symbols
according to certain probabilities depending, in general,
on preceding choices as well as the particular symbols in
question. A physical system, or a mathematical model
of a system which produces such a sequence of sym-
bols governed by a set of probabilities is known as a
stochastic process. Conversely, any stochastic process
which produces a discrete sequence of symbols chosen
from a finite set may be considered a discrete source.

Shannon recognizes that to exploit the redundancy of the
source one should take into account not only the frequencies
of its symbols but its memory. But before proceeding to tackle
that problem, he considers a single random variable taking
values with probabilities and defines itsentropy:5

(1)

Shannon points out the similarity with Boltzmann’s entropy
in statistical mechanics [29] and gives an axiomatic rationale
for this measure of information, as the only measure that is
i) continuous in the probabilities, ii) increasing withif the
random variable is equiprobable, and iii) additive, in the sense
that if the random value is the result of two choices, its entropy
can be obtained by summing the entropy of the first choice and
the entropy of the second choice given the first.

Much more important than the axiomatic justification of
entropy are the fundamental theorems that it satisfies. Shannon
goes on to consider memoryless sources, and proves the
following result using the law of large numbers:

Shannon’s Theorem 3 [1]:Given any and , we
can find such that the sequences of any length
fall into two classes

1) A set whose total probability is less than.
2) The remainder, all of whose members have probabilities

satisfying the inequality

(2)

Shannon refers to the second class as the “typical sequences.”
They are characterized by probabilities that decrease ex-
ponentially with blocklength, , with .
Shannon’s Theorem 3 states that the set of atypical sequences
has vanishing probability. The relevance of this result to
data compression is that for the purposes of coding we can
treat the typical sequences as roughly equiprobable while
disregarding the atypical sequences. The resulting code maps
source strings of length to strings of length slightly larger
than . The decoder can recover the original source string
with probability at least . Thus the rate of encoded bits

5Full and sole credit is due to Shannon for the introduction of entropy in
information theory. Wiener never worked with entropy; instead, he introduced,
apparently at J. von Neumann’s suggestion and independently of Shannon,
the differential entropy [27] which he used in the context of Gaussian random
variables. A distant relative of the differential entropy dating back to 1934 is
Fisher’s information [28], which gives a fundamental limit on the achievable
mean-square error of parametric estimation.
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per source symbol isachievableprovided we are willing to
tolerate a nonzero probability of failing to recover the original
sequence. By increasing the blocklength, and thus the delay
and complexity of encoding and decoding operations, we can
make that probability as small as desired.

But, is that the best we can do? Shannon’s Theorem 3 does
not address that question, since it only suggests a suboptimal
code. (The optimal code of rate simply disregards all but
the most probable sequences of length.) Shannon finds
the answer in Theorem 4: as long as we require probability of
error strictly less than, asymptotically, we cannot encode at
rates below the entropy. This statement is commonly known
as the strongconversesource coding theorem. The converse
(or weak converse) source coding theorem asserts that error
probability cannot vanish if the compression rate is below the
entropy.

The foregoing discussion was circumscribed tofixed-length
codes (fixed-length source strings mapped to fixed-length en-
coded strings). Shannon also notices that by allowing encoded
sequences ofvariable length, it is possible to actually achieve
zero error probability without increasing theaverageencoding
rate. For example, this can be accomplished by representing
the typical sequences of length with sequences of length
roughly equal to , and leaving all the other sequences
uncompressed—a prefix bit indicating whether the encoded
sequence is typical. Many other possibilities arise in variable-
length data compression. Shannon gives the example of a
memoryless source whose symbol probabilities are powers of

. In this special case, it is easy to find a code that encodes
the th symbol with a string of bits. Much less obvious
is what to do with arbitrary distributions. Shannon describes
an “arithmetic process,” discovered contemporaneously and
independently by R. Fano, that assigns to each symbol the
appropriately truncated binary expansion of the cumulative
distribution function evaluated at the symbol. The average rate
of that scheme is not optimal but is only slightly above the
entropy.

B. The Asymptotic Equipartition Property

For memoryless sources, Shannon’s Theorem 3 is equivalent
to the weak law of large numbers for independent and iden-
tically distributed random variables taking a finite number of
positive values. Because of its relevance to data compression,
it is natural to investigate whether Theorem 3 applies to
sources with memory. This requires replacing the entropy of
an individual random variable by theentropy rate, namely, the
limit of the entropy of an -block divided by . Shannon [1]
shows that the entropy rate of a stationary process is equal
to the limiting conditional entropy of a single source symbol
given the past symbols. Having made the case that the statistics
of natural language can be approximated arbitrarily well by
Markov chains of increasing order,6 Shannon [1] notices that
Theorem 3 (and, thus, the achievability part of the source
coding theorem) applies to stationary Markov chain sources. In
1953, a step-by-step proof of the generalization of Shannon’s

6A view challenged in [30] by N. Chomsky, the father of modern linguistics.

Theorem 3 to Markov chains was given by A. Khinchin in the
first Russian article on information theory [31].

In 1953, B. McMillan [32] used the statistical-mechanics
phrase “asymptotic equipartition property” (AEP) to describe
the typicality property of Shannon’s Theorem 3: the set
of atypical sequences has vanishing probability. Moreover,
McMillan showed a fundamental generalization of Shannon’s
Theorem 3 which is commonly referred to as the Shan-
non–McMillan theorem: the asymptotic equipartition property
is satisfied by everystationary ergodicprocess with a finite
alphabet. Unlike memoryless sources, for which the AEP is
equivalent to the weak law of large numbers, showing that
the AEP is satisfied for stationary ergodic sources requires a
nontrivial use of the ergodic theorem. While the fundamental
importance of ergodic theory to information theory was made
evident by McMillan in 1953, the key role that entropy plays
in ergodic theory was revealed by A. Kolmogorov [33] in
1958 and would eventually culminate in D. Ornstein’s 1970
proof [34] of one of the pillars of modern ergodic theory: the
isomorphy theorem.7

Shannon’s Theorem 3 states that the normalized log-
probability of the source string converges in probability
as its length goes to infinity. Although this is enough for
most lossless source coding theorems of interest, almost-sure
convergence also holds as shown in [38] and (with a simpler
proof) in [39]. Generalizations of the Shannon–McMillan
theorem to continuous-valued random processes and to other
functionals of interest in information theory have been
accomplished in [40]–[45].

Sources that are either nonstationary or nonergodic need not
satisfy Theorem 38; that is, some sources require less than the
entropy rate to be encoded, some require more. It is shown in
[47] that the AEP is not only sufficient but necessary for the
validity of the source coding theorem (in the general setting
of finite-alphabet sources with nonzero entropy). Furthermore,
[47] shows that the AEP is equivalent to the simpler statement
in which the absolute value in (2) is removed.

C. Fixed-to-Variable Source Coding

As studied by Shannon, and used earlier in telegraphy,
fixed-to-variable codes map individual information symbols
(or, in general, fixed-length words of symbols) to unequal-
length strings—with shorter strings assigned to the more likely
symbols. In 1948, Shannon had left open two major problems
in fixed-to-variable source coding: 1) the construction of a
minimum average-length code, and 2) the converse variable-
length source coding theorem.

The variable-length source code that minimizes average
length was obtained by D. Huffman [48], as an outgrowth of
a homework problem assigned in R. Fano’s MIT information
theory class [49]. The practicality of the Huffman code has
withstood the test of time with a myriad applications ranging
from facsimile [50] to high-definition television [51].

7Tutorials on the interplay between information theory and ergodic theory
can be found in [35]–[37].

8General coding theorems for nonstationary/nonergodic sources can be
found in [46].
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No formula is known for the minimum average length in
terms of the distribution of the source. In [1], Shannon showed
that the minimum average length does not exceed the entropy
plus one bit,9 but he did not give a lower bound.

Before Huffman, another MIT student, L. Kraft, had at-
tacked the construction of minimum redundancy codes unsuc-
cessfully. However, in his 1949 Master’s thesis [54], Kraft
gave a basic condition (known as the Kraft inequality) that
must be satisfied by the codeword lengths of a prefix code
(i.e., a code where no codeword is the prefix of another).10

Seven years later, and apparently unaware of Kraft’s thesis,
McMillan [56] showed that that condition must hold not just
for prefix codes but for any uniquely decodable code. (A
particularly simple proof was given in [57].) It is immediate
to show (McMillan [56] attributes this observation to J. L.
Doob) that the average length of any code that satisfies the
Kraft inequality cannot be less than the source entropy. This,
in turn, implies the converse variable-length source coding
theorem, which had already been proven by Khinchin [31]
using a method based on Shannon’s Theorem 3.

The optimality of the Huffman code must have seemed at
the time to leave little room for further work in fixed-to-
variable source coding.11 That, however, proved not to be the
case, because of two major difficulties: 1) the distribution of
the source may not be known12 when the code is designed
(Section II-E), and 2) although the Huffman algorithm need
not operate symbol by symbol, its complexity grows very
rapidly with the length of the source block.13 The incentive for
encoding blocks of source symbols stems from two important
classes of sources for which symbol-by-symbol encoding may
be decidedly suboptimal: sources with memory and binary (or
other small alphabet) sources. Both difficulties encountered
by the Huffman code also apply to the Shannon–Fano code
mentioned in Section II-A. The second shortcoming is circum-
vented by the arithmetic coding method of J. Rissanen [60]
(generalized in [61] and [62] and popularized in [63]), whose
philosophy is related to that of the Shannon–Fano code.14

The use of arithmetic coding is now widespread in the data-
compression industry (and, in particular, in image and video
applications [69]). Much of the success of arithmetic coding
is due to its rational exploitation of source memory by using
the conditional probability of the next symbol to be encoded
given the observed past.

9Tighter distribution-dependent bounds are known [52], [53].
10Kraft [54] credits the derivation of the inequality to R. M. Redheffer,

who would later coauthor the well-known undergraduate text [55].
11Minimum average-length source-coding problems have been solved with

additional constraints such as unequal symbol lengths, infinite alphabets,
lexicographic ordering of encoded strings, maximum codeword length, etc.
See [58] for a recent survey.

12As a result of its emphasis on asymptotic stationary settings, Shannon
theory has not been engulfed in the Bayesian/non-Bayesian schism that has
plagued the field of statistics.

13For most Markov sources the minimum average length per letter ap-
proaches the entropy rate hyperbolically in the blocklength [59].

14The Shannon–Fano code is frequently referred to as the Shan-
non–Fano–Elias code, and the arithmetic coding methods described in [64]
and [65] are attributed to P. Elias therein. Those attributions are unfounded
[66]. In addition to [1], other contributions relevant to the development of
modern arithmetic coding are [67] and [68].

D. Variable-to-Fixed Source Coding

So far we have considered data-compression methods
whereby fixed-size blocks of source symbols are encoded into
either variable-length or fixed-length strings. The variable-to-
fixed source coding approach is advantageous whenever block
formatting of encoded data is required. The key notion here
is that of parsing (i.e., inserting commas) the source sequence
into consecutive variable-length phrases. In variable-to-fixed
source coding, those phrases belong to a predetermined fixed-
size dictionary. Given the size of the dictionary, the Tunstall
algorithm [70] selects its entries optimally under the condition
that no phrase is the prefix of another and that every source
sequence has a prefix in the dictionary. For memoryless
sources, the Tunstall algorithm maximizes the expected length
of the parsed phrases. Further results on the behavior of the
Tunstall algorithm for memoryless sources have been obtained
in [71] and [72]. For Markov sources, optimal variable-to-fixed
codes have been found in [73] and [74].

Variable-to-fixed codes have been shown to have certain
performance advantages over fixed-to-variable codes [75],
[76].

Although variable-to-variable source coding has not re-
ceived as much attention as the other techniques (cf. [77]),
it encompasses the popular technique of runlength encoding
[78], already anticipated by Shannon [1], [79], as well as
several of the universal coding techniques discussed in the
next subsection.

E. Universal Source Coding

A. Kolmogorov [80] coined the term “universal” to refer
to data-compression algorithms that do not knowa priori the
distribution of the source. Since exact statistical knowledge
of the source is the exception rather than the rule, universal
source coding is of great practical interest.

If we apply a lossless data-compression algorithm tuned
to one source to a different source we still recover the
message error-free but with degraded compression efficiency.
For memoryless sources, the increase in rate for compressing
assuming distribution when the true source distribution is

is equal to the divergence15 of with respect to for
both fixed-to-variable [81] and variable-to-fixed [82] coding.
If the uncertainty on the source distribution can be modeled
by a class of distributions, it was shown by B. Fitingof in
[83] and by L. Davisson in [84] that for some uncertainty
classes there is no asymptotic loss of compression efficiency
if we use a source code tuned to the “center of gravity” of
the uncertainty set. Constructive methods for various restricted
classes of sources (such as memoryless and Markov) have been
proposed by R. Krichevsky and V. Trofimov [59] and by T.
Tjalkens and F. Willems [85].

In universal source coding, the encoder can exploit the
fact that it observes the source output and, thus, can “learn”
the source distribution and adapt to it. The same is true for
the decoder because its output is a lossless reconstruction of
the source sequence. Adaptive Huffman coding was initially
considered in [86] and [52], and modified in [87] and [88]. For

15cf. Section III-G.
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large-alphabet sources, lower encoding/decoding complexity
can be achieved by the adaptive fixed-to-variable source codes
of B. Ryabko [89], [90].16 Showing experimental promise, the
nonprobabilistic sorting method of [93] preprocesses sources
with memory so that universal codes for memoryless sources
achieve good compression efficiency.

Suppose now that we adopt a parametric description of the
source uncertainty, say a family of distributions indexed by
a string of parameters. In practice, it is useful to consider
uncertainty classes that include distributions described by dif-
ferent numbers of parameters (e.g., Markov chains of various
orders). We could envision a two-step universal compression
procedure: first, using the source sequence, we estimate the
unknown parameter string and describe it to the decoder;
second, we compress the source sequence using a code tuned
to the source distribution with the estimated parameters. What
criterion do we adopt in order to estimate the source model?
The choice of estimation criterion presents us with a tradeoff:
the more finely we estimate the distribution (i.e., the more
complex the model) the more efficiently we can compress the
source, but also the longer it takes to describe the parameter
string to the decoder. Rissanen [94] showed that there are
fundamental reasons to choose theminimum description length
(MDL) criterion for model selection. According to the MDL
principle, the parameter string is chosen to minimize the com-
pressed sequence length plus if is the length of the
source sequence and is the length of the parameter string.
The relevance of the information-theoretic MDL principle
transcends data compression and is now established as a major
approach in statistical inference [95].

The most widely used universal source-coding method is
the algorithm introduced by A. Lempel and J. Ziv in slightly
different versions in 1976–1978 [96]–[98]. Unlike the methods
mentioned so far in this subsection, the Lempel–Ziv algorithm
is not based on approximating or estimating the source dis-
tribution. Like variable-to-fixed source coding, Lempel–Ziv
coding is based on parsing the source sequence. The simple
Lempel–Ziv parsing rule (the next phrase is the shortest phrase
not seen previously) can be encoded and decoded very easily.17

Remarkably, the Lempel–Ziv algorithm encodes any stationary
ergodic source at its entropy rate as shown by Ziv [100]
and Wyner–Ziv [101], [102]. The analysis of the statistical
properties of the Lempel–Ziv algorithm has proven to be a
fertile research ground [98], [103]–[108].

Despite its optimality and simplicity, the Lempel–Ziv algo-
rithm is not the end of the story in universal source coding.
Prior knowledge of general structural properties of the source
can be exploited to give better transient (i.e., nonasymptotic)
compression efficiency.18 So far, the most fruitful effort in
this direction has its roots in the finite-memory “context-
tree” model introduced by Rissanen [109] and has led to the
universal optimal method of F. Willems, Y. Starkov, and T.

16Rediscovered in [91] and [92].
17Practical issues on the implementation of the Lempel–Ziv algorithm are

addressed in [99].
18Reference [77] gives a survey of the interplay between delay and

redundancy for universal source coding with various knowledge of the
statistics of the source.

Tjalkens [110]. The method of [110] is devoted to the universal
estimation of the conditional probability of the next symbol
given the past, which is then fed to a standard arithmetic
encoder.19 The coding rate of the method of [110] achieves the
optimum speed of approach to the entropy rate (established
in [94]).

Compression of memoryless sources with countably-infinite
alphabets and unknown distributions has many practical appli-
cations. Several methods for universal encoding of the integers
have been proposed in [112]–[115].

Germane to universal source coding is the topic of entropy
estimation pioneered by Shannon [1], [116] in the framework
of English texts. The empirical estimation of the entropy of
natural language is surveyed in [117] and [118]. An obvious
approach to entropy estimation is to apply a universal data
compressor and observe the rate at which bits are generated
at the output. Representative references of the state-of-the-art
in entropy estimation [119]–[121], [108] illustrate the recent
interest in string-matching approaches.

Nonprobabilistic measures of the compressibility of indi-
vidual data strings can be defined as the length of the shortest
compression achievable by a given class of compression algo-
rithms. The methods and results are crucially dependent on the
class of data compressors allowed. J. Ziv and A. Lempel [100],
[98] considered the class of finite-state machines, among which
the Lempel–Ziv is asymptotically optimal for all sequences. In
the mid-1960’s, A. Kolmogorov [80], [122], G. Chaitin [123],
and R. Solomonoff [124] considered the class of compressors
that output a binary program for a universal Turing machine.
The resulting measure, which suffers from the shortcoming
of being noncomputable, is calledKolmogorov complexityor
algorithmic complexityand its methods of study lie in recursive
function theory rather than Shannon theory. However, for
some random sources, the expected Kolmogorov complexity
rate converges to the entropy rate [101], [125].

F. Separate Compression of Correlated Sources

In the post-Shannon era, one of the most important advances
in the theory of fundamental limits of data compression was
achieved by D. Slepian and J. Wolf in [126]. Consider two in-
formation sources compressed by separate individual encoders
that do not have access to the output of the other source.
Noiseless separate decompression of the encoded streams
requires that the coding rates be equal to the individual
entropies. If joint decoding were allowed would it be possible
to improve compression efficiency? In particular, can the sum
of the rates be strictly smaller than the sum of the individual
entropies? Let us assume that the sources are dependent (the
answer is obviously negative otherwise) and, thus, the sum
of their entropies is strictly larger than their joint entropy.
Had we allowed joint source encoding, the answer would be
affirmative as the required rate-sum would be equal to the
joint entropy. Slepian and Wolf’s surprising result was that
this conclusion holds even with separate encoding. Shortly
afterwards, T. Cover [127] introduced the powerful technique

19The connections between universal source coding and universal prediction
are surveyed in [111].
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Fig. 1. Figure 1 of [1].

of random binning to generalize the Slepian–Wolf result to
jointly stationary/ergodic sources.

Despite the existence of potential applications, the con-
ceptual importance of Slepian–Wolf coding has not been
mirrored in practical data compression. Not much progress on
constructive Slepian–Wolf schemes has been achieved beyond
the connection with error-correcting channel codes revealed in
[128]. Interestingly, channel coding presents another avenue
for potential applications of Slepian–Wolf coding as shown in
[129].20

The combinatorial aspects of zero-error source coding [130]
are particularly interesting in the context of separate com-
pression of correlated sources or the more canonical setting
of compression with decoder side-information. Pioneering
contributions in this direction were made by H. Witsenhausen
[131] and R. Ahlswede [132]. Inspired by the distributed-
computing applications envisioned in the late 1970’s,interac-
tive compressionmodels allow several rounds of communica-
tion between encoders so as to compute a function dependent
on their individual observations [133]. The efficient exchange
of remote edits to a common file is a typical application.
Achievability and converse results have been obtained by A.
Orlitsky et al. in [134]–[137].

III. RELIABLE COMMUNICATION

A. The Birth of Channel Capacity

After fifty years, it is not easy to fully grasp the revolu-
tionary nature of Shannon’s abstraction of the fundamental
problem of communication depicted in [1, Fig. 1] (Fig. 1).
Shannon completes the picture he initiated nine years earlier
[19] by introducing a new concept: the “channel,” which
accounts for any deterministic or random transformation cor-
rupting the transmitted signal. The function of the transmitter
is to add “redundancy:”

The redundancy must be introduced to combat the par-
ticular noise structure involved a delay is generally
required to approach the ideal encoding. It now has the
additional function of allowing a large sample of noise
to affect the signal before any judgment is made at the
receiving point as to the original message.

20For example, thanks to Slepian–Wolf coding, the branch from “receiver”
to “observer” in [1, Fig. 8] is redundant in order to achieve capacity.

In a world where modulation was generally thought of as an
instantaneous process and no error-correcting codes had been
invented21 Shannon’s formulation of the problem of reliable
communication was a stroke of genius.

Shannon first develops his results on reliable communication
within the context of discrete memoryless channels. He defines

the channel capacity by

(3)

where the maximum is with respect to all possible
information sources used as input to the channel

and claims

It is possible to send information at the ratethrough
the channelwith as small a frequency of errors or equiv-
ocation as desiredby proper encoding. This statement is
not true for any rate greater than.

Denoting by the maximum codebook size of dura-
tion and error probability , Shannon gives the stronger
statement.

Shannon’s Theorem 12 [1]:

(4)

where is the channel capacity, provided thatdoes not
equal or .

Shannon justifies the achievability part of this statement
succinctly and intuitively, introducing the celebrated technique
of random encoding. Error probability is averaged with respect
to the codebook choice and shown to vanish asymptotically
with if the transmission rate is lower than. Shannon
notices that this argument leads to the conclusion that not only
does there exist a capacity-achieving code, but in fact almost
all codes are good. However,

no explicit description of a series of approximation[s] to
the ideal has been found. Probably this is no accident
but is related to the difficulty of giving an explicit
construction for a good approximation to a random
sequence.

21With the possible exception of the Hamming(7; 4) code quoted in [1];
see also [138].
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Although all the foregoing claims would eventually be
shown to hold (Section III-D), Shannon [1] does not prove,
even informally, the converse part of Theorem 12 (i.e.,in
(4)), nor the weaker statement that the error probability of
codes with rate above capacity cannot vanish.22

B. Mutual Information

In addition to the difference between unconditional and
conditional entropy maximized in (3), [1, Part IV] introduces
its counterpart for continuous random variables.

Although no name is given in [1] for this quantity, Shannon
realizes that it is “one of the central definitions in communica-
tion theory.” By 1956, Shannon [140] refers to it as “mutual
information,” using a terminology attributed to Fano [141],
which is commonly accepted today.

Shannon gives the data-processing inequality in [1], and a
general approach to define mutual information encompassing
the discrete and continuous definitions as special cases. This
approach would be followed up by I. Gelfand, A. Yaglom, and
A. Kolmogorov in [142]–[144], and by M. Pinsker (with spe-
cial emphasis on Gaussian random variables and processes) in
[145]. Early on, the Russian school realized the importance of
the random variable whose expectation is mutual information
(i.e., the log-likelihood ratio between joint and marginal-
product distributions) and dubbed itinformation density.

The optimization problem posed in Shannon’s formula was
initially tackled in [146] and [147]. An iterative algorithm
for computing the capacity of arbitrary discrete memoryless
channels was given independently by S. Arimoto [148] and R.
Blahut [149] in 1972.

C. Gaussian Channels

Undoubtedly, the channel that has yielded the biggest suc-
cesses in information theory is the Gaussian channel.

Shannon [1] formulates the continuous-time ideal strictly
bandlimited white Gaussian channel and uses the sampling
theorem to show the equivalence to a discrete-time channel
sampled at twice the bandwidth.23 As a formal analog of
the entropy of a discrete random variable, Shannon defines
the differential entropy of a continuous random variable, and
shows that it is maximized, subject to a variance constraint,
by the Gaussian distribution. Taking the difference between
the output differential entropy and the noise differential en-
tropy, Shannon goes on to obtain his famous formula for the
capacity of power-constrained white Gaussian channels with

22Alluding to [1], Shannon says in [139]: “I was confident I was correct,
not only in an intuitive way but in a rigorous way. I knew exactly what I was
doing, and it all came out exactly right.”

23In contrast to the 1920’s papers by Nyquist and Küpfmüller (Section I),
Shannon’s crisp statement [1] and proof [150] of the sampling theorem were
instrumental in popularizing this result in engineering. Thus there is indeed
some justification for the term “Shannon sampling theorem” [151], [152].

flat transfer function24

(5)

where is the channel bandwidth, is the transmitted power,
and is the noise power within the channel band. Taking
the limit of (5) as the bandwidth grows without bound [154],
a fundamental conclusion is reached: the minimum energy
necessary to transmit one bit of information lies 1.6 dB below
the noise one-sided spectral density. Expressions similar to (5)
were put forth in 1948 by Wiener [27] and Tuller [26] without
information-theoretic justification: Wiener simply takes the
difference between Gaussian differential entropies and Tuller
arrives at the formula arguing that “if is the rms amplitude
of the noise mixed with the signal, there are sig-
nificant values of signal that may be determined.” By the mid-
1950’s, the explicit construction of channel codes with rates
approaching (5) became the “holy grail” of information theory
[155].

The geometric view of time-domain functions as points in a
finite-dimensional space, now prevalent in communications en-
gineering, was championed by Shannon [150] in 1949, where
he justified the achievability of the rate in (5) using a sphere-
hardening reasoning. Since any strictly bandlimited signal has
infinite duration, the rate of information of any finite codebook
of bandlimited waveforms is, strictly speaking, equal to zero.
A rigorous derivation of (5) requires a careful definition of
“almost-strict” bandwidth or duration (cf. [156]), and a heavy
dose of functional analysis. This was accomplished by A.
Wyner in [157] using the fundamental results of [158].

Referring to (5), Shannon [1] asserts that

to approximate this limiting rate of transmission the
transmitted signals must approximate in statistical prop-
erties a white noise.

A proof that capacity-achieving codes must have empirical
distributions that maximize input–output mutual information
was given in [159].

The generalization of (5) to dispersive/nonwhite Gaussian
channels is given by the “water-filling” formula obtained
by Shannon in [150] using the differential entropy of a
Gaussian stationary process found in [1]. Rigorous justi-
fications [160]–[162] of the water-filling formula for dis-
persive/nonwhite Gaussian channels usually appeal to the
Toeplitz distribution theorem [163], [164], although it can be
circumvented, as shown in [165].

Shannon [1] also studies white Gaussian channels subject
to amplitude constraints, rather than power constraints. Not
only does he give bounds but he notices that for low signal-
to-noise ratios the capacity is essentially given by (5). A
closed-form expression is not known to exist but algorithms for
the computation of amplitude-constrained capacity were given
in [166], and in [167] for the practically important quadrature-
modulation channel. Gaussian channel capacity has been found
for models that incorporate structural constraints at the receiver

24Four months after the publication of [1], M. Golay [153] refers to (5)
as “the now classical expression for the information reception capacity of a
channel.”
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(e.g., quantized observations) and at the transmitter (e.g.,
specific modulation formats). Those results have underlied
much of the development of modem technology since the early
1960’s [168], [169].

The capacity of additive non-Gaussian channels is also
considered in [1]. For a fixed noise power, Gaussian noise
is shown to be least favorable.25 Moreover, Shannon gives
an upper bound on capacity which depends on the “non-
Gaussianness” of the noise distribution through its entropy-
power, i.e., the variance of a Gaussian distribution with
identical entropy. An equivalent bound can be given in terms
of the divergence between the actual noise distribution and a
Gaussian distribution with the same variance [173]. Shannon
[1] states the deceptively simple “entropy-power inequality”
proved in [174]: the entropy-power of the sum of two inde-
pendent random variables is lower-bounded by the sum of the
individual entropy-powers. The behavior of the capacity of
additive non-Gaussian noise power-constrained channels was
investigated by V. Prelov for various asymptotic scenarios
[175]–[178].

The development of the results on the capacity of additive
Gaussian noise channels where the transmitted signals are
subject to fading is surveyed in [179].

D. The Channel Coding Theorem

The major result left unproven in [1] was the converse
channel coding theorem. This follows directly from Fano’s
inequality [180]—a fundamental result in information the-
ory which gives a lower bound on the error probability of
equiprobable hypotheses tests.

Actually, Fano’s inequality leads to a more general result:
if the messages to be transmitted through the channel are
not equiprobable but are generated by a source with entropy

, then reliable communication (i.e., vanishing error
probability) is impossible. The achievability counterpart of this
source-channel codingsetting states that if the source entropy
is below channel capacity, then there exist codes that achieve
vanishing error probability. This follows easily by separating
the source- and channel-coding operations. At the encoder, the
source is compressed to a rate equal to its entropy and fed to
a channel encoder which assumes equiprobable messages; at
the receiver front-end a source-independent channel decoder
selects a codeword, which is then fed to a source decompressor
independent of the channel statistics. Because of this structure,
the source-channel coding theorem is also known as the
separation theorem.26

The validity of the strong converse in Shannon’s Theorem
12 was established by J. Wolfowitz in 1957 [182] for binary
memoryless channels.

25In fact, the game between signal and noise distribution with fixed variance
and input–output mutual information as payoff has a saddle point achieved by
Gaussian distributions. Information-theoretic games [170]–[172] are of interest
in jamming problems, for example.

26Other than for nonstationary sources/channels the separation theorem
holds in wide generality [181].

A. Feinstein [183] gave the first step-by-step proof of the
achievability part of the channel coding theorem27 in 1954.
Along with a deterministic greedy method to choose the
codebook, Feinstein used a suboptimal decoder that selects the
message whose information density with the received signal
exceeds a given threshold; an error is declared if no such
message exists, and if more than one such message exists,
then the message with lowest index is chosen. A combinatorial
variation of Feinstein’s proof was proposed by J. Wolfowitz
[182] for discrete memoryless channels. This marked the first
use of empirical distributions (types) in Shannon theory. Fully
developed by I. Csisźar and J. K̈orner in [185], the method of
types (surveyed in [186]), has been influential in the evolution
of the Shannon theory of discrete memoryless channels and
sources.

Arguably the most natural proof of the direct coding theorem
follows by formalizing the intuitive argument put forth by
Shannon [1] that evaluates the average probability of the
ensemble of all codes. In this case, the decoder is slightly
different from Feinstein’s: if more than one message satisfies
the threshold test, then an error is declared.28

Other proofs of the direct coding theorem were given by
Shannon in [188] and R. Gallager in [189] by evaluating
the average performance of random encoding achieved by the
maximum-likelihood decoder. Popularized in [161], Gallager’s
simple bounding method has found widespread use.

Aside from Shannon’s treatment of the nonwhite Gaussian
channel [150], the first works that dealt with the capacity of
channels with memory did not appear until the late 1950’s:
[190], [188], [191], [182], and [192]. The capacity of most
channels with memory is given by the limit of maximal
normalized mutual informations. R. Dobrushin [193] showed
that such a limiting expression holds for a wide class of
channels exhibiting a certain type of ergodic behavior. If the
capacity of memoryless channels is not always computable in
closed form, the limit present in the formula for channels with
memory poses yet another hurdle for explicit computation,
which is, nevertheless, surmountable in cases such as the
stationary Gaussian channel (cf. Section III-C) and timing
channels [194], [195]. A general capacity formula that does
not hinge on ergodicity or stationarity restrictions was obtained
in [196] by introducing a new way of proving the converse
coding theorem. The approach of [196] shows a dual of
Feinstein’s result: the average error probability of any code
is essentially lower-bounded by the cumulative distribution
function of the input–output information density evaluated at
the code rate.29 In 1957, Shannon had given a precursor of
this lower bound in the largely overlooked [188, Theorem 2].

27Unlike other approaches, Feinstein’s proof leads to a stronger notion of
reliability where error probability is measured taking the worst case over all
codewords—in lieu of the average. A proof of Feinstein’s result in abstract
measurable spaces was given in [184].

28The so-called “typical-sequences” proof follows this approach except that
the decoder contains a superfluous (upper) threshold. Further unnecessary
complication results from considering typicality with respect to individual
and joint entropies rather than mutual information [187], [168], [101].

29Called the information spectrumin [46], the distribution function of
the information density replaces its average (mutual information) as the
fundamental information measure when dealing with nonstationary/nonergodic
channels [197].
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For channels with cost constraints (e.g., power limitations),
capacity is given by the maximal mutual information over all
input random variables that satisfy a corresponding average
cost constraint. A simpler formula exists for the minimum cost
per transmitted bit [198], which in the Gaussian case reduces
to the 1.6 dB result quoted in Section III-C.

In a departure from the conventional discrete-time model
where there as many output symbols as input symbols, R.
Dobrushin [199] and S. Stambler [200] showed coding theo-
rems for channels subject to random deletions and insertions
of symbols at instants unknown to the decoder.

E. Constrained Sequences

Under the heading “Capacity of the discrete noiseless chan-
nel,” [1] poses a nonprobabilistic problem quite different from
those discussed in data compression/transmission. Although
there is no evidence that Shannon had in mind recording
applications when formulating this problem, this discipline has
found a wealth of practical applications in magnetic and optical
recording [201]. In those applications, certain sequences of
bits are forbidden. For example, it may be required that the
transmitted sequence contain at leastand at most ’s amid
’s, or that the sequence satisfy certain spectral properties.

Shannon found the fundamental asymptotic limits on the
amount of information that can be encoded per symbol, when
the allowable sequences are defined by a finite-state machine.
In the last fifty years, considerable progress has been achieved
in the design of constrained encoders that approach Shannon’s
bounds (cf. [201]).

F. Zero-Error Channel Capacity

Any text typed by anyone other than an infallible typist
will have a nonzero probability of being erroneous, with
the probability going to unity as the length increases. An
information theorist can make this probability go to zero by
handing the typist a redundant text derived from the original
using a code that takes into account the statistics of the typist’s
mistakes.30

Imagine now that a certain typist makes mistakes but
only by occasionally mistyping a neighboring letter in the
keyboard—( may become or , but not ). This seemingly
ordinary typist opens a whole new world of information-
theoretic problems. We can now encode/decode texts perfectly.
For example, the typist could be given texts drawn exclusively
from the alphabet . The probability of error does
not just go to zero asymptotically, itis zero. The rate at which
information can be encoded infallibly is called the zero-error
capacity. This measure no longer depends on the probabilities
with which mistakes are made—all the information relevant to
finding the zero-error capacity can be summarized in a graph in
which pairs of letters mistakable for each other are connected
by an edge. Exceedingly difficult and radically different from
the nonzero error setting, the zero-error capacity problem was
formulated by Shannon [140] in 1956. Once again, Shannon

30Alas, information theory has not made any inroads in this particular
information technology, and typists continue to be rated by raw words per
minute rather than by Shannon capacity.

created single-handedly a new research field, this time within
combinatorial graph theory.

Most channels of practical interest have zero zero-error
capacity. Among channels with positive zero-error capacity,
the most difficult channel that has been solved corresponds to
a circular typewriter with five keys. Shannon [140] showed
that the zero-error capacity of this channel is no less than half
of that achievable by an infallible typist ( bits per
keystroke). In 1979, L. Lov´asz [202] showed that Shannon’s
lower bound is in fact the zero-error capacity. In 1997, N.
Alon [203] disproved the conjecture in [140] that the zero-
error capacity of independent channels operating in parallel is
the sum of the zero-error capacities.

A tutorial survey on the results and combinatorial challenges
of zero-error information theory is given in [130].

G. Error Exponent

A school of Shannon theorists has pursued a refinement of
the channel coding theorem that studies the behavior of the
error probability as a function of the blocklength instead of
just focusing attention on the channel capacity. Rice [204]
and Feinstein [205] observed the exponential decrease of
error probability as a function of blocklength in Gaussian
and discrete memoryless channels, respectively. The exponent
of the minimum achievable probability of error is a function
of the rate, which Shannon [206] christened as thereliability
function. Upper and lower bounds on the reliability function
(which coincide for all but low rates) were found in [207] for
binary-symmetric channels; in [208] for symmetric discrete
memoryless channels; and in [188], [209] for general discrete
memoryless channels. The behavior of the reliability function
of erasure channels was found in [210].

A new approach to upper-bounding the error probability
averaged with respect to the choice of the encoder was found
by Gallager in [189]. In addition to the proof of the direct
coding theorem (Section III-D), this result led to a general
lower bound on the reliability function. Lower bounds on error
probability leading to improved upper bounds on the reliability
function were obtained in [211] and [212].

Further improvements in bounding the reliability function
were shown in [213]–[216]. The power of the method of types
is illustrated by the proofs of bounds on the reliability function
given in [185] and [217]. To this date, the reliability function of
discrete memoryless channels (including the binary-symmetric
channel) is not known for all rates.

Other than the application of Chernoff’s bound, the
information-theoretic work on the reliability function evolved
independent of the large-deviations work initiated in the
statistical literature in the 1950’s. The important role played
in the error exponent problem by the divergence measure
introduced in statistics by S. Kullback and R. Leibler
[218]31 was made evident by R. Blahut in [214]. A more
fundamental information measure than either entropy or
mutual information, divergence had been surprisingly slow in
emerging to its rightful position in information theory, until it
was popularized in the texts [185] and [168]. The vacuum left

31Earlier, A. Wald had used the nonnegativity of divergence in [219].
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by this historical neglect has led to the overrated role played
by the differential entropy measure in information theory.

Originating from the analysis of sequential decoders for
convolutional codes [220], [221] and related to the reliability
function, thecutoff rateis a measure of the “noisiness” of the
channel, which has received much attention in the development
of information and coding theory. Progress in coding theory
has refuted the notion (e.g., [222]) that transmitting above
cutoff rate requires unwieldy decoding complexity. While
there are appealing heuristics on the different behavior of
codes below and above cutoff rate (e.g. [168], [169]) the view
that cutoff rate is a key measure of the channel transmission
capabilities is not supported by the operational characterization
that has been discovered so far [223].

Some applications, such as concatenated coding and trans-
mission of sources with residual redundancy, have spurred
work on a variant of Shannon’s channel coding setup whereby
the decoder outputs not one but a fixed-size list of mes-
sages. The problem of list decoding was introduced by P.
Elias [224]. Capacity and error exponents have been studied
in [225]–[228]. Zero-error list decoding (Section III-F) was
investigated in [229] and [230].

H. Channels with Feedback

The first (and most widely used) feedback model in informa-
tion theory was introduced by Shannon in [140]. It considers
an encoder that, before sending theth symbol, knows without
error the th symbol received by the decoder. Shannon
[140] shows that even this kind of ideal feedback fails to
increase the capacity of the discrete memoryless channel.
Because of the lack of channel memory, not only is feedback
useless to predict the future behavior of the channel, but it
is futile for the encoder to try to compensate for previous
channel behavior, as far as channel capacity is concerned.
However, feedback does increase the reliability function [231].
Moreover, a number of constructive schemes [232]–[235]
made evident that the availability of feedback may simplify
the coding and decoding operations. Elias and Shannon [140]
showed that the zero-error capacity of discrete memoryless
channels could indeed increase with feedback.

Shannon [140] anticipated that feedback would help to
increase the capacity of channels with memory, at a time when
the capacity of channels with memory had not yet been tackled.
The ability of feedback to increase the capacity of channels
with memory was studied by a number of authors in the
late 1960’s: [236]–[238]. In particular, P. Ebert [238] and M.
Pinsker32 independently showed that feedback may increase
the capacity of a Gaussian channel by at most a factor of
two—a factor that was shown to be the best possible in [239].
The additive upper bound of [240] shows that the increase
afforded by feedback cannot exceed half a bit-per-channel use.

I. Channels with Unknown Parameters

In parallel with the setting discussed in Section II-E, the
channel description available to the encoder/decoder may
be incomplete. Suppose that the actual channel conditional

32Unpublished.

(output given input) distributions are known to belong to
an uncertainty class. Depending on whether the number of
parameters describing the uncertainty class remains fixed or
grows with blocklength we have acompound channelor
an arbitrarily varying channel, respectively. These models
are relevant to practical communications systems subject to
jamming, time-varying conditions, etc., and have received
much attention in the Shannon theory literature [241].

The objective of the encoder/decoder is to guarantee reliable
communication regardless of the actual channel in effect. This
leads to a minimax problem where the probability of error is
maximized over the uncertainty class and minimized over the
choice of encoder/decoder.

The compound discrete memoryless channel capacity prob-
lem was posed and solved in 1959 by D. Blackwell, L.
Breiman, and A. Thomasian [242] and by R. Dobrushin [243].
A year later, Wolfowitz [244] proved the strong converse (for
maximal error probability) using the method of [182]. The
formula for compound channel capacity is similar to (3) except
that for every input distribution, the mutual information is
minimized with respect to the channels in the uncertainty class,
thus yielding a capacity that is less than or equal to the worst
capacity of the channels in the uncertainty set.33 The capacity
of compound channels with memory was investigated in [245]
and [246].

Arbitrarily varying channels34 were introduced in [248]. The
capacity was found by Ahlswede and Wolfowitz [249] in the
binary output case under the pessimistic maximal error proba-
bility criterion, in which the “jammer” is allowed to know the
codeword sent by the communicator. A partial generalization
of the solution in [249] was obtained by Csiszár and K̈orner in
[250]. However, a full solution of the discrete memoryless case
remains elusive. In contrast, if error probability is averaged
with respect to the choice of codewords, the arbitrarily varying
channel capacity has been progressively solved in a series
of papers [251]–[254]. Ahlswede showed in [252] that if the
average-error-probability capacity is nonzero, then it does not
increase further if the error probability is averaged over the
choice of codebooks, i.e., if the “jammer” does not know
which code is used by the communicator.

The capacity of the memoryless Gaussian arbitrarily varying
channel is known both when the jammer knows the codebook
[255] and when it does not [256]. In either case, the effect of
the power-constrained jammer is equivalent to an additional
source of Gaussian noise, except that the capacity is equal
to zero if the jammer knows the codebook and has as much
power as the transmitter.

Recent references on the capabilities of list decoding for
arbitrarily varying channels can be found in [228] and [257].

If the receiver has incomplete knowledge of the channel or
its complexity is constrained, it is of interest to investigate
the capacity degradation suffered when the decoder is not
maximum-likelihood. If the encoder does know both the
channel distribution and the suboptimal decoding rule, then
it can partially compensate for the mismatch at the receiver.

33Equality holds in special cases such as when the uncertainty is the
crossover probability of a binary-symmetric channel.

34The term “arbitrarily varying” was coined in [247].
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Recent results on the capacity achievable with mismatched
decoding have been obtained in [258]–[262].

Channel uncertainty at the receiver need not result in
loss of capacity. For example, known training sequences
can be used to probe the channel. Alternatively,universal
decodingoperates in a “blind mode” and attains the same
asymptotic performance as a maximum-likelihood rule tuned
to the channel law. Universal decoders have been found for
various uncertainty models; foremost among them are the
maximum empirical mutual information decoder introduced
by V. Goppa in [263] and further studied in [185], the
Lempel–Ziv-based decoder introduced by J. Ziv in [264] and
further studied in [265], the independence decoding rule of
I. Csisźar and P. Narayan [266], and the merging decoder
introduced by M. Feder and A. Lapidoth in [267].

J. Multiuser Channels

1) Two-Way Channels:Published in 1961, Shannon’s last
single-authored technical contribution [268] marks the foun-
dation of the discipline of multiuser information theory. Un-
doubtedly inspired by telephony, [268] is devoted to the
two-way channel subject to mutual interference between the
signals transmitted in opposite directions. A new dimension
arises: the tradeoff between the transmission speeds at each
terminal, e.g., maximum speed in one direction is feasible
when nothing is transmitted in the other direction. Thus
the transmission capabilities of the two-way channel are not
described by a single number (capacity) as in the conventional
one-way channel but by a two-dimensional “capacity region”
that specifies the set of achievable rate pairs. Shannon [268]
gave a limiting expression for the capacity region of the
discrete memoryless two-way channel. Unfortunately, it is
not yet known how to explicitly evaluate that expression
even in “toy” examples. Of more immediate use were the
inner and outer bounds found in [268], and later improved
in [269]–[273].

2) Multiaccess Channels:Shannon concludes [268] with

In another paper we will discuss the case of a channel
with two or more terminals having inputs only and one
terminal with an output only, a case for which a complete
and simple solution of the capacity region has been
found.

In the terminology of [268], “inputs” and “output” are to
be understood as “inputs to the channel” and “output from
the channel.” Thus the channel Shannon had in mind was
what we now refer to as themultiple-access channel: several
transmitters sending information to one receiver.

Multiple-access communication dates back to the systems
invented in the 1870’s by Thomas Edison and Alexander
Graham Bell to transmit simultaneous telegraphic messages
through a single wire. Time-division and frequency-division
multiplexing methods were already well-known at the time
of the inception of information theory. Code-division multiple
access (CDMA) had also been suggested as one of the possible
applications of the spread-spectrum modulation technology
that sprung up from World War II. In fact, one of the early
proponents of CDMA was Shannon himself [16].

Shannon wrote no further papers on multiple-access
channels and it is not known what solution he had found
for the multiple-access capacity region. But in a short span
of time in the early 1970’s several independent contributions
[274]–[278] found various characterizations of the capacity
region of the two-user discrete memoryless multiple-access
channel. Most useful among those is the expression found by
H. Liao [276] and R. Ahlswede [278] for the capacity region
as the convex hull of a union of pentagons. Shortly after,
Wyner [128] and Cover [279] showed (using the suboptimal
successive cancellation decoder) that the memoryless Gaussian
multiple-access channel admits a very simple capacity region:
the pentagon defined by the single-user capacities of the
channels with powers equal to the individual powers and
to the sum of the powers.35 The generalization of the
capacity region to (non-Gaussian) memoryless multiple-access
channels subject to power constraints did not take place until
[282] (cf. [198]). The proof of the achievability part of the
multiple-access coding theorem is most easily carried out by
using the formalization of Shannon’s approach discussed in
Section III-D.

In spite (or, maybe, because) of the simplicity of these
models, they lead to lessons pertinent to practical multiuser
communication systems; for example, in many instances,
orthogonal multiplexing strategies (such as time- or frequency-
division multiplexing) incur a penalty in capacity. Thus letting
transmitted signals interfere with each other (in a controlled
way) increases capacity provided that the receiver takes into
account the multiaccess interference.

Noiseless feedback can increase the capacity of memoryless
multiple-access channels as shown in [283] and [284]. How-
ever, the capacity region with feedback is not yet known except
in special cases such as the Gaussian multiple-access channel
[285]. The upper bounds on the capacity of single-user non-
white Gaussian channels with feedback (Section III-H) have
been generalized to multiple-access channels in [286]–[288].

The capacity region of multiple-access channels with mem-
ory was given in [289]. The counterpart of the water-filling
formula for the dispersive Gaussian channel was found ex-
plicitly in [290] for the two-user case and an algorithm for
its computation for an arbitrary number of users was given
in [291]. The practical issue of transmitter asynchronism was
tackled in [292] and [293] at the frame level, and in [294] at
the symbol level.

The error exponents of multiple-access channels were in-
vestigated in [295]–[297].

When the message sources are correlated it is interesting
to consider the problem of joint source-channel multiuser
encoding. This has been done in, among others, [298] and
[299], where it is shown that the separation principle of single-
user source-channel coding does not hold in the multiuser
setting.

3) Interference Channels:In contrast to the multiple-
access setting in which the receiver is interested in decoding
the information sent by all the users, suppose now that we

35Multiaccess error-control codes derived from single-user codes have been
proposed for the Gaussian multiple-access channel in [280] and for the discrete
multiple-access channel in [281].
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have as many receivers as transmitters and each receiver
is interested in decoding only one of the sources. Think,
for example, of telephone channels subject to crosstalk. We
could take a multiple-access approach to this problem and use
codes that ensure that each receiver can reliably decode the
information sent by all the transmitters. However, higher rates
are possible if we take advantage of the fact that each receiver
requires reliable decoding of only one of the transmitters.
In spite of many efforts surveyed in [300] and exemplified
by [301]–[304], the capacity region of even the simplest
two-user memoryless Gaussian interference channel remains
an open problem. One of the practical lessons revealed by
the study of the interference channel is the equivalence
of powerful interference and no interference [301], [305]:
unlike background noise, the known structure of a powerful
interfering signal makes it feasible to recover it at the receiver
with very high reliability and then subtract it from the received
signal.

4) Broadcast Channels:In [306], Cover introduced the
dual of the multiaccess channel: one sender that transmits
one signal simultaneously to several receivers. If the same
information is to be transmitted to each receiver, then
the model reduces to a single-user (compound) channel.
Otherwise, the problem becomes quite interesting and
challenging. For example, in television broadcasting we
may want receivers within the coverage area of a station
to receive high-definition signals, while more distant (lower
signal-to-noise ratio) receivers would be content to receive
low-definition television. By superposition of the encoded
streams it is possible to trade off the rate of information sent
to different types of receivers. Although a general solution
for the capacity region of the broadcast channel is not
yet known, considerable progress (surveyed in [307]) has
been made in exploring the fundamental limits of various
classes of memoryless broadcast channels. On the practical
side, superposition coding is gaining increasing attention for
broadcast applications [308], [309] and other applications that
require unequal error protection [310].

For certain nonergodic single-user channels, maximizing
average transmission rate makes more sense than the overly
conservative coding strategy that guarantees reliability in the
worst case channel conditions. Those situations are another
promising application of the broadcast channel approach [306],
[311].

5) Wiretap Channels:The methods of multiuser informa-
tion theory have been successfully applied to channels subject
to eavesdropping. The basic model was introduced by Wyner
[312] and generalized in [313]. The Shannon-theoretic limits
of secret sharing by public discussion have been investigated
by U. Maurer [314] and by Ahlswede and Csisz´ar [315].

K. Other Roles of Channel Capacity

Channel capacity has proven to be the key quantity, not
only in reliable information transmission, but in a number of
other problems.

1) Information Radius:Any parametrized family of dis-
tributions can be viewed as a “channel”
from the “input” space to the output space where is

defined. The maximal input–output mutual information is a
measure of the dissimilarity (“information radius”) of the
family of distributions. More precisely, the maximal mutual
information is the saddle point of a game whose payoff is the
divergence measure and which is maximized over the family
of distributions and minimized by a distribution that acts as
the center of gravity [161], [185], [316].

2) Minimax Redundancy in Universal Lossless Coding:
Consider a game between a source encoder and a source
selector whose payoff is the difference between the expected
codelength and the source entropy. This is a special case of
the game in the previous paragraph. Thus its saddle point is
the capacity of the parametrized family of source distributions
[317]–[320].

3) Identification: R. Ahlswede and G. Dueck [321] intro-
duced the following seemingly innocuous variation of Shan-
non’s channel-coding setting. Suppose that the recipient of
the message is only interested in knowing whether a certain
preselected message is the true message.36 Let us assume
that the encoder and decoder ignore which message was
preselected by the recipient; for, otherwise, the setting would
become a standard hypothesis-testing problem. The situation
is similar to the familiar one except that the decoder is free
to declare a list of several messages to be simultaneously
“true.” The recipient simply checks whether the message
of interest is in the list or not. Erroneous information is
delivered whenever the preselected message is in the list but
is not the true message, or if the preselected message is the
true message but is not in the list. How many messages
can be transmitted while guaranteeing vanishing probability
of erroneous information? The surprising answer is that the
number of messages grows doubly exponentially with the
number of channel uses. Moreover, the second-order exponent
is equal to the channel capacity. This result was shown in [321]
(achievability) and [46] (converse).

4) System Simulation:Random processes with prescribed
distributions can be generated by a deterministic algorithm
driven by a source of random bits (independent flips of a fair
coin). A key quantity that quantifies the “complexity” of the
generated random process is the minimal rate of the source
of bits necessary to accomplish the task. Theresolvability
of a system is defined as the minimal randomness required
to generate any desired input so that the output distributions
are approximated with arbitrary accuracy. Under fairly general
conditions, [46] showed that the resolvability of a system is
equal to its Shannon capacity.

IV. L OSSY DATA COMPRESSION

Quantization (or analog-to-digital conversion) saw its first
practical applications with PCM in the 1930’s (Section I) and
its evolution is chronicled elsewhere in this issue [322]. The
Shannon-theoretic discipline of rate-distortion theory deals
with the fundamental limits of lossy data compression in the
asymptotic regime of long observations. Constructive methods

36For example, the message may be header information in a communication
network and the recipient is only interested in determining whether it is the
addressee.
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and their relationship to the development of information-
theoretic data compression limits are reviewed in [323] and
[324].

A. The Birth of Rate-Distortion Theory

As we mentioned, in his 1939 letter to V. Bush [19],
Shannon had come up with an abstraction of the problem of
waveform transmission using a mean-square fidelity criterion.
The closing chapter in [1] “Part V: The rate for a continuous
source” returns to source coding but now with a basic new
ingredient:

Practically, we are not interested in exact transmission
when we have a continuous source, but only in trans-
mission to within a given tolerance. The question is, can
we assign a definite rate to a continuous source when
we require only a certain fidelity of recovery, measured
in a suitable way.

Shannon then considers an arbitrary fidelity (or distortion)
criterion and states that the minimum rate at which information
can be encoded within a certain tolerance is the minimum
mutual information between the source and any other random
variable that satisfies the average distortion constraint. Shan-
non also states the source/channel separation theorem with a
fidelity criterion (reproduction with distortion is possible if

, and impossible if ). Shannon gives
a quick intuitive argument along the lines used to prove the
achievability part of the channel coding theorem and accepts
the converse part as a straightforward consequence of the
definitions.37

It is not until 1959 that Shannon, already at MIT, returns to
the fundamental limits of lossy data compression [325], and
refers to the function he defined in [1] as the “rate-distortion
function .” He proves the rate distortion theorem for dis-
crete memoryless sources (using the random coding approach)
and evaluates the rate-distortion function in several interesting
special cases.

B. Evaluation of Rate-Distortion Functions

In [1], Shannon solves the optimization problem posed by
the formula for the rate-distortion function in the case of a
Gaussian bandlimited continuous-time random process under
the mean-square error criterion. He shows that the rate is
equal to the bandwidth times the logarithm of the signal-
to-reconstruction-error ratio.38 Dealing with the discrete-time
counterpart, Shannon [325] shows that the Gaussian rate-
distortion function is equal to the positive part of one-half of
the logarithm of the signal-to-reconstruction-error ratio. This
means that every additional bit of encoded information results
in an increase of 6 dB in fidelity.

But prior to 1959, the rate-distortion function had attracted
the attention of Kolmogorov (and his disciples) who called

37Such expediency is not far off the mark in contrast to the channel-coding
problem with reliability measured by block error probability.

38In 1948, Shannon authored (with B. Oliver and J. Pierce) a tutorial [326]
on the bandwidth–fidelity tradeoff in PCM.

it the -entropy [327].39 The dual to Shannon’s water-filling
formula for channel capacity (Section III-C) is the “flooding”
formula40 for the rate-distortion function of nonwhite Gaussian
processes. It was originally given by Kolmogorov [327],
with refined derivations due to Pinsker [330], [331], and B.
Tsybakov [332].

When applied to Gaussian sources (with mean-square-error
fidelity) and Gaussian channels (with power constraints), the
separation theorem leads to particularly interesting conclu-
sions. If the source and the channel have identical band-
width and their spectra are flat, then the optimum encod-
ing/decoding operations consist of simple instantaneous at-
tenuation/amplification (or single-sideband modulation if fre-
quency translation is required) [333], [334]. If the channel has
more bandwidth than the source, then the achievable signal-
to-noise ratio (in decibels) is equal to that achievable in the
identical-bandwidth case times the ratio of channel-to-source
bandwidth. To achieve this limit, nontrivial encoding/decoding
is necessary; however, the original analog signal can still be
sent uncoded through a portion of channel bandwidth without
loss of optimality [335].

A very important rate-distortion function, found by Shannon
[325], is that of a binary memoryless source with bit-error-
rate fidelity. Ordinarily, the communication engineer specifies
a certain tolerable end-to-end bit-error rate. This reliability
measure is less stringent than the block-error probability
used in the development of channel capacity. According to
the separation theorem and Shannon’s binary rate-distortion
function, if the desired bit-error rate is, then the maximum
transmission rate is equal to channel capacity times the factor

Contemporaneously with Shannon [325], Erokhin [336] found
the rate-distortion function (for low distortion) of equiprobable
discrete sources under bit-error-rate fidelity. Further work on
the rate-distortion function in the low-distortion regime was
reported by Y. Linkov [337], [338] and by F. Jelinek [339].

Iterative algorithms for the computation of the rate-
distortion function of discrete sources have been proposed
in [149] and [340].

A number of other sources/fidelity criteria have been shown
to admit explicit rate-distortion functions: the Wiener process
[341], the Poisson process and other continuous-time Markov
processes [342], binary Markov chains with bit-error-rate
fidelity [343], and various sources with absolute error criterion
[344]–[346]. The rate-distortion function of random fields was
studied in [347] and [348].

The Shannon lower bound [325] on the rate-distortion
function for difference-distortion measures has played a promi-
nent role in rate-distortion theory (cf. [323]). Other lower
bounds can be constructed using Gallager’s technique [161].
A formula for the minimum distortion achievable per encoded
bit was found in [198].

39In addition to Shannon’s version with an average distortion constraint,
Kolmogorov [327] considered a maximum distortion constraint (cf. [328]). A
nonprobabilistic gauge of the size of subsets of metric spaces is also called
�-entropy [329].

40Usually referred to as “reverse water-filling.”
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C. Coding Theorems

In addition to proving the lossy source coding theorem for
memoryless sources, Shannon [325] sketched an approach to
deal with sources with memory. A substantial class of sources
was encompassed by R. Dobrushin [193] in 1963, proving
a general version of the source–channel separation theorem
with distortion. Several less ambitious generalizations (but
with more explicit scope) were carried out in the West in the
subsequent decade (cf. [323] and [322]).

By the mid-1970’s, a shift in focus away from er-
godic/stationary sources was spearheaded by L. Davisson,
R. Gray, J. Kieffer, D. Neuhoff, D. Ornstein, and their
coworkers (see [35, Part V]41) who studied sliding-block and
variable-length encoding methods in addition to the traditional
fixed-length block-encoding approach used by Shannon [325].
A 1993 survey of rate-distortion coding theorems can be
found in [351].

D. Universal Lossy Data Compression

Spurred by its practical importance and by the existence
results [352]–[357] proved in the 1970’s, the quest for uni-
versal lossy data compression algorithms that attain the rate-
distortion function has attracted the efforts of many an in-
formation theorist during the 1990’s. The notable advances
in this topic are exemplified by [358]–[370]. In contrast to
universal lossless data compression, we cannot yet state that a
fully constructive optimum algorithm has been found. More-
over, while objective distortion measures may serve as useful
design guidelines, the ultimate judges of the performance
of most lossy data compression algorithms are the eye and
the ear.

E. Multiterminal Lossy Data Compression

Consider a digital-to-analog converter operating on the
compressed version of the “left” audio source and having
access to the uncompressed “right” audio source. How much
improvement in compression efficiency can we expect due to
the auxiliary information? If the analog-to-digital converter has
access to the uncompressed “right” source then the problem
is fairly easy to solve using standard rate-distortion theory.
Otherwise, we face a counterpart of the problem of decoding
with side-information (Section II-F) in the lossy setting,42

which was solved by Wyner and Ziv [371], [372]. In contrast
to the almost-lossless setting of the Slepian–Wolf problem,
in this case the absence of side-information at the encoder
does incur a loss of efficiency in general. Applications and
generalizations of the Wyner–Ziv rate-distortion problem have
been considered in [373]–[376], [335], and [377].

The multiple-descriptionsproblem is another multiterminal
lossy source-coding problem that has received much attention

41Also [349] and [350] for more recent references.
42A recent trend in high-fidelity audio recording is to carry out analog-

to-digital conversion at the microphone. The left and right digital-to-analog
converters could cooperate to lower the required rate of recorded information
even if the analog-to-digital converters had no access to each other’s sources.
The fundamental limit for this symmetrical setup is unknown.

in the last two decades.43 The practical relevance of this
setting stems from communications systems with diversity:
for increased reliability, several channels are set up to connect
transmitter and receiver. If those individual channels are prone
to outage, we may consider sending the same compressed ver-
sion of the source through each channel in parallel. However,
such a strategy is wasteful because the receiver could get a
lower distortion version of the source whenever more than
one channel is operational. By appropriate choice of codes it
is possible to trade off the rates and distortions achievable for
every subset of operational channels. Some of the more salient
advances that have been reported in the two-channel case can
be found in [378]–[383].

A close relative of multiple descriptions coding is the
successive refinementproblem. Sometimes, the decoder is
required to provide a preliminary coarse rendition of the source
before proceeding to obtain a finer version after receiving
additional encoded data (e.g., a Web browser downloading
an image). To that end, it would be wasteful to use codes
for which the preliminary encoded data is of no use for the
decompression of the higher definition version. In fact, certain
sources have the property that no penalty in rate is incurred
by requiring the decoding of a preliminary coarse version. The
successive refinement problem was introduced by V. Koshélev
[384] and by W. Equitz and T. Cover [385], and solved in more
generality by B. Rimoldi in [386].

Other multiterminal lossy source-coding problems have
been studied by T. Berger and coworkers [387]–[389].

V. INFORMATION THEORY AND OTHER FIELDS

To conclude, we offer some pointers to the interactions of
Information Theory with various other scientific disciplines.

1) Probability

• Central Limit Theorem [390]
• Large Deviations [391]–[393]
• Random Processes and Divergence [394]
• Measure Concentration [395], [396]
• Queueing Theory [194], [397]

2) Statistical Inference[398], [399]

• Minimum Description Length [95]
• Hypothesis Testing [168]
• Decentralized Hypothesis Testing [400]
• Parameter Estimation [401]
• Density Estimation [402]
• Minimax Nonparametric Estimation [403], [404]
• Spectral Estimation [405]
• Bayesian Statistics [406]
• Inverse Problems [407]
• Prediction of Discrete Time-Series [111]
• Pattern Recognition and Learning [408]
• Neural Networks [409], [410]
• Speech Recognition [411]

43See [378] for an account of the early history of the results on multiple
descriptions.
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3) Computer Science

• Algorithmic Complexity [412], [413]
• Data Structures: Retrieval and Hashing [59]
• Cryptology [15], [414], [314]
• Computational Complexity [415], [439]
• Quantum Computing [416]
• Random Number Generation [417]–[419]

4) Mathematics

• Ergodic Theory and Dynamical Systems [420], [37]
• Combinatorics and Graph Theory [130]
• Inequalities and Convex Analysis [421], [422]
• Harmonic Analysis [324]
• Differential Geometry [423], [424]
• Stochastic Combinatorial Search [425]
• Number Theory [426]
• Systems Control [427], [428]

5) Physics[429]

• Thermodynamics [430]
• Physics of Computation [431]
• Statistical Mechanics [432]
• Quantum Information Theory [433]
• Chaos [434]

6) Economics

• Portfolio Theory [101], [440]
• Econometrics [428]

7) Biology

• Molecular Biology [435]
• Sensory processing [436], [437]

8) Chemistry[438]
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[195] A. S. Bedekar and M. Azizõglu, “The information-theoretic capacity
of discrete-time queues,”IEEE Trans. Inform. Theory, vol. 44, pp.
446–461, Mar. 1998.

[196] S. Verd́u and T. S. Han, “A general formula for channel capacity,”IEEE
Trans. Inform. Theory, vol. 40, pp. 1147–1157, July 1994.

[197] T. S. Han, Information Spectrum Methods in Information Theory.
Tokyo, Japan: Baifukan, 1998, in Japanese.
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IEEE Trans. Inform. Theory, vol. 41, pp. 26–34, Jan. 1995.

[224] P. Elias, “List decoding for noisy channels,” inIRE WESCON Conv.
Rec., 1957, vol. 2, pp. 94–104.

[225] G. D. Forney, “Exponential error bounds for erasure list, and deci-
sion feedback schemes,”IEEE Trans. Inform. Theory, vol. IT-14, pp.
206–220, Mar. 1968.

[226] R. Ahlswede, “Channel capacities for list codes,”J. Appl. Probab., vol.
10, pp. 824–836, 1973.

[227] P. Elias, “Error correcting codes for list decoding,”IEEE Trans. Inform.
Theory, vol. 37, pp. 5–12, Jan. 1991.

[228] V. Blinovsky, “List decoding,”Discr. Math., vol. 106, pp. 45–51, Sept.
1992.

[229] P. Elias, “Zero error capacity under list decoding,”IEEE Trans. Inform.
Theory, vol. 34, pp. 1070–1074, Sept. 1988.
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[260] I. Csisźar and P. Narayan, “Channel decoding for a given decoding
metric,” IEEE Trans. Inform. Theory, vol. 41, pp. 35–43, Jan. 1995.

[261] A. Lapidoth, “Mismatched decoding and the multiple-access channel,”
IEEE Trans. Inform. Theory, vol. 42, pp. 1439–1452, Sept. 1996.

[262] , “Nearest neighbor decoding for additive non-Gaussian noise
channels,”IEEE Trans. Inform. Theory, vol. 42, pp. 1520–1528, Sept.
1996.

[263] V. D. Goppa, “Nonprobabilistic mutual information without memory,”
Probl. Contr. Inform. Theory, vol. 4, pp. 97–102, 1975.

[264] J. Ziv, “Universal decoding for finite-state channels,”IEEE Trans.
Inform. Theory, vol. IT-31, pp. 453–460, July 1985.

[265] A. Lapidoth and J. Ziv, “On the universality of the LZ-based decoding
algorithm,” IEEE Trans. Inform. Theory, vol. 44, pp. 1746–1755, Sept.
1998.
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