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Abstract. JuMP is an open-source modeling language that allows users to express a wide range of
optimization problems (linear, mixed-integer, quadratic, conic-quadratic, semidefinite, and
nonlinear) in a high-level, algebraic syntax. JuMP takes advantage of advanced features of
the Julia programming language to offer unique functionality while achieving performance
on par with commercial modeling tools for standard tasks. In this work we will provide
benchmarks, present the novel aspects of the implementation, and discuss how JuMP
can be extended to new problem classes and composed with state-of-the-art tools for
visualization and interactivity.
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1. Introduction. William Orchard-Hays, who developed some of the first soft-
ware for linear programming (LP) in collaboration with George Dantzig, observed
that the field of mathematical optimization developed hand-in-hand with the field of
computing [66]. Beginning with the introduction of IBM’s first commercial scientific
computer in 1952, advancements in technology were immediately put to use for solv-
ing military and industrial planning problems. LP software was viewed as generally
reliable by the 1970s, when mainframe computers had become mainstream. However,
developers of these systems recognized that the difficulty of translating the complex
mathematical formulation of a problem into the requisite input formats based on
punch cards was a major barrier to adoption [27].

In the late 1970s, the first algebraic modeling languages (AMLs) were developed
with the aim of allowing users to express LP and other optimization problems in
a natural, algebraic form similar to the original mathematical expressions, much in
the same way that MATLAB was created contemporaneously to provide a high-level
interface to linear algebra. Similar to how MATLAB translated user input into calls
to LINPACK [23], AMLs do not solve optimization problems; instead, they pass the
problems to optimization routines called solvers. GAMS [17] and AMPL [29], two well-
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known commercial AMLs whose development started in 1978 and 1985, respectively,
are widely recognized among similar systems like AIMMS, LINDO/LINGO, and MPL
as having made a significant impact on the adoption of mathematical optimization in
a number of fields.

In this paper, we present JuMP, an AML which is embedded in the Julia program-
ming language [10]. In addition to providing a performant open-source alternative to
commercial systems, JuMP has come to deliver significant advances in modeling and
extensibility by taking advantage of a number of features of Julia which are unique
within the realm of programming languages for scientific computing. We highlight
the novel technical aspects of JuMP’s implementation in sufficient generality to apply
broadly beyond the context of AMLs, in particular, for the implementation of scientific
domain-specific languages [74, 75, 2] and automatic differentiation (AD) techniques
for efficient computations of derivatives [41, 64].

To date, AMPL, GAMS, and similar commercial packages represent the state of
the art in AMLs and are widely used in both academia and industry. These AMLs are
quite efficient at what they were designed for; however, a number of drawbacks mo-
tivated us to develop a new AML. Unsatisfied with relatively standalone commercial
systems, we wanted a lightweight AML which fits naturally within a modern scientific
workflow. Such workflows could include solving optimization problems within a larger
simulation or interactive visualization, for example, or constructing a complex opti-
mization model programmatically from modular components [48, 19]. As algorithm
developers, we wanted to be able to interact with solvers while they are running, both
for control of the solution process and to reduce the overhead of regenerating a model
when solving a sequence of related instances [20]. Finally, as modelers, we wanted to
create user-friendly AML extensions for new problem classes that couple with spe-
cialized solution approaches; in contrast, commercial AMLs were not designed to be
extended in this way [30]. In short, with similar motivations as the developers of
the Julia language itself [11], we created JuMP because we wanted more than what
existing tools provided.

JuMP joins a rich family of open-source AMLs which been developed by aca-
demics since the 2000s. YALMIP [55] and CVX [39], both based on MATLAB, were
created to provide functionality such as handling of semidefinite and disciplined con-
vex [40] optimization, which was not present in commercial AMLs. CVX in particular
has been cited as making convex optimization as accessible from MATLAB as is lin-
ear algebra and was credited for its extensive use in both research and teaching [26].
Pyomo [44] is an AML which was originally designed to recreate the functionality of
AMPL in Python and was later extended to new problem classes such as stochastic
programming [80]. Embedded within general-purpose programming languages,1 these
open-source AMLs broadly address our concerns around fitting within a modern work-
flow and are powerful and useful in many contexts. However, their slow performance,
due to being embedded in high-level languages like MATLAB and Python, motivated
our preliminary work in investigating Julia as an alternative high-level host language
with the promise of fewer performance compromises [57].

Following JuMP’s first release in 2013, which supported linear and mixed-integer
optimization, we have enabled modeling for quadratic, conic-quadratic, semidefi-
nite, and general derivative-based nonlinear optimization problems, standard problem
classes supported by the commercial and open-source AMLs. At the same time, we
have extended the functionality of JuMP beyond what is typically available in an

1An idea which can be traced back to the commercial ILOG C++ interface of the 1990s.
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AML, either commercial or open-source. These features, which will be described in
the text, include callbacks for in-memory bidirectional communication with branch-
and-bound solvers, AD of user-defined nonlinear functions, and easy-to-develop add-
ons for specialized problem classes such as robust optimization (RO). JuMP’s unique
mix of functionality has driven its growing adoption by researchers [7, 34, 50, 72, 46],
and JuMP has been used for teaching in courses in at least 10 universities (e.g., [25]).
In this paper, we will highlight the important technical and usability aspects of JuMP,
including how JuMP itself uses the advanced features of Julia.

The remainder of the paper is structured as follows. In section 2 we introduce in
more detail the tasks required of an AML and present an example of AML syntax.
In sections 3 and 4 we discuss JuMP’s use of syntactic macros and code generation,
two advanced technical features of Julia which are key to JuMP’s performance. In
section 5 we discuss JuMP’s implementation of derivative computations. In section 6
we discuss a number of powerful extensions which have been built on top of JuMP,
and in section 7 we conclude with a demonstration of how JuMP can be composed
with the growing ecosystem of Julia packages to produce a compelling interactive and
visual user interface with applications in both academia and industry.

2. The Role of a Modeling Language. Prior to the introduction of AMLs (and
continuing to a lesser degree today), users would write low-level code which di-
rectly generated the input data structures for an optimization problem. Recall that
standard-form LP problems can be stated as

min
x∈Rn

cTx

s.t. Ax = b,

x ≥ 0,

(1)

that is, minimization of a linear objective subject to linear equality and inequality
constraints (all elements of x must be nonnegative). In the case of LP, the input
data structures are the vectors c and b and the matrix A in sparse format, and the
routines to generate these data structures are called matrix generators [27]. Typical
mathematical optimization models have complex indexing schemes; for example, an
airline revenue management model may have decision variables xs,d,c which repre-
sent the number of tickets to sell from the source s to destination d in fare class c,
where not all possible combinations of source, destination, and fare class are valid.
A matrix generator would need to efficiently map these variables into a single list of
linear indices and then construct the corresponding sparse matrix A as input to the
solver, which is tedious, error-prone, and fragile with respect to changes in the math-
ematical model. The sparsity pattern example in Figure 1 demonstrates that these
can be quite complex even for small problems. This discussion extends naturally to
quadratic expressions cTx+ 1

2x
TQx; the matrix Q is simply another component of the

input data structure. The role of an AML in these cases is to accept closed-form al-
gebraic expressions as user input and transparently generate the corresponding input
matrices and vectors, removing the need to write matrix generators by hand. AMLs
additionally handle the low-level details of communicating with the solver, either via
a callable library or by exchanging specially formatted files.

AMLs have a similar role in the context of nonlinear optimization problems,
which often arise in scientific and engineering applications. The standard form for
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Fig. 1 Sparsity pattern from the constraint coefficient matrix for a multicommodity flow prob-
lem arising from optimal routing in communication networks [14]. The dots correspond to
nonzero elements of the matrix. We identify five groups of constraints, indicated with colored
strips on the left. Modeling languages remove the need to write code to generate such complex
matrices by hand; users instead work with a much more natural algebraic representation of
the optimization problem.

derivative-based nonlinear optimization problems is

min
x∈Rn

f(x)

s.t. gi(x) ≤ 0, i = 1, . . . ,mg,

hi(x) = 0, i = 1, . . . ,mh,

(2)

where f, gi, hi : R
n → R are linear or nonlinear functions. Depending on certain

properties of f , g, and h such as convexity, these problems may be easy or hard to
solve to a global solution; regardless, the solution methods often rely on the availability
of first-order derivatives, that is, the gradient vectors∇f(x), ∇gi(x), and ∇hi(x), and
may be further accelerated by the availability of second-order derivatives, that is, the
Hessian matrices ∇2f(x), ∇2gi(x), and ∇2hi(x). For nonlinear optimization, AMLs
take closed-form algebraic equations and automatically generate routines for exact
derivative evaluations in a form that solvers may call directly. An alternative to using
AMLs here is to use general-purpose automatic differentiation (AD) tools which can
be used to evaluate derivatives of code, an option which will be further discussed in
section 5. Lacking AMLs or other AD tools, one is faced with the tedious and error-
prone task of implementing code to evaluate derivatives manually [33, p. 297]. In such
cases it is common to forgo second-order derivatives or even first-order derivatives,
even when providing them could reduce the solution time.

While the computational efficiency of an AML’s translation of user input into
solver input is something that can be empirically measured, we must note that the
intrinsic usefulness of an AML is derived from how “naturally” the original mathemat-
ical statement can be translated into code. This is a more subjective proposition, so
in Figure 2 we present the formulation in JuMP, AMPL, Pyomo, and GAMS of a min-
imum cost flow problem as a linear program (see, e.g., [9]) over a graph G = (V,E),
where the vertices V = {1, 2, . . . , n} are consecutively numbered with a “source” at
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JuMP
� immutable Edge

� from; to; cost; capacity

� end

� edges = [Edge(1,2,1,0.5), Edge(1,3,2,0.4), Edge(1,4,3,0.6),

� Edge(2,5,2,0.3), Edge(3,5,2,0.6), Edge(4,5,2,0.5)]

� mcf = Model()

� @variable(mcf, 0 <= flow[e in edges] <= e.capacity)

� @constraint(mcf, sum{flow[e], e in edges; e.to==5} == 1)

� @constraint(mcf, flowcon[n=2:4], sum{flow[e], e in edges; e.to==node}
� == sum{flow[e], e in edges; e.from==node})
� @objective(mcf, Min, sum{e.cost * flow[e], e in edges})

AMPL
� set edges := {(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)};
� param cost{edges}; param capacity{edges};
� data ...; # Data is typically stored separately in AMPL;

� var flow{(i,j) in edges} >= 0.0, <= capacity[i,j];

� subject to unitflow: sum{(i,5) in edges} flow[i,5] == 1;

� subject to flowconserve {n in 2..4}:
� sum{(i,n) in edges} flow[i,n] == sum{(n,j) in edges} flow[n,j];

� minimize flowcost: sum{(i,j) in edges} cost[i,j] * flow[i,j];

Pyomo
� edges = [(1,2), (1,3), (1,4), (2,5), (3,5), (4,5)]

� cost = {(1,2):1, (1,3):2, (1,4):3, (2,5):2, (3,5):2, (4,5):2}
� capacity = {(1,2):0.5, (1,3):0.4, (1,4):0.6, (2,5):0.3, (3,5):0.6, (4,5):0.5}
� mcf = ConcreteModel()

� mcf.flow = Var(edges, bounds=lambda m,i,j: (0,capacity[(i,j)]))

� mcf.uf = Constraint(expr=sum(mcf.flow[e] for e in edges if e[1]==5) == 1)

� def con_rule(mcf,n): return sum(mcf.flow[e] for e in edges if e[1]==n) ==

� sum(mcf.flow[e] for e in edges if e[0]==n)

� mcf.flowcon = Constraint([2,3,4],rule=con_rule)

� mcf.flowcost = Objective(expr=sum(cost[e]*mcf.flow[e] for e in edges))

GAMS
� SET nodes /n1*n5/; SET midnodes(nodes) /n2*n4/; SET lastnode(nodes) /n5/;

� ALIAS(nodes,nodefrom,nodeto,n);

� SET edges(nodes,nodes) / n1.n2 n1.n3 n1.n4 n2.n5 n3.n5 n4.n5 /;

� PARAMETER cost(nodes,nodes) / ... /; * Data omitted

� PARAMETER capacity(nodes,nodes) / ... /; * for space reasons

� POSITIVE VARIABLE flow(nodefrom,nodeto); flow.UP(edges) = capacity(edges);

� EQUATION unitflow;

� unitflow.. sum{edges(nodefrom,lastnode), flow(nodefrom,lastnode)} =e= 1;

� EQUATION flowcon(nodes);

� flowcon(midnodes(n)).. sum{edges(nodefrom,n), flow(nodefrom,n)} =e=

� sum{edges(n,nodeto), flow(n,nodeto)};
� FREE VARIABLE obj;

� EQUATION flowcost; flowcost.. obj =e= sum{edges, cost(edges)*flow(edges)};
� MODEL mincostflow /all/; SOLVE mincostflow USING lp MINIMIZING obj;

Fig. 2 Modeling a minimum cost flow problem in JuMP, AMPL, Pyomo, and GAMS. The colored
squares show the correspondence between the code and the four components of (3). For
concreteness, we provide an explicit example of a five-node problem with data when it fits.
The JuMP and Pyomo examples are complete, valid code (as of this writing) and can be
copy-pasted into a terminal to run after importing the corresponding packages.
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vertex 1 and “sink” at vertex n:

(3)

� min
x

∑
(i,j)∈E

ci,jxi,j

� s.t.
∑

(i,j)∈E

xi,j =
∑

(j,k)∈E

xj,k, j = 2, . . . , n− 1,

�
∑

(i,n)∈E

xi,n = 1,

� 0 ≤ xi,j ≤ Ci,j ∀(i, j) ∈ E.

The four AMLs share much in common: all involve declaring a set of variables in-
dexed by the set of edges, all have a line for setting the objective function, and all
have methods for iterating over a range (2 to n− 1) and taking a sum over variables
subject to some condition. Of the four, JuMP and AMPL are perhaps the most sim-
ilar, although JuMP benefits from being embedded in a full programming language,
allowing us to define an Edge type that stores the problem data in a succinct and
intuitive fashion. Pyomo is also embedded in a programming language, but as Python
doesn’t have the same syntactic macro functionality as Julia, some things are more
uncomfortable than is ideal (setting the variable upper bounds, indexed constraint
construction). Finally, GAMS has perhaps the most verbose and idiosyncratic syn-
tax, with features like set filtering with the $ character that are not commonly found
in either programming or modeling languages. Our main claim is that JuMP is a
“natural” and easy-to-use modeling language, and for the rest of this paper we will
instead focus on the technical details that make it efficient and enable unique features
not found in other AMLs.

The technical tasks that an AML must perform can be roughly divided into two
simple categories: first, to load the user’s input into memory, and second, to generate
the input required by the solver, according to the class of the problem. For both
of these tasks, we have made some unorthodox design decisions in JuMP in order to
achieve good performance under the constraints of being embedded within a high-level
language. We will review these in the following sections.

We note that, as we have mentioned, JuMP provides access to a number of ad-
vanced techniques which have not been typically available in AMLs. For example,
branch-and-cut is a powerful technique in integer programming for accelerating the
solution process by dynamically improving the convex (linear) relaxations used within
the branch-and-bound algorithm. Users wanting to extend a solver’s branch-and-cut
algorithm with dynamically generated “cuts” for a particular problem structure have
typically needed to turn to low-level coding in C++ for an efficient implementation
via callback functions, since this interaction requires bidirectional communication
with a solver during the solution process. To our knowledge, JuMP is the first AML
to provide a simple, high-level, and efficient (in-memory) interface to branch-and-
cut and other similar techniques. This feature has already been used fruitfully in
research [50, 77] and teaching [25].

3. Syntactic Macros: Parsing without a Parser. AMLs like AMPL and GAMS
are standalone in the sense that they have defined their own syntax entirely separate
from any existing programming language. They have their own formats for provid-
ing input data (although they can also connect to databases and spreadsheets) and
implement custom parsers for their proprietary syntax; for example, AMPL uses the
LEX and YACC parser generator utilities [28].
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Embedding an AML within an existing programming language brings with it the
benefit of being able to bootstrap off the existing, well-defined grammar and syntax
of the language, eliminating a complex part of implementing an AML. Perhaps more
importantly for users, embedded AMLs typically allow the interlacing of the AML’s
math-like statements declaring an optimization problem with arbitrary code which
may be used to prepare input data or process the results. However, embedding also
brings with it the challenge of obtaining the desired expressiveness and ease of use
within the limits of the syntax of the parent language.

The most common approach (taken by Pyomo, YALMIP, and others) to capturing
user input is operator overloading. One introduces a new class of objects, say, to
represent a decision variable or vector of decision variables, and extends the language’s
definition of basic operators like +, ∗, −, etc., which, instead of performing arithmetic
operations, build up data structures which represent the expression. For example,
to represent a quadratic expression

∑
(i,j)∈J bijxixj +

∑
i∈I aixi + c, one stores the

constant c, the coefficient vectors b, a, and the index sets I and J . Letting n be the
number of decision variables in a problem, an unfortunate property of addition of two
quadratic expressions is that the size of the resulting expression is not bounded by a
constant independent of n, simply because the coefficient and index vectors can have as
many as O(n2) terms. This means that basic operations like addition and subtraction
are no longer fast, constant-time operations, a property which is almost always taken
for granted in the case of floating-point numbers. As a concrete example, consider the
following quadratic expression in the variable x indexed over {1, . . . , d} × {1, . . . , d}:

(4) 1 +

d∑
i=1

d∑
j=1

|cj − i|(1− xi,j)x1,j .

In Python, one might naturally express (4) as

1 + sum(abs(c[j]-i)*(1-x[i,j])*x[0,j] for i in range(d) for j in range
(d))

which takes advantage of the built-in sum command which internally accumulates
the terms one-by-one by calling the addition operator d2 times. The partial sums
generated with each addition operation are quadratic expressions which have O(d2)
terms, so this naive approach can have a cost of O(d4) = O(n2) operations and
excessive memory allocations. An obvious workaround for this issue is to accumulate
the terms in a single output expression instead of a generating a new expression for
each partial sum. While there are a number of ways to mitigate this slow behavior
within the framework of operator overloading, our benchmarks will demonstrate that
they may not be sufficient to achieve the best performance.

When designing JuMP, we were not satisfied by the performance limitations of
operator overloading and instead turned to an advanced feature of Julia called syn-
tactic macros [12]. Readers may be familiar with macros in C and C++ that perform
textual substitutions; macros in Julia are much more powerful in that they function
at the level of syntax. For example, the expression (4) could be written in JuMP
syntax as

@expression(1 + sum{abs(c[j]-i)*(1-x[i,j])*x[1,j], i in 1:N, j in 1:N
})

The @ sign denotes a call to a macro named expression, which constructs a JuMP
expression object. The input to the macro will be a data structure representing the
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Julia expression contained within, not simply a string of text. That is, Julia’s internal
parser will be invoked to parse the expression, but instead of directly evaluating it or
compiling it to code, it will be sent to a routine written in Julia which we (as authors
of JuMP) have defined. Note that the syntax sum{} is generally not valid Julia code
for computing a sum, although it is recognized by the Julia parser because the syntax
is used in other contexts, which allows us to endow this syntax with a new meaning
in the context of JuMP.2

Macros enable JuMP to provide a natural syntax for algebraic modeling without
writing a custom text-based parser and without the drawbacks of operator overload-
ing. Within the computer science community, macros have been recognized as a useful
tool for developing domain-specific languages, of which JuMP is an example [74]. In-
deed, the implementation of macros in Julia draws its inspiration from Lisp [12].
However, such functionality historically has not been available within programming
languages targeted at scientific computing, and, to our knowledge, JuMP is the first
AML to be designed around syntactic macros.

4. Code Generation for Linear and Conic-Quadratic Models. Linear and
conic-quadratic optimization problems are essential and surprisingly general modeling
paradigms that appear throughout operations research and other varied fields—often
at extremely large scales. Quadratic optimization generalizes linear optimization by
allowing convex quadratic terms 1

2x
TQx in the objective and constraints. Conic-

quadratic, also known as second-order cone, optimization generalizes quadratic op-
timization with constraints of the form ||x||2 ≤ t, where both x and t are decision
variables [54]. Computational tools for solving these problems derive their success
from exploiting the well-defined structure of these problems. Analogously, JuMP
is able to efficiently process large-scale problems by taking advantage of structural
properties and generating efficient code through Julia’s code generation functionality.

Julia is both a dynamic and a compiled language. Julia uses the LLVM com-
piler [53] dynamically at runtime and can generate efficient, low-level code as needed.
This technical feature is one of the reasons why Julia can achieve C-like performance
in general [10], but we will restrict our discussion to how JuMP takes advantage of it.

In the previous section we described how JuMP uses macros to accept user input
in the form of a data structure which represents the input expression. The other side
of macros is code generation. More specifically, macros can be understood as functions
whose input is code and whose output is code. Given an input expression, a macro
produces a data structure which represents an output expression, and that expression
is then substituted in place and compiled. For example, the call to the expression

macro in section 3 would output, in pseudocode form, the following code:

Initialize an empty quadratic expression q
Add 1 to the constant term
Count the number of terms K in the sum{} expression
Pre-allocate the coefficient and index vectors of q to hold K elements
for i in 1:d, j in 1:d

Append -abs(c[j]-i)*x[i,j]*x[1,j] to the quadratic terms in q
Append abs(c[j]-i)*x[1,j] to the linear terms in q

end

Note that this code runs in O(d2) operations, a significant improvement over the
O(d4) naive operator overloading approach. The code produced is also similar to a

2As of Julia 0.5, JuMP will transition to the new syntax sum(abs(c[j]-i)*(1-x[i,j])*x[1,j]

for i in 1:N, j in 1:N) which will more closely match Julia code.
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hand-written matrix generator. Indeed, one could summarize JuMP’s approach to
generating linear and quadratic models as translating users’ algebraic input into fast,
compiled code which acts as a matrix generator. JuMP’s approach to semidefinite
optimization, a recently added feature which we will not discuss further, generally
follows this path but also employs operator overloading for certain matrix operations.

4.1. Benchmarks. We now provide computational evidence that JuMP is able to
produce quadratic and conic-quadratic optimization models, in a format suitable for
consumption by a solver, as fast as state-of-the-art commercial modeling languages.
To do so we measure the time elapsed between launching the executable that builds
the model and the time that the solver begins the solution process, as determined by
recording when the first output appears from the solver. This methodology allows
the modeling language to use a direct in-memory solver interface if it desires or, in
the case of some tools, a compact file representation. We selected Gurobi 6.5.0 [43] as
the solver and evaluated the following modeling systems: the Gurobi C++ interface
(based on operator overloading), JuMP 0.12 with Julia 0.4.3, AMPL 20160207 [29],
GAMS 24.6.1 [17], Pyomo 4.2.10784 with Python 2.7.11 [44], and CVX 2.1 [39] and
YALMIP 20150918 [55] with MATLAB R2015b. We chose these particular modeling
systems because they are widely used in practice within different communities. The
benchmarks were run on a Linux system with an Intel Xeon CPU E5-2650 processor.

We implemented two different optimization problems in all seven modeling lan-
guages: a linear-quadratic control problem (lqcp) and a facility location problem
(fac). We do not claim that these models are representative of all conic-quadratic
problems; nevertheless, they provide a good stress test for generating models with
many quadratic and conic-quadratic terms. The models are further described in the
appendix. Models using the C++ interface are implemented in a way that miti-
gates the drawbacks of operator overloading by appending to existing expressions
using the += operator; such approaches, however, are not idiomatic in Pyomo, CVX,
or YALMIP. The results (see Table 1) show that for lqcp, JuMP, AMPL, and the
C++ interface are roughly equivalent at the largest scale, with GAMS and YALMIP
approximately four times slower and CVX 13 times slower than JuMP. Pyomo is sig-
nificantly slower and is unable to construct the largest model within ten minutes. For
fac, JuMP, AMPL, GAMS, and the C++ interface all perform roughly the same,
while Pyomo is unable to build the largest instance with ten minutes, YALMIP can
build only the smallest instance within the time limit, and CVX is unable to build
any instances within the time limit. These results demonstrate that JuMP can be
reasonably competitive with widely used commercial systems and, in some cases, sig-
nificantly faster than open-source alternatives.

4.2. Optimizing a Sequence of Models. As we observe in Table 1, JuMP has a
noticeable start-up cost of a few seconds even for the smallest instances. This start-
up cost is primarily composed of compilation time; however, if a family of models is
solved multiple times within a single session, this cost of compilation is only paid for
the first time that an instance is solved. That is, when solving a sequence of instances
in a loop, the amortized cost of compilation is negligible.

Indeed, solving a sequence of related optimization problems is a common idiom
when performing exploratory analysis or implementing more advanced algorithms. A
number of algorithms including branch-and-bound [5], Benders decomposition [81],
and cutting-plane methods derive their efficiency from the fact that when solving a
sequence of linear programming problems, one can “hot-start” the simplex algorithm
from the previous optimal solution when new constraints are added or when objective
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Table 1 Time (sec.) to generate each model and pass it to the solver; a comparison between JuMP
and existing commercial and open-source modeling languages. The lqcp instances have
quadratic objectives and linear constraints. The fac instances have linear objectives and
conic-quadratic constraints.

Commercial Open-source
Instance JuMP GRB/C++ AMPL GAMS Pyomo CVX YALMIP
lqcp-500 8 2 2 2 55 6 8
lqcp-1000 11 6 6 13 232 48 25
lqcp-1500 15 14 13 41 530 135 52
lqcp-2000 22 26 24 101 >600 296 100

fac-25 7 0 0 0 14 >600 533
fac-50 9 2 2 3 114 >600 >600
fac-75 13 5 7 11 391 >600 >600
fac-100 24 12 18 29 >600 >600 >600

or right-hand side coefficients are modified. JuMP supports all of these classes of
modifications by enabling efficient in-memory access to solvers so that they can main-
tain their internal state across solves, when possible, avoiding the significant overhead
that would be incurred when regenerating a model from scratch inside of a loop (even
if information on the previous optimal solution persists). For example, a straight-
forward implementation of a cutting-plane algorithm in GAMS was found to be 5.8
times slower overall than an implementation of the same algorithm in C++ [20], il-
lustrating the overhead incurred by these traditional AMLs which do not allow direct
in-memory access to solvers.

Here we present a small example that demonstrates solving and modifying a
problem in a loop with JuMP:

l2approx = Model()
@variable(l2approx, -1 <= x[1:N] <= +1)
@objective(l2approx, Max, sum(x))
solve(l2approx); v = getvalue(x) # Build and solve for initial

solution
while norm(v) >= 1 + tol

@constraint(l2approx, dot(v,x) <= norm(v))
solve(l2approx); v = getvalue(x) # Optimize from prev solution

end

We maximize a simple linear function (
∑N

i=1 xi) over the �2 “ball” constraint ‖x‖2 ≤ 1
by approximating this nonlinear constraint with a finite sequence of tangent hyper-
planes generated only as needed, allowing us to use an LP solver instead of a solver
that supports conic-quadratic constraints. Direct extensions of this technique have
proven useful for solving mixed-integer conic optimization problems [77]. When a
constraint is added to the JuMP model by the user, as in the above example, JuMP
adds the constraint directly to the solver’s in-memory representation of the problem,
rather than generating the whole model from scratch. As a result the solver is able to
use the previous (now infeasible) solution as a hot-start by applying the dual simplex
method.

JuMP’s design comes at the price of not supporting constructs for parametric
data [29] as GAMS, AMPL, and Pyomo do; that is, in JuMP one cannot define a
parametric value and have its values propagate automatically through an LP model
as the value of the parameter changes, because doing so would complicate the ab-
straction layer between JuMP’s representation of a model and the solver’s in-memory
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representation of a model.3 For more complex changes to problem data and struc-
ture, such as modifying the coefficients in existing constraints, the idiomatic approach
when using JuMP is to construct a new model from scratch, possibly inside a func-
tion that takes parameters as its input. The following pseudocode, with JuMP on the
left and AMPL on the right, demonstrates the difference in approach from a user’s
perspective:

function f(p)
# Build and solve model
# using p as data, then
# process solution

end
f(1)
f(2)
f(3)

param p;
# Define algebraic model using p
let p := 1;
solve; # ... process solution
let p := 2;
solve; # ... process solution
let p := 3;
solve; # ... process solution

5. Computing Derivatives for Nonlinear Models. Recall that the role of a mod-
eling language for nonlinear optimization is to allow users to specify “closed-form”
algebraic expressions for the objective function f and constraints g and h in the for-
mulation (2) and communicate first-order and typically second-order derivatives with
the optimization solver. Commercial modeling languages like AMPL and GAMS rep-
resent the state of the art in modeling languages for nonlinear optimization. Probably
because of the increased complexity of computing derivatives, even fewer open-source
implementations exist than for linear or quadratic models.

Notable alternative approaches to traditional algebraic modeling for nonlinear op-
timization include CasADi [3] and CVX [39]. CasADi allows interactive, scalar- and
matrix-based construction of nonlinear expressions via operator overloading with au-
tomatic computation of derivatives for optimization. CasADi has specialized features
for optimal control but, unlike traditional AMLs, does not support linear optimization
as a special case. CVX, based on the principle of disciplined convex programming
(DCP) [40], allows users to express convex optimization problems in a specialized for-
mat which can be transformed into or approximated by conic programming without
the need for computing derivatives.4 The traditional nonlinear optimization formula-
tion considered here applies more generally to derivative-based convex and nonconvex
optimization.

JuMP, like AMPL and GAMS, uses techniques from automatic (or algorithmic)
differentiation to evaluate derivatives of user-defined expressions. In this section, we
introduce these techniques with a focus on how AMLs relate to more general-purpose
AD tools. In this vein, we discuss JuMP’s unique ability to automatically differenti-
ate user-defined functions. Concluding this section, we present a set of performance
benchmarks.

5.1. Expression Graphs and Reverse-Mode AD. A natural data structure for
representing nonlinear expressions is the expression graph, which is a directed acyclic
graph (or, typically, a tree) that encodes the sequence of operations required to com-
pute the expression as well as the dependency structure between operations. For
example, Figure 3 illustrates how the nonlinear expression exp(x2+y2) is represented
as a graph, with nodes representing the input values x and y together with every

3In the case of nonlinear optimization, JuMP offers parameter objects because these can be
efficiently integrated within the derivative computations.

4Note that the DCP paradigm is available in Julia through the Convex.jl package [76].
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Fig. 3 A graph representation of the nonlinear expression exp(x2 + y2). JuMP uses this expression
graph structure for efficient evaluation of derivatives.

“basic” operation like addition and exponentiation that is performed in computing
the value of the expression. We will return later to the question of what is considered
a basic operation, but for now consider them to be all operations that one might
compose to write down a closed-form algebraic equation. Edges in the expression
graph represent immediate dependencies between operations. The expression graph
encodes all needed information for JuMP to evaluate and compute derivatives of non-
linear expressions, and JuMP generates these objects by using macros analogously to
how JuMP generates sparse matrix data structures representing linear and quadratic
functions.

While general-purpose AD tools like ADOL-C [79] use operator overloading (or
direct analysis of source code [16]) to generate these expression graphs from arbitrary
code, AMLs like AMPL, GAMS, and JuMP have an easier task because user input
is constrained to follow a specific syntax and thus these AMLs are generally more
reliable. The value of using JuMP, for example, over using more general-purpose
AD tools is that JuMP provides a guarantee to the user that all input following
its simple syntax can be differentiated efficiently, the only limitation being that the
expression graph objects must fit within memory. On the other hand, making use
of more general-purpose tools requires a nontrivial amount of expertise (for example,
preparing C++ code for ADOL-C requires extensive modifications and the use of
specialized assignment operators). We have found that users from fields like statistics
who have traditionally not been users of AMLs are drawn to JuMP for its AD features
and its being embedded in a familiar programming language, to the extent that they
are willing to rewrite complex statistical models in JuMP’s syntax [34]. It remains
to be seen how general this adoption trend may be, but we believe that there is large
scope for judicious use of AMLs as AD tools within domains that have not widely
adopted them so far.

Given an expression graph object, one can compute the numerical value of the
expression by iterating through the nodes of the graph in an order such that by the
time we reach a given node to evaluate its corresponding operation, the numerical
values of all its inputs (children) have already been computed. A perhaps surprising
result is that it is possible to apply the chain rule in such a way that by iterating
through the nodes in the reverse order (parents before children), in a single pass, we
obtain the exact gradient vector ∇f(x). This reverse-pass algorithm, known suitably



JuMP: A MODELING LANGUAGE FOR MATHEMATICAL OPTIMIZATION 307

as reverse-mode AD, delivers gradients of f for a small constant factor times the cost
of evaluating f itself. We refer readers to [41, 64] for further discussion of this powerful
technique employed by JuMP.

5.2. User-Defined Functions. Modeling languages like JuMP include a basic li-
brary of nonlinear functions which are available for use within expressions. JuMP’s
basic library is extensive and includes special functions like the error function erf(),
which enables users to express Gaussian cumulative densities, for example. AMPL
recently developed an interface to functions from the GNU Scientific Library [37],
greatly extending the range of available functions. However, in the cases where the
built-in library is insufficient, there has historically been no user-friendly way to incor-
porate user-defined functions into AMLs.5 A compelling application for user-defined
functions is optimal control problems constrained by differential equations, where
standalone integrators are used to enforce dynamic constraints [4]. JuMP is the first
AML to not only provide a simple interface for user-defined functions with user-
provided (hand-coded) derivatives, but also to provide an option to automatically
differentiate user-defined functions. We provide a brief example below of this usage
in JuMP version 0.13 and then describe the implementation:

function squareroot(x)
z = x # Initial starting point for Newton’s method
while abs(z*z - x) > 1e-13

z = z - (z*z-x)/(2z)
end
return z

end
JuMP.register(:squareroot, 1, squareroot, autodiff=true)

m = Model()
@variable(m, x[1:2], start=0.5)
@objective(m, Max, sum(x))
@NLconstraint(m, squareroot(x[1]^2+x[2]^2) <= 1)
solve(m)

First, we define the squareroot function using generic Julia code. This function
computes the square root of a number by applying Newton’s method to find the zero
of the function f(z) = z2 − x. The function JuMP.register registers the nonlinear
function with the symbolic name squareroot and passes a reference to the function
defined above. The second argument 1 indicates that the input to the function is
univariate. The autodiff=true option instructs JuMP to automatically compute
the derivatives of the user-defined function (if this option is not set, users must also
provide derivative evaluation callbacks). The subsequent JuMP model defines the
problem of maximizing x1 + x2 subject to the constraint

√
x2
1 + x2

2 ≤ 1, where the
square root is computed by the user-defined Julia code.

In principle, JuMP could apply reverse-mode AD to user-defined functions by us-
ing operator overloading to build up the expression graph representation of the func-
tion, using analogous techniques to ADOL-C. However, at the time we implemented
this feature, no mature implementation of this approach existed in Julia. Instead,
JuMP uses ForwardDiff.jl, a standalone Julia package implementing forward-mode
AD [70], to compute derivatives of these functions.

5Doing so within AMPL, for example, requires developing a shared library object in C which
links to the AMPL solver library.
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Forward-mode AD, known as such because it can be applied with a single forward
pass though the expression graph data structure, can be interpreted as computing di-
rectional derivatives by introducing infinitesimal perturbations [41]. By comparison,
the more well-known finite differencing method employs small but finite perturbations.
The operator overloading approach for forward-mode AD introduces a new class of
number a+ bε where ε2 = 0 (analogously to i2 = −1 for the complex numbers). The
implementation in Julia’s ForwardDiff.jl is conceptually quite similar to that in other
languages, and we refer readers to Neidinger [65] for a comprehensive introduction to
forward-mode AD and its implementation in MATLAB using operator overloading.
In Julia, however, user-defined numerical types are given first-class treatment by the
compiler and produce efficient low-level machine code, which is not the case for MAT-
LAB. Note that forward-mode AD applied in this way does not require an explicit
expression graph representation of a function and hence is simpler to implement than
reverse-mode AD.

The only burden on users providing functions for AD is to write code which is
generic with respect to the type of the numerical input (in the above example, x).
This design is equivalent in spirit to using templates in C++ but with a much less
heavyweight syntax. The cost of applying forward-mode AD grows linearly with the
the input dimension of the target function; hence for high-dimensional user-defined
functions, users may still want to provide derivative evaluation callbacks if speed is a
concern. Nevertheless, the ability to automatically differentiate user-defined functions
begins to blur the distinction between AMLs and more traditional AD tools, and we
look forward to seeing the applications of this recently added feature.

5.3. From Gradients to Hessians. In addition to gradients, off-the-shelf nonlin-
ear optimizers typically request second-order derivatives. A basic operation for com-
puting second-order derivatives is the Hessian-vector product ∇2f(x)d. Since this
product is a directional derivative of the gradient, we now have the tools to compute
it, by applying forward-mode AD to the reverse-pass algorithm for gradients.

This composition of forward-mode AD with reverse-mode AD is known as forward-
over-reverse mode [41, 64], and JuMP implements it by manually augmenting the
reverse-mode implementation to propagate the required infinitesimal components for
directional derivatives. Note that we do not yet support second-order AD of user-
defined functions.

Given this forward-over-reverse routine to compute Hessian-vector products, one
could recover a dense Hessian matrix ∇2f(x) by calling the routine n times, tak-
ing the n distinct unit vectors. However, for large n, this method quickly becomes
prohibitively expensive. By exploiting the sparsity structure of ∇2f(x), one instead
may compute the entries of the Hessian matrix with far fewer than n Hessian-vector
products. For example, if the Hessian is known to be diagonal, one needs only a
single Hessian-vector product with d = (1, 1, . . . , 1)T to compute all nonzero elements
of the Hessian. In general, the problem of choosing a minimal number of Hessian-
vector products to compute all nonzero elements is NP-hard; we implement the acyclic
graph coloring heuristic of Gebremedhin et al. [32]. See Figure 4 for an illustration.
The Hessian matrices of typical nonlinear models exhibit significant sparsity, and in
practice a very small number of Hessian-vector products are needed even for high-
dimensional problems. We note that AMPL exploits Hessian structure through partial
separability [31] instead of using graph coloring techniques.

5.4. Benchmarks. We now present benchmarks evaluating the performance of
JuMP for modeling nonlinear optimization problems. Similar to the experimental de-
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Fig. 4 Many solvers can benefit from being provided the Hessian matrix of second-order derivatives
at any point. JuMP uses reverse-mode AD to generate a “black box” routine that computes
Hessian-vector products and uses these products to calculate the nonzero elements of the
Hessian matrix. For efficiency, we would like to use as few Hessian-vector products as
possible; by using a specialized graph coloring heuristic [32], we can find a small number
of evaluations to do so. Here, we illustrate a symmetric 5 × 5 Hessian matrix with hij =

∂2f
∂xi∂xj

(x) for some f . Omitted entries are known to be zero. In this example, only two

Hessian-vector products are needed.

sign in section 4.1, we measure the time elapsed after starting the executable until the
solver, Ipopt [78], reports the problem dimensions as confirmation that the instance
is loaded in memory. Then, we fix the total number of iterations performed to three
and record the time spent in function or derivative evaluations as reported by Ipopt.
We evaluated the following modeling systems: JuMP, AMPL, Pyomo, GAMS, and
YALMIP. Recall that CVX does not support derivative-based nonlinear models. Also,
YALMIP does not support Hessian evaluations, so we measure only model generation
time.

We test two families of problems, nonlinear beam control (clnlbeam) and non-
linear optimal power flow (acpower), which are further described in the appendix.
These two problems stress different aspects of model generation; the clnlbeam fam-
ily has large, sparse, and very simple nonlinear expressions with a diagonal Hessian
matrix, while the acpower family has a smaller number of variables but much more
complex nonlinear network structure with a Hessian matrix with an irregular sparsity
pattern. For model generation times (see Table 2), JuMP has a relatively large start-
up cost, which is dominated by Julia’s compiler. However, as the size of the instance
increases, JuMP becomes significantly faster than Pyomo and YALMIP. As suggested
by its performance and the omission of Hessian computations, YALMIP’s derivative-
based nonlinear functionality is seemingly not designed for large-scale problems. We
did not implement acpower in YALMIP.

The results in Table 3 compare the time spent evaluating derivatives. Excluding
the smallest instances, JuMP remains within a factor of 2.2 of AMPL. JuMP is up to 3
times faster than GAMS and in the worst case 25% slower. Note that Pyomo does not
implement its own derivative computations; instead, it reuses AMPL’s open-source
derivative evaluation library.

6. Extensions. JuMP is designed to be extensible, allowing for developers to both
plug in new solvers for existing problem classes and to extend the syntax of JuMP
itself to new classes of problems. In comparison, it is more common for AMLs to sup-
port only extending the set of solvers for existing, well-defined problem classes [30]. A
common thread motivating extensions to an AML’s syntax, on the other hand, is that
the more natural representation of a class of models may be at a higher level than a
standard-form optimization problem. These classes of models furthermore may ben-
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Table 2 Time (sec.) to generate each model and pass it to the solver; a comparison between JuMP
and existing commercial and open-source modeling languages for derivative-based nonlinear
optimization. Dash indicates not implemented.

Commercial Open-source
Instance JuMP AMPL GAMS Pyomo YALMIP
clnlbeam-5 12 0 0 5 76
clnlbeam-50 14 2 3 44 >600
clnlbeam-500 38 22 35 453 >600

acpower-1 18 0 0 3 -
acpower-10 21 1 2 26 -
acpower-100 66 14 16 261 -

Table 3 Time (sec.) to evaluate derivatives (including gradients, Jacobians, and Hessians) during
3 iterations, as reported by Ipopt. Pyomo relies on AMPL’s “solver library” for derivative
evaluations, and YALMIP does not provide second-order derivatives.

Commercial
Instance JuMP AMPL GAMS
clnlbeam-5 0.08 0.03 0.08
clnlbeam-50 0.70 0.39 0.76
clnlbeam-500 7.48 3.47 15.81

acpower-1 0.07 0.02 0.06
acpower-10 0.66 0.30 0.53
acpower-100 6.11 3.20 18.13

efit from customized solution methods which are aware of the higher-level structure.
Extensions to JuMP can expose these advanced problem classes and algorithmic tech-
niques to users who just want to solve a model and not concern themselves with the
low-level details. We now present three extensions we recently developed with this
motivation for handling different models for optimization under uncertainty: parallel
multistage stochastic programming, RO, and chance constraints. While these three
extensions were developed by the JuMP core developers, we would like to highlight
that even more recently a number of syntactic extensions to JuMP have been devel-
oped independently [71, 52, 51], illustrating the feasibility of doing so without intimate
knowledge of JuMP’s internals.

6.1. Extension for Parallel Multistage Stochastic Programming. The first ex-
ample of a modeling extension built on top of JuMP is StructJuMP [45] (formerly
StochJuMP), a modeling layer for block-structured optimization problems of the form

(5)

min 1
2x

T
0 Q0x0 + cT0 x0 +

∑N
i=1

(
1
2x

T
i Qixi + cTi xi

)
s.t. Ax0 = b0,

T1x0+ W1x1 = b1,
T2x0+ W2x2 = b2,
...

. . .
...

TNx0+ WNxN = bN ,
x0 ≥ 0, x1 ≥ 0, x2 ≥ 0, . . . , xN ≥ 0.

This structure has been well studied and arises from stochastic programming [15],
contingency analysis [69], multicommodity flow [21], and many other contexts. A num-
ber of specialized methods exist for solving problems with this structure (including the
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classical Benders decomposition method), and they require as input data structures
the matrices Qi, Ti, Wi, A and vectors ci and bi.

StructJuMP was motivated by the application to stochastic programming models
for power systems control under uncertainty as outlined in [68]. For realistic models,
the total number of variables may be in the tens to hundreds of millions, which
necessitates the use of parallel computing to obtain solutions within reasonable time
limits. In the context of high-performance computing, the phase of generating the
model in serial can quickly become an execution bottleneck, in addition to the fact
that the combined input data structures may be too large to fit in memory on a
single machine. StructJuMP was designed to allow users to write JuMP models with
annotations indicating the block structure such that the input matrices and vectors
can be generated in parallel. That is, the entire model is not built in memory in any
location: each computational node only builds in memory the portion of the model
that it will work with during the course of the optimization procedure. This ability
to generate the model in parallel (in a distributed-memory MPI-based [62] fashion)
distinguishes StructJuMP from existing tools such as PySP [80].

StructJuMP successfully scaled up to 2048 cores of a high-performance cluster,
and in all cases the overhead of model generation was a small fraction of the total
solution time. Furthermore, StructJuMP was easy to develop, consisting of less than
500 lines of code in total, which includes interfacing with a C++-based solver and the
MPI library for parallel computing. By comparison, SML [42], an AMPL extension
for conveying similar block structures to solvers, was implemented as a pre- and
postprocessor for AMPL. The implementation required reverse engineering AMPL’s
syntax and developing a custom text-based parser. Such feats of software engineering
are not needed to develop extensions to JuMP.

6.2. Extension for Robust Optimization. Robust optimization (RO) is a
methodology for addressing uncertainty in optimization problems that has grown in
popularity over the last decade (for a survey, see [6]). The RO approach to uncertainty
models the uncertain parameters in a problem as belonging to an uncertainty set, in-
stead of modeling them as being drawn from probability distributions. We solve an
RO problem with respect to the worst-case realization of those uncertain parameters
over their uncertainty set, i.e.,

min
x∈X

f (x)(6)

subject to g (x, ξ) ≤ 0 ∀ξ ∈ Ξ,

where x are the decision variables, ξ are the uncertain parameters drawn from the
uncertainty set Ξ, f : X → R is a function of x, and g : X×Ξ→ R

k is a vector-valued
function of both x and ξ. Note that constraints which are not affected by uncertainty
are captured by the set X . As the uncertainty set Ξ is typically not a finite set of
scenarios, RO problems have an infinite set of constraints. This is usually addressed
by either reformulating the RO problem using duality to obtain a robust counterpart,
or by using a cutting-plane method that aims to add only the subset of constraints
that are required at optimality to enforce feasibility [8].

JuMPeR [24] is an extension for JuMP that enables modeling RO problems di-
rectly by introducing the Uncertain modeling primitive for uncertain parameters.
The syntax is essentially unchanged from JuMP, except that constraints containing
only Uncertains and constants are treated distinctly from other constraints as they
are used to define the uncertainty set. JuMPeR is then able to solve the problem
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using either reformulation or the cutting-plane method, allowing the user to switch
between the two at will. This is an improvement over both directly modeling the
robust counterpart to the RO problem and implementing a cutting-plane method, as
it allows users to experiment with different uncertainty sets and solution techniques
with minimal changes to their code. Building JuMPeR on top of JuMP makes it more
useful than a dedicated RO modeling tool like ROME [36] as users can smoothly tran-
sition from a deterministic model to an uncertain model and can take advantage of the
infrastructure developed for JuMP to utilize a wide variety of solvers. It also benefits
from JuMP’s efficient model construction, offering some performance advantages over
YALMIP’s robust modeling capabilities [56].

6.3. Extension for Chance Constraints. For the final extension, consider chance
constraints of the form

(7) P(ξTx ≤ b) ≥ 1− ε,

where x is a decision variable and ξ is a random variable. That is, x is feasible if
and only if the random variable ξTx is less than b with high probability. Depending
on the distribution of ξ, the constraint may be intractable and nonconvex; however,
for the special case of ξ jointly Gaussian with mean μ and covariance matrix Σ, it is
convex and representable by conic-quadratic inequalities. Bienstock, Chertkov, and
Harnett [13] observed that it can be advantageous to implement a custom cutting-
plane algorithm similar to the case of RO. The authors in [13] also examined a more
conservative distributionally robust model where they enforced that (7) holds for a
family of Gaussian distributions where the parameters fall in some uncertainty set
μ ∈ Uµ,Σ ∈ UΣ.

JuMPChance is an extension for JuMP which provides a natural algebraic syn-
tax to model such chance constraints, hiding the algorithmic details of the chance
constraints from users who may be practitioners or experts in other domains. Users
may declare Gaussian random variables and use them within constraints, providing
ε though a special with probability parameter. JuMPChance was used to eval-
uate the distributionally robust model in the context of optimal power flow under
the uncertainty of wind generation levels, finding that the increased conservatism
may actually result in realized cost savings given the inaccuracy of the assumption of
Gaussianity [58].

7. Interactivity and Visualization. Although we have focused thus far on effi-
ciently and intuitively communicating optimization problems to a solver, equally as
important is a convenient way to interpret, understand, and communicate the solu-
tions obtained. For many use cases, Microsoft Excel and similar spreadsheet systems
provide a surprisingly versatile environment for optimization modeling [60]; one reason
for their continuing success is that it is trivial to interactively manipulate the input
to a problem and visualize the results, completely within the spreadsheet. Stan-
dalone commercial modeling systems, while providing a much better environment for
handling larger-scale inputs and models, have, in our opinion, never achieved such
seamless interactivity. Notably, however, AIMMS [1], a commercial AML, enables
users to create interactive graphical user interfaces. We highlight, however, that both
AIMMS and Excel-based solutions like SolverStudio [60] require commercial software
and are available only for the Windows operating system.

Many in the scientific community are beginning to embrace the “notebook” for-
mat for both research and teaching [73]. Notebooks allow users to mix code, rich
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Fig. 5 A Jupyter (IJulia) notebook for a Markowitz portfolio problem [59] that combines rich text
with equations, Julia/JuMP code, an interactive widget, and a visualization. Moving the
rmin slider re-solves the optimization problem to find a new portfolio, and the plot is updated
to show the historical distribution of returns that would have been obtained with the portfolio.

text, LATEX equations, visualizations, and interactive widgets all in one shareable
document, creating compelling narratives which do not require any low-level coding
to develop. Jupyter [49], in particular, contains the IJulia notebook environment for
Julia and therefore JuMP as well. Taking advantage of the previously demonstrated
speed of JuMP, one can easily create notebooks that embed large-scale optimization
problems, which we will illustrate with two examples in this section. We believe that
notebooks provide a satisfying solution in many contexts to the longstanding challenge
of providing an interactive interface for optimization.

7.1. Example: Portfolio Optimization. One of the classic problems in finan-
cial optimization is the Markowitz portfolio optimization problem [59] where we seek
to optimally allocate funds between n assets. The problem considers the mean and
variance of the return of the resulting portfolio and seeks to find the portfolio that
minimizes variance such that mean return is at least some minimal value. This is a
quadratic optimization problem with linear constraints. It is natural that we would
want to explore how the optimal portfolio’s variance changes as we change the mini-
mum return: the so-called efficient frontier.

In Figure 5 we show a small notebook that solves the Markowitz portfolio op-
timization problem. The notebook begins with rich text describing the formulation,
after which we use JuMP to succinctly express the optimization problem. The data is
generated synthetically, but could be acquired from a database, spreadsheets, or even
directly from the Internet. The Julia package Interact.jl [38] provides the @manipulate
syntax, which automatically generates the minimum return slider from the definition
of the for loop. As the user drags the slider, the model is rebuilt with the new pa-
rameter and re-solved, enabling easy, interactive experimentation. The visualization
(implemented with the Gadfly [47] package) of the distribution of historical returns
that would have been obtained with this optimal portfolio is also regenerated as the
slider is dragged.

7.2. Example: Rocket Control. A natural goal in aerospace engineering is to
maximize the altitude attained by a rocket in flight. This problem was possibly first
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Fig. 6 Visualization of the states (altitude, mass, velocity) and the control (thrust) for a rocket
optimal control problem. The top set of figures is obtained for the thrust and drag param-
eters, resp., Tc = 3.5 and hc = 500, and the bottom set are obtained for the parameters
Tc = 2.5, hc = 300, with all units normalized and dimensionless. We can see that the in-
creased drag and reduced maximum thrust in the bottom set of figures has a substantial
impact on maximum altitude and leads to a very different thrust profile.

stated by Goddard [35], and has since become a standard problem in control theory,
e.g., [18]. The “Goddard Rocket” optimization problem, as expressed in [22], has three
state variables (altitude, velocity, and remaining mass) and one control (thrust). The
rocket is affected by aerodynamic drag and gravity, and the constraints of the problem
implement the equations of motion (discretized by using the trapezoidal rule).

We have implemented the optimization problem with JuMP in an IJulia notebook.
Moreover, we have used Interact.jl to allow the user to explore the effects of varying
the maximum thrust (via Tc) and the coefficient that controls the relationship between
altitude and drag (hc). The JuMP code is omitted for the sake of brevity, but the
sliders and plots of the state and control over time are displayed in Figure 6. The
model is re-solved with the new parameters every time the user moves the sliders;
this takes about a twentieth of a second on a laptop computer, enabling real-time
interactive exploration of this complex nonlinear optimization model.

Supplementary Materials. The benchmark instances used in sections 4 and 5
and the notebooks presented in section 7 are available as supplementary materials at
https://github.com/mlubin/JuMPSupplement. The site http://www.juliaopt.org/ is
the homepage for JuMP and other optimization-related projects in Julia.

Appendix A. Benchmark Models for Section 4.1.

A.1. lqcp. The linear-quadratic control problem is Equation (5.2-I) from [63].
This model has a quadratic objective and linear constraints, and it can be scaled by
increasing the discretization (parameters m and n) of the two-dimensional problem
domain. For the purposes of benchmarking we measured the model generation time
across a range of sizes, fixing m = n and varying n ∈ {500, 1000, 1500, 2000}. In the

https://github.com/mlubin/JuMPSupplement
http://www.juliaopt.org/
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notation below, we define I = {0, . . . ,m} to be the index set along the first dimension
and J = {0, . . . , n} as the index set for the second. We additionally define I ′ ← I\{m}
and J ′ ← J \ {0, n}, with all other parameters defined as in the above reference:

min
u,y

1

4
Δx

⎛
⎝(ym,0 − yt0

)2
+ 2

n−1∑
j=1

(
ym,j − ytj

)2
+
(
ym,n − ytn

)2⎞⎠

+
1

4
aΔt

(
2

m−1∑
i=1

u2
i + u2

m

)

s.t. 1/Δt (yi+1,j − yi,j)

=
1

2h2
(yi,j−1 − 2yi,j+yi,j+1+yi+1,j−1−2yi+1,j+yi+1,j+1) ∀i ∈ I ′, j ∈ J ′,

y0,j = 0 ∀j ∈ J,

yi,2 − 4yi,1 + 3yi,0 = 0 ∀i ∈ I,

1/2Δx (yi,n−2 − 4yi,n−1 + 3yi,n) = ui − yi,n ∀i ∈ I,

− 1 ≤ ui ≤ 1 ∀i ∈ I,

0 ≤ yi,j ≤ 1 ∀i ∈ I, j ∈ J.

A.2. fac. The fac problem is a variant on the classic facility location prob-
lem [67]: given customers (indexed by c ∈ {1, . . . , C}) located at the points xc ∈ R

K ,
locate facilities (indexed by f ∈ {1, . . . , F}) at the points yf ∈ R

K such that the maxi-
mum distance between a customer and its nearest facility is minimized. This problem
can be expressed most naturally in the form of a mixed-integer second-order cone
problem (MISOCP), and a solved example of it is presented in Figure 7. We gener-
ated the problem data deterministically to enable fair comparison across the different
languages: the customers are placed on a two-dimensional grid (K = 2) i ∈ {0, . . . , G}
by j ∈ {0, . . . , G}, with the points xc spaced evenly over the unit square [0, 1]2. The
problem size is thus parametrized by the grid size G and the number of facilities F ,
with the number of variables and constraints growing proportional to F ·G2. For the
purposes of benchmarking we measured the model generation with fixed F = G and
varying F ∈ {25, 50, 75, 100}:

min
d,y,z

d(8)

subject to d ≥ ‖xc − yf‖2 −M (1− zc,f) ∀c, f,
F∑

f=1

zc,f = 1 ∀c,

zc,f ∈ {0, 1} ∀c, f,
where

M = max
c,c′
‖xc − xc′‖2

and zc,f is a binary indicator variable that is 1 if facility f is closer to customer c
than any other facility, and 0 otherwise. As needed, we translate the conic-quadratic
constraint in (8) to an equivalent quadratic form depending on the modeling system.
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Fig. 7 One possible optimal solution to the facility location problem with a four-by-four grid of
customers (rectangles) and three facilities (circles). The dotted circles show the maximum
distance between any customer and its closest facility, which is the objective.

Appendix B. Benchmark Models for Section 5.4.

B.1. clnlbeam. The first model, clnlbeam, is a nonlinear beam control problem
obtained from Hans Mittelmann’s AMPL-NLP benchmark set;6 see also [61]. It can
be scaled by increasing the discretization of the one-dimensional domain through the
parameter n. We test with n ∈ {5000, 50000, 500000}. The model has 3n variables,
2n constraints, and diagonal Hessians. The algebraic representation is as follows:

min
t,x,u∈Rn+1

n∑
i=1

[
h

2
(u2

i+1 + u2
i ) +

αh

2
(cos(ti+1) + cos(ti))

]

subject to xi+1 − xi − 1

2n
(sin(ti+1) + sin(ti)) = 0, i = 1, . . . , n,

ti+1 − ti − 1

2n
ui+1 − 1

2n
ui = 0, i = 1, . . . , n,

− 1 ≤ ti ≤ 1, −0.05 ≤ xi ≤ 0.05, i = 1, . . . , n+ 1,

x1 = xn+1 = t1 = tn+1 = 0.

B.2. acpower. The second model is a nonlinear AC power flow model published
in AMPL format by Artelys Knitro.7 The objective is to minimize active power losses,

(9)
∑
k

[
gk +

∑
m

VkVm(Gkm cos(θk − θm) +Bkm sin(θk − θm))

]2
,

subject to balancing both active and reactive power loads and demands at each node in
the grid, where power flows are constrained by the highly nonlinear Kirchoff’s laws.
The parameter gk is the active power load (demand) at node k, Vk is the voltage
magnitude at node k, θk is the phase angle, and Ykm = Gkm + iBkm is the complex-
valued admittance between nodes k and m, which itself is a complicated nonlinear

6http://plato.asu.edu/ftp/ampl-nlp.html, accessed July 7, 2016.
7https://web.archive.org/web/20150105161742/http://www.ziena.com/elecpower.htm, accessed

July 7, 2016.

http://plato.asu.edu/ftp/ampl-nlp.html
https://web.archive.org/web/20150105161742/http://www.ziena.com/elecpower.htm
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function of the decision variables. Depending on the physical characteristics of the
grid, some values (e.g., Vk) may be decision variables at some nodes and fixed at
others. This model is quite challenging because of the combination of nonlinearity
and network structure, which yields a highly structured Hessian.

We translated the AMPL model provided by Artelys Knitro to JuMP, GAMS,
and Pyomo. The base instance has a network with 662 nodes and 1017 edges; there
are 1489 decision variables, 1324 constraints, and the Hessian (of the Lagrangian)
has 8121 nonzero elements. We artificially enlarge the instances by duplicating the
network 10-fold and 100-fold, which results in proportional increases in the problem
dimensions.
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[14] D. Bienstock and O. Günlük, Computational experience with a difficult mixed-integer mul-
ticommodity flow problem, Math. Program., 68 (1995), pp. 213–237. (Cited on p. 298)

[15] J. Birge and F. Louveaux, Introduction to Stochastic Programming, 2nd ed., Springer Ser.
Oper. Res. Financ. Eng., Springer, New York, 2011. (Cited on p. 310)

[16] C. Bischof, P. Khademi, A. Mauer, and A. Carle, Adifor 2.0: Automatic differentiation of
Fortran 77 programs, IEEE Comput. Sci. Engrg., 3 (1996), pp. 18–32. (Cited on p. 306)

[17] A. Brooke, D. Kendrick, A. Meeraus, and R. Raman, GAMS: A User’s Guide, Scientific
Press, Redwood City, CA, 1999. (Cited on pp. 295, 303)

[18] A. E. Bryson, Dynamic Optimization, Addison Wesley Longman, Menlo Park, CA, 1999.
(Cited on p. 314)

[19] E. Burnell and W. Hoburg, gpkit Software for Geometric Programming, Version 0.4.1,
https://github.com/hoburg/gpkit, 2015. (Cited on p. 296)

[20] M. R. Bussieck, M. C. Ferris, and T. Lohmann, GUSS: Solving collections of data related
models within GAMS, in Algebraic Modeling Systems, J. Kallrath, ed., Appl. Optim. 104,
Springer, Berlin, Heidelberg, 2012, pp. 35–56. (Cited on pp. 296, 304)

[21] J. Castro, An interior-point approach for primal block-angular problems, Comput. Optim.
Appl., 36 (2007), pp. 195–219. (Cited on p. 310)
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