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Abstract. Legacy systems and their associated data models often evolve into
large, monolithic artifacts. This threatens comprehensibility and maintainability
by human beings. Breaking down a monolith into a modular structure is an estab-
lished technique in software engineering. Several previous works aimed to adapt
modularization also for conceptual data models. However, we currently see a
research gap manifested in the absence of: (i) a flexible and extensible modular-
ization concept for Entity Relationship (ER) models; (ii) of openly available tool
support; and (iii) empirical evaluation. With this paper, we introduce a generic
encoding of a modularization concept for ER models which enables the use of
meta-heuristic search approaches. For the efficient application we introduce the
ModulER tool. Eventually, we report on a twofold evaluation: First, we demon-
strate feasibility and performance of the approach by two demonstration cases.
Second, we report on an initial empirical experiment and a survey we conducted
with modelers to compare automated modularizations with manually created ones
and to better understand how humans approach ER modularization.

Keywords: Entity-Relationship · Modularization · Meta-heuristic search · Ge-
netic Algorithms.

1 Introduction

During conceptual modeling, one is applying abstraction to reduce the complexity of
a specific domain, normally to address a certain purpose. The aimed purpose can be
manifold, such as the value attached to a conceptual model [2]. Traditionally, conceptual
modeling was aimed to support communication amongst human beings to derive at
a common understanding [21]. In model-based software engineering [4], conceptual
models not only serve as a design blueprint of an information system, but furthermore
may enable code generation.

Independently of the ultimate purpose a conceptual model supports, we expect a
human being involved in the creation and analysis process. Therefore, comprehension
of conceptual models is a prerequisite for enabling model value. For example, Entity
Relationship (ER) models have been applied since several decades in order to create
and analyse an abstract, conceptual representation of a data model for human beings.
Thus, ER models apply abstraction to the technical details of database implementation,
thereby providing a clear vision on the conceptual structures of a data schema.
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However, legacy data models often evolve into large, unstructured, monolithic artifacts
that impede efficient comprehension by overwhelming the cognitive processing capabil-
ities of human beings [18]. This increasing complexity thus cannot be addressed solely
by abstraction. Adding decomposition of the abstract models is one option for further
decreasing complexity toward a manageable level. ”The most common way of reducing
complexity of large systems is to divide them into smaller parts or subsystems: This is
called modularization.” [18] Modularization is an established concept in software engi-
neering [16] where software monoliths are decomposed into small and flexible modules
that can be efficiently updated, extended, and retired. Modularization not only reduces
complexity, it is also related to software quality [27]. Recently, modularization has been
applied in conceptual modeling and ontology development aiming to improve compre-
hension [13, 22, 31]. Generally, benefits of modularization include ”division of labor,
scalability, partial reuse, and broadened participation” [22, p. 504].

Modularization is a very complex task that calls for automation as the number
of possible modularizations increases exponentially following the Bell number. For a
model with 10 modularizable elements there exist already 115.975 alternative mod-
ularizations. Mathematically, the possible modularizations can be calculated as fol-
lows [11]:

Bn+1 =

n∑
k=0

(
n

k

)
Bk

B0 = 1

(1)

In the paper at hand, we propose an ER meta-model which is transformed into a native
encoding that forms the input for the meta-heuristic search that enables the partitioning
of complex, monolithic ER models into a modular structure. Our solution uses Genetic
Algorithms (GA) to automatically compute good modularizations from an initial over-
arching ER model while aiming to optimize a set of objectives. Following this approach,
a much more narrow declarative formulation of the objectives of a modularization can
be used instead of defining precise procedures to derive a good modularization. How-
ever, the selection of objectives and their quantification remains challenging which is
why an initial empirical study was conducted that enables us to reason on the expecta-
tions of humans on a modularized ER model. Our contributions thus extend the body
of knowledge by proposing an openly available tool implementation and by an initial
empirical study. We believe making the tool openly available enables the scientific com-
munity to efficiently contribute toward progressing this research line.

The rest of this paper is organized as follows: Section 2 reports on previous research.
A modularization concept for ER models is then proposed in Section 3 and evaluated
in Section 4. We conclude this paper in Section 5 with a brief summary and an outlook
to future research directions.

2 Previous Research

Modularization of data models is not new in itself. This section briefly summarizes the
most relevant works on the modularization of data models (Section 2.1) and modular-
ization in conceptual modeling (Section 2.2).
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2.1 Modularization of Data Models

Feldman and Miller [10] propose Clustered Entity Models, by referring to an ER model
as one that ”is a hierarchy of successively more detailed entity relationship diagrams,
with a lower-level diagram appearing as a single entity type at the next higher-level di-
agram.” The approach is specified informally and its effectiveness heavily depends on
the expertise of the modeler. No precise rules for either the number of cluster levels and
the decisions of which ER elements should form part of which cluster are given. More-
over, the approach employs redundant clustering which has been evaluated empirically
as being inferior with respect to comprehensiveness [17].

A Structured Data Models is proposed by Simsion [25]. One overarching data
model (positioned at the bottom level) can be presented at multiple, more abstract levels
following a generalization semantics. Evaluations of this approach showed that models
at higher levels tend to be too generic for human comprehension, and that the procedure
lacks formalization as it mostly relies on the expertise of the modeler [17].

Moody et al. described and evaluated an approach entitled Levelled Data Mod-
els [17, 19, 20]. This work applied the principles of human information processing for
the decomposition of large data models. As a result, a hierarchy of sub-models of a
manageable size are obtained.

2.2 Modularization in Conceptual Modeling

Tzitzikas and Hainaut [30] propose an approach that aims to automatically reverse engi-
neer and visualize smaller diagrams from one overarching ER diagram. Their approach
is based on EntityRank, an adapted PageRank [5] algorithm for identifying the most
relevant Entities and Relationships in an ER model. The algorithm only aims at satis-
fying the single goal of the highest EntityRank. It can be customized to identify and
visualize the top-k ER diagrams. Tooling is provided on a proprietary basis [23].

A similar approach is presented by Villegas et al. [32] that focuses on filtering rel-
evant information to a requester as a subset of an overarching ER model. ”In order to
select this subset, our method measures the interest of each entity type with respect to
the focus set based on the importance and closeness.” [32, p. 258]. First, a user needs
to specify her interest by means of: (i) denoting entities of interest, (ii) entities which
are out of scope, and (iii) by providing the number of entities the resulting ER model
shall comprise at maximum.

Guedes et al. describe an evolutionary database modularization design process based
on ER diagrams that are extended by procedures [14]. Following an iterative approach,
existing modules are edited or new modules are created by analyzing information shar-
ing aspects. The concept of module interface for handling information sharing and re-
source access is introduced.

Garmendia et al. [13] propose abstract modularity meta-model patterns which can
be applied to any meta-model and is therefore independent of a specific modeling lan-
guage. The approach aims at improving the management of large models, particularly
their validation.

The approach presented by [34] addresses modularization on the meta-model level
from the objective of flexibly orchestrating large meta-models. A meta-model module
concept is introduced together with mixins and extenders [34] for module integration.
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Modularization can also be applied to overarching ontologies [22, 29]. The approach
presented by Özacar et al. [22] aims to optimize multiple goals. A supporting tool au-
tomates the application of the approach by applying a set of ontology development
patterns and allowed operations on ontology modules.

From the above can be concluded, that while there are several modularization ap-
proaches available, we are not aware of any approach that is based on a generic encod-
ing, utilizes a multi-objective search, comes with proper tool support, and provides an
empirical evaluation.

3 A Modularization Approach for Entity-Relationship Models

Based on the analysis of previous research in Section 2, we now present the details
of our approach for modularizing ER models. The approach aims at mitigating the
identified shortcomings while also enabling flexible extension in the future.

Fig. 1 illustrates the many-objective proposal to partition ER models. The rectan-
gles with grey background are the main building blocks of genetic algorithms [8]. As a
first step (label 1), the algorithm takes as an input an ER model whose structure and ele-
ments are explained in Subsection 3.1. Starting from the input model, an Initial Popula-
tion is created (label 2) with the encoding proposed by Rizzi [24] (cf. Subsection 3.2).
The Evaluation of each individual of the population (i.e., chromosome) is performed
using a set of five functions based on Moody’s principles for clustering ER models [20]
(label 3). These functions are explained in detail in Subsection 3.3. If the termination
condition is fulfilled, the Pareto set of optimal solutions is returned (label 4).

The results in the Pareto set are selected using the NSGA II algorithm [6], which
ensures diversity in the Pareto set solutions (label 5). If the termination condition is
not fulfilled, the algorithm creates the next generation of the population in order to find
better solutions. The algorithm uses two Crossover (label 6) and two Mutation (label 7)
operators. In particular, Partially-Matched Crossover (PMX) and Multi-point Crossover
(MX) as well as Swap and Flip mutations are used, respectively (see Subsection 3.4 for
a detailed description of these operators). Finally, each chromosome is tested against the
constraints (label 8). In case an individual does not fulfil a constraint, a repair process
is triggered which is described in Subsection 3.5.

Fig. 1: Overview of the ModulER approach for automatically modularizing ER models
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Fig. 2: ModulER meta-model (grey =̂ abstract classes, white =̂ concrete classes)

3.1 Conceptual Modeling

The design of a modeling language consists in formalizing the abstract syntax, concrete
syntax, and semantics [4]. For formalizing the abstract syntax, one usually refers to
meta-models [3] which define the syntactic concepts of a language as well as the al-
lowed combinations thereof. In the case our approach, we extend the core ER language
concepts that enable a modular structure.

Fig. 2 shows the ModulER meta-model in terms of an UML class diagram. A Mod-
uleERModel instance contains only Module elements. Objects of type Module may con-
tain ModularizableElements as well as other modules. A ModularizableElement is either
an EntityType or a RelationshipType. Objects of type RelationshipType must contain
two Links and each one references to an EntityType instance. This language definition
for ER is designed to account for different configurations of an ER model and for effi-
cient extension in the future. For instance, we may have an ER model represented in one
module or partitioned into a set of either flattened or hierarchically structured modules.

3.2 Encoding scheme

We applied the encoding proposed by Rizzi [24] to represent each chromosome in the
population. This encoding proposes a chromosome that consists of different types of
genes depending on where it is located. The genes in odd positions should represent the
integer identifier of the ModularizableElement, and the genes in even positions would
take binary values 0 or 1. These binary values are called separators, and the sum of
them is the denoted by the letter n. The number of clusters is calculated summing n+1.

In order to exemplify the application of this encoding to our language, Fig. 3 shows
an ER excerpt of the Karate School example proposed by Ambler [1] which we will also
use in our experiments (see Section 4). In this figure, the chromosome that represents
the ER model of the Karate School is shown, which is depicted as an object diagram.
This chromosome has one separator set to 1 at the 8th position, which means that the
model should be partitioned into two modules.

3.3 Fitness Functions

We use five fitness functions based on the principles proposed by Moody et al. [20].
Table 1 summarizes these fitness functions.
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Fig. 3: Encoding scheme using the Karate School example

First of all, Equation 2 shows the definition of a link in an ER model, which is basically
the relation between instances of type Entity and Relationship. In order to obtain the sum
of all links in an ER model, we use Equation 3. The first fitness function (cf. Equation 4)
is Cohesion (COH), which measures the internal links within a module. Cohesion must
be maximized in order to obtain modules where the elements are closely related to each
other. The second fitness function (cf. Equation 5) is Coupling (COP), which represents
the number of inter-module links. Coupling must be minimized, since we would like to
reduce those links.

DER(ei, rj) =

{
1 if entity ei has a Link to a relationship rj
0 otherwise (2)

ERI(mi,mj) =
∑

ei∈E(mi)
rj∈R(mj)

DER(ei, rj)
(3)

Cohesion =
∑

mi∈Modules

ERI(mi,mi) (4)

Coupling =
∑

mi,mj∈Modules
mi 6=mj

ERI(mi,mj)
(5)

Table 1: Summary of the fitness functions
ID Description Goal

COH Cohesion: the sum of links within modules. MAXIMIZE

COP Coupling: the sum of links between modules. MINIMIZE

NMOD Number of modules. MINIMIZE

AVGMODEL Average number of modularizable elements per module. MINIMIZE

BAL The standard deviation of module size of all modules. MINIMIZE
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The objective of the third function is to minimize the number of the new created mod-
ules (NMOD). In this sense, it is not desirable to produce a sparse representation of
the ER model. The fourth and fifth functions are metrics to measure the balance be-
tween modules of an ER model. An ER model has a good balance if every module is
approximately equal in size [20]. In order to accomplish this, we propose two fitness
functions, which are the average number of modularizable elements (AVGMODEL) rep-
resented in the Equation 7, and the standard deviation represented in the Equation 8. To
calculate AVGMODEL we sum all the model elements using the Equation 6.

NMODELE(i) =
∑

mi∈Modules

E(mi) +R(mi) (6)

AV GMODEL =

∑NMOD
i=1 (NMODELE(i))

NMOD
(7)

BAL =

√∑NMOD
i=1 (NMODELE(i)−AV GMODEL)

NMOD
(8)

3.4 Alterers

In order to create the offsprings, we use different alterer methods. Starting from the
chromosome explained in Section 3.2, we make a transformation as shown in Fig. 4.
The transformation consists in making a new chromosome that consists of two parts.
The first part of the chromosome will be the genes that represent ModularizableEle-
ments, which is usually called an EnumerableChromosome and the second part will be
the genes that represent the separators, called a BitChromosome.

Fig. 4: Overview of the Alterer Operators



8 Bork et al.

Crossover. For changing the produced initial population, in each iteration with some
probability, two crossover algorithms will be applied: Partially Matched Crossover
and Multi Point Crossover. Whereas the former is applied on the genes part that re-
lates ModularizableElements to a module, the latter is applied to the part that entails
the module separators (Fig. 4).

The Partially Matched Crossover takes two selected parent individuals (P1 and P2)
and two random position cut-points. The information given in the range between the
two random positions will be stored in a mapping table. All occurrences of elements
in this mapping table in P1 and P2 will be replaced by the corresponding counterpart
thereby creating new offspring individuals P1’ and P2’ that will combine information
coming from both parents. Fig. 5 (left) visualizes how the Partially Matched Crossover
works.

The Multi-Point Crossover, shown in Fig. 5 (right), also takes two selected indi-
viduals P1 and P2 and also two random positions. The offspring individuals are then
produced by only swapping the information within the boundaries of the two positions.

Fig. 5: Partially Matched Crossover (left) and Multi-Point Crossover (right)

Mutation. Mutation is another important part of genetic algorithms to encounter the
natural mutation of species. In our approach, we use a Swap Mutator that applies to
the first chromosome part and a Flip Mutator that applies to the second part of the
chromosome (see Fig. 4).

By applying the Swap Mutator, the order of genes in a chromosome is changed, i.e.,
two genes within one chromosome are swapped, potentially changing the assignment of
a ModularizableElement to a module. The Flip Mutator changes the number of modules
by flipping the separator chromosomes either from 0 to 1, thereby adding a module and
moving affected elements of the previous module into the new module, or from 1 to
0, thereby removing a module and merging the elements. Consequently, also the Flip
Mutator changes the assignment of ModularizableElements to modules.

3.5 Constraints

Our approach limits the allowed combinations produced by the GA using constraints.
Each produced individual is checked against the constraints, and, if it violates any of
the them, an automated repair mechanism is applied. Consequently, the search space is
significantly reduced and the search process is guided toward valid solutions as follows.
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RelationshipToEntity. This constraint is violated in cases where a RelationshipType is
not in one of the modules the two entities it relates are in. If a violation is detected, a
repair function moves the RelationshipType instance to one of the two modules compris-
ing the related entities. To ensure a good balance, the algorithm first selects the module
that has fewer elements. In case both modules are equal in size, the algorithm selects
the module randomly.

NumberOfModules. This constraint is violated in cases where Moody’s principle that
each diagram should have “seven plus or minus two” elements [20] is not met. The
algorithm calculates the optimal number of modules and then only allows individuals
with a number of modules in the range of the optimal number ± 50%. In case the
number of modules is greater, the repair mechanism deletes randomly the minimum
number of separators in the BitChromosome. Otherwise, separators are added at random
positions in the BitChromsome until the criteria is met.

3.6 Tool Support

We developed an Eclipse plug-in, called ModulER [12], that supports the automatic
modularization of ER models. ModulER uses the Eclipse Modeling Framework [28]
and the Sirius [26] framework to implement a graphical editor. The editor allows cre-
ation and editing of modularized ER models and also provides the interface to execute
the genetic algorithm. The algorithm was implemented with Jenetics3. ModulER is pub-
licly available as a Github repository [12]. Fig. 6 visualizes the former example in our
ModulER tool because this example was also used during the empirical experiments.

Fig. 6: ModulER graphical editor which shows in the canvas the Karate School example
3 https://jenetics.io/, last visited: 24.09.2020
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4 Evaluation

For the evaluation, we applied a multi-method approach that comprises a feasibility
evaluation using two demonstration cases as well as an empirical evaluation using ex-
periments with practitioners. In the next subsections, we describe our research ques-
tions, the experimental setup [12], and the metrics we use to answer these questions.

4.1 Research Questions & Evaluation Methods

Our study responds to three major research questions which may be further decomposed
into sub-questions using different evaluation methods.

RQ1 Search Validation: Is the GA able to find valid modularization solutions effi-
ciently? We use two diverging demonstration cases, (i) a quite compact ER model
representing a student management system and (ii) a financial institution compris-
ing much more elements. We then apply a sanity check and a quantitative analysis
of the results. Furthermore, we measure the runtime performance of the algorithm.
These tests were performed using Eclipse DSL Tools 4.14 in Windows 7 SP1, an
Intel Processor Intel(R) Core(TM) i7-2600, 3.40GHz and 8GB of RAM memory.
The Java virtual machine was configured with an initial and maximum memory size
of 4GB using JAVA 11 (jdk-11.0.2) as an execution environment. We choose com-
monly used parameters to configure our GA [7]. We use a high probability (0.9) for
the crossovers operators and a low probability (0.1) for our mutator operators. The
population will consist of 200 individuals and in the Pareto Set will be 75 to 100
optimal solutions. The algorithm stops after 300 iterations.

RQ2 Solution Correctness
RQ2.1 How good are the GA solutions based on manual inspection? We man-

ually inspect the solutions and evaluate, whether they are good in the sense of
providing a heterogeneous Pareto set of solutions that optimize individual ob-
jectives while still fulfilling the constraints (cf. Section 3.5). Many approaches
exist for selecting solutions form the Pareto set (e.g., knee-point analysis). In
our initial study, we selected a sample solution s based on the minimum sum
of ranks of all objectives O.

RankSum(s) =
∑
o∈O
|sk ∈ Solution, o(sk) < o(s)|

RQ2.2 How good are the GA solutions compared to solutions a conceptual
modeller would create? We implement an ad-hoc comparison using EMF
Compare [9] to calculate the distance between the models created by 7 ex-
periment participants and the Pareto set of solutions. Furthermore, we compare
the GA and participant solutions based on the search objectives values.

RQ3 Search Objectives
RQ3.1 How do conceptual modelers quantify the different search objectives?

We conduct a survey with the experiment participants and ask them to rate the
perceived relevance of individual search objectives based on a scale from 1 (not
relevant) to 10 (highly relevant).



Towards a Multi-Objective Modularization Approach for Entity-Relationship Models 11

RQ3.2 Does the perceived relevance correlate with the modularization? We
compare the calculated metrics of the search objectives for the solution devel-
oped by each participant with his/her quantified relevance in the survey.

4.2 Evaluation Results

Search Validation. We can respond to RQ1 by stating, that our approach is capable of
modularizing even large ER models into valid modules. Table 2 shows the characteris-
tics and the execution performance of the two cases. To measure the average computa-
tion time, we run the algorithm 30 times, and in both cases, the algorithm generated 75
solutions. It can be derived, that our approach is also very efficient in modularizing even
large ER models like the Finance example that we received from an industrial partner.

Table 2: Characteristics of the two example cases and modularization performance.
Case Entity Types Relationship

Types
Inheritance Attributes Avg. Computation

time [Seconds]

Karate 12 13 1 29 1.8

Finance 116 17 97 67 6.8

Solution Correctness. By computing the Rank sums for both studies and investigat-
ing the results, we can confirm that the GA produces heterogeneous modularizations,
each of which optimizing the different objectives to different extends. The Pareto set
comprises modules with excellent balance, modules with high cohesion, and modules
with low coupling. All solutions in the Pareto set fulfill the constraints. Thus, we can
positively respond to RQ2.1.

In response to RQ2.2, we measured that on average, transforming a participants
model into the closest one that exists in the Pareto set would need only a minimum of
5 movements. In the opposite direction, the Pareto set comprises solutions that outper-
form the participant’s solutions in all objectives, i.e., cohesion, coupling, and balance
(cf. Table 3 (right)). We thus state, that the solutions produced by the GA are reason-
ably similar while they are even better w.r.t. the search objectives compared to those
solutions created by the conceptual modelers.

Search Objectives. Table 3 summarizes the results to RQ3.1 by means of the survey
responses. As can be seen, cohesion (COH) was considered more relevant than coupling
(COP), whereas the balance (BAL) was considered least relevant for a good modulariza-
tion. Although not yet implemented in our approach, we also wanted to know whether
a thematic grouping is deemed relevant. The results indicate a high relevance, which is
why we put it on our future research agenda.

Moreover, we are interested to check whether the perceived relevance denoted by a
participant in the survey is also reflected in his/her modularization (RQ3.2). From cal-
culating the objectives values of cohesion (COH), coupling (COP), and balance (mea-
sured as standard deviation of module size (cf. Std. Dev. in Table 3)) for the participants’
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Table 3: Search objectives relevance and computed participant’s solution objectives

Participant Search Objectives Relevance Solution Objectives Values

COH COP BAL Thematic COH COP Std. Dev.

1 7 5 8 9 21 6 0.9428

2 10 7 3 10 20 7 0.9428

3 8 5 4 10 22 5 2.4944

4 8 6 3 8 21 6 2.357

5 7 6 4 8 22 5 3.2998

6 7 9 5 9 21 6 0.9428

7 7 6 2 10 20 7 4.9888

models, we see that all participants rated cohesion very high and this is also reflected in
the modularization they produced (i.e., the cohesion of their modularized ER model was
also high). For participant 1, balance was very relevant and the modularization had also
the minimal standard deviation. All others denoted balance moderately or less relevant
(values ranging from 2 to 5) but their module balance was very different. The values
and measures for coupling were very homogeneous, thus we are not able to report any
significant findings. Further studies need to investigate these aspects in more detail.

4.3 Critical Discussion

As any empirical study, the empirical evaluation presented in this paper is suspect to
threats to validity [33]. From an internal and concept validity point of view, we made
sure that all experiments were conducted in a controlled and equal environment. Par-
ticipation was voluntarily and no reliability relationship exists between the participants
and the researchers. A particular threat we could not mitigate is the limited sample
size which hampers the conclusion validity and the external validity. Moreover, while
the trial-and-error approach for finding parameters of search algorithms is frequently
used [7], other parameters might yield different results and may allow further tuning
for our given problem.

Besides these limitations, conducting these first experiments yielded meaningful
insights that will be considered in our future research agenda. From observing the par-
ticipants we learnt a great deal about different strategies they applied for identifying
modules and/or moving ER elements into existing modules. One participant focused on
the processes behind the data, another participant focused on the different purpose ad-
dresses and the corresponding stakeholders involved. Amongst all participants, a clear
focus was on thematic grouping which also correlates to the high relevance it received
in the survey (see Table 3).

5 Conclusion and Outlook

In this paper, we presented a flexible and efficient approach for automatically modu-
larizing ER models based on a generic encoding and by employing a multi-objective
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search. We reported two example case studies to evaluate the feasibility and the perfor-
mance of the approach. Moreover, a survey with conceptual modelers yielded insights
into how humans approach the modularization of ER models.

Future work aims at extending the approach with further objectives, e.g., thematic
clustering, to extend the approach toward Extended ER concepts, and to further incor-
porate modelers in empirical studies. Moreover, we consider realizing a reinforcement
learning approach inspired by [15]. Alternative modularizations from the Pareto set can
be shown to the modelers of each GA generation in order to provide feedback that steers
the algorithm towards the preferred solutions. Finally, we invite the conceptual commu-
nity to join our efforts in developing an open environment for performing and under-
standing modularizations in conceptual models by making our tool open source [12].
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