
Machine Learning
Systems

Vĳay
Janapa Reddi

Machine Learning Systems

Principles and Practices of Engineering Artificially
Intelligent Systems

Prof. Vĳay Janapa Reddi
School of Engineering and Applied Sciences
Harvard University

With heartfelt gratitude to the community for their
invaluable contributions and steadfast support.

i

Table of contents

Preface 1

Why We Wrote This Book 3

What You’ll Need to Know 5

Book Conventions 7

Content Transparency Statement 9

Want to Help Out? 11

Get in Touch 13

Contributors 15

I FRONT MATTER 17

Dedication 19

Acknowledgements 21
Individual Contributors . 21
Funding Agencies and Companies 21
To Our Readers . 22

Contributors & Thanks 23

Copyright 27

About the Book 29
Overview . 29
Topics Explored . 29

Table of contents ii

Who Should Read This . 29
Key Learning Outcomes . 30
Prerequisites for Readers . 31

II MAIN 33

III Fundamentals 35

1. Introduction 37
1.1. Overview . 37
1.2. What’s Inside the Book 39
1.3. How to Navigate This Book 40
1.4. Chapter Breakdown . 41

1.4.1. Fundamentals 41
1.4.2. Workflow . 42
1.4.3. Training . 42
1.4.4. Deployment . 43
1.4.5. Advanced Topics 43
1.4.6. Social Impact . 44
1.4.7. Closing . 44

1.5. Contribute Back . 44

2. ML Systems 45
2.1. Introduction . 46
2.2. Cloud ML . 47

2.2.1. Characteristics 48
2.2.2. Benefits . 49
2.2.3. Challenges . 51
2.2.4. Example Use Cases 52

2.3. Edge ML . 53
2.3.1. Characteristics 54
2.3.2. Benefits . 55
2.3.3. Challenges . 55
2.3.4. Example Use Cases 55

2.4. Tiny ML . 56
2.4.1. Characteristics 56
2.4.2. Benefits . 57
2.4.3. Challenges . 58
2.4.4. Example Use Cases 58

2.5. Comparison . 59
2.6. Conclusion . 61
2.7. Resources . 61

TABLE OF CONTENTS iii

3. DL Primer 65
3.1. Introduction . 66

3.1.1. Definition and Importance 66
3.1.2. Brief History of Deep Learning 66
3.1.3. Applications of Deep Learning 68
3.1.4. Relevance to Embedded AI 69

3.2. Neural Networks . 69
3.2.1. Perceptrons . 70
3.2.2. Multilayer Perceptrons 72
3.2.3. Training Process 72
3.2.4. Model Architectures 75
3.2.5. Traditional ML vs Deep Learning 78
3.2.6. Choosing Traditional ML vs. DL 79
3.2.7. Making an Informed Choice 80

3.3. Conclusion . 81
3.4. Resources . 82

IV Workflow 85

4. AI Workflow 87
4.1. Overview . 88
4.2. Traditional vs. Embedded AI 89

4.2.1. Resource Optimization 90
4.2.2. Real-time Processing 90
4.2.3. Data Management and Privacy 90
4.2.4. Hardware-Software Integration 90

4.3. Roles & Responsibilities 90
4.4. Conclusion . 92
4.5. Resources . 92

5. Data Engineering 95
5.1. Introduction . 96
5.2. Problem Definition . 98
5.3. Data Sourcing . 103

5.3.1. Pre-existing datasets 103
5.3.2. Web Scraping . 104
5.3.3. Crowdsourcing 106
5.3.4. Synthetic Data 108

5.4. Data Storage . 110
5.5. Data Processing . 113
5.6. Data Labeling . 116

5.6.1. Label Types . 116
5.6.2. Annotation Methods 118

Table of contents iv

5.6.3. Ensuring Label Quality 119
5.6.4. AI-Assisted Annotation 119

5.7. Data Version Control 121
5.8. Optimizing Data for Embedded AI 122
5.9. Data Transparency . 123
5.10. Licensing . 126
5.11. Conclusion . 128
5.12. Resources . 128

6. AI Frameworks 131
6.1. Introduction . 132
6.2. Framework Evolution 134
6.3. Deep Dive into TensorFlow 136

6.3.1. TF Ecosystem . 137
6.3.2. Static Computation Graph 140
6.3.3. Usability & Deployment 140
6.3.4. Architecture Design 140
6.3.5. Built-in Functionality & Keras 141
6.3.6. Limitations and Challenges 142
6.3.7. PyTorch vs. TensorFlow 142

6.4. Basic Framework Components 144
6.4.1. Tensor data structures 144
6.4.2. PyTorch . 146
6.4.3. TensorFlow . 147
6.4.4. Computational graphs 147
6.4.5. Data Pipeline Tools 153
6.4.6. Data Augmentation 154
6.4.7. Loss Functions and Optimization Algorithms . 155
6.4.8. Model Training Support 156
6.4.9. Validation and Analysis 157
6.4.10. Differentiable programming 158
6.4.11. Hardware Acceleration 158

6.5. Advanced Features . 159
6.5.1. Distributed training 160
6.5.2. Model Conversion 161
6.5.3. AutoML, No-Code/Low-Code ML 161
6.5.4. Advanced Learning Methods 162

6.6. Framework Specialization 164
6.6.1. Cloud . 164
6.6.2. Edge . 164
6.6.3. Embedded . 165

6.7. Embedded AI Frameworks 166
6.7.1. Resource Constraints 166

TABLE OF CONTENTS v

6.7.2. Frameworks & Libraries 167
6.7.3. Challenges . 168

6.8. Examples . 170
6.8.1. Interpreter . 171
6.8.2. Compiler-based 172
6.8.3. Library . 173

6.9. Choosing the Right Framework 174
6.9.1. Model . 174
6.9.2. Software . 175
6.9.3. Hardware . 176
6.9.4. Other Factors . 176

6.10. Future Trends in ML Frameworks 178
6.10.1. Decomposition 178
6.10.2. High-Performance Compilers & Libraries 178
6.10.3. ML for ML Frameworks 178

6.11. Conclusion . 180
6.12. Resources . 181

V Training 183

7. AI Training 185
7.1. Introduction . 186
7.2. Mathematics of Neural Networks 188

7.2.1. Neural Network Notation 189
7.2.2. Loss Function as a Measure of Goodness of Fit

against Training Data 192
7.2.3. Training Neural Networks with Gradient Descent 193
7.2.4. Backpropagation 194

7.3. Differentiable Computation Graphs 198
7.4. Training Data . 198

7.4.1. Dataset Splits . 199
7.4.2. Common Pitfalls and Mistakes 200

7.5. Optimization Algorithms 208
7.5.1. Optimizations 208
7.5.2. Tradeoffs . 209
7.5.3. Benchmarking Algorithms 210

7.6. Hyperparameter Tuning 211
7.6.1. Search Algorithms 212
7.6.2. System Implications 214
7.6.3. Auto Tuners . 215

7.7. Regularization . 217
7.7.1. L1 and L2 . 218

Table of contents vi

7.7.2. Dropout . 220
7.7.3. Early Stopping 222

7.8. Activation Functions . 223
7.8.1. Sigmoid . 223
7.8.2. Tanh . 224
7.8.3. ReLU . 224
7.8.4. Softmax . 224
7.8.5. Pros and Cons 225

7.9. Weight Initialization . 226
7.9.1. Uniform and Normal Initialization 227
7.9.2. Xavier Initialization 228
7.9.3. He Initialization 228

7.10. System Bottlenecks . 229
7.10.1. Runtime Complexity of Matrix Multiplication . 229
7.10.2. Compute vs. Memory Bottleneck 232

7.11. Training Parallelization 236
7.11.1. Data Parallel . 236
7.11.2. Model Parallelism 238
7.11.3. Comparison . 239

7.12. Conclusion . 240
7.13. Resources . 240

8. EfÏcient AI 243
8.1. Introduction . 244
8.2. The Need for EfÏcient AI 245
8.3. EfÏcient Model Architectures 246
8.4. EfÏcient Model Compression 246
8.5. EfÏcient Inference Hardware 248
8.6. EfÏcient Numerics . 250

8.6.1. Numerical Formats 250
8.6.2. EfÏciency Benefits 254

8.7. Evaluating Models . 254
8.7.1. EfÏciency Metrics 254
8.7.2. EfÏciency Comparisons 255

8.8. Conclusion . 257
8.9. Resources . 258

9. Model Optimizations 261
9.1. Introduction . 262
9.2. EfÏcient Model Representation 263

9.2.1. Pruning . 263
9.2.2. Model Compression 276
9.2.3. Edge-Aware Model Design 282

TABLE OF CONTENTS vii

9.3. EfÏcient Numerics Representation 286
9.3.1. The Basics . 287
9.3.2. EfÏciency Benefits 289
9.3.3. Numeric Representation Nuances 290
9.3.4. Quantization . 295
9.3.5. Types . 297
9.3.6. Calibration . 300
9.3.7. Techniques . 304
9.3.8. Weights vs. Activations 307
9.3.9. Trade-offs . 310
9.3.10. Quantization and Pruning 311
9.3.11. Edge-aware Quantization 311

9.4. EfÏcient Hardware Implementation 313
9.4.1. Hardware-Aware Neural Architecture Search . . 313
9.4.2. Challenges of Hardware-Aware Neural Archi-

tecture Search 315
9.4.3. Kernel Optimizations 315
9.4.4. Compute-in-Memory (CiM) 316
9.4.5. Memory Access Optimization 317

9.5. Software and Framework Support 320
9.5.1. Built-in Optimization APIs 321
9.5.2. Automated Optimization Tools 321
9.5.3. Hardware Optimization Libraries 323
9.5.4. Visualizing Optimizations 324
9.5.5. Model Conversion and Deployment 327

9.6. Conclusion . 328
9.7. Resources . 329

10. AI Acceleration 331
10.1. Introduction . 332
10.2. Background and Basics 333

10.2.1. Historical Background 333
10.2.2. The Need for Acceleration 334
10.2.3. General Principles 335

10.3. Accelerator Types . 338
10.3.1. Application-Specific Integrated Circuits (ASICs) 339
10.3.2. Field-Programmable Gate Arrays (FPGAs) . . . 343
10.3.3. Digital Signal Processors (DSPs) 346
10.3.4. Graphics Processing Units (GPUs) 349
10.3.5. Central Processing Units (CPUs) 352
10.3.6. Comparison . 355

10.4. Hardware-Software Co-Design 357
10.4.1. The Need for Co-Design 357

Table of contents viii

10.4.2. Principles of Hardware-Software Co-Design . . 359
10.4.3. Challenges . 361

10.5. Software for AI Hardware 362
10.5.1. Programming Models 362
10.5.2. Libraries and Runtimes 363
10.5.3. Optimizing Compilers 364
10.5.4. Simulation and Modeling 365

10.6. Benchmarking AI Hardware 366
10.7. Challenges and Solutions 367

10.7.1. Portability/Compatibility Issues 367
10.7.2. Power Consumption Concerns 369
10.7.3. Overcoming Resource Constraints 370

10.8. Emerging Technologies 371
10.8.1. Integration Methods 371
10.8.2. Neuromorphic Computing 375
10.8.3. Analog Computing 377
10.8.4. Flexible Electronics 378
10.8.5. Memory Technologies 380
10.8.6. Optical Computing 381
10.8.7. Quantum Computing 382

10.9. Future Trends . 383
10.9.1. ML for Hardware Design Automation 385
10.9.2. ML-Based Hardware Simulation and Verification 386
10.9.3. ML for EfÏcient Hardware Architectures 386
10.9.4. ML to Optimize Manufacturing and Reduce De-

fects . 387
10.9.5. Toward Foundation Models for Hardware Design 388

10.10.Conclusion . 389
10.11.Resources . 390

VI Deployment 391

11. Benchmarking AI 393
11.1. Introduction . 394
11.2. Historical Context . 396

11.2.1. Standard Benchmarks 396
11.2.2. Custom Benchmarks 397
11.2.3. Community Consensus 398

11.3. AI Benchmarks: System, Model, and Data 398
11.3.1. System Benchmarks 399
11.3.2. Model Benchmarks 399
11.3.3. Data Benchmarks 399

TABLE OF CONTENTS ix

11.4. System Benchmarking 400
11.4.1. Granularity . 400
11.4.2. Benchmark Components 404
11.4.3. Training vs. Inference 406
11.4.4. Training Benchmarks 406
11.4.5. Inference Benchmarks 412
11.4.6. Benchmark Example 418
11.4.7. Challenges and Limitations 419

11.5. Model Benchmarking 425
11.5.1. Historical Context 425
11.5.2. Model Metrics 428
11.5.3. Lessons Learned 434
11.5.4. Limitations and Challenges 436

11.6. Data Benchmarking . 437
11.6.1. Limitations of Model-Centric AI 438
11.6.2. The Shift Toward Data-centric AI 440
11.6.3. Benchmarking Data 440
11.6.4. Data EfÏciency 441

11.7. The Trifecta . 443
11.8. Benchmarks for Emerging Technologies 443
11.9. Conclusion . 445
11.10.Resources . 446

12. On-Device Learning 449
12.1. Introduction . 450
12.2. Advantages and Limitations 451

12.2.1. Benefits . 451
12.2.2. Limitations . 454

12.3. On-device Adaptation 457
12.3.1. Reducing Model Complexity 457
12.3.2. Modifying Optimization Processes 459
12.3.3. Developing New Data Representations 461

12.4. Transfer Learning . 462
12.4.1. Pre-Deployment Specialization 463
12.4.2. Post-Deployment Adaptation 464
12.4.3. Benefits . 465
12.4.4. Core Concepts 466
12.4.5. Types of Transfer Learning 468
12.4.6. Constraints and Considerations 470

12.5. Federated Machine Learning 471
12.5.1. Communication EfÏciency 473
12.5.2. Model Compression 473
12.5.3. Selective Update Sharing 473

Table of contents x

12.5.4. Optimized Aggregation 474
12.5.5. Handling non-IID Data 476
12.5.6. Client Selection 477
12.5.7. An Example of Deployed Federated Learning: G

board . 477
12.5.8. Benchmarking for Federated Learning: MedPerf 479

12.6. Security Concerns . 479
12.6.1. Data Poisoning 480
12.6.2. Adversarial Attacks 481
12.6.3. Model Inversion 483
12.6.4. On-Device Learning Security Concerns 484
12.6.5. Mitigation of On-Device Learning Risks 485
12.6.6. Securing Training Data 486

12.7. On-Device Training Frameworks 487
12.7.1. Tiny Training Engine 488
12.7.2. Tiny Transfer Learning 488
12.7.3. Tiny Train . 489
12.7.4. Comparison . 490

12.8. Conclusion . 491
12.9. Resources . 492

13. ML Operations 495
13.1. Introduction . 496
13.2. Historical Context . 497

13.2.1. DevOps . 497
13.2.2. MLOps . 498

13.3. Key Components of MLOps 500
13.3.1. Data Management 501
13.3.2. CI/CD Pipelines 502
13.3.3. Model Training 503
13.3.4. Model Evaluation 504
13.3.5. Model Deployment 505
13.3.6. Model Serving 506
13.3.7. Infrastructure Management 507
13.3.8. Monitoring . 508
13.3.9. Governance . 509
13.3.10.Communication & Collaboration 510

13.4. Hidden Technical Debt in ML Systems 511
13.4.1. Model Boundary Erosion 511
13.4.2. Entanglement 512
13.4.3. Correction Cascades 512
13.4.4. Undeclared Consumers 513
13.4.5. Data Dependency Debt 513

TABLE OF CONTENTS xi

13.4.6. Analysis Debt from Feedback Loops 514
13.4.7. Pipeline Jungles 514
13.4.8. Configuration Debt 515
13.4.9. The Changing World 515
13.4.10.Navigating Technical Debt in Early Stages 516
13.4.11.Summary . 516

13.5. Roles and Responsibilities 517
13.5.1. Data Engineers 517
13.5.2. Data Scientists 518
13.5.3. ML Engineers 519
13.5.4. DevOps Engineers 520
13.5.5. Project Managers 520

13.6. Embedded System Challenges 521
13.6.1. Limited Compute Resources 521
13.6.2. Constrained Memory 522
13.6.3. Intermittent Connectivity 522
13.6.4. Power Limitations 522
13.6.5. Fleet Management 523
13.6.6. On-Device Data Collection 523
13.6.7. Device-Specific Personalization 523
13.6.8. Safety Considerations 523
13.6.9. Diverse Hardware Targets 523
13.6.10.Testing Coverage 524
13.6.11.Concept Drift Detection 524

13.7. Traditional MLOps vs. Embedded MLOps 524
13.7.1. Model Lifecycle Management 526
13.7.2. Development and Operations Integration 529
13.7.3. Operational Excellence 532
13.7.4. Comparison . 533
13.7.5. Traditional MLOps 534
13.7.6. Embedded MLOps 536

13.8. Case Studies . 540
13.8.1. Oura Ring . 540
13.8.2. ClinAIOps . 541

13.9. Conclusion . 548
13.10.Resources . 549

VII Advanced Topics 553

14. Security & Privacy 555
14.1. Introduction . 556
14.2. Terminology . 557

Table of contents xii

14.3. Historical Precedents 558
14.3.1. Stuxnet . 558
14.3.2. Jeep Cherokee Hack 559
14.3.3. Mirai Botnet . 559
14.3.4. Implications . 560

14.4. Security Threats to ML Models 561
14.4.1. Model Theft . 562
14.4.2. Data Poisoning 565
14.4.3. Adversarial Attacks 568

14.5. Security Threats to ML Hardware 570
14.5.1. Hardware Bugs 572
14.5.2. Physical Attacks 573
14.5.3. Fault-injection Attacks 574
14.5.4. Side-Channel Attacks 576
14.5.5. Leaky Interfaces 580
14.5.6. Counterfeit Hardware 581
14.5.7. Supply Chain Risks 582
14.5.8. Case Study . 583

14.6. Embedded ML Hardware Security 584
14.6.1. Trusted Execution Environments 584
14.6.2. Secure Boot . 588
14.6.3. Hardware Security Modules 592
14.6.4. Physical Unclonable Functions (PUFs) 594

14.7. Privacy Concerns in Data Handling 596
14.7.1. Sensitive Data Types 597
14.7.2. Applicable Regulations 598
14.7.3. De-identification 598
14.7.4. Data Minimization 600
14.7.5. Consent and Transparency 601
14.7.6. Privacy Concerns in Machine Learning 602

14.8. Privacy-Preserving ML Techniques 605
14.8.1. Differential Privacy 605
14.8.2. Federated Learning 609
14.8.3. Machine Unlearning 613
14.8.4. Homomorphic Encryption 616
14.8.5. Secure Multiparty Communication 618
14.8.6. Synthetic Data Generation 621
14.8.7. Summary . 624

14.9. Conclusion . 626
14.10.Resources . 626

15. Responsible AI 629
15.1. Introduction . 630

TABLE OF CONTENTS xiii

15.2. Definition . 631
15.3. Principles and Concepts 632

15.3.1. Transparency and Explainability 632
15.3.2. Fairness, Bias, and Discrimination 632
15.3.3. Privacy and Data Governance 632
15.3.4. Safety and Robustness 633
15.3.5. Accountability and Governance 633

15.4. Cloud, Edge & Tiny ML 634
15.4.1. Summary . 634
15.4.2. Explainability 634
15.4.3. Fairness . 635
15.4.4. Safety . 636
15.4.5. Accountability 636
15.4.6. Governance . 636
15.4.7. Privacy . 637

15.5. Technical Aspects . 637
15.5.1. Detecting and Mitigating Bias 637
15.5.2. Preserving Privacy 641
15.5.3. Machine Unlearning 642
15.5.4. Adversarial Examples and Robustness 643
15.5.5. Building Interpretable Models 645
15.5.6. Monitoring Model Performance 648

15.6. Implementation Challenges 649
15.6.1. Organizational and Cultural Structures 649
15.6.2. Obtaining Quality and Representative Data . . . 649
15.6.3. Balancing Accuracy and Other Objectives 652

15.7. Ethical Considerations in AI Design 652
15.7.1. AI Safety and Value Alignment 653
15.7.2. Autonomous Systems and Control [and Trust] . 654
15.7.3. Economic Impacts on Jobs, Skills, Wages 655
15.7.4. Scientific Communication and AI Literacy . . . 656

15.8. Conclusion . 657
15.9. Resources . 658

16. Sustainable AI 661
16.1. Introduction . 662
16.2. Social and Ethical Responsibility 663

16.2.1. Ethical Considerations 663
16.2.2. Long-term Sustainability 664
16.2.3. AI for Environmental Good 665
16.2.4. Case Study . 666

16.3. Energy Consumption 666
16.3.1. Understanding Energy Needs 666

Table of contents xiv

16.3.2. Data Centers and Their Impact 669
16.3.3. Energy Optimization 672

16.4. Carbon Footprint . 672
16.4.1. Definition and Significance 673
16.4.2. The Need for Awareness and Action 674
16.4.3. Estimating the AI Carbon Footprint 675

16.5. Beyond Carbon Footprint 677
16.5.1. Water Usage and Stress 678
16.5.2. Hazardous Chemicals Usage 679
16.5.3. Resource Depletion 679
16.5.4. Hazardous Waste Generation 680
16.5.5. Biodiversity Impacts 681

16.6. Life Cycle Analysis . 682
16.6.1. Stages of an AI System’s Life Cycle 683
16.6.2. Environmental Impact at Each Stage 683

16.7. Challenges in LCA . 684
16.7.1. Lack of Consistency and Standards 684
16.7.2. Data Gaps . 685
16.7.3. Rapid Pace of Evolution 686
16.7.4. Supply Chain Complexity 687

16.8. Sustainable Design and Development 687
16.8.1. Sustainability Principles 687

16.9. Green AI Infrastructure 689
16.9.1. Energy EfÏcient AI Systems 689
16.9.2. Sustainable AI Infrastructure 690
16.9.3. Frameworks and Tools 691
16.9.4. Benchmarks and Leaderboards 693

16.10.Case Study: Google’s 4Ms 694
16.10.1.Google’s 4M Best Practices 694
16.10.2.Significant Results 695
16.10.3.Further Improvements 696

16.11.Embedded AI - Internet of Trash 697
16.12.Policy and Regulatory Considerations 700

16.12.1.Measurement and Reporting Mandates 700
16.12.2.Restriction Mechanisms 701
16.12.3.Government Incentives 702
16.12.4.Self-Regulation 702
16.12.5.Global Considerations 703

16.13.Public Perception and Engagement 703
16.13.1.AI Awareness 704
16.13.2.Messaging . 704
16.13.3.Equitable Participation 705
16.13.4.Transparency . 706

TABLE OF CONTENTS xv

16.14.Future Directions and Challenges 707
16.14.1.Future Directions 707
16.14.2.Challenges . 708

16.15.Conclusion . 709
16.16.Resources . 709

17. Robust AI 711
17.1. Introduction . 712
17.2. Real-World Examples 714

17.2.1. Cloud . 714
17.2.2. Edge . 715
17.2.3. Embedded . 717

17.3. Hardware Faults . 719
17.3.1. Transient Faults 720
17.3.2. Permanent Faults 724
17.3.3. Intermittent Faults 728
17.3.4. Detection and Mitigation 731
17.3.5. Summary . 740

17.4. ML Model Robustness 741
17.4.1. Adversarial Attacks 741
17.4.2. Data Poisoning 749
17.4.3. Distribution Shifts 760
17.4.4. Detection and Mitigation 766

17.5. Software Faults . 774
17.6. Tools and Frameworks 782

17.6.1. Fault Models and Error Models 782
17.6.2. Hardware-based Fault Injection 784
17.6.3. Software-based Fault Injection Tools 787
17.6.4. Bridging the Gap between Hardware and Soft-

ware Error Models 791
17.7. Conclusion . 794
17.8. Resources . 795

18. Generative AI 797

VIII Social Impact 799

19. AI for Good 801
19.1. Introduction . 802
19.2. Agriculture . 804
19.3. Healthcare . 805

19.3.1. Expanding Access 805
19.3.2. Early Diagnosis 806

Table of contents xvi

19.3.3. Infectious Disease Control 807
19.3.4. TinyML Design Contest in Healthcare 808

19.4. Science . 809
19.5. Conservation and Environment 809
19.6. Disaster Response . 810
19.7. Education and Outreach 811
19.8. Accessibility . 812
19.9. Infrastructure and Urban Planning 813
19.10.Challenges and Considerations 814
19.11.Conclusion . 814
19.12.Resources . 815

IX Closing 817

20. Conclusion 819
20.1. Introduction . 819
20.2. Knowing the Importance of ML Datasets 820
20.3. Navigating the AI Framework Landscape 821
20.4. Understanding ML Training Fundamentals 821
20.5. Pursuing EfÏciency in AI Systems 822
20.6. Optimizing ML Model Architectures 823
20.7. Advancing AI Processing Hardware 824
20.8. Embracing On-Device Learning 825
20.9. Streamlining ML Operations 825
20.10.Ensuring Security and Privacy 826
20.11.Upholding Ethical Considerations 827
20.12.Promoting Sustainability and Equity 827
20.13.Enhancing Robustness and Resiliency 829
20.14.Shaping the Future of ML Systems 829
20.15.Applying AI for Good 830
20.16.Congratulations . 831

X LABS 833

Overview 835
Learning Objectives . 835
Target Audience . 836
Supported Devices . 836
Lab Structure . 837
Troubleshooting and Support 837
Credits . 837

TABLE OF CONTENTS xvii

Getting Started 839
Hardware Requirements . 839
Software Requirements . 840
Network Connectivity . 841
Conclusion . 841

XI Nicla Vision 843
Pre-requisites . 845
Setup . 845
Exercises . 845

Setup 847
Introduction . 847
Hardware . 848

Two Parallel Cores . 848
Memory . 849
Sensors . 849

Arduino IDE Installation . 850
Testing the Microphone 851
Testing the IMU . 851
Testing the ToF (Time of Flight) Sensor 852
Testing the Camera . 854

Installing the OpenMV IDE 854
Connecting the Nicla Vision to Edge Impulse Studio 862
Expanding the Nicla Vision Board (optional) 865
Conclusion . 869
Resources . 870

Image Classification 871
Introduction . 871
Computer Vision . 873
Image Classification Project Goal 873
Data Collection . 874

Collecting Dataset with OpenMV IDE 874
Training the model with Edge Impulse Studio 877
Dataset . 878
The Impulse Design . 881

Image Pre-Processing 883
Model Design . 884

Model Training . 886
Model Testing . 888
Deploying the model . 889

Arduino Library . 889

Table of contents xviii

OpenMV . 891
Image Classification (non-ofÏcial) Benchmark 901
Conclusion . 902
Resources . 903

Object Detection 905
Introduction . 905

Object Detection versus Image Classification 906
An innovative solution for Object Detection: FOMO . . 909

The Object Detection Project Goal 909
Data Collection . 911

Collecting Dataset with OpenMV IDE 911
Edge Impulse Studio . 912

Setup the project . 912
Uploading the unlabeled data 914
Labeling the Dataset . 915

The Impulse Design . 917
Preprocessing all dataset 917

Model Design, Training, and Test 919
Test model with “Live Classification” 921

Deploying the Model . 923
Conclusion . 927
Resources . 927

Keyword Spotting (KWS) 929
Introduction . 929
How does a voice assistant work? 930
The KWS Hands-On Project 931

The Machine Learning workflow 932
Dataset . 932

Uploading the dataset to the Edge Impulse Studio . . . 933
Capturing additional Audio Data 935

Creating Impulse (Pre-Process / Model definition) 939
Impulse Design . 940
Pre-Processing (MFCC) 940
Going under the hood 942

Model Design and Training 942
Going under the hood 945

Testing . 945
Live Classification . 946

Deploy and Inference . 946
Post-processing . 948
Conclusion . 951
Resources . 952

TABLE OF CONTENTS xix

Motion Classification and Anomaly Detection 953
Introduction . 954
IMU Installation and testing 954

Defining the Sampling frequency: 955
The Case Study: Simulated Container Transportation 958
Data Collection . 959

Connecting the device to Edge Impulse 960
Data Collection . 962

Impulse Design . 966
Data Pre-Processing Overview 967
EI Studio Spectral Features 969
Generating features . 970

Models Training . 971
Testing . 972
Deploy . 973

Inference . 974
Post-processing . 976

Conclusion . 976
Case Applications . 976
Nicla 3D case . 978

Resources . 979

XII XIAO ESP32S3 981
Pre-requisites . 983
Setup . 984
Exercises . 984

Setup 985
Introduction . 985
Installing the XIAO ESP32S3 Sense on Arduino IDE 987
Testing the board with BLINK 989
Connecting Sense module (Expansion Board) 990
Microphone Test . 991
Testing the Camera . 994
Testing WiFi . 995
Conclusion . 1003
Resources . 1003

Image Classification 1005
Introduction . 1005
A TinyML Image Classification Project - Fruits versus Veggies 1007
Training the model with Edge Impulse Studio 1008

Data Acquisition . 1008

Table of contents xx

Impulse Design . 1009
Training . 1012
Deployment . 1013

Testing the Model (Inference) 1021
Testing with a Bigger Model 1022
Running inference on the SenseCraft-Web-Toolkit 1025
Conclusion . 1029
Resources . 1029

Object Detection 1031
Introduction . 1031

Object Detection versus Image Classification 1032
An Innovative Solution for Object Detection: FOMO . . 1034

The Object Detection Project Goal 1034
Data Collection . 1036

Collecting Dataset with the XIAO ESP32S3 1036
Edge Impulse Studio . 1038

Setup the project . 1038
Uploading the unlabeled data 1040
Labeling the Dataset . 1041
Balancing the dataset and split Train/Test 1043

The Impulse Design . 1044
Preprocessing all dataset 1045

Model Design, Training, and Test 1046
Test model with “Live Classification” 1049

Deploying the Model (Arduino IDE) 1051
Deploying the Model (SenseCraft-Web-Toolkit) 1055
Conclusion . 1058
Resources . 1059

Keyword Spotting (KWS) 1061
Introduction . 1061

How does a voice assistant work? 1062
The KWS Project . 1064
The Machine Learning workflow 1065

Dataset . 1065
Capturing (ofÒine) Audio Data with the XIAO ESP32S3

Sense . 1066
Save recorded sound samples (dataset) as .wav audio

files to a microSD card 1069
Capturing (ofÒine) Audio Data Apps 1077

Training model with Edge Impulse Studio 1077
Uploading the Data . 1078
Creating Impulse (Pre-Process / Model definition) . . . 1081

TABLE OF CONTENTS xxi

Pre-Processing (MFCC) 1082
Model Design and Training 1084

Testing . 1086
Deploy and Inference . 1087
Postprocessing . 1091
Conclusion . 1093
Resources . 1093

Motion Classification and Anomaly Detection 1095
Introduction . 1096
Installing the IMU . 1096
The TinyML Motion Classification Project 1104
Connecting the device to Edge Impulse 1105
Data Collection . 1107
Data Pre-Processing . 1111
Model Design . 1112
Impulse Design . 1112
Generating features . 1114
Training . 1115
Testing . 1116
Deploy . 1117
Inference . 1118
Conclusion . 1122
Resources . 1123

XIII Raspberry Pi 1125
Pre-requisites . 1127
Setup . 1128
Exercises . 1128

Setup 1129
Introduction . 1130

Key Features . 1130
Raspberry Pi Models (covered in this book) 1130
Engineering Applications 1131

Hardware Overview . 1132
Raspberry Pi Zero 2W 1132
Raspberry Pi 5 . 1132

Installing the Operating System 1133
The Operating System (OS) 1133
Installation . 1134
Initial Configuration . 1137

Table of contents xxii

Remote Access . 1137
SSH Access . 1137
To shut down the Raspi via terminal: 1138
Transfer Files between the Raspi and a computer 1138

Increasing SWAP Memory 1142
Installing a Camera . 1143

Installing a USB WebCam 1144
Installing a Camera Module on the CSI port 1148

Running the Raspi Desktop remotely 1151
Updating and Installing Software 1155
Model-Specific Considerations 1155

Raspberry Pi Zero . 1155
Raspberry Pi 4 or 5 . 1155

Image Classification 1157
Introduction . 1157

Applications in Real-World Scenarios 1158
Advantages of Running Classification on Edge Devices

like Raspberry Pi 1158
Setting Up the Environment 1159

Updating the Raspberry Pi 1159
Installing Required Libraries 1159
Setting up a Virtual Environment (Optional but Recom-

mended) . 1160
Installing TensorFlow Lite 1160
Installing Additional Python Libraries 1160
Creating a working directory: 1160
Setting up Jupyter Notebook (Optional) 1162
Verifying the Setup . 1163

Making inferences with Mobilenet V2 1164
Define a general Image Classification function 1170
Testing with a model trained from scratch 1171
Installing Picamera2 . 1172

Image Classification Project 1175
The Goal . 1175
Data Collection . 1176

Training the model with Edge Impulse Studio 1185
Dataset . 1185

The Impulse Design . 1187
Image Pre-Processing 1188
Model Design . 1189
Model Training . 1190
Trading off: Accuracy versus speed 1191

TABLE OF CONTENTS xxiii

Model Testing . 1193
Deploying the model 1193

Live Image Classification . 1200
Conclusion: . 1207
Resources . 1208

Object Detection 1209
Coming soon. 1209

Small Language Models (SLM) 1211
Coming soon. 1211

XIV Shared Labs 1213

KWS Feature Engineering 1217
Introduction . 1217
The KWS . 1218
Introduction to Audio Signals 1219

Why Not Raw Audio? 1221
Introduction to MFCCs . 1222

What are MFCCs? . 1222
Why are MFCCs important? 1223
Computing MFCCs . 1223

Hands-On using Python . 1226
Conclusion . 1226
Resources . 1227

DSP Spectral Features 1229
Introduction . 1229
Extracting Features Review 1230
A TinyML Motion Classification project 1231
Data Pre-Processing . 1232

Edge Impulse - Spectral Analysis Block V.2 under the hood1234
Time Domain Statistical features 1239
Spectral features . 1242
Time-frequency domain . 1244

Wavelets . 1244
Wavelet Analysis . 1248
Feature Extraction . 1249

Conclusion . 1253

Table of contents xxiv

XV REFERENCES 1255

References 1257

Appendices 1311

A. Tools 1311
A.1. Hardware Kits . 1311

A.1.1. Microcontrollers and Development Boards . . . 1311
A.2. Software Tools . 1312

A.2.1. Machine Learning Frameworks 1312
A.2.2. Libraries and APIs 1313

A.3. IDEs and Development Environments 1313

B. Datasets 1315

C. Model Zoo 1317

D. Resources 1319
D.1. Books . 1319
D.2. Tutorials . 1320
D.3. Frameworks . 1320
D.4. Courses and Learning Platforms 1320

E. Communities 1321
E.1. Online Forums . 1321
E.2. Blogs and Websites . 1321
E.3. Social Media Groups . 1322
E.4. Conferences and Meetups 1322

F. Case Studies 1323

1

Preface

Welcome to Machine Learning Systems. This book is your gateway to
the fast-paced world of AI systems. It is an extension of the course
CS249r at Harvard University.

We have created this open-source book as a collaborative effort to
bring together insights from students, professionals, and the broader
community of AI practitioners. Our goal is to develop a comprehensive
guide that explores the intricacies of AI systems and their numerous
applications.

“If you want to go fast, go alone. If you want to go far, go
together.” – African Proverb

This isn’t a static textbook; it’s a living, breathing document.
We’re making it open-source and continuously updated to meet the
ever-changing needs of this dynamic field. Expect a rich blend of
expert knowledge that guides you through the complex interplay
between cutting-edge algorithms and the foundational principles that
make them work. We’re setting the stage for the next big leap in AI
innovation.

https://sites.google.com/g.harvard.edu/cs249-tinyml-2023

3

Why We Wrote This Book

We’re in an age where technology is always evolving. Open collabora-
tion and sharing knowledge are the building blocks of true innovation.
That’s the spirit behind this effort. We go beyond the traditional text-
book model to create a living knowledge hub, so that we can all share
and learn from one another.

The book focuses on AI systems’ principles and case studies, aim-
ing to give you a deep understanding that will help you navigate the
ever-changing landscape of AI systems. By keeping it open, we’re not
just making learning accessible but inviting new ideas and ongoing im-
provements. In short, we’re building a community where knowledge
is free to grow and light the way forward in global AI technology.

5

What You’ll Need to Know

To dive into this book, you don’t need to be an AI expert. All you need
is a basic understanding of computer science concepts and a curiosity
to explore how AI systems work. This is where innovation happens,
and a basic grasp of programming and data structures will be your
compass.

7

Book Conventions

For details on the conventions used in this book, check out the Conven-
tions section.

./contents/conventions.qmd
./contents/conventions.qmd

9

ContentTransparencyState-
ment

This book is a community-driven project, with content generated col-
laboratively by numerous contributors over time. The content creation
process may have involved various editing tools, including generative
AI technology. As the main author, editor, and curator, Prof. Vĳay
Janapa Reddi maintains human oversight and editorial oversight to
make sure the content is accurate and relevant. However, no one is
perfect, so inaccuracies may still exist. We highly value your feedback
and encourage you to provide corrections or suggestions. This collab-
orative approach is crucial for enhancing and maintaining the quality
of the content contained within and making high-quality information
globally accessible.

11

Want to Help Out?

If you’re interested in contributing, you can find the guidelines here.

https://github.com/harvard-edge/cs249r_book/blob/dev/contribute.md

13

Get in Touch

Do you have questions or feedback? Feel free to e-mail Prof. Vĳay
Janapa Reddi directly, or you are welcome to start a discussion thread
on GitHub.

mailto:vj@eecs.harvard.edu?subject=“CS249r%20MLSys%20with%20TinyML%20Book%20-%20”
mailto:vj@eecs.harvard.edu?subject=“CS249r%20MLSys%20with%20TinyML%20Book%20-%20”
https://github.com/harvard-edge/cs249r_book/discussions

15

Contributors

A big thanks to everyone who’s helped make this book what it is!
You can see the full list of individual contributors here and additional
GitHub style details here. Join us as a contributor!

./contents/contributors.qmd
https://github.com/harvard-edge/cs249r_book/graphs/contributors

17

Part I
FRONT MATTER

19

Dedication

This book is a testament to the idea that, in the vast expanse of technology and
innovation, it’s not always the largest systems, but the smallest ones, that can
change the world.

21

Acknowledgements

Assembling this book has been a long journey, spanning several years
of hard work. The initial idea for this book sprang from the TinyML
edX course, and its realization would not have been possible without
the invaluable contributions of countless individuals. We are deeply
indebted to the researchers whose groundbreaking work laid the foun-
dation for this book.

Individual Contributors
We extend our heartfelt gratitude to the open source community of
learners, teachers and sharers. Whether you contributed an entire sec-
tion, a single sentence, or merely corrected a typo, your efforts have
enhanced this book. We deeply appreciate everyone’s time, expertise,
and commitment. This book is as much yours as it is ours.

Special thanks go to Professor Vĳay Janapa Reddi, whose belief in
the transformative power of open-source communities and invaluable
guidance have been our guiding light from the outset.

We also owe a great deal to the team at GitHub and Quarto. You’ve
revolutionized the way people collaborate, and this book stands as a
testament to what can be achieved when barriers to global cooperation
are removed.

Funding Agencies and Companies
We are immensely grateful for the generous support from the vari-
ous funding agencies and companies that supported the teaching as-
sistants (TAs) involved in this work. The organizations listed below
played a crucial role in bringing this project to life with their contribu-
tions.

https://www.edx.org/certificates/professional-certificate/harvardx-tiny-machine-learning
https://www.edx.org/certificates/professional-certificate/harvardx-tiny-machine-learning

To Our Readers 22

To Our Readers
To all who pick up this book, we want to thank you! We wrote it with
you in mind, hoping to provoke thought, inspire questions, and per-
haps even ignite a spark of inspiration. After all, what is the point of
writing if no one is reading?

23

Contributors & Thanks

We extend our sincere thanks to the diverse group of individuals who
have generously contributed their expertise, insights, time, and sup-
port to improve both the content and codebase of this project. This
includes not only those who have directly contributed through code
and writing but also those who have helped by identifying issues, pro-
viding feedback, and offering suggestions. Below, you will find a list of
all contributors. If you would like to contribute to this project, please
visit our GitHub page for more information.

Vĳay Janapa Reddi
Ikechukwu Uchendu
Naeem Khoshnevis
jasonjabbour
Douwe den Blanken
shanzehbatool
Marcelo Rovai
Elias Nuwara
kai4avaya
Jared Ping
Matthew Stewart
Itai Shapira
Maximilian Lam
Jayson Lin
Andrea
Jeffrey Ma
Sophia Cho
Alex Rodriguez
Korneel Van den Berghe
Colby Banbury
Zishen Wan
Sara Khosravi
Divya Amirtharaj
Abdulrahman Mahmoud

https://github.com/harvard-edge/cs249r_book

Contributors & Thanks 24

Srivatsan Krishnan
Aghyad Deeb
marin-llobet
Jared Ni
Aditi Raju
ELSuitorHarvard
Michael Schnebly
oishib
Haoran Qiu
Emil Njor
Yu-Shun Hsiao
Henry Bae
Mark Mazumder
Jae-Won Chung
Marco Zennaro
Jennifer Zhou
eurashin
Andrew Bass
Emeka Ezike
Shvetank Prakash
Pong Trairatvorakul
Alex Oesterling
Allen-Kuang
Bruno Scaglione
gnodipac886
Gauri Jain
Fin Amin
Sercan Aygün
Baldassarre Cesarano
Yang Zhou
abigailswallow
yanjingl
Jason Yik
happyappledog
Curren Iyer
Emmanuel Rassou
Sonia Murthy
Shreya Johri
Jessica Quaye
Vĳay Edupuganti
The Random DIY
Costin-Andrei Oncescu
Annie Laurie Cook

CONTRIBUTORS & THANKS 25

Jothi Ramaswamy
Batur Arslan
a-saraf
songhan
Zishen

27

Copyright

This book is open-source and developed collaboratively through
GitHub. Unless otherwise stated, this work is licensed under the
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Inter-
national (CC BY-NC-SA 4.0 CC BY-SA 4.0). You can find the full text
of the license here.

Contributors to this project have dedicated their contributions to
the public domain or under the same open license as the original
project. While the contributions are collaborative, each contributor
retains copyright in their respective contributions.

For details on authorship, contributions, and how to contribute,
please see the project repository on GitHub.

All trademarks and registered trademarks mentioned in this book
are the property of their respective owners.

The information provided in this book is believed to be accurate and
reliable. However, the authors, editors, and publishers cannot be held
liable for any damages caused or alleged to be caused either directly or
indirectly by the information contained in this book.

https://creativecommons.org/licenses/by-nc-sa/4.0
https://github.com/harvard-edge/cs249r_book

29

About the Book

Overview
Welcome to this collaborative project initiated by the CS249r Machine
Learning Systems class at Harvard University. Our goal is to make
this book a community resource that assists educators and learners in
understanding ML systems. The book will be regularly updated to
reflect new insights into ML systems and effective teaching methods.

Topics Explored
This book offers a comprehensive look at various aspects of machine
learning systems. We cover the entire end-to-end ML systems work-
flow, starting with fundamental concepts and progressing through
data engineering, AI frameworks, and model training.

You’ll learn about optimizing models for efÏciency, deploying AI
on various hardware platforms, and benchmarking performance. The
book also explores more advanced topics like security, privacy, respon-
sible and sustainable AI, robust and generative AI, and the social im-
pact of AI. By the end, you’ll have a solid foundation and practical in-
sights into both the technical and ethical dimensions of machine learn-
ing.

By the time you finish this book, we hope that you’ll have a founda-
tional understanding of machine learning and its applications. You’ll
also learn about real-world implementations of machine learning sys-
tems and gain practical experience through project-based labs and as-
signments.

Who Should Read This
This book is tailored for those new to the exciting field of machine
learning systems. It starts with the basics of machine learning and pro-

Key Learning Outcomes 30

gresses to more advanced topics relevant to the ML community and
broader research areas. The book is particularly beneficial for:

• Students in Computer Science and Electrical Engineering: This
book is a useful resource for students studying computer science
and electrical engineering. It introduces them to the techniques
used in ML systems, preparing them for real-world challenges in
machine learning.

• Systems Engineers: For engineers in various domains, this book
serves as a guide to ML systems, helping them create intelligent
applications, especially on resource-constrained platforms.

• Researchers and Academics: Those involved in machine learn-
ing, computer vision, and signal processing research may find
this book insightful. It sheds light on the unique challenges of
running machine learning algorithms on diverse platforms.

• Industry Professionals: If you’re working in areas like IoT,
robotics, wearable tech, or smart devices, this book will equip
you with the knowledge you need to add machine learning
features to your products.

Key Learning Outcomes

Readers will acquire skills in training and deploying deep neural
network models on various platforms, along with understanding
the broader challenges involved in their design, development, and
deployment. Specifically, you’ll learn about:

• Foundational Concepts in Machine Learning
• Fundamentals of AI Systems
• Hardware Platforms Suitable for AI Deployment
• Techniques for Training Models for AI Different Systems
• Strategies for AI Model Optimization
• Real-world Applications of AI Systems
• Current Challenges and Future Trends in AI Systems

Our aim is to make this book a resource for anyone interested in de-
veloping intelligent applications on various systems. Upon completing
the book, you’ll be well-equipped to design and implement your own
machine learning-enabled projects.

ABOUT THE BOOK 31

Prerequisites for Readers
• Basic Programming Skills: We recommend that you have some

prior programming experience, ideally in Python. A grasp of
variables, data types, and control structures will make it easier
to engage with the book.

• Some Machine Learning Knowledge: While not mandatory, a
basic understanding of machine learning concepts will help you
absorb the material more readily. If you’re new to the field, the
book provides enough background information to get you up to
speed.

• Basic Systems Knowledge: A basic level of systems knowledge
at an undergraduate junior or senior level is recommended. Un-
derstanding system architecture, operating systems, and basic
networking will be beneficial.

• PythonProgramming (Optional): If you’re familiar with Python,
you’ll find it easier to engage with the coding sections of the book.
Knowing libraries like NumPy, scikit-learn, and TensorFlow will
be particularly helpful.

• Willingness to Learn: The book is designed to be accessible to a
broad audience, with varying levels of technical expertise. A will-
ingness to challenge yourself and engage in practical exercises
will help you get the most out of it.

• Resource Availability: For the hands-on aspects, you’ll need
a computer with Python and the relevant libraries installed.
Optional access to development boards or specific hardware
will also be beneficial for experimenting with machine learning
model deployment.

By meeting these prerequisites, you’ll be well-positioned to deepen
your understanding of machine learning systems, engage in coding ex-
ercises, and even implement practical applications on various devices.

33

Part II
MAIN

35

Part III
Fundamentals

37

Chapter 1

Introduction

Figure 1.1.: DALL·E 3 Prompt:
A detailed, rectangular, flat 2D
illustration depicting a roadmap
of a book’s chapters on machine
learning systems, set on a crisp,
clean white background. The im-
age features a winding road trav-
eling through various symbolic
landmarks. Each landmark rep-
resents a chapter topic: Introduc-
tion, ML Systems, Deep Learning,
AI Workflow, Data Engineering,
AI Frameworks, AI Training, Ef-
ficient AI, Model Optimizations,
AI Acceleration, Benchmarking
AI, On-Device Learning, Embed-
ded AIOps, Security & Privacy,
Responsible AI, Sustainable AI,
AI for Good, Robust AI, Genera-
tive AI. The style is clean, modern,
and flat, suitable for a technical
book, with each landmark clearly
labeled with its chapter title.

1.1 Overview
In the early 1990s, Mark Weiser, a pioneering computer scientist,
introduced the world to a revolutionary concept that would forever
change how we interact with technology. This was succintly captured
in the paper he wrote on “The Computer for the 21st Century”
(Figure 1.2). He envisioned a future where computing would be
seamlessly integrated into our environments, becoming an invisible,
integral part of daily life. This vision, which he termed “ubiquitous
computing,” promised a world where technology would serve us
without demanding our constant attention or interaction. Fast for-

https://en.wikipedia.org/wiki/Mark_Weiser

1.1. Overview 38

ward to today, and we find ourselves on the cusp of realizing Weiser’s
vision, thanks to the advent and proliferation of machine learning
systems.

Figure 1.2.: Ubiqutous comput-
ing.

In the vision of ubiquitous computing (Weiser 1991), the integra-
tion of processors into everyday objects is just one aspect of a larger
paradigm shift. The true essence of this vision lies in creating an intel-
ligent environment that can anticipate our needs and act on our behalf,
enhancing our experiences without requiring explicit commands. To
achieve this level of pervasive intelligence, it is crucial to develop and
deploy machine learning systems that span the entire ecosystem, from
the cloud to the edge and even to the tiniest IoT devices.

By distributing machine learning capabilities across the computing
continuum, we can harness the strengths of each layer while mitigat-
ing their limitations. The cloud, with its vast computational resources
and storage capacity, is ideal for training complex models on large
datasets and performing resource-intensive tasks. Edge devices, such
as gateways and smartphones, can process data locally, enabling faster
response times, improved privacy, and reduced bandwidth require-
ments. Finally, the tiniest IoT devices, equipped with machine learning
capabilities, can make quick decisions based on sensor data, enabling
highly responsive and efÏcient systems.

This distributed intelligence is particularly crucial for applications
that require real-time processing, such as autonomous vehicles, indus-
trial automation, and smart healthcare. By processing data at the most
appropriate layer of the computing continuum, we can ensure that de-

CHAPTER 1. INTRODUCTION 39

cisions are made quickly and accurately, without relying on constant
communication with a central server.

The migration of machine learning intelligence across the ecosys-
tem also enables more personalized and context-aware experiences. By
learning from user behavior and preferences at the edge, devices can
adapt to individual needs without compromising privacy. This local-
ized intelligence can then be aggregated and refined in the cloud, cre-
ating a feedback loop that continuously improves the overall system.

However, deploying machine learning systems across the comput-
ing continuum presents several challenges. Ensuring the interoperabil-
ity and seamless integration of these systems requires standardized
protocols and interfaces. Security and privacy concerns must also be
addressed, as the distribution of intelligence across multiple layers in-
creases the attack surface and the potential for data breaches.

Furthermore, the varying computational capabilities and energy
constraints of devices at different layers of the computing continuum
necessitate the development of efÏcient and adaptable machine
learning models. Techniques such as model compression, federated
learning, and transfer learning can help address these challenges,
enabling the deployment of intelligence across a wide range of
devices.

As we move towards the realization of Weiser’s vision of ubiquitous
computing, the development and deployment of machine learning sys-
tems across the entire ecosystem will be critical. By leveraging the
strengths of each layer of the computing continuum, we can create
an intelligent environment that seamlessly integrates with our daily
lives, anticipating our needs and enhancing our experiences in ways
that were once unimaginable. As we continue to push the boundaries
of what’s possible with distributed machine learning, we inch closer
to a future where technology becomes an invisible but integral part of
our world.

1.2 What’s Inside the Book
In this book, we will explore the technical foundations of ubiquitous
machine learning systems, the challenges of building and deploying
these systems across the computing continuum, and the vast array
of applications they enable. A unique aspect of this book is its func-
tion as a conduit to seminal scholarly works and academic research pa-
pers, aimed at enriching the reader’s understanding and encouraging
deeper exploration of the subject. This approach seeks to bridge the
gap between pedagogical materials and cutting-edge research trends,
offering a comprehensive guide that is in step with the evolving field

1.3. How to Navigate This Book 40

of applied machine learning.
To improve the learning experience, we have included a variety of

supplementary materials. Throughout the book, you will find slides
that summarize key concepts, videos that provide in-depth explana-
tions and demonstrations, exercises that reinforce your understanding,
and labs that offer hands-on experience with the tools and techniques
discussed. These additional resources are designed to cater to different
learning styles and help you gain a deeper, more practical understand-
ing of the subject matter.

We begin with the fundamentals, introducing key concepts in sys-
tems and machine learning, and providing a deep learning primer. We
then guide you through the AI workflow, from data engineering to se-
lecting the right AI frameworks. The training section covers efÏcient
AI training techniques, model optimizations, and AI acceleration using
specialized hardware. Deployment is addressed next, with chapters
on benchmarking AI, distributed learning, and ML operations. Ad-
vanced topics like security, privacy, responsible AI, sustainable AI, ro-
bust AI, and generative AI are then explored in depth. The book con-
cludes by highlighting the positive impact of AI and its potential for
good.

1.3 How to Navigate This Book

To get the most out of this book, we recommend a structured learning
approach that leverages the various resources provided. Each chapter
includes slides, videos, exercises, and labs to cater to different learning
styles and reinforce your understanding. Additionally, an AI tutor bot
(SocratiQ AI) is readily available to guide you through the content and
provide personalized assistance.

1. Fundamentals (Chapters 1-3): Start by building a strong founda-
tion with the initial chapters, which provide an introduction to
embedded AI and cover core topics like embedded systems and
deep learning.

2. Workflow (Chapters 4-6): With that foundation, move on to the
chapters focused on practical aspects of the AI model building
process like workflows, data engineering, and frameworks.

3. Training (Chapters 7-10): These chapters offer insights into ef-
fectively training AI models, including techniques for efÏciency,
optimizations, and acceleration.

CHAPTER 1. INTRODUCTION 41

4. Deployment (Chapters 11-13): Learn about deploying AI on de-
vices and monitoring the operationalization through methods
like benchmarking, on-device learning, and MLOps.

5. Advanced Topics (Chapters 14-18): Critically examine topics
like security, privacy, ethics, sustainability, robustness, and
generative AI.

6. Social Impact (Chapter 19): Explore the positive applications
and potential of AI for societal good.

7. Conclusion (Chapter 20): Reflect on the key takeaways and fu-
ture directions in embedded AI.

While the book is designed for progressive learning, we encourage
an interconnected learning approach that allows you to navigate chap-
ters based on your interests and needs. Throughout the book, you’ll
find case studies and hands-on exercises that help you relate theory to
real-world applications. We also recommend participating in forums
and groups to engage in discussions, debate concepts, and share in-
sights with fellow learners. Regularly revisiting chapters can help re-
inforce your learning and offer new perspectives on the concepts cov-
ered. By adopting this structured yet flexible approach and actively
engaging with the content and the community, you’ll embark on a ful-
filling and enriching learning experience that maximizes your under-
standing.

1.4 Chapter Breakdown
Here’s a closer look at what each chapter covers. We have structured
the book into six main sections: Fundamentals, Workflow, Training,
Deployment, Advanced Topics, and Impact. These sections closely
reflect the major components of a typical machine learning pipeline,
from understanding the basic concepts to deploying and maintaining
AI systems in real-world applications. By organizing the content in this
manner, we aim to provide a logical progression that mirrors the actual
process of developing and implementing embedded AI solutions.

1.4.1 Fundamentals

In the Fundamentals section, we lay the groundwork for understand-
ing embedded AI. We introduce key concepts, provide an overview

https://github.com/harvard-edge/cs249r_book/discussions

1.4. Chapter Breakdown 42

of machine learning systems, and dive into the principles and algo-
rithms of deep learning that power AI applications in embedded sys-
tems. This section equips you with the essential knowledge needed to
grasp the subsequent chapters.

1. Introduction: This chapter sets the stage, providing an overview
of embedded AI and laying the groundwork for the chapters that
follow.

2. ML Systems: We introduce the basics of machine learning sys-
tems, the platforms where AI algorithms are widely applied.

3. Deep Learning Primer: This chapter offers a comprehensive in-
troduction to the algorithms and principles that underpin AI ap-
plications in embedded systems.

1.4.2 Workflow

The Workflow section guides you through the practical aspects of
building AI models. We break down the AI workflow, discuss data
engineering best practices, and review popular AI frameworks. By
the end of this section, you’ll have a clear understanding of the
steps involved in developing proficient AI applications and the tools
available to streamline the process.

4. AI Workflow: This chapter breaks down the machine learning
workflow, offering insights into the steps leading to proficient AI
applications.

5. Data Engineering: We focus on the importance of data in AI sys-
tems, discussing how to effectively manage and organize data.

6. AI Frameworks: This chapter reviews different frameworks for
developing machine learning models, guiding you in choosing
the most suitable one for your projects.

1.4.3 Training

In the Training section, we explore techniques for training efÏcient
and reliable AI models. We cover strategies for achieving efÏciency,
model optimizations, and the role of specialized hardware in AI ac-
celeration. This section empowers you with the knowledge to develop
high-performing models that can be seamlessly integrated into embed-
ded systems.

7. AI Training: This chapter explores model training, exploring
techniques for developing efÏcient and reliable models.

../introduction/introduction.qmd
../ml_systems/ml_systems.qmd
../dl_primer/dl_primer.qmd
../workflow/workflow.qmd
../data_engineering/data_engineering.qmd
../frameworks/frameworks.qmd
../training/training.qmd

CHAPTER 1. INTRODUCTION 43

8. EfÏcient AI: Here, we discuss strategies for achieving efÏciency
in AI applications, from computational resource optimization to
performance enhancement.

9. Model Optimizations: We explore various avenues for optimiz-
ing AI models for seamless integration into embedded systems.

10. AI Acceleration: We discuss the role of specialized hardware in
enhancing the performance of embedded AI systems.

1.4.4 Deployment

The Deployment section focuses on the challenges and solutions for
deploying AI models on embedded devices. We discuss benchmarking
methods to evaluate AI system performance, techniques for on-device
learning to improve efÏciency and privacy, and the processes involved
in ML operations. This section equips you with the skills to effectively
deploy and maintain AI functionalities in embedded systems.

11. Benchmarking AI: This chapter focuses on how to evaluate AI
systems through systematic benchmarking methods.

12. On-Device Learning: We explore techniques for localized learn-
ing, which enhances both efÏciency and privacy.

13. ML Operations: This chapter looks at the processes involved
in the seamless integration, monitoring, and maintenance of AI
functionalities in embedded systems.

1.4.5 Advanced Topics

In the Advanced Topics section, We will study the critical issues sur-
rounding embedded AI. We address privacy and security concerns, ex-
plore the ethical principles of responsible AI, discuss strategies for sus-
tainable AI development, examine techniques for building robust AI
models, and introduce the exciting field of generative AI. This section
broadens your understanding of the complex landscape of embedded
AI and prepares you to navigate its challenges.

14. Security & Privacy: As AI becomes more ubiquitous, this chap-
ter addresses the crucial aspects of privacy and security in em-
bedded AI systems.

15. Responsible AI: We discuss the ethical principles guiding the
responsible use of AI, focusing on fairness, accountability, and
transparency.

16. SustainableAI: This chapter explores practices and strategies for
sustainable AI, ensuring long-term viability and reduced envi-
ronmental impact.

../efficient_ai/efficient_ai.qmd
../optimizations/optimizations.qmd
../hw_acceleration/hw_acceleration.qmd
../benchmarking/benchmarking.qmd
../ondevice_learning/ondevice_learning.qmd
../ops/ops.qmd
../privacy_security/privacy_security.qmd
../responsible_ai/responsible_ai.qmd
../sustainable_ai/sustainable_ai.qmd

1.5. Contribute Back 44

17. Robust AI: We discuss techniques for developing reliable and
robust AI models that can perform consistently across various
conditions.

18. Generative AI: This chapter explores the algorithms and tech-
niques behind generative AI, opening avenues for innovation
and creativity.

1.4.6 Social Impact

The Impact section highlights the transformative potential of embed-
ded AI in various domains. We showcase real-world applications
of TinyML in healthcare, agriculture, conservation, and other areas
where AI is making a positive difference. This section inspires you to
leverage the power of embedded AI for societal good and to contribute
to the development of impactful solutions.

19. AI for Good: We highlight positive applications of TinyML in
areas like healthcare, agriculture, and conservation.

1.4.7 Closing

In the Closing section, we reflect on the key learnings from the book
and look ahead to the future of embedded AI. We synthesize the con-
cepts covered, discuss emerging trends, and provide guidance on con-
tinuing your learning journey in this rapidly evolving field. This sec-
tion leaves you with a comprehensive understanding of embedded AI
and the excitement to apply your knowledge in innovative ways.

20. Conclusion: The book concludes with a reflection on the key
learnings and future directions in the field of embedded AI.

1.5 Contribute Back
Learning in the fast-paced world of AI is a collaborative journey.
We set out to nurture a vibrant community of learners, innovators,
and contributors. As you explore the concepts and engage with
the exercises, we encourage you to share your insights and experi-
ences. Whether it’s a novel approach, an interesting application, or a
thought-provoking question, your contributions can enrich the learn-
ing ecosystem. Engage in discussions, offer and seek guidance, and
collaborate on projects to foster a culture of mutual growth and learn-
ing. By sharing knowledge, you play an important role in fostering a
globally connected, informed, and empowered community.

../robust_ai/robust_ai.qmd
../generative_ai/generative_ai.qmd
../ai_for_good/ai_for_good.qmd
../conclusion/conclusion.qmd

45

Chapter 2

ML Systems

Figure 2.1.: DALL·E 3 Prompt:
Illustration in a rectangular for-
mat depicting themerger of embed-
ded systems with Embedded AI.
The left half of the image portrays
traditional embedded systems, in-
cluding microcontrollers and pro-
cessors, detailed and precise. The
right half showcases the world
of artificial intelligence, with ab-
stract representations of machine
learning models, neurons, and
data flow. The two halves are dis-
tinctly separated, emphasizing the
individual significance of embed-
ded tech and AI, but they come to-
gether in harmony at the center.

Machine learning (ML) systems, built on the foundation of comput-
ing systems, hold the potential to transform our world. These systems,
with their specialized roles and real-time computational capabilities,
represent a critical junction where data and computation meet on a
micro-scale. They are specifically tailored to optimize performance,
energy usage, and spatial efÏciency—key factors essential for the suc-
cessful implementation of ML systems.

As this chapter progresses, we will explore embedded systems’ com-
plex and fascinating world. We’ll gain insights into their structural de-
sign and operational features and understand their key role in power-
ing ML applications. Starting with the basics of microcontroller units,
we will examine the interfaces and peripherals that improve their func-

2.1. Introduction 46

tionalities. This chapter is designed to be a comprehensive guide elu-
cidating the nuanced aspects of embedded systems within the ML sys-
tems framework.

Learning Objectives

• Acquire a comprehensive understanding of ML systems, in-
cluding their definitions, architecture, and programming
languages.

• Explore the design and operational principles of ML sys-
tems, including the use of a microprocessor, memory man-
agement, System-on-chip (SoC) integration, and the devel-
opment and deployment of machine learning models.

• Examine the interfaces, power management, and real-time
operating characteristics essential for efÏcient ML systems
alongside energy efÏciency, reliability, and security consid-
erations.

• Investigate the distinctions, benefits, challenges, and use
cases for Cloud ML, Edge ML, and TinyML, emphasiz-
ing selecting the appropriate machine learning approach
based on specific application needs and the evolving land-
scape of embedded systems in machine learning.

2.1 Introduction
ML is rapidly evolving, with new paradigms reshaping how models
are developed, trained, and deployed. One such paradigm is embed-
ded machine learning, which is experiencing significant innovation
driven by the proliferation of smart sensors, edge devices, and micro-
controllers. Embedded machine learning refers to the integration of
machine learning algorithms into the hardware of a device, enabling
real-time data processing and analysis without relying on cloud con-
nectivity. This chapter explores the landscape of embedded machine
learning, covering the key approaches of Cloud ML, Edge ML, and
TinyML (Figure 2.2).

ML began with Cloud ML, where powerful servers in the cloud were
used to train and run large ML models. However, as the need for
real-time, low-latency processing grew, Edge ML emerged, bringing
inference capabilities closer to the data source on edge devices such as
smartphones. The latest development in this progression is TinyML,

CHAPTER 2. ML SYSTEMS 47

Figure 2.2.: Cloud vs. Edge
vs. TinyML: The Spectrum
of Distributed Intelligence.
Source: ABI Research –
TinyML.

which enables ML models to run on extremely resource-constrained
microcontrollers and small embedded systems. TinyML allows for on-
device inference without relying on connectivity to the cloud or edge,
opening up new possibilities for intelligent, battery-operated devices.

Figure 2.3 shows the key differences between Cloud ML, Edge ML,
and TinyML in terms of hardware, latency, connectivity, power re-
quirements, and model complexity. This significant disparity in avail-
able resources poses challenges when attempting to deploy deep learn-
ing models on microcontrollers, as these models often require substan-
tial memory and storage. For instance, widely used deep learning mod-
els such as ResNet-50 exceed the resource limits of microcontrollers by
a factor of around 100, while more efÏcient models like MobileNet-V2
still surpass these constraints by a factor of approximately 20. Even
when quantized to use 8-bit integers (int8) for reduced memory usage,
MobileNetV2 requires more than 5 times the memory typically avail-
able on a microcontroller, making it difÏcult to fit the model on these
tiny devices.

Figure 2.3.: From cloud GPUs
to microcontrollers: Navigat-
ing the memory and storage
landscape across computing
devices. Source: (J. Lin et al.
2023)

2.2 Cloud ML
Cloud ML leverages powerful servers in the cloud for training and run-
ning large, complex ML models, and relies on internet connectivity.

2.2. Cloud ML 48

2.2.1 Characteristics

Definition of Cloud ML
Cloud Machine Learning (Cloud ML) is a subfield of machine learn-

ing that leverages the power and scalability of cloud computing infras-
tructure to develop, train, and deploy machine learning models. By uti-
lizing the vast computational resources available in the cloud, Cloud
ML enables the efÏcient handling of large-scale datasets and complex
machine learning algorithms.

Centralized Infrastructure
One of the key characteristics of Cloud ML is its centralized infras-

tructure. Cloud service providers offer a virtual platform that consists
of high-capacity servers, expansive storage solutions, and robust net-
working architectures, all housed in data centers distributed across the
globe (Figure 2.4). This centralized setup allows for the pooling and
efÏcient management of computational resources, making it easier to
scale machine learning projects as needed.

Scalable Data Processing and Model Training
Cloud ML excels in its ability to process and analyze massive vol-

umes of data. The centralized infrastructure is designed to handle
complex computations and model training tasks that require signifi-
cant computational power. By leveraging the scalability of the cloud,
machine learning models can be trained on vast amounts of data, lead-
ing to improved learning capabilities and predictive performance.

Flexible Deployment and Accessibility
Another advantage of Cloud ML is the flexibility it offers in terms

of deployment and accessibility. Once a machine learning model is
trained and validated, it can be easily deployed and made accessible
to users through cloud-based services. This allows for seamless inte-
gration of machine learning capabilities into various applications and
services, regardless of the user’s location or device.

Collaboration and Resource Sharing
Cloud ML promotes collaboration and resource sharing among

teams and organizations. The centralized nature of the cloud in-
frastructure enables multiple users to access and work on the same
machine learning projects simultaneously. This collaborative ap-
proach facilitates knowledge sharing, accelerates the development
process, and optimizes resource utilization.

Cost-Effectiveness and Scalability
By leveraging the pay-as-you-go pricing model offered by cloud

service providers, Cloud ML allows organizations to avoid the
upfront costs associated with building and maintaining their own
machine learning infrastructure. The ability to scale resources up or

../training/training.qmd

CHAPTER 2. ML SYSTEMS 49

down based on demand ensures cost-effectiveness and flexibility in
managing machine learning projects.

Cloud ML has revolutionized the way machine learning is ap-
proached, making it more accessible, scalable, and efÏcient. It has
opened up new possibilities for organizations to harness the power
of machine learning without the need for significant investments in
hardware and infrastructure.

Figure 2.4.: Cloud TPU data
center at Google. Source:
Google.

2.2.2 Benefits

Cloud ML offers several significant benefits that make it a powerful
choice for machine learning projects:

Immense Computational Power
One of the key advantages of Cloud ML is its ability to provide vast

computational resources. The cloud infrastructure is designed to han-
dle complex algorithms and process large datasets efÏciently. This is
particularly beneficial for machine learning models that require signif-
icant computational power, such as deep learning networks or models
trained on massive datasets. By leveraging the cloud’s computational
capabilities, organizations can overcome the limitations of local hard-
ware setups and scale their machine learning projects to meet demand-
ing requirements.

Dynamic Scalability
Cloud ML offers dynamic scalability, allowing organizations to eas-

ily adapt to changing computational needs. As the volume of data
grows or the complexity of machine learning models increases, the
cloud infrastructure can seamlessly scale up or down to accommodate
these changes. This flexibility ensures consistent performance and en-
ables organizations to handle varying workloads without the need for

https://blog.google/technology/ai/google-gemini-ai/#scalable-efficient

2.2. Cloud ML 50

extensive hardware investments. With Cloud ML, resources can be al-
located on-demand, providing a cost-effective and efÏcient solution for
managing machine learning projects.

Access to Advanced Tools and Algorithms
Cloud ML platforms provide access to a wide range of advanced

tools and algorithms specifically designed for machine learning.
These tools often include pre-built libraries, frameworks, and APIs
that simplify the development and deployment of machine learning
models. Developers can leverage these resources to accelerate the
building, training, and optimization of sophisticated models. By
utilizing the latest advancements in machine learning algorithms and
techniques, organizations can stay at the forefront of innovation and
achieve better results in their machine learning projects.

Collaborative Environment
Cloud ML fosters a collaborative environment that enables teams

to work together seamlessly. The centralized nature of the cloud
infrastructure allows multiple users to access and contribute to the
same machine learning projects simultaneously. This collaborative
approach facilitates knowledge sharing, promotes cross-functional
collaboration, and accelerates the development and iteration of ma-
chine learning models. Teams can easily share code, datasets, and
results, enabling efÏcient collaboration and driving innovation across
the organization.

Cost-Effectiveness
Adopting Cloud ML can be a cost-effective solution for orga-

nizations, especially compared to building and maintaining an
on-premises machine learning infrastructure. Cloud service providers
offer flexible pricing models, such as pay-as-you-go or subscription-
based plans, allowing organizations to pay only for the resources they
consume. This eliminates the need for upfront capital investments in
hardware and infrastructure, reducing the overall cost of implement-
ing machine learning projects. Additionally, the scalability of Cloud
ML ensures that organizations can optimize their resource usage and
avoid overprovisioning, further enhancing cost-efÏciency.

The benefits of Cloud ML, including its immense computational
power, dynamic scalability, access to advanced tools and algorithms,
collaborative environment, and cost-effectiveness, make it a com-
pelling choice for organizations looking to harness the potential
of machine learning. By leveraging the capabilities of the cloud,
organizations can accelerate their machine learning initiatives, drive
innovation, and gain a competitive edge in today’s data-driven
landscape.

CHAPTER 2. ML SYSTEMS 51

2.2.3 Challenges

While Cloud ML offers numerous benefits, it also comes with certain
challenges that organizations need to consider:

Latency Issues
One of the main challenges of Cloud ML is the potential for latency

issues, especially in applications that require real-time responses.
Since data needs to be sent from the data source to centralized cloud
servers for processing and then back to the application, there can be
delays introduced by network transmission. This latency can be a
significant drawback in time-sensitive scenarios, such as autonomous
vehicles, real-time fraud detection, or industrial control systems,
where immediate decision-making is critical. Developers need to care-
fully design their systems to minimize latency and ensure acceptable
response times.

Data Privacy and Security Concerns
Centralizing data processing and storage in the cloud can raise con-

cerns about data privacy and security. When sensitive data is trans-
mitted and stored in remote data centers, it becomes vulnerable to po-
tential cyber-attacks and unauthorized access. Cloud data centers can
become attractive targets for hackers seeking to exploit vulnerabilities
and gain access to valuable information. Organizations need to invest
in robust security measures, such as encryption, access controls, and
continuous monitoring, to protect their data in the cloud. Compliance
with data privacy regulations, such as GDPR or HIPAA, also becomes
a critical consideration when handling sensitive data in the cloud.

Cost Considerations
As data processing needs grow, the costs associated with using

cloud services can escalate. While Cloud ML offers scalability and
flexibility, organizations dealing with large data volumes may face
increasing costs as they consume more cloud resources. The pay-as-
you-go pricing model of cloud services means that costs can quickly
add up, especially for compute-intensive tasks like model training
and inference. Organizations need to carefully monitor and optimize
their cloud usage to ensure cost-effectiveness. They may need to
consider strategies such as data compression, efÏcient algorithm
design, and resource allocation optimization to minimize costs while
still achieving desired performance.

Dependency on Internet Connectivity
Cloud ML relies on stable and reliable internet connectivity to func-

tion effectively. Since data needs to be transmitted to and from the
cloud, any disruptions or limitations in network connectivity can im-
pact the performance and availability of the machine learning system.
This dependency on internet connectivity can be a challenge in scenar-

2.2. Cloud ML 52

ios where network access is limited, unreliable, or expensive. Orga-
nizations need to ensure robust network infrastructure and consider
failover mechanisms or ofÒine capabilities to mitigate the impact of
connectivity issues.

Vendor Lock-In
When adopting Cloud ML, organizations often become dependent

on the specific tools, APIs, and services provided by their chosen cloud
vendor. This vendor lock-in can make it difÏcult to switch providers
or migrate to different platforms in the future. Organizations may face
challenges in terms of portability, interoperability, and cost when con-
sidering a change in their cloud ML provider. It is important to care-
fully evaluate vendor offerings, consider long-term strategic goals, and
plan for potential migration scenarios to minimize the risks associated
with vendor lock-in.

Addressing these challenges requires careful planning, architectural
design, and risk mitigation strategies. Organizations need to weigh
the benefits of Cloud ML against the potential challenges and make in-
formed decisions based on their specific requirements, data sensitivity,
and business objectives. By proactively addressing these challenges,
organizations can effectively leverage the power of Cloud ML while
ensuring data privacy, security, cost-effectiveness, and overall system
reliability.

2.2.4 Example Use Cases

Cloud ML has found widespread adoption across various domains,
revolutionizing the way businesses operate and users interact with
technology. Let’s explore some notable examples of Cloud ML in ac-
tion:

Virtual Assistants
Cloud ML plays a crucial role in powering virtual assistants like Siri

and Alexa. These systems leverage the immense computational capa-
bilities of the cloud to process and analyze voice inputs in real-time.
By harnessing the power of natural language processing and machine
learning algorithms, virtual assistants can understand user queries, ex-
tract relevant information, and generate intelligent and personalized
responses. The cloud’s scalability and processing power enable these
assistants to handle a vast number of user interactions simultaneously,
providing a seamless and responsive user experience.

Recommendation Systems
Cloud ML forms the backbone of advanced recommendation sys-

tems used by platforms like Netflix and Amazon. These systems use
the cloud’s ability to process and analyze massive datasets to uncover

CHAPTER 2. ML SYSTEMS 53

patterns, preferences, and user behavior. By leveraging collaborative
filtering and other machine learning techniques, recommendation sys-
tems can offer personalized content or product suggestions tailored to
each user’s interests. The cloud’s scalability allows these systems to
continuously update and refine their recommendations based on the
ever-growing amount of user data, enhancing user engagement and
satisfaction.

Fraud Detection
In the financial industry, Cloud ML has revolutionized fraud detec-

tion systems. By leveraging the cloud’s computational power, these
systems can analyze vast amounts of transactional data in real-time to
identify potential fraudulent activities. Machine learning algorithms
trained on historical fraud patterns can detect anomalies and suspi-
cious behavior, enabling financial institutions to take proactive mea-
sures to prevent fraud and minimize financial losses. The cloud’s abil-
ity to process and store large volumes of data makes it an ideal platform
for implementing robust and scalable fraud detection systems.

Personalized User Experiences
Cloud ML is deeply integrated into our online experiences, shaping

the way we interact with digital platforms. From personalized ads on
social media feeds to predictive text features in email services, Cloud
ML powers smart algorithms that enhance user engagement and con-
venience. It enables e-commerce sites to recommend products based
on a user’s browsing and purchase history, fine-tunes search engines
to deliver accurate and relevant results, and automates the tagging and
categorization of photos on platforms like Facebook. By leveraging the
cloud’s computational resources, these systems can continuously learn
and adapt to user preferences, providing a more intuitive and person-
alized user experience.

Security and Anomaly Detection
Cloud ML plays a role in bolstering user security by powering

anomaly detection systems. These systems continuously monitor user
activities and system logs to identify unusual patterns or suspicious
behavior. By analyzing vast amounts of data in real-time, Cloud ML
algorithms can detect potential cyber threats, such as unauthorized
access attempts, malware infections, or data breaches. The cloud’s
scalability and processing power enable these systems to handle
the increasing complexity and volume of security data, providing a
proactive approach to protecting users and systems from potential
threats.

2.3 Edge ML

2.3. Edge ML 54

2.3.1 Characteristics

Definition of Edge ML
Edge Machine Learning (Edge ML) runs machine learning algo-

rithms directly on endpoint devices or closer to where the data is
generated rather than relying on centralized cloud servers. This
approach brings computation closer to the data source, reducing the
need to send large volumes of data over networks, often resulting in
lower latency and improved data privacy.

Decentralized Data Processing
In Edge ML, data processing happens in a decentralized fashion. In-

stead of sending data to remote servers, the data is processed locally
on devices like smartphones, tablets, or Internet of Things (IoT) devices
(Figure 2.5). This local processing allows devices to make quick deci-
sions based on the data they collect without relying heavily on a cen-
tral server’s resources. This decentralization is particularly important
in real-time applications where even a slight delay can have significant
consequences.

Local Data Storage and Computation
Local data storage and computation are key features of Edge ML.

This setup ensures that data can be stored and analyzed directly on
the devices, thereby maintaining the privacy of the data and reduc-
ing the need for constant internet connectivity. Moreover, this often
leads to more efÏcient computation, as data doesn’t have to travel long
distances, and computations are performed with a more nuanced un-
derstanding of the local context, which can sometimes result in more
insightful analyses.

Figure 2.5.: Edge ML Exam-
ples. Source: Edge Impulse.

CHAPTER 2. ML SYSTEMS 55

2.3.2 Benefits

Reduced Latency
One of Edge ML’s main advantages is the significant latency reduc-

tion compared to Cloud ML. This reduced latency can be a critical ben-
efit in situations where milliseconds count, such as in autonomous ve-
hicles, where quick decision-making can mean the difference between
safety and an accident.

Enhanced Data Privacy
Edge ML also offers improved data privacy, as data is primarily

stored and processed locally. This minimizes the risk of data breaches
that are more common in centralized data storage solutions. Sensitive
information can be kept more secure, as it’s not sent over networks
that could be intercepted.

Lower Bandwidth Usage
Operating closer to the data source means less data must be sent over

networks, reducing bandwidth usage. This can result in cost savings
and efÏciency gains, especially in environments where bandwidth is
limited or costly.

2.3.3 Challenges

Limited Computational Resources Compared to Cloud ML
However, Edge ML has its challenges. One of the main concerns

is the limited computational resources compared to cloud-based so-
lutions. Endpoint devices may have a different processing power or
storage capacity than cloud servers, limiting the complexity of the ma-
chine learning models that can be deployed.

Complexity in Managing Edge Nodes
Managing a network of edge nodes can introduce complexity, espe-

cially regarding coordination, updates, and maintenance. Ensuring all
nodes operate seamlessly and are up-to-date with the latest algorithms
and security protocols can be a logistical challenge.

Security Concerns at the Edge Nodes
While Edge ML offers enhanced data privacy, edge nodes can some-

times be more vulnerable to physical and cyber-attacks. Developing
robust security protocols that protect data at each node without com-
promising the system’s efÏciency remains a significant challenge in de-
ploying Edge ML solutions.

2.3.4 Example Use Cases

Edge ML has many applications, from autonomous vehicles and smart
homes to industrial Internet of Things (IoT). These examples were cho-

2.4. Tiny ML 56

sen to highlight scenarios where real-time data processing, reduced
latency, and enhanced privacy are not just beneficial but often critical
to the operation and success of these technologies. They demonstrate
the role that Edge ML can play in driving advancements in various
sectors, fostering innovation, and paving the way for more intelligent,
responsive, and adaptive systems.

Autonomous Vehicles
Autonomous vehicles stand as a prime example of Edge ML’s poten-

tial. These vehicles rely heavily on real-time data processing to navi-
gate and make decisions. Localized machine learning models assist in
quickly analyzing data from various sensors to make immediate driv-
ing decisions, ensuring safety and smooth operation.

Smart Homes and Buildings
Edge ML plays a crucial role in efÏciently managing various systems

in smart homes and buildings, from lighting and heating to security.
By processing data locally, these systems can operate more respon-
sively and harmoniously with the occupants’ habits and preferences,
creating a more comfortable living environment.

Industrial IoT
The Industrial IoT leverages Edge ML to monitor and control

complex industrial processes. Here, machine learning models can
analyze data from numerous sensors in real-time, enabling predictive
maintenance, optimizing operations, and enhancing safety measures.
This revolution in industrial automation and efÏciency is transforming
manufacturing and production across various sectors.

The applicability of Edge ML is vast and not limited to these exam-
ples. Various other sectors, including healthcare, agriculture, and ur-
ban planning, are exploring and integrating Edge ML to develop inno-
vative solutions responsive to real-world needs and challenges, herald-
ing a new era of smart, interconnected systems.

2.4 Tiny ML

2.4.1 Characteristics

Definition of TinyML
TinyML sits at the crossroads of embedded systems and machine

learning, representing a burgeoning field that brings smart algorithms
directly to tiny microcontrollers and sensors. These microcontrollers
operate under severe resource constraints, particularly regarding mem-
ory, storage, and computational power (see a TinyML kit example in
Figure 2.6).

On-Device Machine Learning

CHAPTER 2. ML SYSTEMS 57

In TinyML, the focus is on on-device machine learning. This means
that machine learning models are deployed and trained on the device,
eliminating the need for external servers or cloud infrastructures. This
allows TinyML to enable intelligent decision-making right where the
data is generated, making real-time insights and actions possible, even
in settings where connectivity is limited or unavailable.

Low Power and Resource-Constrained Environments
TinyML excels in low-power and resource-constrained settings.

These environments require highly optimized solutions that function
within the available resources. TinyML meets this need through
specialized algorithms and models designed to deliver decent per-
formance while consuming minimal energy, thus ensuring extended
operational periods, even in battery-powered devices.

Figure 2.6.: Examples of
TinyML device kits. Source:
Widening Access to Applied
Machine Learning with
TinyML.

Exercise 1: TinyML with Arduino

Get ready to bring machine learning to the smallest of devices!
In the embedded machine learning world, TinyML is where re-
source constraints meet ingenuity. This Colab notebook will
walk you through building a gesture recognition model designed
on an Arduino board. You’ll learn how to train a small but effec-
tive neural network, optimize it for minimal memory usage, and
deploy it to your microcontroller. If you’re excited about making
everyday objects smarter, this is where it begins!

2.4.2 Benefits

Extremely Low Latency
One of the standout benefits of TinyML is its ability to offer ultra-low

latency. Since computation occurs directly on the device, the time re-
quired to send data to external servers and receive a response is elim-

https://arxiv.org/pdf/2106.04008.pdf
https://arxiv.org/pdf/2106.04008.pdf
https://arxiv.org/pdf/2106.04008.pdf
https://colab.research.google.com/github/arduino/ArduinoTensorFlowLiteTutorials/blob/master/GestureToEmoji/arduino_tinyml_workshop.ipynb

2.4. Tiny ML 58

inated. This is crucial in applications requiring immediate decision-
making, enabling quick responses to changing conditions.

High Data Security
TinyML inherently enhances data security. Because data processing

and analysis happen on the device, the risk of data interception dur-
ing transmission is virtually eliminated. This localized approach to
data management ensures that sensitive information stays on the de-
vice, strengthening user data security.

Energy EfÏciency
TinyML operates within an energy-efÏcient framework, a necessity

given its resource-constrained environments. By employing lean algo-
rithms and optimized computational methods, TinyML ensures that
devices can execute complex tasks without rapidly depleting battery
life, making it a sustainable option for long-term deployments.

2.4.3 Challenges

Limited Computational Capabilities
However, the shift to TinyML comes with its set of hurdles. The pri-

mary limitation is the devices’ constrained computational capabilities.
The need to operate within such limits means that deployed models
must be simplified, which could affect the accuracy and sophistication
of the solutions.

Complex Development Cycle
TinyML also introduces a complicated development cycle. Craft-

ing lightweight and effective models demands a deep understanding
of machine learning principles and expertise in embedded systems.
This complexity calls for a collaborative development approach, where
multi-domain expertise is essential for success.

Model Optimization and Compression
A central challenge in TinyML is model optimization and compres-

sion. Creating machine learning models that can operate effectively
within the limited memory and computational power of microcon-
trollers requires innovative approaches to model design. Developers
often face the challenge of striking a delicate balance and optimiz-
ing models to maintain effectiveness while fitting within stringent
resource constraints.

2.4.4 Example Use Cases

Wearable Devices
In wearables, TinyML opens the door to smarter, more responsive

gadgets. From fitness trackers offering real-time workout feedback to

CHAPTER 2. ML SYSTEMS 59

smart glasses processing visual data on the fly, TinyML transforms
how we engage with wearable tech, delivering personalized experi-
ences directly from the device.

Predictive Maintenance
In industrial settings, TinyML plays a significant role in predictive

maintenance. By deploying TinyML algorithms on sensors that mon-
itor equipment health, companies can preemptively identify potential
issues, reducing downtime and preventing costly breakdowns. On-site
data analysis ensures quick responses, potentially stopping minor is-
sues from becoming major problems.

Anomaly Detection
TinyML can be employed to create anomaly detection models that

identify unusual data patterns. For instance, a smart factory could use
TinyML to monitor industrial processes and spot anomalies, helping
prevent accidents and improve product quality. Similarly, a security
company could use TinyML to monitor network trafÏc for unusual pat-
terns, aiding in detecting and preventing cyber-attacks. TinyML could
monitor patient data for anomalies in healthcare, aiding early disease
detection and better patient treatment.

Environmental Monitoring
In environmental monitoring, TinyML enables real-time data analy-

sis from various field-deployed sensors. These could range from city
air quality monitoring to wildlife tracking in protected areas. Through
TinyML, data can be processed locally, allowing for quick responses to
changing conditions and providing a nuanced understanding of envi-
ronmental patterns, crucial for informed decision-making.

In summary, TinyML serves as a trailblazer in the evolution of ma-
chine learning, fostering innovation across various fields by bringing
intelligence directly to the edge. Its potential to transform our inter-
action with technology and the world is immense, promising a future
where devices are connected, intelligent, and capable of making real-
time decisions and responses.

2.5 Comparison
Up to this point, we’ve explored each of the different ML variants indi-
vidually. Now, let’s bring them all together for a comprehensive view.
Table 2.1 offers a comparative analysis of Cloud ML, Edge ML, and
TinyML based on various features and aspects. This comparison pro-
vides a clear perspective on the unique advantages and distinguish-
ing factors, aiding in making informed decisions based on the specific
needs and constraints of a given application or project.

2.5. Comparison 60

Table 2.1.: Comparison of feature aspects across Cloud ML, Edge ML,
and TinyML.

Aspect Cloud ML Edge ML TinyML
Processing
Loca-
tion

Centralized
servers (Data
Centers)

Local devices
(closer to data
sources)

On-device
(microcontrollers,
embedded
systems)

Latency High (Depends
on internet
connectivity)

Moderate
(Reduced latency
compared to
Cloud ML)

Low (Immediate
processing
without network
delay)

Data
Privacy

Moderate (Data
transmitted over
networks)

High (Data
remains on local
networks)

Very High (Data
processed
on-device, not
transmitted)

Computational
Power

High (Utilizes
powerful data
center
infrastructure)

Moderate
(Utilizes local
device
capabilities)

Low (Limited to
the power of the
embedded
system)

Energy
Con-
sump-
tion

High (Data
centers consume
significant
energy)

Moderate (Less
than data centers,
more than
TinyML)

Low (Highly
energy-efÏcient,
designed for low
power)

Scalability High (Easy to
scale with
additional server
resources)

Moderate
(Depends on
local device
capabilities)

Low (Limited by
the hardware
resources of the
device)

Cost High (Recurring
costs for server
usage,
maintenance)

Variable
(Depends on the
complexity of
local setup)

Low (Primarily
upfront costs for
hardware
components)

ConnectivityHigh (Requires
stable internet
connectivity)

Low (Can
operate with
intermittent
connectivity)

Very Low (Can
operate without
any network
connectivity)

Real-
time
Process-
ing

Moderate (Can
be affected by
network latency)

High (Capable of
real-time
processing
locally)

Very High
(Immediate
processing with
minimal latency)

Application
Exam-
ples

Big Data
Analysis, Virtual
Assistants

Autonomous
Vehicles, Smart
Homes

Wearables,
Sensor Networks

CHAPTER 2. ML SYSTEMS 61

Aspect Cloud ML Edge ML TinyML
ComplexityModerate to

High (Requires
knowledge in
cloud
computing)

Moderate
(Requires
knowledge in
local network
setup)

Moderate to
High (Requires
expertise in
embedded
systems)

2.6 Conclusion

In this chapter, we’ve offered a panoramic view of the evolving
landscape of machine learning, covering cloud, edge, and tiny ML
paradigms. Cloud-based machine learning leverages the immense
computational resources of cloud platforms to enable powerful and
accurate models but comes with limitations, including latency and
privacy concerns. Edge ML mitigates these limitations by bringing
inference directly to edge devices, offering lower latency and reduced
connectivity needs. TinyML takes this further by miniaturizing
ML models to run directly on highly resource-constrained devices,
opening up a new category of intelligent applications.

Each approach has its tradeoffs, including model complexity,
latency, privacy, and hardware costs. Over time, we anticipate
converging these embedded ML approaches, with cloud pre-training
facilitating more sophisticated edge and tiny ML implementations.
Advances like federated learning and on-device learning will enable
embedded devices to refine their models by learning from real-world
data.

The embedded ML landscape is rapidly evolving and poised to en-
able intelligent applications across a broad spectrum of devices and
use cases. This chapter serves as a snapshot of the current state of em-
bedded ML. As algorithms, hardware, and connectivity continue to
improve, we can expect embedded devices of all sizes to become in-
creasingly capable, unlocking transformative new applications for ar-
tificial intelligence.

2.7 Resources

Here is a curated list of resources to support students and instructors
in their learning and teaching journeys. We are continuously working
on expanding this collection and will be adding new exercises soon.

2.7. Resources 62

Slides

These slides are a valuable tool for instructors to deliver lectures
and for students to review the material at their own pace. We
encourage students and instructors to leverage these slides to
improve their understanding and facilitate effective knowledge
transfer.

• Embedded Systems Overview.

• Embedded Computer Hardware.

• Embedded I/O.

• Embedded systems software.

• Embedded ML software.

• Embedded Inference.

• TinyML on Microcontrollers.

• TinyML as a Service (TinyMLaaS):

– TinyMLaaS: Introduction.
– TinyMLaaS: Design Overview.

Videos

• Coming soon.

Exercises

To reinforce the concepts covered in this chapter, we have curated
a set of exercises that challenge students to apply their knowl-
edge and deepen their understanding.

• Coming soon.

Labs

In addition to exercises, we offer a series of hands-on labs allow-
ing students to gain practical experience with embedded AI tech-

https://docs.google.com/presentation/d/1Lgrn7bddHYxyrOmk0JfSVmEBimRePqI7WSliUKRPK9E/edit?resourcekey=0-c5JvfDeqHIdV9A5RMAMAyw#slide=id.g94db9f9f78_0_8
https://docs.google.com/presentation/d/1hDCFcOrZ08kZPhY4DA3gVikGUo47HwNyvqNrLW-t-Tg/edit?resourcekey=0-J6ix5AYvZMGbFFOa7ae4Hw#slide=id.g94db9f9f78_0_8
https://docs.google.com/presentation/d/1rnWh9XC6iCKSx_hQd4xq2iIDlpc-GkBQw_GjzlP5mQc/edit#slide=id.g94db9f9f78_0_8
https://docs.google.com/presentation/d/1TApZn9xxPWCRY-D-soJ8YOSsfysnccR5UjOyspzeTuU/edit?resourcekey=0-BRWIyCKPLNQFnIfG0fJJ9A#slide=id.g94db9f9f78_0_8
https://docs.google.com/presentation/d/17wgAfoF24Rcx7uPrbau0c8FyzXIUWbe48qGGBOXXT-g/edit?resourcekey=0-Uv29DvmF7gYzKdOoRtn0vw#slide=id.g94db9f9f78_0_8
https://docs.google.com/presentation/d/1FOUQ9dbe3l_qTa2AnroSbOz0ykuCz5cbTNO77tvFxEs/edit?usp=drive_link
https://docs.google.com/presentation/d/1jwAZz3UOoJTR8PY6Wa34FxijpoDc9gBM/edit?usp=drive_link&ouid=102419556060649178683&rtpof=true&sd=true
https://docs.google.com/presentation/d/1O7bxb36SnexfDI3iE_p0C8JI_VYXAL8cyAx3JKDfeUo/edit?usp=drive_link
https://docs.google.com/presentation/d/1ZUUHtTbKlzeTwVteQMSztscQmdmMxT1A24pBKSys7g0/edit#slide=id.g94db9f9f78_0_2

CHAPTER 2. ML SYSTEMS 63

nologies. These labs provide step-by-step guidance, enabling stu-
dents to develop their skills in a structured and supportive envi-
ronment. We are excited to announce that new labs will be avail-
able soon, further enriching the learning experience.

• Coming soon.

65

Chapter 3

DL Primer

Figure 3.1.: DALL·E 3 Prompt:
Photo of a classic classroom with
a large blackboard dominating one
wall. Chalk drawings showcase a
detailed deep neural network with
several hidden layers, and each
node and connection is precisely
labeled with white chalk. The rus-
tic wooden floor and brick walls
provide a contrast to the modern
concepts. Surrounding the room,
posters mounted on frames empha-
size deep learning themes: con-
volutional networks, transform-
ers, neurons, activation functions,
and more.

This section briefly introduces deep learning, starting with an
overview of its history, applications, and relevance to embedded
AI systems. It examines the core concepts like neural networks,
highlighting key components like perceptrons, multilayer percep-
trons, activation functions, and computational graphs. The primer
also briefly explores major deep learning architecture, contrasting
their applications and uses. Additionally, it compares deep learning
to traditional machine learning to equip readers with the general
conceptual building blocks to make informed choices between deep
learning and traditional ML techniques based on problem constraints,
setting the stage for more advanced techniques and applications that
will follow in subsequent chapters.

3.1. Introduction 66

Learning Objectives

• Understand the basic concepts and definitions of deep neu-
ral networks.

• Recognize there are different deep learning model architec-
tures.

• Comparison between deep learning and traditional ma-
chine learning approaches across various dimensions.

• Acquire the basic conceptual building blocks to dive deeper
into advanced deep-learning techniques and applications.

3.1 Introduction

3.1.1 Definition and Importance

Deep learning, a specialized area within machine learning and artifi-
cial intelligence (AI), utilizes algorithms modeled after the structure
and function of the human brain, known as artificial neural networks.
This field is a foundational element in AI, driving progress in diverse
sectors such as computer vision, natural language processing, and
self-driving vehicles. Its significance in embedded AI systems is
highlighted by its capability to handle intricate calculations and
predictions, optimizing the limited resources in embedded settings.
Figure 3.2 illustrates the chronological development and relative
segmentation of the three fields.

3.1.2 Brief History of Deep Learning

The idea of deep learning has origins in early artificial neural networks.
It has experienced several cycles of interest, starting with the introduc-
tion of the Perceptron in the 1950s (Rosenblatt 1957), followed by the
invention of backpropagation algorithms in the 1980s (Rumelhart, Hin-
ton, and Williams 1986).

The term “deep learning” became prominent in the 2000s, character-
ized by advances in computational power and data accessibility. Im-
portant milestones include the successful training of deep networks
like AlexNet (Krizhevsky, Sutskever, and Hinton 2012) by Geoffrey
Hinton, a leading figure in AI, and the renewed focus on neural net-
works as effective tools for data analysis and modeling.

https://amturing.acm.org/award_winners/hinton_4791679.cfm
https://amturing.acm.org/award_winners/hinton_4791679.cfm

CHAPTER 3. DL PRIMER 67

Figure 3.2.: The diagram il-
lustrates artificial intelligence
as the overarching field en-
compassing all computational
methods that mimic human
cognitive functions. Machine
learning is a subset of AI that
includes algorithms capable of
learning from data. Deep
learning, a further subset of
ML, specifically involves neu-
ral networks that are able to
learn more complex patterns in
large volumes of data. Source:
NVIDIA.

Deep learning has recently seen exponential growth, transforming
various industries. Computational growth followed an 18-month dou-
bling pattern from 1952 to 2010, which then accelerated to a 6-month
cycle from 2010 to 2022, as shown in Figure 3.3. Concurrently, we saw
the emergence of large-scale models between 2015 and 2022, appearing
2 to 3 orders of magnitude faster and following a 10-month doubling
cycle.

Figure 3.3.: Growth of deep
learning models.

Multiple factors have contributed to this surge, including advance-
ments in computational power, the abundance of big data, and im-
provements in algorithmic designs. First, the growth of computational

3.1. Introduction 68

capabilities, especially the arrival of Graphics Processing Units (GPUs)
and Tensor Processing Units (TPUs) (N. P. Jouppi et al. 2017a), has
significantly sped up the training and inference times of deep learning
models. These hardware improvements have enabled the construction
and training of more complex, deeper networks than what was possi-
ble in earlier years.

Second, the digital revolution has yielded a wealth of big data, of-
fering rich material for deep learning models to learn from and excel
in tasks such as image and speech recognition, language translation,
and game playing. Large, labeled datasets have been key in refining
and successfully deploying deep learning applications in real-world
settings.

Additionally, collaborations and open-source efforts have nurtured
a dynamic community of researchers and practitioners, accelerating
advancements in deep learning techniques. Innovations like deep re-
inforcement learning, transfer learning, and generative artificial intelli-
gence have broadened the scope of what is achievable with deep learn-
ing, opening new possibilities in various sectors, including healthcare,
finance, transportation, and entertainment.

Organizations worldwide recognize deep learning’s transformative
potential and invest heavily in research and development to leverage
its capabilities in providing innovative solutions, optimizing opera-
tions, and creating new business opportunities. As deep learning con-
tinues its upward trajectory, it is set to redefine how we interact with
technology, enhancing convenience, safety, and connectivity in our
lives.

3.1.3 Applications of Deep Learning

Deep learning is extensively used across numerous industries today,
and its transformative impact on society is evident. In finance, it pow-
ers stock market prediction, risk assessment, and fraud detection. For
instance, deep learning algorithms can predict stock market trends,
guide investment strategies, and improve financial decisions. In mar-
keting, it drives customer segmentation, personalization, and content
optimization. Deep learning analyzes consumer behavior and pref-
erences to enable highly targeted advertising and personalized con-
tent delivery. In manufacturing, deep learning streamlines produc-
tion processes and enhances quality control by continuously analyz-
ing large volumes of data. This allows companies to boost productiv-
ity and minimize waste, leading to the production of higher quality
goods at lower costs. In healthcare, machine learning aids in diagnosis,
treatment planning, and patient monitoring. Similarly, deep learning

CHAPTER 3. DL PRIMER 69

can make medical predictions that improve patient diagnosis and save
lives. The benefits are clear: machine learning predicts with greater
accuracy than humans and does so much more quickly.

Deep learning enhances everyday products, such as strengthening
Netflix’s recommender systems to provide users with more person-
alized recommendations. At Google, deep learning models have
driven significant improvements in Google Translate, enabling it to
handle over 100 languages. Autonomous vehicles from companies
like Waymo, Cruise, and Motional have become a reality through
the use of deep learning in their perception system. Additionally,
Amazon employs deep learning at the edge in their Alexa devices to
perform keyword spotting.

3.1.4 Relevance to Embedded AI

Embedded AI, the integration of AI algorithms directly into hardware
devices, naturally gains from deep learning capabilities. Combin-
ing deep learning algorithms and embedded systems has laid the
groundwork for intelligent, autonomous devices capable of advanced
on-device data processing and analysis. Deep learning aids in ex-
tracting complex patterns and information from input data, which
is essential in developing smart embedded systems, from household
appliances to industrial machinery. This collaboration ushers in a new
era of intelligent, interconnected devices that can learn and adapt to
user behavior and environmental conditions, optimizing performance
and offering unprecedented convenience and efÏciency.

3.2 Neural Networks
Deep learning draws inspiration from the human brain’s neural net-
works to create decision-making patterns. This section digs into the
foundational concepts of deep learning, providing insights into the
more complex topics discussed later in this primer.

Neural networks serve as the foundation of deep learning, inspired
by the biological neural networks in the human brain to process and an-
alyze data hierarchically. Neural networks are composed of basic units
called perceptrons, which are typically organized into layers. Each
layer consists of several perceptrons, and multiple layers are stacked
to form the entire network. The connections between these layers are
defined by sets of weights or parameters that determine how data is
processed as it flows from the input to the output of the network.

Below, we examine the primary components and structures in neural
networks.

https://dl.acm.org/doi/abs/10.1145/3543873.3587675
https://dl.acm.org/doi/abs/10.1145/3543873.3587675
https://research.google/blog/recent-advances-in-google-translate/
https://cloud.google.com/translate/docs/languages
https://motional.com/news/technically-speaking-improving-av-perception-through-transformative-machine-learning
https://towardsdatascience.com/how-amazon-alexa-works-your-guide-to-natural-language-processing-ai-7506004709d3

3.2. Neural Networks 70

3.2.1 Perceptrons

The Perceptron is the basic unit or node that forms the foundation for
more complex structures. It functions by taking multiple inputs, each
representing a feature of the object under analysis, such as the charac-
teristics of a home for predicting its price or the attributes of a song to
forecast its popularity in music streaming services. These inputs are
denoted as 𝑥1,𝑥2, ...,𝑥𝑛.

Each input 𝑥𝑖 has a corresponding weight 𝑤𝑖𝑗, and the perceptron
simply multiplies each input by its matching weight. This operation is
similar to linear regression, where the intermediate output, 𝑧, is com-
puted as the sum of the products of inputs and their weights:𝑧 = ∑(𝑥𝑖 ⋅𝑤𝑖𝑗)

To this intermediate calculation, a bias term 𝑏 is added, allowing the
model to better fit the data by shifting the linear output function up
or down. Thus, the intermediate linear combination computed by the
perceptron including the bias becomes:𝑧 = ∑(𝑥𝑖 ⋅𝑤𝑖𝑗)+𝑏

This basic form of a perceptron can only model linear relationships
between the input and output. Patterns found in nature are often com-
plex and extend beyond linear relationships. To enable the perceptron
to handle non-linear relationships, an activation function is applied to
the linear output 𝑧. ̂𝑦 = 𝜎(𝑧)

Figure 3.4 illustrates an example where data exhibit a nonlinear pat-
tern that could not be adequately modeled with a linear approach. The
activation function, such as sigmoid, tanh, or ReLU, transforms the
linear input sum into a non-linear output. The primary objective of
this function is to introduce non-linearity into the model, enabling it
to learn and perform more sophisticated tasks. Thus, the final output
of the perceptron, including the activation function, can be expressed
as:

A perceptron can be configured to perform either regression or clas-
sification tasks. For regression, the actual numerical output ̂𝑦 is used.
For classification, the output depends on whether ̂𝑦 crosses a certain
threshold. If ̂𝑦 exceeds this threshold, the perceptron might output one
class (e.g., ‘yes’), and if it does not, another class (e.g., ‘no’).

Figure 3.5 illustrates the fundamental building blocks of a per-
ceptron, which serves as the foundation for more complex neural

CHAPTER 3. DL PRIMER 71

Figure 3.4.: Activation func-
tions enable the modeling
of complex non-linear rela-
tionships. Source: Medium -
Sachin Kaushik.

Figure 3.5.: Perceptron. Con-
ceived in the 1950s, percep-
trons paved the way for de-
veloping more intricate neu-
ral networks and have been a
fundamental building block in
deep learning. Source: Wiki-
media - Chrislb.

3.2. Neural Networks 72

networks. A perceptron can be thought of as a miniature decision-
maker, utilizing its weights, bias, and activation function to process
inputs and generate outputs based on learned parameters. This
concept forms the basis for understanding more intricate neural
network architectures, such as multilayer perceptrons. In these
advanced structures, layers of perceptrons work in concert, with each
layer’s output serving as the input for the subsequent layer. This
hierarchical arrangement creates a deep learning model capable of
comprehending and modeling complex, abstract patterns within data.
By stacking these simple units, neural networks gain the ability to
tackle increasingly sophisticated tasks, from image recognition to
natural language processing.

3.2.2 Multilayer Perceptrons

Multilayer perceptrons (MLPs) are an evolution of the single-layer per-
ceptron model, featuring multiple layers of nodes connected in a feed-
forward manner. In a feedforward network, information moves in only
one direction - from the input layer, through the hidden layers, to the
output layer, without any cycles or loops. This structure is illustrated
in Figure 3.6. The network layers include an input layer for data recep-
tion, several hidden layers for data processing, and an output layer for
final result generation.

While a single perceptron is limited in its capacity to model complex
patterns, the real strength of neural networks emerges from the assem-
bly of multiple layers. Each layer consists of numerous perceptrons
working together, allowing the network to capture intricate and non-
linear relationships within the data. With sufÏcient depth and breadth,
these networks can approximate virtually any function, no matter how
complex.

3.2.3 Training Process

A neural network receives an input, performs a calculation, and pro-
duces a prediction. The prediction is determined by the calculations
performed within the sets of perceptrons found between the input and
output layers. These calculations depend primarily on the input and
the weights. Since you do not have control over the input, the objective
during training is to adjust the weights in such a way that the output
of the network provides the most accurate prediction.

The training process involves several key steps, beginning with the
forward pass, where the existing weights of the network are used to
calculate the output for a given input. This output is then compared

CHAPTER 3. DL PRIMER 73

Figure 3.6.: Multilayer Percep-
tron. Source: Wikimedia -
Charlie.

to the true target values to calculate an error, which measures how
well the network’s prediction matches the expected outcome. Follow-
ing this, a backward pass is performed. This involves using the error
to make adjustments to the weights of the network through a process
called backpropagation. This adjustment reduces the error in subse-
quent predictions. The cycle of forward pass, error calculation, and
backward pass is repeated iteratively. This process continues until the
network’s predictions are sufÏciently accurate or a predefined number
of iterations is reached, effectively minimizing the loss function used
to measure the error.

3.2.3.1 Forward Pass

The forward pass is the initial phase where data moves through the
network from the input to the output layer. At the start of training,
the network’s weights are randomly initialized, setting the initial con-
ditions for learning. During the forward pass, each layer performs spe-
cific computations on the input data using these weights and biases,
and the results are then passed to the subsequent layer. The final out-
put of this phase is the network’s prediction. This prediction is com-
pared to the actual target values present in the dataset to calculate the
loss, which can be thought of as the difference between the predicted
outputs and the target values. The loss quantifies the network’s per-
formance at this stage, providing a crucial metric for the subsequent

3.2. Neural Networks 74

adjustment of weights during the backward pass.
Video 1 below explains how neural networks work using handwrit-

ten digit recognition as an example application. It also touches on the
math underlying neural nets.

Video 1: Neural Networks

https://www.youtube.com/watch?v=aircAruvnKk-w&list=
PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi&index=1

3.2.3.2 Backward Pass (Backpropagation)

After completing the forward pass and computing the loss, which mea-
sures how far the model’s predictions deviate from the actual target
values, the next step is to improve the model’s performance by adjust-
ing the network’s weights. Since we cannot control the inputs to the
model, adjusting the weights becomes our primary method for refin-
ing the model.

We determine how to adjust the weights of our model through a
key algorithm called backpropagation. Backpropagation uses the cal-
culated loss to determine the gradient of each weight. These gradients
describe the direction and magnitude in which the weights should be
adjusted. By tuning the weights based on these gradients, the model
is better positioned to make predictions that are closer to the actual
target values in the next forward pass.

Grasping these foundational concepts paves the way to understand-
ing more intricate deep learning architectures and techniques, foster-
ing the development of more sophisticated and productive applica-
tions, especially within embedded AI systems.

Video 2 and Video 3 build upon Video 1. They cover gradient de-
scent and backpropagation in neural networks.

Video 2: Gradient descent

https://www.youtube.com/watch?v=IHZwWFHWa-w&list=
PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi&index=2

Video 3: Backpropagation

https://www.youtube.com/watch?v=Ilg3gGewQ5U&list=
PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi&index=3

https://www.youtube.com/watch?v=aircAruvnKk-w&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi&index=1
https://www.youtube.com/watch?v=aircAruvnKk-w&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi&index=1
https://www.youtube.com/watch?v=IHZwWFHWa-w&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi&index=2
https://www.youtube.com/watch?v=IHZwWFHWa-w&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi&index=2
https://www.youtube.com/watch?v=Ilg3gGewQ5U&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi&index=3
https://www.youtube.com/watch?v=Ilg3gGewQ5U&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi&index=3

CHAPTER 3. DL PRIMER 75

3.2.4 Model Architectures

Deep learning architectures refer to the various structured approaches
that dictate how neurons and layers are organized and interact in neu-
ral networks. These architectures have evolved to tackle different prob-
lems and data types effectively. This section overviews some well-
known deep learning architectures and their characteristics.

3.2.4.1 Multilayer Perceptrons (MLPs)

MLPs are basic deep learning architectures comprising three layers: an
input layer, one or more hidden layers, and an output layer. These lay-
ers are fully connected, meaning each neuron in a layer is linked to ev-
ery neuron in the preceding and following layers. MLPs can model in-
tricate functions and are used in various tasks, such as regression, clas-
sification, and pattern recognition. Their capacity to learn non-linear
relationships through backpropagation makes them a versatile instru-
ment in the deep learning toolkit.

In embedded AI systems, MLPs can function as compact models
for simpler tasks like sensor data analysis or basic pattern recognition,
where computational resources are limited. Their ability to learn non-
linear relationships with relatively less complexity makes them a suit-
able choice for embedded systems.

Exercise 2: Multilayer Perceptrons (MLPs)

We’ve just scratched the surface of neural networks. Now, you’ll
get to try and apply these concepts in practical examples. In the
provided Colab notebooks, you’ll explore:
Predicting house prices: Learn how neural networks
can analyze housing data to estimate property val-

ues.
Image Classification: Discover how to build a network
to understand the famous MNIST handwritten digit

dataset.
Real-world medical diagnosis: Use deep learning to
tackle the important task of breast cancer classifica-

tion.

https://colab.research.google.com/github/Mjrovai/UNIFEI-IESTI01-TinyML-2022.1/blob/main/00_Curse_Folder/1_Fundamentals/Class_07/TF_Boston_Housing_Regression.ipynb
https://colab.research.google.com/github/Mjrovai/UNIFEI-IESTI01-TinyML-2022.1/blob/main/00_Curse_Folder/1_Fundamentals/Class_09/TF_MNIST_Classification_v2.ipynb
https://colab.research.google.com/github/Mjrovai/UNIFEI-IESTI01-TinyML-2022.1/blob/main/00_Curse_Folder/1_Fundamentals/Class_13/docs/WDBC_Project/Breast_Cancer_Classification.ipynb

3.2. Neural Networks 76

3.2.4.2 Convolutional Neural Networks (CNNs)

CNNs are mainly used in image and video recognition tasks. This ar-
chitecture consists of two main parts: the convolutional base and the
fully connected layers. In the convolutional base, convolutional layers
filter input data to identify features like edges, corners, and textures.
Following each convolutional layer, a pooling layer can be applied to
reduce the spatial dimensions of the data, thereby decreasing compu-
tational load and concentrating the extracted features. Unlike MLPs,
which treat input features as flat, independent entities, CNNs main-
tain the spatial relationships between pixels, making them particularly
effective for image and video data. The extracted features from the con-
volutional base are then passed into the fully connected layers, similar
to those used in MLPs, which perform classification based on the fea-
tures extracted by the convolution layers. CNNs have proven highly
effective in image recognition, object detection, and other computer vi-
sion applications.

In embedded AI, CNNs are crucial for image and video recognition
tasks, where real-time processing is often needed. They can be opti-
mized for embedded systems using techniques like quantization and
pruning to minimize memory usage and computational demands, en-
abling efÏcient object detection and facial recognition functionalities
in devices with limited computational resources.

Exercise 3: Convolutional Neural Networks (CNNs)

We discussed that CNNs excel at identifying image features,
making them ideal for tasks like object classification. Now, you’ll
get to put this knowledge into action! This Colab notebook fo-
cuses on building a CNN to classify images from the CIFAR-10
dataset, which includes objects like airplanes, cars, and animals.
You’ll learn about the key differences between CIFAR-10 and the
MNIST dataset we explored earlier and how these differences in-
fluence model choice. By the end of this notebook, you’ll have a
grasp of CNNs for image recognition and be well on your way to

becoming a TinyML expert!

3.2.4.3 Recurrent Neural Networks (RNNs)

RNNs are suitable for sequential data analysis, like time series fore-
casting and natural language processing. In this architecture, connec-
tions between nodes form a directed graph along a temporal sequence,

https://colab.research.google.com/github/Mjrovai/UNIFEI-IESTI01-TinyML-2022.1/blob/main/00_Curse_Folder/1_Fundamentals/Class_11/CNN_Cifar_10.ipynb

CHAPTER 3. DL PRIMER 77

allowing information to be carried across sequences through hidden
state vectors. Variants of RNNs include Long Short-Term Memory
(LSTM) and Gated Recurrent Units (GRU), designed to capture longer
dependencies in sequence data.

These networks can be used in voice recognition systems, predictive
maintenance, or IoT devices where sequential data patterns are com-
mon. Optimizations specific to embedded platforms can assist in man-
aging their typically high computational and memory requirements.

3.2.4.4 Generative Adversarial Networks (GANs)

GANs consist of two networks, a generator and a discriminator, trained
simultaneously through adversarial training (Goodfellow et al. 2020).
The generator produces data that tries to mimic the real data distribu-
tion, while the discriminator distinguishes between real and generated
data. GANs are widely used in image generation, style transfer, and
data augmentation.

In embedded settings, GANs could be used for on-device data aug-
mentation to improve the training of models directly on the embedded
device, enabling continual learning and adaptation to new data with-
out the need for cloud computing resources.

3.2.4.5 Autoencoders

Autoencoders are neural networks for data compression and noise re-
duction (Bank, Koenigstein, and Giryes 2023). They are structured to
encode input data into a lower-dimensional representation and then
decode it back to its original form. Variants like Variational Autoen-
coders (VAEs) introduce probabilistic layers that allow for generative
properties, finding applications in image generation and anomaly de-
tection.

Using autoencoders can help in efÏcient data transmission and stor-
age, improving the overall performance of embedded systems with
limited computational and memory resources.

3.2.4.6 Transformer Networks

Transformer networks have emerged as a powerful architecture, espe-
cially in natural language processing (Vaswani et al. 2017). These net-
works use self-attention mechanisms to weigh the influence of different
input words on each output word, enabling parallel computation and
capturing intricate patterns in data. Transformer networks have led to
state-of-the-art results in tasks like language translation, summariza-
tion, and text generation.

3.2. Neural Networks 78

These networks can be optimized to perform language-related tasks
directly on the device. For example, transformers can be used in em-
bedded systems for real-time translation services or voice-assisted in-
terfaces, where latency and computational efÏciency are crucial. Tech-
niques such as model distillation can be employed to deploy these net-
works on embedded devices with limited resources.

These architectures serve specific purposes and excel in different do-
mains, offering a rich toolkit for addressing diverse problems in em-
bedded AI systems. Understanding the nuances of these architectures
is crucial in designing effective and efÏcient deep learning models for
various applications.

3.2.5 Traditional ML vs Deep Learning

Deep learning extends traditional machine learning by utilizing neural
networks to discern patterns in data. In contrast, traditional machine
learning relies on a set of established algorithms such as decision trees,
k-nearest neighbors, and support vector machines, but does not involve
neural networks. To briefly highlight the differences, Table 3.1 illus-
trates the contrasting characteristics between traditional ML and deep
learning:

Table 3.1.: Comparison of traditional machine learning and deep learn-
ing.

Aspect Traditional ML Deep Learning
Data Re-
quirements

Low to Moderate
(efÏcient with smaller
datasets)

High (requires large
datasets for nuanced
learning)

Model
Complexity

Moderate (suitable for
well-defined problems)

High (detects intricate
patterns, suited for
complex tasks)

Computational
Resources

Low to Moderate
(cost-effective, less
resource-intensive)

High (demands
substantial
computational power and
resources)

Deployment
Speed

Fast (quicker training
and deployment cycles)

Slow (prolonged training
times, esp. with larger
datasets)

Interpretability High (clear insights into
decision pathways)

Low (complex layered
structures, “black box”
nature)

CHAPTER 3. DL PRIMER 79

Aspect Traditional ML Deep Learning
Maintenance Easier (simple to update

and maintain)
Complex (requires more
efforts in maintenance
and updates)

3.2.6 Choosing Traditional ML vs. DL

3.2.6.1 Data Availability and Volume

Amount of Data: Traditional machine learning algorithms, such as de-
cision trees or Naive Bayes, are often more suitable when data availabil-
ity is limited. They offer robust predictions even with smaller datasets.
This is particularly true in medical diagnostics for disease prediction
and customer segmentation in marketing.

Data Diversity and Quality: Traditional machine learning algo-
rithms often work well with structured data (the input to the model is
a set of features, ideally independent of each other) but may require
significant preprocessing effort (i.e., feature engineering). On the
other hand, deep learning takes the approach of automatically per-
forming feature engineering as part of the model architecture. This
approach enables the construction of end-to-end models capable of
directly mapping from unstructured input data (such as text, audio,
and images) to the desired output without relying on simplistic
heuristics that have limited effectiveness. However, this results in
larger models demanding more data and computational resources.
In noisy data, the necessity for larger datasets is further emphasized
when utilizing Deep Learning.

3.2.6.2 Complexity of the Problem

Problem Granularity: Problems that are simple to moderately com-
plex, which may involve linear or polynomial relationships between
variables, often find a better fit with traditional machine learning meth-
ods.

Hierarchical Feature Representation: Deep learning models are ex-
cellent in tasks that require hierarchical feature representation, such as
image and speech recognition. However, not all problems require this
complexity, and traditional machine learning algorithms may some-
times offer simpler and equally effective solutions.

3.2. Neural Networks 80

3.2.6.3 Hardware and Computational Resources

Resource Constraints: The availability of computational resources of-
ten influences the choice between traditional ML and deep learning.
The former is generally less resource-intensive and thus preferable in
environments with hardware limitations or budget constraints.

Scalability and Speed: Traditional machine learning algorithms,
like support vector machines (SVM), often allow for faster training
times and easier scalability, which is particularly beneficial in projects
with tight timelines and growing data volumes.

3.2.6.4 Regulatory Compliance

Regulatory compliance is crucial in various industries, requiring ad-
herence to guidelines and best practices such as the General Data Pro-
tection Regulation (GDPR) in the EU. Traditional ML models, due to
their inherent interpretability, often align better with these regulations,
especially in sectors like finance and healthcare.

3.2.6.5 Interpretability

Understanding the decision-making process is easier with traditional
machine learning techniques than deep learning models, which func-
tion as “black boxes,” making it challenging to trace decision pathways.

3.2.7 Making an Informed Choice

Given the constraints of embedded AI systems, understanding the
differences between traditional ML techniques and deep learning
becomes essential. Both avenues offer unique advantages, and their
distinct characteristics often dictate the choice of one over the other in
different scenarios.

Despite this, deep learning has steadily outperformed traditional
machine learning methods in several key areas due to abundant data,
computational advancements, and proven effectiveness in complex
tasks. Here are some specific reasons why we focus on deep learning:

1. Superior Performance in Complex Tasks: Deep learning mod-
els, particularly deep neural networks, excel in tasks where the rela-
tionships between data points are incredibly intricate. Tasks like im-
age and speech recognition, language translation, and playing complex
games like Go and Chess have seen significant advancements primar-
ily through deep learning algorithms.

2. EfÏcient Handling of Unstructured Data: Unlike traditional ma-
chine learning methods, deep learning can more effectively process

CHAPTER 3. DL PRIMER 81

unstructured data. This is crucial in today’s data landscape, where the
vast majority of data, such as text, images, and videos, is unstructured.

3. Leveraging Big Data: With the availability of big data, deep learn-
ing models can learn and improve continually. These models excel at
utilizing large datasets to improve their predictive accuracy, a limita-
tion in traditional machine-learning approaches.

4. Hardware Advancements and Parallel Computing: The advent
of powerful GPUs and the availability of cloud computing platforms
have enabled the rapid training of deep learning models. These
advancements have addressed one of deep learning’s significant
challenges: the need for substantial computational resources.

5. Dynamic Adaptability andContinuous Learning: Deep learning
models can dynamically adapt to new information or data. They can
be trained to generalize their learning to new, unseen data, crucial in
rapidly evolving fields like autonomous driving or real-time language
translation.

While deep learning has gained significant traction, it’s essential to
understand that traditional machine learning is still relevant. As we
dive deeper into the intricacies of deep learning, we will also highlight
situations where traditional machine learning methods may be more
appropriate due to their simplicity, efÏciency, and interpretability. By
focusing on deep learning in this text, we aim to equip readers with
the knowledge and tools to tackle modern, complex problems across
various domains while also providing insights into the comparative
advantages and appropriate application scenarios for deep learning
and traditional machine learning techniques.

3.3 Conclusion

Deep learning has become a potent set of techniques for addressing in-
tricate pattern recognition and prediction challenges. Starting with an
overview, we outlined the fundamental concepts and principles gov-
erning deep learning, laying the groundwork for more advanced stud-
ies.

Central to deep learning, we explored the basic ideas of neural net-
works, powerful computational models inspired by the human brain’s
interconnected neuron structure. This exploration allowed us to ap-
preciate neural networks’ capabilities and potential in creating sophis-
ticated algorithms capable of learning and adapting from data.

Understanding the role of libraries and frameworks was a key part
of our discussion. We offered insights into the tools that can facilitate
developing and deploying deep learning models. These resources ease

3.4. Resources 82

the implementation of neural networks and open avenues for innova-
tion and optimization.

Next, we tackled the challenges one might face when embedding
deep learning algorithms within embedded systems, providing a crit-
ical perspective on the complexities and considerations of bringing AI
to edge devices.

Furthermore, we examined deep learning’s limitations. Through
discussions, we unraveled the challenges faced in deep learning ap-
plications and outlined scenarios where traditional machine learning
might outperform deep learning. These sections are crucial for foster-
ing a balanced view of deep learning’s capabilities and limitations.

In this primer, we have equipped you with the knowledge to make
informed choices between deploying traditional machine learning or
deep learning techniques, depending on the unique demands and con-
straints of a specific problem.

As we conclude this chapter, we hope you are now well-equipped
with the basic “language” of deep learning and prepared to go deeper
into the subsequent chapters with a solid understanding and critical
perspective. The journey ahead is filled with exciting opportunities
and challenges in embedding AI within systems.

3.4 Resources
Here is a curated list of resources to support students and instructors
in their learning and teaching journeys. We are continuously working
on expanding this collection and will be adding new exercises soon.

Slides

These slides are a valuable tool for instructors to deliver lectures
and for students to review the material at their own pace. We
encourage students and instructors to leverage these slides to
improve their understanding and facilitate effective knowledge
transfer.

• Past, Present, and Future of ML.

• Thinking About Loss.

• Minimizing Loss.

• First Neural Network.

• Understanding Neurons.

https://docs.google.com/presentation/d/16ensKAKBG8DOUHF4f5thTJklVGTadxjm3kPkdoPyabI/edit#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1X92JqVkUY7k6yJXQcT2u83dpdrx5UzGFAJkkDMDfKe0/edit#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1x3xbZHo4VtaZgoXfueCbOGGXuWRYj0nOsKwAAoGsrD0/edit#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1zQwhTwF_plXBPQLxluahpzoQg-VdMyJbctaJxSUncag/edit?usp=drive_link
https://docs.google.com/presentation/d/1jXCAC6IT5f9XFKZbfhJ4p2D5URVTYqgAnkcQR4ALhSk/edit?usp=drive_link&resourcekey=0-K228bxVdwO2w3kr0daV2cw

CHAPTER 3. DL PRIMER 83

• Intro to CLassification.

• Training, Validation, and Test Data.

• Intro to Convolutions.

Videos

• Video 1

• Video 2

• Video 3

Exercises

To reinforce the concepts covered in this chapter, we have curated
a set of exercises that challenge students to apply their knowl-
edge and deepen their understanding.

• Exercise 2

• Exercise 3

Labs

• Coming soon.

https://docs.google.com/presentation/d/1VtWV9LAVLJ0uAkhFMbDJFjsUH6IvBDnPde4lR1cD2mo/edit?usp=drive_link
https://docs.google.com/presentation/d/1G56D0-qG9YWnzQQeje9LMpcLSotMgBCiMyfj53yz7lY/edit?usp=drive_link
https://docs.google.com/presentation/d/1hQDabWqaKUWRb60Cze-MhAyeUUVyNgyTUMBpLnqhtvc/edit?resourcekey=0-uHZoNwsbjeY3EIMD3fYAfg#slide=id.g94db9f9f78_0_2

85

Part IV
Workflow

87

Chapter 4

AI Workflow

Figure 4.1.: DALL·E 3 Prompt:
Create a rectangular illustration
of a stylized flowchart represent-
ing the AI workflow/pipeline.
From left to right, depict the
stages as follows: ‘Data Collec-
tion’ with a database icon, ‘Data
Preprocessing’ with a filter icon,
‘Model Design’ with a brain icon,
‘Training’ with a weight icon,
‘Evaluation’ with a checkmark,
and ‘Deployment’ with a rocket.
Connect each stage with arrows
to guide the viewer horizontally
through the AI processes, empha-
sizing these steps’ sequential and
interconnected nature.

In this chapter, we’ll explore the machine learning (ML) workflow, set-
ting the stage for subsequent chapters that go deeper into the specifics.
To ensure we see the bigger picture, this chapter offers a high-level
overview of the steps involved in the ML workflow.

The ML workflow is a structured approach that guides professionals
and researchers through developing, deploying, and maintaining ML
models. This workflow is generally divided into several crucial stages,
each contributing to the effective development of intelligent systems.

4.1. Overview 88

Learning Objectives

• Understand the ML workflow and gain insights into the
structured approach and stages of developing, deploying,
and maintaining machine learning models.

• Learn about the unique challenges and distinctions be-
tween workflows for Traditional machine learning and em-
bedded AI.

• Appreciate the roles in ML projects and understand their
responsibilities and significance.

• Understanding the importance, applications, and con-
siderations for implementing ML models in resource-
constrained environments.

• Gain awareness about the ethical and legal aspects that
must be considered and adhered to in ML and embedded
AI projects.

• Establish a basic understanding of ML workflows and roles
to be well-prepared for deeper exploration in the following
chapters.

4.1 Overview

Figure 4.2.: Multi-step design
methodology for the develop-
ment of a machine learning
model. Commonly referred to
as the machine learning lifecy-
cle

Developing a successful machine learning model requires a system-

CHAPTER 4. AI WORKFLOW 89

atic workflow. This end-to-end process enables you to build, deploy,
and maintain models effectively. As shown in Figure 4.2, It typically
involves the following key steps:

1. Problem Definition - Start by clearly articulating the specific
problem you want to solve. This focuses on your efforts during
data collection and model building.

2. Data Collection and Preparation: Gather relevant, high-quality
training data that captures all aspects of the problem. Clean and
preprocess the data to prepare it for modeling.

3. Model Selection and Training: Choose a machine learning algo-
rithm suited to your problem type and data. Consider the pros
and cons of different approaches. Feed the prepared data into
the model to train it. Training time varies based on data size and
model complexity.

4. Model Evaluation: Test the trained model on new unseen data
to measure its predictive accuracy. Identify any limitations.

5. Model Deployment: Integrate the validated model into applica-
tions or systems to start operationalization.

6. Monitor andMaintain: Track model performance in production.
Retrain periodically on new data to keep it current.

Following this structured ML workflow helps guide you through the
key phases of development. It ensures you build effective and robust
models ready for real-world deployment, resulting in higher-quality
models that solve your business needs.

The ML workflow is iterative, requiring ongoing monitoring and po-
tential adjustments. Additional considerations include:

• Version Control: Track code and data changes to reproduce re-
sults and revert to earlier versions if needed.

• Documentation: Maintain detailed documentation for workflow
understanding and reproduction.

• Testing: Rigorously test the workflow to ensure its functionality.
• Security: Safeguard your workflow and data when deploying

models in production settings.

4.2 Traditional vs. Embedded AI
The ML workflow is a universal guide applicable across various plat-
forms, including cloud-based solutions, edge computing, and TinyML.
However, the workflow for Embedded AI introduces unique complex-
ities and challenges, making it a captivating domain and paving the
way for remarkable innovations.

4.3. Roles & Responsibilities 90

4.2.1 Resource Optimization

• Traditional ML Workflow: This workflow prioritizes model
accuracy and performance, often leveraging abundant computa-
tional resources in cloud or data center environments.

• Embedded AI Workflow: Given embedded systems’ resource
constraints, this workflow requires careful planning to optimize
model size and computational demands. Techniques like model
quantization and pruning are crucial.

4.2.2 Real-time Processing

• Traditional ML Workflow: Less emphasis on real-time process-
ing, often relying on batch data processing.

• Embedded AI Workflow: Prioritizes real-time data processing,
making low latency and quick execution essential, especially in
applications like autonomous vehicles and industrial automa-
tion.

4.2.3 Data Management and Privacy

• Traditional ML Workflow: Processes data in centralized loca-
tions, often necessitating extensive data transfer and focusing on
data security during transit and storage.

• EmbeddedAIWorkflow: This workflow leverages edge comput-
ing to process data closer to its source, reducing data transmis-
sion and enhancing privacy through data localization.

4.2.4 Hardware-Software Integration

• Traditional ML Workflow: Typically operates on general-
purpose hardware, with software development occurring
independently.

• Embedded AI Workflow: This workflow involves a more inte-
grated approach to hardware and software development, often
incorporating custom chips or hardware accelerators to achieve
optimal performance.

4.3 Roles & Responsibilities
Creating an ML solution, especially for embedded AI, is a multidisci-
plinary effort involving various specialists. Unlike traditional software
development, building an ML solution demands a multidisciplinary

CHAPTER 4. AI WORKFLOW 91

approach due to the experimental nature of model development and
the resource-intensive requirements of training and deploying these
models.

There is a pronounced need for roles focusing on data for the success
of machine learning pipelines. Data scientists and data engineers han-
dle data collection, build data pipelines, and ensure data quality. Since
the nature of machine learning models depends on the data they con-
sume, the models are unique and vary with different applications, ne-
cessitating extensive experimentation. Machine learning researchers
and engineers drive this experimental phase through continuous test-
ing, validation, and iteration to achieve optimal performance.

The deployment phase often requires specialized hardware and in-
frastructure, as machine learning models can be resource-intensive,
demanding high computational power and efÏcient resource manage-
ment. This necessitates collaboration with hardware engineers to en-
sure that the infrastructure can support the computational demands
of model training and inference.

As models make decisions that can impact individuals and society,
ethical and legal aspects of machine learning are becoming increas-
ingly important. Ethicists and legal advisors are needed to ensure com-
pliance with ethical standards and legal regulations.

Table 4.1 shows a rundown of the typical roles involved. While the
lines between these roles can sometimes blur, the table below provides
a general overview.

Table 4.1.: Roles and responsibilities of people involved in MLOps.
Role Responsibilities
Project Manager Oversees the project, ensuring timelines and

milestones are met.
Domain Experts Offer domain-specific insights to define project

requirements.
Data Scientists Specialize in data analysis and model

development.
Machine Learning
Engineers

Focus on model development and deployment.

Data Engineers Manage data pipelines.
Embedded
Systems Engineers

Integrate ML models into embedded systems.

Software
Developers

Develop software components for AI system
integration.

Hardware
Engineers

Design and optimize hardware for the
embedded AI system.

4.4. Conclusion 92

Role Responsibilities
UI/UX Designers Focus on user-centric design.
QA Engineers Ensure the system meets quality standards.
Ethicists and Legal
Advisors

Consult on ethical and legal compliance.

Operations and
Maintenance
Personnel

Monitor and maintain the deployed system.

Security Specialists Ensure system security.

Understanding these roles is crucial for completing an ML project.
As we proceed through the upcoming chapters, we’ll explore each
role’s essence and expertise, fostering a comprehensive understanding
of the complexities involved in embedded AI projects. This holistic
view facilitates seamless collaboration and nurtures an environment
ripe for innovation and breakthroughs.

4.4 Conclusion
This chapter has laid the foundation for understanding the machine
learning workflow, a structured approach crucial for the development,
deployment, and maintenance of ML models. By exploring the dis-
tinct stages of the ML lifecycle, we have gained insights into the unique
challenges faced by traditional ML and embedded AI workflows, par-
ticularly in terms of resource optimization, real-time processing, data
management, and hardware-software integration. These distinctions
underscore the importance of tailoring workflows to meet the specific
demands of the application environment.

The chapter emphasized the significance of multidisciplinary col-
laboration in ML projects. Understanding the diverse roles provides
a comprehensive view of the teamwork necessary to navigate the ex-
perimental and resource-intensive nature of ML development. As we
move forward to more detailed discussions in the subsequent chap-
ters, this high-level overview equips us with a holistic perspective on
the ML workflow and the various roles involved.

4.5 Resources
Here is a curated list of resources to support students and instructors
in their learning and teaching journeys. We are continuously working
on expanding this collection and will add new exercises soon.

CHAPTER 4. AI WORKFLOW 93

Slides

These slides are a valuable tool for instructors to deliver lectures
and for students to review the material at their own pace. We
encourage students and instructors to leverage these slides to
improve their understanding and facilitate effective knowledge
transfer.

• ML Workflow.

• ML Lifecycle.

Videos

• Coming soon.

Exercises

To reinforce the concepts covered in this chapter, we have curated
a set of exercises that challenge students to apply their knowl-
edge and deepen their understanding.

• Coming soon.

Labs

In addition to exercises, we offer a series of hands-on labs allow-
ing students to gain practical experience with embedded AI tech-
nologies. These labs provide step-by-step guidance, enabling stu-
dents to develop their skills in a structured and supportive envi-
ronment. We are excited to announce that new labs will be avail-
able soon, further enriching the learning experience.

• Coming soon.

https://docs.google.com/presentation/d/1rWXLegepZjpJHonYLKcOJYfOIunmOBnrg0SGhy1pZ_I/edit
https://docs.google.com/presentation/d/1zOxDX-tKlY8t9KmCYek0E-mZA9ENPjW9ymVyFV17DmE/edit

95

Chapter 5

Data Engineering

Figure 5.1.: DALL·E 3 Prompt:
Create a rectangular illustration
visualizing the concept of data en-
gineering. Include elements such
as raw data sources, data pro-
cessing pipelines, storage systems,
and refined datasets. Show how
raw data is transformed through
cleaning, processing, and storage
to become valuable information
that can be analyzed and used for
decision-making.

Data is the lifeblood of AI systems. Without good data, even the most
advanced machine-learning algorithms will not succeed. However,
TinyML models operate on devices with limited processing power and
memory. This section explores the intricacies of building high-quality
datasets to fuel our AI models. Data engineering involves collecting,
storing, processing, and managing data to train machine learning mod-
els.

5.1. Introduction 96

Learning Objectives

• Understand the importance of clearly defining the prob-
lem statement and objectives when embarking on an ML
project.

• Recognize various data sourcing techniques, such as web
scraping, crowdsourcing, and synthetic data generation,
along with their advantages and limitations.

• Appreciate the need for thoughtful data labeling, using
manual or AI-assisted approaches, to create high-quality
training datasets.

• Briefly learn different methods for storing and managing
data, such as databases, data warehouses, and data lakes.

• Comprehend the role of transparency through metadata
and dataset documentation and tracking data provenance
to facilitate ethics, auditing, and reproducibility.

• Understand how licensing protocols govern legal data ac-
cess and usage, necessitating careful compliance.

• Recognize key challenges in data engineering, including
privacy risks, representation gaps, legal restrictions around
data access, and balancing competing priorities.

5.1 Introduction
Imagine a world where AI can diagnose diseases with unprecedented
accuracy, but only if the data used to train it is unbiased and reliable.
This is where data engineering comes in. While over 90% of the world’s
data has been created in the past two decades, this vast amount of infor-
mation is only helpful for building effective AI models with proper pro-
cessing and preparation. Data engineering bridges this gap by trans-
forming raw data into a high-quality format that fuels AI innovation.
In today’s data-driven world, protecting user privacy is paramount.
Whether mandated by law or driven by user concerns, anonymization
techniques like differential privacy and aggregation are vital in mitigat-
ing privacy risks. However, careful implementation is crucial to ensure
these methods don’t compromise data utility. Dataset creators face
complex privacy and representation challenges when building high-
quality training data, especially for sensitive domains like healthcare.

CHAPTER 5. DATA ENGINEERING 97

Legally, creators may need to remove direct identifiers like names and
ages. Even without legal obligations, removing such information can
help build user trust. However, excessive anonymization can compro-
mise dataset utility. Techniques like differential privacy1, aggregation,
and reducing detail provide alternatives to balance privacy and utility
but have downsides. Creators must strike a thoughtful balance based
on the use case.

While privacy is paramount, ensuring fair and robust AI models re-
quires addressing representation gaps in the data. It is crucial yet insuf-
ficient to ensure diversity across individual variables like gender, race,
and accent. These combinations, sometimes called higher-order gaps,
can significantly impact model performance. For example, a medical
dataset could have balanced gender, age, and diagnosis data individu-
ally, but it lacks enough cases to capture older women with a specific
condition. Such higher-order gaps are not immediately obvious but
can critically impact model performance.

Creating useful, ethical training data requires holistic consid-
eration of privacy risks and representation gaps. Elusive perfect
solutions necessitate conscientious data engineering practices like
anonymization, aggregation, under-sampling of overrepresented
groups, and synthesized data generation to balance competing needs.
This facilitates models that are both accurate and socially responsible.
Cross-functional collaboration and external audits can also strengthen
training data. The challenges are multifaceted but surmountable with
thoughtful effort.

We begin by discussing data collection: Where do we source data,
and how do we gather it? Options range from scraping the web, access-
ing APIs, and utilizing sensors and IoT devices to conducting surveys
and gathering user input. These methods reflect real-world practices.
Next, we dive into data labeling, including considerations for human
involvement. We’ll discuss the trade-offs and limitations of human
labeling and explore emerging methods for automated labeling. Fol-
lowing that, we’ll address data cleaning and preprocessing, a crucial
yet frequently undervalued step in preparing raw data for AI model
training. Data augmentation comes next, a strategy for enhancing lim-
ited datasets by generating synthetic samples. This is particularly per-
tinent for embedded systems, as many use cases need extensive data
repositories readily available for curation. Synthetic data generation
emerges as a viable alternative with advantages and disadvantages.
We’ll also touch upon dataset versioning, emphasizing the importance
of tracking data modifications over time. Data is ever-evolving; hence,
it’s imperative to devise strategies for managing and storing expansive
datasets. By the end of this section, you’ll possess a comprehensive

https://blog.google/technology/health/healthcare-ai-systems-put-people-center/

5.2. Problem Definition 98

understanding of the entire data pipeline, from collection to storage,
essential for operationalizing AI systems. Let’s embark on this jour-
ney!

5.2 Problem Definition
In many machine learning domains, sophisticated algorithms take cen-
ter stage, while the fundamental importance of data quality is often
overlooked. This neglect gives rise to “Data Cascades” by Sambasivan
et al. (2021a) (see Figure 5.2)—events where lapses in data quality com-
pound, leading to negative downstream consequences such as flawed
predictions, project terminations, and even potential harm to commu-
nities. In Figure 5.2, we have an illustration of potential data pitfalls at
every stage and how they influence the entire process down the line.
The influence of data collection errors is especially pronounced. Any
lapses in this stage will become apparent at later stages (in model eval-
uation and deployment) and might lead to costly consequences, such
as abandoning the entire model and restarting anew. Therefore, invest-
ing in data engineering techniques from the onset will help us detect
errors early.

Figure 5.2.: Data cascades:
compounded costs. Source:
Sambasivan et al. (2021a).

Despite many ML professionals recognizing the importance of data,
numerous practitioners report facing these cascades. This highlights
a systemic issue: while the allure of developing advanced models re-
mains, data often needs to be more appreciated.

Take, for example, Keyword Spotting (KWS) (see Figure 5.3). KWS
is a prime example of TinyML in action and is a critical technology
behind voice-enabled interfaces on endpoint devices such as smart-
phones. Typically functioning as lightweight wake-word engines,
these systems are consistently active, listening for a specific phrase to
trigger further actions. When we say “OK, Google” or “Alexa,” this
initiates a process on a microcontroller embedded within the device.
Despite their limited resources, these microcontrollers play an impor-
tant role in enabling seamless voice interactions with devices, often
operating in environments with high ambient noise. The uniqueness

https://research.google/pubs/pub49953/

CHAPTER 5. DATA ENGINEERING 99

of the wake word helps minimize false positives, ensuring that the
system is not triggered inadvertently.

It is important to appreciate that these keyword-spotting technolo-
gies are not isolated; they integrate seamlessly into larger systems, pro-
cessing signals continuously while managing low power consumption.
These systems extend beyond simple keyword recognition, evolving
to facilitate diverse sound detections, such as glass breaking. This evo-
lution is geared towards creating intelligent devices capable of under-
standing and responding to vocal commands, heralding a future where
even household appliances can be controlled through voice interac-
tions.

Figure 5.3.: Keyword Spot-
ting example: interacting with
Alexa. Source: Amazon.

Building a reliable KWS model is a complex task. It demands a deep
understanding of the deployment scenario, encompassing where and
how these devices will operate. For instance, a KWS model’s effective-
ness is not just about recognizing a word; it’s about discerning it among
various accents and background noises, whether in a bustling cafe or
amid the blaring sound of a television in a living room or a kitchen
where these devices are commonly found. It’s about ensuring that a
whispered “Alexa” in the dead of night or a shouted “OK Google” in
a noisy marketplace are recognized with equal precision.

Moreover, many current KWS voice assistants support a limited
number of languages, leaving a substantial portion of the world’s
linguistic diversity unrepresented. This limitation is partly due to the
difÏculty in gathering and monetizing data for languages spoken by
smaller populations. The long-tail distribution of languages implies
that many languages have limited data, making the development of

5.2. Problem Definition 100

supportive technologies challenging.
This level of accuracy and robustness hinges on the availability and

quality of data, the ability to label the data correctly, and the trans-
parency of the data for the end user before it is used to train the model.
However, it all begins with clearly understanding the problem state-
ment or definition.

Generally, in ML, problem definition has a few key steps:

1. Identifying the problem definition clearly

2. Setting clear objectives

3. Establishing success benchmark

4. Understanding end-user engagement/use

5. Understanding the constraints and limitations of deployment

6. Followed by finally doing the data collection.

A solid project foundation is essential for its trajectory and eventual
success. Central to this foundation is first identifying a clear problem,
such as ensuring that voice commands in voice assistance systems are
recognized consistently across varying environments. Clear objectives,
like creating representative datasets for diverse scenarios, provide a
unified direction. Benchmarks, such as system accuracy in keyword
detection, offer measurable outcomes to gauge progress. Engaging
with stakeholders, from end-users to investors, provides invaluable in-
sights and ensures alignment with market needs. Additionally, under-
standing platform constraints is important when exploring areas like
voice assistance. Embedded systems, such as microcontrollers, come
with inherent processing power, memory, and energy efÏciency limi-
tations. Recognizing these limitations ensures that functionalities, like
keyword detection, are tailored to operate optimally, balancing perfor-
mance with resource conservation.

In this context, using KWS as an example, we can break each of the
steps out as follows:

1. Identifying the Problem: At its core, KWS detects specific key-
words amidst ambient sounds and other spoken words. The pri-
mary problem is to design a system that can recognize these key-
words with high accuracy, low latency, and minimal false posi-
tives or negatives, especially when deployed on devices with lim-
ited computational resources.

2. SettingClearObjectives: The objectives for a KWS system might
include:

CHAPTER 5. DATA ENGINEERING 101

• Achieving a specific accuracy rate (e.g., 98% accuracy in key-
word detection).

• Ensuring low latency (e.g., keyword detection and response
within 200 milliseconds).

• Minimizing power consumption to extend battery life on
embedded devices.

• Ensuring the model’s size is optimized for the available
memory on the device.

3. Benchmarks for Success: Establish clear metrics to measure the
success of the KWS system. This could include:

• True Positive Rate: The percentage of correctly identified
keywords.

• False Positive Rate: The percentage of non-keywords incor-
rectly identified as keywords.

• Response Time: The time taken from keyword utterance to
system response.

• Power Consumption: Average power used during keyword
detection.

4. Stakeholder Engagement and Understanding: Engage with
stakeholders, which include device manufacturers, hardware
and software developers, and end-users. Understand their
needs, capabilities, and constraints. For instance:

• Device manufacturers might prioritize low power consump-
tion.

• Software developers might emphasize ease of integration.
• End-users would prioritize accuracy and responsiveness.

5. Understanding the Constraints and Limitations of Embedded
Systems: Embedded devices come with their own set of chal-
lenges:

• Memory Limitations: KWS models must be lightweight to
fit within the memory constraints of embedded devices.
Typically, KWS models need to be as small as 16KB to fit in
the always-on island of the SoC. Moreover, this is just the
model size. Additional application code for preprocessing
may also need to fit within the memory constraints.

• Processing Power: The computational capabilities of embed-
ded devices are limited (a few hundred MHz of clock speed),
so the KWS model must be optimized for efÏciency.

• Power Consumption: Since many embedded devices are
battery-powered, the KWS system must be power-efÏcient.

5.2. Problem Definition 102

• Environmental Challenges: Devices might be deployed in
various environments, from quiet bedrooms to noisy indus-
trial settings. The KWS system must be robust enough to
function effectively across these scenarios.

6. Data Collection and Analysis: For a KWS system, the quality
and diversity of data are paramount. Considerations might in-
clude:

• Variety of Accents: Collect data from speakers with various
accents to ensure wide-ranging recognition.

• Background Noises: Include data samples with different
ambient noises to train the model for real-world scenarios.

• Keyword Variations: People might either pronounce key-
words differently or have slight variations in the wake word
itself. Ensure the dataset captures these nuances.

7. Iterative Feedback and Refinement: Once a prototype KWS sys-
tem is developed, it’s crucial to test it in real-world scenarios,
gather feedback, and iteratively refine the model. This ensures
that the system remains aligned with the defined problem and
objectives. This is important because the deployment scenarios
change over time as things evolve.

Exercise 4: Keyword Spotting with TensorFlow Lite Micro

Explore a hands-on guide for building and deploying Keyword
Spotting (KWS) systems using TensorFlow Lite Micro. Follow
steps from data collection to model training and deployment to
microcontrollers. Learn to create efÏcient KWS models that rec-
ognize specific keywords amidst background noise. Perfect for
those interested in machine learning on embedded systems. Un-
lock the potential of voice-enabled devices with TensorFlow Lite
Micro!

The current chapter underscores the essential role of data quality
in ML, using Keyword Spotting (KWS) systems as an example. It out-
lines key steps, from problem definition to stakeholder engagement,
emphasizing iterative feedback. The forthcoming chapter will dig
deeper into data quality management, discussing its consequences
and future trends, focusing on the importance of high-quality, diverse
data in AI system development, addressing ethical considerations
and data sourcing methods.

https://colab.research.google.com/drive/17I7GL8WTieGzXYKRtQM2FrFi3eLQIrOM

CHAPTER 5. DATA ENGINEERING 103

5.3 Data Sourcing
The quality and diversity of data gathered are important for develop-
ing accurate and robust AI systems. Sourcing high-quality training
data requires careful consideration of the objectives, resources, and
ethical implications. Data can be obtained from various sources de-
pending on the needs of the project:

5.3.1 Pre-existing datasets

Platforms like Kaggle and UCI Machine Learning Repository provide
a convenient starting point. Pre-existing datasets are valuable for re-
searchers, developers, and businesses. One of their primary advan-
tages is cost efÏciency. Creating a dataset from scratch can be time-
consuming and expensive, so accessing ready-made data can save sig-
nificant resources. Moreover, many datasets, like ImageNet, have be-
come standard benchmarks in the machine learning community, al-
lowing for consistent performance comparisons across different mod-
els and algorithms. This data availability means that experiments can
be started immediately without any data collection and preprocessing
delays. In a fast-moving field like ML, this practicality is important.

The quality assurance that comes with popular pre-existing datasets
is important to consider because several datasets have errors in them.
For instance, the ImageNet dataset was found to have over 6.4% er-
rors. Given their widespread use, the community often identifies and
rectifies any errors or biases in these datasets. This assurance is es-
pecially beneficial for students and newcomers to the field, as they
can focus on learning and experimentation without worrying about
data integrity. Supporting documentation often accompanying exist-
ing datasets is invaluable, though this generally applies only to widely
used datasets. Good documentation provides insights into the data
collection process and variable definitions and sometimes even offers
baseline model performances. This information not only aids under-
standing but also promotes reproducibility in research, a cornerstone
of scientific integrity; currently, there is a crisis around improving re-
producibility in machine learning systems. When other researchers
have access to the same data, they can validate findings, test new hy-
potheses, or apply different methodologies, thus allowing us to build
on each other’s work more rapidly.

While platforms like Kaggle and UCI Machine Learning Repository
are invaluable resources, it’s essential to understand the context in
which the data was collected. Researchers should be wary of potential
overfitting when using popular datasets, as multiple models might

https://www.kaggle.com/
https://archive.ics.uci.edu/
https://www.image-net.org/
https://arxiv.org/abs/2103.14749
https://arxiv.org/abs/2103.14749
https://arxiv.org/abs/2003.12206
https://arxiv.org/abs/2003.12206

5.3. Data Sourcing 104

have been trained on them, leading to inflated performance metrics.
Sometimes, these datasets do not reflect the real-world data.

In addition, bias, validity, and reproducibility issues may exist in
these datasets, and there has been a growing awareness of these issues
in recent years. Furthermore, using the same dataset to train differ-
ent models as shown in Figure 5.4 can sometimes create misalignment:
training multiple models using the same dataset results in a ‘misalign-
ment’ between the models and the world, in which an entire ecosystem
of models reflects only a narrow subset of the real-world data.

Figure 5.4.: Training different
models on the same dataset.
Source: (icons from left to
right: Becris; Freepik; Freepik;
Paul J; SBTS2018).

5.3.2 Web Scraping

Web scraping refers to automated techniques for extracting data from
websites. It typically involves sending HTTP requests to web servers,
retrieving HTML content, and parsing that content to extract relevant
information. Popular tools and frameworks for web scraping include
Beautiful Soup, Scrapy, and Selenium. These tools offer different func-
tionalities, from parsing HTML content to automating web browser in-
teractions, especially for websites that load content dynamically using
JavaScript.

Web scraping can effectively gather large datasets for training ma-
chine learning models, particularly when human-labeled data is scarce.
For computer vision research, web scraping enables the collection of
massive volumes of images and videos. Researchers have used this
technique to build influential datasets like ImageNet and OpenImages.
For example, one could scrape e-commerce sites to amass product pho-
tos for object recognition or social media platforms to collect user up-
loads for facial analysis. Even before ImageNet, Stanford’s LabelMe

https://venturebeat.com/uncategorized/3-big-problems-with-datasets-in-ai-and-machine-learning/
https://www.image-net.org/
https://storage.googleapis.com/openimages/web/index.html
https://people.csail.mit.edu/torralba/publications/labelmeApplications.pdf

CHAPTER 5. DATA ENGINEERING 105

project scraped Flickr for over 63,000 annotated images covering hun-
dreds of object categories.

Beyond computer vision, web scraping supports gathering textual
data for natural language tasks. Researchers can scrape news sites for
sentiment analysis data, forums and review sites for dialogue systems
research, or social media for topic modeling. For example, the training
data for chatbot ChatGPT was obtained by scraping much of the public
Internet. GitHub repositories were scraped to train GitHub’s Copilot
AI coding assistant.

Web scraping can also collect structured data, such as stock prices,
weather data, or product information, for analytical applications. Once
data is scraped, it is essential to store it in a structured manner, often
using databases or data warehouses. Proper data management ensures
the usability of the scraped data for future analysis and applications.

However, while web scraping offers numerous advantages, there are
significant limitations and ethical considerations to bear. Not all web-
sites permit scraping, and violating these restrictions can lead to le-
gal repercussions. Scraping copyrighted material or private communi-
cations is also unethical and potentially illegal. Ethical web scraping
mandates adherence to a website’s ‘robots.txt’ file, which outlines the
sections of the site that can be accessed and scraped by automated bots.

To deter automated scraping, many websites implement rate limits.
If a bot sends too many requests in a short period, it might be tem-
porarily blocked, restricting the speed of data access. Additionally,
the dynamic nature of web content means that data scraped at differ-
ent intervals might need more consistency, posing challenges for lon-
gitudinal studies. However, there are emerging trends like Web Navi-
gation where machine learning algorithms can automatically navigate
the website to access the dynamic content.

The volume of pertinent data available for scraping might be limited
for niche subjects. For example, while scraping for common topics like
images of cats and dogs might yield abundant data, searching for rare
medical conditions might be less fruitful. Moreover, the data obtained
through scraping is often unstructured and noisy, necessitating thor-
ough preprocessing and cleaning. It is crucial to understand that not
all scraped data will be of high quality or accuracy. Employing verifi-
cation methods, such as cross-referencing with alternate data sources,
can improve data reliability.

Privacy concerns arise when scraping personal data, emphasizing
the need for anonymization. Therefore, it is paramount to adhere to a
website’s Terms of Service, confine data collection to public domains,
and ensure the anonymity of any personal data acquired.

While web scraping can be a scalable method to amass large train-

https://arxiv.org/abs/1812.09195
https://arxiv.org/abs/1812.09195

5.3. Data Sourcing 106

ing datasets for AI systems, its applicability is confined to specific data
types. For example, web scraping makes sourcing data for Inertial Mea-
surement Units (IMU) for gesture recognition more complex. At most,
one can scrape an existing dataset.

Web scraping can yield inconsistent or inaccurate data. For example,
the photo in Figure 5.5 shows up when you search for ‘trafÏc light’ on
Google Images. It is an image from 1914 that shows outdated trafÏc
lights, which are also barely discernible because of the image’s poor
quality. This can be problematic for web-scraped datasets, as it pollutes
the dataset with inapplicable (old) data samples.

Figure 5.5.: A picture of old
trafÏc lights (1914). Source:
Vox.

Exercise 5: Web Scraping

Discover the power of web scraping with Python using libraries
like Beautiful Soup and Pandas. This exercise will scrape Python
documentation for function names and descriptions and explore
NBA player stats. By the end, you’ll have the skills to extract and
analyze data from real-world websites. Ready to dive in? Access
the Google Colab notebook below and start practicing!

5.3.3 Crowdsourcing

Crowdsourcing for datasets is the practice of obtaining data using the
services of many people, either from a specific community or the gen-
eral public, typically via the Internet. Instead of relying on a small

https://www.vox.com/2015/8/5/9097713/when-was-the-first-traffic-light-installed
https://colab.research.google.com/github/Andy-Pham-72/Web-Scraping-with-BeautifulSoup-and-Pandas/blob/master/Web_scraping_with_beautiful_soup_and_pandas_complete.ipynb

CHAPTER 5. DATA ENGINEERING 107

team or specific organization to collect or label data, crowdsourcing
leverages the collective effort of a vast, distributed group of partici-
pants. Services like Amazon Mechanical Turk enable the distribution
of annotation tasks to a large, diverse workforce. This facilitates the
collection of labels for complex tasks like sentiment analysis or image
recognition requiring human judgment.

Crowdsourcing has emerged as an effective approach for data col-
lection and problem-solving. One major advantage of crowdsourcing
is scalability—by distributing tasks to a large, global pool of contrib-
utors on digital platforms, projects can process huge volumes of data
quickly. This makes crowdsourcing ideal for large-scale data labeling,
collection, and analysis.

In addition, crowdsourcing taps into a diverse group of participants,
bringing a wide range of perspectives, cultural insights, and language
abilities that can enrich data and enhance creative problem-solving in
ways that a more homogenous group may not. Because crowdsourc-
ing draws from a large audience beyond traditional channels, it is more
cost-effective than conventional methods, especially for simpler micro-
tasks.

Crowdsourcing platforms also allow for great flexibility, as task pa-
rameters can be adjusted in real time based on initial results. This cre-
ates a feedback loop for iterative improvements to the data collection
process. Complex jobs can be broken down into microtasks and dis-
tributed to multiple people, with results cross-validated by assigning
redundant versions of the same task. When thoughtfully managed,
crowdsourcing enables community engagement around a collabora-
tive project, where participants find reward in contributing.

However, while crowdsourcing offers numerous advantages, it’s es-
sential to approach it with a clear strategy. While it provides access to a
diverse set of annotators, it also introduces variability in the quality of
annotations. Additionally, platforms like Mechanical Turk might not
always capture a complete demographic spectrum; often, tech-savvy
individuals are overrepresented, while children and older people may
be underrepresented. Providing clear instructions and training for the
annotators is crucial. Periodic checks and validations of the labeled
data help maintain quality. This ties back to the topic of clear Problem
Definition that we discussed earlier. Crowdsourcing for datasets also
requires careful attention to ethical considerations. It’s crucial to en-
sure that participants are informed about how their data will be used
and that their privacy is protected. Quality control through detailed
protocols, transparency in sourcing, and auditing is essential to ensure
reliable outcomes.

For TinyML, crowdsourcing can pose some unique challenges.

5.3. Data Sourcing 108

TinyML devices are highly specialized for particular tasks within tight
constraints. As a result, the data they require tends to be very specific.
Obtaining such specialized data from a general audience may be
difÏcult through crowdsourcing. For example, TinyML applications
often rely on data collected from certain sensors or hardware. Crowd-
sourcing would require participants to have access to very specific and
consistent devices - like microphones, with the same sampling rates.
These hardware nuances present obstacles even for simple audio tasks
like keyword spotting.

Beyond hardware, the data itself needs high granularity and qual-
ity, given the limitations of TinyML. It can be hard to ensure this when
crowdsourcing from those unfamiliar with the application’s context
and requirements. There are also potential issues around privacy, real-
time collection, standardization, and technical expertise. Moreover,
the narrow nature of many TinyML tasks makes accurate data label-
ing easier with the proper understanding. Participants may need full
context to provide reliable annotations.

Thus, while crowdsourcing can work well in many cases, the spe-
cialized needs of TinyML introduce unique data challenges. Careful
planning is required for guidelines, targeting, and quality control.
For some applications, crowdsourcing may be feasible, but others
may require more focused data collection efforts to obtain relevant,
high-quality training data.

5.3.4 Synthetic Data

Synthetic data generation can be useful for addressing some of the
data collection limitations. It involves creating data that wasn’t orig-
inally captured or observed but is generated using algorithms, simu-
lations, or other techniques to resemble real-world data. As shown in
Figure 5.6, synthetic data is merged with historical data and then used
as input for model training. It has become a valuable tool in various
fields, particularly when real-world data is scarce, expensive, or ethi-
cally challenging (e.g., TinyML). Various techniques, such as Genera-
tive Adversarial Networks (GANs), can produce high-quality synthetic
data almost indistinguishable from real data. These techniques have
advanced significantly, making synthetic data generation increasingly
realistic and reliable.

More real-world data may need to be available for analysis or train-
ing machine learning models in many domains, especially emerging
ones. Synthetic data can fill this gap by producing large volumes of
data that mimic real-world scenarios. For instance, detecting the sound
of breaking glass might be challenging in security applications where

CHAPTER 5. DATA ENGINEERING 109

a TinyML device is trying to identify break-ins. Collecting real-world
data would require breaking numerous windows, which is impractical
and costly.

Moreover, having a diverse dataset is crucial in machine learning, es-
pecially in deep learning. Synthetic data can augment existing datasets
by introducing variations, thereby enhancing the robustness of mod-
els. For example, SpecAugment is an excellent data augmentation tech-
nique for Automatic Speech Recognition (ASR) systems.

Privacy and confidentiality are also big issues. Datasets containing
sensitive or personal information pose privacy concerns when shared
or used. Synthetic data, being artificially generated, doesn’t have these
direct ties to real individuals, allowing for safer use while preserving
essential statistical properties.

Generating synthetic data, especially once the generation mecha-
nisms have been established, can be a more cost-effective alternative.
Synthetic data eliminates the need to break multiple windows to
gather relevant data in the security above application scenario.

Many embedded use cases deal with unique situations, such as
manufacturing plants, that are difÏcult to simulate. Synthetic data
allows researchers complete control over the data generation process,
enabling the creation of specific scenarios or conditions that are
challenging to capture in real life.

While synthetic data offers numerous advantages, it is essential to
use it judiciously. Care must be taken to ensure that the generated data
accurately represents the underlying real-world distributions and does
not introduce unintended biases.

Figure 5.6.: Increasing training
data size with synthetic data
generation. Source: AnyLogic.

https://www.anylogic.com/features/artificial-intelligence/synthetic-data/

5.4. Data Storage 110

Exercise 6: Synthetic Data

Let us learn about synthetic data generation using Generative
Adversarial Networks (GANs) on tabular data. We’ll take a
hands-on approach, diving into the workings of the CTGAN
model and applying it to the Synthea dataset from the healthcare
domain. From data preprocessing to model training and evalua-
tion, we’ll go step-by-step, learning how to create synthetic data,
assess its quality, and unlock the potential of GANs for data aug-
mentation and real-world applications.

5.4 Data Storage
Data sourcing and data storage go hand in hand, and data must be
stored in a format that facilitates easy access and processing. Depend-
ing on the use case, various kinds of data storage systems can be used
to store your datasets. Some examples are shown in Table 5.1.

Table 5.1.: Comparative overview of the database, data warehouse,
and data lake.

Database
Data
Warehouse Data Lake

Purpose Operational
and
transactional

Analytical

Data type Structured Structured, semi-structured,
and/or unstructured

Scale Small to
large
volumes of
data

Large volumes of integrated
data Large volumes of diverse
data

Examples MySQL Google BigQuery, Amazon
Redshift, Microsoft Azure
Synapse, Google Cloud
Storage, AWS S3, Azure Data
Lake Storage

The stored data is often accompanied by metadata, defined as ’data
about data .’It provides detailed contextual information about the data,

https://colab.research.google.com/drive/1nwbvkg32sOUC69zATCfXOygFUBeo0dsx?usp=sharing#scrollTo=TkwYknr44eFn

CHAPTER 5. DATA ENGINEERING 111

such as means of data creation, time of creation, attached data use
license, etc. For example, Hugging Face has Dataset Cards. To pro-
mote responsible data use, dataset creators should disclose potential
biases through the dataset cards. These cards can educate users about
a dataset’s contents and limitations. The cards also give vital context
on appropriate dataset usage by highlighting biases and other impor-
tant details. Having this type of metadata can also allow fast retrieval
if structured properly. Once the model is developed and deployed to
edge devices, the storage systems can continue to store incoming data,
model updates, or analytical results.

Data Governance: With a large amount of data storage, it is also
imperative to have policies and practices (i.e., data governance) that
help manage data during its life cycle, from acquisition to disposal.
Data governance outlines how data is managed and includes making
key decisions about data access and control. Figure 5.7 illustrates
the different domains involved in data governance. It involves ex-
ercising authority and making decisions concerning data to uphold
its quality, ensure compliance, maintain security, and derive value.
Data governance is operationalized by developing policies, incentives,
and penalties, cultivating a culture that perceives data as a valuable
asset. Specific procedures and assigned authorities are implemented
to safeguard data quality and monitor its utilization and related risks.

Data governance utilizes three integrative approaches: planning and
control, organizational, and risk-based.

• The planning and control approach, common in IT, aligns busi-
ness and technology through annual cycles and continuous ad-
justments, focusing on policy-driven, auditable governance.

• The organizational approach emphasizes structure, establishing
authoritative roles like Chief Data OfÏcers and ensuring respon-
sibility and accountability in governance.

• The risk-based approach, intensified by AI advancements, fo-
cuses on identifying and managing inherent risks in data and al-
gorithms. It especially addresses AI-specific issues through regu-
lar assessments and proactive risk management strategies, allow-
ing for incidental and preventive actions to mitigate undesired
algorithm impacts.

Some examples of data governance across different sectors include:

• Medicine: Health Information Exchanges(HIEs) enable the shar-
ing of health information across different healthcare providers
to improve patient care. They implement strict data governance

https://huggingface.co/
https://huggingface.co/docs/hub/datasets-cards
https://www.healthit.gov/topic/health-it-and-health-information-exchange-basics/what-hie

5.4. Data Storage 112

Figure 5.7.: An overview of
the data governance frame-
work. Source: StarCIO..

practices to maintain data accuracy, integrity, privacy, and se-
curity, complying with regulations such as the Health Insurance
Portability and Accountability Act (HIPAA). Governance policies
ensure that patient data is only shared with authorized entities
and that patients can control access to their information.

• Finance: Basel III Framework is an international regulatory
framework for banks. It ensures that banks establish clear
policies, practices, and responsibilities for data management,
ensuring data accuracy, completeness, and timeliness. Not only
does it enable banks to meet regulatory compliance, but it also
prevents financial crises by more effectively managing risks.

• Government: Government agencies managing citizen data, pub-
lic records, and administrative information implement data gov-
ernance to manage data transparently and securely. The Social
Security System in the US and the Aadhar system in India are
good examples of such governance systems.

Special data storage considerations for TinyML
EfÏcient Audio Storage Formats: Keyword spotting systems need

specialized audio storage formats to enable quick keyword searching
in audio data. Traditional formats like WAV and MP3 store full audio
waveforms, which require extensive processing to search through.
Keyword spotting uses compressed storage optimized for snippet-
based search. One approach is to store compact acoustic features
instead of raw audio. Such a workflow would involve:

https://www.groundwatergovernance.org/the-importance-of-governance-for-all-stakeholders/
https://www.cdc.gov/phlp/publications/topic/hipaa.html
https://www.cdc.gov/phlp/publications/topic/hipaa.html
https://www.bis.org/bcbs/basel3.htm

CHAPTER 5. DATA ENGINEERING 113

• Extracting acoustic features: Mel-frequency cepstral coefÏcients
(MFCCs) commonly represent important audio characteristics.

• Creating Embeddings: Embeddings transform extracted acous-
tic features into continuous vector spaces, enabling more com-
pact and representative data storage. This representation is es-
sential in converting high-dimensional data, like audio, into a
more manageable and efÏcient format for computation and stor-
age.

• Vector quantization: This technique represents high-dimensional
data, like embeddings, with lower-dimensional vectors, reduc-
ing storage needs. Initially, a codebook is generated from the
training data to define a set of code vectors representing the
original data vectors. Subsequently, each data vector is matched
to the nearest codeword according to the codebook, ensuring
minimal information loss.

• Sequential storage: The audio is fragmented into short frames,
and the quantized features (or embeddings) for each frame are
stored sequentially to maintain the temporal order, preserving
the coherence and context of the audio data.

This format enables decoding the features frame-by-frame for key-
word matching. Searching the features is faster than decompressing
the full audio.

Selective Network Output Storage: Another technique for reduc-
ing storage is to discard the intermediate audio features stored during
training but not required during inference. The network is run on full
audio during training. However, only the final outputs are stored dur-
ing inference.

5.5 Data Processing
Data processing refers to the steps involved in transforming raw data
into a format suitable for feeding into machine learning algorithms.
It is a crucial stage in any ML workflow, yet often overlooked. With
proper data processing, ML models are likely to achieve optimal per-
formance. Figure 5.8 shows a breakdown of a data scientist’s time allo-
cation, highlighting the significant portion spent on data cleaning and
organizing (%60).

Proper data cleaning is a crucial step that directly impacts model per-
formance. Real-world data is often dirty, containing errors, missing
values, noise, anomalies, and inconsistencies. Data cleaning involves

5.5. Data Processing 114

Figure 5.8.: Data scientists’
tasks breakdown by time spent.
Source: Forbes.

detecting and fixing these issues to prepare high-quality data for mod-
eling. By carefully selecting appropriate techniques, data scientists can
improve model accuracy, reduce overfitting, and train algorithms to
learn more robust patterns. Overall, thoughtful data processing allows
machine learning systems to uncover insights better and make predic-
tions from real-world data.

Data often comes from diverse sources and can be unstructured or
semi-structured. Thus, processing and standardizing it is essential, en-
suring it adheres to a uniform format. Such transformations may in-
clude:

• Normalizing numerical variables
• Encoding categorical variables
• Using techniques like dimensionality reduction

Data validation serves a broader role than ensuring adherence to cer-
tain standards, like preventing temperature values from falling below
absolute zero. These issues arise in TinyML because sensors may mal-
function or temporarily produce incorrect readings; such transients are
not uncommon. Therefore, it is imperative to catch data errors early be-
fore propagating through the data pipeline. Rigorous validation pro-
cesses, including verifying the initial annotation practices, detecting
outliers, and handling missing values through techniques like mean
imputation, contribute directly to the quality of datasets. This, in turn,
impacts the performance, fairness, and safety of the models trained
on them. Let’s take a look at Figure 5.9 for an example of a data pro-
cessing pipeline. In the context of TinyML, the Multilingual Spoken
Words Corpus (MSWC) is an example of data processing pipelines—
systematic and automated workflows for data transformation, storage,
and processing. The input data (which’s a collection of short record-
ings) goes through several phases of processing, such as audio-word
alignement and keyword extraction. By streamlining the data flow,

https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/?sh=20c55a266f63

CHAPTER 5. DATA ENGINEERING 115

from raw data to usable datasets, data pipelines improve productivity
and facilitate the rapid development of machine learning models. The
MSWC is an expansive and expanding collection of audio recordings of
spoken words in 50 different languages, which are collectively used by
over 5 billion people. This dataset is intended for academic study and
business uses in areas like keyword identification and speech-based
search. It is openly licensed under Creative Commons Attribution 4.0
for broad usage.

Figure 5.9.: An overview
of the Multilingual Spoken
Words Corpus (MSWC) data
processing pipeline. Source:
Mazumder et al. (2021).

The MSWC used a forced alignment method to automatically
extract individual word recordings to train keyword-spotting mod-
els from the Common Voice project, which features crowdsourced
sentence-level recordings. Forced alignment refers to long-standing
methods in speech processing that predict when speech phenomena
like syllables, words, or sentences start and end within an audio
recording. In the MSWC data, crowdsourced recordings often feature
background noises, such as static and wind. Depending on the
model’s requirements, these noises can be removed or intentionally
retained.

Maintaining the integrity of the data infrastructure is a continuous
endeavor. This encompasses data storage, security, error handling, and
stringent version control. Periodic updates are crucial, especially in
dynamic realms like keyword spotting, to adjust to evolving linguistic
trends and device integrations.

There is a boom in data processing pipelines, commonly found in
ML operations toolchains, which we will discuss in the MLOps chap-
ter. Briefly, these include frameworks like MLOps by Google Cloud.
It provides methods for automation and monitoring at all steps of ML
system construction, including integration, testing, releasing, deploy-
ment, and infrastructure management. Several mechanisms focus on
data processing, an integral part of these systems.

https://montreal-forced-aligner.readthedocs.io/en/latest/
https://commonvoice.mozilla.org/

5.6. Data Labeling 116

Exercise 7: Data Processing

Let us explore two significant projects in speech data processing
and machine learning. The MSWC is a vast audio dataset with
over 340,000 keywords and 23.4 million 1-second spoken exam-
ples. It’s used in various applications like voice-enabled devices
and call center automation. The Few-Shot Keyword Spotting
project introduces a new approach for keyword spotting across
different languages, achieving impressive results with minimal
training data. We’ll look into the MSWC dataset, learn how
to structure it effectively, and then train a few-shot keyword-
spotting model. Let’s get started!

5.6 Data Labeling
Data labeling is important in creating high-quality training datasets for
machine learning models. Labels provide ground truth information,
allowing models to learn relationships between inputs and desired out-
puts. This section covers key considerations for selecting label types,
formats, and content to capture the necessary information for tasks.
It discusses common annotation approaches, from manual labeling to
crowdsourcing to AI-assisted methods, and best practices for ensuring
label quality through training, guidelines, and quality checks. We also
emphasize the ethical treatment of human annotators. The integration
of AI to accelerate and augment human annotation is also explored.
Understanding labeling needs, challenges, and strategies are essential
for constructing reliable, useful datasets to train performant, trustwor-
thy machine learning systems.

5.6.1 Label Types

Labels capture information about key tasks or concepts. Figure 5.10
includes some common label types: a “classification label” is used for
categorizing images with labels (labeling an image with “dog” if it fea-
tures a dog); a “bounding box” identifies object location (drawing a box
around the dog); a “segmentation map” classifies objects at the pixel
level (highlighting the dog in a distinct color); a “caption” provides
descriptive annotations (describing the dog’s actions, position, color,
etc.); and a “transcript” denotes audio content. The choice of label for-
mat depends on the use case and resource constraints, as more detailed

https://colab.research.google.com/github/harvard-edge/multilingual_kws/blob/main/multilingual_kws_intro_tutorial.ipynb#scrollTo=ApnPyIlYNFYD

CHAPTER 5. DATA ENGINEERING 117

labels require greater effort to collect (Johnson-Roberson et al. 2017).

Figure 5.10.: An overview of
common label types.

Unless focused on self-supervised learning, a dataset will likely
provide labels addressing one or more tasks of interest. Given their
unique resource constraints, dataset creators must consider what
information labels should capture and how they can practically
obtain the necessary labels. Creators must first decide what type(s)
of content labels should capture. For example, a creator interested
in car detection would want to label cars in their dataset. Still, they
might also consider whether to simultaneously collect labels for other
tasks that the dataset could potentially be used for, such as pedestrian
detection.

Additionally, annotators can provide metadata that provides insight
into how the dataset represents different characteristics of interest (see
Section 5.9). The Common Voice dataset, for example, includes var-
ious types of metadata that provide information about the speakers,
recordings, and dataset quality for each language represented (Ardila
et al. 2020). They include demographic splits showing the number of
recordings by speaker age range and gender. This allows us to see who
contributed recordings for each language. They also include statistics
like average recording duration and total hours of validated recordings.
These give insights into the nature and size of the datasets for each
language. Additionally, quality control metrics like the percentage of
recordings that have been validated are useful to know how complete
and clean the datasets are. The metadata also includes normalized
demographic splits scaled to 100% for comparison across languages.

5.6. Data Labeling 118

This highlights representation differences between higher and lower
resource languages.

Next, creators must determine the format of those labels. For exam-
ple, a creator interested in car detection might choose between binary
classification labels that say whether a car is present, bounding boxes
that show the general locations of any cars, or pixel-wise segmenta-
tion labels that show the exact location of each car. Their choice of
label format may depend on their use case and resource constraints, as
finer-grained labels are typically more expensive and time-consuming
to acquire.

5.6.2 Annotation Methods

Common annotation approaches include manual labeling, crowd-
sourcing, and semi-automated techniques. Manual labeling by experts
yields high quality but needs more scalability. Crowdsourcing enables
non-experts to distribute annotation, often through dedicated plat-
forms (Sheng and Zhang 2019). Weakly supervised and programmatic
methods can reduce manual effort by heuristically or automatically
generating labels (Ratner et al. 2018).

After deciding on their labels’ desired content and format, creators
begin the annotation process. To collect large numbers of labels from
human annotators, creators frequently rely on dedicated annotation
platforms, which can connect them to teams of human annotators.
When using these platforms, creators may need more insight into
annotators’ backgrounds and experience levels with topics of interest.
However, some platforms offer access to annotators with specific
expertise (e.g., doctors).

Exercise 8: Bootstrapped Labels

Let us explore Wake Vision, a comprehensive dataset designed
for TinyML person detection. This dataset is derived from a
larger, general-purpose dataset, Open Images (Kuznetsova et al.
2020), and tailored specifically for binary person detection.
The transformation process involves filtering and relabeling the
existing labels and bounding boxes in Open Images using an au-
tomated pipeline. This method not only conserves time and re-
sources but also ensures the dataset meets the specific require-
ments of TinyML applications.
Additionally, we generate metadata to benchmark the fairness
and robustness of models in challenging scenarios.

CHAPTER 5. DATA ENGINEERING 119

Let’s get started!

5.6.3 Ensuring Label Quality

There is no guarantee that the data labels are actually correct. Fig-
ure 5.11 shows some examples of hard labeling cases: some errors arise
from blurred pictures that make them hard to identify (the frog image),
and others stem from a lack of domain knowledge (the black stork case).
It is possible that despite the best instructions being given to labelers,
they still mislabel some images (Northcutt, Athalye, and Mueller 2021).
Strategies like quality checks, training annotators, and collecting multi-
ple labels per datapoint can help ensure label quality. For ambiguous
tasks, multiple annotators can help identify controversial datapoints
and quantify disagreement levels.

Figure 5.11.: Some examples
of hard labeling cases. Source:
Northcutt, Athalye, and
Mueller (2021).

When working with human annotators, offering fair compensation
and otherwise prioritizing ethical treatment is important, as annota-
tors can be exploited or otherwise harmed during the labeling process
(Perrigo, 2023). For example, if a dataset is likely to contain disturbing
content, annotators may benefit from having the option to view images
in grayscale (Google, n.d.).

5.6.4 AI-Assisted Annotation

ML has an insatiable demand for data. Therefore, more data is needed.
This raises the question of how we can get more labeled data. Rather
than always generating and curating data manually, we can rely on
existing AI models to help label datasets more quickly and cheaply,
though often with lower quality than human annotation. This can be
done in various ways as shown in Figure 5.12, including the following:

• Pre-annotation: AI models can generate preliminary labels
for a dataset using methods such as semi-supervised learning
(Chapelle, Scholkopf, and Zien 2009), which humans can then

https://colab.research.google.com/drive/1HC5lkBblrdRZ4vaT5M5061TKKep0MS-M?usp=sharing

5.6. Data Labeling 120

review and correct. This can save a significant amount of time,
especially for large datasets.

• Active learning: AI models can identify the most informative
data points in a dataset, which can then be prioritized for human
annotation. This can help improve the labeled dataset’s quality
while reducing the overall annotation time.

• Quality control: AI models can identify and flag potential errors
in human annotations, helping to ensure the accuracy and con-
sistency of the labeled dataset.

Here are some examples of how AI-assisted annotation has been pro-
posed to be useful:

• Medical imaging: AI-assisted annotation labels medical images,
such as MRI scans and X-rays (R. Krishnan, Rajpurkar, and
Topol 2022). Carefully annotating medical datasets is extremely
challenging, especially at scale, since domain experts are scarce
and become costly. This can help to train AI models to diagnose
diseases and other medical conditions more accurately and
efÏciently.

• Self-driving cars: AI-assisted annotation is being used to label
images and videos from self-driving cars. This can help to train
AI models to identify objects on the road, such as other vehicles,
pedestrians, and trafÏc signs.

• Social media: AI-assisted annotation labels social media posts
like images and videos. This can help to train AI models to iden-
tify and classify different types of content, such as news, adver-
tising, and personal posts.

Figure 5.12.: Strategies for
acquiring additional labeled
training data. Source: Stand-
ford AI Lab.

https://ai.stanford.edu/blog/weak-supervision/
https://ai.stanford.edu/blog/weak-supervision/

CHAPTER 5. DATA ENGINEERING 121

5.7 Data Version Control
Production systems are perpetually inundated with fluctuating and es-
calating volumes of data, prompting the rapid emergence of numerous
data replicas. This increasing data serves as the foundation for train-
ing machine learning models. For instance, a global sales company
engaged in sales forecasting continuously receives consumer behavior
data. Similarly, healthcare systems formulating predictive models for
disease diagnosis are consistently acquiring new patient data. TinyML
applications, such as keyword spotting, are highly data-hungry regard-
ing the amount of data generated. Consequently, meticulous tracking
of data versions and the corresponding model performance is impera-
tive.

Data Version Control offers a structured methodology to handle
alterations and versions of datasets efÏciently. It facilitates moni-
toring modifications, preserves multiple versions, and guarantees
reproducibility and traceability in data-centric projects. Furthermore,
data version control provides the versatility to review and use specific
versions as needed, ensuring that each stage of the data processing
and model development can be revisited and audited precisely and
easily. It has a variety of practical uses -

Risk Management: Data version control allows transparency and
accountability by tracking dataset versions.

Collaboration and EfÏciency: Easy access to different dataset ver-
sions in one place can improve data sharing of specific checkpoints
and enable efÏcient collaboration.

Reproducibility: Data version control allows for tracking the perfor-
mance of models concerning different versions of the data, and there-
fore enabling reproducibility.

Key Concepts

• Commits: It is an immutable snapshot of the data at a specific
point in time, representing a unique version. Every commit is
associated with a unique identifier to allow

• Branches: Branching allows developers and data scientists
to diverge from the main development line and continue to
work independently without affecting other branches. This is
especially useful when experimenting with new features or
models, enabling parallel development and experimentation
without the risk of corrupting the stable main branch.

• Merges: Merges help to integrate changes from different
branches while maintaining the integrity of the data.

5.8. Optimizing Data for Embedded AI 122

With data version control in place, we can track the changes shown
in Figure 5.13, reproduce previous results by reverting to older ver-
sions, and collaborate safely by branching off and isolating the changes.

Figure 5.13.: Data versioning.

Popular Data Version Control Systems
DVC: It stands for Data Version Control in short and is an open-

source, lightweight tool that works on top of Git Hub and supports all
kinds of data formats. It can seamlessly integrate into the workflow if
Git is used to manage code. It captures the versions of data and models
in the Git commits while storing them on-premises or on the cloud
(e.g., AWS, Google Cloud, Azure). These data and models (e.g., ML
artifacts) are defined in the metadata files, which get updated in every
commit. It can allow metrics tracking of models on different versions
of the data.

lakeFS: It is an open-source tool that supports the data version con-
trol on data lakes. It supports many git-like operations, such as branch-
ing and merging of data, as well as reverting to previous versions of the
data. It also has a unique UI feature, making exploring and managing
data much easier.

Git LFS: It is useful for data version control on smaller-sized datasets.
It uses Git’s inbuilt branching and merging features but is limited in
tracking metrics, reverting to previous versions, or integrating with
data lakes.

5.8 Optimizing Data for Embedded AI
Creators working on embedded systems may have unusual priorities
when cleaning their datasets. On the one hand, models may be de-

https://dvc.org/doc
https://docs.lakefs.io/
https://git-lfs.com/

CHAPTER 5. DATA ENGINEERING 123

veloped for unusually specific use cases, requiring heavy filtering of
datasets. While other natural language models may be capable of turn-
ing any speech into text, a model for an embedded system may be fo-
cused on a single limited task, such as detecting a keyword. As a result,
creators may aggressively filter out large amounts of data because they
need to address the task of interest. An embedded AI system may also
be tied to specific hardware devices or environments. For example, a
video model may need to process images from a single type of camera,
which will only be mounted on doorbells in residential neighborhoods.
In this scenario, creators may discard images if they came from a dif-
ferent kind of camera, show the wrong type of scenery, or were taken
from the wrong height or angle.

On the other hand, embedded AI systems are often expected to pro-
vide especially accurate performance in unpredictable real-world set-
tings. This may lead creators to design datasets to represent variations
in potential inputs and promote model robustness. As a result, they
may define a narrow scope for their project but then aim for deep cover-
age within those bounds. For example, creators of the doorbell model
mentioned above might try to cover variations in data arising from:

• Geographically, socially, and architecturally diverse neighbor-
hoods

• Different types of artificial and natural lighting
• Different seasons and weather conditions
• Obstructions (e.g., raindrops or delivery boxes obscuring the

camera’s view)

As described above, creators may consider crowdsourcing or syn-
thetically generating data to include these variations.

5.9 Data Transparency
By providing clear, detailed documentation, creators can help devel-
opers understand how best to use their datasets. Several groups have
suggested standardized documentation formats for datasets, such as
Data Cards (Pushkarna, Zaldivar, and Kjartansson 2022), datasheets
(Gebru et al. 2021), data statements (Bender and Friedman 2018), or
Data Nutrition Labels (Holland et al. 2020). When releasing a dataset,
creators may describe what kinds of data they collected, how they col-
lected and labeled it, and what kinds of use cases may be a good or
poor fit for the dataset. Quantitatively, it may be appropriate to show
how well the dataset represents different groups (e.g., different gender
groups, different cameras).

5.9. Data Transparency 124

Figure 5.14 shows an example of a data card for a computer vision
(CV) dataset. It includes some basic information about the dataset and
instructions on how to use it, including known biases.

Figure 5.14.: Data card de-
scribing a CV dataset. Source:
Pushkarna, Zaldivar, and Kjar-
tansson (2022).

Keeping track of data provenance- essentially the origins and the
journey of each data point through the data pipeline- is not merely
a good practice but an essential requirement for data quality. Data
provenance contributes significantly to the transparency of machine
learning systems. Transparent systems make it easier to scrutinize data
points, enabling better identification and rectification of errors, biases,
or inconsistencies. For instance, if an ML model trained on medical
data is underperforming in particular areas, tracing the provenance
can help identify whether the issue is with the data collection methods,
the demographic groups represented in the data or other factors. This

CHAPTER 5. DATA ENGINEERING 125

level of transparency doesn’t just help debug the system but also plays
a crucial role in enhancing the overall data quality. By improving the
reliability and credibility of the dataset, data provenance also enhances
the model’s performance and its acceptability among end-users.

When producing documentation, creators should also specify how
users can access the dataset and how the dataset will be maintained
over time. For example, users may need to undergo training or receive
special permission from the creators before accessing a protected infor-
mation dataset, as with many medical datasets. In some cases, users
may not access the data directly. Instead, they must submit their model
to be trained on the dataset creators’ hardware, following a federated
learning setup (Aledhari et al. 2020). Creators may also describe how
long the dataset will remain accessible, how the users can submit feed-
back on any errors they discover, and whether there are plans to up-
date the dataset.

Some laws and regulations also promote data transparency through
new requirements for organizations:

• General Data Protection Regulation (GDPR) in the European
Union: It establishes strict requirements for processing and
protecting the personal data of EU citizens. It mandates plain-
language privacy policies that clearly explain what data is
collected, why it is used, how long it is stored, and with whom
it is shared. GDPR also mandates that privacy notices must
include details on the legal basis for processing, data transfers,
retention periods, rights to access and deletion, and contact info
for data controllers.

• California’s Consumer Privacy Act (CCPA): CCPA requires
clear privacy policies and opt-out rights to sell personal data.
Significantly, it also establishes rights for consumers to request
their specific data be disclosed. Businesses must provide copies
of collected personal information and details on what it is used
for, what categories are collected, and what third parties receive.
Consumers can identify data points they believe need to be
more accurate. The law represents a major step forward in
empowering personal data access.

Ensured data transparency presents several challenges, especially
because it requires significant time and financial resources. Data sys-
tems are also quite complex, and full transparency can take time. Full
transparency may also overwhelm consumers with too much detail. Fi-
nally, it is also important to balance the tradeoff between transparency
and privacy.

5.10. Licensing 126

5.10 Licensing
Many high-quality datasets either come from proprietary sources or
contain copyrighted information. This introduces licensing as a chal-
lenging legal domain. Companies eager to train ML systems must en-
gage in negotiations to obtain licenses that grant legal access to these
datasets. Furthermore, licensing terms can impose restrictions on data
applications and sharing methods. Failure to comply with these li-
censes can have severe consequences.

For instance, ImageNet, one of the most extensively utilized datasets
for computer vision research, is a case in point. Most of its images
were procured from public online sources without explicit permission,
sparking ethical concerns (Prabhu and Birhane, 2020). Accessing the
ImageNet dataset for corporations requires registration and adherence
to its terms of use, which restricts commercial usage (ImageNet, 2021).
Major players like Google and Microsoft invest significantly in licens-
ing datasets to improve their ML vision systems. However, the cost fac-
tor restricts accessibility for researchers from smaller companies with
constrained budgets.

The legal domain of data licensing has seen major cases that help
define fair use parameters. A prominent example is Authors Guild,
Inc. v. Google, Inc. This 2005 lawsuit alleged that Google’s book scan-
ning project infringed copyrights by displaying snippets without per-
mission. However, the courts ultimately ruled in Google’s favor, up-
holding fair use based on the transformative nature of creating a search-
able index and showing limited text excerpts. This precedent provides
some legal grounds for arguing fair use protections apply to indexing
datasets and generating representative samples for machine learning.
However, license restrictions remain binding, so a comprehensive anal-
ysis of licensing terms is critical. The case demonstrates why negotia-
tions with data providers are important to enable legal usage within
acceptable bounds.

New Data Regulations and Their Implications
New data regulations also impact licensing practices. The legislative

landscape is evolving with regulations like the EU’s Artificial Intelli-
gence Act, which is poised to regulate AI system development and use
within the European Union (EU). This legislation:

1. Classifies AI systems by risk.

2. Mandates development and usage prerequisites.

3. Emphasizes data quality, transparency, human oversight, and ac-
countability.

https://www.image-net.org/
https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence
https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence

CHAPTER 5. DATA ENGINEERING 127

Additionally, the EU Act addresses the ethical dimensions and op-
erational challenges in sectors such as healthcare and finance. Key el-
ements include the prohibition of AI systems posing “unacceptable”
risks, stringent conditions for high-risk systems, and minimal obliga-
tions for “limited risk” AI systems. The proposed European AI Board
will oversee and ensure the implementation of efÏcient regulation.

Challenges in Assembling ML Training Datasets
Complex licensing issues around proprietary data, copyright law,

and privacy regulations constrain options for assembling ML training
datasets. However, expanding accessibility through more open licens-
ing or public-private data collaborations could greatly accelerate in-
dustry progress and ethical standards.

Sometimes, certain portions of a dataset may need to be removed
or obscured to comply with data usage agreements or protect sensi-
tive information. For example, a dataset of user information may have
names, contact details, and other identifying data that may need to be
removed from the dataset; this is well after the dataset has already been
actively sourced and used for training models. Similarly, a dataset
that includes copyrighted content or trade secrets may need to filter
out those portions before being distributed. Laws such as the General
Data Protection Regulation (GDPR), the California Consumer Privacy
Act (CCPA), and the Amended Act on the Protection of Personal Infor-
mation (APPI) have been passed to guarantee the right to be forgotten.
These regulations legally require model providers to erase user data
upon request.

Data collectors and providers need to be able to take appropriate
measures to de-identify or filter out any proprietary, licensed, confi-
dential, or regulated information as needed. Sometimes, the users may
explicitly request that their data be removed.

The ability to update the dataset by removing data from the dataset
will enable the creators to uphold legal and ethical obligations around
data usage and privacy. However, the ability to remove data has some
important limitations. We must consider that some models may have
already been trained on the dataset, and there is no clear or known way
to eliminate a particular data sample’s effect from the trained network.
There is no erase mechanism. Thus, this begs the question, should
the model be retrained from scratch each time a sample is removed?
That’s a costly option. Once data has been used to train a model, simply
removing it from the original dataset may not fully eliminate its impact
on the model’s behavior. New research is needed around the effects of
data removal on already-trained models and whether full retraining
is necessary to avoid retaining artifacts of deleted data. This presents
an important consideration when balancing data licensing obligations

https://www.ppc.go.jp/files/pdf/280222_amendedlaw.pdf

5.11. Conclusion 128

with efÏciency and practicality in an evolving, deployed ML system.
Dataset licensing is a multifaceted domain that intersects tech-

nology, ethics, and law. Understanding these intricacies becomes
paramount for anyone building datasets during data engineering as
the world evolves.

5.11 Conclusion

Data is the fundamental building block of AI systems. Without qual-
ity data, even the most advanced machine learning algorithms will
fail. Data engineering encompasses the end-to-end process of collect-
ing, storing, processing, and managing data to fuel the development of
machine learning models. It begins with clearly defining the core prob-
lem and objectives, which guides effective data collection. Data can be
sourced from diverse means, including existing datasets, web scrap-
ing, crowdsourcing, and synthetic data generation. Each approach in-
volves tradeoffs between cost, speed, privacy, and specificity. Once
data is collected, thoughtful labeling through manual or AI-assisted an-
notation enables the creation of high-quality training datasets. Proper
storage in databases, warehouses, or lakes facilitates easy access and
analysis. Metadata provides contextual details about the data. Data
processing transforms raw data into a clean, consistent format for ma-
chine learning model development. Throughout this pipeline, trans-
parency through documentation and provenance tracking is crucial for
ethics, auditability, and reproducibility. Data licensing protocols also
govern legal data access and use. Key challenges in data engineering
include privacy risks, representation gaps, legal restrictions around
proprietary data, and the need to balance competing constraints like
speed versus quality. By thoughtfully engineering high-quality train-
ing data, machine learning practitioners can develop accurate, robust,
and responsible AI systems, including embedded and TinyML appli-
cations.

5.12 Resources

Here is a curated list of resources to support students and instructors
in their learning and teaching journeys. We are continuously working
on expanding this collection and will add new exercises soon.

CHAPTER 5. DATA ENGINEERING 129

Slides

These slides are a valuable tool for instructors to deliver lectures
and for students to review the material at their own pace. We
encourage students and instructors to leverage these slides to
improve their understanding and facilitate effective knowledge
transfer.

• Data Engineering: Overview.

• Feature engineering.

• Data Standards: Speech Commands.

• Crowdsourcing Data for the Long Tail.

• Reusing and Adapting Existing Datasets.

• Responsible Data Collection.

• Data Anomaly Detection:

– Anomaly Detection: Overview.
– Anomaly Detection: Challenges.
– Anomaly Detection: Datasets.
– Anomaly Detection: using Autoencoders.

Videos

• Coming soon.

Exercises

To reinforce the concepts covered in this chapter, we have curated
a set of exercises that challenge students to apply their knowl-
edge and deepen their understanding.

• Exercise 4

• Exercise 5

• Exercise 6

• Exercise 7

https://docs.google.com/presentation/d/1jlIfD6RtQWG8314jCAu1qdnG7YyESy60Yt5-zXhEsVA/edit#slide=id.g202a7c05d1a_0_0
https://docs.google.com/presentation/d/1AIM1H-GfvjNPHQw9urxJz3vtMgb_9kizfthbymISPR4/edit#slide=id.g202a83498d1_0_0
https://docs.google.com/presentation/d/1qDoHc7yzZ2lEha9NTMZ07Ls4tkIz-1f7kUYRlvjzsI4/edit?usp=drive_link&resourcekey=0-ol4Oqk_y706P_zIB5mbu7Q
https://docs.google.com/presentation/d/1d3KUit64L-4dXecCNBpikCxx7VO0xIJ13r9v1Ad22S4/edit#slide=id.ga4ca29c69e_0_179
https://docs.google.com/presentation/d/1mHecDoCYHQD9nWSRYCrXXG0IOp9wYQk-fbxhoNIsGMY/edit#slide=id.ga4ca29c69e_0_206
https://docs.google.com/presentation/d/1vcmuhLVNFT2asKSCSGh_Ix9ht0mJZxMii8MufEMQhFA/edit?resourcekey=0-_pYLcW5aF3p3Bvud0PPQNg#slide=id.ga4ca29c69e_0_195
https://docs.google.com/presentation/d/1R8A_5zKDZDZOdAb1XF9ovIOUTLWSIuFWDs20-avtxbM/edit?resourcekey=0-pklEaPv8PmLQ3ZzRYgRNxw#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1JZxx2kLaO1a8O6z6rRVFpK0DN-8VMkaSrNnmk_VGbI4/edit#slide=id.g53eb988857_0_91
https://docs.google.com/presentation/d/1wPDhp4RxVrOonp6pU0Capk0LWXZOGZ3x9BzW_VjpTQw/edit?resourcekey=0-y6wKAnuxrLWqhleq9ruLOA#slide=id.g53eb988857_0_91
https://docs.google.com/presentation/d/1Q4h7XrayNRIP0r52Hlk5VjxRcli-GY2xmyZ53nCd6CI/edit#slide=id.g53eb988857_0_91

5.12. Resources 130

• Exercise 8

Labs

In addition to exercises, we offer a series of hands-on labs allow-
ing students to gain practical experience with embedded AI tech-
nologies. These labs provide step-by-step guidance, enabling stu-
dents to develop their skills in a structured and supportive envi-
ronment. We are excited to announce that new labs will be avail-
able soon, further enriching the learning experience.

• Coming soon.

131

Chapter 6

AI Frameworks

Figure 6.1.: DALL·E 3 Prompt:
Illustration in a rectangular for-
mat, designed for a professional
textbook, where the content spans
the entire width. The vibrant chart
represents training and inference
frameworks for ML. Icons for Ten-
sorFlow, Keras, PyTorch, ONNX,
and TensorRT are spread out, fill-
ing the entire horizontal space,
and aligned vertically. Each icon
is accompanied by brief annota-
tions detailing their features. The
lively colors like blues, greens,
and oranges highlight the icons
and sections against a soft gra-
dient background. The distinc-
tion between training and infer-
ence frameworks is accentuated
through color-coded sections, with
clean lines and modern typogra-
phy maintaining clarity and fo-
cus.

This chapter explores the landscape of AI frameworks that serve as the
foundation for developing machine learning systems. AI frameworks
provide the tools, libraries, and environments to design, train, and de-
ploy machine learning models. We explore the evolutionary trajectory
of these frameworks, dissect the workings of TensorFlow, and provide
insights into the core components and advanced features that define
these frameworks.

Furthermore, we investigate the specialization of frameworks tai-
lored to specific needs, the emergence of frameworks specifically de-
signed for embedded AI, and the criteria for selecting the most suitable
framework for your project. This exploration will be rounded off by a
glimpse into the future trends expected to shape the landscape of ML

6.1. Introduction 132

frameworks in the coming years.

Learning Objectives

• Understand the evolution and capabilities of major ma-
chine learning frameworks. This includes graph execution
models, programming paradigms, hardware acceleration
support, and how they have expanded over time.

• Learn frameworks’ core components and functionality,
such as computational graphs, data pipelines, optimization
algorithms, training loops, etc., that enable efÏcient model
building.

• Compare frameworks across different environments, such
as cloud, edge, and TinyML. Learn how frameworks spe-
cialize based on computational constraints and hardware.

• Dive deeper into embedded and TinyML-focused frame-
works like TensorFlow Lite Micro, CMSIS-NN, TinyEngine,
etc., and how they optimize for microcontrollers.

• When choosing a framework, explore model conversion
and deployment considerations, including latency, mem-
ory usage, and hardware support.

• Evaluate key factors in selecting the right framework, like
performance, hardware compatibility, community support,
ease of use, etc., based on the specific project needs and
constraints.

• Understand the limitations of current frameworks and po-
tential future trends, such as using ML to improve frame-
works, decomposed ML systems, and high-performance
compilers.

6.1 Introduction
Machine learning frameworks provide the tools and infrastructure
to efÏciently build, train, and deploy machine learning models. In
this chapter, we will explore the evolution and key capabilities of
major frameworks like TensorFlow (TF), PyTorch, and specialized
frameworks for embedded devices. We will dive into the components
like computational graphs, optimization algorithms, hardware ac-

https://www.tensorflow.org/
https://pytorch.org/

CHAPTER 6. AI FRAMEWORKS 133

celeration, and more that enable developers to construct performant
models quickly. Understanding these frameworks is essential to
leverage the power of deep learning across the spectrum from cloud
to edge devices.

ML frameworks handle much of the complexity of model develop-
ment through high-level APIs and domain-specific languages that al-
low practitioners to quickly construct models by combining pre-made
components and abstractions. For example, frameworks like Tensor-
Flow and PyTorch provide Python APIs to define neural network ar-
chitectures using layers, optimizers, datasets, and more. This enables
rapid iteration compared to coding every model detail from scratch.

A key capability offered by these frameworks is distributed train-
ing engines that can scale model training across clusters of GPUs and
TPUs. This makes it feasible to train state-of-the-art models with bil-
lions or trillions of parameters on vast datasets. Frameworks also inte-
grate with specialized hardware like NVIDIA GPUs to further acceler-
ate training via optimizations like parallelization and efÏcient matrix
operations.

In addition, frameworks simplify deploying finished models into
production through tools like TensorFlow Serving for scalable model
serving and TensorFlow Lite for optimization on mobile and edge de-
vices. Other valuable capabilities include visualization, model opti-
mization techniques like quantization and pruning, and monitoring
metrics during training.

Leading open-source frameworks like TensorFlow, PyTorch, and
MXNet power much of AI research and development today. Commer-
cial offerings like Amazon SageMaker and Microsoft Azure Machine
Learning integrate these open source frameworks with proprietary
capabilities and enterprise tools.

Machine learning engineers and practitioners leverage these robust
frameworks to focus on high-value tasks like model architecture, fea-
ture engineering, and hyperparameter tuning instead of infrastructure.
The goal is to build and deploy performant models that solve real-
world problems efÏciently.

In this chapter, we will explore today’s leading cloud frameworks
and how they have adapted models and tools specifically for embed-
ded and edge deployment. We will compare programming models,
supported hardware, optimization capabilities, and more to fully un-
derstand how frameworks enable scalable machine learning from the
cloud to the edge.

https://www.tensorflow.org/tfx/guide/serving
https://www.tensorflow.org/lite
https://mxnet.apache.org/versions/1.9.1/
https://aws.amazon.com/pm/sagemaker/
https://azure.microsoft.com/en-us/free/machine-learning/search/?ef_id=_k_CjwKCAjws9ipBhB1EiwAccEi1JVOThls797Sj3Li96_GYjoJQDx_EWaXNsDaEWeFbIaRkESUCkq64xoCSmwQAvD_BwE_k_&OCID=AIDcmm5edswduu_SEM__k_CjwKCAjws9ipBhB1EiwAccEi1JVOThls797Sj3Li96_GYjoJQDx_EWaXNsDaEWeFbIaRkESUCkq64xoCSmwQAvD_BwE_k_&gad=1&gclid=CjwKCAjws9ipBhB1EiwAccEi1JVOThls797Sj3Li96_GYjoJQDx_EWaXNsDaEWeFbIaRkESUCkq64xoCSmwQAvD_BwE
https://azure.microsoft.com/en-us/free/machine-learning/search/?ef_id=_k_CjwKCAjws9ipBhB1EiwAccEi1JVOThls797Sj3Li96_GYjoJQDx_EWaXNsDaEWeFbIaRkESUCkq64xoCSmwQAvD_BwE_k_&OCID=AIDcmm5edswduu_SEM__k_CjwKCAjws9ipBhB1EiwAccEi1JVOThls797Sj3Li96_GYjoJQDx_EWaXNsDaEWeFbIaRkESUCkq64xoCSmwQAvD_BwE_k_&gad=1&gclid=CjwKCAjws9ipBhB1EiwAccEi1JVOThls797Sj3Li96_GYjoJQDx_EWaXNsDaEWeFbIaRkESUCkq64xoCSmwQAvD_BwE

6.2. Framework Evolution 134

6.2 Framework Evolution

Machine learning frameworks have evolved significantly to meet the
diverse needs of machine learning practitioners and advancements
in AI techniques. A few decades ago, building and training machine
learning models required extensive low-level coding and infrastruc-
ture. Alongside the need for low-level coding, early neural network
research was constrained by insufÏcient data and computing power.
However, machine learning frameworks have evolved considerably
over the past decade to meet the expanding needs of practitioners
and rapid advances in deep learning techniques. The release of
large datasets like ImageNet (Deng et al. 2009) and advancements in
parallel GPU computing unlocked the potential for far deeper neural
networks.

The first ML frameworks, Theano by Team et al. (2016) and Caffe by
Y. Jia et al. (2014), were developed by academic institutions. Theano
was created by the Montreal Institute for Learning Algorithms, while
Caffe was developed by the Berkeley Vision and Learning Center.
Amid growing interest in deep learning due to state-of-the-art per-
formance of AlexNet Krizhevsky, Sutskever, and Hinton (2012) on
the ImageNet dataset, private companies and individuals began
developing ML frameworks, resulting in frameworks such as Keras
by Chollet (2018), Chainer by Tokui et al. (2019), TensorFlow from
Google (Yu et al. 2018), CNTK by Microsoft (Seide and Agarwal 2016),
and PyTorch by Facebook (Ansel et al. 2024).

Many of these ML frameworks can be divided into high-level
vs. low-level frameworks and static vs. dynamic computational
graph frameworks. High-level frameworks provide a higher level
of abstraction than low-level frameworks. High-level frameworks
have pre-built functions and modules for common ML tasks, such as
creating, training, and evaluating common ML models, preprocessing
data, engineering features, and visualizing data, which low-level
frameworks do not have. Thus, high-level frameworks may be easier
to use but are less customizable than low-level frameworks (i.e., users
of low-level frameworks can define custom layers, loss functions,
optimization algorithms, etc.). Examples of high-level frameworks
include TensorFlow/Keras and PyTorch. Examples of low-level ML
frameworks include TensorFlow with low-level APIs, Theano, Caffe,
Chainer, and CNTK.

Frameworks like Theano and Caffe used static computational
graphs, which required defining the full model architecture upfront,
thus limiting flexibility. In contract, dynamic graphs are constructed
on the fly for more iterative development. Around 2016, frameworks

https://www.image-net.org/
https://pypi.org/project/Theano/#:~:text=Theano
https://caffe.berkeleyvision.org/
https://keras.io/
https://chainer.org/
https://learn.microsoft.com/en-us/cognitive-toolkit/

CHAPTER 6. AI FRAMEWORKS 135

like PyTorch and TensorFlow 2.0 began adopting dynamic graphs,
providing greater flexibility for model development. We will discuss
these concepts and details later in the AI Training section.

The development of these frameworks facilitated an explosion in
model size and complexity over time—from early multilayer percep-
trons and convolutional networks to modern transformers with bil-
lions or trillions of parameters. In 2016, ResNet models by K. He et
al. (2016) achieved record ImageNet accuracy with over 150 layers
and 25 million parameters. Then, in 2020, the GPT-3 language model
from OpenAI (Brown et al. 2020) pushed parameters to an astonish-
ing 175 billion using model parallelism in frameworks to train across
thousands of GPUs and TPUs.

Each generation of frameworks unlocked new capabilities that pow-
ered advancement:

• Theano and TensorFlow (2015) introduced computational graphs
and automatic differentiation to simplify model building.

• CNTK (2016) pioneered efÏcient distributed training by combin-
ing model and data parallelism.

• PyTorch (2016) provided imperative programming and dynamic
graphs for flexible experimentation.

• TensorFlow 2.0 (2019) defaulted eager execution for intuitiveness
and debugging.

• TensorFlow Graphics (2020) added 3D data structures to handle
point clouds and meshes.

In recent years, the frameworks have converged. Figure 6.2 shows
that TensorFlow and PyTorch have become the overwhelmingly domi-
nant ML frameworks, representing more than 95% of ML frameworks
used in research and production. Keras was integrated into Tensor-
Flow in 2019; Preferred Networks transitioned Chainer to PyTorch in
2019; and Microsoft stopped actively developing CNTK in 2022 to sup-
port PyTorch on Windows.

A one-size-fits-all approach does not work well across the spectrum
from cloud to tiny edge devices. Different frameworks represent vari-
ous philosophies around graph execution, declarative versus impera-
tive APIs, and more. Declaratives define what the program should do,
while imperatives focus on how it should be done step-by-step. For
instance, TensorFlow uses graph execution and declarative-style mod-
eling, while PyTorch adopts eager execution and imperative modeling
for more Pythonic flexibility. Each approach carries tradeoffs which
we will discuss in Section 6.3.7.

6.3. Deep Dive into TensorFlow 136

Figure 6.2.: Popularity of ML
frameworks in the United
States as measured by Google
web searches. Source: Google.

Today’s advanced frameworks enable practitioners to develop and
deploy increasingly complex models - a key driver of innovation in
the AI field. These frameworks continue to evolve and expand their ca-
pabilities for the next generation of machine learning. To understand
how these systems continue to evolve, we will dive deeper into Tensor-
Flow as an example of how the framework grew in complexity over
time.

6.3 Deep Dive into TensorFlow

TensorFlow was developed by the Google Brain team and was re-
leased as an open-source software library on November 9, 2015. It was
designed for numerical computation using data flow graphs and has
since become popular for a wide range of machine learning and deep
learning applications.

TensorFlow is a training and inference framework that provides
built-in functionality to handle everything from model creation and
training to deployment, as shown in Figure 6.3. Since its initial
development, the TensorFlow ecosystem has grown to include many
different “varieties” of TensorFlow, each intended to allow users to
support ML on different platforms. In this section, we will mainly
discuss only the core package.

CHAPTER 6. AI FRAMEWORKS 137

6.3.1 TF Ecosystem

1. TensorFlow Core: primary package that most developers engage
with. It provides a comprehensive, flexible platform for defining,
training, and deploying machine learning models. It includes
tf.keras as its high-level API.

2. TensorFlow Lite: designed for deploying lightweight models on
mobile, embedded, and edge devices. It offers tools to convert
TensorFlow models to a more compact format suitable for
limited-resource devices and provides optimized pre-trained
models for mobile.

3. TensorFlow Lite Micro: designed for running machine learning
models on microcontrollers with minimal resources. It operates
without the need for operating system support, standard C or
C++ libraries, or dynamic memory allocation, using only a few
kilobytes of memory.

4. TensorFlow.js: JavaScript library that allows training and deploy-
ment of machine learning models directly in the browser or on
Node.js. It also provides tools for porting pre-trained TensorFlow
models to the browser-friendly format.

5. TensorFlow on Edge Devices (Coral): platform of hardware
components and software tools from Google that allows the
execution of TensorFlow models on edge devices, leveraging
Edge TPUs for acceleration.

6. TensorFlow Federated (TFF): framework for machine learning
and other computations on decentralized data. TFF facilitates
federated learning, allowing model training across many devices
without centralizing the data.

7. TensorFlow Graphics: library for using TensorFlow to carry out
graphics-related tasks, including 3D shapes and point clouds
processing, using deep learning.

8. TensorFlow Hub: repository of reusable machine learning model
components to allow developers to reuse pre-trained model com-
ponents, facilitating transfer learning and model composition.

9. TensorFlow Serving: framework designed for serving and de-
ploying machine learning models for inference in production en-
vironments. It provides tools for versioning and dynamically up-
dating deployed models without service interruption.

https://www.tensorflow.org/tutorials
https://www.tensorflow.org/guide/keras
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/js
https://developers.googleblog.com/2019/03/introducing-coral-our-platform-for.html
https://www.tensorflow.org/federated
https://www.tensorflow.org/graphics
https://www.tensorflow.org/hub
https://www.tensorflow.org/tfx/guide/serving

6.3. Deep Dive into TensorFlow 138

10. TensorFlow Extended (TFX): end-to-end platform designed to de-
ploy and manage machine learning pipelines in production set-
tings. TFX encompasses data validation, preprocessing, model
training, validation, and serving components.

Figure 6.3.: Architecture
overview of TensorFlow 2.0.
Source: Tensorflow.

TensorFlow was developed to address the limitations of DistBelief
(Yu et al. 2018)—the framework in use at Google from 2011 to 2015—by
providing flexibility along three axes: 1) defining new layers, 2) refin-
ing training algorithms, and 3) defining new training algorithms. To
understand what limitations in DistBelief led to the development of
TensorFlow, we will first give a brief overview of the Parameter Server
Architecture that DistBelief employed (Dean et al. 2012).

The Parameter Server (PS) architecture is a popular design for dis-
tributing the training of machine learning models, especially deep neu-
ral networks, across multiple machines. The fundamental idea is to
separate the storage and management of model parameters from the
computation used to update these parameters. Typically, parameter
servers handle the storage and management of model parameters, par-
titioning them across multiple servers. Worker processes perform the
computational tasks, including data processing and computation of
gradients, which are then sent back to the parameter servers for updat-
ing.

Storage: The stateful parameter server processes handled the stor-
age and management of model parameters. Given the large scale of
models and the system’s distributed nature, these parameters were
shared across multiple parameter servers. Each server maintained a
portion of the model parameters, making it ”stateful” as it had to main-
tain and manage this state across the training process.

https://www.tensorflow.org/tfx
https://blog.tensorflow.org/2019/01/whats-coming-in-tensorflow-2-0.html

CHAPTER 6. AI FRAMEWORKS 139

Computation: The worker processes, which could be run in paral-
lel, were stateless and purely computational. They processed data and
computed gradients without maintaining any state or long-term mem-
ory (M. Li et al. 2014). Workers did not retain information between
different tasks. Instead, they periodically communicated with the pa-
rameter servers to retrieve the latest parameters and send back com-
puted gradients.

Exercise 9: TensorFlow Core

Let’s comprehensively understand core machine learning algo-
rithms using TensorFlow and their practical applications in data
analysis and predictive modeling. We will start with linear re-
gression to predict survival rates from the Titanic dataset. Then,
using TensorFlow, we will construct classifiers to identify differ-
ent species of flowers based on their attributes. Next, we will
use the K-Means algorithm and its application in segmenting
datasets into cohesive clusters. Finally, we will apply hidden
Markov models (HMM) to foresee weather patterns.

Exercise 10: TensorFlow Lite

Here, we will see how to build a miniature machine-learning
model for microcontrollers. We will build a mini neural network
that is streamlined to learn from data even with limited resources
and optimized for deployment by shrinking our model for efÏ-
cient use on microcontrollers. TensorFlow Lite, a powerful tech-
nology derived from TensorFlow, shrinks models for tiny devices
and helps enable on-device features like image recognition in
smart devices. It is used in edge computing to allow for faster
analysis and decisions in devices processing data locally.

DistBelief and its architecture defined above were crucial in enabling
distributed deep learning at Google but also introduced limitations
that motivated the development of TensorFlow:

https://colab.research.google.com/drive/15Cyy2H7nT40sGR7TBN5wBvgTd57mVKay#scrollTo=IEeIRxlbx0wY
https://colab.research.google.com/github/Mjrovai/UNIFEI-IESTI01-TinyML-2022.1/blob/main/00_Curse_Folder/2_Applications_Deploy/Class_16/TFLite-Micro-Hello-World/train_TFL_Micro_hello_world_model.ipynb

6.3. Deep Dive into TensorFlow 140

6.3.2 Static Computation Graph

Model parameters are distributed across various parameter servers in
the parameter server architecture. Since DistBelief was primarily de-
signed for the neural network paradigm, parameters corresponded to
a fixed neural network structure. If the computation graph were dy-
namic, the distribution and coordination of parameters would become
significantly more complicated. For example, a change in the graph
might require the initialization of new parameters or the removal of ex-
isting ones, complicating the management and synchronization tasks
of the parameter servers. This made it harder to implement models
outside the neural framework or models that required dynamic com-
putation graphs.

TensorFlow was designed as a more general computation framework
that expresses computation as a data flow graph. This allows for a
wider variety of machine learning models and algorithms outside of
neural networks and provides flexibility in refining models.

6.3.3 Usability & Deployment

The parameter server model delineates roles (worker nodes and pa-
rameter servers) and is optimized for data center deployments, which
might only be optimal for some use cases. For instance, this division
introduces overheads or complexities on edge devices or in other non-
data center environments.

TensorFlow was built to run on multiple platforms, from mobile de-
vices and edge devices to cloud infrastructure. It also aimed to be
lighter and developer-friendly and to provide ease of use between local
and distributed training.

6.3.4 Architecture Design

Rather than using the parameter server architecture, TensorFlow de-
ploys tasks across a cluster. These tasks are named processes that can
communicate over a network, and each can execute TensorFlow’s core
construct, the dataflow graph, and interface with various computing
devices (like CPUs or GPUs). This graph is a directed representation
where nodes symbolize computational operations, and edges depict
the tensors (data) flowing between these operations.

Despite the absence of traditional parameter servers, some “PS
tasks” still store and manage parameters reminiscent of parameter
servers in other systems. The remaining tasks, which usually han-
dle computation, data processing, and gradient calculations, are
referred to as “worker tasks.” TensorFlow’s PS tasks can execute

CHAPTER 6. AI FRAMEWORKS 141

any computation representable by the dataflow graph, meaning they
aren’t just limited to parameter storage, and the computation can be
distributed. This capability makes them significantly more versatile
and gives users the power to program the PS tasks using the standard
TensorFlow interface, the same one they’d use to define their models.
As mentioned above, dataflow graphs’ structure also makes them
inherently good for parallelism, allowing for the processing of large
datasets.

6.3.5 Built-in Functionality & Keras

TensorFlow includes libraries to help users develop and deploy more
use-case-specific models, and since this framework is open-source, this
list continues to grow. These libraries address the entire ML develop-
ment lifecycle: data preparation, model building, deployment, and re-
sponsible AI.

One of TensorFlow’s biggest advantages is its integration with Keras,
though, as we will cover in the next section, Pytorch recently added
a Keras integration. Keras is another ML framework built to be ex-
tremely user-friendly and, as a result, has a high level of abstraction.
We will cover Keras in more depth later in this chapter. However,
when discussing its integration with TensorFlow, it was important to
note that it was originally built to be backend-agnostic. This means
users could abstract away these complexities, offering a cleaner, more
intuitive way to define and train models without worrying about com-
patibility issues with different backends. TensorFlow users had some
complaints about the usability and readability of TensorFlow’s API, so
as TF gained prominence, it integrated Keras as its high-level API. This
integration offered major benefits to TensorFlow users since it intro-
duced more intuitive readability and portability of models while still
taking advantage of powerful backend features, Google support, and
infrastructure to deploy models on various platforms.

Exercise 11: Exploring Keras: Building, Training, and Evalu-
ating Neural Networks

Here, we’ll learn how to use Keras, a high-level neural network
API, for model development and training. We will explore the
functional API for concise model building, understand loss and
metric classes for model evaluation, and use built-in optimizers
to update model parameters during training. Additionally, we’ll
discover how to define custom layers and metrics tailored to our

6.3. Deep Dive into TensorFlow 142

needs. Lastly, we’ll look into Keras’ training loops to streamline
the process of training neural networks on large datasets. This
knowledge will empower us to build and optimize neural net-
work models across various machine learning and artificial intel-
ligence applications.

6.3.6 Limitations and Challenges

TensorFlow is one of the most popular deep learning frameworks, but
it has faced criticisms and weaknesses, primarily related to usability
and resource usage. While advantageous, the rapid pace of updates
through its support from Google has sometimes led to backward com-
patibility issues, deprecated functions, and shifting documentation.
Additionally, even with the Keras implementation, TensorFlow’s syn-
tax and learning curve can be difÏcult for new users. Another major
critique of TensorFlow is its high overhead and memory consumption
due to the range of built-in libraries and support. While pared-down
versions can address some of these concerns, they may still be limited
in resource-constrained environments.

6.3.7 PyTorch vs. TensorFlow

PyTorch and TensorFlow have established themselves as frontrunners
in the industry. Both frameworks offer robust functionalities but differ
in design philosophies, ease of use, ecosystem, and deployment capa-
bilities.

Design Philosophy and Programming Paradigm: PyTorch uses a
dynamic computational graph termed eager execution. This makes
it intuitive and facilitates debugging since operations are executed
immediately and can be inspected on the fly. In comparison, earlier
versions of TensorFlow were centered around a static computational
graph, which required the graph’s complete definition before ex-
ecution. However, TensorFlow 2.0 introduced eager execution by
default, making it more aligned with PyTorch. PyTorch’s dynamic
nature and Python-based approach have enabled its simplicity and
flexibility, particularly for rapid prototyping. TensorFlow’s static
graph approach in its earlier versions had a steeper learning curve;
the introduction of TensorFlow 2.0, with its Keras integration as the
high-level API, has significantly simplified the development process.

Deployment: PyTorch is heavily favored in research environments,

https://colab.research.google.com/drive/1UCJt8EYjlzCs1H1d1X0iDGYJsHKwu-NO#scrollTo=fxINLLGitX_n

CHAPTER 6. AI FRAMEWORKS 143

but deploying PyTorch models in production settings has tradition-
ally been challenging. However, deployment has become more fea-
sible with the introduction of TorchScript, the TorchServe tool, and Py-
Torch Mobile. TensorFlow stands out for its strong scalability and de-
ployment capabilities, particularly on embedded and mobile platforms
with TensorFlow Lite. TensorFlow Serving and TensorFlow.js further
facilitate deployment in various environments, thus giving it a broader
reach in the ecosystem.

Performance: Both frameworks offer efÏcient hardware acceleration
for their operations. However, TensorFlow has a slightly more robust
optimization workflow, such as the XLA (Accelerated Linear Algebra)
compiler, which can further boost performance. Its static computa-
tional graph was also advantageous for certain optimizations in the
early versions.

Ecosystem: PyTorch has a growing ecosystem with tools like Torch-
Serve for serving models and libraries like TorchVision, TorchText, and
TorchAudio for specific domains. As we mentioned earlier, Tensor-
Flow has a broad and mature ecosystem. TensorFlow Extended (TFX)
provides an end-to-end platform for deploying production machine
learning pipelines. Other tools and libraries include TensorFlow Lite,
TensorFlow Lite Micro, TensorFlow.js, TensorFlow Hub, and Tensor-
Flow Serving.

Table 6.1 provides a comparative analysis:

Table 6.1.: Comparison of PyTorch and TensorFlow.
Aspect Pytorch TensorFlow
Design
Philoso-
phy

Dynamic
computational
graph (eager
execution)

Static computational graph (early
versions); Eager execution in
TensorFlow 2.0

DeploymentTraditionally
challenging;
Improved with
TorchScript &
TorchServe

Scalable, especially on embedded
platforms with TensorFlow Lite

Performance
& Opti-
mization

EfÏcient GPU
acceleration

Robust optimization with XLA
compiler

https://pytorch.org/mobile/home/
https://pytorch.org/mobile/home/

6.4. Basic Framework Components 144

Aspect Pytorch TensorFlow
Ecosystem TorchServe,

TorchVision,
TorchText,
TorchAudio,
PyTorch Mobile

TensorFlow Extended (TFX),
TensorFlow Lite, TensorFlow Lite
Micro TensorFlow.js, TensorFlow
Hub, TensorFlow Serving

Ease of
Use

Preferred for its
Pythonic approach
and rapid
prototyping

Initially steep learning curve;
Simplified with Keras in
TensorFlow 2.0

6.4 Basic Framework Components
Having introduced the popular machine learning frameworks and pro-
vided a high-level comparison, this section will introduce you to the
core functionalities that form the fabric of these frameworks. It will
cover the special structure called tensors, which these frameworks use
to handle complex multi-dimensional data more easily. You will also
learn how these frameworks represent different types of neural net-
work architectures and their required operations through computa-
tional graphs. Additionally, you will see how they offer tools that make
the development of machine learning models more abstract and efÏ-
cient, such as data loaders, implemented loss optimization algorithms,
efÏcient differentiation techniques, and the ability to accelerate your
training process on hardware accelerators.

6.4.1 Tensor data structures

To understand tensors, let us start from the familiar concepts in linear
algebra. As demonstrated in Figure 6.5, vectors can be represented as
a stack of numbers in a 1-dimensional array. Matrices follow the same
idea, and one can think of them as many vectors stacked on each other,
making them 2 dimensional. Higher dimensional tensors work the
same way. A 3-dimensional tensor is simply a set of matrices stacked
on each other in another direction. Therefore, vectors and matrices can
be considered special cases of tensors with 1D and 2D dimensions, re-
spectively.

Tensors offer a flexible structure that can represent data in higher
dimensions. For instance, to represent image data, the pixels at each
position of an image are structured as matrices. However, images are
not represented by just one matrix of pixel values; they typically have
three channels where each channel is a matrix containing pixel values

CHAPTER 6. AI FRAMEWORKS 145

Figure 6.4.: Visualization of
Tensor Data Structure.

that represent the intensity of red, green, or blue. Together, these chan-
nels create a colored image. Without tensors, storing all this informa-
tion from multiple matrices can be complex. With tensors, it is easy to
contain image data in a single 3-dimensional tensor, with each number
representing a certain color value at a specific location in the image.

Figure 6.5.: Visualization of
colored image structure that
can be easily stored as a 3D Ten-
sor. Credit: Niklas Lang

You don’t have to stop there. If we wanted to store a series of im-
ages, we could use a 4-dimensional tensor, where the new dimension
represents different images. This means you are storing multiple im-

https://towardsdatascience.com/what-are-tensors-in-machine-learning-5671814646ff

6.4. Basic Framework Components 146

ages, each having three matrices that represent the three color channels.
This gives you an idea of the usefulness of tensors when dealing with
multi-dimensional data efÏciently.

Tensors also have a unique attribute that enables frameworks to auto-
matically compute gradients, simplifying the implementation of com-
plex models and optimization algorithms. In machine learning, as dis-
cussed in Chapter 3, backpropagation requires taking the derivative
of equations. One of the key features of tensors in PyTorch and Ten-
sorFlow is their ability to track computations and calculate gradients.
This is crucial for backpropagation in neural networks. For example, in
PyTorch, you can use the requires_grad attribute, which allows you
to automatically compute and store gradients during the backward
pass, facilitating the optimization process. Similarly, in TensorFlow,
tf.GradientTape records operations for automatic differentiation.

Consider this simple mathematical equation that you want to differ-
entiate. Mathematically, you can compute the gradient in the follow-
ing way:

Given: 𝑦 = 𝑥2
The derivative of 𝑦 with respect to 𝑥 is:𝑑𝑦𝑑𝑥 = 2𝑥
When 𝑥 = 2: 𝑑𝑦𝑑𝑥 = 2∗2 = 4
The gradient of 𝑦 with respect to 𝑥, at 𝑥 = 2, is 4.
A powerful feature of tensors in PyTorch and TensorFlow is their

ability to easily compute derivatives (gradients). Here are the corre-
sponding code examples in PyTorch and TensorFlow:

6.4.2 PyTorch

import torch

Create a tensor with gradient tracking
x = torch.tensor(2.0, requires_grad=True)

Define a simple function
y = x ** 2

CHAPTER 6. AI FRAMEWORKS 147

Compute the gradient
y.backward()

Print the gradient
print(x.grad)

Output
tensor(4.0)

6.4.3 TensorFlow

import tensorflow as tf

Create a tensor with gradient tracking
x = tf.Variable(2.0)

Define a simple function
with tf.GradientTape() as tape:

y = x ** 2

Compute the gradient
grad = tape.gradient(y, x)

Print the gradient
print(grad)

Output
tf.Tensor(4.0, shape=(), dtype=float32)

This automatic differentiation is a powerful feature of tensors
in frameworks like PyTorch and TensorFlow, making it easier to
implement and optimize complex machine learning models.

6.4.4 Computational graphs

6.4.4.1 Graph Definition

Computational graphs are a key component of deep learning frame-
works like TensorFlow and PyTorch. They allow us to express com-
plex neural network architectures efÏciently and differently. A compu-
tational graph consists of a directed acyclic graph (DAG) where each

6.4. Basic Framework Components 148

node represents an operation or variable, and edges represent data de-
pendencies between them.

It’s important to differentiate computational graphs from neural
network diagrams, such as those for multilayer perceptrons (MLPs),
which depict nodes and layers. Neural network diagrams, as depicted
in Chapter 3, visualize the architecture and flow of data through
nodes and layers, providing an intuitive understanding of the model’s
structure. In contrast, computational graphs provide a low-level
representation of the underlying mathematical operations and data
dependencies required to implement and train these networks.

For example, a node might represent a matrix multiplication opera-
tion, taking two input matrices (or tensors) and producing an output
matrix (or tensor). To visualize this, consider the simple example in Fig-
ure 7.4. The directed acyclic graph above computes 𝑧 = 𝑥 × 𝑦, where
each variable is just numbers.

Figure 6.6.: Basic example of a
computational graph.

Frameworks like TensorFlow and PyTorch create computational
graphs to implement the architectures of neural networks that we
typically represent with diagrams. When you define a neural network
layer in code (e.g., a dense layer in TensorFlow), the framework
constructs a computational graph that includes all the necessary
operations (such as matrix multiplication, addition, and activation
functions) and their data dependencies. This graph enables the
framework to efÏciently manage the flow of data, optimize the
execution of operations, and automatically compute gradients for

../dl_primer/dl_primer.qmd

CHAPTER 6. AI FRAMEWORKS 149

training. Underneath the hood, the computational graphs represent
abstractions for common layers like convolutional, pooling, recurrent,
and dense layers, with data including activations, weights, and biases
represented in tensors. This representation allows for efÏcient compu-
tation, leveraging the structure of the graph to parallelize operations
and apply optimizations.

Some common layers that computational graphs might implement
include convolutional layers, attention layers, recurrent layers, and
dense layers. Layers serve as higher-level abstractions that define
specific computations on top of the basic operations represented in
the graph. For example, a Dense layer performs matrix multiplication
and addition between input, weight, and bias tensors. It is important
to note that a layer operates on tensors as inputs and outputs; the layer
itself is not a tensor. Some key differences between layers and tensors
are:

• Layers contain states like weights and biases. Tensors are state-
less, just holding data.

• Layers can modify internal state during training. Tensors are
immutable/read-only.

• Layers are higher-level abstractions. Tensors are at a lower level
and directly represent data and math operations.

• Layers define fixed computation patterns. Tensors flow between
layers during execution.

• Layers are used indirectly when building models. Tensors flow
between layers during execution.

So, while tensors are a core data structure that layers consume and
produce, layers have additional functionality for defining parameter-
ized operations and training. While a layer configures tensor opera-
tions under the hood, the layer remains distinct from the tensor ob-
jects. The layer abstraction makes building and training neural net-
works much more intuitive. This abstraction enables developers to
build models by stacking these layers together without implementing
the layer logic. For example, calling tf.keras.layers.Conv2D in Ten-
sorFlow creates a convolutional layer. The framework handles comput-
ing the convolutions, managing parameters, etc. This simplifies model
development, allowing developers to focus on architecture rather than
low-level implementations. Layer abstractions use highly optimized
implementations for performance. They also enable portability, as the
same architecture can run on different hardware backends like GPUs
and TPUs.

6.4. Basic Framework Components 150

In addition, computational graphs include activation functions
like ReLU, sigmoid, and tanh that are essential to neural networks,
and many frameworks provide these as standard abstractions. These
functions introduce non-linearities that enable models to approximate
complex functions. Frameworks provide these as simple, predefined
operations that can be used when constructing models, for example,
if.nn.relu in TensorFlow. This abstraction enables flexibility, as de-
velopers can easily swap activation functions for tuning performance.
Predefined activations are also optimized by the framework for faster
execution.

In recent years, models like ResNets and MobileNets have emerged
as popular architectures, with current frameworks pre-packaging
these as computational graphs. Rather than worrying about the fine
details, developers can use them as a starting point, customizing
as needed by substituting layers. This simplifies and speeds up
model development, avoiding reinventing architectures from scratch.
Predefined models include well-tested, optimized implementations
that ensure good performance. Their modular design also enables
transferring learned features to new tasks via transfer learning. These
predefined architectures provide high-performance building blocks
to create robust models quickly.

These layer abstractions, activation functions, and predefined
architectures the frameworks provide constitute a computa-
tional graph. When a user defines a layer in a framework (e.g.,
tf.keras.layers.Dense()), the framework configures computa-
tional graph nodes and edges to represent that layer. The layer
parameters like weights and biases become variables in the graph.
The layer computations become operation nodes (such as the x and
y in the figure above). When you call an activation function like
tf.nn.relu(), the framework adds a ReLU operation node to the
graph. Predefined architectures are just pre-configured subgraphs
that can be inserted into your model’s graph. Thus, model definition
via high-level abstractions creates a computational graph—the layers,
activations, and architectures we use become graph nodes and edges.

We implicitly construct a computational graph when defining a
neural network architecture in a framework. The framework uses this
graph to determine operations to run during training and inference.
Computational graphs bring several advantages over raw code, and
that’s one of the core functionalities that is offered by a good ML
framework:

• Explicit representation of data flow and operations

• Ability to optimize graph before execution

CHAPTER 6. AI FRAMEWORKS 151

• Automatic differentiation for training

• Language agnosticism - graph can be translated to run on GPUs,
TPUs, etc.

• Portability - graph can be serialized, saved, and restored later

Computational graphs are the fundamental building blocks of ML
frameworks. Model definition via high-level abstractions creates a
computational graph—the layers, activations, and architectures we
use become graph nodes and edges. The framework compilers and
optimizers operate on this graph to generate executable code. The
abstractions provide a developer-friendly API for building computa-
tional graphs. Under the hood, it’s still graphs down! So, while you
may not directly manipulate graphs as a framework user, they enable
your high-level model specifications to be efÏciently executed. The
abstractions simplify model-building, while computational graphs
make it possible.

6.4.4.2 Static vs. Dynamic Graphs

Deep learning frameworks have traditionally followed one of two ap-
proaches for expressing computational graphs.

Static graphs (declare-then-execute): With this model, the entire
computational graph must be defined upfront before running it. All
operations and data dependencies must be specified during the dec-
laration phase. TensorFlow originally followed this static approach -
models were defined in a separate context, and then a session was cre-
ated to run them. The benefit of static graphs is they allow more aggres-
sive optimization since the framework can see the full graph. However,
it also tends to be less flexible for research and interactivity. Changes
to the graph require re-declaring the full model.

For example:

x = tf.placeholder(tf.float32)
y = tf.matmul(x, weights) + biases

In this example, x is a placeholder for input data, and y is the result of
a matrix multiplication operation followed by an addition. The model
is defined in this declaration phase, where all operations and variables
must be specified upfront.

Once the entire graph is defined, the framework compiles and opti-
mizes it. This means that the computational steps are set in stone, and
the framework can apply various optimizations to improve efÏciency
and performance. When you later execute the graph, you provide the

6.4. Basic Framework Components 152

actual input tensors, and the pre-defined operations are carried out in
the optimized sequence.

This approach is similar to building a blueprint where every detail
is planned before construction begins. While this allows for powerful
optimizations, it also means that any changes to the model require re-
defining the entire graph from scratch.

Dynamic graphs (define-by-run): Unlike declaring (all) first and
then executing, the graph is built dynamically as execution happens.
There is no separate declaration phase - operations execute immedi-
ately as defined. This style is imperative and flexible, facilitating ex-
perimentation.

PyTorch uses dynamic graphs, building the graph on the fly as ex-
ecution happens. For example, consider the following code snippet,
where the graph is built as the execution is taking place:

x = torch.randn(4,784)
y = torch.matmul(x, weights) + biases

The above example does not have separate compile/build/run
phases. Ops define and execute immediately. With dynamic graphs,
the definition is intertwined with execution, providing a more intu-
itive, interactive workflow. However, the downside is that there is less
potential for optimization since the framework only sees the graph as
it is built.

Recently, the distinction has blurred as frameworks adopt both
modes. TensorFlow 2.0 defaults to dynamic graph mode while letting
users work with static graphs when needed. Dynamic declaration
offers flexibility and ease of use, making frameworks more user-
friendly, while static graphs provide optimization benefits at the cost
of interactivity. The ideal framework balances these approaches. Ta-
ble 6.2 compares the pros and cons of static versus dynamic execution
graphs:

CHAPTER 6. AI FRAMEWORKS 153

Table 6.2.: Comparison between Static (Declare-then-execute) and Dy-
namic (Define-by-run) Execution Graphs, highlighting their
respective pros and cons.

Execution
Graph Pros Cons
Static (Declare-
then-execute)

• Enable graph
optimizations by
seeing full
model ahead of
time

• Can export and
deploy frozen
graphs

• Graph is
packaged
independently
of code

• Less flexible for
research and
iteration

• Changes require
rebuilding graph

• Execution has
separate compile
and run phases

Dynamic
(Define-by-
run)

• Intuitive
imperative style
like Python code

• Interleave graph
build with
execution

• Easy to modify
graphs

• Debugging
seamlessly fits
workflow

• Harder to optimize
without full graph

• Possible
slowdowns from
graph building
during execution

• Can require more
memory

6.4.5 Data Pipeline Tools

Computational graphs can only be as good as the data they learn from
and work on. Therefore, feeding training data efÏciently is crucial for
optimizing deep neural network performance, though it is often over-
looked as one of the core functionalities. Many modern AI frameworks
provide specialized pipelines to ingest, process, and augment datasets
for model training.

6.4.5.1 Data Loaders

At the core of these pipelines are data loaders, which handle reading
training examples from sources like files, databases, and object storage.

6.4. Basic Framework Components 154

Data loaders facilitate efÏcient data loading and preprocessing, crucial
for deep learning models. For instance, TensorFlow’s tf.data dataload-
ing pipeline is designed to manage this process. Depending on the
application, deep learning models require diverse data formats such
as CSV files or image folders. Some popular formats include:

• CSV, a versatile, simple format often used for tabular data.

• TFRecord: TensorFlow’s proprietary format, optimized for per-
formance.

• Parquet: Columnar storage, offering efÏcient data compression
and retrieval.

• JPEG/PNG: Commonly used for image data.

• WAV/MP3: Prevalent formats for audio data.

Data loaders batch examples to leverage vectorization support in
hardware. Batching refers to grouping multiple data points for simul-
taneous processing, leveraging the vectorized computation capabili-
ties of hardware like GPUs. While typical batch sizes range from 32
to 512 examples, the optimal size often depends on the data’s memory
footprint and the specific hardware constraints. Advanced loaders can
stream virtually unlimited datasets from disk and cloud storage. They
stream large datasets from disks or networks instead of fully loading
them into memory, enabling unlimited dataset sizes.

Data loaders can also shufÒe data across epochs for randomization
and preprocess features in parallel with model training to expedite the
training process. Randomly shufÒing the order of examples between
training epochs reduces bias and improves generalization.

Data loaders also support caching and prefetching strategies to op-
timize data delivery for fast, smooth model training. Caching prepro-
cessed batches in memory allows them to be reused efÏciently during
multiple training steps and eliminates redundant processing. Prefetch-
ing, conversely, involves preloading subsequent batches, ensuring that
the model never idles waiting for data.

6.4.6 Data Augmentation

Machine learning frameworks like TensorFlow and PyTorch provide
tools to simplify and streamline the process of data augmentation,
enhancing the efÏciency of expanding datasets synthetically. These
frameworks offer integrated functionalities to apply random trans-
formations, such as flipping, cropping, rotating, altering color, and

https://www.tensorflow.org/guide/data

CHAPTER 6. AI FRAMEWORKS 155

adding noise for images. For audio data, common augmentations
involve mixing clips with background noise or modulating speed,
pitch, and volume.

By integrating augmentation tools into the data pipeline, frame-
works enable these transformations to be applied on the fly during
each training epoch. This approach increases the variation in the
training data distribution, thereby reducing overfitting and improving
model generalization. The use of performant data loaders in combina-
tion with extensive augmentation capabilities allows practitioners to
efÏciently feed massive, varied datasets to neural networks.

These hands-off data pipelines represent a significant improvement
in usability and productivity. They allow developers to focus more
on model architecture and less on data wrangling when training deep
learning models.

6.4.7 Loss Functions and Optimization Algorithms

Training a neural network is fundamentally an iterative process that
seeks to minimize a loss function. The goal is to fine-tune the model
weights and parameters to produce predictions close to the true tar-
get labels. Machine learning frameworks have greatly streamlined this
process by offering loss functions and optimization algorithms.

Machine learning frameworks provide implemented loss functions
that are needed for quantifying the difference between the model’s pre-
dictions and the true values. Different datasets require a different loss
function to perform properly, as the loss function tells the computer
the “objective” for it to aim. Commonly used loss functions include
Mean Squared Error (MSE) for regression tasks, Cross-Entropy Loss
for classification tasks, and Kullback-Leibler (KL) Divergence for prob-
abilistic models. For instance, TensorFlow’s tf.keras.losses holds a suite
of these commonly used loss functions.

Optimization algorithms are used to efÏciently find the set of
model parameters that minimize the loss function, ensuring the
model performs well on training data and generalizes to new data.
Modern frameworks come equipped with efÏcient implementations
of several optimization algorithms, many of which are variants of
gradient descent with stochastic methods and adaptive learning rates.
Some examples of these variants are Stochastic Gradient Descent,
Adagrad, Adadelta, and Adam. The implementation of such variants
are provided in tf.keras.optimizers. More information with clear
examples can be found in the AI Training section.

https://www.tensorflow.org/api_docs/python/tf/keras/losses
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers

6.4. Basic Framework Components 156

6.4.8 Model Training Support

A compilation step is required before training a defined neural network
model. During this step, the neural network’s high-level architecture is
transformed into an optimized, executable format. This process com-
prises several steps. The first step is to construct the computational
graph, which represents all the mathematical operations and data flow
within the model. We discussed this earlier.

During training, the focus is on executing the computational graph.
Every parameter within the graph, such as weights and biases, is as-
signed an initial value. Depending on the chosen initialization method,
this value might be random or based on a predefined logic.

The next critical step is memory allocation. Essential memory is re-
served for the model’s operations on both CPUs and GPUs, ensuring
efÏcient data processing. The model’s operations are then mapped to
the available hardware resources, particularly GPUs or TPUs, to ex-
pedite computation. Once the compilation is finalized, the model is
prepared for training.

The training process employs various tools to improve efÏciency.
Batch processing is commonly used to maximize computational
throughput. Techniques like vectorization enable operations on entire
data arrays rather than proceeding element-wise, which bolsters
speed. Optimizations such as kernel fusion (refer to the Optimiza-
tions chapter) amalgamate multiple operations into a single action,
minimizing computational overhead. Operations can also be seg-
mented into phases, facilitating the concurrent processing of different
mini-batches at various stages.

Frameworks consistently checkpoint the state, preserving intermedi-
ate model versions during training. This ensures that progress is recov-
ered if an interruption occurs, and training can be recommenced from
the last checkpoint. Additionally, the system vigilantly monitors the
model’s performance against a validation data set. Should the model
begin to overfit (if its performance on the validation set declines), train-
ing is automatically halted, conserving computational resources and
time.

ML frameworks incorporate a blend of model compilation, en-
hanced batch processing methods, and utilities such as checkpointing
and early stopping. These resources manage the complex aspects of
performance, enabling practitioners to zero in on model development
and training. As a result, developers experience both speed and ease
when utilizing neural networks’ capabilities.

CHAPTER 6. AI FRAMEWORKS 157

6.4.9 Validation and Analysis

After training deep learning models, frameworks provide utilities to
evaluate performance and gain insights into the models’ workings.
These tools enable disciplined experimentation and debugging.

6.4.9.1 Evaluation Metrics

Frameworks include implementations of common evaluation metrics
for validation:

• Accuracy - Fraction of correct predictions overall. They are
widely used for classification.

• Precision - Of positive predictions, how many were positive. Use-
ful for imbalanced datasets.

• Recall - Of actual positives, how many did we predict correctly?
Measures completeness.

• F1-score - Harmonic mean of precision and recall. Combines
both metrics.

• AUC-ROC - Area under ROC curve. They are used for classifica-
tion threshold analysis.

• MAP - Mean Average Precision. Evaluate ranked predictions in
retrieval/detection.

• Confusion Matrix - Matrix that shows the true positives, true neg-
atives, false positives, and false negatives. Provides a more de-
tailed view of classification performance.

These metrics quantify model performance on validation data for
comparison.

6.4.9.2 Visualization

Visualization tools provide insight into models:

• Loss curves - Plot training and validation loss over time to spot
Overfitting.

• Activation grids - Illustrate features learned by convolutional fil-
ters.

• Projection - Reduce dimensionality for intuitive visualization.

6.4. Basic Framework Components 158

• Precision-recall curves - Assess classification tradeoffs.

Tools like TensorBoard for TensorFlow and TensorWatch for PyTorch
enable real-time metrics and visualization during training.

6.4.10 Differentiable programming

Machine learning training methods such as backpropagation rely on
the change in the loss function with respect to the change in weights
(which essentially is the definition of derivatives). Thus, the ability to
quickly and efÏciently train large machine learning models relies on
the computer’s ability to take derivatives. This makes differentiable
programming one of the most important elements of a machine learn-
ing framework.

We can use four primary methods to make computers take deriva-
tives. First, we can manually figure out the derivatives by hand and
input them into the computer. This would quickly become a night-
mare with many layers of neural networks if we had to compute all the
derivatives in the backpropagation steps by hand. Another method is
symbolic differentiation using computer algebra systems such as Math-
ematica, which can introduce a layer of inefÏciency, as there needs to
be a level of abstraction to take derivatives. Numerical derivatives, the
practice of approximating gradients using finite difference methods,
suffer from many problems, including high computational costs and
larger grid sizes, leading to many errors. This leads to automatic dif-
ferentiation, which exploits the primitive functions that computers use
to represent operations to obtain an exact derivative. With automatic
differentiation, the computational complexity of computing the gra-
dient is proportional to computing the function itself. Intricacies of
automatic differentiation are not dealt with by end users now, but re-
sources to learn more can be found widely, such as from here. Today’s
automatic differentiation and differentiable programming are ubiqui-
tous and are done efÏciently and automatically by modern machine
learning frameworks.

6.4.11 Hardware Acceleration

The trend to continuously train and deploy larger machine-learning
models has made hardware acceleration support necessary for
machine-learning platforms. Figure 6.7 shows the large number of
companies that are offering hardware accelerators in different do-
mains, such as “Very Low Power” and “Embedded” machine learning.
Deep layers of neural networks require many matrix multiplications,
which attract hardware that can compute matrix operations quickly

https://www.tensorflow.org/tensorboard/scalars_and_keras
https://github.com/microsoft/tensorwatch
https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/slides/lec10.pdf

CHAPTER 6. AI FRAMEWORKS 159

and in parallel. In this landscape, two hardware architectures, the
GPU and TPU, have emerged as leading choices for training machine
learning models.

The use of hardware accelerators began with AlexNet, which paved
the way for future works to use GPUs as hardware accelerators for
training computer vision models. GPUs, or Graphics Processing Units,
excel in handling many computations at once, making them ideal for
the matrix operations central to neural network training. Their archi-
tecture, designed for rendering graphics, is perfect for the mathemati-
cal operations required in machine learning. While they are very use-
ful for machine learning tasks and have been implemented in many
hardware platforms, GPUs are still general purpose in that they can be
used for other applications.

On the other hand, Tensor Processing Units (TPU) are hardware
units designed specifically for neural networks. They focus on the
multiply and accumulate (MAC) operation, and their hardware con-
sists of a large hardware matrix that contains elements that efÏciently
compute the MAC operation. This concept, called the systolic array
architecture, was pioneered by Kung and Leiserson (1979), but has
proven to be a useful structure to efÏciently compute matrix products
and other operations within neural networks (such as convolutions).

While TPUs can drastically reduce training times, they also have dis-
advantages. For example, many operations within the machine learn-
ing frameworks (primarily TensorFlow here since the TPU directly in-
tegrates with it) are not supported by TPUs. They cannot also support
custom operations from the machine learning frameworks, and the net-
work design must closely align with the hardware capabilities.

Today, NVIDIA GPUs dominate training, aided by software libraries
like CUDA, cuDNN, and TensorRT. Frameworks also include optimiza-
tions to maximize performance on these hardware types, such as prun-
ing unimportant connections and fusing layers. Combining these tech-
niques with hardware acceleration provides greater efÏciency. For in-
ference, hardware is increasingly moving towards optimized ASICs
and SoCs. Google’s TPUs accelerate models in data centers, while Ap-
ple, Qualcomm, the NVIDIA Jetson family, and others now produce
AI-focused mobile chips.

6.5 Advanced Features
Beyond providing the essential tools for training machine learning
models, frameworks also offer advanced features. These features
include distributing training across different hardware platforms,
fine-tuning large pre-trained models with ease, and facilitating feder-

https://cloud.google.com/tpu/docs/intro-to-tpu
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://cloud.google.com/tpu/docs/intro-to-tpu
https://www.eecs.harvard.edu/~htk/publication/1982-kung-why-systolic-architecture.pdf
https://www.eecs.harvard.edu/~htk/publication/1982-kung-why-systolic-architecture.pdf
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/tensorrt#:~:text=NVIDIA

6.5. Advanced Features 160

Figure 6.7.: Companies offer-
ing ML hardware accelerators.
Source: Gradient Flow.

ated learning. Implementing these capabilities independently would
be highly complex and resource-intensive, but frameworks simplify
these processes, making advanced machine learning techniques more
accessible.

6.5.1 Distributed training

As machine learning models have become larger over the years, it has
become essential for large models to use multiple computing nodes in
the training process. This process, distributed learning, has allowed
for higher training capabilities but has also imposed challenges in im-
plementation.

We can consider three different ways to spread the work of training
machine learning models to multiple computing nodes. Input data
partitioning (or data parallelism) refers to multiple processors running
the same model on different input partitions. This is the easiest im-
plementation and is available for many machine learning frameworks.
The more challenging distribution of work comes with model paral-
lelism, which refers to multiple computing nodes working on differ-
ent parts of the model, and pipelined model parallelism, which refers
to multiple computing nodes working on different layers of the model
on the same input. The latter two mentioned here are active research
areas.

ML frameworks that support distributed learning include Ten-
sorFlow (through its tf.distribute module), PyTorch (through its
torch.nn.DataParallel and torch.nn.DistributedDataParallel modules),
and MXNet (through its gluon API).

https://gradientflow.com/one-simple-chart-companies-that-offer-deep-neural-network-accelerators/
https://www.tensorflow.org/api_docs/python/tf/distribute
https://pytorch.org/docs/stable/generated/torch.nn.DataParallel.html
https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html
https://mxnet.apache.org/versions/1.9.1/api/python/docs/api/gluon/index.html

CHAPTER 6. AI FRAMEWORKS 161

6.5.2 Model Conversion

Machine learning models have various methods to be represented and
used within different frameworks and for different device types. For
example, a model can be converted to be compatible with inference
frameworks within the mobile device. The default format for Tensor-
Flow models is checkpoint files containing weights and architectures,
which are needed to retrain the models. However, models are typi-
cally converted to TensorFlow Lite format for mobile deployment. Ten-
sorFlow Lite uses a compact flat buffer representation and optimiza-
tions for fast inference on mobile hardware, discarding all the unnec-
essary baggage associated with training metadata, such as checkpoint
file structures.

Model optimizations like quantization (see Optimizations chapter)
can further optimize models for target architectures like mobile. This
reduces the precision of weights and activations to uint8 or int8 for
a smaller footprint and faster execution with supported hardware ac-
celerators. For post-training quantization, TensorFlow’s converter han-
dles analysis and conversion automatically.

Frameworks like TensorFlow simplify deploying trained models
to mobile and embedded IoT devices through easy conversion APIs
for TFLite format and quantization. Ready-to-use conversion enables
high-performance inference on mobile without a manual optimization
burden. Besides TFLite, other common targets include TensorFlow.js
for web deployment, TensorFlow Serving for cloud services, and
TensorFlow Hub for transfer learning. TensorFlow’s conversion
utilities handle these scenarios to streamline end-to-end workflows.

More information about model conversion in TensorFlow is linked
here.

6.5.3 AutoML, No-Code/Low-Code ML

In many cases, machine learning can have a relatively high barrier
of entry compared to other fields. To successfully train and deploy
models, one needs to have a critical understanding of a variety of
disciplines, from data science (data processing, data cleaning), model
structures (hyperparameter tuning, neural network architecture),
hardware (acceleration, parallel processing), and more depending on
the problem at hand. The complexity of these problems has led to
the introduction of frameworks such as AutoML, which tries to make
“Machine learning available for non-Machine Learning experts” and
to “automate research in machine learning.” They have constructed
AutoWEKA, which aids in the complex process of hyperparame-
ter selection, and Auto-sklearn and Auto-pytorch, an extension of

../optimizations/optimizations.qmd
https://www.tensorflow.org/lite/models/convert

6.5. Advanced Features 162

AutoWEKA into the popular sklearn and PyTorch Libraries.
While these efforts to automate parts of machine learning tasks are

underway, others have focused on making machine learning models
easier by deploying no-code/low-code machine learning, utilizing
a drag-and-drop interface with an easy-to-navigate user interface.
Companies such as Apple, Google, and Amazon have already created
these easy-to-use platforms to allow users to construct machine
learning models that can integrate into their ecosystem.

These steps to remove barriers to entry continue to democratize ma-
chine learning, make it easier for beginners to access, and simplify
workflow for experts.

6.5.4 Advanced Learning Methods

6.5.4.1 Transfer Learning

Transfer learning is the practice of using knowledge gained from a pre-
trained model to train and improve the performance of a model for a
different task. For example, models such as MobileNet and ResNet are
trained on the ImageNet dataset. To do so, one may freeze the pre-
trained model, utilizing it as a feature extractor to train a much smaller
model built on top of the feature extraction. One can also fine-tune the
entire model to fit the new task. Machine learning frameworks make it
easy to load pre-trained models, freeze specific layers, and train custom
layers on top. They simplify this process by providing intuitive APIs
and easy access to large repositories of pre-trained models.

Transfer learning has challenges, such as the modified model’s in-
ability to conduct its original tasks after transfer learning. Papers such
as “Learning without Forgetting” by Zhizhong Li and Hoiem (2018)
try to address these challenges and have been implemented in mod-
ern machine learning platforms.

6.5.4.2 Federated Learning

Federated learning by McMahan et al. (2017) is a form of distributed
computing that involves training models on personal devices rather
than centralizing the data on a single server (Figure 6.8). Initially, a
base global model is trained on a central server to be distributed to
all devices. Using this base model, the devices individually compute
the gradients and send them back to the central hub. Intuitively, this
transfers model parameters instead of the data itself. Federated learn-
ing enhances privacy by keeping sensitive data on local devices and
only sharing model updates with a central server. This method is par-

https://keras.io/api/applications/
https://browse.arxiv.org/pdf/1606.09282.pdf

CHAPTER 6. AI FRAMEWORKS 163

ticularly useful when dealing with sensitive data or when a large-scale
infrastructure is impractical.

Figure 6.8.: A centralized-
server approach to federated
learning. Source: NVIDIA.

However, federated learning faces challenges such as ensuring data
accuracy, managing non-IID (independent and identically distributed)
data, dealing with unbalanced data production, and overcoming com-
munication overhead and device heterogeneity. Privacy and security
concerns, such as gradient inversion attacks, also pose significant chal-
lenges.

Machine learning frameworks simplify the implementation of feder-
ated learning by providing necessary tools and libraries. For example,
TensorFlow Federated (TFF) offers an open-source framework to sup-
port federated learning. TFF allows developers to simulate and imple-
ment federated learning algorithms, offering a federated core for low-
level operations and high-level APIs for common federated tasks. It
seamlessly integrates with TensorFlow, enabling the use of TensorFlow
models and optimizers in a federated setting. TFF supports secure ag-
gregation techniques to improve privacy and allows for customization
of federated learning algorithms. By leveraging these tools, developers
can efÏciently distribute training, fine-tune pre-trained models, and
handle federated learning’s inherent complexities.

Other open source programs such as Flower have also been devel-
oped to simplify implementing federated learning with various ma-
chine learning frameworks.

https://blogs.nvidia.com/blog/what-is-federated-learning/
https://www.tensorflow.org/federated
https://flower.dev/

6.6. Framework Specialization 164

6.6 Framework Specialization

Thus far, we have talked about ML frameworks generally. However,
typically, frameworks are optimized based on the target environ-
ment’s computational capabilities and application requirements,
ranging from the cloud to the edge to tiny devices. Choosing the right
framework is crucial based on the target environment for deployment.
This section provides an overview of the major types of AI frame-
works tailored for cloud, edge, and TinyML environments to help
understand the similarities and differences between these ecosystems.

6.6.1 Cloud

Cloud-based AI frameworks assume access to ample computational
power, memory, and storage resources in the cloud. They generally
support both training and inference. Cloud-based AI frameworks are
suited for applications where data can be sent to the cloud for process-
ing, such as cloud-based AI services, large-scale data analytics, and
web applications. Popular cloud AI frameworks include the ones we
mentioned earlier, such as TensorFlow, PyTorch, MXNet, Keras, etc.
These frameworks utilize GPUs, TPUs, distributed training, and Au-
toML to deliver scalable AI. Concepts like model serving, MLOps, and
AIOps relate to the operationalization of AI in the cloud. Cloud AI
powers services like Google Cloud AI and enables transfer learning
using pre-trained models.

6.6.2 Edge

Edge AI frameworks are tailored to deploy AI models on IoT devices,
smartphones, and edge servers. Edge AI frameworks are optimized
for devices with moderate computational resources, balancing power
and performance. Edge AI frameworks are ideal for applications re-
quiring real-time or near-real-time processing, including robotics, au-
tonomous vehicles, and smart devices. Key edge AI frameworks in-
clude TensorFlow Lite, PyTorch Mobile, CoreML, and others. They
employ optimizations like model compression, quantization, and efÏ-
cient neural network architectures. Hardware support includes CPUs,
GPUs, NPUs, and accelerators like the Edge TPU. Edge AI enables use
cases like mobile vision, speech recognition, and real-time anomaly de-
tection.

CHAPTER 6. AI FRAMEWORKS 165

6.6.3 Embedded

TinyML frameworks are specialized for deploying AI models on
extremely resource-constrained devices, specifically microcontrollers
and sensors within the IoT ecosystem. TinyML frameworks are
designed for devices with limited resources, emphasizing minimal
memory and power consumption. TinyML frameworks are special-
ized for use cases on resource-constrained IoT devices for predictive
maintenance, gesture recognition, and environmental monitoring ap-
plications. Major TinyML frameworks include TensorFlow Lite Micro,
uTensor, and ARM NN. They optimize complex models to fit within
kilobytes of memory through techniques like quantization-aware
training and reduced precision. TinyML allows intelligent sensing
across battery-powered devices, enabling collaborative learning via
federated learning. The choice of framework involves balancing model
performance and computational constraints of the target platform,
whether cloud, edge, or TinyML. Table 6.3 compares the major AI
frameworks across cloud, edge, and TinyML environments:

Table 6.3.: Comparison of framework types for Cloud AI, Edge AI, and
TinyML.

Framework
Type Examples Key Technologies Use Cases
Cloud
AI

TensorFlow,
PyTorch,
MXNet,
Keras

GPUs, TPUs,
distributed training,
AutoML, MLOps

Cloud services, web
apps, big data
analytics

Edge
AI

TensorFlow
Lite,
PyTorch
Mobile,
Core ML

Model optimization,
compression,
quantization, efÏcient
NN architectures

Mobile apps,
autonomous
systems, real-time
processing

TinyMLTensorFlow
Lite Micro,
uTensor,
ARM NN

Quantization-aware
training, reduced
precision, neural
architecture search

IoT sensors,
wearables,
predictive
maintenance,
gesture recognition

Key differences:

• Cloud AI leverages massive computational power for complex
models using GPUs/TPUs and distributed training

6.7. Embedded AI Frameworks 166

• Edge AI optimizes models to run locally on resource-constrained
edge devices.

• TinyML fits models into extremely low memory and computes
environments like microcontrollers

6.7 Embedded AI Frameworks

6.7.1 Resource Constraints

Embedded systems face severe resource constraints that pose unique
challenges when deploying machine learning models compared to
traditional computing platforms. For example, microcontroller units
(MCUs) commonly used in IoT devices often have:

• RAM ranges from tens of kilobytes to a few megabytes. The pop-
ular ESP8266 MCU has around 80KB RAM available to develop-
ers. This contrasts with 8GB or more on typical laptops and desk-
tops today.

• Flash storage ranges from hundreds of kilobytes to a few
megabytes. The Arduino Uno microcontroller provides just
32KB of code storage. Standard computers today have disk
storage in the order of terabytes.

• Processing power from just a few MHz to approximately
200MHz. The ESP8266 operates at 80MHz. This is several
orders of magnitude slower than multi-GHz multi-core CPUs in
servers and high-end laptops.

These tight constraints often make training machine learning mod-
els directly on microcontrollers infeasible. The limited RAM precludes
handling large datasets for training. Energy usage for training would
also quickly deplete battery-powered devices. Instead, models are
trained on resource-rich systems and deployed on microcontrollers
for optimized inference. But even inference poses challenges:

1. Model Size: AI models are too large to fit on embedded and IoT
devices. This necessitates model compression techniques, such
as quantization, pruning, and knowledge distillation. Addition-
ally, as we will see, many of the frameworks used by developers
for AI development have large amounts of overhead and built-in
libraries that embedded systems can’t support.

https://www.espressif.com/en/products/socs/esp8266

CHAPTER 6. AI FRAMEWORKS 167

2. Complexity of Tasks: With only tens of KBs to a few MBs of
RAM, IoT devices and embedded systems are constrained in the
complexity of tasks they can handle. Tasks that require large
datasets or sophisticated algorithms—for example, LLMs—that
would run smoothly on traditional computing platforms might
be infeasible on embedded systems without compression or
other optimization techniques due to memory limitations.

3. Data Storage and Processing: Embedded systems often process
data in real time and might only store small amounts locally.
Conversely, traditional computing systems can hold and pro-
cess large datasets in memory, enabling faster data operations
analysis and real-time updates.

4. Security and Privacy: Limited memory also restricts the com-
plexity of security algorithms and protocols, data encryption,
reverse engineering protections, and more that can be imple-
mented on the device. This could make some IoT devices more
vulnerable to attacks.

Consequently, specialized software optimizations and ML frame-
works tailored for microcontrollers must work within these tight
resource bounds. Clever optimization techniques like quantization,
pruning, and knowledge distillation compress models to fit within
limited memory (see Optimizations section). Learnings from neural
architecture search help guide model designs.

Hardware improvements like dedicated ML accelerators on micro-
controllers also help alleviate constraints. For instance, Qualcomm’s
Hexagon DSP accelerates TensorFlow Lite models on Snapdragon
mobile chips. Google’s Edge TPU packs ML performance into a tiny
ASIC for edge devices. ARM Ethos-U55 offers efÏcient inference on
Cortex-M class microcontrollers. These customized ML chips unlock
advanced capabilities for resource-constrained applications.

Due to limited processing power, it’s almost always infeasible to
train AI models on IoT or embedded systems. Instead, models are
trained on powerful traditional computers (often with GPUs) and then
deployed on the embedded device for inference. TinyML specifically
deals with this, ensuring models are lightweight enough for real-time
inference on these constrained devices.

6.7.2 Frameworks & Libraries

Embedded AI frameworks are software tools and libraries designed
to enable AI and ML capabilities on embedded systems. These frame-
works are essential for bringing AI to IoT devices, robotics, and other

https://developer.qualcomm.com/software/hexagon-dsp-sdk/dsp-processor
https://developer.qualcomm.com/software/hexagon-dsp-sdk/dsp-processor
https://cloud.google.com/edge-tpu
https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-u55

6.7. Embedded AI Frameworks 168

edge computing platforms, and they are designed to work where com-
putational resources, memory, and power consumption are limited.

6.7.3 Challenges

While embedded systems present an enormous opportunity for de-
ploying machine learning to enable intelligent capabilities at the edge,
these resource-constrained environments pose significant challenges.
Unlike typical cloud or desktop environments rich with computa-
tional resources, embedded devices introduce severe constraints
around memory, processing power, energy efÏciency, and specialized
hardware. As a result, existing machine learning techniques and
frameworks designed for server clusters with abundant resources do
not directly translate to embedded systems. This section uncovers
some of the challenges and opportunities for embedded systems and
ML frameworks.

6.7.3.1 Fragmented Ecosystem

The lack of a unified ML framework led to a highly fragmented ecosys-
tem. Engineers at companies like STMicroelectronics, NXP Semicon-
ductors, and Renesas had to develop custom solutions tailored to their
specific microcontroller and DSP architectures. These ad-hoc frame-
works required extensive manual optimization for each low-level hard-
ware platform. This made porting models extremely difÏcult, requir-
ing redevelopment for new Arm, RISC-V, or proprietary architectures.

6.7.3.2 Disparate Hardware Needs

Without a shared framework, there was no standard way to assess hard-
ware’s capabilities. Vendors like Intel, Qualcomm, and NVIDIA cre-
ated integrated solutions, blending models and improving software
and hardware. This made it hard to discern the sources of performance
gains - whether new chip designs like Intel’s low-power x86 cores or
software optimizations were responsible. A standard framework was
needed so vendors could evaluate their hardware’s capabilities fairly
and reproducibly.

6.7.3.3 Lack of Portability

With standardized tools, adapting models trained in common frame-
works like TensorFlow or PyTorch to run efÏciently on microcontrollers
was easier. It required time-consuming manual translation of models
to run on specialized DSPs from companies like CEVA or low-power

https://www.st.com/
https://www.nxp.com/
https://www.nxp.com/
https://www.renesas.com/

CHAPTER 6. AI FRAMEWORKS 169

Arm M-series cores. No turnkey tools were enabling portable deploy-
ment across different architectures.

6.7.3.4 Incomplete Infrastructure

The infrastructure to support key model development workflows
needed to be improved. More support is needed for compression
techniques to fit large models within constrained memory budgets.
Tools for quantization to lower precision for faster inference were
missing. Standardized APIs for integration into applications were
incomplete. Essential functionality like on-device debugging, metrics,
and performance profiling was absent. These gaps increased the cost
and difÏculty of embedded ML development.

6.7.3.5 No Standard Benchmark

Without unified benchmarks, there was no standard way to assess and
compare the capabilities of different hardware platforms from vendors
like NVIDIA, Arm, and Ambiq Micro. Existing evaluations relied on
proprietary benchmarks tailored to showcase the strengths of particu-
lar chips. This made it impossible to measure hardware improvements
objectively in a fair, neutral manner. The Benchmarking AI chapter dis-
cusses this topic in more detail.

6.7.3.6 Minimal Real-World Testing

Much of the benchmarks relied on synthetic data. Rigorously test-
ing models on real-world embedded applications was difÏcult without
standardized datasets and benchmarks, raising questions about how
performance claims would translate to real-world usage. More exten-
sive testing was needed to validate chips in actual use cases.

The lack of shared frameworks and infrastructure slowed TinyML
adoption, hampering the integration of ML into embedded products.
Recent standardized frameworks have begun addressing these issues
through improved portability, performance profiling, and benchmark-
ing support. However, ongoing innovation is still needed to enable
seamless, cost-effective deployment of AI to edge devices.

6.7.3.7 Summary

The absence of standardized frameworks, benchmarks, and infrastruc-
ture for embedded ML has traditionally hampered adoption. How-
ever, recent progress has been made in developing shared frameworks
like TensorFlow Lite Micro and benchmark suites like MLPerf Tiny that

../benchmarking/benchmarking.qmd

6.8. Examples 170

aim to accelerate the proliferation of TinyML solutions. However, over-
coming the fragmentation and difÏculty of embedded deployment re-
mains an ongoing process.

6.8 Examples
Machine learning deployment on microcontrollers and other em-
bedded devices often requires specially optimized software libraries
and frameworks to work within tight memory, compute, and power
constraints. Several options exist for performing inference on such
resource-limited hardware, each with its approach to optimizing
model execution. This section will explore the key characteristics and
design principles behind TFLite Micro, TinyEngine, and CMSIS-NN,
providing insight into how each framework tackles the complex
problem of high-accuracy yet efÏcient neural network execution
on microcontrollers. It will also showcase different approaches for
implementing efÏcient TinyML frameworks.

Table 6.4 summarizes the key differences and similarities between
these three specialized machine-learning inference frameworks for em-
bedded systems and microcontrollers.

Table 6.4.: Comparison of frameworks: TensorFlow Lite Micro,
TinyEngine, and CMSIS-NN

Framework
TensorFlow
Lite Micro TinyEngine CMSIS-NN

Approach Interpreter-
based

Static compilation Optimized neural
network kernels

Hardware
Focus

General
embedded
devices

Microcontrollers ARM Cortex-M
processors

Arithmetic
Support

Floating
point

Floating point,
fixed point

Floating point,
fixed point

Model
Support

General
neural
network
models

Models
co-designed with
TinyNAS

Common neural
network layer
types

Code
Footprint

Larger due
to inclusion
of
interpreter
and ops

Small, includes
only ops needed
for model

Lightweight by
design

CHAPTER 6. AI FRAMEWORKS 171

Framework
TensorFlow
Lite Micro TinyEngine CMSIS-NN

Latency Higher due
to interpre-
tation
overhead

Very low due to
compiled model

Low latency focus

Memory
Manage-
ment

Dynamically
managed by
interpreter

Model-level
optimization

Tools for efÏcient
allocation

Optimization
Approach

Some code
generation
features

Specialized
kernels, operator
fusion

Architecture-
specific assembly
optimizations

Key
Benefits

Flexibility,
portability,
ease of
updating
models

Maximizes
performance,
optimized
memory usage

Hardware
acceleration,
standardized API,
portability

We will understand each of these in greater detail in the following
sections.

6.8.1 Interpreter

TensorFlow Lite Micro (TFLM) is a machine learning inference frame-
work designed for embedded devices with limited resources. It uses an
interpreter to load and execute machine learning models, which pro-
vides flexibility and ease of updating models in the field (David et al.
2021).

Traditional interpreters often have significant branching overhead,
which can reduce performance. However, machine learning model
interpretation benefits from the efÏciency of long-running kernels,
where each kernel runtime is relatively large and helps mitigate
interpreter overhead.

An alternative to an interpreter-based inference engine is to gener-
ate native code from a model during export. This can improve perfor-
mance, but it sacrifices portability and flexibility, as the generated code
needs recompilation for each target platform and must be replaced en-
tirely to modify a model.

TFLM balances the simplicity of code compilation and the flex-
ibility of an interpreter-based approach by incorporating certain
code-generation features. For example, the library can be constructed
solely from source files, offering much of the compilation simplicity

https://www.tensorflow.org/lite/microcontrollers

6.8. Examples 172

associated with code generation while retaining the benefits of an
interpreter-based model execution framework.

An interpreter-based approach offers several benefits over code gen-
eration for machine learning inference on embedded devices:

• Flexibility: Models can be updated in the field without recom-
piling the entire application.

• Portability: The interpreter can be used to execute models on
different target platforms without porting the code.

• Memory efÏciency: The interpreter can share code across multi-
ple models, reducing memory usage.

• Ease of development: Interpreters are easier to develop and
maintain than code generators.

TensorFlow Lite Micro is a powerful and flexible framework for ma-
chine learning inference on embedded devices. Its interpreter-based
approach offers several benefits over code generation, including flexi-
bility, portability, memory efÏciency, and ease of development.

6.8.2 Compiler-based

TinyEngine is an ML inference framework designed specifically for
resource-constrained microcontrollers. It employs several optimiza-
tions to enable high-accuracy neural network execution within the
tight constraints of memory, computing, and storage on microcon-
trollers (J. Lin et al. 2020).

While inference frameworks like TFLite Micro use interpreters to ex-
ecute the neural network graph dynamically at runtime, this adds sig-
nificant overhead regarding memory usage to store metadata, interpre-
tation latency, and lack of optimizations. However, TFLite argues that
the overhead is small. TinyEngine eliminates this overhead by employ-
ing a code generation approach. It analyzes the network graph during
compilation and generates specialized code to execute just that model.
This code is natively compiled into the application binary, avoiding
runtime interpretation costs.

Conventional ML frameworks schedule memory per layer, trying
to minimize usage for each layer separately. TinyEngine does model-
level scheduling instead of analyzing memory usage across layers. It
allocates a common buffer size based on the maximum memory needs
of all layers. This buffer is then shared efÏciently across layers to in-
crease data reuse.

https://github.com/mit-han-lab/tinyengine

CHAPTER 6. AI FRAMEWORKS 173

TinyEngine also specializes in the kernels for each layer through
techniques like tiling, unrolling, and fusing operators. For example,
it will generate unrolled compute kernels with the number of loops
needed for a 3x3 or 5x5 convolution. These specialized kernels extract
maximum performance from the microcontroller hardware. It uses op-
timized depthwise convolutions to minimize memory allocations by
computing each channel’s output in place over the input channel data.
This technique exploits the channel-separable nature of depthwise con-
volutions to reduce peak memory size.

Like TFLite Micro, the compiled TinyEngine binary only includes
operations needed for a specific model rather than all possible opera-
tions. This results in a very small binary footprint, keeping code size
low for memory-constrained devices.

One difference between TFLite Micro and TinyEngine is that the
latter is co-designed with “TinyNAS,” an architecture search method
for microcontroller models similar to differential NAS for microcon-
trollers. TinyEngine’s efÏciency allows for exploring larger and more
accurate models through NAS. It also provides feedback to TinyNAS
on which models can fit within the hardware constraints.

Through various custom techniques, such as static compilation,
model-based scheduling, specialized kernels, and co-design with
NAS, TinyEngine enables high-accuracy deep learning inference
within microcontrollers’ tight resource constraints.

6.8.3 Library

CMSIS-NN, standing for Cortex Microcontroller Software Interface
Standard for Neural Networks, is a software library devised by
ARM. It offers a standardized interface for deploying neural network
inference on microcontrollers and embedded systems, focusing on
optimization for ARM Cortex-M processors (Lai, Suda, and Chandra
2018a).

Neural Network Kernels: CMSIS-NN has highly efÏcient kernels
that handle fundamental neural network operations such as convolu-
tion, pooling, fully connected layers, and activation functions. It caters
to a broad range of neural network models by supporting floating and
fixed-point arithmetic. The latter is especially beneficial for resource-
constrained devices as it curtails memory and computational require-
ments (Quantization).

Hardware Acceleration: CMSIS-NN harnesses the power of Single
Instruction, Multiple Data (SIMD) instructions available on many
Cortex-M processors. This allows for parallel processing of multiple
data elements within a single instruction, thereby boosting com-

https://www.keil.com/pack/doc/CMSIS/NN/html/index.html

6.9. Choosing the Right Framework 174

putational efÏciency. Certain Cortex-M processors feature Digital
Signal Processing (DSP) extensions that CMSIS-NN can exploit for
accelerated neural network execution. The library also incorporates
assembly-level optimizations tailored to specific microcontroller
architectures to improve performance further.

Standardized API: CMSIS-NN offers a consistent and abstracted
API that protects developers from the complexities of low-level hard-
ware details. This makes the integration of neural network models
into applications simpler. It may also encompass tools or utilities for
converting popular neural network model formats into a format that
is compatible with CMSIS-NN.

Memory Management: CMSIS-NN provides functions for efÏcient
memory allocation and management, which is vital in embedded sys-
tems where memory resources are scarce. It ensures optimal memory
usage during inference and, in some instances, allows in-place opera-
tions to decrease memory overhead.

Portability: CMSIS-NN is designed for portability across vari-
ous Cortex-M processors. This enables developers to write code
that can operate on different microcontrollers without significant
modifications.

Low Latency: CMSIS-NN minimizes inference latency, making it an
ideal choice for real-time applications where swift decision-making is
paramount.

Energy EfÏciency: The library is designed with a focus on energy
efÏciency, making it suitable for battery-powered and energy-
constrained devices.

6.9 Choosing the Right Framework
Choosing the right machine learning framework for a given applica-
tion requires carefully evaluating models, hardware, and software con-
siderations. By analyzing these three aspects—models, hardware, and
software—ML engineers can select the optimal framework and cus-
tomize it as needed for efÏcient and performant on-device ML applica-
tions. The goal is to balance model complexity, hardware limitations,
and software integration to design a tailored ML pipeline for embed-
ded and edge devices.

6.9.1 Model

TensorFlow supports significantly more operations (ops) than Tensor-
Flow Lite and TensorFlow Lite Micro as it is typically used for research

CHAPTER 6. AI FRAMEWORKS 175

Figure 6.9.: TensorFlow Frame-
work Comparison - General.
Source: TensorFlow.

or cloud deployment, which require a large number of and more flexi-
bility with operators (see Figure 6.9). TensorFlow Lite supports select
ops for on-device training, whereas TensorFlow Micro does not. Ten-
sorFlow Lite also supports dynamic shapes and quantization-aware
training, but TensorFlow Micro does not. In contrast, TensorFlow Lite
and TensorFlow Micro offer native quantization tooling and support,
where quantization refers to transforming an ML program into an ap-
proximated representation with available lower precision operations.

6.9.2 Software

Figure 6.10.: TensorFlow
Framework Comparison -
Software. Source: TensorFlow.

TensorFlow Lite Micro does not have OS support, while TensorFlow
and TensorFlow Lite do, to reduce memory overhead, make startup
times faster, and consume less energy (see Figure 6.10). TensorFlow
Lite Micro can be used in conjunction with real-time operating sys-
tems (RTOS) like FreeRTOS, Zephyr, and Mbed OS. TensorFlow Lite
and TensorFlow Lite Micro support model memory mapping, allowing
models to be directly accessed from flash storage rather than loaded
into RAM, whereas TensorFlow does not. TensorFlow and TensorFlow
Lite support accelerator delegation to schedule code to different accel-

6.9. Choosing the Right Framework 176

erators, whereas TensorFlow Lite Micro does not, as embedded sys-
tems tend to have a limited array of specialized accelerators.

6.9.3 Hardware

Figure 6.11.: TensorFlow
Framework Comparison -
Hardware. Source: Tensor-
Flow.

TensorFlow Lite and TensorFlow Lite Micro have significantly
smaller base binary sizes and memory footprints than TensorFlow
(see Figure 6.11). For example, a typical TensorFlow Lite Micro binary
is less than 200KB, whereas TensorFlow is much larger. This is due
to the resource-constrained environments of embedded systems.
TensorFlow supports x86, TPUs, and GPUs like NVIDIA, AMD, and
Intel. TensorFlow Lite supports Arm Cortex-A and x86 processors
commonly used on mobile phones and tablets. The latter is stripped
of all the unnecessary training logic for on-device deployment. Ten-
sorFlow Lite Micro provides support for microcontroller-focused
Arm Cortex M cores like M0, M3, M4, and M7, as well as DSPs like
Hexagon and SHARC and MCUs like STM32, NXP Kinetis, Microchip
AVR.

6.9.4 Other Factors

Selecting the appropriate AI framework is essential to ensure that em-
bedded systems can efÏciently execute AI models. Several key factors
beyond models, hardware, and software should be considered when
evaluating AI frameworks for embedded systems. Other key factors
to consider when choosing a machine learning framework are perfor-
mance, scalability, ease of use, integration with data engineering tools,
integration with model optimization tools, and community support.
By understanding these factors, you can make informed decisions and
maximize the potential of your machine-learning initiatives.

CHAPTER 6. AI FRAMEWORKS 177

6.9.4.1 Performance

Performance is critical in embedded systems where computational
resources are limited. Evaluate the framework’s ability to optimize
model inference for embedded hardware. Model quantization and
hardware acceleration support are crucial in achieving efÏcient
inference.

6.9.4.2 Scalability

Scalability is essential when considering the potential growth of an em-
bedded AI project. The framework should support the deployment of
models on various embedded devices, from microcontrollers to more
powerful processors. It should also seamlessly handle both small-scale
and large-scale deployments.

6.9.4.3 Integration with Data Engineering Tools

Data engineering tools are essential for data preprocessing and
pipeline management. An ideal AI framework for embedded systems
should seamlessly integrate with these tools, allowing for efÏcient
data ingestion, transformation, and model training.

6.9.4.4 Integration with Model Optimization Tools

Model optimization ensures that AI models are well-suited for em-
bedded deployment. Evaluate whether the framework integrates with
model optimization tools like TensorFlow Lite Converter or ONNX
Runtime to facilitate model quantization and size reduction.

6.9.4.5 Ease of Use

The ease of use of an AI framework significantly impacts development
efÏciency. A framework with a user-friendly interface and clear docu-
mentation reduces developers’ learning curve. Consideration should
be given to whether the framework supports high-level APIs, allow-
ing developers to focus on model design rather than low-level imple-
mentation details. This factor is incredibly important for embedded
systems, which have fewer features than typical developers might be
accustomed to.

6.9.4.6 Community Support

Community support plays another essential factor. Frameworks
with active and engaged communities often have well-maintained

6.10. Future Trends in ML Frameworks 178

codebases, receive regular updates, and provide valuable forums for
problem-solving. As a result, community support also plays into
Ease of Use because it ensures that developers have access to a wealth
of resources, including tutorials and example projects. Community
support provides some assurance that the framework will continue
to be supported for future updates. There are only a few frameworks
that cater to TinyML needs. TensorFlow Lite Micro is the most popular
and has the most community support.

6.10 Future Trends in ML Frameworks

6.10.1 Decomposition

Currently, the ML system stack consists of four abstractions as shown
in Figure 6.12, namely (1) computational graphs, (2) tensor programs,
(3) libraries and runtimes, and (4) hardware primitives.

This has led to vertical (i.e., between abstraction levels) and hori-
zontal (i.e., library-driven vs. compilation-driven approaches to ten-
sor computation) boundaries, which hinder innovation for ML. Future
work in ML frameworks can look toward breaking these boundaries.
In December 2021, Apache TVM Unity was proposed, which aimed to
facilitate interactions between the different abstraction levels (as well
as the people behind them, such as ML scientists, ML engineers, and
hardware engineers) and co-optimize decisions in all four abstraction
levels.

6.10.2 High-Performance Compilers & Libraries

As ML frameworks further develop, high-performance compilers and
libraries will continue to emerge. Some current examples include Ten-
sorFlow XLA and Nvidia’s CUTLASS, which accelerate linear algebra
operations in computational graphs, and Nvidia’s TensorRT, which ac-
celerates and optimizes inference.

6.10.3 ML for ML Frameworks

We can also use ML to improve ML frameworks in the future. Some
current uses of ML for ML frameworks include:

• Hyperparameter optimization using techniques such as Bayesian
optimization, random search, and grid search

• Neural Architecture Search (NAS) to automatically search for op-
timal network architectures

https://tvm.apache.org/2021/12/15/tvm-unity
https://www.tensorflow.org/xla/architecture
https://www.tensorflow.org/xla/architecture
https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/
https://developer.nvidia.com/tensorrt

CHAPTER 6. AI FRAMEWORKS 179

Figure 6.12.: Four abstractions
in current ML system stacks.
Source: TVM.

https://tvm.apache.org/2021/12/15/tvm-unity

6.11. Conclusion 180

• AutoML, which as described in Section 6.5, automates the ML
pipeline.

6.11 Conclusion

In summary, selecting the optimal machine learning framework re-
quires a thorough evaluation of various options against criteria such
as usability, community support, performance, hardware compatibil-
ity, and model conversion capabilities. There is no one-size-fits-all so-
lution, as the right framework depends on specific constraints and use
cases.

We first introduced the necessity of machine learning frameworks
like TensorFlow and PyTorch. These frameworks offer features such
as tensors for handling multi-dimensional data, computational graphs
for defining and optimizing model operations, and a suite of tools in-
cluding loss functions, optimizers, and data loaders that streamline
model development.

Advanced features further improve these frameworks’ usability, en-
abling tasks like fine-tuning large pre-trained models and facilitating
federated learning. These capabilities are critical for developing so-
phisticated machine learning models efÏciently.

Embedded AI frameworks, such as TensorFlow Lite Micro, provide
specialized tools for deploying models on resource-constrained plat-
forms. TensorFlow Lite Micro, for instance, offers comprehensive op-
timization tooling, including quantization mapping and kernel opti-
mizations, to ensure high performance on microcontroller-based plat-
forms like Arm Cortex-M and RISC-V processors. Frameworks specif-
ically built for specialized hardware like CMSIS-NN on Cortex-M pro-
cessors can further maximize performance but sacrifice portability. In-
tegrated frameworks from processor vendors tailor the stack to their ar-
chitectures, unlocking the full potential of their chips but locking you
into their ecosystem.

Ultimately, choosing the right framework involves finding the best
match between its capabilities and the requirements of the target
platform. This requires balancing trade-offs between performance
needs, hardware constraints, model complexity, and other factors.
Thoroughly assessing the intended models and use cases and evaluat-
ing options against key metrics will guide developers in selecting the
ideal framework for their machine learning applications.

CHAPTER 6. AI FRAMEWORKS 181

6.12 Resources
Here is a curated list of resources to support students and instructors
in their learning and teaching journeys. We are continuously working
on expanding this collection and will add new exercises soon.

Slides

These slides are a valuable tool for instructors to deliver lectures
and for students to review the material at their own pace. We
encourage students and instructors to leverage these slides to
improve their understanding and facilitate effective knowledge
transfer.

• Frameworks overview.

• Embedded systems software.

• Inference engines: TF vs. TFLite.

• TF flavors: TF vs. TFLite vs. TFLite Micro.

• TFLite Micro:

– TFLite Micro Big Picture.
– TFLite Micro Interpreter.
– TFLite Micro Model Format.
– TFLite Micro Memory Allocation.
– TFLite Micro NN Operations.

Videos

• Coming soon.

Exercises

To reinforce the concepts covered in this chapter, we have curated
a set of exercises that challenge students to apply their knowl-
edge and deepen their understanding.

• Exercise 9

• Exercise 10

https://docs.google.com/presentation/d/1zbnsihiO68oIUE04TVJEcDQ_Kyec4mhdQkIG6xoR0DY/edit#slide=id.g1ff94734162_0_0
https://docs.google.com/presentation/d/1BK2M2krnI24jSWO0r8tXegl1wgflGZTJyMkjfGolURI/edit#slide=id.g202a6885eb3_0_0
https://docs.google.com/presentation/d/1Jr7HzdZ7YaKO6KY9HBGbOG0BrTnKhbboQtf9d6xy3Ls/edit?usp=drive_link
https://docs.google.com/presentation/d/1_DwBbas8wAVWnJ0tbOorqotf9Gns1qNc3JJ6tw8bce0/edit?usp=drive_link
https://docs.google.com/presentation/d/1XdwcZS0pz6kyuk6Vx90kE11hwUMAtS1cMoFQHZAxS20/edit?usp=drive_link
https://docs.google.com/presentation/d/10llaugp6EroGekFzB1pAH1OJ1dpJ4d7yxKglK1BsqlI/edit?usp=drive_link&resourcekey=0-C6_PHSaI6u4x0Mv2KxWKbg
https://docs.google.com/presentation/d/123kdwjRXvbukyaOBvdp0PJpIs2JSxQ7GoDjB8y0FgIE/edit?usp=drive_link
https://docs.google.com/presentation/d/1_sHuWa3DDTCB9mBzKA4ElPWaUFA8oOelqHCBOHmsvC4/edit?usp=drive_link
https://docs.google.com/presentation/d/1ZwLOLvYbKodNmyuKKGb_gD83NskrvNmnFC0rvGugJlY/edit?usp=drive_link

6.12. Resources 182

• Exercise 11

Labs

In addition to exercises, we offer a series of hands-on labs allow-
ing students to gain practical experience with embedded AI tech-
nologies. These labs provide step-by-step guidance, enabling stu-
dents to develop their skills in a structured and supportive envi-
ronment. We are excited to announce that new labs will be avail-
able soon, further enriching the learning experience.

• Coming soon.

183

Part V
Training

185

Chapter 7

AI Training

Figure 7.1.: DALL·E 3 Prompt:
An illustration for AI training, de-
picting a neural network with neu-
rons that are being repaired and
firing. The scene includes a vast
network of neurons, each glow-
ing and firing to represent activity
and learning. Among these neu-
rons, small figures resembling en-
gineers and scientists are actively
working, repairing and tweaking
the neurons. These miniature
workers symbolize the process of
training the network, adjusting
weights and biases to achieve con-
vergence. The entire scene is a vi-
sual metaphor for the intricate and
collaborative effort involved in AI
training, with the workers repre-
senting the continuous optimiza-
tion and learning within a neural
network. The background is a com-
plex array of interconnected neu-
rons, creating a sense of depth and
complexity.

Training is central to developing accurate and useful AI systems using
machine learning techniques. At a high level, training involves feed-
ing data into machine learning algorithms so they can learn patterns
and make predictions. However, effectively training models requires
tackling various challenges around data, algorithms, optimization of
model parameters, and enabling generalization. This chapter will ex-
plore the nuances and considerations around training machine learn-
ing models.

7.1. Introduction 186

Learning Objectives

• Understand the fundamental mathematics of neural net-
works, including linear transformations, activation func-
tions, loss functions, backpropagation, and optimization
via gradient descent.

• Learn how to effectively leverage data for model training
through proper splitting into train, validation, and test sets
to enable generalization.

• Learn various optimization algorithms like stochastic gra-
dient descent and adaptations like momentum and Adam
that accelerate training.

• Understand hyperparameter tuning and regularization
techniques to improve model generalization by reducing
overfitting.

• Learn proper weight initialization strategies matched to
model architectures and activation choices that accelerate
convergence.

• Identify the bottlenecks posed by key operations like ma-
trix multiplication during training and deployment.

• Learn how hardware improvements like GPUs, TPUs, and
specialized accelerators speed up critical math operations
to accelerate training.

• Understand parallelization techniques, both data and
model parallelism, to distribute training across multiple de-
vices and accelerate system throughput.

7.1 Introduction
Training is critical for developing accurate and useful AI systems using
machine learning. The training creates a machine learning model that
can generalize to new, unseen data rather than memorizing the training
examples. This is done by feeding training data into algorithms that
learn patterns from these examples by adjusting internal parameters.

The algorithms minimize a loss function, which compares their pre-
dictions on the training data to the known labels or solutions, guiding
the learning. Effective training often requires high-quality, represen-

CHAPTER 7. AI TRAINING 187

tative data sets large enough to capture variability in real-world use
cases.

It also requires choosing an algorithm suited to the task, whether
a neural network for computer vision, a reinforcement learning algo-
rithm for robotic control, or a tree-based method for categorical predic-
tion. Careful tuning is needed for the model structure, such as neural
network depth and width, and learning parameters like step size and
regularization strength.

Techniques to prevent overfitting like regularization penalties and
validation with held-out data, are also important. Overfitting can oc-
cur when a model fits the training data too closely, failing to generalize
to new data. This can happen if the model is too complex or trained
too long.

To avoid overfitting, regularization techniques can help constrain the
model. One regularization method is adding a penalty term to the loss
function that discourages complexity, like the L2 norm of the weights.
This penalizes large parameter values. Another technique is dropout,
where a percentage of neurons is randomly set to zero during training.
This reduces neuron co-adaptation.

Validation methods also help detect and avoid overfitting. Part of
the training data is held out from the training loop as a validation set.
The model is evaluated on this data. If validation error increases while
training error decreases, overfitting occurs. The training can then be
stopped early or regularized more strongly. Regularization and valida-
tion enable models to train to maximum capability without overfitting
the training data.

Training takes significant computing resources, especially for deep
neural networks used in computer vision, natural language processing,
and other areas. These networks have millions of adjustable weights
that must be tuned through extensive training. Hardware improve-
ments and distributed training techniques have enabled training ever
larger neural nets that can achieve human-level performance on some
tasks.

In summary, some key points about training:

• Data is crucial: Machine learning models learn from examples
in training data. More high-quality, representative data leads to
better model performance. Data needs to be processed and for-
matted for training.

• Algorithms learn from data: Different algorithms (neural net-
works, decision trees, etc.) have different approaches to finding
patterns in data. Choosing the right algorithm for the task is im-
portant.

7.2. Mathematics of Neural Networks 188

• Training refines model parameters: Model training adjusts in-
ternal parameters to find patterns in data. Advanced models like
neural networks have many adjustable weights. Training itera-
tively adjusts weights to minimize a loss function.

• Generalization is the goal: A model that overfits the train-
ing data will not generalize well. Regularization techniques
(dropout, early stopping, etc.) reduce overfitting. Validation
data is used to evaluate generalization.

• Training takes compute resources: Training complex models
requires significant processing power and time. Hardware
improvements and distributed training across GPUs/TPUs have
enabled advances.

We will walk you through these details in the rest of the sections. Un-
derstanding how to effectively leverage data, algorithms, parameter
optimization, and generalization through thorough training is essen-
tial for developing capable, deployable AI systems that work robustly
in the real world.

7.2 Mathematics of Neural Networks
Deep learning has revolutionized machine learning and artificial intel-
ligence, enabling computers to learn complex patterns and make intel-
ligent decisions. The neural network is at the heart of the deep learning
revolution, and as discussed in section 3, “Deep Learning Primer,” it
is a cornerstone in some of these advancements.

Neural networks are made up of simple functions layered on each
other. Each layer takes in some data, performs some computation, and
passes it to the next layer. These layers learn progressively high-level
features useful for the tasks the network is trained to perform. For ex-
ample, in a network trained for image recognition, the input layer may
take in pixel values, while the next layers may detect simple shapes
like edges. The layers after that may detect more complex shapes like
noses, eyes, etc. The final output layer classifies the image as a whole.

The network in a neural network refers to how these layers are con-
nected. Each layer’s output is considered a set of neurons, which are
connected to neurons in the subsequent layers, forming a “network.”
The way these neurons interact is determined by the weights between
them, which model synaptic strengths similar to that of a brain’s neu-
ron. The neural network is trained by adjusting these weights. Con-
cretely, the weights are initially set randomly, then input is fed in, the
output is compared to the desired result, and finally, the weights are
tweaked to improve the network. This process is repeated until the net-

CHAPTER 7. AI TRAINING 189

work reliably minimizes the loss, indicating it has learned the patterns
in the data.

How is this process defined mathematically? Formally, neural net-
works are mathematical models that consist of alternating linear and
nonlinear operations, parameterized by a set of learnable weights that
are trained to minimize some loss function. This loss function mea-
sures how good our model is concerning fitting our training data, and
it produces a numerical value when evaluated on our model against
the training data. Training neural networks involves repeatedly evalu-
ating the loss function on many different data points to measure how
good our model is, then continuously tweaking the weights of our
model using backpropagation so that the loss decreases, ultimately op-
timizing the model to fit our data.

7.2.1 Neural Network Notation

Diving into the details, the core of a neural network can be viewed as
a sequence of alternating linear and nonlinear operations, as show in
Figure 7.2:

Figure 7.2.: Neural network di-
agram. Source: astroML.

The neural network operates by taking an input vector 𝑥𝑖 and pass-
ing it through a series of layers, each of which performs linear and
non-linear operations. The output of the network at each layer 𝐴𝑗 can
be represented as:

7.2. Mathematics of Neural Networks 190

𝐴𝑗 = 𝑓 (𝑁∑𝑖=1 𝑤𝑖𝑗𝑥𝑖)
Where:

• 𝑁 - The total number of input features.
• 𝑥𝑖 - The individual input feature, where 𝑖 ranges from 1 to 𝑁 .
• 𝑤𝑖𝑗 - The weights connecting neuron 𝑖 in one layer to neuron 𝑗 in

the next layer, which are adjusted during training.
• 𝑓(𝜃) - The non-linear activation function applied at each layer

(e.g., ReLU, softmax, etc.).
• 𝐴𝑗 - The output of the neural network at each layer 𝑗, where 𝑗

denotes the layer number.

In the context of Figure 7.2, 𝑥1,𝑥2,𝑥3,𝑥4, and 𝑥5 represent the input
features. Each input neuron 𝑥𝑖 corresponds to one feature of the in-
put data. The arrows from the input layer to the hidden layer indicate
connections between the input neurons and the hidden neurons, with
each connection associated with a weight 𝑤𝑖𝑗.

The hidden layer consists of neurons 𝑎1,𝑎2,𝑎3, and 𝑎4, each receiv-
ing input from all the neurons in the input layer. The weights 𝑤𝑖𝑗 con-
nect the input neurons to the hidden neurons. For example, 𝑤11 is the
weight connecting input 𝑥1 to hidden neuron 𝑎1.

The number of nodes in each layer and the total number of layers
together define the architecture of the neural network. In the first layer
(input layer), the number of nodes corresponds to the dimensionality
of the input data, while in the last layer (output layer), the number of
nodes corresponds to the dimensionality of the output. The number
of nodes in the intermediate layers can be set arbitrarily, allowing flex-
ibility in designing the network architecture.

The weights, which determine how each layer of the neural network
interacts with the others, are matrices of real numbers. Additionally,
each layer typically includes a bias vector, but we are ignoring it here
for simplicity. The weight matrix 𝑊𝑗 connecting layer 𝑗 − 1 to layer 𝑗
has the dimensions: 𝑊𝑗 ∈ ℝ𝑑𝑗×𝑑𝑗−1

where 𝑑𝑗 is the number of nodes in layer 𝑗, and 𝑑𝑗−1 is the number
of nodes in the previous layer 𝑗 −1.

The final output 𝑦𝑘 of the network is obtained by applying another
activation function 𝑔(𝜃) to the weighted sum of the hidden layer out-
puts:

CHAPTER 7. AI TRAINING 191

𝑦 = 𝑔(𝑀∑𝑗=1 𝑤𝑗𝑘𝐴𝑗)
Where:

• 𝑀 - The number of hidden neurons in the final layer before the
output.

• 𝑤𝑗𝑘 - The weight between hidden neuron 𝑎𝑗 and output neuron𝑦𝑘.
• 𝑔(𝜃) - The activation function applied to the weighted sum of the

hidden layer outputs.

Our neural network, as defined, performs a sequence of linear and
nonlinear operations on the input data (𝑥𝑖) to obtain predictions (𝑦𝑖),
which hopefully is a good answer to what we want the neural network
to do on the input (i.e., classify if the input image is a cat or not). Our
neural network may then be represented succinctly as a function 𝑁
which takes in an input 𝑥 ∈ ℝ𝑑0 parameterized by 𝑊1, ...,𝑊𝑛, and pro-
duces the final output 𝑦:𝑦 = 𝑁(𝑥;𝑊1, ...,𝑊𝑛) where 𝐴0 = 𝑥

This equation indicates that the network starts with the input 𝐴0 = 𝑥
and iteratively computes 𝐴𝑗 at each layer using the parameters 𝑊𝑗 until
it produces the final output 𝑦 at the output layer.

Next, we will see how to evaluate this neural network against train-
ing data by introducing a loss function.

Note

Why are the nonlinear operations necessary? If we only had lin-
ear layers, the entire network would be equivalent to a single lin-
ear layer consisting of the product of the linear operators. Hence,
the nonlinear functions play a key role in the power of neural
networks as they improve the neural network’s ability to fit func-
tions.

Note

Convolutions are also linear operators and can be cast as a matrix
multiplication.

7.2. Mathematics of Neural Networks 192

7.2.2 Loss Function as a Measure of Goodness of Fit
against Training Data

After defining our neural network, we are given some training data,
which is a set of points (𝑥𝑗,𝑦𝑗) for 𝑗 = 1 → 𝑀 , where 𝑀 is the total num-
ber of samples in the dataset, and 𝑗 indexes each sample. We want to
evaluate how good our neural network is at fitting this data. To do this,
we introduce a loss function, which is a function that takes the output
of the neural network on a particular datapoint ̂𝑦𝑗 = 𝑁(𝑥𝑗;𝑊1, ...,𝑊𝑛)
and compares it against the “label” of that particular datapoint (the
corresponding 𝑦𝑗), and outputs a single numerical scalar (i.e., one real
number) that represents how “good” the neural network fits that par-
ticular data point; the final measure of how good the neural network
is on the entire dataset is therefore just the average of the losses across
all data points.

There are many different types of loss functions; for example, in the
case of image classification, we might use the cross-entropy loss func-
tion, which tells us how well two vectors representing classification
predictions compare (i.e., if our prediction predicts that an image is
more likely a dog, but the label says it is a cat, it will return a high
“loss,” indicating a bad fit).

Mathematically, a loss function is a function that takes in two real-
valued vectors, one representing the predicted outputs of the neural
network and the other representing the true labels, and outputs a sin-
gle numerical scalar representing the error or “loss.”𝐿 ∶ ℝ𝑑𝑛 ×ℝ𝑑𝑛 ⟶ ℝ

For a single training example, the loss is given by:𝐿(𝑁(𝑥𝑗;𝑊1, ...,𝑊𝑛),𝑦𝑗)
where ̂𝑦𝑗 = 𝑁(𝑥𝑗;𝑊1, ...,𝑊𝑛) is the predicted output of the neural

network for the input 𝑥𝑗, and 𝑦𝑗 is the true label.
The total loss across the entire dataset, 𝐿𝑓𝑢𝑙𝑙, is then computed as

the average loss across all data points in the training data:

Loss Function for Optimizing Neural Network Model on a
Dataset 𝐿𝑓𝑢𝑙𝑙 = 1𝑀 𝑀∑𝑗=1 𝐿(𝑁(𝑥𝑗;𝑊1, ...𝑊𝑛),𝑦𝑗)

CHAPTER 7. AI TRAINING 193

7.2.3 Training Neural Networks with Gradient Descent

Now that we can measure how well our network fits the training data,
we can optimize the neural network weights to minimize this loss. In
this context, we are denoting 𝑊𝑖 as the weights for each layer 𝑖 in the
network. At a high level, we tweak the parameters of the real-valued
matrices 𝑊𝑖s to minimize the loss function 𝐿𝑓𝑢𝑙𝑙. Overall, our mathe-
matical objective is

Neural Network Training Objective𝑚𝑖𝑛𝑊1,...,𝑊𝑛𝐿𝑓𝑢𝑙𝑙= 𝑚𝑖𝑛𝑊1,...,𝑊𝑛 1𝑀 𝑀∑𝑗=1 𝐿(𝑁(𝑥𝑗;𝑊1, ...𝑊𝑛),𝑦𝑗)
So, how do we optimize this objective? Recall from calculus that

minimizing a function can be done by taking the function’s derivative
concerning the input parameters and tweaking the parameters in the
gradient direction. This technique is called gradient descent and con-
cretely involves calculating the derivative of the loss function 𝐿𝑓𝑢𝑙𝑙 con-
cerning 𝑊1, ...,𝑊𝑛 to obtain a gradient for these parameters to take a
step in, then updating these parameters in the direction of the gradient.
Thus, we can train our neural network using gradient descent, which
repeatedly applies the update rule.

Gradient Descent Update Rule𝑊𝑖 ∶= 𝑊𝑖 −𝜆𝜕𝐿𝑓𝑢𝑙𝑙𝜕𝑊𝑖 for 𝑖 = 1..𝑛
Note

In practice, the gradient is computed over a minibatch of data
points to improve computational efÏciency. This is called
stochastic gradient descent or batch gradient descent.

Where 𝜆 is the stepsize or learning rate of our tweaks, in training
our neural network, we repeatedly perform the step above until con-
vergence, or when the loss no longer decreases. Figure 7.3 illustrates
this process: we want to reach the minimum point, which’s done by
following the gradient (as illustrated with the blue arrows in the fig-
ure). This prior approach is known as full gradient descent since we

7.2. Mathematics of Neural Networks 194

are computing the derivative concerning the entire training data and
only then taking a single gradient step; a more efÏcient approach is to
calculate the gradient concerning just a random batch of data points
and then taking a step, a process known as batch gradient descent or
stochastic gradient descent (Robbins and Monro 1951), which is more
efÏcient since now we are taking many more steps per pass of the entire
training data. Next, we will cover the mathematics behind computing
the gradient of the loss function concerning the 𝑊𝑖s, a process known
as backpropagation.

Figure 7.3.: Gradient descent.
Source: Towards Data Science.

7.2.4 Backpropagation

Training neural networks involve repeated applications of the gradient
descent algorithm, which involves computing the derivative of the loss
function with respect to the 𝑊𝑖s. How do we compute the loss deriva-
tive concerning the 𝑊𝑖s, given that the 𝑊𝑖s are nested functions of each
other in a deep neural network? The trick is to leverage the chain rule:
we can compute the derivative of the loss concerning the 𝑊𝑖s by re-
peatedly applying the chain rule in a complete process known as back-
propagation. Specifically, we can calculate the gradients by computing
the derivative of the loss concerning the outputs of the last layer, then
progressively use this to compute the derivative of the loss concerning

CHAPTER 7. AI TRAINING 195

each prior layer to the input layer. This process starts from the end of
the network (the layer closest to the output) and progresses backwards,
and hence gets its name backpropagation.

Let’s break this down. We can compute the derivative of the loss con-
cerning the outputs of each layer of the neural network by using repeated
applications of the chain rule.𝜕𝐿𝑓𝑢𝑙𝑙𝜕𝐿𝑛 = 𝜕𝐴𝑛𝜕𝐿𝑛 𝜕𝐿𝑓𝑢𝑙𝑙𝜕𝐴𝑛𝜕𝐿𝑓𝑢𝑙𝑙𝜕𝐿𝑛−1 = 𝜕𝐴𝑛−1𝜕𝐿𝑛−1 𝜕𝐿𝑛𝜕𝐴𝑛−1 𝜕𝐴𝑛𝜕𝐿𝑛 𝜕𝐿𝑓𝑢𝑙𝑙𝜕𝐴𝑛

or more generally𝜕𝐿𝑓𝑢𝑙𝑙𝜕𝐿𝑖 = 𝜕𝐴𝑖𝜕𝐿𝑖 𝜕𝐿𝑖+1𝜕𝐴𝑖 ...𝜕𝐴𝑛𝜕𝐿𝑛 𝜕𝐿𝑓𝑢𝑙𝑙𝜕𝐴𝑛
Note

In what order should we perform this computation? From a com-
putational perspective, performing the calculations from the end
to the front is preferable. (i.e: first compute 𝜕𝐿𝑓𝑢𝑙𝑙𝜕𝐴𝑛 then the prior
terms, rather than start in the middle) since this avoids material-
izing and computing large jacobians. This is because 𝜕𝐿𝑓𝑢𝑙𝑙𝜕𝐴𝑛 is
a vector; hence, any matrix operation that includes this term has
an output that is squished to be a vector. Thus, performing the
computation from the end avoids large matrix-matrix multiplica-
tions by ensuring that the intermediate products are vectors.

Note

In our notation, we assume the intermediate activations 𝐴𝑖 are
column vectors, rather than row vectors, hence the chain rule is𝜕𝐿𝜕𝐿𝑖 = 𝜕𝐿𝑖+1𝜕𝐿𝑖 ... 𝜕𝐿𝜕𝐿𝑛 rather than 𝜕𝐿𝜕𝐿𝑖 = 𝜕𝐿𝜕𝐿𝑛 ...𝜕𝐿𝑖+1𝜕𝐿𝑖
After computing the derivative of the loss concerning the output of

each layer, we can easily obtain the derivative of the loss concerning the
parameters, again using the chain rule:𝜕𝐿𝑓𝑢𝑙𝑙𝑊𝑖 = 𝜕𝐿𝑖𝜕𝑊𝑖 𝜕𝐿𝑓𝑢𝑙𝑙𝜕𝐿𝑖

7.2. Mathematics of Neural Networks 196

And this is ultimately how the derivatives of the layers’ weights are
computed using backpropagation! What does this concretely look like
in a specific example? Below, we walk through a specific example of a
simple 2-layer neural network on a regression task using an MSE loss
function with 100-dimensional inputs and a 30-dimensional hidden
layer:

Example of Backpropagation
Suppose we have a two-layer neural network𝐿1 = 𝑊1𝐴0𝐴1 = 𝑅𝑒𝐿𝑈(𝐿1)𝐿2 = 𝑊2𝐴1𝐴2 = 𝑅𝑒𝐿𝑈(𝐿2)𝑁𝑁(𝑥) = Let 𝐴0 = 𝑥 then output 𝐴2
where 𝑊1 ∈ ℝ30×100 and 𝑊2 ∈ ℝ1×30. Furthermore, sup-
pose we use the MSE loss function:𝐿(𝑥,𝑦) = (𝑥−𝑦)2
We wish to compute𝜕𝐿(𝑁𝑁(𝑥),𝑦)𝜕𝑊𝑖 for 𝑖 = 1,2
Note the following:𝜕𝐿(𝑥,𝑦)𝜕𝑥 = 2×(𝑥−𝑦)𝜕𝑅𝑒𝐿𝑈(𝑥)𝜕𝑥 𝛿 = { 0 for 𝑥 ≤ 01 for 𝑥 ≥ 0 }⊙𝛿𝜕𝑊𝐴𝜕𝐴 𝛿 = 𝑊 𝑇 𝛿𝜕𝑊𝐴𝜕𝑊 𝛿 = 𝛿𝐴𝑇
Then we have𝜕𝐿(𝑁𝑁(𝑥),𝑦)𝜕𝑊2 = 𝜕𝐿2𝜕𝑊2 𝜕𝐴2𝜕𝐿2 𝜕𝐿(𝑁𝑁(𝑥),𝑦)𝜕𝐴2= (2𝐿(𝑁𝑁(𝑥)−𝑦)⊙𝑅𝑒𝐿𝑈 ′(𝐿2))𝐴𝑇1

CHAPTER 7. AI TRAINING 197

and𝜕𝐿(𝑁𝑁(𝑥),𝑦)𝜕𝑊1 = 𝜕𝐿1𝜕𝑊1 𝜕𝐴1𝜕𝐿1 𝜕𝐿2𝜕𝐴1 𝜕𝐴2𝜕𝐿2 𝜕𝐿(𝑁𝑁(𝑥),𝑦)𝜕𝐴2= [𝑅𝑒𝐿𝑈 ′(𝐿1)⊙(𝑊 𝑇2 [2𝐿(𝑁𝑁(𝑥)−𝑦)⊙𝑅𝑒𝐿𝑈 ′(𝐿2)])]𝐴𝑇0
Tip

Double-check your work by making sure that the shapes are cor-
rect!

• All Hadamard products (⊙) should operate on tensors of
the same shape

• All matrix multiplications should operate on matrices that
share a common dimension (i.e., m by n, n by k)

• All gradients concerning the weights should have the same
shape as the weight matrices themselves

The entire backpropagation process can be complex, especially for
very deep networks. Fortunately, machine learning frameworks like
PyTorch support automatic differentiation, which performs backprop-
agation for us. In these frameworks, we simply need to specify the for-
ward pass, and the derivatives will be automatically computed for us.
Nevertheless, it is beneficial to understand the theoretical process that
is happening under the hood in these machine-learning frameworks.

Note

As seen above, intermediate activations 𝐴𝑖 are reused in back-
propagation. To improve performance, these activations are
cached from the forward pass to avoid being recomputed. How-
ever, activations must be kept in memory between the forward
and backward passes, leading to higher memory usage. If the
network and batch size are large, this may lead to memory issues.
Similarly, the derivatives with respect to each layer’s outputs are
cached to avoid recomputation.

Exercise 12: Neural Networks with Backpropagation and Gra-
dient Descent

Unlock the math behind powerful neural networks! Deep learn-
ing might seem like magic, but it’s rooted in mathematical prin-

7.3. Differentiable Computation Graphs 198

ciples. In this chapter, you’ve broken down neural network nota-
tion, loss functions, and the powerful technique of backpropaga-
tion. Now, prepare to implement this theory with these Colab
notebooks. Dive into the heart of how neural networks learn.
You’ll see the math behind backpropagation and gradient de-
scent, updating those weights step-by-step.

7.3 Differentiable Computation Graphs
In general, stochastic gradient descent using backpropagation can
be performed on any computational graph that a user may define,
provided that the operations of the computation are differentiable.
As such, generic deep learning libraries like PyTorch and Tensorflow
allow users to specify their computational process (i.e., neural net-
works) as a computational graph. Backpropagation is automatically
performed via automatic differentiation when stochastic gradient
descent is performed on these computational graphs. Framing AI
training as an optimization problem on differentiable computation
graphs is a general way to understand what is happening under the
hood with deep learning systems.

The structure depicted in Figure 7.4 showcases a segment of a differ-
entiable computational graph. In this graph, the input ‘x’ is processed
through a series of operations: it is first multiplied by a weight matrix
‘W’ (MatMul), then added to a bias ‘b’ (Add), and finally passed to an
activation function, Rectified Linear Unit (ReLU). This sequence of op-
erations gives us the output C. The graph’s differentiable nature means
that each operation has a well-defined gradient. Automatic differenti-
ation, as implemented in ML frameworks, leverages this property to
efÏciently compute the gradients of the loss with respect to each pa-
rameter in the network (e.g., ‘W’ and ‘b’).

7.4 Training Data
To enable effective neural network training, the available data must be
split into training, validation, and test sets. The training set is used
to train the model parameters. The validation set evaluates the model
during training to tune hyperparameters and prevent overfitting. The
test set provides an unbiased final evaluation of the trained model’s
performance.

https://colab.research.google.com/github/jigsawlabs-student/pytorch-intro-curriculum/blob/main/5-training-mathematically/20-backpropagation-and-gradient-descent.ipynb

CHAPTER 7. AI TRAINING 199

Figure 7.4.: Computational
Graph. Source: TensorFlow.

Maintaining clear splits between train, validation, and test sets with
representative data is crucial to properly training, tuning, and evalu-
ating models to achieve the best real-world performance. To this end,
we will learn about the common pitfalls or mistakes people make when
creating these data splits.

Table 7.1 compares the differences between training, validation, and
test data splits:

Table 7.1.: Comparing training, validation, and test data splits.
Data Split Purpose Typical Size
Training
Set

Train the model parameters 60-80% of total
data

Validation
Set

Evaluate model during training to
tune hyperparameters and prevent
overfitting

�20% of total
data

Test Set Provide unbiased evaluation of final
trained model

�20% of total
data

7.4.1 Dataset Splits

7.4. Training Data 200

7.4.1.1 Training Set

The training set is used to train the model. It is the largest subset, typi-
cally 60-80% of the total data. The model sees and learns from the train-
ing data to make predictions. A sufÏciently large and representative
training set is required for the model to learn the underlying patterns
effectively.

7.4.1.2 Validation Set

The validation set evaluates the model during training, usually after
each epoch. Typically, 20% of the data is allocated for the validation
set. The model does not learn or update its parameters based on the
validation data. It is used to tune hyperparameters and make other
tweaks to improve training. Monitoring metrics like loss and accuracy
on the validation set prevents overfitting on just the training data.

7.4.1.3 Test Set

The test set acts as a completely unseen dataset that the model did not
see during training. It is used to provide an unbiased evaluation of the
final trained model. Typically, 20% of the data is reserved for testing.
Maintaining a hold-out test set is vital for obtaining an accurate esti-
mate of how the trained model would perform on real-world unseen
data. Data leakage from the test set must be avoided at all costs.

The relative proportions of the training, validation, and test sets can
vary based on data size and application. However, following the gen-
eral guidelines for a 60/20/20 split is a good starting point. Careful
data splitting ensures models are properly trained, tuned, and evalu-
ated to achieve the best performance.

Video 4 explains how to properly split the dataset into training, val-
idation, and testing sets, ensuring an optimal training process.

Video 4: Train/Dev/Test Sets

https://www.youtube.com/watch?v=1waHlpKiNyY

7.4.2 Common Pitfalls and Mistakes

7.4.2.1 InsufÏcient Training Data

Allocating too little data to the training set is a common mistake when
splitting data that can severely impact model performance. If the train-

https://www.youtube.com/watch?v=1waHlpKiNyY

CHAPTER 7. AI TRAINING 201

ing set is too small, the model will not have enough samples to effec-
tively learn the true underlying patterns in the data. This leads to high
variance and causes the model to fail to generalize well to new data.

For example, if you train an image classification model to recognize
handwritten digits, providing only 10 or 20 images per digit class
would be completely inadequate. The model would need more
examples to capture the wide variances in writing styles, rotations,
stroke widths, and other variations.

As a rule of thumb, the training set size should be at least hundreds
or thousands of examples for most machine learning algorithms to
work effectively. Due to the large number of parameters, the training
set often needs to be in the tens or hundreds of thousands for deep
neural networks, especially those using convolutional layers.

InsufÏcient training data typically manifests in symptoms like high
error rates on validation/test sets, low model accuracy, high variance,
and overfitting on small training set samples. Collecting more quality
training data is the solution. Data augmentation techniques can also
help virtually increase the size of training data for images, audio, etc.

Carefully factoring in the model complexity and problem difÏculty
when allocating training samples is important to ensure sufÏcient data
is available for the model to learn successfully. Following guidelines
on minimum training set sizes for different algorithms is also recom-
mended. More training data is needed to maintain the overall success
of any machine learning application.

Consider Figure 7.5 where we try to classify/split datapoints into
two categories (here, by color): On the left, overfitting is depicted by a
model that has learned the nuances in the training data too well (either
the dataset was too small or we ran the model for too long), causing it
to follow the noise along with the signal, as indicated by the line’s ex-
cessive curves. The right side shows underfitting, where the model’s
simplicity prevents it from capturing the dataset’s underlying struc-
ture, resulting in a line that does not fit the data well. The center graph
represents an ideal fit, where the model balances well between general-
ization and fitting, capturing the main trend of the data without being
swayed by outliers. Although the model is not a perfect fit (it misses
some points), we care more about its ability to recognize general pat-
terns rather than idiosyncratic outliers.

Figure 7.6 illustrates the process of fitting the data over time. When
training, we search for the “sweet spot” between underfitting and over-
fitting. At first when the model hasn’t had enough time to learn the pat-
terns in the data, we find ourselves in the underfitting zone, indicated
by high error rates on the validation set (remember that the model is
trained on the training set and we test its generalizability on the vali-

7.4. Training Data 202

Figure 7.5.: Data fitting: over-
fitting, right fit, and underfit-
ting. Source: MathWorks.

dation set, or data it hasn’t seen before). At some point, we achieve a
global minimum for error rates, and ideally we want to stop the train-
ing there. If we continue training, the model will start “memorizing”
or getting to know the data too well that the error rate starts going back
up, since the model will fail to generalize to data it hasn’t seen before.

Figure 7.6.: Fitting the data
overtime. Source: IBM.

Video 5 provides an overview of bias and variance and the relation-
ship between the two concepts and model accuracy.

CHAPTER 7. AI TRAINING 203

Video 5: Bias/Variance

https://www.youtube.com/watch?v=SjQyLhQIXSM

7.4.2.2 Data Leakage Between Sets

Data leakage refers to the unintentional transfer of information
between the training, validation, and test sets. This violates the
fundamental assumption that the splits are mutually exclusive. Data
leakage leads to seriously compromised evaluation results and
inflated performance metrics.

A common way data leakage occurs is if some samples from the test
set are inadvertently included in the training data. When evaluating
the test set, the model has already seen some of the data, which gives
overly optimistic scores. For example, if 2% of the test data leaks into
the training set of a binary classifier, it can result in an accuracy boost
of up to 20%!

If the data splits are not done carefully, more subtle forms of leak-
age can happen. If the splits are not properly randomized and shuf-
fled, samples that are close to each other in the dataset may end up in
the same split, leading to distribution biases. This creates information
bleed through based on proximity in the dataset.

Another case is when datasets have linked, inherently connected
samples, such as graphs, networks, or time series data. Naive splitting
may isolate connected nodes or time steps into different sets. Models
can make invalid assumptions based on partial information.

Preventing data leakage requires creating solid separation between
splits—no sample should exist in more than one split. ShufÒing and
randomized splitting help create robust divisions. Cross-validation
techniques can be used for more rigorous evaluation. Detecting leak-
age is difÏcult, but telltale signs include models doing way better on
test vs. validation data.

Data leakage severely compromises the validity of the evaluation be-
cause the model has already partially seen the test data. No amount
of tuning or complex architectures can substitute for clean data splits.
It is better to be conservative and create complete separation between
splits to avoid this fundamental mistake in machine learning pipelines.

7.4.2.3 Small or Unrepresentative Validation Set

The validation set is used to assess model performance during training
and to fine-tune hyperparameters. For reliable and stable evaluations,
the validation set should be sufÏciently large and representative of the

https://www.youtube.com/watch?v=SjQyLhQIXSM

7.4. Training Data 204

real data distribution. However, this can make model selection and
tuning more challenging.

For example, if the validation set only contains 100 samples, the met-
rics calculated will have a high variance. Due to noise, the accuracy
may fluctuate up to 5-10% between epochs. This makes it difÏcult to
know if a drop in validation accuracy is due to overfitting or natural
variance. With a larger validation set, say 1000 samples, the metrics
will be much more stable.

Additionally, if the validation set is not representative, perhaps miss-
ing certain subclasses, the estimated skill of the model may be inflated.
This could lead to poor hyperparameter choices or premature training
stops. Models selected based on such biased validation sets do not gen-
eralize well to real data.

A good rule of thumb is that the validation set size should be at
least several hundred samples and up to 10-20% of the training set,
while still leaving sufÏcient samples for training. The splits should
also be stratified, meaning that the class proportions in the validation
set should match those in the full dataset, especially if working with
imbalanced datasets. A larger validation set representing the original
data characteristics is essential for proper model selection and tuning.

7.4.2.4 Reusing the Test Set Multiple Times

The test set is designed to provide an unbiased evaluation of the fully
trained model only once at the end of the model development process.
Reusing the test set multiple times during development for model eval-
uation, hyperparameter tuning, model selection, etc., can result in over-
fitting on the test data. Instead, reserve the test set for a final evaluation
of the fully trained model, treating it as a black box to simulate its per-
formance on real-world data. This approach provides reliable metrics
to determine whether the model is ready for production deployment.

If the test set is reused as part of the validation process, the model
may start to see and learn from the test samples. This, coupled with
intentionally or unintentionally optimizing model performance on the
test set, can artificially inflate metrics like accuracy.

For example, suppose the test set is used repeatedly for model selec-
tion out of 5 architectures. In that case, the model may achieve 99%
test accuracy by memorizing the samples rather than learning general-
izable patterns. However, when deployed in the real world, the accu-
racy of new data could drop by 60%.

The best practice is to interact with the test set only once at the end
to report unbiased metrics on how the final tuned model would per-
form in the real world. While developing the model, the validation set

CHAPTER 7. AI TRAINING 205

should be used for all parameter tuning, model selection, early stop-
ping, and similar tasks. It’s important to reserve a portion, such as 20-
30% of the full dataset, solely for the final model evaluation. This data
should not be used for validation, tuning, or model selection during
development.

Failing to keep an unseen hold-out set for final validation risks opti-
mizing results and overlooking potential failures before model release.
Having some fresh data provides a final sanity check on real-world
efÏcacy. Maintaining the complete separation of training/validation
from the test set is essential to obtain accurate estimates of model per-
formance. Even minor deviations from a single use of the test set could
positively bias results and metrics, providing an overly optimistic view
of real-world efÏcacy.

7.4.2.5 Same Data Splits Across Experiments

When comparing different machine learning models or experimenting
with various architectures and hyperparameters, using the same data
splits for training, validation, and testing across the different experi-
ments can introduce bias and invalidate the comparisons.

If the same splits are reused, the evaluation results may be more bal-
anced and accurately measure which model performs better. For ex-
ample, a certain random data split may favor model A over model B
irrespective of the algorithms. Reusing this split will then bias towards
model A.

Instead, the data splits should be randomized or shufÒed for each
experimental iteration. This ensures that randomness in the sampling
of the splits does not confer an unfair advantage to any model.

With different splits per experiment, the evaluation becomes more
robust. Each model is tested on a wide range of test sets drawn ran-
domly from the overall population, smoothing out variation and re-
moving correlation between results.

Proper practice is to set a random seed before splitting the data for
each experiment. Splitting should occur after shufÒing/resampling as
part of the experimental pipeline. Carrying out comparisons on the
same splits violates the i.i.d (independent and identically distributed)
assumption required for statistical validity.

Unique splits are essential for fair model comparisons. Though
more compute-intensive, randomized allocation per experiment re-
moves sampling bias and enables valid benchmarking. This highlights
the true differences in model performance irrespective of a particular
split’s characteristics.

7.4. Training Data 206

7.4.2.6 Failing to Stratify Splits

When splitting data into training, validation, and test sets, failing to
stratify the splits can result in an uneven representation of the target
classes across the splits and introduce sampling bias. This is especially
problematic for imbalanced datasets.

Stratified splitting involves sampling data points such that the pro-
portion of output classes is approximately preserved in each split. For
example, if performing a 70/30 train-test split on a dataset with 60%
negative and 40% positive samples, stratification ensures ~60% nega-
tive and ~40% positive examples in both training and test sets.

Without stratification, random chance could result in the training
split having 70% positive samples while the test has 30% positive sam-
ples. The model trained on this skewed training distribution will not
generalize well. Class imbalance also compromises model metrics like
accuracy.

Stratification works best when done using labels, though proxies like
clustering can be used for unsupervised learning. It becomes essential
for highly skewed datasets with rare classes that could easily be omit-
ted from splits.

Libraries like Scikit-Learn have stratified splitting methods built into
them. Failing to use them could inadvertently introduce sampling bias
and hurt model performance on minority groups. After performing
the splits, the overall class balance should be examined to ensure even
representation across the splits.

Stratification provides a balanced dataset for both model training
and evaluation. Though simple random splitting is easy, mindful of
stratification needs, especially for real-world imbalanced data, results
in more robust model development and evaluation.

7.4.2.7 Ignoring Time Series Dependencies

Time series data has an inherent temporal structure with observations
depending on past context. Naively splitting time series data into train
and test sets without accounting for this dependency leads to data leak-
age and lookahead bias.

For example, simply splitting a time series into the first 70% of train-
ing and the last 30% as test data will contaminate the training data
with future data points. The model can use this information to “peek”
ahead during training.

This results in an overly optimistic evaluation of the model’s perfor-
mance. The model may appear to forecast the future accurately but
has actually implicitly learned based on future data, which does not
translate to real-world performance.

CHAPTER 7. AI TRAINING 207

Proper time series cross-validation techniques, such as forward
chaining, should be used to preserve order and dependency. The test
set should only contain data points from a future time window that
the model was not exposed to for training.

Failing to account for temporal relationships leads to invalid causal-
ity assumptions. If the training data contains future points, the model
may also need to learn how to extrapolate forecasts further.

Maintaining the temporal flow of events and avoiding lookahead
bias is key to properly training and testing time series models. This
ensures they can truly predict future patterns and not just memorize
past training data.

7.4.2.8 No Unseen Data for Final Evaluation

A common mistake when splitting data is failing to set aside some por-
tion of the data just for the final evaluation of the completed model.
All of the data is used for training, validation, and test sets during de-
velopment.

This leaves no unseen data to get an unbiased estimate of how the
final tuned model would perform in the real world. The metrics on
the test set used during development may only partially reflect actual
model skills.

For example, choices like early stopping and hyperparameter tun-
ing are often optimized based on test set performance. This couples
the model to the test data. An unseen dataset is needed to break this
coupling and get true real-world metrics.

Best practice is to reserve a portion, such as 20-30% of the full dataset,
solely for final model evaluation. This data should not be used for val-
idation, tuning, or model selection during development.

Saving some unseen data allows for evaluating the completely
trained model as a black box on real-world data. This provides
reliable metrics to decide whether the model is ready for production
deployment.

Failing to keep an unseen hold-out set for final validation risks opti-
mizing results and overlooking potential failures before model release.
Having some fresh data provides a final sanity check on real-world
efÏcacy.

7.4.2.9 Overoptimizing on the Validation Set

The validation set is meant to guide the model training process, not
serve as additional training data. Overoptimizing the validation set to
maximize performance metrics treats it more like a secondary training
set, leading to inflated metrics and poor generalization.

7.5. Optimization Algorithms 208

For example, techniques like extensively tuning hyperparameters or
adding data augmentations targeted to boost validation accuracy can
cause the model to fit too closely to the validation data. The model may
achieve 99% validation accuracy but only 55% test accuracy.

Similarly, reusing the validation set for early stopping can also opti-
mize the model specifically for that data. Stopping at the best valida-
tion performance overfits noise and fluctuations caused by the small
validation size.

The validation set serves as a proxy to tune and select models. How-
ever, the goal remains maximizing real-world data performance, not
the validation set. Minimizing the loss or error on validation data does
not automatically translate to good generalization.

A good approach is to keep the use of the validation set minimal—
hyperparameters can be tuned coarsely first on training data, for exam-
ple. The validation set guides the training but should not influence or
alter the model itself. It is a diagnostic, not an optimization tool.

When assessing performance on the validation set, care should be
taken not to overfit. Tradeoffs are needed to build models that per-
form well on the overall population and are not overly tuned to the
validation samples.

7.5 Optimization Algorithms
Stochastic gradient descent (SGD) is a simple yet powerful optimiza-
tion algorithm for training machine learning models. It works by esti-
mating the gradient of the loss function concerning the model parame-
ters using a single training example and then updating the parameters
in the direction that reduces the loss.

While conceptually straightforward, SGD needs a few areas for im-
provement. First, choosing a proper learning rate can be difÏcult—too
small, and progress is very slow; too large, and parameters may os-
cillate and fail to converge. Second, SGD treats all parameters equally
and independently, which may not be ideal in all cases. Finally, vanilla
SGD uses only first-order gradient information, which results in slow
progress on ill-conditioned problems.

7.5.1 Optimizations

Over the years, various optimizations have been proposed to acceler-
ate and improve vanilla SGD. Ruder (2016) gives an excellent overview
of the different optimizers. Briefly, several commonly used SGD opti-
mization techniques include:

CHAPTER 7. AI TRAINING 209

Momentum: Accumulates a velocity vector in directions of persis-
tent gradient across iterations. This helps accelerate progress by damp-
ening oscillations and maintains progress in consistent directions.

Nesterov Accelerated Gradient (NAG): A variant of momentum
that computes gradients at the “look ahead” rather than the current
parameter position. This anticipatory update prevents overshooting
while the momentum maintains the accelerated progress.

Adagrad: An adaptive learning rate algorithm that maintains a per-
parameter learning rate scaled down proportionate to each parame-
ter’s historical sum of gradients. This helps eliminate the need to tune
learning rates (Duchi, Hazan, and Singer 2010) manually.

Adadelta: A modification to Adagrad restricts the window of accu-
mulated past gradients, thus reducing the aggressive decay of learning
rates (Zeiler 2012).

RMSProp: Divides the learning rate by an exponentially decaying
average of squared gradients. This has a similar normalizing effect as
Adagrad but does not accumulate the gradients over time, avoiding a
rapid decay of learning rates (Hinton 2017).

Adam: Combination of momentum and rmsprop where rmsprop
modifies the learning rate based on the average of recent magnitudes of
gradients. Displays very fast initial progress and automatically tunes
step sizes (Kingma and Ba 2014).

AMSGrad: A variant of Adam that ensures stable convergence by
maintaining the maximum of past squared gradients, preventing the
learning rate from increasing during training (S. J. Reddi, Kale, and
Kumar 2019).

Of these methods, Adam has widely considered the go-to optimiza-
tion algorithm for many deep-learning tasks. It consistently outper-
forms vanilla SGD in terms of training speed and performance. Other
optimizers may be better suited in some cases, particularly for simpler
models.

7.5.2 Tradeoffs

Table 7.2 is a pros and cons table for some of the main optimization
algorithms for neural network training:

7.5. Optimization Algorithms 210

Table 7.2.: Comparing the pros and cons of different optimization al-
gorithms.

Algorithm Pros Cons
Momentum • Faster convergence

due to acceleration
along gradients

• Less oscillation than
vanilla SGD

• Requires tuning
of momentum
parameter

Nesterov
Accelerated
Gradient
(NAG)

• Faster than standard
momentum in some
cases

• Anticipatory updates
prevent overshooting

• More complex to
understand
intuitively

Adagrad • Eliminates need to
tune learning rates
manually

• Performs well on
sparse gradients

• Learning rate
may decay too
quickly on dense
gradients

Adadelta • Less aggressive
learning rate decay
than Adagrad

• Still sensitive to
initial learning
rate value

RMSProp • Automatically adjusts
learning rates

• Works well in practice

• No major
downsides

Adam • Combination of
momentum and
adaptive learning
rates

• EfÏcient and fast
convergence

• Slightly worse
generalization
performance in
some cases

AMSGrad • Improvement to
Adam addressing
generalization issue

• Not as
extensively
used/tested as
Adam

7.5.3 Benchmarking Algorithms

No single method is best for all problem types. This means we need
comprehensive benchmarking to identify the most effective optimizer
for specific datasets and models. The performance of algorithms like
Adam, RMSProp, and Momentum varies due to batch size, learning
rate schedules, model architecture, data distribution, and regulariza-

CHAPTER 7. AI TRAINING 211

tion. These variations underline the importance of evaluating each op-
timizer under diverse conditions.

Take Adam, for example, who often excels in computer vision tasks,
unlike RMSProp, who may show better generalization in certain natu-
ral language processing tasks. Momentum’s strength lies in its accel-
eration in scenarios with consistent gradient directions, whereas Ada-
grad’s adaptive learning rates are more suited for sparse gradient prob-
lems.

This wide array of interactions among optimizers demonstrates the
challenge of declaring a single, universally superior algorithm. Each
optimizer has unique strengths, making it crucial to evaluate various
methods to discover their optimal application conditions empirically.

A comprehensive benchmarking approach should assess the speed
of convergence and factors like generalization error, stability, hyperpa-
rameter sensitivity, and computational efÏciency, among others. This
entails monitoring training and validation learning curves across mul-
tiple runs and comparing optimizers on various datasets and models
to understand their strengths and weaknesses.

AlgoPerf, introduced by Dürr et al. (2021), addresses the need for
a robust benchmarking system. This platform evaluates optimizer
performance using criteria such as training loss curves, generalization
error, sensitivity to hyperparameters, and computational efÏciency.
AlgoPerf tests various optimization methods, including Adam,
LAMB, and Adafactor, across different model types like CNNs and
RNNs/LSTMs on established datasets. It utilizes containerization and
automatic metric collection to minimize inconsistencies and allows for
controlled experiments across thousands of configurations, providing
a reliable basis for comparing optimizers.

The insights gained from AlgoPerf and similar benchmarks are in-
valuable for guiding optimizers’ optimal choice or tuning. By enabling
reproducible evaluations, these benchmarks contribute to a deeper un-
derstanding of each optimizer’s performance, paving the way for fu-
ture innovations and accelerated progress in the field.

7.6 Hyperparameter Tuning
Hyperparameters are important settings in machine learning models
that greatly impact how well your models ultimately perform. Unlike
other model parameters that are learned during training, hyperparam-
eters are specified by the data scientists or machine learning engineers
before training the model.

Choosing the right hyperparameter values enables your models to
learn patterns from data effectively. Some examples of key hyperpa-

7.6. Hyperparameter Tuning 212

rameters across ML algorithms include:
• Neural networks: Learning rate, batch size, number of hidden

units, activation functions
• Support vector machines: Regularization strength, kernel type

and parameters
• Random forests: Number of trees, tree depth
• K-means: Number of clusters

The problem is that there are no reliable rules of thumb for choos-
ing optimal hyperparameter configurations—you typically have to try
out different values and evaluate performance. This process is called
hyperparameter tuning.

In the early years of modern deep learning, researchers were still
grappling with unstable and slow convergence issues. Common pain
points included training losses fluctuating wildly, gradients exploding
or vanishing, and extensive trial-and-error needed to train networks
reliably. As a result, an early focal point was using hyperparameters
to control model optimization. For instance, seminal techniques like
batch normalization allowed faster model convergence by tuning as-
pects of internal covariate shift. Adaptive learning rate methods also
mitigated the need for extensive manual schedules. These addressed
optimization issues during training, such as uncontrolled gradient di-
vergence. Carefully adapted learning rates are also the primary control
factor for achieving rapid and stable convergence even today.

As computational capacity expanded exponentially in subsequent
years, much larger models could be trained without falling prey to
pure numerical optimization issues. The focus shifted towards gener-
alization - though efÏcient convergence was a core prerequisite. State-
of-the-art techniques like Transformers brought in parameters in bil-
lions. At such sizes, hyperparameters around capacity, regularization,
ensembling, etc., took center stage for tuning rather than only raw con-
vergence metrics.

The lesson is that understanding the acceleration and stability of the
optimization process itself constitutes the groundwork. Initialization
schemes, batch sizes, weight decays, and other training hyperparame-
ters remain indispensable today. Mastering fast and flawless conver-
gence allows practitioners to expand their focus on emerging needs
around tuning for metrics like accuracy, robustness, and efÏciency at
scale.

7.6.1 Search Algorithms

When it comes to the critical process of hyperparameter tuning, there
are several sophisticated algorithms that machine learning practition-

CHAPTER 7. AI TRAINING 213

ers rely on to search through the vast space of possible model config-
urations systematically. Some of the most prominent hyperparameter
search algorithms include:

• Grid Search: The most basic search method, where you man-
ually define a grid of values to check for each hyperparameter.
For example, checking learning rates = [0.01, 0.1, 1] and
batch sizes = [32, 64, 128]. The key advantage is simplicity,
but it can lead to an exponential explosion in search space, mak-
ing it time-consuming. It’s best suited for fine-tuning a small
number of parameters.

• Random Search: Instead of defining a grid, you randomly select
values for each hyperparameter from a predefined range or set.
This method is more efÏcient at exploring a vast hyperparameter
space because it doesn’t require an exhaustive search. However,
it may still miss optimal parameters since it doesn’t systemati-
cally explore all possible combinations.

• Bayesian Optimization: This is an advanced probabilistic ap-
proach for adaptive exploration based on a surrogate function
to model performance over iterations. It is simple and efÏcient—
it finds highly optimized hyperparameters in fewer evaluation
steps. However, it requires more investment in setup (Snoek,
Larochelle, and Adams 2012).

• Evolutionary Algorithms: These algorithms mimic natural se-
lection principles. They generate populations of hyperparam-
eter combinations and evolve them over time-based on perfor-
mance. These algorithms offer robust search capabilities better
suited for complex response surfaces. However, many iterations
are required for reasonable convergence.

• Population Based Training (PBT): A method that optimizes hy-
perparameters by training multiple models in parallel, allowing
them to share and adapt successful configurations during train-
ing, combining elements of random search and evolutionary al-
gorithms (Jaderberg et al. 2017).

• Neural Architecture Search: An approach to designing well-
performing architectures for neural networks. Traditionally,
NAS approaches use some form of reinforcement learning to
propose neural network architectures, which are then repeatedly
evaluated (Zoph and Le 2016).

7.6. Hyperparameter Tuning 214

7.6.2 System Implications

Hyperparameter tuning can significantly impact time to convergence
during model training, directly affecting overall runtime. The right
values for key training hyperparameters are crucial for efÏcient model
convergence. For example, the hyperparameter’s learning rate controls
the step size during gradient descent optimization. Setting a properly
tuned learning rate schedule ensures the optimization algorithm con-
verges quickly towards a good minimum. Too small a learning rate
leads to painfully slow convergence, while too large a value causes the
losses to fluctuate wildly. Proper tuning ensures rapid movement to-
wards optimal weights and biases.

Similarly, the batch size for stochastic gradient descent impacts con-
vergence stability. The right batch size smooths out fluctuations in pa-
rameter updates to approach the minimum faster. More batch sizes
are needed to avoid noisy convergence, while large batch sizes fail to
generalize and slow down convergence due to less frequent parameter
updates. Tuning hyperparameters for faster convergence and reduced
training duration has direct implications on cost and resource require-
ments for scaling machine learning systems:

• Lower computational costs: Shorter time to convergence means
lower computational costs for training models. ML training of-
ten leverages large cloud computing instances like GPU and TPU
clusters that incur heavy hourly charges. Minimizing training
time directly reduces this resource rental cost, which tends to
dominate ML budgets for organizations. Quicker iteration also
lets data scientists experiment more freely within the same bud-
get.

• Reduced training time: Reduced training time unlocks opportu-
nities to train more models using the same computational budget.
Optimized hyperparameters stretch available resources further,
allowing businesses to develop and experiment with more mod-
els under resource constraints to maximize performance.

• Resource efÏciency: Quicker training allows allocating smaller
compute instances in the cloud since models require access to
the resources for a shorter duration. For example, a one-hour
training job allows using less powerful GPU instances compared
to multi-hour training, which requires sustained compute access
over longer intervals. This achieves cost savings, especially for
large workloads.

There are other benefits as well. For instance, faster convergence
reduces pressure on ML engineering teams regarding provision-

CHAPTER 7. AI TRAINING 215

ing training resources. Simple model retraining routines can use
lower-powered resources instead of requesting access to high-priority
queues for constrained production-grade GPU clusters, freeing up
deployment resources for other applications.

7.6.3 Auto Tuners

Given its importance, there is a wide array of commercial offerings to
help with hyperparameter tuning. We will briefly touch on two exam-
ples: one focused on optimization for cloud-scale ML and the other for
machine learning models targeting microcontrollers. Table 7.3 outlines
the key differences:

Table 7.3.: Comparison of optimization platforms for different machine
learning use cases.

Platform

Target
Use
Case

Optimization
Techniques Benefits

Google’s
Vertex
AI

Cloud-
scale
machine
learning

Bayesian
optimization,
Population-
Based
training

Hides complexity, enabling
fast, deployment-ready
models with state-of-the-art
hyperparameter optimization

Edge
Im-
pulse’s
EON
Tuner

Microcontroller
(TinyML)
models

Bayesian
optimization

Tailors models for
resource-constrained devices,
simplifies optimization for
embedded deployment

7.6.3.1 BigML

Several commercial auto-tuning platforms are available to address this
problem. One solution is Google’s Vertex AI Cloud, which has exten-
sive integrated support for state-of-the-art tuning techniques.

One of the most salient capabilities of Google’s Vertex AI-managed
machine learning platform is efÏcient, integrated hyperparameter tun-
ing for model development. Successfully training performant ML mod-
els requires identifying optimal configurations for a set of external hy-
perparameters that dictate model behavior, posing a challenging high-
dimensional search problem. Vertex AI simplifies this through Auto-
mated Machine Learning (AutoML) tooling.

7.6. Hyperparameter Tuning 216

Specifically, data scientists can leverage Vertex AI’s hyperparameter
tuning engines by providing a labeled dataset and choosing a model
type such as a Neural Network or Random Forest classifier. Vertex
launches a Hyperparameter Search job transparently on the backend,
fully handling resource provisioning, model training, metric tracking,
and result analysis automatically using advanced optimization algo-
rithms.

Under the hood, Vertex AutoML employs various search strategies
to intelligently explore the most promising hyperparameter configu-
rations based on previous evaluation results. Among these, Bayesian
Optimization is offered as it provides superior sample efÏciency, re-
quiring fewer training iterations to achieve optimized model quality
compared to standard Grid Search or Random Search methods. For
more complex neural architecture search spaces, Vertex AutoML uti-
lizes Population-Based Training, which simultaneously trains multiple
models and dynamically adjusts their hyperparameters by leveraging
the performance of other models in the population, analogous to nat-
ural selection principles.

Vertex AI democratizes state-of-the-art hyperparameter search tech-
niques at the cloud scale for all ML developers, abstracting away the
underlying orchestration and execution complexity. Users focus solely
on their dataset, model requirements, and accuracy goals, while Ver-
tex manages the tuning cycle, resource allocation, model training, accu-
racy tracking, and artifact storage under the hood. The result is getting
deployment-ready, optimized ML models faster for the target problem.

7.6.3.2 TinyML

Edge Impulse’s EfÏcient On-device Neural Network Tuner (EON
Tuner) is an automated hyperparameter optimization tool designed
to develop microcontroller machine learning models. It streamlines
the model development process by automatically finding the best
neural network configuration for efÏcient and accurate deployment
on resource-constrained devices.

The key functionality of the EON Tuner is as follows. First, develop-
ers define the model hyperparameters, such as number of layers, nodes
per layer, activation functions, and learning rate annealing schedule.
These parameters constitute the search space that will be optimized.
Next, the target microcontroller platform is selected, providing em-
bedded hardware constraints. The user can also specify optimization
objectives, such as minimizing memory footprint, lowering latency, re-
ducing power consumption, or maximizing accuracy.

With the defined search space and optimization goals, the EON
Tuner leverages Bayesian hyperparameter optimization to explore pos-

CHAPTER 7. AI TRAINING 217

sible configurations intelligently. Each prospective configuration is
automatically implemented as a full model specification, trained, and
evaluated for quality metrics. The continual process balances explo-
ration and exploitation to arrive at optimized settings tailored to the
developer’s chosen chip architecture and performance requirements.

The EON Tuner frees machine learning engineers from the demand-
ingly iterative process of hand-tuning models by automatically tuning
models for embedded deployment. The tool integrates seamlessly into
the Edge Impulse workflow, taking models from concept to efÏciently
optimized implementations on microcontrollers. The expertise encap-
sulated in EON Tuner regarding ML model optimization for microcon-
trollers ensures beginner and experienced developers alike can rapidly
iterate to models fitting their project needs.

Exercise 13: Hyperparameter Tuning

Get ready to unlock the secrets of hyperparameter tuning and
take your PyTorch models to the next level! Hyperparameters
are like the hidden dials and knobs that control your model’s
learning superpowers. In this Colab notebook, you’ll team up
with Ray Tune to find those perfect hyperparameter combina-
tions. Learn how to define what values to search through, set
up your training code for optimization, and let Ray Tune do the
heavy lifting. By the end, you’ll be a hyperparameter tuning pro!

Video 6 explains the systematic organization of the hyperparameter
tuning process.

Video 6: Hyperparameter

https://www.youtube.com/watch?v=AXDByU3D1hA&list=
PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc&index=24

7.7 Regularization
Regularization is a critical technique for improving the performance
and generalizability of machine learning models in applied settings. It
refers to mathematically constraining or penalizing model complexity
to avoid overfitting the training data. Without regularization, complex
ML models are prone to overfitting the dataset and memorizing pecu-

https://colab.research.google.com/github/pytorch/tutorials/blob/gh-pages/_downloads/30bcc2970bf630097b13789b5cdcea48/hyperparameter_tuning_tutorial.ipynb
https://www.youtube.com/watch?v=AXDByU3D1hA&list=PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc&index=24
https://www.youtube.com/watch?v=AXDByU3D1hA&list=PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc&index=24

7.7. Regularization 218

liarities and noise in the training set rather than learning meaningful
patterns. They may achieve high training accuracy but perform poorly
when evaluating new unseen inputs.

Regularization helps address this problem by placing constraints
that favor simpler, more generalizable models that don’t latch onto
sampling errors. Techniques like L1/L2 regularization directly penal-
ize large parameter values during training, forcing the model to use
the smallest parameters that can adequately explain the signal. Early
stopping rules halt training when validation set performance stops im-
proving - before the model starts overfitting.

Appropriate regularization is crucial when deploying models to new
user populations and environments where distribution shifts are likely.
For example, an irregularized fraud detection model trained at a bank
may work initially but accrue technical debt over time as new fraud
patterns emerge.

Regularizing complex neural networks also offers computational
advantages—smaller models require less data augmentation, compute
power, and data storage. Regularization also allows for more efÏcient
AI systems, where accuracy, robustness, and resource management
are thoughtfully balanced against training set limitations.

Several powerful regularization techniques are commonly used to
improve model generalization. Architecting the optimal strategy re-
quires understanding how each method affects model learning and
complexity.

7.7.1 L1 and L2

Two of the most widely used regularization forms are L1 and L2 reg-
ularization. Both penalize model complexity by adding an extra term
to the cost function optimized during training. This term grows larger
as model parameters increase.

L2 regularization, also known as ridge regression, adds the sum of
squared magnitudes of all parameters multiplied by a coefÏcient α.
This quadratic penalty curtails extreme parameter values more aggres-
sively than L1 techniques. Implementation requires only changing the
cost function and tuning α.𝑅𝐿2(Θ) = 𝛼 𝑛∑𝑖=1 𝜃2𝑖

Where:

• 𝑅𝐿2(Θ) - The L2 regularization term that is added to the cost
function

CHAPTER 7. AI TRAINING 219

• 𝛼 - The L2 regularization hyperparameter that controls the
strength of regularization

• 𝜃𝑖 - The ith model parameter
• 𝑛 - The number of parameters in the model
• 𝜃2𝑖 - The square of each parameter

And the full L2 regularized cost function is:𝐽(𝜃) = 𝐿(𝜃)+𝑅𝐿2(Θ)
Where:

• 𝐿(𝜃) - The original unregularized cost function
• 𝐽(𝜃) - The new regularized cost function

Both L1 and L2 regularization penalize large weights in the neural
network. However, the key difference between L1 and L2 regulariza-
tion is that L2 regularization penalizes the squares of the parameters
rather than the absolute values. This key difference has a consider-
able impact on the resulting regularized weights. L1 regularization, or
lasso regression, utilizes the absolute sum of magnitudes rather than
the square multiplied by α. Penalizing the absolute value of weights
induces sparsity since the gradient of the errors extrapolates linearly
as the weight terms tend towards zero; this is unlike penalizing the
squared value of the weights, where the penalty reduces as the weights
tend towards 0. By inducing sparsity in the parameter vector, L1 regu-
larization automatically performs feature selection, setting the weights
of irrelevant features to zero. Unlike L2 regularization, L1 regular-
ization leads to sparsity as weights are set to 0; in L2 regularization,
weights are set to a value very close to 0 but generally never reach ex-
act 0. L1 regularization encourages sparsity and has been used in some
works to train sparse networks that may be more hardware efÏcient
(Hoefler et al. 2021). 𝑅𝐿1(Θ) = 𝛼 𝑛∑𝑖=1 ||𝜃𝑖||

Where:

• 𝑅𝐿1(Θ) - The L1 regularization term that is added to the cost
function

• 𝛼 - The L1 regularization hyperparameter that controls the
strength of regularization

• 𝜃𝑖 - The i-th model parameter

7.7. Regularization 220

• 𝑛 - The number of parameters in the model
• ||𝜃𝑖|| - The L1 norm, which takes the absolute value of each pa-

rameter

And the full L1 regularized cost function is:𝐽(𝜃) = 𝐿(𝜃)+𝑅𝐿1(Θ)
Where:

• 𝐿(𝜃) - The original unregularized cost function
• 𝐽(𝜃) - The new regularized cost function

The choice between L1 and L2 depends on the expected model com-
plexity and whether intrinsic feature selection is needed. Both require
iterative tuning across a validation set to select the optimal α hyperpa-
rameter.

Video 7 and Video 8 explains how regularization works.

Video 7: Regularization

https://www.youtube.com/watch?v=6g0t3Phly2M&list=
PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc&index=4

Video 8 explains how regularization can help reduce model overfit-
ting to improve performance.

Video 8: Why Regularization Reduces Overfitting

https://www.youtube.com/watch?v=NyG-7nRpsW8&list=
PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc&index=5

7.7.2 Dropout

Another widely adopted regularization method is dropout (Srivastava
et al. 2014). During training, dropout randomly sets a fraction 𝑝 of
node outputs or hidden activations to zero. This encourages greater
information distribution across more nodes rather than reliance on a
small number of nodes. Come prediction time; the full neural network
is used, with intermediate activations scaled by 1 − 𝑝 to maintain out-
put magnitudes. GPU optimizations make implementing dropout efÏ-
ciently straightforward via frameworks like PyTorch and TensorFlow.

https://www.youtube.com/watch?v=6g0t3Phly2M&list=PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc&index=4
https://www.youtube.com/watch?v=6g0t3Phly2M&list=PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc&index=4
https://www.youtube.com/watch?v=NyG-7nRpsW8&list=PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc&index=5
https://www.youtube.com/watch?v=NyG-7nRpsW8&list=PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc&index=5

CHAPTER 7. AI TRAINING 221

Let’s be more pedantic. During training with dropout, each node’s
output 𝑎𝑖 is passed through a dropout mask 𝑟𝑖 before being used by
the next layer:

𝑖 = 𝑟𝑖 ⊙𝑎𝑖
Where:

• 𝑎𝑖 - output of node 𝑖
• 𝑖 - output of node 𝑖 after dropout
• 𝑟𝑖 - independent Bernoulli random variable with probability 1−𝑝 of being 1
• ⊙ - elementwise multiplication

To understand how dropout works, it’s important to know that the
dropout mask 𝑟𝑖 is based on Bernoulli random variables. A Bernoulli
random variable takes a value of 1 with probability 1−𝑝 (keeping the
activation) and a value of 0 with probability 𝑝 (dropping the activation).
This means that each node’s activation is independently either kept
or dropped during training. This dropout mask 𝑟𝑖 randomly sets a
fraction 𝑝 of activations to 0 during training, forcing the network to
make redundant representations.

At test time, the dropout mask is removed, and the activations are
rescaled by 1−𝑝 to maintain expected output magnitudes:𝑎𝑡𝑒𝑠𝑡𝑖 = (1−𝑝)𝑎𝑖

Where:

• 𝑎𝑡𝑒𝑠𝑡𝑖 - node output at test time
• 𝑝 - the probability of dropping a node.

The key hyperparameter is 𝑝, the probability of dropping each
node„ often set between 0.2 and 0.5. Larger networks tend to benefit
from more dropout, while small networks risk underfitting if too
many nodes are cut out. Trial and error combined with monitoring
validation performance helps tune the dropout level.

Video 9 discusses the intuition behind the dropout regularization
technique and how it works.

Video 9: Dropout

https://www.youtube.com/watch?v=ARq74QuavAo&list=
PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc&index=7

https://www.youtube.com/watch?v=ARq74QuavAo&list=PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc&index=7
https://www.youtube.com/watch?v=ARq74QuavAo&list=PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc&index=7

7.7. Regularization 222

7.7.3 Early Stopping

The intuition behind early stopping involves tracking model perfor-
mance on a held-out validation set across training epochs. At first, in-
creases in training set fitness accompany gains in validation accuracy
as the model picks up generalizable patterns. After some point, how-
ever, the model starts overfitting - latching onto peculiarities and noise
in the training data that don’t apply more broadly. The validation per-
formance peaks and then degrades if training continues. Early stop-
ping rules halt training at this peak to prevent overfitting. This tech-
nique demonstrates how ML pipelines must monitor system feedback,
not just unquestioningly maximize performance on a static training set.
The system’s state evolves, and the optimal endpoints change.

Therefore, formal early stopping methods require monitoring a met-
ric like validation accuracy or loss after each epoch. Common curves
exhibit rapid initial gains that taper off, eventually plateauing and de-
creasing slightly as overfitting occurs. The optimal stopping point is
often between 5 and 15 epochs past the peak, depending on patient
thresholds. Tracking multiple metrics can improve signal since vari-
ance exists between measures.

Simple, early-stopping rules stop immediately at the first post-peak
degradation. More robust methods introduce a patience parameter—
the number of degrading epochs permitted before stopping. This
avoids prematurely halting training due to transient fluctuations.
Typical patience windows range from 50 to 200 validation batches.
Wider windows incur the risk of overfitting. Formal tuning strategies
can determine optimal patience.

Exercise 14: Regularization

Battling Overfitting: Unlock the Secrets of Regularization! Over-
fitting is like your model memorizing the answers to a practice
test, then failing the real exam. Regularization techniques are
the study guides that help your model generalize and ace new
challenges. In this Colab notebook, you’ll learn how to tune reg-
ularization parameters for optimal results using L1 & L2 regular-
ization, dropout, and early stopping.

Video 10 covers a few other regularization methods that can reduce
model overfitting.

https://colab.research.google.com/github/dphi-official/Deep_Learning_Bootcamp/blob/master/Optimization_Techniques/Regularization_and_Dropout.ipynb

CHAPTER 7. AI TRAINING 223

Video 10: Other Regularization Methods

https://www.youtube.com/watch?v=BOCLq2gpcGU&list=
PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc&index=8

7.8 Activation Functions
Activation functions play a crucial role in neural networks. They intro-
duce nonlinear behaviors that allow neural nets to model complex pat-
terns. Element-wise activation functions are applied to the weighted
sums coming into each neuron in the network. Without activation func-
tions, neural nets would be reduced to linear regression models.

Ideally, activation functions possess certain desirable qualities:

• Nonlinear: They enable modeling complex relationships
through nonlinear transformations of the input sum.

• Differentiable: They must have well-defined first derivatives
to enable backpropagation and gradient-based optimization
during training.

• Range-bounding: They constrain the output signal, preventing
an explosion. For example, sigmoid squashes inputs to (0,1).

Additionally, properties like computational efÏciency, monotonicity,
and smoothness make some activations better suited over others based
on network architecture and problem complexity.

We will briefly survey some of the most widely adopted activation
functions and their strengths and limitations. We will also provide
guidelines for selecting appropriate functions matched to ML system
constraints and use case needs.

7.8.1 Sigmoid

The sigmoid activation applies a squashing S-shaped curve tightly
binding the output between 0 and 1. It has the mathematical form:𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 11+𝑒−𝑥

The exponentiation transform allows the function to smoothly transi-
tion from near 0 towards near 1 as the input moves from very negative
to very positive. The monotonic rise covers the full (0,1) range.

https://www.youtube.com/watch?v=BOCLq2gpcGU&list=PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc&index=8
https://www.youtube.com/watch?v=BOCLq2gpcGU&list=PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc&index=8

7.8. Activation Functions 224

The sigmoid function has several advantages. It always provides a
smooth gradient for backpropagation, and its output is bounded be-
tween 0 and 1, which helps prevent “exploding” values during train-
ing. Additionally, it has a simple mathematical formula that is easy to
compute.

However, the sigmoid function also has some drawbacks. It tends
to saturate at extreme input values, which can cause gradients to “van-
ish,” slowing down or even stopping the learning process. Further-
more, the function is not zero-centered, meaning that its outputs are
not symmetrically distributed around zero, which can lead to inefÏ-
cient updates during training.

7.8.2 Tanh

Tanh or hyperbolic tangent also assumes an S-shape but is zero-
centered, meaning the average output value is 0.𝑡𝑎𝑛ℎ(𝑥) = 𝑒𝑥 −𝑒−𝑥𝑒𝑥 +𝑒−𝑥

The numerator/denominator transform shifts the range from (0,1)
in Sigmoid to (-1, 1) in tanh.

Most pros/cons are shared with Sigmoid, but Tanh avoids some out-
put saturation issues by being centered. However, it still suffers from
vanishing gradients with many layers.

7.8.3 ReLU

The Rectified Linear Unit (ReLU) introduces a simple thresholding be-
havior with its mathematical form:𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0,𝑥)

It leaves all positive inputs unchanged while clipping all negative
values to 0. This sparse activation and cheap computation make ReLU
widely favored over sigmoid/tanh.

Figure 7.7 demonstrates the 3 activation functions we discussed
above in comparison to a linear function:

7.8.4 Softmax

The softmax activation function is generally used as the last layer for
classification tasks to normalize the activation value vector so that its
elements sum to 1. This is useful for classification tasks where we want
to learn to predict class-specific probabilities of a particular input, in

CHAPTER 7. AI TRAINING 225

Figure 7.7.: Common activa-
tion functions. Source: AI
Wiki.

which case the cumulative probability across classes is equal to 1. The
softmax activation function is defined as𝜎(𝑧𝑖) = 𝑒𝑧𝑖∑𝐾𝑗=1 𝑒𝑧𝑗 𝑓𝑜𝑟 𝑖 = 1,2,…,𝐾
7.8.5 Pros and Cons

Table 7.4 are the summarizing pros and cons of these various standard
activation functions:

Table 7.4.: Comparing the pros and cons of different optimization al-
gorithms.

Activation Pros Cons
Sigmoid • Smooth gradient for

backdrop
• Output bounded between

0 and 1

• Saturation
kills gradients

• Not
zero-centered

Tanh • Smoother gradient than
sigmoid

• Zero-centered output [-1,
1]

• Still suffers
vanishing
gradient issue

ReLU • Computationally efÏcient
• Introduces sparsity
• Avoids vanishing

gradients

• “Dying ReLU”
units

• Not bounded

https://machine-learning.paperspace.com/wiki/activation-function
https://machine-learning.paperspace.com/wiki/activation-function

7.9. Weight Initialization 226

Activation Pros Cons
Softmax • Used for the last layer to

normalize outputs to be a
distribution

• Typically used for
classification tasks

Exercise 15: Activation Functions

Unlock the power of activation functions! These little mathemati-
cal workhorses are what make neural networks so incredibly flex-
ible. In this Colab notebook, you’ll go hands-on with functions
like the Sigmoid, tanh, and the superstar ReLU. See how they
transform inputs and learn which works best in different situa-
tions. It’s the key to building neural networks that can tackle
complex problems!

7.9 Weight Initialization
Proper initialization of the weights in a neural network before train-
ing is a vital step directly impacting model performance. Randomly
initializing weights to very large or small values can lead to problems
like vanishing/exploding gradients, slow convergence of training, or
getting trapped in poor local minima. Proper weight initialization ac-
celerates model convergence during training and carries implications
for system performance at inference time in production environments.
Some key aspects include:

• Faster Time-to-Accuracy: Carefully tuned initialization leads to
faster convergence, which results in models reaching target accu-
racy milestones earlier in the training cycle. For instance, Xavier
initialization could reduce time-to-accuracy by 20% versus bad
random initialization. As training is typically the most time- and
compute-intensive phase, this directly enhances ML system ve-
locity and productivity.

• Model Iteration Cycle EfÏciency: If models train faster, the over-
all turnaround time for experimentation, evaluation, and model
design iterations decreases significantly. Systems have more flex-
ibility to explore architectures, data pipelines, etc, within given
timeframes.

https://colab.research.google.com/github/jfogarty/machine-learning-intro-workshop/blob/master/notebooks/nn_activation_functions.ipynb

CHAPTER 7. AI TRAINING 227

• Impact on Necessary Training Epochs: The training process
runs for multiple epochs - with each full pass through the
data being an epoch. Good Initialization can reduce the epochs
required to converge the loss and accuracy curves on the training
set by 10-30%. This means tangible resource and infrastructure
cost savings.

• Effect on Training Hyperparameters: Weight initialization
parameters interact strongly with certain regularization hyper-
parameters that govern the training dynamics, like learning
rate schedules and dropout probabilities. Finding the right
combination of settings is non-trivial. Appropriate Initialization
smoothens this search.

Weight initialization has cascading benefits for machine learning en-
gineering efÏciency and minimized system resource overhead. It is
an easily overlooked tactic that every practitioner should master. The
choice of which weight initialization technique to use depends on fac-
tors like model architecture (number of layers, connectivity pattern,
etc.), activation functions, and the specific problem being solved. Over
the years, researchers have developed and empirically verified differ-
ent initialization strategies targeted to common neural network archi-
tectures, which we will discuss here.

7.9.1 Uniform and Normal Initialization

When randomly initializing weights, two standard probability distri-
butions are commonly used - uniform and Gaussian (normal). The
uniform distribution sets an equal probability of the initial weight pa-
rameters falling anywhere within set minimum and maximum bounds.
For example, the bounds could be -1 and 1, leading to a uniform spread
of weights between these limits. The Gaussian distribution, on the
other hand, concentrates probability around a mean value, following
the shape of a bell curve. Most weight values will cluster in the re-
gion of the specified mean, with fewer samples towards the extreme
ends. The standard deviation parameter controls the spread around
the mean.

The choice between uniform or normal initialization depends on the
network architecture and activation functions. For shallow networks,
a normal distribution with a relatively small standard deviation (e.g.,
0.01) is recommended. The bell curve prevents large weight values
that could trigger training instability in small networks. For deeper net-
works, a normal distribution with higher standard deviation (say 0.5 or

7.9. Weight Initialization 228

above) or uniform distribution may be preferred to account for vanish-
ing gradient issues over many layers. The larger spread drives greater
differentiation between neuron behaviors. Fine-tuning the initializa-
tion distribution parameters is crucial for stable and speedy model
convergence. Monitoring training loss trends can diagnose issues for
tweaking the parameters iteratively.

7.9.2 Xavier Initialization

Proposed by Glorot and Bengio (2010), this initialization technique is
specially designed for sigmoid and tanh activation functions. These
saturated activations can cause vanishing or exploding gradients dur-
ing backpropagation over many layers.

The Xavier method cleverly sets the variance of the weight distribu-
tion based on the number of inputs and outputs to each layer. The
intuition is that this balances the flow of information and gradients
throughout the network. For example, consider a layer with 300 input
units and 100 output units. Plugging this into the formula variance =
2/(#inputs + #outputs) gives a variance of 2/(300+100) = 0.01.

Sampling the initial weights from a uniform or normal distribution
centered at 0 with this variance provides much smoother training con-
vergence for deep sigmoid/tanh networks. The gradients are well-
conditioned, preventing exponential vanishing or growth.

7.9.3 He Initialization

As proposed by K. He et al. (2015), this initialization technique is tai-
lored to ReLU (Rectified Linear Unit) activation functions. ReLUs in-
troduce the dying neuron problem where units get stuck outputting
all 0s if they receive strong negative inputs initially. This slows and
hinders training.

He overcomes this by sampling weights from a distribution with a
variance set based only on the number of inputs per layer, disregarding
the outputs. This keeps the incoming signals small enough to activate
the ReLUs into their linear regime from the beginning, avoiding dead
units. For a layer with 1024 inputs, the formula variance = 2/1024 =
0.002 keeps most weights concentrated closely around 0.

This specialized Initialization allows ReLU networks to converge ef-
ficiently right from the start. The choice between Xavier and He must
match the intended network activation function.

CHAPTER 7. AI TRAINING 229

Exercise 16: Weight Initialization

Get your neural network off to a strong start with weight initial-
ization! How you set those initial weights can make or break
your model’s training. Think of it like tuning the instruments in
an orchestra before the concert. In this Colab notebook, you’ll
learn that the right initialization strategy can save time, improve
model performance, and make your deep-learning journey much
smoother.

Video 11 emphasizes the importance of deliberately selecting initial
weight values over random choices.

Video 11: Weight Initialization

https://www.youtube.com/watch?v=s2coXdufOzE&list=
PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc&index=11

7.10 System Bottlenecks
As introduced earlier, neural networks comprise linear operations (ma-
trix multiplications) interleaved with element-wise nonlinear activa-
tion functions. The most computationally expensive portion of neural
networks is the linear transformations, specifically the matrix multi-
plications between each layer. These linear layers map the activations
from the previous layer to a higher dimensional space that serves as
inputs to the next layer’s activation function.

7.10.1 Runtime Complexity of Matrix Multiplication

7.10.1.1 Layer Multiplications vs. Activations

The bulk of computation in neural networks arises from the matrix
multiplications between layers. Consider a neural network layer with
an input dimension of 𝑀 = 500 and output dimension of 𝑁 = 1000;
the matrix multiplication requires 𝑂(𝑁 ⋅𝑀) = 𝑂(1000⋅500) = 500,000
multiply-accumulate (MAC) operations between those layers.

Contrast this with the preceding layer, which had 𝑀 = 300 inputs,
requiring 𝑂(500 ⋅ 300) = 150,000 ops. As the dimensions of the lay-
ers increase, the computational requirements scale quadratically with

https://colab.research.google.com/github/csaybar/DLcoursera/blob/master/Improving%20Deep%20Neural%20Networks%20Hyperparameter%20tuning%2C%20Regularization%20and%20Optimization/week5/Initialization/Initialization.ipynb
https://www.youtube.com/watch?v=s2coXdufOzE&list=PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc&index=11
https://www.youtube.com/watch?v=s2coXdufOzE&list=PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc&index=11

7.10. System Bottlenecks 230

the size of the layer dimensions. The total computations across 𝐿 lay-
ers can be expressed as ∑𝐿−1𝑙=1 𝑂(𝑁 (𝑙) ⋅𝑀 (𝑙−1)), where the computation
required for each layer is dependent on the product of the input and
output dimensions of the matrices being multiplied.

Now, comparing the matrix multiplication to the activation function,
which requires only 𝑂(𝑁) = 1000 element-wise nonlinearities for 𝑁 =1000 outputs, we can see the linear transformations dominating the
activations computationally.

These large matrix multiplications impact hardware choices,
inference latency, and power constraints for real-world neural net-
work applications. For example, a typical DNN layer may require
500,000 multiply-accumulates vs. only 1000 nonlinear activations,
demonstrating a 500x increase in mathematical operations.

When training neural networks, we typically use mini-batch gradi-
ent descent, operating on small batches of data simultaneously. Con-
sidering a batch size of 𝐵 training examples, the input to the matrix
multiplication becomes a 𝑀 ×𝐵 matrix, while the output is an 𝑁 ×𝐵
matrix.

7.10.1.2 Mini-batch

In training neural networks, we need to repeatedly estimate the gra-
dient of the loss function with respect to the network parameters (i.e.,
weights, and biases). This gradient indicates which direction the pa-
rameters should be updated in to minimize the loss. As introduced
previously, we perform updates over a batch of data points every up-
date, also known as stochastic gradient descent or mini-batch gradient
descent.

The most straightforward approach is to estimate the gradient based
on a single training example, compute the parameter update, lather,
rinse, and repeat for the next example. However, this involves very
small and frequent parameter updates that can be computationally in-
efÏcient and may need to be more accurate in terms of convergence
due to the stochasticity of using just a single data point for a model
update.

Instead, mini-batch gradient descent balances convergence stability
and computational efÏciency. Rather than computing the gradient
on single examples, we estimate the gradient based on small “mini-
batches” of data—usually between 8 and 256 examples in practice.

This provides a noisy but consistent gradient estimate that leads to
more stable convergence. Additionally, the parameter update must
only be performed once per mini-batch rather than once per example,
reducing computational overhead.

CHAPTER 7. AI TRAINING 231

By tuning the mini-batch size, we can control the tradeoff between
the smoothness of the estimate (larger batches are generally better)
and the frequency of updates (smaller batches allow more frequent up-
dates). Mini-batch sizes are usually powers of 2, so they can efÏciently
leverage parallelism across GPU cores.

So, the total computation performs an 𝑁 ×𝑀 by 𝑀 ×𝐵 matrix mul-
tiplication, yielding 𝑂(𝑁 ⋅ 𝑀 ⋅ 𝐵) floating point operations. As a nu-
merical example, 𝑁 = 1000 hidden units, 𝑀 = 500 input units, and
a batch size 𝐵 = 64 equates to 1000 x 500 x 64 = 32 million multiply-
accumulates per training iteration!

In contrast, the activation functions are applied element-wise to the𝑁 ×𝐵 output matrix, requiring only 𝑂(𝑁 ⋅𝐵) computations. For 𝑁 =1000 and 𝐵 = 64, that is just 64,000 nonlinearities - 500X less work than
the matrix multiplication.

As we increase the batch size to fully leverage parallel hardware like
GPUs, the discrepancy between matrix multiplication and activation
function cost grows even larger. This reveals how optimizing the linear
algebra operations offers tremendous efÏciency gains.

Therefore, matrix multiplication is central in analyzing where and
how neural networks spend computation. For example, matrix multi-
plications often account for over 90% of inference latency and training
time in common convolutional and recurrent neural networks.

7.10.1.3 Optimizing Matrix Multiplication

Several techniques improve the efÏciency of general dense/sparse
matrix-matrix and matrix-vector operations to improve overall
efÏciency. Some key methods include:

• Leveraging optimized math libraries like cuBLAS for GPU accel-
eration

• Enabling lower precision formats like FP16 or INT8 where accu-
racy permits

• Employing Tensor Processing Units with hardware matrix multi-
plication

• Sparsity-aware computations and data storage formats to exploit
zero parameters

• Approximating matrix multiplications with algorithms like Fast
Fourier Transforms

• Model architecture design to reduce layer widths and activations
• Quantization, pruning, distillation, and other compression tech-

niques
• Parallelization of computation across available hardware

https://developer.nvidia.com/cublas
https://en.wikipedia.org/wiki/Tensor_Processing_Unit

7.10. System Bottlenecks 232

• Caching/pre-computing results where possible to reduce redun-
dant operations

The potential optimization techniques are vast, given the outsized
portion of time models spend in matrix and vector math. Even in-
cremental improvements speed up runtimes and lower energy usage.
Finding new ways to improve these linear algebra primitives remains
an active area of research aligned with the future demands of machine
learning. We will discuss these in detail in the Optimizations and AI
Acceleration chapters.

7.10.2 Compute vs. Memory Bottleneck

At this point, matrix-matrix multiplication is the core mathematical op-
eration underpinning neural networks. Both training and inference for
neural networks heavily use these matrix multiply operations. Analy-
sis shows that over 90% of computational requirements in state-of-the-
art neural networks arise from matrix multiplications. Consequently,
the performance of matrix multiplication has an enormous influence
on overall model training or inference time.

7.10.2.1 Training versus Inference

While training and inference rely heavily on matrix multiplication per-
formance, their precise computational profiles differ. Specifically, neu-
ral network inference tends to be more compute-bound than training
for an equivalent batch size. The key difference lies in the backpropa-
gation pass, which is only required during training. Backpropagation
involves a sequence of matrix multiply operations to calculate gradi-
ents with respect to activations across each network layer. Critically,
though, no additional memory bandwidth is needed here—the inputs,
outputs, and gradients are read/written from cache or registers.

As a result, training exhibits lower arithmetic intensities, with
gradient calculations bounded by memory access instead of FLOPs
(Floating Point Operations Per Second), a measure of computational
performance that indicates how many floating-point calculations a
system can perform per second. In contrast, the forward propagation
dominates neural network inference, which corresponds to a series
of matrix-matrix multiplies. With no memory-intensive gradient
retrospecting, larger batch sizes readily push inference into being
extremely compute-bound. The high measured arithmetic intensities
exhibit this. Response times may be critical for some inference appli-
cations, forcing the application provider to use a smaller batch size to

../optimizations/optimizations.qmd
../hw_acceleration/hw_acceleration.qmd
../hw_acceleration/hw_acceleration.qmd

CHAPTER 7. AI TRAINING 233

meet these response-time requirements, thereby reducing hardware
efÏciency; hence, inferences may see lower hardware utilization.

The implications are that hardware provisioning and bandwidth
vs. FLOP tradeoffs differ depending on whether a system targets train-
ing or inference. High-throughput, low-latency servers for inference
should emphasize computational power instead of memory, while
training clusters require a more balanced architecture.

However, matrix multiplication exhibits an interesting tension - the
underlying hardware’s memory bandwidth or arithmetic throughput
capabilities can bind it. The system’s ability to fetch and supply matrix
data versus its ability to perform computational operations determines
this direction.

This phenomenon has profound impacts; hardware must be de-
signed judiciously, and software optimizations must be considered.
Optimizing and balancing compute versus memory to alleviate this
underlying matrix multiplication bottleneck is crucial for efÏcient
model training and deployment.

Finally, batch size may impact convergence rates during neural net-
work training, another important consideration. For example, there
are generally diminishing returns in benefits to convergence with ex-
tremely large batch sizes (i.e.,> 16384). In contrast, extremely large
batch sizes may be increasingly beneficial from a hardware/arithmetic
intensity perspective; using such large batches may not translate to
faster convergence vs wall-clock time due to their diminishing bene-
fits to convergence. These tradeoffs are part of the design decisions
core to systems for the machine-learning type of research.

7.10.2.2 Batch Size

The batch size used during neural network training and inference sig-
nificantly impacts whether matrix multiplication poses more of a com-
putational or memory bottleneck. Concretely, the batch size refers to
the number of samples propagated through the network together in
one forward/backward pass. Matrix multiplication equates to larger
matrix sizes.

Specifically, let’s look at the arithmetic intensity of matrix multiplica-
tion during neural network training. This measures the ratio between
computational operations and memory transfers. The matrix multi-
ply of two matrices of size 𝑁 × 𝑀 and 𝑀 × 𝐵 requires 𝑁 × 𝑀 × 𝐵
multiply-accumulate operations, but only transfers of 𝑁 ×𝑀 +𝑀 ×𝐵
matrix elements.

As we increase the batch size 𝐵, the number of arithmetic operations
grows faster than the memory transfers. For example, with a batch size

7.10. System Bottlenecks 234

of 1, we need 𝑁 ×𝑀 operations and 𝑁 +𝑀 transfers, giving an arith-
metic intensity ratio of around 𝑁×𝑀𝑁+𝑀 . But with a large batch size of
128, the intensity ratio becomes 128×𝑁×𝑀𝑁×𝑀+𝑀×128 ≈ 128. Using a larger
batch size shifts the overall computation from memory-bounded to
more compute-bounded. AI training uses large batch sizes and is gen-
erally limited by peak arithmetic computational performance, i.e., Ap-
plication 3 in Figure 7.8.

Therefore, batched matrix multiplication is far more computation-
ally intensive than memory access bound. This has implications for
hardware design and software optimizations, which we will cover next.
The key insight is that we can significantly alter the computational pro-
file and bottlenecks posed by neural network training and inference by
tuning the batch size.

Figure 7.8.: AI training roofline
model.

7.10.2.3 Hardware Characteristics

Modern hardware like CPUs and GPUs is highly optimized for com-
putational throughput rather than memory bandwidth. For example,
high-end H100 Tensor Core GPUs can deliver over 60 TFLOPS of
double-precision performance but only provide up to 3 TB/s of mem-
ory bandwidth. This means there is almost a 20x imbalance between

CHAPTER 7. AI TRAINING 235

arithmetic units and memory access; consequently, for hardware like
GPU accelerators, neural network training workloads must be made
as computationally intensive as possible to use the available resources
fully.

This further motivates the need for using large batch sizes dur-
ing training. When using a small batch, the matrix multiplication
is bounded by memory bandwidth, underutilizing the abundant
compute resources. However, we can shift the bottleneck towards
computation and attain much higher arithmetic intensity with sufÏ-
ciently large batches. For instance, batches of 256 or 512 samples may
be needed to saturate a high-end GPU. The downside is that larger
batches provide less frequent parameter updates, which can impact
convergence. Still, the parameter serves as an important tuning knob
to balance memory vs compute limitations.

Therefore, given the imbalanced compute-memory architectures of
modern hardware, employing large batch sizes is essential to alleviate
bottlenecks and maximize throughput. As mentioned, the subsequent
software and algorithms also need to accommodate such batch sizes
since larger batch sizes may have diminishing returns toward the net-
work’s convergence. Using very small batch sizes may lead to subopti-
mal hardware utilization, ultimately limiting training efÏciency. Scal-
ing up to large batch sizes is a research topic explored in various works
that aim to do large-scale training (Y. You et al. 2017).

7.10.2.4 Model Architectures

The underlying neural network architecture also affects whether
matrix multiplication poses more of a computational or memory
bottleneck during execution. Transformers and MLPs are much more
compute-bound than CNN convolutional neural networks. This stems
from the types of matrix multiplication operations involved in each
model. Transformers rely on self-attention, multiplying large activa-
tion matrices by massive parameter matrices to relate elements. MLPs
stack fully connected layers, also requiring large matrix multiplies.

In contrast, the convolutional layers in CNNs have a sliding window
that reuses activations and parameters across the input, which means
fewer unique matrix operations are needed. However, the convolu-
tions require repeatedly accessing small input parts and moving par-
tial sums to populate each window. Even though the arithmetic oper-
ations in convolutions are intense, this data movement and buffer ma-
nipulation impose huge memory access overheads. CNNs comprise
several layered stages, so intermediate outputs must frequently mate-
rialize in memory.

7.11. Training Parallelization 236

As a result, CNN training tends to be more memory bandwidth
bound relative to arithmetic bound compared to Transformers and
MLPs. Therefore, the matrix multiplication profile, and in turn,
the bottleneck posed, varies significantly based on model choice.
Hardware and systems need to be designed with appropriate
compute-memory bandwidth balance depending on target model
deployment. Models relying more on attention and MLP layers
require higher arithmetic throughput compared to CNNs, which
necessitates high memory bandwidth.

7.11 Training Parallelization
Training neural networks entails intensive computational and
memory demands. The backpropagation algorithm for calculating
gradients and updating weights consists of repeated matrix mul-
tiplications and arithmetic operations over the entire dataset. For
example, one pass of backpropagation scales in time complexity with𝑂(𝑛𝑢𝑚_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠×𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒×𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑙𝑒𝑛𝑔𝑡ℎ).

The computational requirements grow rapidly as model size in-
creases in parameters and layers. Moreover, the algorithm requires
storing activation outputs and model parameters for the backward
pass, which grows with model size.

Larger models cannot fit and train on a single accelerator device
like a GPU, and the memory footprint becomes prohibitive. There-
fore, we need to parallelize model training across multiple devices to
provide sufÏcient compute and memory to train state-of-the-art neural
networks.

As shown in Figure 7.9, the two main approaches are data par-
allelism, which replicates the model across devices while splitting
the input data batch-wise, and model parallelism, which partitions
the model architecture itself across different devices. By training in
parallel, we can leverage greater aggregate compute and memory
resources to overcome system limitations and accelerate deep learning
workloads.

7.11.1 Data Parallel

Data parallelization is a common approach to parallelize machine
learning training across multiple processing units, such as GPUs or
distributed computing resources. The training dataset is divided into
batches in data parallelism, and a separate processing unit processes
each batch. The model parameters are then updated based on the

CHAPTER 7. AI TRAINING 237

Figure 7.9.: Data parallelism
versus model parallelism.

gradients computed from the processing of each batch. Here’s a
step-by-step description of data parallelization for ML training:

1. Dividing the Dataset: The training dataset is divided into
smaller batches, each containing a subset of the training
examples.

2. Replicating the Model: The neural network model is replicated
across all processing units, and each processing unit has its copy
of the model.

3. Parallel Computation: Each processing unit takes a different
batch and independently computes the forward and backward
passes. During the forward pass, the model makes predictions
on the input data. The loss function determines gradients for
the model parameters during the backward pass.

4. GradientAggregation: After processing their respective batches,
the gradients from each processing unit are aggregated. Com-
mon aggregation methods include summation or averaging of
the gradients.

5. Parameter Update: The aggregated gradients update the model
parameters. The update can be performed using optimization
algorithms like SGD or variants like Adam.

6. Synchronization: After the update, all processing units synchro-
nize their model parameters, ensuring that each has the latest
version of the model.

The prior steps are repeated for several iterations or until conver-
gence.

7.11. Training Parallelization 238

Let’s take a specific example. We have 256 batch sizes and 8 GPUs;
each GPU will get a micro-batch of 32 samples. Their forward and back-
ward passes compute losses and gradients only based on the local 32
samples. The gradients get aggregated across devices with a parame-
ter server or collective communications library to get the effective gra-
dient for the global batch. Weight updates happen independently on
each GPU according to these gradients. After a configured number of
iterations, updated weights synchronize and equalize across devices
before continuing to the next iterations.

Data parallelism is effective when the model is large, and the dataset
is substantial, as it allows for parallel processing of different parts of
the data. It is widely used in deep learning frameworks and libraries
that support distributed training, such as TensorFlow and PyTorch.
However, to ensure efÏcient parallelization, care must be taken to han-
dle issues like communication overhead, load balancing, and synchro-
nization.

7.11.2 Model Parallelism

Model parallelism refers to distributing the neural network model
across multiple devices rather than replicating the full model like
data parallelism. This is particularly useful when a model is too large
to fit into the memory of a single GPU or accelerator device. While
this might not be specifically applicable for embedded or TinyML use
cases as most models are relatively small(er), it is still useful to know.

In model parallel training, different parts or layers of the model are
assigned to separate devices. The input activations and intermediate
outputs get partitioned and passed between these devices during the
forward and backward passes to coordinate gradient computations
across model partitions.

The memory footprint and computational operations are distributed
by splitting the model architecture across multiple devices instead of
concentrating on one. This enables training very large models with
billions of parameters that otherwise exceed the capacity of a single
device. There are several main ways in which we can do partitioning:

• Layer-wise parallelism: Consecutive layers are distributed onto
different devices. For example, device 1 contains layers 1-3; de-
vice 2 contains layers 4-6. The output activations from layer 3
would be transferred to device 2 to start the next layers for the
forward pass computations.

• Filter-wise parallelism: In convolutional layers, output filters
can be split among devices. Each device computes activation out-

CHAPTER 7. AI TRAINING 239

puts for a subset of filters, which get concatenated before propa-
gating further.

• Spatial parallelism: The input images get divided spatially, so
each device processes over a certain region like the top-left quar-
ter of images. The output regions then combine to form the full
output.

Additionally, hybrid combinations can split the model layer-wise
and data batch-wise. The appropriate type of model parallelism
depends on the specific neural architecture constraints and hardware
setup. Optimizing the partitioning and communication for the model
topology is key to minimizing overhead.

However, as the model parts run on physically separate devices,
they must communicate and synchronize their parameters during
each training step. The backward pass must ensure gradient updates
propagate accurately across the model partitions. Hence, coordi-
nation and high-speed interconnecting between devices are crucial
for optimizing the performance of model parallel training. Careful
partitioning and communication protocols are required to minimize
transfer overhead.

7.11.3 Comparison

To summarize, Table 7.5 demonstrates some of the key characteristics
for comparing data parallelism and model parallelism.

Table 7.5.: Comparing data parallelism and model parallelism.
Characteristic Data Parallelism Model Parallelism
Definition Distribute data across

devices with replicas
Distribute model
across devices

Objective Accelerate training through
compute scaling

Enable larger model
training

Scaling
Method

Scale devices/workers Scale model size

Main
Constraint

Model size per device Device coordination
overhead

Hardware
Require-
ments

Multiple GPU/TPUs Often specialized
interconnect

Primary
Challenge

Parameter synchronization Complex partitioning
and communication

7.12. Conclusion 240

Characteristic Data Parallelism Model Parallelism
Types N/A Layer-wise, filter-wise,

spatial
Code
Complexity

Minimal changes More significant
model surgery

Popular
Libraries

Horovod, PyTorch
Distributed

Mesh TensorFlow

7.12 Conclusion
In this chapter, we have covered the core foundations that enable
effective training of artificial intelligence models. We explored the
mathematical concepts like loss functions, backpropagation, and
gradient descent that make neural network optimization possible.
We also discussed practical techniques around leveraging training
data, regularization, hyperparameter tuning, weight initialization,
and distributed parallelization strategies that improve convergence,
generalization, and scalability.

These methodologies form the bedrock through which the success
of deep learning has been attained over the past decade. Mastering
these fundamentals equips practitioners to architect systems and
refine models tailored to their problem context. However, as models
and datasets grow exponentially, training systems must optimize
across metrics like time, cost, and carbon footprint. Hardware scaling
through warehouse scales enables massive computational throughput
- but optimizations around efÏciency and specialization will be key.
Software techniques like compression and sparsity exploitation can
increase hardware gains. We will discuss several of these in the
coming chapters.

Overall, the fundamentals covered in this chapter equip practition-
ers to build, refine, and deploy models. However, interdisciplinary
skills spanning theory, systems, and hardware will differentiate ex-
perts who can lift AI to the next level sustainably and responsibly that
society requires. Understanding efÏciency alongside accuracy consti-
tutes the balanced engineering approach needed to train intelligent sys-
tems that integrate smoothly across many real-world contexts.

7.13 Resources
Here is a curated list of resources to support students and instructors
in their learning and teaching journeys. We are continuously working

CHAPTER 7. AI TRAINING 241

on expanding this collection and will be adding new exercises soon.

Slides

These slides are a valuable tool for instructors to deliver lectures
and for students to review the material at their own pace. We
encourage students and instructors to leverage these slides to
improve their understanding and facilitate effective knowledge
transfer.

• Thinking About Loss.

• Minimizing Loss.

• Training, Validation, and Test Data.

• Continuous Training:

– Retraining Trigger.
– Data Processing Overview.
– Data Ingestion.
– Data Validation.
– Data Transformation.
– Training with AutoML.
– Continuous Training with Transfer Learning.
– Continuous Training Use Case Metrics.
– Continuous Training Impact on MLOps.

Videos

• Video 4

• Video 5

• Video 6

• Video 7

• Video 8

• Video 9

• Video 10

• Video 11

https://docs.google.com/presentation/d/1X92JqVkUY7k6yJXQcT2u83dpdrx5UzGFAJkkDMDfKe0/edit#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1x3xbZHo4VtaZgoXfueCbOGGXuWRYj0nOsKwAAoGsrD0/edit#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1G56D0-qG9YWnzQQeje9LMpcLSotMgBCiMyfj53yz7lY/edit?usp=drive_link
https://docs.google.com/presentation/d/1jtkcAnFot3VoY6dm8wARtIRPhM1Cfoe8S_8lMMox2To/edit?usp=drive_link
https://docs.google.com/presentation/d/1vW4jFv5mqpLo2_G2JXQrKLPMNoWoOvSXhFYotUbg3B0/edit?usp=drive_link
https://docs.google.com/presentation/d/1e7_JGZH2X9Ha99-UsFy0bgpC4g-Msq1zXogrbQVBKfQ/edit?usp=drive_link
https://docs.google.com/presentation/d/1PjilfceaDFp-spnZpTyqfcdvTbbfT0_95Hteqr-twk8/edit?usp=drive_link
https://docs.google.com/presentation/d/1cWMcFTl30Yl1XBYJZcND1USYKtS05TkfFkvwxfImOfY/edit?usp=drive_link
https://docs.google.com/presentation/d/1SYjvCe_LZ0S3F5MdiDvAiGflpWmffmq7vAgruyXtaHk/edit?usp=drive_link&resourcekey=0-uu6gpFHmuCx56J89oguWMQ
https://docs.google.com/presentation/d/12Hhq1WGobzsLdVUzRRD-S1Mm2Z5dINGWtbB6RBmv87c/edit?usp=drive_link
https://docs.google.com/presentation/d/1ShpXTuUsf44TW0vXuv1Mk_REeRcAIpQRO2J2EFuWP0g/edit?usp=drive_link&resourcekey=0-6wnzPJ0mFlnJnpzTMGzN3w
https://docs.google.com/presentation/d/16kQd5BBCA41gvUauznQRd1ZdW5NI6OgiJVB9cuEmk14/edit#slide=id.g94db9f9f78_0_2

7.13. Resources 242

Exercises

To reinforce the concepts covered in this chapter, we have curated
a set of exercises that challenge students to apply their knowl-
edge and deepen their understanding.

• Exercise 12

• Exercise 13

• Exercise 14

• Exercise 16

• Exercise 15

Labs

In addition to exercises, we offer a series of hands-on labs allow-
ing students to gain practical experience with embedded AI tech-
nologies. These labs provide step-by-step guidance, enabling stu-
dents to develop their skills in a structured and supportive envi-
ronment. We are excited to announce that new labs will be avail-
able soon, further enriching the learning experience.

• Coming soon.

243

Chapter 8

EfÏcient AI

Figure 8.1.: DALL·E 3 Prompt:
A conceptual illustration depict-
ing efÏciency in artificial intelli-
gence using a shipyard analogy.
The scene shows a bustling ship-
yard where containers represent
bits or bytes of data. These con-
tainers are being moved around
efÏciently by cranes and vehicles,
symbolizing the streamlined and
rapid information processing in
AI systems. The shipyard is
meticulously organized, illustrat-
ing the concept of optimal perfor-
mance within the constraints of
limited resources. In the back-
ground, ships are docked, repre-
senting different platforms and
scenarios where AI is applied.
The atmosphere should convey ad-
vanced technology with an under-
lying theme of sustainability and
wide applicability.

EfÏciency in artificial intelligence (AI) is not simply a luxury but a ne-
cessity. In this chapter, we dive into the key concepts underpinning AI
systems’ efÏciency. The computational demands on neural networks
can be daunting, even for minimal systems. For AI to be seamlessly in-
tegrated into everyday devices and essential systems, it must perform
optimally within the constraints of limited resources while maintain-
ing its efÏcacy. The pursuit of efÏciency guarantees that AI models are
streamlined, rapid, and sustainable, thereby widening their applicabil-
ity across various platforms and scenarios.

8.1. Introduction 244

Learning Objectives

• Recognize the need for efÏcient AI in TinyML/edge de-
vices.

• Understand the need for efÏcient model architectures like
MobileNets and SqueezeNet.

• Understand why techniques for model compression are im-
portant.

• Gain an appreciation for the value of efÏcient AI hardware.

• Recognize the importance of numerical representations
and their precision.

• Understand the nuances of model comparison beyond just
accuracy.

• Recognize that model comparison involves memory, com-
putation, power, and speed, not just accuracy.

• Recognize efÏciency encompasses technology, costs, and
ethics.

The focus is on gaining a conceptual understanding of the motiva-
tions and significance of the various strategies for achieving efÏcient
AI, both in terms of techniques and a holistic perspective. Subsequent
chapters provide a more in-depth exploration of these multiple con-
cepts.

8.1 Introduction

Training models can consume significant energy, sometimes equiva-
lent to the carbon footprint of sizable industrial processes. We will
cover some of these sustainability details in the AI Sustainability chap-
ter. On the deployment side, if these models are not optimized for
efÏciency, they can quickly drain device batteries, demand excessive
memory, or fall short of real-time processing needs. Through this chap-
ter, we aim to elucidate the nuances of efÏciency, setting the ground-
work for a comprehensive exploration in the subsequent chapters.

../sustainable_ai/sustainable_ai.qmd

CHAPTER 8. EFFICIENT AI 245

8.2 The Need for EfÏcient AI
EfÏciency takes on different connotations depending on where AI com-
putations occur. Let’s revisit Cloud, Edge, and TinyML (as discussed
in ML Systems) and differentiate between them in terms of efÏciency.
Figure 8.2 provides a big-picture comparison of the three different plat-
forms.

Figure 8.2.: Cloud, Mobile and
TinyML. Source: Schizas et al.
(2022).

Cloud AI: Traditional AI models often run in large-scale data cen-
ters equipped with powerful GPUs and TPUs (Barroso, Hölzle, and
Ranganathan 2019). Here, efÏciency pertains to optimizing computa-
tional resources, reducing costs, and ensuring timely data processing
and return. However, relying on the cloud introduces latency, espe-
cially when dealing with large data streams that require uploading,
processing, and downloading.

Edge AI: Edge computing brings AI closer to the data source, pro-
cessing information directly on local devices like smartphones, cam-
eras, or industrial machines (E. Li et al. 2020). Here, efÏciency encom-
passes quick real-time responses and reduced data transmission needs.
However, the constraints are tighter—these devices, while more pow-
erful than microcontrollers, have limited computational power com-
pared to cloud setups.

TinyML: TinyML pushes the boundaries by enabling AI models
to run on microcontrollers or extremely resource-constrained en-
vironments. The processor and memory performance difference
between TinyML and cloud or mobile systems can be several orders
of magnitude (Warden and Situnayake 2019). EfÏciency in TinyML is
about ensuring models are lightweight enough to fit on these devices,
consume minimal energy (critical for battery-powered devices), and
still perform their tasks effectively.

The spectrum from Cloud to TinyML represents a shift from vast,
centralized computational resources to distributed, localized, and

../ml_systems/ml_systems.qmd

8.3. EfÏcient Model Architectures 246

constrained environments. As we transition from one to the other,
the challenges and strategies related to efÏciency evolve, underlining
the need for specialized approaches tailored to each scenario. Having
established the need for efÏcient AI, especially within the context of
TinyML, we will transition to exploring the methodologies devised
to meet these challenges. The following sections outline the main
concepts we will dive deeper into later. We will demonstrate the
breadth and depth of innovation needed to achieve efÏcient AI as we
explore these strategies.

8.3 EfÏcient Model Architectures
Selecting an optimal model architecture is as crucial as optimizing it.
In recent years, researchers have made significant strides in explor-
ing innovative architectures that can inherently have fewer parameters
while maintaining strong performance.

MobileNets: MobileNets are efÏcient mobile and embedded vision
application models (Howard et al. 2017). The key idea that led to
their success is depth-wise separable convolutions, significantly reduc-
ing the number of parameters and computations in the network. Mo-
bileNetV2 and V3 further enhance this design by introducing inverted
residuals and linear bottlenecks.

SqueezeNet: SqueezeNet is a class of ML models known for its
smaller size without sacrificing accuracy. It achieves this by using a
“fire module” that reduces the number of input channels to 3x3 filters,
thus reducing the parameters (Iandola et al. 2016). Moreover, it em-
ploys delayed downsampling to increase the accuracy by maintaining
a larger feature map.

ResNet variants: The Residual Network (ResNet) architecture al-
lows for the introduction of skip connections or shortcuts (K. He et al.
2016). Some variants of ResNet are designed to be more efÏcient. For
instance, ResNet-SE incorporates the “squeeze and excitation” mech-
anism to recalibrate feature maps (J. Hu, Shen, and Sun 2018), while
ResNeXt offers grouped convolutions for efÏciency (S. Xie et al. 2017).

8.4 EfÏcient Model Compression
Model compression methods are essential for bringing deep learning
models to devices with limited resources. These techniques reduce
models’ size, energy consumption, and computational demands with-
out significantly losing accuracy. At a high level, the methods can be
categorized into the following fundamental methods:

CHAPTER 8. EFFICIENT AI 247

Pruning: We’ve mentioned pruning a few times in previous chap-
ters but have not yet formally introduced it. Pruning is similar to trim-
ming the branches of a tree. This was first thought of in the Optimal
Brain Damage paper (LeCun, Denker, and Solla 1989) and was later
popularized in the context of deep learning by Han, Mao, and Dally
(2016). Certain weights or entire neurons are removed from the net-
work in pruning based on specific criteria. This can significantly re-
duce the model size. We will explore two of the main pruning strate-
gies, structured and unstructured pruning, in Section 9.2.1. Figure 8.3
is an example of neural network pruning, where removing some of the
nodes in the inner layers (based on specific criteria) reduces the num-
ber of edges between the nodes and, in turn, the model’s size.

Figure 8.3.: Neural Network
Pruning.

Quantization: Quantization is the process of constraining an input
from a large set to output in a smaller set, primarily in deep learning;
this means reducing the number of bits that represent the weights and
biases of the model. For example, using 16-bit or 8-bit representations
instead of 32-bit can reduce the model size and speed up computations,
with a minor trade-off in accuracy. We will explore these in more de-
tail in Section 9.3.4. Figure 8.4 shows an example of quantization by
rounding to the closest number. The conversion from 32-bit floating
point to 16-bit reduces memory usage by 50%. Going from a 32-bit to
an 8-bit integer reduces memory usage by 75%. While the loss in nu-
meric precision, and consequently model performance, is minor, the
memory usage efÏciency is significant.

Knowledge Distillation: Knowledge distillation involves training
a smaller model (student) to replicate the behavior of a larger model
(teacher). The idea is to transfer the knowledge from the cumbersome

https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf

8.5. EfÏcient Inference Hardware 248

Figure 8.4.: Different forms of
quantization.

model to the lightweight one. Hence, the smaller model attains per-
formance close to its larger counterpart but with significantly fewer
parameters. We will explore knowledge distillation in more detail in
the Section 9.2.2.1.

8.5 EfÏcient Inference Hardware
In the Training chapter, we discussed the process of training AI mod-
els. Now, from an efÏciency standpoint, it’s important to note that
training is a resource and time-intensive task, often requiring power-
ful hardware and taking anywhere from hours to weeks to complete.
Inference, on the other hand, needs to be as fast as possible, especially
in real-time applications. This is where efÏcient inference hardware
comes into play. By optimizing the hardware specifically for inference
tasks, we can achieve rapid response times and power-efÏcient oper-
ation, which is especially crucial for edge devices and embedded sys-
tems.

TPUs (Tensor Processing Units): TPUs are custom-built ASICs
(Application-Specific Integrated Circuits) by Google to accelerate
machine learning workloads (N. P. Jouppi et al. 2017a). They are
optimized for tensor operations, offering high throughput for low-
precision arithmetic, and are designed specifically for neural network
machine learning. TPUs significantly accelerate model training and
inference compared to general-purpose GPU/CPUs. This boost
means faster model training and real-time or near-real-time inference
capabilities, crucial for applications like voice search and augmented
reality.

../training/training.qmd
https://cloud.google.com/tpu

CHAPTER 8. EFFICIENT AI 249

Edge TPUs are a smaller, power-efÏcient version of Google’s TPUs
tailored for edge devices. They provide fast on-device ML inferencing
for TensorFlow Lite models. Edge TPUs allow for low-latency, high-
efÏciency inference on edge devices like smartphones, IoT devices, and
embedded systems. AI capabilities can be deployed in real-time ap-
plications without communicating with a central server, thus saving
bandwidth and reducing latency. Consider the table in Figure 8.5. It
shows the performance differences between running different models
on CPUs versus a Coral USB accelerator. The Coral USB accelerator is
an accessory by Google’s Coral AI platform that lets developers con-
nect Edge TPUs to Linux computers. Running inference on the Edge
TPUs was 70 to 100 times faster than on CPUs.

Figure 8.5.: Accelerator vs
CPU performance comparison
across different hardware con-
figurations. Desktop CPU: 64-
bit Intel(R) Xeon(R) E5–1650
v4 @ 3.60GHz. Embedded
CPU: Quad-core Cortex-A53 @
1.5GHz, †Dev Board: Quad-
core Cortex-A53 @ 1.5GHz +
Edge TPU. Source: TensorFlow
Blog.

NN (Neural Network) Accelerators: Fixed-function neural network
accelerators are hardware accelerators designed explicitly for neural
network computations. They can be standalone chips or part of a
larger system-on-chip (SoC) solution. By optimizing the hardware
for the specific operations that neural networks require, such as
matrix multiplications and convolutions, NN accelerators can achieve
faster inference times and lower power consumption than general-
purpose CPUs and GPUs. They are especially beneficial in TinyML
devices with power or thermal constraints, such as smartwatches,
micro-drones, or robotics.

But these are all but the most common examples. Several other types
of hardware are emerging that have the potential to offer significant
advantages for inference. These include, but are not limited to, neuro-
morphic hardware, photonic computing, etc. In Section 10.3, we will

https://cloud.google.com/edge-tpu
https://blog.tensorflow.org/2019/03/build-ai-that-works-offline-with-coral.html
https://blog.tensorflow.org/2019/03/build-ai-that-works-offline-with-coral.html

8.6. EfÏcient Numerics 250

explore these in greater detail.
EfÏcient hardware for inference speeds up the process, saves energy,

extends battery life, and can operate in real-time conditions. As AI con-
tinues to be integrated into myriad applications, from smart cameras to
voice assistants, the role of optimized hardware will only become more
prominent. By leveraging these specialized hardware components, de-
velopers and engineers can bring the power of AI to devices and situa-
tions that were previously unthinkable.

8.6 EfÏcient Numerics
Machine learning, and especially deep learning, involves enormous
amounts of computation. Models can have millions to billions of pa-
rameters, often trained on vast datasets. Every operation, every mul-
tiplication or addition, demands computational resources. Therefore,
the precision of the numbers used in these operations can significantly
impact the computational speed, energy consumption, and memory
requirements. This is where the concept of efÏcient numerics comes
into play.

8.6.1 Numerical Formats

There are many different types of numerics. Numerics have a long his-
tory in computing systems.

Floating point: Known as a single-precision floating point, FP32 uti-
lizes 32 bits to represent a number, incorporating its sign, exponent,
and mantissa. Understanding how floating point numbers are repre-
sented under the hood is crucial for grasping the various optimizations
possible in numerical computations. The sign bit determines whether
the number is positive or negative, the exponent controls the range of
values that can be represented, and the mantissa determines the pre-
cision of the number. The combination of these components allows
floating point numbers to represent a vast range of values with vary-
ing degrees of precision.

Video 12 provides a comprehensive overview of these three main
components - sign, exponent, and mantissa - and how they work to-
gether to represent floating point numbers.

Video 12: Floating Point Numbers

https://youtu.be/gc1Nl3mmCuY?si=nImcymfbE5H392vu

https://youtu.be/gc1Nl3mmCuY?si=nImcymfbE5H392vu

CHAPTER 8. EFFICIENT AI 251

FP32 is widely adopted in many deep learning frameworks and bal-
ances accuracy and computational requirements. It is prevalent in the
training phase for many neural networks due to its sufÏcient precision
in capturing minute details during weight updates. Also known as
half-precision floating point, FP16 uses 16 bits to represent a number,
including its sign, exponent, and fraction. It offers a good balance be-
tween precision and memory savings. FP16 is particularly popular in
deep learning training on GPUs that support mixed-precision arith-
metic, combining the speed benefits of FP16 with the precision of FP32
where needed.

Several other numerical formats fall into an exotic class. An exotic
example is BF16 or Brain Floating Point. It is a 16-bit numerical format
designed explicitly for deep learning applications. It is a compromise
between FP32 and FP16, retaining the 8-bit exponent from FP32 while
reducing the mantissa to 7 bits (as compared to FP32’s 23-bit mantissa).
This structure prioritizes range over precision. BF16 has achieved train-
ing results comparable in accuracy to FP32 while using significantly
less memory and computational resources (Kalamkar et al. 2019). This
makes it suitable not just for inference but also for training deep neural
networks.

By retaining the 8-bit exponent of FP32, BF16 offers a similar range,
which is crucial for deep learning tasks where certain operations can
result in very large or very small numbers. At the same time, by trun-
cating precision, BF16 allows for reduced memory and computational
requirements compared to FP32. BF16 has emerged as a promising
middle ground in the landscape of numerical formats for deep learn-
ing, providing an efÏcient and effective alternative to the more tradi-
tional FP32 and FP16 formats.

Figure 8.6 shows three different floating-point formats: Float32,
Float16, and BFloat16.

Integer: These are integer representations using 8, 4, and 2 bits. They
are often used during the inference phase of neural networks, where
the weights and activations of the model are quantized to these lower
precisions. Integer representations are deterministic and offer signif-
icant speed and memory advantages over floating-point representa-
tions. For many inference tasks, especially on edge devices, the slight
loss in accuracy due to quantization is often acceptable, given the efÏ-
ciency gains. An extreme form of integer numerics is for binary neural
networks (BNNs), where weights and activations are constrained to
one of two values: +1 or -1.

Variable bit widths: Beyond the standard widths, research is on-
going into extremely low bit-width numerics, even down to binary or
ternary representations. Extremely low bit-width operations can offer

8.6. EfÏcient Numerics 252

Figure 8.6.: Three floating-
point formats.

significant speedups and further reduce power consumption. While
challenges remain in maintaining model accuracy with such drastic
quantization, advances continue to be made in this area.

EfÏcient numerics is not just about reducing the bit-width of num-
bers but understanding the trade-offs between accuracy and efÏciency.
As machine learning models become more pervasive, especially in real-
world, resource-constrained environments, the focus on efÏcient nu-
merics will continue to grow. By thoughtfully selecting and leveraging
the appropriate numeric precision, one can achieve robust model per-
formance while optimizing for speed, memory, and energy. Table 8.1
summarizes these trade-offs.

Table 8.1.: Comparing precision levels in deep learning.
Precision Pros Cons
FP32
(Float-
ing
Point
32-bit)

• Standard precision
used in most deep
learning frameworks.

• High accuracy due to
ample
representational
capacity.

• Well-suited for
training

• High memory usage.
• Slower inference

times compared to
quantized models.

• Higher energy
consumption.

CHAPTER 8. EFFICIENT AI 253

Precision Pros Cons
FP16
(Float-
ing
Point
16-bit)

• Reduces memory
usage compared to
FP32.

• Speeds up
computations on
hardware that
supports FP16.

• Often used in
mixed-precision
training to balance
speed and accuracy.

• Lower
representational
capacity compared to
FP32.

• Risk of numerical
instability in some
models or layers.

INT8
(8-bit
Integer)

• Significantly reduced
memory footprint
compared to
floating-point
representations.

• Faster inference if
hardware supports
INT8 computations.

• Suitable for many
post-training
quantization
scenarios.

• Quantization can lead
to some accuracy loss.

• Requires careful
calibration during
quantization to
minimize accuracy
degradation.

INT4
(4-bit
Integer)

• Even lower memory
usage than INT8.

• Further speedup
potential for
inference.

• Higher risk of
accuracy loss
compared to INT8.

• Calibration during
quantization becomes
more critical.

Binary • Minimal memory
footprint (only 1 bit
per parameter).

• Extremely fast
inference due to
bitwise operations.

• Power efÏcient.

• Significant accuracy
drop for many tasks.

• Complex training
dynamics due to
extreme quantization.

8.7. Evaluating Models 254

Ternary • Low memory usage
but slightly more
than binary.

• Offers a middle
ground between
representation and
efÏciency.

• Accuracy might still
be lower than that of
higher precision
models.

• Training dynamics
can be complex.

8.6.2 EfÏciency Benefits

Numerical efÏciency matters for machine learning workloads for sev-
eral reasons:

Computational EfÏciency : High-precision computations (like FP32
or FP64) can be slow and resource-intensive. Reducing numeric preci-
sion can achieve faster computation times, especially on specialized
hardware that supports lower precision.

Memory EfÏciency: Storage requirements decrease with reduced
numeric precision. For instance, FP16 requires half the memory of
FP32. This is crucial when deploying models to edge devices with lim-
ited memory or working with large models.

Power EfÏciency: Lower precision computations often consume less
power, which is especially important for battery-operated devices.

Noise Introduction: Interestingly, the noise introduced using lower
precision can sometimes act as a regularizer, helping to prevent over-
fitting in some models.

Hardware Acceleration: Many modern AI accelerators and GPUs
are optimized for lower precision operations, leveraging the efÏciency
benefits of such numerics.

8.7 Evaluating Models
It’s worth noting that the actual benefits and trade-offs can vary based
on the specific architecture of the neural network, the dataset, the task,
and the hardware being used. Before deciding on a numeric precision,
it’s advisable to perform experiments to evaluate the impact on the
desired application.

8.7.1 EfÏciency Metrics

A deep understanding of model evaluation methods is important to
guide this process systematically. When assessing AI models’ effective-
ness and suitability for various applications, efÏciency metrics come to

CHAPTER 8. EFFICIENT AI 255

the forefront.
FLOPs (Floating Point Operations), as introduced in Training,

gauge a model’s computational demands. For instance, a modern
neural network like BERT has billions of FLOPs, which might be
manageable on a powerful cloud server but would be taxing on a
smartphone. Higher FLOPs can lead to more prolonged inference
times and significant power drain, especially on devices without
specialized hardware accelerators. Hence, for real-time applications
such as video streaming or gaming, models with lower FLOPs might
be more desirable.

Memory Usage pertains to how much storage the model requires,
affecting both the deploying device’s storage and RAM. Consider de-
ploying a model onto a smartphone: a model that occupies several
gigabytes of space not only consumes precious storage but might also
be slower due to the need to load large weights into memory. This
becomes especially crucial for edge devices like security cameras or
drones, where minimal memory footprints are vital for storage and
rapid data processing.

Power Consumption becomes especially crucial for devices that rely
on batteries. For instance, a wearable health monitor using a power-
hungry model could drain its battery in hours, rendering it impractical
for continuous health monitoring. Optimizing models for low power
consumption becomes essential as we move toward an era dominated
by IoT devices, where many devices operate on battery power.

Inference Time is about how swiftly a model can produce results.
In applications like autonomous driving, where split-second decisions
are the difference between safety and calamity, models must operate
rapidly. If a self-driving car’s model takes even a few seconds too long
to recognize an obstacle, the consequences could be dire. Hence, en-
suring a model’s inference time aligns with the real-time demands of
its application is paramount.

In essence, these efÏciency metrics are more than numbers dictating
where and how a model can be effectively deployed. A model might
boast high accuracy, but if its FLOPs, memory usage, power consump-
tion, or inference time make it unsuitable for its intended platform or
real-world scenarios, its practical utility becomes limited.

8.7.2 EfÏciency Comparisons

The landscape of machine learning models is vast, with each model
offering a unique set of strengths and implementation considerations.
While raw accuracy figures or training and inference speeds might
be tempting benchmarks, they provide an incomplete picture. A

../training/training.html

8.7. Evaluating Models 256

deeper comparative analysis reveals several critical factors influencing
a model’s suitability for TinyML applications. Often, we encounter
the delicate balance between accuracy and efÏciency. For instance,
while a dense, deep learning model and a lightweight MobileNet
variant might excel in image classification, their computational de-
mands could be at two extremes. This differentiation is especially
pronounced when comparing deployments on resource-abundant
cloud servers versus constrained TinyML devices. In many real-world
scenarios, the marginal gains in accuracy could be overshadowed by
the inefÏciencies of a resource-intensive model.

Moreover, the optimal model choice is not always universal but often
depends on the specifics of an application. For instance, a model that
excels in general object detection scenarios might struggle in niche en-
vironments, such as detecting manufacturing defects on a factory floor.
This adaptability- or the lack of it- can influence a model’s real-world
utility.

Another important consideration is the relationship between model
complexity and its practical benefits. Take voice-activated assistants,
such as “Alexa” or “OK Google.” While a complex model might
demonstrate a marginally superior understanding of user speech if
it’s slower to respond than a simpler counterpart, the user experience
could be compromised. Thus, adding layers or parameters only
sometimes equates to better real-world outcomes.

Another important consideration is the relationship between model
complexity and its practical benefits. Take voice-activated assistants
like “Alexa” or “OK Google.” While a complex model might demon-
strate a marginally superior understanding of user speech if it’s slower
to respond than a simpler counterpart, the user experience could be
compromised. Thus, adding layers or parameters only sometimes
equates to better real-world outcomes.

Furthermore, while benchmark datasets, such as ImageNet (Rus-
sakovsky et al. 2015), COCO (T.-Y. Lin et al. 2014), Visual Wake Words
(L. Wang and Zhan 2019a), Google Speech Commands (Warden 2018),
etc. provide a standardized performance metric, they might not
capture the diversity and unpredictability of real-world data. Two
facial recognition models with similar benchmark scores might exhibit
varied competencies when faced with diverse ethnic backgrounds
or challenging lighting conditions. Such disparities underscore the
importance of robustness and consistency across varied data. For
example, Figure 8.7 from the Dollar Street dataset shows stove images
across extreme monthly incomes. Stoves have different shapes and
technological levels across different regions and income levels. A
model that is not trained on diverse datasets might perform well on

CHAPTER 8. EFFICIENT AI 257

a benchmark but fail in real-world applications. So, if a model was
trained on pictures of stoves found in wealthy countries only, it would
fail to recognize stoves from poorer regions.

Figure 8.7.: Different types of
stoves. Source: Dollar Street
stove images.

In essence, a thorough comparative analysis transcends numerical
metrics. It’s a holistic assessment intertwined with real-world applica-
tions, costs, and the intricate subtleties that each model brings to the
table. This is why having standard benchmarks and metrics widely
established and adopted by the community becomes important.

8.8 Conclusion
EfÏcient AI is crucial as we push towards broader and more diverse
real-world deployment of machine learning. This chapter provided
an overview, exploring the various methodologies and considerations
behind achieving efÏcient AI, starting with the fundamental need, sim-
ilarities, and differences across cloud, Edge, and TinyML systems.

We examined efÏcient model architectures and their usefulness for
optimization. Model compression techniques such as pruning, quanti-
zation, and knowledge distillation exist to help reduce computational
demands and memory footprint without significantly impacting accu-
racy. Specialized hardware like TPUs and NN accelerators offer opti-
mized silicon for neural network operations and data flow. EfÏcient
numerics balance precision and efÏciency, enabling models to attain
robust performance using minimal resources. We will explore these

8.9. Resources 258

topics in depth and detail in the subsequent chapters.
Together, these form a holistic framework for efÏcient AI. But the

journey doesn’t end here. Achieving optimally efÏcient intelligence re-
quires continued research and innovation. As models become more so-
phisticated, datasets grow, and applications diversify into specialized
domains, efÏciency must evolve in lockstep. Measuring real-world im-
pact requires nuanced benchmarks and standardized metrics beyond
simplistic accuracy figures.

Moreover, efÏcient AI expands beyond technological optimization
and encompasses costs, environmental impact, and ethical considera-
tions for the broader societal good. As AI permeates industries and
daily lives, a comprehensive outlook on efÏciency underpins its sus-
tainable and responsible progress. The subsequent chapters will build
upon these foundational concepts, providing actionable insights and
hands-on best practices for developing and deploying efÏcient AI so-
lutions.

8.9 Resources

Here is a curated list of resources to support students and instructors
in their learning and teaching journeys. We are continuously working
on expanding this collection and will add new exercises soon.

Slides

These slides are a valuable tool for instructors to deliver lectures
and for students to review the material at their own pace. We
encourage students and instructors to leverage these slides to
improve their understanding and facilitate effective knowledge
transfer.

• Deploying on Edge Devices: challenges and techniques.

• Model Evaluation.

• Continuous Evaluation Challenges for TinyML.

Videos

• Coming soon.

https://docs.google.com/presentation/d/1tvSiOfQ1lYPXsvHcFVs8R1lYZPei_Nb7/edit?usp=drive_link&ouid=102419556060649178683&rtpof=true&sd=true
https://docs.google.com/presentation/d/1jdBnIxgNovG3b8frTl3DwqiIOw_K4jvp3kyv2GoKfYQ/edit?usp=drive_link&resourcekey=0-PN8sYpltO1nP_xePynJn9w
https://docs.google.com/presentation/d/1OuhwH5feIwPivEU6pTDyR3QMs7AFstHLiF_LB8T5qYQ/edit?usp=drive_link&resourcekey=0-DZxIuVBUbJawuFh0AO-Pvw

CHAPTER 8. EFFICIENT AI 259

Exercises

To reinforce the concepts covered in this chapter, we have curated
a set of exercises that challenge students to apply their knowl-
edge and deepen their understanding.

• Coming soon.

Labs

In addition to exercises, we offer a series of hands-on labs allow-
ing students to gain practical experience with embedded AI tech-
nologies. These labs provide step-by-step guidance, enabling stu-
dents to develop their skills in a structured and supportive envi-
ronment. We are excited to announce that new labs will be avail-
able soon, further enriching the learning experience.

• Coming soon.

261

Chapter 9

Model Optimizations

Figure 9.1.: DALL·E 3 Prompt:
Illustration of a neural network
model represented as a busy con-
struction site, with a diverse
group of construction workers,
both male and female, of vari-
ous ethnicities, labeled as ‘prun-
ing’, ‘quantization’, and ‘spar-
sity’. They are working together
to make the neural network more
efÏcient and smaller, while main-
taining high accuracy. The ‘prun-
ing’ worker, a Hispanic female, is
cutting unnecessary connections
from the middle of the network.
The ‘quantization’ worker, a Cau-
casian male, is adjusting or tweak-
ing the weights all over the place.
The ‘sparsity’ worker, an African
female, is removing unnecessary
nodes to shrink the model. Con-
struction trucks and cranes are
in the background, assisting the
workers in their tasks. The neural
network is visually transforming
from a complex and large struc-
ture to a more streamlined and
smaller one.

When machine learning models are deployed on systems, especially on
resource-constrained embedded systems, the optimization of models
is a necessity. While machine learning inherently often demands sub-
stantial computational resources, the systems are inherently limited in
memory, processing power, and energy. This chapter will dive into
the art and science of optimizing machine learning models to ensure
they are lightweight, efÏcient, and effective when deployed in TinyML
scenarios.

9.1. Introduction 262

Learning Objectives

• Learn techniques like pruning, knowledge distillation and
specialized model architectures to represent models more
efÏciently

• Understand quantization methods to reduce model size
and enable faster inference through reduced precision nu-
merics

• Explore hardware-aware optimization approaches to
match models to target device capabilities

• Develop holistic thinking to balance tradeoffs in model
complexity, accuracy, latency, power etc. based on appli-
cation requirements

• Discover software tools like frameworks and model conver-
sion platforms that enable deployment of optimized mod-
els

• Gain strategic insight into selecting and applying model op-
timizations based on use case constraints and hardware tar-
gets

9.1 Introduction

We have structured this chapter in three tiers. First, in Section 9.2 we
examine the significance and methodologies of reducing the param-
eter complexity of models without compromising their inference ca-
pabilities. Techniques such as pruning and knowledge distillation are
discussed, offering insights into how models can be compressed and
simplified while maintaining, or even enhancing, their performance.

Going one level lower, in Section 9.3, we study the role of numerical
precision in model computations and how altering it impacts model
size, speed, and accuracy. We will examine the various numerical for-
mats and how reduced-precision arithmetic can be leveraged to opti-
mize models for embedded deployment.

Finally, as we go lower and closer to the hardware, in Section 9.4, we
will navigate through the landscape of hardware-software co-design,
exploring how models can be optimized by tailoring them to the spe-
cific characteristics and capabilities of the target hardware. We will
discuss how models can be adapted to exploit the available hardware

CHAPTER 9. MODEL OPTIMIZATIONS 263

resources effectively.

Figure 9.2.: Three layers to be
covered.

9.2 EfÏcient Model Representation

The first avenue of attack for model optimization starts in familiar terri-
tory for most ML practitioners: efÏcient model representation is often
first tackled at the highest level of parametrization abstraction - the
model’s architecture itself.

Most traditional ML practitioners design models with a general high-
level objective in mind, whether it be image classification, person de-
tection, or keyword spotting as mentioned previously in this textbook.
Their designs generally end up naturally fitting into some soft con-
straints due to limited compute resources during development, but
generally these designs are not aware of later constraints, such as those
required if the model is to be deployed on a more constrained device
instead of the cloud.

In this section, we’ll discuss how practitioners can harness princi-
ples of hardware-software co-design even at a model’s high level ar-
chitecture to make their models compatible with edge devices. From
most to least hardware aware at this level of modification, we discuss
several of the most common strategies for efÏcient model parametriza-
tion: pruning, model compression, and edge-friendly model architec-
tures. You were introduced to pruning and model compression in Sec-
tion 8.4; now, this section will go one step beyond the definitions to
provide you with a technical understanding of how these techniques
work.

9.2.1 Pruning

9.2. EfÏcient Model Representation 264

9.2.1.1 Overview

Model pruning is a technique in machine learning that reduces the
size and complexity of a neural network model while maintaining its
predictive capabilities as much as possible. The goal of model prun-
ing is to remove redundant or non-essential components of the model,
including connections between neurons, individual neurons, or even
entire layers of the network.

This process typically involves analyzing the machine learning
model to identify and remove weights, nodes, or layers that have little
impact on the model’s outputs. By selectively pruning a model in
this way, the total number of parameters can be reduced significantly
without substantial declines in model accuracy. The resulting com-
pressed model requires less memory and computational resources to
train and run while enabling faster inference times.

Model pruning is especially useful when deploying machine learn-
ing models to devices with limited compute resources, such as mobile
phones or TinyML systems. The technique facilitates the deployment
of larger, more complex models on these devices by reducing their re-
source demands. Additionally, smaller models require less data to gen-
eralize well and are less prone to overfitting. By providing an efÏcient
way to simplify models, model pruning has become a vital technique
for optimizing neural networks in machine learning.

There are several common pruning techniques used in machine
learning, these include structured pruning, unstructured pruning,
iterative pruning, bayesian pruning, and even random pruning. In
addition to pruning the weights, one can also prune the activations.
Activation pruning specifically targets neurons or filters that activate
rarely or have overall low activation. There are numerous other
methods, such as sensitivity and movement pruning. For a compre-
hensive list of methods, the reader is encouraged to read the following
paper: “A Survey on Deep Neural Network Pruning: Taxonomy,
Comparison, Analysis, and Recommendations” (2023).

So how does one choose the type of pruning methods? Many vari-
ations of pruning techniques exist where each varies the heuristic of
what should be kept and pruned from the model as well as number of
times pruning occurs. Traditionally, pruning happens after the model
is fully trained, where the pruned model may experience mild accu-
racy loss. However, as we will discuss further, recent discoveries have
found that pruning can be used during training (i.e., iteratively) to iden-
tify more efÏcient and accurate model representations.

https://arxiv.org/pdf/2308.06767.pdf
https://arxiv.org/pdf/2308.06767.pdf

CHAPTER 9. MODEL OPTIMIZATIONS 265

9.2.1.2 Structured Pruning

We start with structured pruning, a technique that reduces the size of
a neural network by eliminating entire model-specific substructures
while maintaining the overall model structure. It removes entire neu-
rons/channels or layers based on importance criteria. For example,
for a convolutional neural network (CNN), this could be certain filter
instances or channels. For fully connected networks, this could be neu-
rons themselves while maintaining full connectivity or even be elimi-
nation of entire model layers that are deemed to be insignificant. This
type of pruning often leads to regular, structured sparse networks that
are hardware friendly.

Best practices have started to emerge on how to think about struc-
tured pruning. There are three main components:

9.2.1.2.1 1. Structures to Target for Pruning. Given the variety of
approaches, different structures within a neural network are pruned
based on specific criteria. The primary structures for pruning include
neurons, channels, and sometimes entire layers, each with its unique
implications and methodologies. The goal in each approach is to
ensure that the reduced model retains as much of the original model’s
predictive prowess as possible while improving computational
efÏciency and reducing size.

When neurons are pruned, we are removing entire neurons along
with their associated weights and biases, thereby reducing the width
of the layer. This type of pruning is often utilized in fully connected
layers.

With channel pruning, which is predominantly applied in convolu-
tional neural networks (CNNs), it involves eliminating entire channels
or filters, which in turn reduces the depth of the feature maps and im-
pacts the network’s ability to extract certain features from the input
data. This is particularly crucial in image processing tasks where com-
putational efÏciency is paramount.

Finally, layer pruning takes a more aggressive approach by remov-
ing entire layers of the network. This significantly reduces the net-
work’s depth and thereby its capacity to model complex patterns and
hierarchies in the data. This approach necessitates a careful balance
to ensure that the model’s predictive capability is not unduly compro-
mised.

Figure 9.3 demonstrates the difference between channel/filter wise
pruning and layer pruning. When we prune a channel, we have to
reconfigure the model’s architecture in order to adapt to the structural
changes. One adjustment is changing the number of input channels
in the subsequent layer (here, the third and deepest layer): changing

9.2. EfÏcient Model Representation 266

the depths of the filters that are applied to the layer with the pruned
channel. On the other hand, pruning an entire layer (removing all the
channels in the layer) requires more drastic adjustments. The main
one involves modifying the connections between the remaining layers
to replace or bypass the pruned layer. In our case, we reconfigure to
connect the first and last layers. In all pruning cases, we have to fine-
tune the new structure to adjust the weights.

Figure 9.3.: Channel vs layer
pruning.

9.2.1.2.2 2. Establishing a Criteria for Pruning. Establishing
well-defined criteria for determining which specific structures to
prune from a neural network model is a crucial component of the
model pruning process. The core goal here is to identify and remove
components that contribute the least to the model’s predictive capa-
bilities, while retaining structures integral to preserving the model’s
accuracy.

A widely adopted and effective strategy for systematically pruning
structures relies on computing importance scores for individual com-
ponents like neurons, filters, channels or layers. These scores serve as
quantitative metrics to gauge the significance of each structure and its
effect on the model’s output.

There are several techniques for assigning these importance scores:

CHAPTER 9. MODEL OPTIMIZATIONS 267

• Weight Magnitude-Based Pruning: This approach assigns im-
portance scores to a structure by evaluating the aggregate magni-
tude of their associated weights. Structures with smaller overall
weight magnitudes are considered less critical to the network’s
performance.

• Gradient-Based Pruning: This technique utilizes the gradients
of the loss function with respect to the weights associated with a
structure. Structures with low cumulative gradient magnitudes,
indicating minimal impact on the loss when altered, are prime
candidates for pruning.

• Activation-Based Pruning: This method tracks how often a neu-
ron or filter is activated by storing this information in a parameter
called the activation counter. Each time the structure is activated,
the counter is incremented. A low activation count suggests that
the structure is less relevant.

• Taylor Expansion-Based Pruning: This approach approximates
the change in the loss function from removing a given weight. By
assessing the cumulative loss disturbance from removing all the
weights associated with a structure, you can identify structures
with negligible impact on the loss, making them suitable candi-
dates for pruning.

The idea is to measure, either directly or indirectly, the contribution
of each component to the model’s output. Structures with minimal in-
fluence according to the defined criteria are pruned first. This enables
selective, optimized pruning that maximally compresses models while
preserving predictive capacity. In general, it is important to evaluate
the impact of removing particular structures on the model’s output,
with recent works such as (Rachwan et al. 2022) and (Lubana and Dick
2020) investigating combinations of techniques like magnitude-based
pruning and gradient-based pruning.

9.2.1.2.3 3. Selecting a pruning strategy. Now that you understand
some techniques for determining the importance of structures within
a neural network, the next step is to decide how to apply these in-
sights. This involves selecting an appropriate pruning strategy, which
dictates how and when the identified structures are removed and how
the model is fine-tuned to maintain its performance. Two main struc-
tured pruning strategies exist: iterative pruning and one-shot pruning.

Iterative pruning gradually removes structures across multiple cy-
cles of pruning followed by fine-tuning. In each cycle, a small set of
structures are pruned based on importance criteria. The model is then
fine-tuned, allowing it to adjust smoothly to the structural changes be-
fore the next pruning iteration. This gradual, cyclic approach prevents

9.2. EfÏcient Model Representation 268

abrupt accuracy drops. It allows the model to slowly adapt as struc-
tures are reduced across iterations.

Consider a situation where we wish to prune the 6 least effective
channels (based on some specific criteria) from a convolutional neural
network. In Figure 9.4, we show a simplified pruning process carried
over 3 iterations. In every iteration, we only prune 2 channels. Remov-
ing the channels results in accuracy degradation. In the first iteration,
the accuracy drops from 0.995 to 0.971. However, after we fine-tune
the model on the new structure, we are able to recover from the per-
formance loss, bringing the accuracy up to 0.992. Since the structural
changes are minor and gradual, the network can more easily adapt to
them. Running the same process 2 more times, we end up with a fi-
nal accuracy of 0.991 (a loss of only 0.4% from the original) and 27%
decrease in the number of channels. Thus, iterative pruning enables
us to maintain performance while benefiting from increased computa-
tional efÏciency due to the decreased model size.

Figure 9.4.: Iterative pruning.

One-shot pruning takes a more aggressive approach by pruning a
large portion of structures simultaneously in one shot based on pre-
defined importance criteria. This is followed by extensive fine-tuning
to recover model accuracy. While faster, this aggressive strategy can
degrade accuracy if the model cannot recover during fine-tuning.

CHAPTER 9. MODEL OPTIMIZATIONS 269

The choice between these strategies involves weighing factors like
model size, target sparsity level, available compute and acceptable ac-
curacy losses. One-shot pruning can rapidly compress models, but it-
erative pruning may enable better accuracy retention for a target level
of pruning. In practice, the strategy is tailored based on use case con-
straints. The overarching aim is to generate an optimal strategy that
removes redundancy, achieves efÏciency gains through pruning, and
finely tunes the model to stabilize accuracy at an acceptable level for
deployment.

Now consider the same network we had in the iterative pruning ex-
ample. Whereas in the iterative process we pruned 2 channels at a
time, in the one-shot pruning we would prune the 6 channels at once
(Figure 9.5). Removing 27% of the network’s channel simultaneously
alters the structure significantly, causing the accuracy to drop from
0.995 to 0.914. Given the major changes, the network is not able to
properly adapt during fine-tuning, and the accuracy went up to 0.943,
a 5% degradation from the accuracy of the unpruned network. While
the final structures in both iterative pruning and oneshot pruning pro-
cesses are identical, the former is able to maintain high performance
while the latter suffers significant degradations.

Figure 9.5.: One-shot pruning.

9.2.1.3 Advantages of Structured Pruning

Structured pruning brings forth a myriad of advantages that cater to
various facets of model deployment and utilization, especially in envi-
ronments where computational resources are constrained.

• Computational EfÏciency: By eliminating entire structures,
such as neurons or channels, structured pruning significantly
diminishes the computational load during both training and
inference phases, thereby enabling faster model predictions
and training convergence. Moreover, the removal of structures

9.2. EfÏcient Model Representation 270

inherently reduces the model’s memory footprint, ensuring that
it demands less storage and memory during operation, which
is particularly beneficial in memory-constrained environments
like TinyML systems.

• Hardware EfÏciency: Structured pruning often results in
models that are more amenable to deployment on specialized
hardware, such as Field-Programmable Gate Arrays (FPGAs)
or Application-Specific Integrated Circuits (ASICs), due to the
regularity and simplicity of the pruned architecture. With re-
duced computational requirements, it translates to lower energy
consumption, which is crucial for battery-powered devices and
sustainable computing practices.

• Maintenance and Deployment: The pruned model, while
smaller, retains its original architectural form, which can sim-
plify the deployment pipeline and ensure compatibility with
existing systems and frameworks. Also, with fewer parameters
and simpler structures, the pruned model becomes easier to
manage and monitor in production environments, potentially
reducing the overhead associated with model maintenance and
updates. Later on, when we dive into MLOps, this need will
become apparent.

9.2.1.4 Unstructured Pruning

Unstructured pruning is, as its name suggests, pruning the model with-
out regard to model-specific substructure. As mentioned above, it of-
fers a greater aggression in pruning and can achieve higher model
sparsities while maintaining accuracy given less constraints on what
can and can’t be pruned. Generally, post-training unstructured prun-
ing consists of an importance criterion for individual model parame-
ters/weights, pruning/removal of weights that fall below the criteria,
and optional fine-tuning after to try and recover the accuracy lost dur-
ing weight removal.

Unstructured pruning has some advantages over structured prun-
ing: removing individual weights instead of entire model substruc-
tures often leads in practice to lower model accuracy decreases. Fur-
thermore, generally determining the criterion of importance for an in-
dividual weight is much simpler than for an entire substructure of pa-
rameters in structured pruning, making the former preferable for cases
where that overhead is hard or unclear to compute. Similarly, the ac-
tual process of structured pruning is generally less flexible, as remov-
ing individual weights is generally simpler than removing entire sub-
structures and ensuring the model still works.

../ops/ops.qmd

CHAPTER 9. MODEL OPTIMIZATIONS 271

Unstructured pruning, while offering the potential for significant
model size reduction and enhanced deployability, brings with it
challenges related to managing sparse representations and ensuring
computational efÏciency. It is particularly useful in scenarios where
achieving the highest possible model compression is paramount and
where the deployment environment can handle sparse computations
efÏciently.

Table 9.1 provides a concise comparison between structured and un-
structured pruning. In this table, aspects related to the nature and
architecture of the pruned model (Definition, Model Regularity, and
Compression Level) are grouped together, followed by aspects related
to computational considerations (Computational EfÏciency and Hard-
ware Compatibility), and ending with aspects related to the implemen-
tation and adaptation of the pruned model (Implementation Complex-
ity and Fine-Tuning Complexity). Both pruning strategies offer unique
advantages and challenges, as shown in Table 9.1, and the selection be-
tween them should be influenced by specific project and deployment
requirements.

Table 9.1.: Comparison of structured versus unstructured pruning.
Aspect Structured Pruning Unstructured Pruning
Definition Pruning entire structures

(e.g., neurons, channels,
layers) within the network

Pruning individual weights
or neurons, resulting in
sparse matrices or
non-regular network
structures

Model
Regu-
larity

Maintains a regular,
structured network
architecture

Results in irregular, sparse
network architectures

Compression
Level

May offer limited model
compression compared to
unstructured pruning

Can achieve higher model
compression due to
fine-grained pruning

Computational
EfÏ-
ciency

Typically more
computationally efÏcient
due to maintaining regular
structures

Can be computationally
inefÏcient due to sparse
weight matrices, unless
specialized
hardware/software is used

Hardware
Com-
patibil-
ity

Generally better
compatible with various
hardware due to regular
structures

May require hardware that
efÏciently handles sparse
computations to realize
benefits

9.2. EfÏcient Model Representation 272

Aspect Structured Pruning Unstructured Pruning
Implementation
Com-
plexity

Often simpler to
implement and manage
due to maintaining
network structure

Can be complex to manage
and compute due to sparse
representations

Fine-
Tuning
Com-
plexity

May require less complex
fine-tuning strategies
post-pruning

Might necessitate more
complex retraining or
fine-tuning strategies
post-pruning

In Figure 9.6 we have examples that illustrate the differences
between unstructured and structured pruning. Observe that unstruc-
tured pruning can lead to models that no longer obey high-level
structural guarantees of their original unpruned counterparts: the
left network is no longer a fully connected network after pruning.
Structured pruning on the other hand maintains those invariants: in
the middle, the fully connected network is pruned in a way that the
pruned network is still fully connected; likewise, the CNN maintains
its convolutional structure, albeit with fewer filters.

Figure 9.6.: Unstructured vs
structured pruning. Source:
Qi et al. (2021).

9.2.1.5 Lottery Ticket Hypothesis

Pruning has evolved from a purely post-training technique that came
at the cost of some accuracy, to a powerful meta-learning approach
applied during training to reduce model complexity. This advance-
ment in turn improves compute, memory, and latency efÏciency at
both training and inference.

A breakthrough finding that catalyzed this evolution was the lottery
ticket hypothesis by Frankle and Carbin (2019). Their work states that
within dense neural networks, there exist sparse subnetworks, referred
to as “winning tickets,” that can match or even exceed the performance

https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1803.03635

CHAPTER 9. MODEL OPTIMIZATIONS 273

of the original model when trained in isolation. Specifically, these win-
ning tickets, when initialized using the same weights as the original
network, can achieve similarly high training convergence and accuracy
on a given task. It is worthwhile pointing out that they empirically dis-
covered the lottery ticket hypothesis, which was later formalized.

The intuition behind this hypothesis is that, during the training pro-
cess of a neural network, many neurons and connections become re-
dundant or unimportant, particularly with the inclusion of training
techniques encouraging redundancy like dropout. Identifying, prun-
ing out, and initializing these “winning tickets’ ’ allows for faster train-
ing and more efÏcient models, as they contain the essential model de-
cision information for the task. Furthermore, as generally known with
the bias-variance tradeoff theory, these tickets suffer less from overpa-
rameterization and thus generalize better rather than overfitting to the
task.

In Figure 9.7 we have an example experiment showing pruning and
training experiments on a fully connected LeNet over a variety of prun-
ing ratios. In the left plot, notice how heavy pruning reveals a more
efÏcient subnetwork (in green) that is 21.1% the size of the original net-
work (in blue), The subnetwork achieves higher accuracy and in a faster
manner than the unpruned version (green line is above the blue line).
However, pruning has a limit (sweet spot), and further pruning will
produce performance degradations and eventually drop below the un-
pruned version’s performance (notice how the red, purple, and brown
subnetworks gradually drop in accuracy performance) due to the sig-
nificant loss in the number of parameters.

Figure 9.7.: Lottery ticket hy-
pothesis experiments.

To uncover these winning lottery tickets within a neural network, a
systematic process is followed. This process, which is illustrated in
Figure 9.8 (left side), involves iteratively training, pruning, and reini-
tializing the network. The steps below outline this approach:

1. Initialize the network’s weights to random values.

2. Train the network until it converges to the desired performance.

9.2. EfÏcient Model Representation 274

3. Prune out some percentage of the edges with the lowest weight
values.

4. Reinitialize the network with the same random values from step
1.

5. Repeat steps 2-4 for a number of times, or as long as the accuracy
doesn’t significantly degrade.

When we finish, we are left with a pruned network (Figure 9.8 right
side), which is a subnetwork of the one we start with. The subnetwork
should have a significantly smaller structure, while maintaining a com-
parable level of accuracy.

Figure 9.8.: Finding the win-
ning ticket subnetwork.

9.2.1.6 Challenges & Limitations

There is no free lunch with pruning optimizations, with some choices
coming with both improvements and costs to considers. Below we dis-
cuss some tradeoffs for practitioners to consider.

• Managing Sparse Weight Matrices: A sparse weight matrix is
a matrix in which many of the elements are zero. Unstructured
pruning often results in sparse weight matrices, where many
weights are pruned to zero. While this reduces model size, it
also introduces several challenges. Computational inefÏciency
can arise because standard hardware is optimized for dense
matrix operations. Without optimizations that take advantage
of sparsity, the computational savings from pruning can be lost.
Although sparse matrices can be stored without specialized

CHAPTER 9. MODEL OPTIMIZATIONS 275

formats, effectively leveraging their sparsity requires careful
handling to avoid wasting resources. Algorithmically, navi-
gating sparse structures requires efÏciently skipping over zero
entries, which adds complexity to the computation and model
updates.

• Quality vs. Size Reduction: A key challenge in both structured
and unstructured pruning is balancing size reduction with
maintaining or improving predictive performance. Establishing
robust pruning criteria, whether for removing entire structures
(structured pruning) or individual weights (unstructured prun-
ing), is essential. These pruning criteria chosen must accurately
identify elements whose removal minimally impacts perfor-
mance. Careful experimentation is often needed to ensure the
pruned model remains efÏcient while maintaining its predictive
performance.

• Fine-Tuning and Retraining: Post-pruning fine-tuning is
imperative in both structured and unstructured pruning to
recover lost performance and stabilize the model. The challenge
encompasses determining the extent, duration, and nature of
the fine-tuning process, which can be influenced by the pruning
method and the degree of pruning applied.

• Hardware Compatibility and EfÏciency: Especially pertinent
to unstructured pruning, hardware compatibility and efÏciency
become critical. Unstructured pruning often results in sparse
weight matrices, which may not be efÏciently handled by cer-
tain hardware, potentially negating the computational benefits
of pruning (see Figure 9.9). Ensuring that pruned models, partic-
ularly those resulting from unstructured pruning, are scalable,
compatible, and efÏcient on the target hardware is a significant
consideration.

• Legal and Ethical Considerations: Last but not least, adher-
ence to legal and ethical guidelines is important, especially
in domains with significant consequences. Pruning methods
must undergo rigorous validation, testing, and potentially
certification processes to ensure compliance with relevant
regulations and standards, though arguably at this time no
such formal standards and best practices exist that are vetted
and validated by 3rd party entities. This is particularly crucial
in high-stakes applications like medical AI and autonomous
driving, where quality drops due to pruning-like optimizations
can be life-threatening. Moreover, ethical considerations extend

9.2. EfÏcient Model Representation 276

beyond safety to fairness and equality; recent work by (Tran et al.
2022) has revealed that pruning can disproportionately impact
people of color, underscoring the need for comprehensive
ethical evaluation in the pruning process.

Figure 9.9.: Sparse weight ma-
trix.

Exercise 17: Pruning

Imagine your neural network is a giant, overgrown bush. Prun-
ing is like strategically trimming away branches to make it
stronger and more efÏcient! In the Colab, you’ll learn how to
do this trimming in TensorFlow. Understanding these concepts
will give you the foundation to see how pruning makes models
small enough to run on your phone!

9.2.2 Model Compression

Model compression techniques are crucial for deploying deep learn-
ing models on resource-constrained devices. These techniques aim to
create smaller, more efÏcient models that preserve the predictive per-
formance of the original models.

9.2.2.1 Knowledge Distillation

One popular technique is knowledge distillation (KD), which trans-
fers knowledge from a large, complex “teacher” model to a smaller

https://colab.research.google.com/github/tensorflow/model-optimization/blob/master/tensorflow_model_optimization/g3doc/guide/pruning/pruning_with_keras.ipynb

CHAPTER 9. MODEL OPTIMIZATIONS 277

“student” model. The key idea is to train the student model to mimic
the teacher’s outputs. The concept of KD was first popularized by Hin-
ton (2005).

9.2.2.1.1 Overview and Benefits. Knowledge distillation involves
transferring knowledge from a large, complex teacher model to a
smaller student model. The core idea is to use the teacher’s outputs,
known as soft targets, to guide the training of the student model.
Unlike traditional “hard targets” (the true labels), soft targets are
the probability distributions over classes that the teacher model
predicts. These distributions provide richer information about the
relationships between classes, which can help the student model learn
more effectively.

You have learned that the softmax function converts a model’s raw
outputs into a probability distribution over classes. A key technique
in KD is temperature scaling, which is applied to the softmax func-
tion of the teacher model’s outputs. By introducing a temperature pa-
rameter, the distribution can be adjusted: a higher temperature pro-
duces softer probabilities, meaning the differences between class prob-
abilities become less extreme. This softening effect results in a more
uniform distribution, where the model’s confidence in the most likely
class is reduced, and other classes have higher, non-zero probabilities.
This is valuable for the student model because it allows it to learn not
just from the most likely class but from the relative probabilities of all
classes, capturing subtle patterns that might be missed if trained only
on hard targets. Thus, temperature scaling facilitates the transfer of
more nuanced knowledge from the teacher to the student model.

The loss function in knowledge distillation typically combines two
components: a distillation loss and a classification loss. The distilla-
tion loss, often calculated using Kullback-Leibler (KL) divergence, mea-
sures the difference between the soft targets produced by the teacher
model and the outputs of the student model, encouraging the student
to mimic the teacher’s predictions. Meanwhile, the classification loss
ensures that the student model correctly predicts the true labels based
on the original data. Together, these two components help the stu-
dent model retain the knowledge of the teacher while adhering to the
ground truth labels.

These components, when adeptly configured and harmonized, en-
able the student model to assimilate the teacher model’s knowledge,
crafting a pathway towards efÏcient and robust smaller models that
retain the predictive prowess of their larger counterparts. Figure 9.10
visualizes the training procedure of knowledge distillation. Note how
the logits or soft labels of the teacher model are used to provide a dis-

9.2. EfÏcient Model Representation 278

tillation loss for the student model to learn from.

Figure 9.10.: Knowledge distil-
lation training process. Source:
IntelLabs (2023).

9.2.2.1.2 Challenges. However, KD has a unique set of challenges
and considerations that researchers and practitioners must attentively
address. One of the challenges is in the meticulous tuning of hyper-
parameters, such as the temperature parameter in the softmax func-
tion and the weighting between the distillation and classification loss
in the objective function. Striking a balance that effectively leverages
the softened outputs of the teacher model while maintaining fidelity
to the true data labels is non-trivial and can significantly impact the
student model’s performance and generalization capabilities.

Furthermore, the architecture of the student model itself poses a
considerable challenge. Designing a model that is compact to meet
computational and memory constraints, while still being capable of as-
similating the essential knowledge from the teacher model, demands
a nuanced understanding of model capacity and the inherent trade-
offs involved in compression. The student model must be carefully
architected to navigate the dichotomy of size and performance, ensur-
ing that the distilled knowledge is meaningfully captured and utilized.
Moreover, the choice of teacher model, which inherently influences the
quality and nature of the knowledge to be transferred, is important and
it introduces an added layer of complexity to the KD process.

These challenges underscore the necessity for a thorough and nu-
anced approach to implementing KD, ensuring that the resultant stu-
dent models are both efÏcient and effective in their operational con-
texts.

CHAPTER 9. MODEL OPTIMIZATIONS 279

9.2.2.2 Low-rank Matrix Factorization

Similar in approximation theme, low-rank matrix factorization (LRMF)
is a mathematical technique used in linear algebra and data analysis
to approximate a given matrix by decomposing it into two or more
lower-dimensional matrices. The fundamental idea is to express a high-
dimensional matrix as a product of lower-rank matrices, which can
help reduce the complexity of data while preserving its essential struc-
ture. Mathematically, given a matrix 𝐴 ∈ ℝ𝑚×𝑛, LRMF seeks matrices𝑈 ∈ ℝ𝑚×𝑘 and 𝑉 ∈ ℝ𝑘×𝑛 such that 𝐴 ≈ 𝑈𝑉 , where 𝑘 is the rank and is
typically much smaller than 𝑚 and 𝑛.

9.2.2.2.1 Background and Benefits. One of the seminal works in the
realm of matrix factorization, particularly in the context of recommen-
dation systems, is the paper by Koren, Bell, and Volinsky (2009). The
authors look into various factorization models, providing insights into
their efÏcacy in capturing the underlying patterns in the data and en-
hancing predictive accuracy in collaborative filtering. LRMF has been
widely applied in recommendation systems (such as Netflix, Facebook,
etc.), where the user-item interaction matrix is factorized to capture la-
tent factors corresponding to user preferences and item attributes.

The main advantage of low-rank matrix factorization lies in its abil-
ity to reduce data dimensionality as shown in Figure 9.11, where there
are fewer parameters to store, making it computationally more efÏcient
and reducing storage requirements at the cost of some additional com-
pute. This can lead to faster computations and more compact data
representations, which is especially valuable when dealing with large
datasets. Additionally, it may aid in noise reduction and can reveal
underlying patterns and relationships in the data.

Figure 9.11 illustrates the decrease in parameterization enabled by
low-rank matrix factorization. Observe how the matrix 𝑀 can be ap-
proximated by the product of matrices 𝐿𝑘 and 𝑅𝑇𝑘 . For intuition, most
fully connected layers in networks are stored as a projection matrix𝑀 , which requires 𝑚 × 𝑛 parameter to be loaded on computation.
However, by decomposing and approximating it as the product of
two lower rank matrices, we thus only need to store 𝑚 × 𝑘 + 𝑘 × 𝑛
parameters in terms of storage while incurring an additional compute
cost of the matrix multiplication. So long as 𝑘 < 𝑛/2, this factorization
has fewer parameters total to store while adding a computation of
runtime 𝑂(𝑚𝑘𝑛) (Gu 2023).

9.2.2.2.2 Challenges. But practitioners and researchers encounter a
spectrum of challenges and considerations that necessitate careful at-

9.2. EfÏcient Model Representation 280

Figure 9.11.: Low matrix fac-
torization. Source: The Clever
Machine.

tention and strategic approaches. As with any lossy compression tech-
nique, we may lose information during this approximation process:
choosing the correct rank that balances the information lost and the
computational costs is tricky as well and adds an additional hyper-
parameter to tune for.

Low-rank matrix factorization is a valuable tool for dimensionality
reduction and making compute fit onto edge devices but, like other
techniques, needs to be carefully tuned to the model and task at hand.
A key challenge resides in managing the computational complexity
inherent to LRMF, especially when grappling with high-dimensional
and large-scale data. The computational burden, particularly in the
context of real-time applications and massive datasets, remains a sig-
nificant hurdle for effectively using LRMF.

Moreover, the conundrum of choosing the optimal rank 𝑘, for the
factorization introduces another layer of complexity. The selection of𝑘 inherently involves a trade-off between approximation accuracy and
model simplicity, and identifying a rank that adeptly balances these
conflicting objectives often demands a combination of domain exper-
tise, empirical validation, and sometimes, heuristic approaches. The
challenge is further amplified when the data encompasses noise or
when the inherent low-rank structure is not pronounced, making the
determination of a suitable 𝑘 even more elusive.

Handling missing or sparse data, a common occurrence in appli-
cations like recommendation systems, poses another substantial chal-
lenge. Traditional matrix factorization techniques, such as Singular
Value Decomposition (SVD), are not directly applicable to matrices
with missing entries, necessitating the development and application

https://dustinstansbury.github.io/theclevermachine/svd-data-compression
https://dustinstansbury.github.io/theclevermachine/svd-data-compression

CHAPTER 9. MODEL OPTIMIZATIONS 281

of specialized algorithms that can factorize incomplete matrices while
mitigating the risks of overfitting to the observed entries. This often
involves incorporating regularization terms or constraining the factor-
ization in specific ways, which in turn introduces additional hyperpa-
rameters that need to be judiciously selected.

Furthermore, in scenarios where data evolves or grows over time,
developing LRMF models that can adapt to new data without necessi-
tating a complete re-factorization is a critical yet challenging endeavor.
Online and incremental matrix factorization algorithms seek to ad-
dress this by enabling the update of factorized matrices as new data
arrives, yet ensuring stability, accuracy, and computational efÏciency
in these dynamic settings remains an intricate task. This is particularly
challenging in the space of TinyML, where edge redeployment for
refreshed models can be quite challenging.

9.2.2.3 Tensor Decomposition

You have learned in Section 6.4.1 that tensors are flexible structures,
commonly used by ML Frameworks, that can represent data in higher
dimensions. Similar to low-rank matrix factorization, more complex
models may store weights in higher dimensions, such as tensors. Ten-
sor decomposition is the higher-dimensional analogue of matrix fac-
torization, where a model tensor is decomposed into lower rank com-
ponents (see Figure 9.12). These lower-rank components are easier to
compute on and store but may suffer from the same issues mentioned
above, such as information loss and the need for nuanced hyperparam-
eter tuning. Mathematically, given a tensor 𝒜, tensor decomposition
seeks to represent 𝒜 as a combination of simpler tensors, facilitating a
compressed representation that approximates the original data while
minimizing the loss of information.

The work of Tamara G. Kolda and Brett W. Bader, “Tensor Decom-
positions and Applications” (2009), stands out as a seminal paper in
the field of tensor decompositions. The authors provide a compre-
hensive overview of various tensor decomposition methods, exploring
their mathematical underpinnings, algorithms, and a wide array of ap-
plications, ranging from signal processing to data mining. Of course,
the reason we are discussing it is because it has huge potential for sys-
tem performance improvements, particularly in the space of TinyML,
where throughput and memory footprint savings are crucial to feasi-
bility of deployments.

https://epubs.siam.org/doi/abs/10.1137/07070111X
https://epubs.siam.org/doi/abs/10.1137/07070111X

9.2. EfÏcient Model Representation 282

Figure 9.12.: Tensor decompo-
sition. Source: Xinyu (n.d.).

Exercise 18: Scalable Model Compression with TensorFlow

This Colab dives into a technique for compressing models while
maintaining high accuracy. The key idea is to train a model
with an extra penalty term that encourages the model to be more
compressible. Then, the model is encoded using a special cod-
ing scheme that aligns with this penalty. This approach allows
you to achieve compressed models that perform just as well as
the original models and is useful in deploying models to devices
with limited resources like mobile phones and edge devices.

9.2.3 Edge-Aware Model Design

Now, we reach the other end of the hardware-software gradient,
where we specifically make model architecture decisions directly
given knowledge of the edge devices we wish to deploy on.

As covered in previous sections, edge devices are constrained specif-
ically with limitations on memory and parallelizable computations: as
such, if there are critical inference speed requirements, computations
must be flexible enough to satisfy hardware constraints, something
that can be designed at the model architecture level. Furthermore,
trying to cram SOTA large ML models onto edge devices even after
pruning and compression is generally infeasible purely due to size:
the model complexity itself must be chosen with more nuance as to
more feasibly fit the device. Edge ML developers have approached
this architectural challenge both through designing bespoke edge
ML model architectures and through device-aware neural architec-
ture search (NAS), which can more systematically generate feasible

https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/optimization/compression.ipynb

CHAPTER 9. MODEL OPTIMIZATIONS 283

on-device model architectures.

9.2.3.1 Model Design Techniques

One edge friendly architecture design, commonly used in deep learn-
ing for image processing, is depthwise separable convolutions. It con-
sists of two distinct steps: the first is the depthwise convolution, where
each input channel is convolved independently with its own set of
learnable filters, as shown in Figure 9.13. This step reduces computa-
tional complexity by a significant margin compared to standard convo-
lutions, as it drastically reduces the number of parameters and compu-
tations involved. The second step is the pointwise convolution, which
combines the output of the depthwise convolution channels through
a 1x1 convolution, creating inter-channel interactions. This approach
offers several advantages. Benefits include reduced model size, faster
inference times, and often better generalization due to fewer parame-
ters, making it suitable for mobile and embedded applications. How-
ever, depthwise separable convolutions may not capture complex spa-
tial interactions as effectively as standard convolutions and might re-
quire more depth (layers) to achieve the same level of representational
power, potentially leading to longer training times. Nonetheless, their
efÏciency in terms of parameters and computation makes them a pop-
ular choice in modern convolutional neural network architectures.

Figure 9.13.: Depthwise sep-
arable convolutions. Source:
Hegde (2023).

9.2. EfÏcient Model Representation 284

9.2.3.2 Example Model Architectures

In this vein, a number of recent architectures have been, from inception,
specifically designed for maximizing accuracy on an edge deployment,
notably SqueezeNet, MobileNet, and EfÏcientNet.

• SqueezeNet by Iandola et al. (2016) for instance, utilizes a com-
pact architecture with 1x1 convolutions and fire modules to min-
imize the number of parameters while maintaining strong accu-
racy.

• MobileNet by Howard et al. (2017), on the other hand, employs
the aforementioned depthwise separable convolutions to reduce
both computation and model size.

• EfÏcientNet by Tan and Le (2023) takes a different approach by
optimizing network scaling (i.e. varying the depth, width and
resolution of a network) and compound scaling, a more nuanced
variation network scaling, to achieve superior performance with
fewer parameters.

These models are essential in the context of edge computing where
limited processing power and memory require lightweight yet effec-
tive models that can efÏciently perform tasks such as image recogni-
tion, object detection, and more. Their design principles showcase the
importance of intentionally tailored model architecture for edge com-
puting, where performance and efÏciency must fit within constraints.

9.2.3.3 Streamlining Model Architecture Search

Lastly, to address the challenge of finding efÏcient model architectures
that are compatible with edge devices, researchers have developed sys-
tematized pipelines that streamline the search for performant designs.
Two notable frameworks in this space are TinyNAS by J. Lin et al. (2020)
and MorphNet by Gordon et al. (2018), which automate the process of
optimizing neural network architectures for edge deployment.

TinyNAS is an innovative neural architecture search framework
introduced in the MCUNet paper, designed to efÏciently discover
lightweight neural network architectures for edge devices with lim-
ited computational resources. Leveraging reinforcement learning
and a compact search space of micro neural modules, TinyNAS
optimizes for both accuracy and latency, enabling the deployment
of deep learning models on microcontrollers, IoT devices, and other
resource-constrained platforms. Specifically, TinyNAS, in conjunction
with a network optimizer TinyEngine, generates different search

https://arxiv.org/abs/1602.07360
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/2007.10319
https://arxiv.org/abs/1711.06798

CHAPTER 9. MODEL OPTIMIZATIONS 285

spaces by scaling the input resolution and the model width of a
model, then collects the computation FLOPs distribution of satisfying
networks within the search space to evaluate its priority. TinyNAS
relies on the assumption that a search space that accommodates
higher FLOPs under memory constraint can produce higher accuracy
models, something that the authors verified in practice in their work.
In empirical performance, TinyEngine reduced the peak memory
usage of models by around 3.4 times and accelerated inference by 1.7
to 3.3 times compared to TFLite and CMSIS-NN.

Similarly, MorphNet is a neural network optimization framework
designed to automatically reshape and morph the architecture of
deep neural networks, optimizing them for specific deployment
requirements. It achieves this through two steps: first, it leverages a
set of customizable network morphing operations, such as widening
or deepening layers, to dynamically adjust the network’s structure.
These operations enable the network to adapt to various computa-
tional constraints, including model size, latency, and accuracy targets,
which are extremely prevalent in edge computing usage. In the
second step, MorphNet uses a reinforcement learning-based approach
to search for the optimal permutation of morphing operations, effec-
tively balancing the trade-off between model size and performance.
This innovative method allows deep learning practitioners to automat-
ically tailor neural network architectures to specific application and
hardware requirements, ensuring efÏcient and effective deployment
across various platforms.

TinyNAS and MorphNet represent a few of the many significant ad-
vancements in the field of systematic neural network optimization, al-
lowing architectures to be systematically chosen and generated to fit
perfectly within problem constraints.

Exercise 19: Edge-Aware Model Design

Imagine you’re building a tiny robot that can identify differ-
ent flowers. It needs to be smart, but also small and energy-
efÏcient! In the “Edge-Aware Model Design” world, we learned
about techniques like depthwise separable convolutions and ar-
chitectures like SqueezeNet, MobileNet, and EfÏcientNet – all de-
signed to pack intelligence into compact models. Now, let’s see
these ideas in action with some xColabs:
SqueezeNet in Action: Maybe you’d like a Colab showing how
to train a SqueezeNet model on a flower image dataset. This
would demonstrate its small size and how it learns to recognize

https://www.tensorflow.org/lite
https://www.keil.com/pack/doc/CMSIS/NN/html/index.html

9.3. EfÏcient Numerics Representation 286

patterns despite its efÏciency.

MobileNet Exploration: Ever wonder if those tiny image mod-
els are just as good as the big ones? Let’s find out! In this Co-
lab, we’re pitting MobileNet, the lightweight champion, against
a classic image classification model. We’ll race them for speed,
measure their memory needs, and see who comes out on top for
accuracy. Get ready for a battle of the image brains!

9.3 EfÏcient Numerics Representation
Numerics representation involves a myriad of considerations, in-
cluding, but not limited to, the precision of numbers, their encoding
formats, and the arithmetic operations facilitated. It invariably
involves a rich array of different trade-offs, where practitioners are
tasked with navigating between numerical accuracy and computa-
tional efÏciency. For instance, while lower-precision numerics may
offer the allure of reduced memory usage and expedited computa-
tions, they concurrently present challenges pertaining to numerical
stability and potential degradation of model accuracy.

9.3.0.1 Motivation

The imperative for efÏcient numerics representation arises, particu-
larly as efÏcient model optimization alone falls short when adapting
models for deployment on low-powered edge devices operating under
stringent constraints.

Beyond minimizing memory demands, the tremendous potential of
efÏcient numerics representation lies in, but is not limited to, these fun-
damental ways. By diminishing computational intensity, efÏcient nu-
merics can thereby amplify computational speed, allowing more com-
plex models to compute on low-powered devices. Reducing the bit pre-
cision of weights and activations on heavily over-parameterized mod-
els enables condensation of model size for edge devices without signif-
icantly harming the model’s predictive accuracy. With the omnipres-
ence of neural networks in models, efÏcient numerics has a unique ad-
vantage in leveraging the layered structure of NNs to vary numeric
precision across layers, minimizing precision in resistant layers while
preserving higher precision in sensitive layers.

https://colab.research.google.com/github/GoogleCloudPlatform/training-data-analyst/blob/master/courses/fast-and-lean-data-science/07_Keras_Flowers_TPU_squeezenet.ipynb
https://colab.research.google.com/drive/1bOzVaDQo8h6Ngstb7AcfzC35OihpHspt

CHAPTER 9. MODEL OPTIMIZATIONS 287

In this section, we will dive into how practitioners can harness the
principles of hardware-software co-design at the lowest levels of a
model to facilitate compatibility with edge devices. Kicking off with
an introduction to the numerics, we will examine its implications for
device memory and computational complexity. Subsequently, we will
embark on a discussion regarding the trade-offs entailed in adopting
this strategy, followed by a deep dive into a paramount method of
efÏcient numerics: quantization.

9.3.1 The Basics

9.3.1.1 Types

Numerical data, the bedrock upon which machine learning models
stand, manifest in two primary forms. These are integers and floating
point numbers.

Integers: Whole numbers, devoid of fractional components, integers
(e.g., -3, 0, 42) are key in scenarios demanding discrete values. For in-
stance, in ML, class labels in a classification task might be represented
as integers, where “cat”, “dog”, and “bird” could be encoded as 0, 1,
and 2 respectively.

Floating-Point Numbers: Encompassing real numbers, floating-
point numbers (e.g., -3.14, 0.01, 2.71828) afford the representation of
values with fractional components. In ML model parameters, weights
might be initialized with small floating-point values, such as 0.001
or -0.045, to commence the training process. Currently, there are 4
popular precision formats discussed below.

Variable bit widths: Beyond the standard widths, research is on-
going into extremely low bit-width numerics, even down to binary
or ternary representations. Extremely low bit-width operations can
offer significant speedups and reduce power consumption even fur-
ther. While challenges remain in maintaining model accuracy with
such drastic quantization, advances continue to be made in this area.

9.3.1.2 Precision

Precision, delineating the exactness with which a number is repre-
sented, bifurcates typically into single, double, half and in recent years
there have been a number of other precisions that have emerged to
better support machine learning tasks efÏciently on the underlying
hardware.

Double Precision (Float64): Allocating 64 bits, double precision
(e.g., 3.141592653589793) provides heightened accuracy, albeit de-
manding augmented memory and computational resources. In

9.3. EfÏcient Numerics Representation 288

scientific computations, where precision is paramount, variables like
π might be represented with Float64.

Single Precision (Float32): With 32 bits at its disposal, single pre-
cision (e.g., 3.1415927) strikes a balance between numerical accuracy
and memory conservation. In ML, Float32 might be employed to store
weights during training to maintain a reasonable level of precision.

Half Precision (Float16): Constrained to 16 bits, half precision (e.g.,
3.14) curtails memory usage and can expedite computations, albeit sac-
rificing numerical accuracy and range. In ML, especially during infer-
ence on resource-constrained devices, Float16 might be utilized to re-
duce the model’s memory footprint.

Bfloat16: Brain Floating-Point Format or Bfloat16, also employs 16
bits but allocates them differently compared to FP16: 1 bit for the
sign, 8 bits for the exponent (resulting in the same number range
as in float32), and 7 bits for the fraction. This format, developed by
Google, prioritizes a larger exponent range over precision, making it
particularly useful in deep learning applications where the dynamic
range is crucial.

Figure 9.14 illustrates the differences between the three floating-
point formats: Float32, Float16, and BFloat16.

Figure 9.14.: Three floating-
point formats.

Integer: Integer representations are made using 8, 4, and 2 bits. They
are often used during the inference phase of neural networks, where
the weights and activations of the model are quantized to these lower
precisions. Integer representations are deterministic and offer signif-
icant speed and memory advantages over floating-point representa-
tions. For many inference tasks, especially on edge devices, the slight
loss in accuracy due to quantization is often acceptable given the efÏ-
ciency gains. An extreme form of integer numerics is for binary neural
networks (BNNs), where weights and activations are constrained to

CHAPTER 9. MODEL OPTIMIZATIONS 289

one of two values: either +1 or -1.
You may refer back to Section 8.6.1 for a table comparison between

the trade-offs of different numeric types.

9.3.1.3 Numeric Encoding and Storage

Numeric encoding, the art of transmuting numbers into a computer-
amenable format, and their subsequent storage are critical for compu-
tational efÏciency. For instance, floating-point numbers might be en-
coded using the IEEE 754 standard, which apportions bits among sign,
exponent, and fraction components, thereby enabling the representa-
tion of a vast array of values with a single format. There are a few new
IEEE floating point formats that have been defined specifically for AI
workloads:

• bfloat16- A 16-bit floating point format introduced by Google. It
has 8 bits for exponent, 7 bits for mantissa and 1 bit for sign. Of-
fers a reduced precision compromise between 32-bit float and 8-
bit integers. Supported on many hardware accelerators.

• posit - A configurable format that can represent different levels
of precision based on exponent bits. It is more efÏcient than IEEE
754 binary floats. Has adjustable dynamic range and precision.

• Flexpoint - A format introduced by Intel that can dynamically
adjust precision across layers or within a layer. Allows tuning
precision to accuracy and hardware requirements.

• BF16ALT - A proposed 16-bit format by ARM as an alterna-
tive to bfloat16. Uses additional bit in exponent to prevent
overflow/underflow.

• TF32 - Introduced by Nvidia for Ampere GPUs. Uses 10 bits for
exponent instead of 8 bits like FP32. Improves model training
performance while maintaining accuracy.

• FP8 - 8-bit floating point format that keeps 6 bits for mantissa and
2 bits for exponent. Enables better dynamic range than integers.

The key goals of these new formats are to provide lower precision
alternatives to 32-bit floats for better computational efÏciency and per-
formance on AI accelerators while maintaining model accuracy. They
offer different tradeoffs in terms of precision, range and implementa-
tion cost/complexity.

9.3.2 EfÏciency Benefits

As you learned in Section 8.6.2, numerical efÏciency matters for ma-
chine learning workloads for a number of reasons. EfÏcient numerics

https://cloud.google.com/tpu/docs/bfloat16
https://ieeexplore.ieee.org/document/9399648
https://arxiv.org/abs/1711.02213
https://developer.arm.com/documentation/ddi0596/2020-12/SIMD-FP-Instructions/BFMLALB--BFMLALT--vector---BFloat16-floating-point-widening-multiply-add-long--vector--
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://arxiv.org/abs/2209.05433

9.3. EfÏcient Numerics Representation 290

is not just about reducing the bit-width of numbers but understand-
ing the trade-offs between accuracy and efÏciency. As machine learn-
ing models become more pervasive, especially in real-world, resource-
constrained environments, the focus on efÏcient numerics will con-
tinue to grow. By thoughtfully selecting and leveraging the appro-
priate numeric precision, one can achieve robust model performance
while optimizing for speed, memory, and energy.

9.3.3 Numeric Representation Nuances

There are a number of nuances with numerical representations for ML
that require us to have an understanding of both the theoretical and
practical aspects of numerics representation, as well as a keen aware-
ness of the specific requirements and constraints of the application do-
main.

9.3.3.1 Memory Usage

The memory footprint of ML models, particularly those of consider-
able complexity and depth, can be substantial, thereby posing a signif-
icant challenge in both training and deployment phases. For instance,
a deep neural network with 100 million parameters, represented using
Float32 (32 bits or 4 bytes per parameter), would necessitate approxi-
mately 400 MB of memory just for storing the model weights. This does
not account for additional memory requirements during training for
storing gradients, optimizer states, and forward pass caches, which can
further amplify the memory usage, potentially straining the resources
on certain hardware, especially edge devices with limited memory ca-
pacity.

The choice of numeric representation further impacts memory
usage and computational efÏciency. For example, using Float64 for
model weights would double the memory requirements compared
to Float32, and could potentially increase computational time as well.
For a weight matrix with dimensions [1000, 1000], Float64 would
consume approximately 8MB of memory, while Float32 would reduce
this to about 4MB. Thus, selecting an appropriate numeric format is
crucial for optimizing both memory and computational efÏciency.

9.3.3.2 Computational Complexity

Numerical precision directly impacts computational complexity,
influencing the time and resources required to perform arithmetic
operations. For example, operations using Float64 generally consume

CHAPTER 9. MODEL OPTIMIZATIONS 291

more computational resources than their Float32 or Float16 counter-
parts (see Figure 9.15). In the realm of ML, where models might need
to process millions of operations (e.g., multiplications and additions
in matrix operations during forward and backward passes), even
minor differences in the computational complexity per operation can
aggregate into a substantial impact on training and inference times.
As shown in Figure 9.16, quantized models can be many times faster
than their unquantized versions.

Figure 9.15.: Energy use by
quantized operations. Source:
Mark Horowitz, Stanford Uni-
versity.

Figure 9.16.: Speed of three dif-
ferent models in normal and
quantized form.

9.3. EfÏcient Numerics Representation 292

In addition to pure runtimes, there is also a concern over energy efÏ-
ciency. Not all numerical computations are created equal from the un-
derlying hardware standpoint. Some numerical operations are more
energy efÏcient than others. For example, Figure 9.17 below shows
that integer addition is much more energy efÏcient than integer multi-
plication.

Figure 9.17.: Energy use by
quantized operations. Source:
Isscc (2014).

9.3.3.3 Hardware Compatibility

Ensuring compatibility and optimized performance across diverse
hardware platforms is another challenge in numerics representation.
Different hardware, such as CPUs, GPUs, TPUs, and FPGAs, have
varying capabilities and optimizations for handling different numeric
precisions. For example, certain GPUs might be optimized for Float32
computations, while others might provide accelerations for Float16.
Developing and optimizing ML models that can leverage the specific
numerical capabilities of different hardware, while ensuring that
the model maintains its accuracy and robustness, requires careful
consideration and potentially additional development and testing
efforts.

9.3.3.4 Precision and Accuracy Trade-offs

The trade-off between numerical precision and model accuracy is a nu-
anced challenge in numerics representation. Utilizing lower-precision
numerics, such as Float16, might conserve memory and expedite com-
putations but can also introduce issues like quantization error and re-
duced numerical range. For instance, training a model with Float16

CHAPTER 9. MODEL OPTIMIZATIONS 293

might introduce challenges in representing very small gradient values,
potentially impacting the convergence and stability of the training pro-
cess. Furthermore, in certain applications, such as scientific simula-
tions or financial computations, where high precision is paramount,
the use of lower-precision numerics might not be permissible due to
the risk of accruing significant errors.

9.3.3.5 Trade-off Examples

To understand and appreciate the nuances, let’s consider some use case
examples. Through these we will realize that the choice of numeric
representation is not merely a technical decision but a strategic one, in-
fluencing the model’s predictive acumen, its computational demands,
and its deployability across diverse computational environments. In
this section we will look at a couple of examples to better understand
the trade-offs with numerics and how they tie to the real world.

9.3.3.5.1 Autonomous Vehicles. In the domain of autonomous ve-
hicles, ML models are employed to interpret sensor data and make
real-time decisions. The models must process high-dimensional data
from various sensors (e.g., LiDAR, cameras, radar) and execute numer-
ous computations within a constrained time frame to ensure safe and
responsive vehicle operation. So the trade-offs here would include:

• Memory Usage: Storing and processing high-resolution sensor
data, especially in floating-point formats, can consume substan-
tial memory.

• Computational Complexity: Real-time processing demands efÏ-
cient computations, where higher-precision numerics might im-
pede the timely execution of control actions.

9.3.3.5.2 Mobile Health Applications. Mobile health applications
often use ML models for tasks like activity recognition, health monitor-
ing, or predictive analytics, operating within the resource-constrained
environment of mobile devices. The trade-offs here would include:

• Precision and Accuracy Trade-offs: Employing lower-precision
numerics to conserve resources might impact the accuracy of
health predictions or anomaly detections, which could have
significant implications for user health and safety.

• Hardware Compatibility: Models need to be optimized for
diverse mobile hardware, ensuring efÏcient operation across
a wide range of devices with varying numerical computation
capabilities.

9.3. EfÏcient Numerics Representation 294

9.3.3.5.3 High-Frequency Trading (HFT) Systems. HFT systems
leverage ML models to make rapid trading decisions based on real-
time market data. These systems demand extremely low-latency
responses to capitalize on short-lived trading opportunities.

• Computational Complexity: The models must process and an-
alyze vast streams of market data with minimal latency, where
even slight delays, potentially introduced by higher-precision nu-
merics, can result in missed opportunities.

• Precision and Accuracy Trade-offs: Financial computations often
demand high numerical precision to ensure accurate pricing and
risk assessments, posing challenges in balancing computational
efÏciency and numerical accuracy.

9.3.3.5.4 Edge-Based Surveillance Systems. Surveillance systems
deployed on edge devices, like security cameras, use ML models for
tasks like object detection, activity recognition, and anomaly detection,
often operating under stringent resource constraints.

• Memory Usage: Storing pre-trained models and processing
video feeds in real-time demands efÏcient memory usage, which
can be challenging with high-precision numerics.

• Hardware Compatibility: Ensuring that models can operate
efÏciently on edge devices with varying hardware capabilities
and optimizations for different numeric precisions is crucial for
widespread deployment.

9.3.3.5.5 Scientific Simulations. ML models are increasingly being
utilized in scientific simulations, such as climate modeling or molec-
ular dynamics simulations, to improve predictive capabilities and re-
duce computational demands.

• Precision and Accuracy Trade-offs: Scientific simulations often
require high numerical precision to ensure accurate and reliable
results, which can conflict with the desire to reduce computa-
tional demands via lower-precision numerics.

• Computational Complexity: The models must manage and pro-
cess complex, high-dimensional simulation data efÏciently to en-
sure timely results and enable large-scale or long-duration simu-
lations.

These examples illustrate diverse scenarios where the challenges of
numerics representation in ML models are prominently manifested.
Each system presents a unique set of requirements and constraints, ne-
cessitating tailored strategies and solutions to navigate the challenges

CHAPTER 9. MODEL OPTIMIZATIONS 295

of memory usage, computational complexity, precision-accuracy
trade-offs, and hardware compatibility.

9.3.4 Quantization

Quantization is prevalent in various scientific and technological do-
mains, and it essentially involves the mapping or constraining of a con-
tinuous set or range into a discrete counterpart to minimize the number
of bits required.

9.3.4.1 Initial Breakdown

We begin our foray into quantization with a brief analysis of one im-
portant use for quantization.

In signal processing, the continuous sine wave (shown in Figure 9.18)
can be quantized into discrete values through a process known as sam-
pling. This is a fundamental concept in digital signal processing and
is crucial for converting analog signals (like the continuous sine wave)
into a digital form that can be processed by computers. The sine wave
is a prevalent example due to its periodic and smooth nature, making it
a useful tool for explaining concepts like frequency, amplitude, phase,
and, of course, quantization.

Figure 9.18.: Sine Wave.

In the quantized version shown in Figure 9.19, the continuous sine
wave (Figure 9.18) is sampled at regular intervals (in this case, every

9.3. EfÏcient Numerics Representation 296

𝜋4 radians), and only these sampled values are represented in the digi-
tal version of the signal. The step-wise lines between the points show
one way to represent the quantized signal in a piecewise-constant form.
This is a simplified example of how analog-to-digital conversion works,
where a continuous signal is mapped to a discrete set of values, en-
abling it to be represented and processed digitally.

Figure 9.19.: Quantized Sine
Wave.

Returning to the context of Machine Learning (ML), quantization
refers to the process of constraining the possible values that numeri-
cal parameters (such as weights and biases) can take to a discrete set,
thereby reducing the precision of the parameters and consequently,
the model’s memory footprint. When properly implemented, quan-
tization can reduce model size by up to 4x and improve inference la-
tency and throughput by up to 2-3x. Figure 9.20 illustrates the impact
that quantization has on different models’ sizes: for example, an Image
Classification model like ResNet-v2 can be compressed from 180MB
down to 45MB with 8-bit quantization. There is typically less than 1%
loss in model accuracy from well tuned quantization. Accuracy can of-
ten be recovered by re-training the quantized model with quantization-
aware training techniques. Therefore, this technique has emerged to be
very important in deploying ML models to resource-constrained envi-
ronments, such as mobile devices, IoT devices, and edge computing
platforms, where computational resources (memory and processing
power) are limited.

There are several dimensions to quantization such as uniformity,

CHAPTER 9. MODEL OPTIMIZATIONS 297

Figure 9.20.: Effect of quanti-
zation on model sizes. Source:
HarvardX.

stochasticity (or determinism), symmetry, granularity (across lay-
ers/channels/groups or even within channels), range calibration
considerations (static vs dynamic), and fine-tuning methods (QAT,
PTQ, ZSQ). We examine these below.

9.3.5 Types

9.3.5.1 Uniform Quantization

Uniform quantization involves mapping continuous or high-precision
values to a lower-precision representation using a uniform scale. This
means that the interval between each possible quantized value is con-
sistent. For example, if weights of a neural network layer are quantized
to 8-bit integers (values between 0 and 255), a weight with a floating-
point value of 0.56 might be mapped to an integer value of 143, assum-
ing a linear mapping between the original and quantized scales. Due
to its use of integer or fixed-point math pipelines, this form of quanti-
zation allows computation on the quantized domain without the need
to dequantize beforehand.

The process for implementing uniform quantization starts with
choosing a range of real numbers to be quantized. The next step is to
select a quantization function and map the real values to the integers
representable by the bit-width of the quantized representation. For
instance, a popular choice for a quantization function is:𝑄(𝑟) = 𝐼𝑛𝑡(𝑟/𝑆)−𝑍

9.3. EfÏcient Numerics Representation 298

where 𝑄 is the quantization operator, 𝑟 is a real valued input (in our
case, an activation or weight), 𝑆 is a real valued scaling factor, and 𝑍 is
an integer zero point. The Int function maps a real value to an integer
value through a rounding operation. Through this function, we have
effectively mapped real values 𝑟 to some integer values, resulting in
quantized levels which are uniformly spaced.

When the need arises for practitioners to retrieve the original higher
precision values, real values 𝑟 can be recovered from quantized values
through an operation known as dequantization. In the example above,
this would mean performing the following operation on our quantized
value: ̄𝑟 = 𝑆(𝑄(𝑟)+𝑍)

As discussed, some precision in the real value is lost by quantization.
In this case, the recovered value ̄𝑟 will not exactly match 𝑟 due to the
rounding operation. This is an important tradeoff to note; however,
in many successful uses of quantization, the loss of precision can be
negligible and the test accuracy remains high. Despite this, uniform
quantization continues to be the current de-facto choice due to its sim-
plicity and efÏcient mapping to hardware.

9.3.5.2 Non-uniform Quantization

Non-uniform quantization, on the other hand, does not maintain a
consistent interval between quantized values. This approach might be
used to allocate more possible discrete values in regions where the pa-
rameter values are more densely populated, thereby preserving more
detail where it is most needed. For instance, in bell-shaped distribu-
tions of weights with long tails, a set of weights in a model predomi-
nantly lies within a certain range; thus, more quantization levels might
be allocated to that range to preserve finer details, enabling us to better
capture information. However, one major weakness of non-uniform
quantization is that it requires dequantization before higher precision
computations due to its non-uniformity, restricting its ability to accel-
erate computation compared to uniform quantization.

Typically, a rule-based non-uniform quantization uses a logarithmic
distribution of exponentially increasing steps and levels as opposed
to linearly. Another popular branch lies in binary-code-based quanti-
zation where real number vectors are quantized into binary vectors
with a scaling factor. Notably, there is no closed form solution for
minimizing errors between the real value and non-uniformly quan-
tized value, so most quantizations in this field rely on heuristic solu-
tions. For instance, recent work by C. Xu et al. (2018) formulates non-

https://arxiv.org/abs/1802.00150

CHAPTER 9. MODEL OPTIMIZATIONS 299

uniform quantization as an optimization problem where the quantiza-
tion steps/levels in quantizer 𝑄 are adjusted to minimize the difference
between the original tensor and quantized counterpart.

min𝑄 ||𝑄(𝑟)−𝑟||2
Furthermore, learnable quantizers can be jointly trained with

model parameters, and the quantization steps/levels are generally
trained with iterative optimization or gradient descent. Additionally,
clustering has been used to alleviate information loss from quantiza-
tion. While capable of capturing higher levels of detail, non-uniform
quantization schemes can be difÏcult to deploy efÏciently on general
computation hardware, making it less-preferred to methods which
use uniform quantization.

Figure 9.21.: Quantization uni-
formity. Source: Gholami et al.
(2021).

9.3.5.3 Stochastic Quantization

Unlike the two previous approaches which generate deterministic
mappings, there is some work exploring the idea of stochastic quanti-
zation for quantization-aware training and reduced precision training.
This approach maps floating numbers up or down with a probability
associated to the magnitude of the weight update. The hope generated
by high level intuition is that such a probabilistic approach may allow
a neural network to explore more, as compared to deterministic
quantization. Supposedly, enabling a stochastic rounding may allow
neural networks to escape local optimums, thereby updating its
parameters. Below are two example stochastic mapping functions:

9.3. EfÏcient Numerics Representation 300

Figure 9.22.: Integer vs Binary
quantization functions.

9.3.5.4 Zero Shot Quantization

Zero-shot quantization refers to the process of converting a full-
precision deep learning model directly into a low-precision, quantized
model without the need for any retraining or fine-tuning on the quan-
tized model. The primary advantage of this approach is its efÏciency,
as it eliminates the often time-consuming and resource-intensive pro-
cess of retraining a model post-quantization. By leveraging techniques
that anticipate and minimize quantization errors, zero-shot quantiza-
tion maintains the model’s original accuracy even after reducing its
numerical precision. It is particularly useful for Machine Learning as
a Service (MLaaS) providers aiming to expedite the deployment of
their customer’s workloads without having to access their datasets.

9.3.6 Calibration

Calibration is the process of selecting the most effective clipping range
[𝛼, 𝛽] for weights and activations to be quantized to. For example, con-
sider quantizing activations that originally have a floating-point range
between -6 and 6 to 8-bit integers. If you just take the minimum and
maximum possible 8-bit integer values (-128 to 127) as your quanti-
zation range, it might not be the most effective. Instead, calibration
would involve passing a representative dataset then use this observed
range for quantization.

There are many calibration methods but a few commonly used in-
clude:

• Max: Use the maximum absolute value seen during calibration.
However, this method is susceptible to outlier data. Notice how
in Figure 9.23, we have an outlier cluster around 2.1, while the
rest are clustered around smaller values.

CHAPTER 9. MODEL OPTIMIZATIONS 301

• Entropy: Use KL divergence to minimize information loss be-
tween the original floating-point values and values that could be
represented by the quantized format. This is the default method
used by TensorRT.

• Percentile: Set the range to a percentile of the distribution of abso-
lute values seen during calibration. For example, 99% calibration
would clip 1% of the largest magnitude values.

Figure 9.23.: Input activations
to layer 3 in ResNet50. Source:
@Wu, Judd, and Isaev (2020).

Importantly, the quality of calibration can make a difference between
a quantized model that retains most of its accuracy and one that de-
grades significantly. Hence, it’s an essential step in the quantization
process. When choosing a calibration range, there are two types: sym-
metric and asymmetric.

9.3.6.1 Symmetric Quantization

Symmetric quantization maps real values to a symmetrical clipping
range centered around 0. This involves choosing a range [𝛼, 𝛽] where𝛼 = −𝛽. For example, one symmetrical range would be based on the
min/max values of the real values such that:𝛼 = 𝛽 = 𝑚𝑎𝑥(𝑎𝑏𝑠(𝑟𝑚𝑎𝑥),𝑎𝑏𝑠(𝑟𝑚𝑖𝑛))

Symmetric clipping ranges are the most widely adopted in practice
as they have the advantage of easier implementation. In particular, the
mapping of zero to zero in the clipping range (sometimes called “zero-
ing out of the zero point”) can lead to reduction in computational cost
during inference (Wu, Judd, and Isaev 2020).

https://arxiv.org/abs/2004.09602

9.3. EfÏcient Numerics Representation 302

9.3.6.2 Asymmetric Quantization

Asymmetric quantization maps real values to an asymmetrical clip-
ping range that isn’t necessarily centered around 0, as shown in Fig-
ure 9.24 on the right. It involves choosing a range [𝛼, 𝛽] where 𝛼 ≠ −𝛽.
For example, selecting a range based on the minimum and maximum
real values, or where 𝛼 = 𝑟𝑚𝑖𝑛 and 𝛽 = 𝑟𝑚𝑎𝑥, creates an asymmetric
range. Typically, asymmetric quantization produces tighter clipping
ranges compared to symmetric quantization, which is important when
target weights and activations are imbalanced, e.g., the activation after
the ReLU always has non-negative values. Despite producing tighter
clipping ranges, asymmetric quantization is less preferred to symmet-
ric quantization as it doesn’t always zero out the real value zero.

Figure 9.24.: Quantization
(a)symmetry. Source: Gholami
et al. (2021).

9.3.6.3 Granularity

Upon deciding the type of clipping range, it is essential to tighten the
range to allow a model to retain as much of its accuracy as possible.
We’ll be taking a look at convolutional neural networks as our way of
exploring methods that fine tune the granularity of clipping ranges
for quantization. The input activation of a layer in our CNN under-
goes convolution with multiple convolutional filters. Every convolu-
tional filter can possess a unique range of values. Notice how in Fig-
ure 9.25, the range for Filter 1 is much smaller than that for Filter 3.
Consequently, one distinguishing feature of quantization approaches
is the precision with which the clipping range [α,β] is determined for
the weights.

1. LayerwiseQuantization: This approach determines the clipping
range by considering all of the weights in the convolutional filters
of a layer. Then, the same clipping range is used for all convolu-
tional filters. It’s the simplest to implement, and, as such, it often
results in sub-optimal accuracy due the wide variety of differing
ranges between filters. For example, a convolutional kernel with
a narrower range of parameters loses its quantization resolution
due to another kernel in the same layer having a wider range.

CHAPTER 9. MODEL OPTIMIZATIONS 303

Figure 9.25.: Quantization
granularity: variable ranges.
Source: Gholami et al. (2021).

2. Groupwise Quantization: This approach groups different
channels inside a layer to calculate the clipping range. This
method can be helpful when the distribution of parameters
across a single convolution/activation varies a lot. In practice,
this method was useful in Q-BERT (Shen et al. 2020) for quan-
tizing Transformer (Vaswani et al. 2017) models that consist
of fully-connected attention layers. The downside with this
approach comes with the extra cost of accounting for different
scaling factors.

3. Channelwise Quantization: This popular method uses a fixed
range for each convolutional filter that is independent of other
channels. Because each channel is assigned a dedicated scaling
factor, this method ensures a higher quantization resolution and
often results in higher accuracy.

4. Sub-channelwise Quantization: Taking channelwise quantiza-
tion to the extreme, this method determines the clipping range
with respect to any groups of parameters in a convolution or
fully-connected layer. It may result in considerable overhead
since different scaling factors need to be taken into account
when processing a single convolution or fully-connected layer.

Of these, channelwise quantization is the current standard used for
quantizing convolutional kernels, since it enables the adjustment of
clipping ranges for each individual kernel with negligible overhead.

9.3. EfÏcient Numerics Representation 304

9.3.6.4 Static and Dynamic Quantization

After determining the type and granularity of the clipping range, prac-
titioners must decide when ranges are determined in their range cal-
ibration algorithms. There are two approaches to quantizing activa-
tions: static quantization and dynamic quantization.

Static quantization is the most frequently used approach. In this, the
clipping range is pre-calculated and static during inference. It does not
add any computational overhead, but, consequently, results in lower
accuracy as compared to dynamic quantization. A popular method of
implementing this is to run a series of calibration inputs to compute
the typical range of activations (Jacob et al. 2018; Yao et al. 2021).

Dynamic quantization is an alternative approach which dynamically
calculates the range for each activation map during runtime. The ap-
proach requires real-time computations which might have a very high
overhead. By doing this, dynamic quantization often achieves the high-
est accuracy as the range is calculated specifically for each input.

Between the two, calculating the range dynamically usually is very
costly, so most practitioners will often use static quantization instead.

9.3.7 Techniques

The two prevailing techniques for quantizing models are Post Training
Quantization and Quantization-Aware Training.

Post Training Quantization: Post-training quantization (PTQ) is
a quantization technique where the model is quantized after it has
been trained. The model is trained in floating point and then weights
and activations are quantized as a post-processing step. This is the
simplest approach and does not require access to the training data.
Unlike Quantization-Aware Training (QAT), PTQ sets weight and
activation quantization parameters directly, making it low-overhead
and suitable for limited or unlabeled data situations. However, not
readjusting the weights after quantizing, especially in low-precision
quantization can lead to very different behavior and thus lower
accuracy. To tackle this, techniques like bias correction, equalizing
weight ranges, and adaptive rounding methods have been developed.
PTQ can also be applied in zero-shot scenarios, where no training
or testing data are available. This method has been made even more
efÏcient to benefit compute- and memory- intensive large language
models. Recently, SmoothQuant, a training-free, accuracy-preserving,
and general-purpose PTQ solution which enables 8-bit weight, 8-bit
activation quantization for LLMs, has been developed, demonstrat-
ing up to 1.56x speedup and 2x memory reduction for LLMs with
negligible loss in accuracy (Xiao et al. 2022).

https://arxiv.org/abs/2211.10438

CHAPTER 9. MODEL OPTIMIZATIONS 305

In PTQ, a pretrained model undergoes a calibration process, as
shown in Figure 9.26. Calibration involves using a separate dataset
known as calibration data, a specific subset of the training data
reserved for quantization to help find the appropriate clipping ranges
and scaling factors.

Figure 9.26.: Post-Training
Quantization and calibration.
Source: Gholami et al. (2021).

Quantization-Aware Training: Quantization-aware training (QAT)
is a fine-tuning of the PTQ model. The model is trained aware of
quantization, allowing it to adjust for quantization effects. This pro-
duces better accuracy with quantized inference. Quantizing a trained
neural network model with methods such as PTQ introduces pertur-
bations that can deviate the model from its original convergence point.
For instance, Krishnamoorthi showed that even with per-channel
quantization, networks like MobileNet do not reach baseline accuracy
with int8 Post Training Quantization (PTQ) and require Quantization-
Aware Training (QAT) (Krishnamoorthi 2018).To address this, QAT
retrains the model with quantized parameters, employing forward
and backward passes in floating point but quantizing parameters after
each gradient update. Handling the non-differentiable quantization
operator is crucial; a widely used method is the Straight Through
Estimator (STE), approximating the rounding operation as an identity
function. While other methods and variations exist, STE remains the
most commonly used due to its practical effectiveness. In QAT, a
pretrained model is quantized and then finetuned using training data
to adjust parameters and recover accuracy degradation, as shown in
Figure 9.27. The calibration process is often conducted in parallel with
the finetuning process for QAT.

Quantization-Aware Training serves as a natural extension of Post-

https://arxiv.org/abs/1806.08342

9.3. EfÏcient Numerics Representation 306

Figure 9.27.: Quantization-
Aware Training. Source:
Gholami et al. (2021).

Training Quantization. Following the initial quantization performed
by PTQ, QAT is used to further refine and fine-tune the quantized pa-
rameters - see how in Figure 9.28, the PTQ model undergoes an addi-
tional step, QAT. It involves a retraining process where the model is
exposed to additional training iterations using the original data. This
dynamic training approach allows the model to adapt and adjust its
parameters, compensating for the performance degradation caused by
quantization.

Figure 9.29 shows the relative accuracy of different models after PTQ
and QAT. In almost all cases, QAT yields a better accuracy than PTQ.
Consider for example EfÏcientNet b0. After PTQ, the accuracy drops
from 76.85% to 72.06%. But when we apply QAT, the accuracy re-
bounds to 76.95% (with even a slight improvement over the original
accuracy).

Aspect
Post Training
Quantization

Quantization-
Aware
Training

Dynamic
Quantization

Pros
Simplicity ✓ � �
Accuracy
Preservation

� ✓ ✓

Adaptability � � ✓
Optimized
Performance

� ✓ Potentially

CHAPTER 9. MODEL OPTIMIZATIONS 307

Aspect
Post Training
Quantization

Quantization-
Aware
Training

Dynamic
Quantization

Cons
Accuracy
Degradation

✓ � Potentially

Computational
Overhead

� ✓ ✓

Implementation
Complexity

� ✓ ✓

Tradeoffs
Speed
vs. Accuracy

✓ � �

Accuracy
vs. Cost

� ✓ �

Adaptability
vs. Overhead

� � ✓

9.3.8 Weights vs. Activations

Weight Quantization: Involves converting the continuous or high-
precision weights of a model to lower-precision, such as converting
Float32 weights to quantized INT8 (integer) weights - in Figure 9.30,
weight quantization is taking place in the second step (red squares)
when we multiply the inputs. This reduces the model size, thereby
reducing the memory required to store the model and the computa-
tional resources needed to perform inference. For example, consider
a weight matrix in a neural network layer with Float32 weights as
[0.215, -1.432, 0.902, …]. Through weight quantization, these might be
mapped to INT8 values like [27, -183, 115, …], significantly reducing
the memory required to store them.

Activation Quantization: Involves quantizing the activation values
(outputs of layers) during model inference. This can reduce the com-
putational resources required during inference, but it introduces ad-
ditional challenges in maintaining model accuracy due to the reduced
precision of intermediate computations. For example, in a convolu-
tional neural network (CNN), the activation maps (feature maps) pro-
duced by convolutional layers, originally in Float32, might be quan-
tized to INT8 during inference to accelerate computation, especially
on hardware optimized for integer arithmetic. Additionally, recent
work has explored the use of Activation-aware Weight Quantization
for LLM compression and acceleration, which involves protecting only

9.3. EfÏcient Numerics Representation 308

Figure 9.28.: PTQ and QAT.
Source: “The Ultimate
Guide to Deep Learning
Model Quantization and
Quantization-Aware Training”
(n.d.).

CHAPTER 9. MODEL OPTIMIZATIONS 309

Figure 9.29.: Relative accura-
cies of PTQ and QAT. Source:
Wu, Judd, and Isaev (2020).

Figure 9.30.: Weight and activa-
tion quantization. Source: Har-
vardX.

9.3. EfÏcient Numerics Representation 310

1% of the most important salient weights by observing the activations
not weights (Lin et al. 2023).

9.3.9 Trade-offs

Quantization invariably introduces a trade-off between model
size/performance and accuracy. While it significantly reduces the
memory footprint and can accelerate inference, especially on hard-
ware optimized for low-precision arithmetic, the reduced precision
can degrade model accuracy.

Model Size: A model with weights represented as Float32 being
quantized to INT8 can theoretically reduce the model size by a fac-
tor of 4, enabling it to be deployed on devices with limited memory.
The model size of large language models is developing at a faster pace
than the GPU memory in recent years, leading to a big gap between
the supply and demand for memory. Figure 9.31 illustrates the recent
trend of the widening gap between model size (red line) and accelera-
tor memory (yellow line). Quantization and model compression tech-
niques can help bridge the gap

Figure 9.31.: Model size vs. ac-
celerator memory. Source:
Xiao et al. (2022).

Inference Speed: Quantization can also accelerate inference, as
lower-precision arithmetic is computationally less expensive. For
example, certain hardware accelerators, like Google’s Edge TPU, are
optimized for INT8 arithmetic and can perform inference significantly
faster with INT8 quantized models compared to their floating-point
counterparts. The reduction in memory from quantization helps
reduce the amount of data transmission, saving up memory and
speeding the process. Figure 9.32 compares the increase in through-

https://arxiv.org/pdf/2306.00978.pdf

CHAPTER 9. MODEL OPTIMIZATIONS 311

put and the reduction in bandwidth memory for different data type
on the NVIDIA Turing GPU.

Figure 9.32.: Benefits of lower
precision data types. Source:
Wu, Judd, and Isaev (2020).

Accuracy: The reduction in numerical precision post-quantization
can lead to a degradation in model accuracy, which might be accept-
able in certain applications (e.g., image classification) but not in others
(e.g., medical diagnosis). Therefore, post-quantization, the model typ-
ically requires re-calibration or fine-tuning to mitigate accuracy loss.
Furthermore, recent work has explored the use of Activation-aware
Weight Quantization (Lin et al. 2023) which is based on the observation
that protecting only 1% of salient weights can greatly reduce quantiza-
tion error.

9.3.10 Quantization and Pruning

Pruning and quantization work well together, and it’s been found that
pruning doesn’t hinder quantization. In fact, pruning can help reduce
quantization error. Intuitively, this is due to pruning reducing the
number of weights to quantize, thereby reducing the accumulated er-
ror from quantization. For example, an unpruned AlexNet has 60 mil-
lion weights to quantize whereas a pruned AlexNet only has 6.7 mil-
lion weights to quantize. This significant drop in weights helps reduce
the error between quantizing the unpruned AlexNet vs. the pruned
AlexNet. Furthermore, recent work has found that quantization-aware
pruning generates more computationally efÏcient models than either
pruning or quantization alone; It typically performs similar to or better
in terms of computational efÏciency compared to other neural architec-
ture search techniques like Bayesian optimization (Hawks et al. 2021).

9.3.11 Edge-aware Quantization

Quantization not only reduces model size but also enables faster com-
putations and draws less power, making it vital to edge development.
Edge devices typically have tight resource constraints with compute,
memory, and power, which are impossible to meet for many of the
deep NN models of today. Furthermore, edge processors do not sup-
port floating point operations, making integer quantization particu-

https://arxiv.org/pdf/2306.00978.pdf
https://arxiv.org/pdf/2306.00978.pdf
https://arxiv.org/pdf/2102.11289.pdf

9.3. EfÏcient Numerics Representation 312

Figure 9.33.: Accuracy vs. com-
pression rate under different
compression methods. Source:
Han, Mao, and Dally (2015).

larly important for chips like GAP-8, a RISC-V SoC for edge inference
with a dedicated CNN accelerator, which only support integer arith-
metic.

One hardware platform utilizing quantization is the ARM Cortex-M
group of 32-bit RISC ARM processor cores. They leverage fixed-point
quantization with power of two scaling factors so that quantization
and dequantization can be efÏciently done by bit shifting. Addition-
ally, Google Edge TPUs, Google’s emerging solution for running infer-
ence at the edge, is designed for small, low-powered devices and can
only support 8-bit arithmetic. Many complex neural network models
that could only be deployed on servers due to their high computational
needs can now be run on edge devices thanks to recent advancements
(e.g. quantization methods) in edge computing field.

In addition to being an indispensable technique for many edge pro-
cessors, quantization has also brought noteworthy improvements to
non-edge processors such as encouraging such processors to meet the
Service Level Agreement (SLA) requirements such as 99th percentile
latency.

Thus, quantization combined with efÏcient low-precision logic and
dedicated deep learning accelerators, has been one crucial driving
force for the evolution of such edge processors.

Video 13 is a lecture on quantization and the different quantization
methods.

Video 13: Quantization

https://www.youtube.com/watch?v=AlASZb93rrc

https://www.youtube.com/watch?v=AlASZb93rrc

CHAPTER 9. MODEL OPTIMIZATIONS 313

9.4 EfÏcient Hardware Implementation
EfÏcient hardware implementation transcends the selection of suitable
components; it requires a holistic understanding of how software
will interact with underlying architectures. The essence of achieving
peak performance in TinyML applications lies not only in refining
algorithms to hardware but also in ensuring that the hardware is
strategically tailored to support these algorithms. This synergy
between hardware and software is crucial. As we look deeper into the
intricacies of efÏcient hardware implementation, the significance of
a co-design approach, where hardware and software are developed
in tandem, becomes increasingly evident. This section provides an
overview of the techniques of how hardware and the interactions
between hardware and software can be optimized to improve models
performance.

9.4.1 Hardware-Aware Neural Architecture Search

Focusing only on the accuracy when performing Neural Architecture
Search leads to models that are exponentially complex and require in-
creasing memory and compute. This has lead to hardware constraints
limiting the exploitation of the deep learning models at their full poten-
tial. Manually designing the architecture of the model is even harder
when considering the hardware variety and limitations. This has lead
to the creation of Hardware-aware Neural Architecture Search that in-
corporate the hardware contractions into their search and optimize the
search space for a specific hardware and accuracy. HW-NAS can be
categorized based how it optimizes for hardware. We will briefly ex-
plore these categories and leave links to related papers for the inter-
ested reader.

9.4.1.1 Single Target, Fixed Platform Configuration

The goal here is to find the best architecture in terms of accuracy and
hardware efÏciency for one fixed target hardware. For a specific hard-
ware, the Arduino Nicla Vision for example, this category of HW-NAS
will look for the architecture that optimizes accuracy, latency, energy
consumption, etc.

9.4.1.1.1 Hardware-aware Search Strategy. Here, the search is a
multi-objective optimization problem, where both the accuracy and
hardware cost guide the searching algorithm to find the most efÏcient

9.4. EfÏcient Hardware Implementation 314

architecture (Tan et al. 2019; H. Cai, Zhu, and Han 2019; B. Wu et al.
2019).

9.4.1.1.2 Hardware-aware Search Space. Here, the search space is
restricted to the architectures that perform well on the specific hard-
ware. This can be achieved by either measuring the operators (Conv
operator, Pool operator, …) performance, or define a set of rules that
limit the search space. (L. L. Zhang et al. 2020)

9.4.1.2 Single Target, Multiple Platform Configurations

Some hardware may have different configurations. For example, FP-
GAs have Configurable Logic Blocks (CLBs) that can be configured by
the firmware. This method allows for the HW-NAS to explore different
configurations. (Y. Hu et al. 2023; Ho Yoon et al. 2012)

9.4.1.3 Multiple Targets

This category aims at optimizing a single model for multiple hardware.
This can be helpful for mobile devices development as it can optimize
to different phones models. (Chu et al. 2021; Y. Hu et al. 2023)

9.4.1.4 Examples of Hardware-Aware Neural Architecture Search

9.4.1.4.1 TinyNAS. TinyNAS adopts a two stage approach to find-
ing an optimal architecture for model with the constraints of the spe-
cific microcontroller in mind.

First, TinyNAS generate multiple search spaces by varying the input
resolution of the model, and the number of channels of the layers of the
model. Then, TinyNAS chooses a search space based on the FLOPs
(Floating Point Operations Per Second) of each search space. Spaces
with a higher probability of containing architectures with a large num-
ber of FLOPs yields models with higher accuracies - compare the red
line vs. the black line in Figure 9.34. Since a higher number FLOPs
means the model has a higher computational capacity, the model is
more likely to have a higher accuracy.

Then, TinyNAS performs a search operation on the chosen space to
find the optimal architecture for the specific constraints of the micro-
controller. (J. Lin et al. 2020)

9.4.1.5 Topology-Aware NAS

Focuses on creating and optimizing a search space that aligns with the
hardware topology of the device. (T. Zhang et al. 2020)

CHAPTER 9. MODEL OPTIMIZATIONS 315

Figure 9.34.: Search spaces ac-
curacy. Source: J. Lin et al.
(2020).

9.4.2 Challenges of Hardware-Aware Neural Architec-
ture Search

While HW-NAS carries high potential for finding optimal architectures
for TinyML, it comes with some challenges. Hardware Metrics like
latency, energy consumption and hardware utilization are harder to
evaluate than the metrics of accuracy or loss. They often require spe-
cialized tools for precise measurements. Moreover, adding all these
metrics leads to a much bigger search space. This leads to HW-NAS
being time-consuming and expensive. It has to be applied to every
hardware for optimal results, moreover, meaning that if one needs to
deploy the model on multiple devices, the search has to be conducted
multiple times and will result in different models, unless optimizing
for all of them which means less accuracy. Finally, hardware changes
frequently, and HW-NAS may need to be conducted on each version.

9.4.3 Kernel Optimizations

Kernel Optimizations are modifications made to the kernel to improve
the performance of machine learning models on resource-constrained
devices. We will separate kernel optimizations into two types.

9.4.3.1 General Kernel Optimizations

These are kernel optimizations that all devices can benefit from. They
provide technics to convert the code to more efÏcient instructions.

9.4.3.1.1 Loop unrolling. Instead of having a loop with loop control
(incrementing the loop counter, checking the loop termination condi-
tion) the loop can be unrolled and the overhead of loop control can
be omitted. This may also provide additional opportunities for paral-
lelism that may not be possible with the loop structure. This can be

9.4. EfÏcient Hardware Implementation 316

particularly beneficial for tight loops, where the body of the loop is a
small number of instructions with a lot of iterations.

9.4.3.1.2 Blocking. Blocking is used to make memory access pat-
terns more efÏcient. If we have three computations the first and the last
need to access cache A and the second needs to access cache B, block-
ing blocks the first two computations together to reduce the number of
memory reads needed.

9.4.3.1.3 Tiling. Similarly to blocking, tiling divides data and com-
putation into chunks, but extends beyond cache improvements. Tiling
creates independent partitions of computation that can be run in par-
allel, which can result in significant performance improvements.

9.4.3.1.4 Optimized Kernel Libraries. This comprises developing
optimized kernels that take full advantage of a specific hardware. One
example is the CMSIS-NN library, which is a collection of efÏcient neu-
ral network kernels developed to optimize the performance and min-
imize the memory footprint of models on Arm Cortex-M processors,
which are common on IoT edge devices. The kernel leverage multiple
hardware capabilities of Cortex-M processors like Single Instruction
Multiple Data (SIMD), Floating Point Units (FPUs) and M-Profile Vec-
tor Extensions (MVE). These optimization make common operations
like matrix multiplications more efÏcient, boosting the performance of
model operations on Cortex-M processors. (Lai, Suda, and Chandra
2018b)

9.4.4 Compute-in-Memory (CiM)

This is one example of Algorithm-Hardware Co-design. CiM is a com-
puting paradigm that performs computation within memory. There-
fore, CiM architectures allow for operations to be performed directly
on the stored data, without the need to shuttle data back and forth be-
tween separate processing and memory units. This design paradigm is
particularly beneficial in scenarios where data movement is a primary
source of energy consumption and latency, such as in TinyML appli-
cations on edge devices. Figure 9.35 is one example of using CiM in
TinyML: keyword spotting requires an always-on process that looks for
certain wake words (such as ‘Hey, Siri’). Given the resource-intensive
nature of this task, integrating CiM for the always-on keyword detec-
tion model can improve efÏciency.

Through algorithm-hardware co-design, the algorithms can be opti-
mized to leverage the unique characteristics of CiM architectures, and

CHAPTER 9. MODEL OPTIMIZATIONS 317

conversely, the CiM hardware can be customized or configured to bet-
ter support the computational requirements and characteristics of the
algorithms. This is achieved by using the analog properties of mem-
ory cells, such as addition and multiplication in DRAM. (C. Zhou et al.
2021)

Figure 9.35.: CiM for keyword
spotting. Source: C. Zhou et al.
(2021).

9.4.5 Memory Access Optimization

Different devices may have different memory hierarchies. Optimiz-
ing for the specific memory hierarchy in the specific hardware can
lead to great performance improvements by reducing the costly op-
erations of reading and writing to memory. Dataflow optimization
can be achieved by optimizing for reusing data within a single layer
and across multiple layers. This dataflow optimization can be tailored
to the specific memory hierarchy of the hardware, which can lead to
greater benefits than general optimizations for different hardware.

9.4.5.1 Leveraging Sparsity

Pruning is a fundamental approach to compress models to make them
compatible with resource constrained devices. This results in sparse
models where a lot of weights are 0’s. Therefore, leveraging this spar-
sity can lead to significant improvements in performance. Tools were
created to achieve exactly this. RAMAN, is a sparse TinyML acceler-
ator designed for inference on edge devices. RAMAN overlap input
and output activations on the same memory space, reducing storage
requirements by up to 50%. (Krishna et al. 2023)

9.4.5.2 Optimization Frameworks

Optimization Frameworks have been introduced to exploit the specific
capabilities of the hardware to accelerate the software. One example

9.4. EfÏcient Hardware Implementation 318

of such a framework is hls4ml - Figure 9.36 provides an overview
of the framework’s workflow. This open-source software-hardware
co-design workflow aids in interpreting and translating machine
learning algorithms for implementation with both FPGA and ASIC
technologies. Features such as network optimization, new Python
APIs, quantization-aware pruning, and end-to-end FPGA workflows
are embedded into the hls4ml framework, leveraging parallel pro-
cessing units, memory hierarchies, and specialized instruction sets to
optimize models for edge hardware. Moreover, hls4ml is capable of
translating machine learning algorithms directly into FPGA firmware.

Figure 9.36.: hls4ml framework
workflow. Source: Fahim et al.
(2021).

One other framework for FPGAs that focuses on a holistic approach
is CFU Playground (Prakash, Callahan, et al. 2023)

9.4.5.3 Hardware Built Around Software

In a contrasting approach, hardware can be custom-designed around
software requirements to optimize the performance for a specific ap-
plication. This paradigm creates specialized hardware to better adapt
to the specifics of the software, thus reducing computational overhead
and improving operational efÏciency. One example of this approach is
a voice-recognition application by (J. Kwon and Park 2021). The paper
proposes a structure wherein preprocessing operations, traditionally
handled by software, are allocated to custom-designed hardware. This
technique was achieved by introducing resistor-transistor logic to an
inter-integrated circuit sound module for windowing and audio raw
data acquisition in the voice-recognition application. Consequently,
this ofÒoading of preprocessing operations led to a reduction in com-
putational load on the software, showcasing a practical application of
building hardware around software to improve the efÏciency and per-

CHAPTER 9. MODEL OPTIMIZATIONS 319

formance.

Figure 9.37.: Delegating data
processing to an FPGA. Source:
J. Kwon and Park (2021).

9.4.5.4 SplitNets

SplitNets were introduced in the context of Head-Mounted systems.
They distribute the Deep Neural Networks (DNNs) workload among
camera sensors and an aggregator. This is particularly compelling the
in context of TinyML. The SplitNet framework is a split-aware NAS
to find the optimal neural network architecture to achieve good accu-
racy, split the model among the sensors and the aggregator, and mini-
mize the communication between the sensors and the aggregator. Fig-
ure 9.38 demonstrates how SplitNets (in red) achieves higher accuracy
for lower latency (running on ImageNet) than different approaches,
such as running the DNN on-sensor (All-on-sensor; in green) or on
mobile (All-on-aggregator; in blue). Minimal communication is im-
portant in TinyML where memory is highly constrained, this way the
sensors conduct some of the processing on their chips and then they
send only the necessary information to the aggregator. When testing
on ImageNet, SplitNets were able to reduce the latency by one order
of magnitude on head-mounted devices. This can be helpful when the
sensor has its own chip. (Dong et al. 2022)

9.4.5.5 Hardware Specific Data Augmentation

Each edge device may possess unique sensor characteristics, leading
to specific noise patterns that can impact model performance. One ex-
ample is audio data, where variations stemming from the choice of mi-
crophone are prevalent. Applications such as Keyword Spotting can
experience substantial enhancements by incorporating data recorded
from devices similar to those intended for deployment. Fine-tuning

9.5. Software and Framework Support 320

Figure 9.38.: SplitNets vs other
approaches. Source: Dong et
al. (2022).

of existing models can be employed to adapt the data precisely to the
sensor’s distinctive characteristics.

9.5 Software and Framework Support
While all of the aforementioned techniques like pruning, quantization,
and efÏcient numerics are well-known, they would remain impracti-
cal and inaccessible without extensive software support. For example,
directly quantizing weights and activations in a model would require
manually modifying the model definition and inserting quantization
operations throughout. Similarly, directly pruning model weights re-
quires manipulating weight tensors. Such tedious approaches become
infeasible at scale.

Without the extensive software innovation across frameworks, op-
timization tools and hardware integration, most of these techniques
would remain theoretical or only viable to experts. Without frame-
work APIs and automation to simplify applying these optimizations,
they would not see adoption. Software support makes them accessible
to general practitioners and unlocks real-world benefits. In addition, is-
sues such as hyperparameter tuning for pruning, managing the trade-
off between model size and accuracy, and ensuring compatibility with
target devices pose hurdles that developers must navigate.

CHAPTER 9. MODEL OPTIMIZATIONS 321

9.5.1 Built-in Optimization APIs

Major machine learning frameworks like TensorFlow, PyTorch, and
MXNet provide libraries and APIs to allow common model optimiza-
tion techniques to be applied without requiring custom implementa-
tions. For example, TensorFlow offers the TensorFlow Model Opti-
mization Toolkit which contains modules like:

• quantization - Applies quantization-aware training to convert
floating point models to lower precision like int8 with minimal
accuracy loss. Handles weight and activation quantization.

• sparsity - Provides pruning APIs to induce sparsity and remove
unnecessary connections in models like neural networks. Can
prune weights, layers, etc.

• clustering - Supports model compression by clustering weights
into groups for higher compression rates.

These APIs allow users to enable optimization techniques like
quantization and pruning without directly modifying model code.
Parameters like target sparsity rates, quantization bit-widths etc. can
be configured. Similarly, PyTorch provides torch.quantization for
converting models to lower precision representations. TorchTensor
and TorchModule form the base classes for quantization support. It
also offers torch.nn.utils.prune for built-in pruning of models. MXNet
offers gluon.contrib layers that add quantization capabilities like
fixed point rounding and stochastic rounding of weights/activations
during training. This allows quantization to be readily included in
gluon models.

The core benefit of built-in optimizations is that users can apply
them without re-implementing complex techniques. This makes
optimized models accessible to a broad range of practitioners. It
also ensures best practices are followed by building on research and
experience implementing the methods. As new optimizations emerge,
frameworks strive to provide native support and APIs where possible
to further lower the barrier to efÏcient ML. The availability of these
tools is key to widespread adoption.

9.5.2 Automated Optimization Tools

Automated optimization tools provided by frameworks can analyze
models and automatically apply optimizations like quantization, prun-
ing, and operator fusion to make the process easier and accessible with-
out excessive manual tuning. In effect, this builds on top of the previ-
ous section. For example, TensorFlow provides the TensorFlow Model
Optimization Toolkit which contains modules like:

https://www.tensorflow.org/model_optimization/api_docs/python/tfmot/quantization/keras/quantize_model
https://www.tensorflow.org/model_optimization/api_docs/python/tfmot/sparsity/keras
https://www.tensorflow.org/model_optimization/api_docs/python/tfmot/clustering

9.5. Software and Framework Support 322

• QuantizationAwareTraining - Automatically quantizes weights
and activations in a model to lower precision like UINT8 or INT8
with minimal accuracy loss. It inserts fake quantization nodes
during training so that the model can learn to be quantization-
friendly.

• Pruning - Automatically removes unnecessary connections in a
model based on analysis of weight importance. Can prune entire
filters in convolutional layers or attention heads in transformers.
Handles iterative re-training to recover any accuracy loss.

• GraphOptimizer - Applies graph optimizations like operator
fusion to consolidate operations and reduce execution latency,
especially for inference. In Figure 9.39, you can see the orig-
inal (Source Graph) on the left, and how its operations are
transformed (consolidated) on the right. Notice how Block1 in
Source Graph has 3 separate steps (Convolution, BiasAdd, and
Activation), which are then consolidated together in Block1 on
Optimized Graph.

Figure 9.39.: GraphOptimizer.
Source: Wess et al. (2020).

These automated modules only require the user to provide the
original floating point model, and handle the end-to-end optimiza-
tion pipeline including any re-training to regain accuracy. Other
frameworks like PyTorch also offer increasing automation support, for
example through torch.quantization.quantize_dynamic. Automated

https://www.tensorflow.org/model_optimization/guide/quantization/training
https://www.tensorflow.org/model_optimization/guide/pruning/pruning_with_keras
https://www.tensorflow.org/guide/graph_optimization

CHAPTER 9. MODEL OPTIMIZATIONS 323

optimization makes efÏcient ML accessible to practitioners without
optimization expertise.

9.5.3 Hardware Optimization Libraries

Hardware libraries like TensorRT and TensorFlow XLA allow models
to be highly optimized for target hardware through techniques that we
discussed earlier.

• Quantization: For example, TensorRT and TensorFlow Lite both
support quantization of models during conversion to their for-
mat. This provides speedups on mobile SoCs with INT8/INT4
support.

• Kernel Optimization: For instance, TensorRT does auto-tuning
to optimize CUDA kernels based on the GPU architecture for
each layer in the model graph. This extracts maximum through-
put.

• Operator Fusion: TensorFlow XLA does aggressive fusion to
create optimized binary for TPUs. On mobile, frameworks like
NCNN also support fused operators.

• Hardware-Specific Code: Libraries are used to generate op-
timized binary code specialized for the target hardware. For
example, TensorRT uses Nvidia CUDA/cuDNN libraries which
are hand-tuned for each GPU architecture. This hardware-
specific coding is key for performance. On TinyML devices, this
can mean assembly code optimized for a Cortex M4 CPU for
example. Vendors provide CMSIS-NN and other libraries.

• Data Layout Optimizations: We can efÏciently leverage mem-
ory hierarchy of hardware like cache and registers through tech-
niques like tensor/weight rearrangement, tiling, and reuse. For
example, TensorFlow XLA optimizes buffer layouts to maximize
TPU utilization. This helps any memory constrained systems.

• Profiling-based Tuning: We can use profiling tools to identify
bottlenecks. For example, adjust kernel fusion levels based on
latency profiling. On mobile SoCs, vendors like Qualcomm
provide profilers in SNPE to find optimization opportunities in
CNNs. This data-driven approach is important for performance.

By integrating framework models with these hardware libraries
through conversion and execution pipelines, ML developers can
achieve significant speedups and efÏciency gains from low-level

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html

9.5. Software and Framework Support 324

optimizations tailored to the target hardware. The tight integra-
tion between software and hardware is key to enabling performant
deployment of ML applications, especially on mobile and TinyML
devices.

9.5.4 Visualizing Optimizations

Implementing model optimization techniques without visibility into
the effects on the model can be challenging. Dedicated tooling or
visualization tools can provide critical and useful insight into model
changes and helps track the optimization process. Let’s consider the
optimizations we considered earlier, such as pruning for sparsity and
quantization.

9.5.4.0.1 Sparsity. For example, consider sparsity optimizations.
Sparsity visualization tools can provide critical insights into pruned
models by mapping out exactly which weights have been removed.
For example, sparsity heat maps can use color gradients to indicate the
percentage of weights pruned in each layer of a neural network. Layers
with higher percentages pruned appear darker (see Figure 9.40). This
identifies which layers have been simplified the most by pruning
(Souza 2020).

Figure 9.40.: Sparse network
heat map. Source: Numenta.

Trend plots can also track sparsity over successive pruning rounds -
they may show initial rapid pruning followed by more gradual incre-
mental increases. Tracking the current global sparsity along with statis-
tics like average, minimum, and maximum sparsity per-layer in tables
or plots provides an overview of the model composition. For a sample
convolutional network, these tools could reveal that the first convolu-
tion layer is pruned 20% while the final classifier layer is pruned 70%
given its redundancy. The global model sparsity may increase from
10% after initial pruning to 40% after five rounds.

https://www.numenta.com/blog/2020/10/30/case-for-sparsity-in-neural-networks-part-2-dynamic-sparsity/
https://www.numenta.com/blog/2020/10/30/case-for-sparsity-in-neural-networks-part-2-dynamic-sparsity/

CHAPTER 9. MODEL OPTIMIZATIONS 325

By making sparsity data visually accessible, practitioners can better
understand exactly how their model is being optimized and which ar-
eas are being impacted. The visibility enables them to fine-tune and
control the pruning process for a given architecture.

Sparsity visualization turns pruning into a transparent technique in-
stead of a black-box operation.

9.5.4.0.2 Quantization. Converting models to lower numeric preci-
sions through quantization introduces errors that can impact model
accuracy if not properly tracked and addressed. Visualizing quantiza-
tion error distributions provides valuable insights into the effects of
reduced precision numerics applied to different parts of a model. For
this, histograms of the quantization errors for weights and activations
can be generated. These histograms can reveal the shape of the error
distribution - whether they resemble a Gaussian distribution or con-
tain significant outliers and spikes. Figure 9.41 shows the distributions
of different quantization methods. Large outliers may indicate issues
with particular layers handling the quantization. Comparing the his-
tograms across layers highlights any problem areas standing out with
abnormally high errors.

Figure 9.41.: Quantization er-
rors. Source: Kuzmin et al.
(2022).

Activation visualizations are also important to detect overflow is-
sues. By color mapping the activations before and after quantization,
any values pushed outside the intended ranges become visible. This re-
veals saturation and truncation issues that could skew the information
flowing through the model. Detecting these errors allows recalibrating

9.5. Software and Framework Support 326

activations to prevent loss of information (Mandal 2022). Figure 9.42
is a color mapping of the AlexNet convolutional kernels.

Figure 9.42.: Color map-
ping of activations. Source:
Krizhevsky, Sutskever, and
Hinton (2017).

Other techniques, such as tracking the overall mean square quantiza-
tion error at each step of the quantization-aware training process iden-
tifies fluctuations and divergences. Sudden spikes in the tracking plot
may indicate points where quantization is disrupting the model train-
ing. Monitoring this metric builds intuition on model behavior under
quantization. Together these techniques turn quantization into a trans-
parent process. The empirical insights enable practitioners to properly
assess quantization effects. They pinpoint areas of the model architec-
ture or training process to recalibrate based on observed quantization
issues. This helps achieve numerically stable and accurate quantized
models.

Providing this data enables practitioners to properly assess the im-
pact of quantization and identify potential problem areas of the model
to recalibrate or redesign to be more quantization friendly. This empir-

https://medium.com/exemplifyml-ai/visualizing-neural-network-activation-a27caa451ff

CHAPTER 9. MODEL OPTIMIZATIONS 327

ical analysis builds intuition on achieving optimal quantization.
Visualization tools can provide insights that help practitioners bet-

ter understand the effects of optimizations on their models. The vis-
ibility enables correcting issues early before accuracy or performance
is impacted significantly. It also aids applying optimizations more ef-
fectively for specific models. These optimization analytics help build
intuition when transitioning models to more efÏcient representations.

9.5.5 Model Conversion and Deployment

Once models have been successfully optimized in frameworks like Ten-
sorFlow and PyTorch, specialized model conversion and deployment
platforms are needed to bridge the gap to running them on target de-
vices.

TensorFlow Lite - TensorFlow’s platform to convert models to
a lightweight format optimized for mobile, embedded and edge
devices. Supports optimizations like quantization, kernel fusion, and
stripping away unused ops. Models can be executed using optimized
TensorFlow Lite kernels on device hardware. Critical for mobile and
TinyML deployment.

ONNX Runtime - Performs model conversion and inference for
models in the open ONNX model format. Provides optimized kernels,
supports hardware accelerators like GPUs, and cross-platform deploy-
ment from cloud to edge. Allows framework-agnostic deployment.
Figure 9.43 is an ONNX interoperability map, including major popular
frameworks.

PyTorch Mobile - Enables PyTorch models to be run on iOS and An-
droid by converting to mobile-optimized representations. Provides
efÏcient mobile implementations of ops like convolution and special
functions optimized for mobile hardware.

These platforms integrate with hardware drivers, operating systems,
and accelerator libraries on devices to execute models efÏciently using
hardware optimization. They also ofÒoad operations to dedicated ML
accelerators where present. The availability of these proven, robust
deployment platforms bridges the gap between optimizing models in
frameworks and actual deployment to billions of devices. They allow
users to focus on model development rather than building custom mo-
bile runtimes. Continued innovation to support new hardware and
optimizations in these platforms is key to widespread ML optimiza-
tions.

By providing these optimized deployment pipelines, the entire
workflow from training to device deployment can leverage model
optimizations to deliver performant ML applications. This end-to-end

9.6. Conclusion 328

Figure 9.43.: Interoperability
of ONNX. Source: Towards-
DataScience.

software infrastructure has helped drive the adoption of on-device
ML.

9.6 Conclusion
In this chapter we’ve discussed model optimization across the
software-hardware span. We dove deep into efÏcient model represen-
tation, where we covered the nuances of structured and unstructured
pruning and other techniques for model compression such as knowl-
edge distillation and matrix and tensor decomposition. We also dove
briefly into edge-specific model design at the parameter and model
architecture level, exploring topics like edge-specific models and
hardware-aware NAS.

We then explored efÏcient numerics representations, where we
covered the basics of numerics, numeric encodings and storage,
benefits of efÏcient numerics, and the nuances of numeric represen-
tation with memory usage, computational complexity, hardware
compatibility, and tradeoff scenarios. We finished by honing in on
an efÏcient numerics staple: quantization, where we examined its
history, calibration, techniques, and interaction with pruning.

https://towardsdatascience.com/onnx-preventing-framework-lock-in-9a798fb34c92
https://towardsdatascience.com/onnx-preventing-framework-lock-in-9a798fb34c92

CHAPTER 9. MODEL OPTIMIZATIONS 329

Finally, we looked at how we can make optimizations specific to the
hardware we have. We explored how we can find model architectures
tailored to the hardware, make optimizations in the kernel to better
handle the model, and frameworks built to make the most use out of
the hardware. We also looked at how we can go the other way around
and build hardware around our specific software and talked about
splitting networks to run on multiple processors available on the edge
device.

By understanding the full picture of the degrees of freedom within
model optimization both away and close to the hardware and the trade-
offs to consider when implementing these methods, practitioners can
develop a more thoughtful pipeline for compressing their workloads
onto edge devices.

9.7 Resources
Here is a curated list of resources to support both students and instruc-
tors in their learning and teaching journey. We are continuously work-
ing on expanding this collection and will be adding new exercises in
the near future.

Slides

These slides serve as a valuable tool for instructors to deliver
lectures and for students to review the material at their own
pace. We encourage both students and instructors to leverage
these slides to improve their understanding and facilitate effec-
tive knowledge transfer.

• Quantization:
– Quantization: Part 1.
– Quantization: Part 2.
– Post-Training Quantization (PTQ).
– Quantization-Aware Training (QAT).

• Pruning:
– Pruning: Part 1.
– Pruning: Part 2.

• Knowledge Distillation.

• Clustering.

https://docs.google.com/presentation/d/1GOlLUMkd8OTNvrNj7lDSIGricE-569Nk/edit?usp=drive_link&ouid=102419556060649178683&rtpof=true&sd=true
https://docs.google.com/presentation/d/18oLTdwa-dZxbBNpvHzZVyMS8bUbed4ao/edit?usp=drive_link&ouid=102419556060649178683&rtpof=true&sd=true
https://docs.google.com/presentation/d/1eSOyAOu8Vg_VfIHZ9gWRVjWnmFTOcZ4FavaNMc4reHQ/edit
https://docs.google.com/presentation/d/1qvoKLjKadK1abqUuuCCy9gaTynMZivDKLbV2Hjftri8/edit?usp=drive_link
https://docs.google.com/presentation/d/1KX_I71smbztdqycPXBDAYjShinrTtQeF/edit#slide=id.p1
https://docs.google.com/presentation/d/1kZGDhnkeRcAw1pz3smO837ftotXQEiO7/edit?usp=drive_link&ouid=102419556060649178683&rtpof=true&sd=true
https://docs.google.com/presentation/d/1SXjA3mCSwKmdouuWoxSk7r-Yjd67RG7i/edit#slide=id.g202a77b5f4f_0_110
https://docs.google.com/presentation/d/14K9QFUjiba1NvwG0zobsJdgEklomuM_xeaCP7-5dmY8/edit?usp=drive_link

9.7. Resources 330

• Neural Architecture Search (NAS):

– NAS overview.
– NAS: Part 1.
– NAS: Part 2.

Videos

• Video 13

Exercises

To reinforce the concepts covered in this chapter, we have curated
a set of exercises that challenge students to apply their knowl-
edge and deepen their understanding.

• Exercise 17

• Exercise 18

• Exercise 19

Labs

In addition to exercises, we also offer a series of hands-on labs
that allow students to gain practical experience with embedded
AI technologies. These labs provide step-by-step guidance, en-
abling students to develop their skills in a structured and sup-
portive environment. We are excited to announce that new labs
will be available soon, further enriching the learning experience.

• Coming soon.

https://docs.google.com/presentation/d/1aVGjhj1Q-_JEFHr6CYzPeuMOCiDivzhZCBtg1xV14QM/edit#slide=id.g202a67d8ddf_0_0
https://docs.google.com/presentation/d/1V-ZD6c8KPrFBrrw8xkAQfkqUu4u53zkX/edit?usp=drive_link&ouid=102419556060649178683&rtpof=true&sd=true
https://docs.google.com/presentation/d/1VUf9zyGP9yascD87VSit58S494EPnd8D/edit?usp=drive_link&ouid=102419556060649178683&rtpof=true&sd=true

331

Chapter 10

AI Acceleration

Figure 10.1.: DALL·E 3 Prompt:
Create an intricate and colorful
representation of a System on
Chip (SoC) design in a rectan-
gular format. Showcase a vari-
ety of specialized machine learn-
ing accelerators and chiplets, all
integrated into the processor. Pro-
vide a detailed view inside the chip,
highlighting the rapid movement
of electrons. Each accelerator and
chiplet should be designed to inter-
act with neural network neurons,
layers, and activations, emphasiz-
ing their processing speed. De-
pict the neural networks as a net-
work of interconnected nodes, with
vibrant data streams flowing be-
tween the accelerator pieces, show-
casing the enhanced computation
speed.

Deploying ML on edge devices presents challenges such as limited
processing speed, memory constraints, and stringent energy efÏciency
requirements. To overcome these challenges, specialized hardware
acceleration is key. Hardware accelerators are designed to optimize
compute-intensive tasks like inference by using custom silicon chips
tailored for matrix multiplications, providing significant speedups
compared to general-purpose CPUs. This enables real-time execution
of advanced models on devices with strict constraints on size, weight,
and power.

10.1. Introduction 332

Learning Objectives

• Understand why hardware acceleration is needed for AI
workloads

• Survey key accelerator options like GPUs, TPUs, FPGAs,
and ASICs and their tradeoffs

• Learn about programming models, frameworks, and com-
pilers for AI accelerators

• Appreciate the importance of benchmarking and metrics
for hardware evaluation

• Recognize the role of hardware-software co-design in
building efÏcient systems

• Gain exposure to cutting-edge research directions like neu-
romorphic and quantum computing

• Understand how ML is beginning to augment and improve
hardware design

10.1 Introduction
You’ve probably noticed the growing demand for embedding machine
learning into everyday devices—like the smartphones in our pockets,
smart home appliances, and even autonomous vehicles. Bringing ML
capabilities into these real-world environments is exciting, but it comes
with its own set of challenges. Unlike powerful data center servers,
these edge devices have limited computing resources, making it tricky
to run complex models effectively.

Specialized hardware acceleration is the key to making high-
performance machine learning possible on resource-limited edge
devices. When we talk about hardware acceleration, we’re referring
to the use of custom chips and architectures designed to handle the
heavy lifting of ML operations, taking the burden off the main proces-
sor. In neural networks, some of the most demanding tasks involve
matrix multiplications during inference. Hardware accelerators are
built to optimize these operations, often delivering 10-100x speedups
compared to general-purpose CPUs. This kind of acceleration is what
makes it feasible to run advanced neural network models on devices
that are constrained by size, weight, and power— and to do it all in
real-time.

CHAPTER 10. AI ACCELERATION 333

In this chapter, we’ll take a closer look at the different hardware ac-
celeration techniques available for embedded machine learning and
the tradeoffs that come with each option. The goal is to give you a
solid understanding of how these techniques work, so you can make
informed decisions when it comes to choosing the right hardware and
optimizing your software. By the end, you’ll be well-equipped to de-
velop high-performance machine learning capabilities on edge devices,
even with their constraints.

10.2 Background and Basics

10.2.1 Historical Background

The origins of hardware acceleration date back to the 1960s, with
the advent of floating point math co-processors to ofÒoad calcula-
tions from the main CPU. One early example was the Intel 8087
chip released in 1980 to accelerate floating point operations for the
8086 processor. This established the practice of using specialized
processors to handle math-intensive workloads efÏciently.

In the 1990s, the first graphics processing units (GPUs) emerged
to process graphics pipelines for rendering and gaming rapidly.
Nvidia’s GeForce 256 in 1999 was one of the earliest programmable
GPUs capable of running custom software algorithms. GPUs ex-
emplify domain-specific fixed-function accelerators and evolve into
parallel programmable accelerators.

In the 2000s, GPUs were applied to general-purpose computing
under GPGPU. Their high memory bandwidth and computational
throughput made them well-suited for math-intensive workloads.
This included breakthroughs in using GPUs to accelerate training of
deep learning models such as AlexNet in 2012.

In recent years, Google’s Tensor Processing Units (TPUs) represent
customized ASICs specifically architected for matrix multiplication in
deep learning. During inference, their optimized tensor cores achieve
higher TeraOPS/watt than CPUs or GPUs. Ongoing innovation in-
cludes model compression techniques like pruning and quantization
to fit larger neural networks on edge devices.

This evolution demonstrates how hardware acceleration has focused
on solving compute-intensive bottlenecks, from floating point math to
graphics to matrix multiplication for ML. Understanding this history
provides a crucial context for specialized AI accelerators today.

https://en.wikipedia.org/wiki/Intel_8087
https://en.wikipedia.org/wiki/History_of_the_graphics_processor
https://en.wikipedia.org/wiki/GeForce_256
https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://en.wikipedia.org/wiki/Tensor_processing_unit
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1609.07061

10.2. Background and Basics 334

10.2.2 The Need for Acceleration

The evolution of hardware acceleration is closely tied to the broader
history of computing. Central to this history is the role of transistors,
the fundamental building blocks of modern electronics. Transistors act
as tiny switches that can turn on or off, enabling the complex compu-
tations that drive everything from simple calculators to advanced ma-
chine learning models. In the early decades, chip design was governed
by Moore’s Law, which predicted that the number of transistors on an
integrated circuit would double approximately every two years, and
Dennard Scaling, which observed that as transistors became smaller,
their performance (speed) increased, while power density (power per
unit area) remained constant. These two laws were held through the
single-core era. Figure 10.2 shows the trends of different microproces-
sor metrics. As the figure denotes, Dennard Scaling fails around the
mid-2000s; notice how the clock speed (frequency) remains almost con-
stant even as the number of transistors keeps increasing.

However, as D. A. Patterson and Hennessy (2016) describes, tech-
nological constraints eventually forced a transition to the multicore
era, with chips containing multiple processing cores to deliver perfor-
mance gains. Power limitations prevented further scaling, which led
to “dark silicon” (Dark Silicon), where not all chip areas could be si-
multaneously active (Xiu 2019).

“Dark silicon” refers to portions of the chip that cannot be powered
simultaneously due to thermal and power limitations. Essentially, as
the density of transistors increased, the proportion of the chip that
could be actively used without overheating or exceeding power bud-
gets shrank.

This phenomenon meant that while chips had more transistors,
not all could be operational simultaneously, limiting potential perfor-
mance gains. This power crisis necessitated a shift to the accelerator
era, with specialized hardware units tailored for specific tasks to
maximize efÏciency. The explosion in AI workloads further drove
demand for customized accelerators. Enabling factors included
new programming languages, software tools, and manufacturing
advances.

Fundamentally, hardware accelerators are evaluated on perfor-
mance, power, and silicon area (PPA)—the nature of the target
application—whether memory-bound or compute-bound—heavily
influences the design. For example, memory-bound workloads de-
mand high bandwidth and low latency access, while compute-bound
applications require maximal computational throughput.

https://en.wikipedia.org/wiki/Dark_silicon

CHAPTER 10. AI ACCELERATION 335

Figure 10.2.: Microprocessor
trends. Source: Karl Rupp.

10.2.3 General Principles

The design of specialized hardware accelerators involves navigating
complex tradeoffs between performance, power efÏciency, silicon area,
and workload-specific optimizations. This section outlines core consid-
erations and methodologies for achieving an optimal balance based on
application requirements and hardware constraints.

10.2.3.1 Performance Within Power Budgets

To understand how to achieve the right balance between performance
and power budgets, it’s important to first define a few key concepts
that play a crucial role in this process. Performance broadly refers to
the overall capability of a system to complete computational tasks ef-
fectively within given constraints. One of the key components of per-
formance is throughput, which is the rate at which these tasks are
processed, commonly measured in floating point operations per sec-
ond (FLOPS) or frames per second (FPS). Throughput depends heavily
on parallelism—the ability of the hardware to carry out multiple op-
erations simultaneously—and clock frequency, which is the speed at
which the processor cycles through these operations. Higher through-
put typically leads to better performance, but it also increases power
consumption as activity rises.

Simply maximizing throughput is not enough; the efÏciency of the
hardware also matters. EfÏciency is the measure of how many oper-

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

10.2. Background and Basics 336

ations are performed per watt of power consumed, reflecting the re-
lationship between computational work and energy use. In scenarios
where power is a limiting factor, such as in edge devices, achieving
high efÏciency is critical. To help you remember how these concepts
interconnect, consider the following relationships:

• Performance = Throughput * EfÏciency
• Throughput ~= Parallelism * Clock Frequency
• EfÏciency = Operations / Watt

Hardware accelerators aim to maximize performance within set
power budgets. This requires careful balancing of parallelism, the
chip’s clock frequency, the operating voltage, workload optimization,
and other techniques to maximize operations per watt.

For example, GPUs achieve high throughput via massively paral-
lel architectures. However, their efÏciency is lower than that of cus-
tomized application-specific integrated circuits (ASICs) like Google’s
TPU, which optimize for a specific workload.

10.2.3.2 Managing Silicon Area and Costs

The size of a chip’s area has a direct impact on its manufacturing cost.
To understand why, it helps to know a bit about the manufacturing
process.

Chips are created from large, thin slices of semiconductor material
known as wafers. During manufacturing, each wafer is divided into
multiple smaller blocks called dies, with each die containing the cir-
cuitry for an individual chip. After the wafer is processed, it’s cut into
these individual dies, which are then packaged to form the final chips
used in electronic devices.

Larger dies require more material and are more prone to defects,
which can lower the yield—meaning fewer usable chips are produced
from each wafer. While manufacturers can scale designs by combining
multiple smaller dies into a single package (multi-die packages), this
adds complexity and cost to the packaging and production process.

The amount of silicon area needed on a die depends on several fac-
tors:

• Computational resources - e.g., number of cores, memory,
caches

• Manufacturing process node - smaller transistors enable higher
density

• Programming model - programmed accelerators require more
flexibility

CHAPTER 10. AI ACCELERATION 337

Accelerator design involves squeezing maximum performance
within these silicon area constraints. Techniques like pruning and
compression help fit larger models onto the chip without exceeding
the available space.

10.2.3.3 Workload-Specific Optimizations

Designing effective hardware accelerators requires tailoring the archi-
tecture to the specific demands of the target workload. Different types
of workloads—whether in AI, graphics, or robotics—have unique char-
acteristics that dictate how the accelerator should be optimized.

Some of the key considerations when optimizing hardware for spe-
cific workloads include:

• Memory vs Compute boundedness: Memory-bound workloads
require more memory bandwidth, while compute-bound apps
need arithmetic throughput.

• Data locality: Data movement should be minimized for
efÏciency. Near-compute memory helps.

• Bit-level operations: Low precision datatypes like INT8/INT4
optimize compute density.

• Data parallelism: Multiple replicated compute units allow par-
allel execution.

• Pipelining: Overlapped execution of operations increases
throughput.

Understanding workload characteristics enables customized acceler-
ation. For example, convolutional neural networks use sliding window
operations optimally mapped to spatial arrays of processing elements.

By understanding these architectural tradeoffs, designers can make
informed decisions about the hardware accelerator’s architecture, en-
suring that it delivers the best possible performance for its intended
use.

10.2.3.4 Sustainable Hardware Design

In recent years, AI sustainability has become a pressing concern driven
by two key factors - the exploding scale of AI workloads and their as-
sociated energy consumption.

First, the size of AI models and datasets has rapidly grown. For ex-
ample, based on OpenAI’s AI computing trends, the amount of com-
puting used to train state-of-the-art models doubles every 3.5 months.
This exponential growth requires massive computational resources in
data centers.

10.3. Accelerator Types 338

Second, the energy usage of AI training and inference presents sus-
tainability challenges. Data centers running AI applications consume
substantial energy, contributing to high carbon emissions. It’s esti-
mated that training a large AI model can have a carbon footprint of
626,000 pounds of CO2 equivalent, almost 5 times the lifetime emis-
sions of an average car.

To address these challenges, sustainable hardware design focuses
on optimizing energy efÏciency without compromising performance.
This involves developing specialized accelerators that minimize energy
consumption while maximizing computational throughput.

We will learn about Sustainable AI in a later chapter, where we will
discuss it in more detail.

10.3 Accelerator Types

Hardware accelerators can take on many forms. They can exist as a
widget (like the Neural Engine in the Apple M1 chip) or as entire chips
specially designed to perform certain tasks very well. This section will
examine processors for machine learning workloads along the spec-
trum from highly specialized ASICs to more general-purpose CPUs.

We first focus on custom hardware purpose-built for AI to un-
derstand the most extreme optimizations possible when design
constraints are removed. This establishes a ceiling for performance
and efÏciency. We then progressively consider more programmable
and adaptable architectures, discussing GPUs and FPGAs. These
make tradeoffs in customization to maintain flexibility. Finally,
we cover general-purpose CPUs that sacrifice optimizations for a
particular workload in exchange for versatile programmability across
applications.

By structuring the analysis along this spectrum, we aim to illustrate
the fundamental tradeoffs between utilization, efÏciency, programma-
bility, and flexibility in accelerator design. The optimal balance point
depends on the constraints and requirements of the target application.
This spectrum perspective provides a framework for reasoning about
hardware choices for machine learning and the capabilities required at
each level of specialization.

Figure 10.3 illustrates the complex interplay between flexibility, per-
formance, functional diversity, and area of architecture design. No-
tice how the ASIC is on the bottom-right corner, with minimal area,
flexibility, and power consumption and maximal performance, due
to its highly specialized application-specific nature. A key tradeoff
is functional diversity vs performance: general purpose architectures

../sustainable_ai/sustainable_ai.qmd
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/

CHAPTER 10. AI ACCELERATION 339

can serve diverse applications but their application performance is de-
graded as compared to more customized architectures.

The progression begins with the most specialized option, ASICs
purpose-built for AI, to ground our understanding in the maximum
possible optimizations before expanding to more generalizable archi-
tectures. This structured approach elucidates the accelerator design
space.

Figure 10.3.: Design tradeoffs.
Source: El-Rayis (2014).

10.3.1 Application-Specific Integrated Circuits (ASICs)

An Application-Specific Integrated Circuit (ASIC) is a type of inte-
grated circuit (IC) that is custom-designed for a specific application or
workload rather than for general-purpose use. Unlike CPUs and GPUs,
ASICs do not support multiple applications or workloads. Rather,
they are optimized to perform a single task extremely efÏciently. The
Google TPU is an example of an ASIC.

ASICs achieve this efÏciency by tailoring every aspect of the chip de-
sign - the underlying logic gates, electronic components, architecture,
memory, I/O, and manufacturing process - specifically for the target
application. This level of customization allows removing any unnec-
essary logic or functionality required for general computation. The

https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Integrated_circuit

10.3. Accelerator Types 340

result is an IC that maximizes performance and power efÏciency on
the desired workload. The efÏciency gains from application-specific
hardware are so substantial that these software-centric firms dedicate
enormous engineering resources to designing customized ASICs.

The rise of more complex machine learning algorithms has made the
performance advantages enabled by tailored hardware acceleration a
key competitive differentiator, even for companies traditionally con-
centrated on software engineering. ASICs have become a high-priority
investment for major cloud providers aiming to offer faster AI compu-
tation.

10.3.1.1 Advantages

Due to their customized nature, ASICs provide significant benefits
over general-purpose processors like CPUs and GPUs. The key
advantages include the following.

10.3.1.1.1 Maximized Performance and EfÏciency. The most fun-
damental advantage of ASICs is maximizing performance and power
efÏciency by customizing the hardware architecture specifically for the
target application. Every transistor and design aspect is optimized for
the desired workload - no unnecessary logic or overhead is needed to
support generic computation.

For example, Google’s Tensor Processing Units (TPUs) contain archi-
tectures tailored exactly for the matrix multiplication operations used
in neural networks. To design the TPU ASICs, Google’s engineering
teams need to define the chip specifications clearly, write the architec-
ture description using Hardware Description Languages like Verilog,
synthesize the design to map it to hardware components, and carefully
place-and-route transistors and wires based on the fabrication process
design rules. This complex design process, known as very-large-scale
integration (VLSI), allows them to build an optimized IC for machine
learning workloads.

As a result, TPU ASICs achieve over an order of magnitude higher
efÏciency in operations per watt than general-purpose GPUs on ML
workloads by maximizing performance and minimizing power con-
sumption through a full-stack custom hardware design.

10.3.1.1.2 Specialized On-Chip Memory. ASICs incorporate on-
chip memory, such as SRAM (Static Random Access Memory), and
caches that are specifically optimized to feed data to the computational
units. SRAM is a type of memory that is faster and more reliable than
DRAM (Dynamic Random Access Memory) because it does not need

https://cloud.google.com/tpu/docs/intro-to-tpu
https://www.verilog.com/

CHAPTER 10. AI ACCELERATION 341

to be periodically refreshed. However, it requires more transistors
per bit of data, making it take up more space and more expensive to
produce as compared to DRAM.

SRAM is ideal for on-chip memory, where speed is critical. The ad-
vantage of having large amounts of high-bandwidth, on-chip SRAM is
that data can be stored close to the processing elements, allowing for
rapid access. This provides tremendous speed advantages compared
to acessing off-chip DRAM, which, although larger in capacity, can be
up to 100x slower. For example, Apple’s M1 system-on-a-chip contains
special low-latency SRAM to accelerate the performance of its Neural
Engine machine learning hardware.

Data locality and optimizing memory hierarchy are crucial for high
throughput and low power. Table 10.1 shows “Numbers Everyone
Should Know,” from Jeff Dean.

Table 10.1.: Latency comparison of operations in computing and net-
working.

Operation Latency
L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 25 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 3,000 ns (3 us)
Send 1 KB bytes over 1 Gbps network 10,000 ns (10 us)
Read 4 KB randomly from SSD 150,000 ns (150 us)
Read 1 MB sequentially from memory 250,000 ns (250 us)
Round trip within same datacenter 500,000 ns (0.5 ms)
Read 1 MB sequentially from SSD 1,000,000 ns (1 ms)
Disk seek 10,000,000 ns (10 ms)
Read 1 MB sequentially from disk 20,000,000 ns (20 ms)
Send packet CA → Netherlands → CA 150,000,000 ns (150 ms)

10.3.1.1.3 Custom Datatypes and Operations. Unlike general-
purpose processors, ASICs can be designed to natively support
custom datatypes like INT4 or bfloat16, which are widely used in ML
models. For instance, Nvidia’s Ampere GPU architecture has dedi-
cated bfloat16 Tensor Cores to accelerate AI workloads. Low-precision
datatypes enable higher arithmetic density and performance. Please
refer to Section 8.6 for additional details. ASICs can also directly
incorporate non-standard operations common in ML algorithms as

https://research.google/people/jeff/

10.3. Accelerator Types 342

primitive operations - for example, natively supporting activation
functions like ReLU makes execution more efÏcient.

10.3.1.1.4 High Parallelism. ASIC architectures can leverage higher
parallelism tuned for the target workload versus general-purpose
CPUs or GPUs. More computational units tailored for the application
mean more operations execute simultaneously. Highly parallel ASICs
achieve tremendous throughput for data parallel workloads like
neural network inference.

10.3.1.1.5 Advanced Process Nodes. Cutting-edge manufacturing
processes allow more transistors to be packed into smaller die areas,
increasing density. ASICs designed specifically for high-volume ap-
plications can better amortize the costs of cutting-edge process nodes.

10.3.1.2 Disadvantages

10.3.1.2.1 Long Design Timelines. The engineering process of de-
signing and validating an ASIC can take 2-3 years. Synthesizing the
architecture using hardware description languages, taping out the chip
layout, and fabricating the silicon on advanced process nodes involve
long development cycles. For example, to tape out a 7nm chip, teams
need to define specifications carefully, write the architecture in HDL,
synthesize the logic gates, place components, route all interconnec-
tions, and finalize the layout to send for fabrication. This very large-
scale integration (VLSI) flow means ASIC design and manufacturing
can traditionally take 2-5 years.

There are a few key reasons why the long design timelines of ASICs,
often 2-3 years, can be challenging for machine learning workloads:

• ML algorithms evolve rapidly: New model architectures, train-
ing techniques, and network optimizations are constantly emerg-
ing. For example, Transformers became hugely popular in NLP
last few years. When an ASIC finishes tapeout, the optimal archi-
tecture for a workload may have changed.

• Datasets grow quickly: ASICs designed for certain model sizes
or datatypes can become undersized relative to demand. For in-
stance, natural language models are scaling exponentially with
more data and parameters. A chip designed for BERT might not
accommodate GPT-3.

• ML applications change frequently: The industry focus shifts
between computer vision, speech, NLP, recommender systems,
etc. An ASIC optimized for image classification may have less
relevance in a few years.

CHAPTER 10. AI ACCELERATION 343

• Faster design cycles with GPUs/FPGAs: Programmable acceler-
ators like GPUs can adapt much quicker by upgrading software
libraries and frameworks. New algorithms can be deployed with-
out hardware changes.

• Time-to-market needs: Getting a competitive edge in ML
requires rapidly experimenting with and deploying new ideas.
Waiting several years for an ASIC is different from fast iteration.

The pace of innovation in ML needs to be better matched to the multi-
year timescale for ASIC development. Significant engineering efforts
are required to extend ASIC lifespan through modular architectures,
process scaling, model compression, and other techniques. However,
the rapid evolution of ML makes fixed-function hardware challenging.

10.3.1.2.2 High Non-Recurring Engineering Costs. The fixed costs
of taking an ASIC from design to high-volume manufacturing can be
very capital-intensive, often tens of millions of dollars. Photomask fab-
rication for taping out chips in advanced process nodes, packaging,
and one-time engineering efforts is expensive. For instance, a 7nm chip
tape-out alone could cost millions. The high non-recurring engineer-
ing (NRE) investment narrows ASIC viability to high-volume produc-
tion use cases where the upfront cost can be amortized.

10.3.1.2.3 Complex Integration and Programming. ASICs require
extensive software integration work, including drivers, compilers, OS
support, and debugging tools. They also need expertise in electrical
and thermal packaging. Additionally, efÏciently programming ASIC
architectures can involve challenges like workload partitioning and
scheduling across many parallel units. The customized nature neces-
sitates significant integration efforts to turn raw hardware into fully
operational accelerators.

While ASICs provide massive efÏciency gains on target applications
by tailoring every aspect of the hardware design to one specific task,
their fixed nature results in tradeoffs in flexibility and development
costs compared to programmable accelerators, which must be weighed
based on the application.

10.3.2 Field-Programmable Gate Arrays (FPGAs)

FPGAs are programmable integrated circuits that can be reconfigured
for different applications. Their customizable nature provides advan-
tages for accelerating AI algorithms compared to fixed ASICs or inflex-
ible GPUs. While Google, Meta, and NVIDIA are considering putting

10.3. Accelerator Types 344

ASICs in data centers, Microsoft deployed FPGAs in its data centers
(Putnam et al. 2014) in 2011 to efÏciently serve diverse data center
workloads.

FPGAs have found widespread application in various fields, includ-
ing medical imaging, robotics, and finance, where they excel in han-
dling computationally intensive machine learning tasks. In medical
imaging, an illustrative example is the application of FPGAs for brain
tumor segmentation, a traditionally time-consuming and error-prone
process. Compared to traditional GPU and CPU implementations, FP-
GAs have demonstrated over 5x and 44x performance improvements,
respectively, and 11x and 82x gains in energy efÏciency, highlighting
their potential for demanding applications (Xiong et al. 2021).

10.3.2.1 Advantages

FPGAs provide several benefits over GPUs and ASICs for accelerating
machine learning workloads.

10.3.2.1.1 Flexibility Through Reconfigurable Fabric. The key ad-
vantage of FPGAs is the ability to reconfigure the underlying fabric
to implement custom architectures optimized for different models, un-
like fixed-function ASICs. For example, quant trading firms use FP-
GAs to accelerate their algorithms because they change frequently, and
the low NRE cost of FPGAs is more viable than tapping out new ASICs.
Figure 10.4 contains a table comparing three different FPGAs.

Figure 10.4.: Comparison of
FPGAs. Source: Gwennap
(n.d.).

FPGAs comprise basic building blocks - configurable logic blocks,
RAM blocks, and interconnects. Vendors provide a base amount of
these resources, and engineers program the chips by compiling HDL
code into bitstreams that rearrange the fabric into different configura-
tions. This makes FPGAs adaptable as algorithms evolve.

While FPGAs may not achieve the utmost performance and efÏ-
ciency of workload-specific ASICs, their programmability provides

CHAPTER 10. AI ACCELERATION 345

more flexibility as algorithms change. This adaptability makes FPGAs
a compelling choice for accelerating evolving machine learning
applications.

10.3.2.1.2 Customized Parallelism and Pipelining. FPGA architec-
tures can leverage spatial parallelism and pipelining by tailoring the
hardware design to mirror the parallelism in ML models. For exam-
ple, Intel’s HARPv2 FPGA platform splits the layers of an MNIST con-
volutional network across separate processing elements to maximize
throughput. Unique parallel patterns like tree ensemble evaluations
are also possible on FPGAs. Deep pipelines with optimized buffer-
ing and dataflow can be customized to each model’s structure and
datatypes. This level of tailored parallelism and pipelining is not fea-
sible on GPUs.

10.3.2.1.3 Low Latency On-Chip Memory. Large amounts of high-
bandwidth on-chip memory enable localized storage for weights and
activations. For instance, Xilinx Versal FPGAs contain 32MB of low-
latency RAM blocks and dual-channel DDR4 interfaces for external
memory. Bringing memory physically closer to the compute units
reduces access latency. This provides significant speed advantages
over GPUs that traverse PCIe or other system buses to reach off-chip
GDDR6 memory.

10.3.2.1.4 Native Support for Low Precision. A key advantage of
FPGAs is the ability to natively implement any bit width for arithmetic
units, such as INT4 or bfloat16, used in quantized ML models. For
example, Intel’s Stratix 10 NX FPGAs have dedicated INT8 cores that
can achieve up to 143 INT8 TOPS (Tera Operations Per Second) at ~1
TOPS/W (Tera Operations Per Second per Watt) Intel Stratix 10 NX
FPGA. TOPS is a measure of performance similar to FLOPS, but while
FLOPS measures floating-point calculations, TOPS measures the num-
ber of integer operations a system can perform per second. Lower
bit widths, like INT8 or INT4, increase arithmetic density and perfor-
mance. FPGAs can even support mixed precision or dynamic precision
tuning at runtime.

10.3.2.2 Disadvantages

10.3.2.2.1 Lower Peak Throughput than ASICs. FPGAs cannot
match the raw throughput numbers of ASICs customized for a specific
model and precision. The overheads of the reconfigurable fabric com-
pared to fixed function hardware result in lower peak performance.

https://www.intel.com/content/www/us/en/products/details/fpga/stratix/10/nx.html
https://www.intel.com/content/www/us/en/products/details/fpga/stratix/10/nx.html

10.3. Accelerator Types 346

For example, the TPU v5e pods allow up to 256 chips to be connected
with more than 100 petaOps (Peta Operations Per Second) of INT8
performance, while FPGAs can offer up to 143 INT8 TOPS or 286 INT4
TOPS Intel Stratix 10 NX FPGA. PetaOps represents quadrillions of
operations per second, whereas TOPS measures trillions, highlighting
the much greater throughput capability of TPU pods compared to
FPGAs.

This is because FPGAs comprise basic building blocks—configurable
logic blocks, RAM blocks, and interconnects. Vendors provide a set
amount of these resources. To program FPGAs, engineers write
HDL code and compile it into bitstreams that rearrange the fabric,
which has inherent overheads versus an ASIC purpose-built for one
computation.

10.3.2.2.2 Programming Complexity. To optimize FPGA per-
formance, engineers must program the architectures in low-level
hardware description languages like Verilog or VHDL. This requires
hardware design expertise and longer development cycles than
higher-level software frameworks like TensorFlow. Maximizing
utilization can be challenging despite advances in high-level synthesis
from C/C++.

10.3.2.2.3 Reconfiguration Overheads. Changing FPGA configura-
tions requires reloading a new bitstream, which has considerable la-
tency and storage size costs. For example, partial reconfiguration on
Xilinx FPGAs can take 100s of milliseconds. This makes dynamically
swapping architectures in real-time infeasible. The bitstream storage
also consumes on-chip memory.

10.3.2.2.4 Diminishing Gains on Advanced Nodes. While smaller
process nodes greatly benefit ASICs, they provide fewer advantages
for FPGAs. At 7nm and below, effects like process variation, thermal
constraints, and aging disproportionately impact FPGA performance.
The overheads of the configurable fabric also diminish gains compared
to fixed-function ASICs.

10.3.3 Digital Signal Processors (DSPs)

The first digital signal processor core was built in 1948 by Texas In-
struments (The Evolution of Audio DSPs). Traditionally, DSPs would
have logic to directly access digital/audio data in memory, perform an
arithmetic operation (multiply-add-accumulate-MAC was one of the
most common operations), and then write the result back to memory.

https://www.intel.com/content/www/us/en/products/details/fpga/stratix/10/nx.html
https://audioxpress.com/article/the-evolution-of-audio-dsps

CHAPTER 10. AI ACCELERATION 347

The DSP would include specialized analog components to retrieve dig-
ital/audio data.

Once we entered the smartphone era, DSPs started encompassing
more sophisticated tasks. They required Bluetooth, Wi-Fi, and cellu-
lar connectivity. Media also became much more complex. Today, it’s
rare to have entire chips dedicated to just DSP, but a System on Chip
would include DSPs and general-purpose CPUs. For example, Qual-
comm’s Hexagon Digital Signal Processor claims to be a “world-class
processor with both CPU and DSP functionality to support deeply em-
bedded processing needs of the mobile platform for both multimedia
and modem functions.” Google Tensors, the chip in the Google Pixel
phones, also includes CPUs and specialized DSP engines.

10.3.3.1 Advantages

DSPs architecturally provide advantages in vector math throughput,
low latency memory access, power efÏciency, and support for diverse
datatypes - making them well-suited for embedded ML acceleration.

10.3.3.1.1 Optimized Architecture for Vector Math. DSPs contain
specialized data paths, register files, and instructions optimized specif-
ically for vector math operations commonly used in machine learning
models. This includes dot product engines, MAC units, and SIMD
capabilities tailored for vector/matrix calculations. For example, the
CEVA-XM6 DSP (“Ceva SensPro Fuses AI and Vector DSP”) has 512-
bit vector units to accelerate convolutions. This efÏciency on vector
math workloads is far beyond general CPUs.

10.3.3.1.2 Low Latency On-Chip Memory. DSPs integrate large
amounts of fast on-chip SRAM memory to hold data locally for
processing. Bringing memory physically closer to the computation
units reduces access latency. For example, Analog’s SHARC+ DSP
contains 10MB of on-chip SRAM. This high-bandwidth local memory
provides speed advantages for real-time applications.

10.3.3.1.3 Power EfÏciency. DSPs are engineered to provide high
performance per watt on digital signal workloads. EfÏcient data paths,
parallelism, and memory architectures enable trillions of math oper-
ations per second within tight mobile power budgets. For example,
Qualcomm’s Hexagon DSP can deliver 4 trillion operations per second
(TOPS) while consuming minimal watts.

https://developer.qualcomm.com/software/hexagon-dsp-sdk/dsp-processor
https://blog.google/products/pixel/google-tensor-g3-pixel-8/
https://www.ceva-dsp.com/wp-content/uploads/2020/04/Ceva-SensPro-Fuses-AI-and-Vector-DSP.pdf
https://developer.qualcomm.com/software/hexagon-dsp-sdk/dsp-processor

10.3. Accelerator Types 348

10.3.3.1.4 Support for Integer and Floating Point Math. Unlike
GPUs that excel at single or half precision, DSPs can natively support
8/16-bit integer and 32-bit floating point datatypes used across
ML models. Some DSPs support dot product acceleration at INT8
precision for quantized neural networks.

10.3.3.2 Disadvantages

DSPs make architectural tradeoffs that limit peak throughput, preci-
sion, and model capacity compared to other AI accelerators. However,
their advantages in power efÏciency and integer math make them a
strong edge computing option. So, while DSPs provide some benefits
over CPUs, they also come with limitations for machine learning work-
loads:

10.3.3.2.1 Lower Peak Throughput than ASICs/GPUs. DSPs can-
not match the raw computational throughput of GPUs or customized
ASICs designed specifically for machine learning. For example, Qual-
comm’s Cloud AI 100 ASIC delivers 480 TOPS on INT8, while their
Hexagon DSP provides 10 TOPS. DSPs lack the massive parallelism of
GPU SM units.

10.3.3.2.2 Slower Double Precision Performance. Most DSPs must
be optimized for the higher precision floating point needed in some
ML models. Their dot product engines focus on INT8/16 and FP32,
which provide better power efÏciency. However, 64-bit floating point
throughput is much lower, which can limit usage in models requiring
high precision.

10.3.3.2.3 Constrained Model Capacity. The limited on-chip mem-
ory of DSPs constrains the model sizes that can be run. Large deep
learning models with hundreds of megabytes of parameters would ex-
ceed on-chip SRAM capacity. DSPs are best suited for small to mid-
sized models targeted for edge devices.

10.3.3.2.4 Programming Complexity. EfÏcient programming of
DSP architectures requires expertise in parallel programming and
optimizing data access patterns. Their specialized microarchitectures
have a steeper learning curve than high-level software frameworks,
making development more complex.

CHAPTER 10. AI ACCELERATION 349

10.3.4 Graphics Processing Units (GPUs)

The term graphics processing unit has existed since at least the 1980s.
There had always been a demand for graphics hardware in video game
consoles (high demand, needed to be relatively lower cost) and scien-
tific simulations (lower demand, but higher resolution, could be at a
high price point).

The term was popularized, however, in 1999 when NVIDIA
launched the GeForce 256, mainly targeting the PC games market
sector (E. Lindholm et al. 2008). As PC games became more sophis-
ticated, NVIDIA GPUs became more programmable. Soon, users
realized they could take advantage of this programmability, run
various non-graphics-related workloads on GPUs, and benefit from
the underlying architecture. And so, in the late 2000s, GPUs became
general-purpose graphics processing units or GP-GPUs.

Following this shift, other major players like Intel with its Arc Graph-
ics and AMD with their Radeon RX series also evolved their GPUs to
support a broader range of applications beyond traditional graphics
rendering. This expansion of GPU capabilities opened up new possi-
bilities, particularly in fields requiring massive computational power.

A striking example of this potential is the recent groundbreaking re-
search conducted by OpenAI (Brown et al. 2020) with GPT-3, a lan-
guage model with 175 billion parameters. Training such a massive
model, which would have taken months on conventional CPUs, was
completed in a matter of days using powerful GPUs, showcasing the
transformative impact of GPUs in accelerating complex machine learn-
ing tasks.

10.3.4.1 Advantages

10.3.4.1.1 High Computational Throughput. The key advantage of
GPUs is their ability to perform massively parallel floating-point cal-
culations optimized for computer graphics and linear algebra (Raina,
Madhavan, and Ng 2009). Modern GPUs like Nvidia’s A100 offer up
to 19.5 teraflops of FP32 performance with 6912 CUDA cores and 40GB
of graphics memory tightly coupled with 1.6TB/s of graphics memory
bandwidth.

This raw throughput stems from the highly parallel streaming mul-
tiprocessor (SM) architecture tailored for data-parallel workloads (Zhi-
hao Jia, Zaharia, and Aiken 2019). Each SM contains hundreds of scalar
cores optimized for float32/64 math. With thousands of SMs on a
chip, GPUs are purpose-built for matrix multiplication and vector op-
erations used throughout neural networks.

https://www.intel.com/content/www/us/en/products/details/fpga/stratix/10/nx.html
https://www.intel.com/content/www/us/en/products/details/fpga/stratix/10/nx.html
https://www.amd.com/en/graphics/radeon-rx-graphics

10.3. Accelerator Types 350

For example, Nvidia’s latest H100 GPU provides 4000 TFLOPs of
FP8, 2000 TFLOPs of FP16, 1000 TFLOPs of TF32, 67 TFLOPs of FP32
and 34 TFLOPs of FP64 compute performance, which can dramatically
accelerate large batch training on models like BERT, GPT-3, and other
transformer architectures. The scalable parallelism of GPUs is key to
speeding up computationally intensive deep learning.

10.3.4.1.2 Mature Software Ecosystem. Nvidia provides extensive
runtime libraries like cuDNN and cuBLAS that are highly optimized
for deep learning primitives. Frameworks like TensorFlow and Py-
Torch integrate with these libraries to enable GPU acceleration with-
out direct programming. These libraries are built on top of CUDA,
Nvidia’s parallel computing platform and programming model.

CUDA (Compute Unified Device Architecture) is the underlying
framework that allows these high-level libraries to interact with the
GPU’s hardware. It provides developers with low-level access to the
GPU’s resources, enabling custom computations and optimizations
that fully leverage the GPU’s parallel processing capabilities. By
using CUDA, developers can write software that exploits the GPU’s
architecture for high-performance computing tasks.

This ecosystem enables quick leveraging of GPUs via high-level
Python without GPU programming expertise. Known workflows and
abstractions provide a convenient on-ramp for scaling up deep learn-
ing experiments. The software maturity supplements the throughput
advantages.

10.3.4.1.3 Broad Availability. The economies of scale of graphics
processing make GPUs broadly accessible in data centers, cloud plat-
forms like AWS and GCP, and desktop workstations. Their availability
in research environments has provided a convenient ML experimen-
tation and innovation platform. For example, nearly every state-of-
the-art deep learning result has involved GPU acceleration because of
this ubiquity. The broad access supplements the software maturity to
make GPUs the standard ML accelerator.

10.3.4.1.4 Programmable Architecture. While not as flexible as FP-
GAs, GPUs provide programmability via CUDA and shader languages
to customize computations. Developers can optimize data access pat-
terns, create new ops, and tune precisions for evolving models and
algorithms.

https://www.nvidia.com/en-us/data-center/h100/
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cublas

CHAPTER 10. AI ACCELERATION 351

10.3.4.2 Disadvantages

While GPUs have become the standard accelerator for deep learning,
their architecture has some key downsides.

10.3.4.2.1 Less EfÏcient thanCustomASICs. The statement “GPUs
are less efÏcient than ASICs” could spark intense debate within the
ML/AI field and cause this book to explode.

Typically, GPUs are perceived as less efÏcient than ASICs because
the latter are custom-built for specific tasks and thus can operate more
efÏciently by design. With their general-purpose architecture, GPUs
are inherently more versatile and programmable, catering to a broad
spectrum of computational tasks beyond ML/AI.

However, modern GPUs have evolved to include specialized hard-
ware support for essential AI operations, such as generalized matrix
multiplication (GEMM) and other matrix operations, native support
for quantization, and native support for pruning, which are critical
for running ML models effectively. These enhancements have signifi-
cantly improved the efÏciency of GPUs for AI tasks to the point where
they can rival the performance of ASICs for certain applications.

Consequently, contemporary GPUs are convergent, incorporating
specialized ASIC-like capabilities within a flexible, general-purpose
processing framework. This adaptability has blurred the lines between
the two types of hardware. GPUs offer a strong balance of specializa-
tion and programmability that is well-suited to the dynamic needs of
ML/AI research and development.

10.3.4.2.2 HighMemory BandwidthNeeds. The massively parallel
architecture requires tremendous memory bandwidth to supply thou-
sands of cores. For example, the Nvidia A100 GPU requires 1.6TB/sec
to fully saturate its computer. GPUs rely on wide 384-bit memory
buses to high-bandwidth GDDR6 RAM, but even the fastest GDDR6
tops out at around 1 TB/sec. This dependence on external DRAM in-
curs latency and power overheads.

10.3.4.2.3 Programming Complexity. While tools like CUDA help,
optimally mapping and partitioning ML workloads across the mas-
sively parallel GPU architecture remains challenging, achieving both
high utilization and memory locality requires low-level tuning (Zhe
Jia et al. 2018). Abstractions like TensorFlow can leave performance on
the table.

10.3. Accelerator Types 352

10.3.4.2.4 Limited On-Chip Memory. GPUs have relatively small
on-chip memory caches compared to ML models’ large working set
requirements during training. They rely on high bandwidth access to
external DRAM, which ASICs minimize with large on-chip SRAM.

10.3.4.2.5 FixedArchitecture. Unlike FPGAs, the fundamental GPU
architecture cannot be altered post-manufacture. This constraint limits
adapting to novel ML workloads or layers. The CPU-GPU boundary
also creates data movement overheads.

10.3.5 Central Processing Units (CPUs)

The term CPUs has a long history that dates back to 1955 (Weik 1955)
while the first microprocessor CPU-the Intel 4004-was invented in 1971
(Who Invented the Microprocessor?). Compilers compile high-level
programming languages like Python, Java, or C to assemble instruc-
tions (x86, ARM, RISC-V, etc.) for CPUs to process. The set of instruc-
tions a CPU understands is called the “instruction set architecture”
(ISA), which defines the commands that the processor can execute di-
rectly. It must be agreed upon by both the hardware and software run-
ning atop it.

An overview of significant developments in CPUs:

• Single-core Era (1950s- 2000): This era is known for aggressive
microarchitectural improvements. Techniques like speculative
execution (executing an instruction before the previous one
was done), out-of-order execution (re-ordering instructions to
be more effective), and wider issue widths (executing multiple
instructions at once) were implemented to increase instruction
throughput. The term “System on Chip” also originated in this
era as different analog components (components designed with
transistors) and digital components (components designed with
hardware description languages that are mapped to transistors)
were put on the same platform to achieve some task.

• Multicore Era (2000s): Driven by the decrease of Moore’s Law,
this era is marked by scaling the number of cores within a CPU.
Now, tasks can be split across many different cores, each with its
own datapath and control unit. Many of the issues in this era
pertained to how to share certain resources, which resources to
share, and how to maintain coherency and consistency across all
the cores.

• Sea of accelerators (2010s): Again, driven by the decrease of
Moore’s law, this era is marked by ofÒoading more complicated
tasks to accelerators (widgets) attached to the main datapath

https://computerhistory.org/blog/who-invented-the-microprocessor/

CHAPTER 10. AI ACCELERATION 353

in CPUs. It’s common to see accelerators dedicated to various
AI workloads, as well as image/digital processing, and cryp-
tography. In these designs, CPUs are often described more as
judges, deciding which tasks should be processed rather than
doing the processing itself. Any task could still be run on the
CPU rather than the accelerators, but the CPU would generally
be slower. However, the cost of designing and programming
the accelerator became a non-trivial hurdle that sparked interest
in design-specific libraries (DSLs).

• Presence in data centers: Although we often hear that GPUs
dominate the data center marker, CPUs are still well suited for
tasks that don’t inherently possess a large amount of parallelism.
CPUs often handle serial and small tasks and coordinate the data
center.

• On the edge: Given the tighter resource constraints on the edge,
edge CPUs often only implement a subset of the techniques de-
veloped in the sing-core era because these optimizations tend to
be heavy on power and area consumption. Edge CPUs still main-
tain a relatively simple datapath with limited memory capacities.

Traditionally, CPUs have been synonymous with general-purpose
computing, a term that has also changed as the “average” workload a
consumer would run changes over time. For example, floating point
components were once considered reserved for “scientific computing,”
they were usually implemented as a co-processor (a modular compo-
nent that worked with the datapath) and seldom deployed to average
consumers. Compare this attitude to today, where FPUs are built into
every datapath.

10.3.5.1 Advantages

While raw throughput is limited, general-purpose CPUs provide prac-
tical AI acceleration benefits.

10.3.5.1.1 General Programmability. CPUs support diverse work-
loads beyond ML, providing flexible general-purpose programmabil-
ity. This versatility comes from their standardized instruction sets and
mature compiler ecosystems, which allow running any application,
from databases and web servers to analytics pipelines (Hennessy and
Patterson 2019).

This avoids the need for dedicated ML accelerators and enables lever-
aging existing CPU-based infrastructure for basic ML deployment. For
example, X86 servers from vendors like Intel and AMD can run com-

10.3. Accelerator Types 354

mon ML frameworks using Python and TensorFlow packages along-
side other enterprise workloads.

10.3.5.1.2 Mature Software Ecosystem. For decades, highly opti-
mized math libraries like BLAS, LAPACK, and FFTW have leveraged
vectorized instructions and multithreading on CPUs (Dongarra 2009).
Major ML frameworks like PyTorch, TensorFlow, and SciKit-Learn are
designed to integrate seamlessly with these CPU math kernels.

Hardware vendors like Intel and AMD also provide low-level
libraries to optimize performance for deep learning primitives
fully (AI Inference Acceleration on CPUs). This robust, mature
software ecosystem allows quickly deploying ML on existing CPU
infrastructure.

10.3.5.1.3 Wide Availability. The economies of scale of CPU man-
ufacturing, driven by demand across many markets like PCs, servers,
and mobile, make them ubiquitously available. Intel CPUs, for exam-
ple, have powered most servers for decades (Ranganathan 2011). This
wide availability in data centers reduces hardware costs for basic ML
deployment.

Even small embedded devices typically integrate some CPU, en-
abling edge inference. The ubiquity reduces the need to purchase
specialized ML accelerators in many situations.

10.3.5.1.4 Low Power for Inference. Optimizations like ARM Neon
and Intel AVX vector extensions provide power-efÏcient integer and
floating point throughput optimized for “bursty” workloads such as
inference (Ignatov et al. 2018). While slower than GPUs, CPU infer-
ence can be deployed in power-constrained environments. For exam-
ple, ARM’s Cortex-M CPUs now deliver over 1 TOPS of INT8 perfor-
mance under 1W, enabling keyword spotting and vision applications
on edge devices (ARM).

10.3.5.2 Disadvantages

While providing some advantages, general-purpose CPUs also have
limitations for AI workloads.

10.3.5.2.1 Lower Throughput thanAccelerators. CPUs lack the spe-
cialized architectures for massively parallel processing that GPUs and
other accelerators provide. Their general-purpose design reduces com-
putational throughput for the highly parallelizable math operations
common in ML models (N. P. Jouppi et al. 2017a).

https://www.netlib.org/blas/
https://hpc.llnl.gov/software/mathematical-software/lapack#:~:text=The%20Linear%20Algebra%20PACKage%20(LAPACK,problems%2C%20and%20singular%20value%20decomposition.)
https://www.fftw.org/
https://www.intel.com/content/www/us/en/developer/articles/technical/ai-inference-acceleration-on-intel-cpus.html#gs.0w9qn2
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/armv8_2d00_m-based-processor-software-development-hints-and-tips

CHAPTER 10. AI ACCELERATION 355

10.3.5.2.2 Not Optimized for Data Parallelism. The architectures
of CPUs are not specifically optimized for data parallel workloads in-
herent to AI (Sze et al. 2017). They allocate substantial silicon area to
instruction decoding, speculative execution, caching, and flow control
that provides little benefit for the array operations used in neural net-
works (AI Inference Acceleration on CPUs). However, modern CPUs
are equipped with vector instructions like AVX-512 specifically to ac-
celerate certain key operations like matrix multiplication.

GPU streaming multiprocessors, for example, devote most transis-
tors to floating point units instead of complex branch prediction logic.
This specialization allows much higher utilization for ML math.

10.3.5.2.3 Higher Memory Latency. CPUs suffer from higher
latency accessing main memory relative to GPUs and other accel-
erators (DDR). Techniques like tiling and caching can help, but the
physical separation from off-chip RAM bottlenecks data-intensive
ML workloads. This emphasizes the need for specialized memory
architectures in ML hardware.

10.3.5.2.4 Power InefÏciency Under Heavy Workloads. While suit-
able for intermittent inference, sustaining near-peak throughput for
training results in inefÏcient power consumption on CPUs, especially
mobile CPUs (Ignatov et al. 2018). Accelerators explicitly optimize
the data flow, memory, and computation for sustained ML workloads.
CPUs are energy-inefÏcient for training large models.

10.3.6 Comparison

Table 10.2 compares the different types of hardware features.

https://www.intel.com/content/www/us/en/developer/articles/technical/ai-inference-acceleration-on-intel-cpus.html#gs.0w9qn2
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/what-is-intel-avx-512.html
https://www.integralmemory.com/articles/the-evolution-of-ddr-sdram/

10.3. Accelerator Types 356

Table 10.2.: Comparison of different hardware accelerators for AI work-
loads.

AcceleratorDescription Key Advantages
Key
Disadvantages

ASICs Custom ICs
designed for
target workloads
like AI inference

• Maximizes
perf/watt.

• Optimized
for tensor
ops

• Low
latency
on-chip
memory

• Fixed
architecture
lacks
flexibility

• High NRE
cost

• Long design
cycles

FPGAs Reconfigurable
fabric with
programmable
logic and routing

• Flexible ar-
chitecture

• Low
latency
memory
access

• Lower
perf/watt
than ASICs

• Complex
program-
ming

GPUs Originally for
graphics, now
used for neural
network
acceleration

• High
throughput

• Parallel
scalability

• Software
ecosystem
with
CUDA

• Not as
power
efÏcient as
ASICs

• Require
high
memory
bandwidth

CPUs General purpose
processors

•
Programmability

• Ubiquitous
availability

• Lower per-
formance
for AI
workloads

In general, CPUs provide a readily available baseline, GPUs deliver
broadly accessible acceleration, FPGAs offer programmability, and
ASICs maximize efÏciency for fixed functions. The optimal choice
depends on the target application’s scale, cost, flexibility, and other
requirements.

Although first developed for data center deployment, Google has
also put considerable effort into developing Edge TPUs. These Edge
TPUs maintain the inspiration from systolic arrays but are tailored to
the limited resources accessible at the edge.

https://cloud.google.com/edge-tpu

CHAPTER 10. AI ACCELERATION 357

10.4 Hardware-Software Co-Design
Hardware-software co-design is based on the principle that AI systems
achieve optimal performance and efÏciency when the hardware and
software components are designed in tight integration. This involves
an iterative, collaborative design cycle where the hardware architec-
ture and software algorithms are concurrently developed and refined
with continuous feedback between teams.

For example, a new neural network model may be prototyped on an
FPGA-based accelerator platform to obtain real performance data early
in the design process. These results provide feedback to the hardware
designers on potential optimizations and the software developers on
refinements to the model or framework to better leverage the hardware
capabilities. This level of synergy is difÏcult to achieve with the com-
mon practice of software being developed independently to deploy on
fixed commodity hardware.

Co-design is critical for embedded AI systems facing significant
resource constraints like low power budgets, limited memory and com-
pute capacity, and real-time latency requirements. Tight integration
between algorithm developers and hardware architects helps unlock
optimizations across the stack to meet these restrictions. Enabling
techniques include algorithmic improvements like neural architecture
search and pruning and hardware advances like specialized dataflows
and memory hierarchies.

By bringing hardware and software design together, rather than de-
veloping them separately, holistic optimizations can be made that max-
imize performance and efÏciency. The next sections provide more de-
tails on specific co-design approaches.

10.4.1 The Need for Co-Design

Several key factors make a collaborative hardware-software co-design
approach essential for building efÏcient AI systems.

10.4.1.1 Increasing Model Size and Complexity

State-of-the-art AI models have been rapidly growing in size, enabled
by advances in neural architecture design and the availability of large
datasets. For example, the GPT-3 language model contains 175 bil-
lion parameters (Brown et al. 2020), requiring huge computational
resources for training. This explosion in model complexity necessi-
tates co-design to develop efÏcient hardware and algorithms in tan-
dem. Techniques like model compression (Y. Cheng et al. 2018) and

10.4. Hardware-Software Co-Design 358

quantization must be co-optimized with the hardware architecture.

10.4.1.2 Constraints of Embedded Deployment

Deploying AI applications on edge devices like mobile phones or smart
home appliances introduces significant constraints on energy, mem-
ory, and silicon area (Sze et al. 2017). Enable real-time inference under
these restrictions requires co-exploring hardware optimizations like
specialized dataflows and compression with efÏcient neural network
design and pruning techniques. Co-design maximizes performance
within tight deployment constraints.

10.4.1.3 Rapid Evolution of AI Algorithms

AI is rapidly evolving, with new model architectures, training method-
ologies, and software frameworks constantly emerging. For example,
Transformers have recently become hugely popular for NLP (Young et
al. 2018). Keeping pace with these algorithmic innovations requires
hardware-software co-design to adapt platforms and avoid accrued
technical debt quickly.

10.4.1.4 Complex Hardware-Software Interactions

Many subtle interactions and tradeoffs between hardware architectural
choices and software optimizations significantly impact overall efÏ-
ciency. For instance, techniques like tensor partitioning and batching
affect parallelism and data access patterns impact memory utilization.
Co-design provides a cross-layer perspective to unravel these depen-
dencies.

10.4.1.5 Need for Specialization

AI workloads benefit from specialized operations like low-precision
math and customized memory hierarchies. This motivates incorporat-
ing custom hardware tailored to neural network algorithms rather than
relying solely on flexible software running on generic hardware (Sze
et al. 2017). However, the software stack must explicitly target custom
hardware operations to realize the benefits.

10.4.1.6 Demand for Higher EfÏciency

With growing model complexity, diminishing returns and overhead
from optimizing only the hardware or software in isolation (Putnam

CHAPTER 10. AI ACCELERATION 359

et al. 2014) arise. Inevitable tradeoffs arise that require global opti-
mization across layers. Jointly co-designing hardware and software
provides large compound efÏciency gains.

10.4.2 Principles of Hardware-Software Co-Design

The underlying hardware architecture and software stack must
be tightly integrated and co-optimized to build high-performance
and efÏcient AI systems. Neither can be designed in isolation;
maximizing their synergies requires a holistic approach known as
hardware-software co-design.

The key goal is tailoring the hardware capabilities to match the al-
gorithms and workloads run by the software. This requires a feedback
loop between hardware architects and software developers to converge
on optimized solutions. Several techniques enable effective co-design:

10.4.2.1 Hardware-Aware Software Optimization

The software stack can be optimized to leverage the underlying hard-
ware capabilities better:

• Parallelism: Parallelize matrix computations like convolution or
attention layers to maximize throughput on vector engines.

• Memory Optimization: Tune data layouts to improve cache lo-
cality based on hardware profiling. This maximizes reuse and
minimizes expensive DRAM access.

• Compression: Use sparsity in the models to reduce storage space
and save on computation by zero-skipping operations.

• CustomOperations: Incorporate specialized operations like low-
precision INT4 or bfloat16 into models to capitalize on dedicated
hardware support.

• Dataflow Mapping: Explicitly map model stages to computa-
tional units to optimize data movement on hardware.

10.4.2.2 Algorithm-Driven Hardware Specialization

Hardware can be tailored to suit the characteristics of ML algorithms
better:

• CustomDatatypes: Support low precision INT8/4 or bfloat16 in
hardware for higher arithmetic density.

• On-ChipMemory: Increase SRAM bandwidth and lower access
latency to match model memory access patterns.

10.4. Hardware-Software Co-Design 360

• Domain-SpecificOps: Add hardware units for key ML functions
like FFTs or matrix multiplication to reduce latency and energy.

• Model Profiling: Use model simulation and profiling to identify
computational hotspots and optimize hardware.

The key is collaborative feedback - insights from hardware profil-
ing guide software optimizations, while algorithmic advances inform
hardware specialization. This mutual enhancement provides multi-
plicative efÏciency gains compared to isolated efforts.

10.4.2.3 Algorithm-Hardware Co-exploration

A powerful co-design technique involves jointly exploring innovations
in neural network architectures and custom hardware design. This al-
lows for finding ideal pairings tailored to each other’s strengths (Sze et
al. 2017).

For instance, the shift to mobile architectures like MobileNets
(Howard et al. 2017) was guided by edge device constraints like model
size and latency. The quantization (Jacob et al. 2018) and pruning
techniques (Gale, Elsen, and Hooker 2019) that unlocked these efÏ-
cient models became possible thanks to hardware accelerators with
native low-precision integer support and pruning support (Mishra et
al. 2021).

Attention-based models have thrived on massively parallel GPUs
and ASICs, where their computation maps well spatially, as opposed
to RNN architectures, which rely on sequential processing. The co-
evolution of algorithms and hardware unlocked new capabilities.

Effective co-exploration requires close collaboration between algo-
rithm researchers and hardware architects. Rapid prototyping on FP-
GAs (Chen Zhang et al. 2015) or specialized AI simulators allows quick
evaluation of different pairings of model architectures and hardware
designs pre-silicon.

For example, Google’s TPU architecture evolved with optimizations
to TensorFlow models to maximize performance on image classifica-
tion. This tight feedback loop yielded models tailored for the TPU that
would have been unlikely in isolation.

Studies have shown 2-5x higher performance and efÏciency gains
with algorithm-hardware co-exploration than isolated algorithm or
hardware optimization efforts (Suda et al. 2016). Parallelizing the
joint development also reduces time-to-deployment.

Overall, exploring the tight interdependencies between model inno-
vation and hardware advances unlocks opportunities that must be vis-
ible when tackled sequentially. This synergistic co-design yields solu-
tions greater than the sum of their parts.

CHAPTER 10. AI ACCELERATION 361

10.4.3 Challenges

While collaborative co-design can improve efÏciency, adaptability, and
time to market, it also has engineering and organizational challenges.

10.4.3.1 Increased Prototyping Costs

More extensive prototyping is required to evaluate different hardware-
software pairings. The need for rapid, iterative prototypes on FPGAs
or emulators increases validation overhead. For example, Microsoft
found that more prototypes were needed to co-design an AI accelerator
than sequential design (Fowers et al. 2018).

10.4.3.2 Team and Organizational Hurdles

Co-design requires close coordination between traditionally dis-
connected hardware and software groups. This could introduce
communication issues or misaligned priorities and schedules. Nav-
igating different engineering workflows is also challenging. Some
organizational inertia to adopting integrated practices may exist.

10.4.3.3 Simulation and Modeling Complexity

Capturing subtle interactions between hardware and software layers
for joint simulation and modeling adds significant complexity. Full
cross-layer abstractions are difÏcult to construct quantitatively before
implementation, making holistic optimizations harder to quantify
ahead of time.

10.4.3.4 Over-Specialization Risks

Tight co-design bears the risk of overfitting optimizations to current
algorithms, sacrificing generality. For example, hardware tuned ex-
clusively for Transformer models could underperform on future tech-
niques. Maintaining flexibility requires foresight.

10.4.3.5 Adoption Challenges

Engineers comfortable with established discrete hardware or software
design practices may only accept familiar collaborative workflows. De-
spite the long-term benefits, projects could face friction in transitioning
to co-design.

10.5. Software for AI Hardware 362

10.5 Software for AI Hardware
Specialized hardware accelerators like GPUs, TPUs, and FPGAs are
essential to delivering high-performance artificial intelligence applica-
tions. However, an extensive software stack is required to leverage
these hardware platforms effectively, spanning the entire development
and deployment lifecycle. Frameworks and libraries form the back-
bone of AI hardware, offering sets of robust, pre-built code, algorithms,
and functions specifically optimized to perform various AI tasks on
different hardware. They are designed to simplify the complexities of
utilizing the hardware from scratch, which can be time-consuming and
prone to error. Software plays an important role in the following:

• Providing programming abstractions and models like CUDA
and OpenCL to map computations onto accelerators.

• Integrating accelerators into popular deep learning frameworks
like TensorFlow and PyTorch.

• Compilers and tools to optimize across the hardware-software
stack.

• Simulation platforms to model hardware and software together.
• Infrastructure to manage deployment on accelerators.

This expansive software ecosystem is as important as the hardware
in delivering performant and efÏcient AI applications. This section
overviews the tools available at each stack layer to enable developers
to build and run AI systems powered by hardware acceleration.

10.5.1 Programming Models

Programming models provide abstractions to map computations and
data onto heterogeneous hardware accelerators:

• CUDA: Nvidia’s parallel programming model to leverage GPUs
using extensions to languages like C/C++. Allows launching ker-
nels across GPU cores (Luebke 2008).

• OpenCL: Open standard for writing programs spanning CPUs,
GPUs, FPGAs, and other accelerators. Specifies a heterogeneous
computing framework (Munshi 2009).

• OpenGL/WebGL: 3D graphics programming interfaces that can
map general-purpose code to GPU cores (Segal and Akeley 1999).

• Verilog/VHDL:Hardware description languages (HDLs) used to
configure FPGAs as AI accelerators by specifying digital circuits
(Gannot and Ligthart 1994).

https://developer.nvidia.com/cuda-toolkit
https://www.khronos.org/opencl/
https://www.opengl.org
https://www.verilog.com

CHAPTER 10. AI ACCELERATION 363

• TVM: A Compiler framework providing a Python frontend to
optimize and map deep learning models onto diverse hardware
backends (T. Chen et al. 2018).

Key challenges include expressing parallelism, managing memory
across devices, and matching algorithms to hardware capabilities.
Abstractions must balance portability with allowing hardware cus-
tomization. Programming models enable developers to harness
accelerators without hardware expertise. These details are discussed
in the AI frameworks section.

Exercise 20: Software for AI Hardware - TVM

We’ve learned that fancy AI hardware needs special software to
work magic. TVM is like a super-smart translator, turning your
code into instructions that accelerators understand. In this Colab,
we’ll use TVM to make a pretend accelerator called VTA do ma-
trix multiplication super fast. Ready to see how software powers
up hardware?

10.5.2 Libraries and Runtimes

Specialized libraries and runtimes provide software abstractions to ac-
cess and maximize the utilization of AI accelerators:

• Math Libraries: Highly optimized implementations of linear al-
gebra primitives like GEMM, FFTs, convolutions, etc., tailored to
the target hardware. Nvidia cuBLAS, Intel MKL, and Arm com-
pute libraries are examples.

• Framework Integrations: Libraries to accelerate deep learning
frameworks like TensorFlow, PyTorch, and MXNet on supported
hardware. For example, cuDNN accelerates CNNs on Nvidia
GPUs.

• Runtimes: Software to handle accelerator execution, including
scheduling, synchronization, memory management, and other
tasks. Nvidia TensorRT is an inference optimizer and runtime.

• Drivers and Firmware: Low-level software to interface with
hardware, initialize devices, and handle execution. Vendors like
Xilinx provide drivers for their accelerator boards.

For instance, PyTorch integrators use cuDNN and cuBLAS libraries
to accelerate training on Nvidia GPUs. The TensorFlow XLA runtime

https://tvm.apache.org
../frameworks/frameworks.qmd
https://colab.research.google.com/github/uwsampl/tutorial/blob/master/notebook/04a_TVM_Tutorial_VTA_Mat_Mult.ipynb
https://developer.nvidia.com/cublas
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.arm.com/technologies/compute-library
https://www.arm.com/technologies/compute-library
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/tensorrt

10.5. Software for AI Hardware 364

optimizes and compiles models for accelerators like TPUs. Drivers ini-
tialize devices and ofÒoad operations.

The challenges include efÏciently partitioning and scheduling work-
loads across heterogeneous devices like multi-GPU nodes. Runtimes
must also minimize the overhead of data transfers and synchroniza-
tion.

Libraries, runtimes, and drivers provide optimized building blocks
that deep learning developers can leverage to tap into accelerator per-
formance without hardware programming expertise. Their optimiza-
tion is essential for production deployments.

10.5.3 Optimizing Compilers

Optimizing compilers is key in extracting maximum performance and
efÏciency from hardware accelerators for AI workloads. They apply
optimizations spanning algorithmic changes, graph-level transforma-
tions, and low-level code generation.

• Algorithm Optimization: Techniques like quantization, prun-
ing, and neural architecture search to improve model efÏciency
and match hardware capabilities.

• Graph Optimizations: Graph-level optimizations like operator
fusion, rewriting, and layout transformations to optimize perfor-
mance on target hardware.

• Code Generation: Generating optimized low-level code for ac-
celerators from high-level models and frameworks.

For example, the TVM open compiler stack applies quantization for
a BERT model targeting Arm GPUs. It fuses pointwise convolution op-
erations and transforms the weight layout to optimize memory access.
Finally, it emits optimized OpenGL code to run the GPU workload.

Key compiler optimizations include maximizing parallelism,
improving data locality and reuse, minimizing memory footprint,
and exploiting custom hardware operations. Compilers build and
optimize machine learning workloads holistically across hardware
components like CPUs, GPUs, and other accelerators.

However, efÏciently mapping complex models introduces chal-
lenges like efÏciently partitioning workloads across heterogeneous
devices. Production-level compilers also require extensive time
tuning on representative workloads. Still, optimizing compilers is
indispensable in unlocking the full capabilities of AI accelerators.

CHAPTER 10. AI ACCELERATION 365

10.5.4 Simulation and Modeling

Simulation software is important in hardware-software co-design. It
enables joint modeling of proposed hardware architectures and soft-
ware stacks:

• Hardware Simulation: Platforms like Gem5 allow detailed sim-
ulation of hardware components like pipelines, caches, intercon-
nects, and memory hierarchies. Engineers can model hardware
changes without physical prototyping (Binkert et al. 2011).

• Software Simulation: Compiler stacks like TVM support the
simulation of machine learning workloads to estimate per-
formance on target hardware architectures. This assists with
software optimizations.

• Co-simulation: Unified platforms like the SCALE-Sim (Samaj-
dar et al. 2018) integrate hardware and software simulation into
a single tool. This enables what-if analysis to quantify the system-
level impacts of cross-layer optimizations early in the design cy-
cle.

For example, an FPGA-based AI accelerator design could be simu-
lated using Verilog hardware description language and synthesized
into a Gem5 model. Verilog is well-suited for describing the digital
logic and interconnects of the accelerator architecture. Verilog allows
the designer to specify the datapaths, control logic, on-chip memories,
and other components implemented in the FPGA fabric. Once the Ver-
ilog design is complete, it can be synthesized into a model that sim-
ulates the behavior of the hardware, such as using the Gem5 simula-
tor. Gem5 is useful for this task because it allows the modeling of full
systems, including processors, caches, buses, and custom accelerators.
Gem5 supports interfacing Verilog models of hardware to the simula-
tion, enabling unified system modeling.

The synthesized FPGA accelerator model could then have ML work-
loads simulated using TVM compiled onto it within the Gem5 envi-
ronment for unified modeling. TVM allows optimized compilation of
ML models onto heterogeneous hardware like FPGAs. Running TVM-
compiled workloads on the accelerator within the Gem5 simulation
provides an integrated way to validate and refine the hardware design,
software stack, and system integration before physically realizing the
accelerator on a real FPGA.

This type of co-simulation provides estimations of overall metrics
like throughput, latency, and power to guide co-design before expen-
sive physical prototyping. They also assist with partitioning optimiza-
tions between hardware and software to guide design tradeoffs.

https://www.gem5.org
https://tvm.apache.org

10.6. Benchmarking AI Hardware 366

However, accuracy in modeling subtle low-level interactions be-
tween components is limited. Quantified simulations are estimates
but cannot wholly replace physical prototypes and testing. Still,
unified simulation and modeling provide invaluable early insights
into system-level optimization opportunities during the co-design
process.

10.6 Benchmarking AI Hardware
Benchmarking is a critical process that quantifies and compares the
performance of various hardware platforms designed to speed up ar-
tificial intelligence applications. It guides purchasing decisions, de-
velopment focus, and performance optimization efforts for hardware
manufacturers and software developers.

The benchmarking chapter explores this topic in great detail,
explaining why it has become an indispensable part of the AI hard-
ware development cycle and how it impacts the broader technology
landscape. Here, we will briefly review the main concepts, but we
recommend that you refer to the chapter for more details.

Benchmarking suites such as MLPerf, Fathom, and AI Benchmark
offer a set of standardized tests that can be used across different hard-
ware platforms. These suites measure AI accelerator performance
across various neural networks and machine learning tasks, from
basic image classification to complex language processing. Providing
a common ground for Comparison, they help ensure that performance
claims are consistent and verifiable. These “tools” are applied not
only to guide the development of hardware but also to ensure that
the software stack leverages the full potential of the underlying
architecture.

• MLPerf: Includes a broad set of benchmarks covering both train-
ing (Mattson et al. 2020a) and inference (V. J. Reddi et al. 2020)
for a range of machine learning tasks.

• Fathom: Focuses on core operations in deep learning models, em-
phasizing their execution on different architectures (Adolf et al.
2016).

• AI Benchmark: Targets mobile and consumer devices, assessing
AI performance in end-user applications (Ignatov et al. 2018).

Benchmarks also have performance metrics that are the quantifiable
measures used to evaluate the effectiveness of AI accelerators. These
metrics provide a comprehensive view of an accelerator’s capabilities
and are used to guide the design and selection process for AI systems.
Common metrics include:

../benchmarking/benchmarking.qmd

CHAPTER 10. AI ACCELERATION 367

• Throughput: Usually measured in operations per second, this
metric indicates the volume of computations an accelerator can
handle.

• Latency: The time delay from input to output in a system is vital
for real-time processing tasks.

• Energy EfÏciency: Calculated as computations per watt, repre-
senting the tradeoff between performance and power consump-
tion.

• Cost EfÏciency: This evaluates the cost of operation relative to
performance, an essential metric for budget-conscious deploy-
ments.

• Accuracy: In inference tasks, the precision of computations is
critical and sometimes balanced against speed.

• Scalability: The ability of the system to maintain performance
gains as the computational load scales up.

Benchmark results give insights beyond just numbers—they can
reveal bottlenecks in the software and hardware stack. For example,
benchmarks may show how increased batch size improves GPU
utilization by providing more parallelism or how compiler optimiza-
tions boost TPU performance. These learnings enable continuous
optimization (Zhihao Jia, Zaharia, and Aiken 2019).

Standardized benchmarking provides a quantified, comparable eval-
uation of AI accelerators to inform design, purchasing, and optimiza-
tion. However, real-world performance validation remains essential
as well (H. Zhu et al. 2018).

10.7 Challenges and Solutions
AI accelerators offer impressive performance improvements, but sig-
nificant portability and compatibility challenges often need to be im-
proved in their integration into the broader AI landscape. The crux of
the issue lies in the diversity of the AI ecosystem—a vast array of ma-
chine learning accelerators, frameworks, and programming languages
exist, each with its unique features and requirements.

10.7.1 Portability/Compatibility Issues

Developers frequently encounter difÏculties transferring their AI
models from one hardware environment to another. For example,
a machine learning model developed for a desktop environment in
Python using the PyTorch framework, optimized for an Nvidia GPU,
may not easily transition to a more constrained device such as the

10.7. Challenges and Solutions 368

Arduino Nano 33 BLE. This complexity stems from stark differences
in programming requirements - Python and PyTorch on the desktop
versus a C++ environment on an Arduino, not to mention the shift
from x86 architecture to ARM ISA.

These divergences highlight the intricacy of portability within AI
systems. Moreover, the rapid advancement in AI algorithms and mod-
els means that hardware accelerators must continually adapt, creating
a moving target for compatibility. The absence of universal standards
and interfaces compounds the issue, making deploying AI solutions
consistently across various devices and platforms challenging.

10.7.1.1 Solutions and Strategies

To address these hurdles, the AI industry is moving towards several
solutions:

10.7.1.1.1 Standardization Initiatives. The Open Neural Network
Exchange (ONNX) is at the forefront of this pursuit, proposing an open
and shared ecosystem that promotes model interchangeability. ONNX
facilitates the use of AI models across various frameworks, allowing
models trained in one environment to be efÏciently deployed in an-
other, significantly reducing the need for time-consuming rewrites or
adjustments.

10.7.1.1.2 Cross-Platform Frameworks. Complementing the stan-
dardization efforts, cross-platform frameworks such as TensorFlow
Lite and PyTorch Mobile have been developed specifically to create
cohesion between diverse computational environments ranging
from desktops to mobile and embedded devices. These frameworks
offer streamlined, lightweight versions of their parent frameworks,
ensuring compatibility and functional integrity across different
hardware types without sacrificing performance. This ensures that
developers can create applications with the confidence that they will
work on many devices, bridging a gap that has traditionally posed a
considerable challenge in AI development.

10.7.1.1.3 Hardware-agnostic Platforms. The rise of hardware-
agnostic platforms has also played an important role in democratizing
the use of AI. By creating environments where AI applications can
be executed on various accelerators, these platforms remove the
burden of hardware-specific coding from developers. This abstraction
simplifies the development process and opens up new possibilities

https://onnx.ai/
https://onnx.ai/

CHAPTER 10. AI ACCELERATION 369

for innovation and application deployment, free from the constraints
of hardware specifications.

10.7.1.1.4 Advanced Compilation Tools. In addition, the advent of
advanced compilation tools like TVM, an end-to-end tensor compiler,
offers an optimized path through the jungle of diverse hardware archi-
tectures. TVM equips developers with the means to fine-tune machine
learning models for a broad spectrum of computational substrates, en-
suring optimal performance and avoiding manual model adjustment
each time there is a shift in the underlying hardware.

10.7.1.1.5 Community and Industry Collaboration. The collabora-
tion between open-source communities and industry consortia cannot
be understated. These collective bodies are instrumental in forming
shared standards and best practices that all developers and manufac-
turers can adhere to. Such collaboration fosters a more unified and
synergistic AI ecosystem, significantly diminishing the prevalence of
portability issues and smoothing the path toward global AI integration
and advancement. Through these combined efforts, AI is steadily mov-
ing toward a future where seamless model deployment across various
platforms becomes a standard rather than an exception.

Solving the portability challenges is crucial for the AI field to realize
the full potential of hardware accelerators in a dynamic and diverse
technological landscape. It requires a concerted effort from hardware
manufacturers, software developers, and standard bodies to create a
more interoperable and flexible environment. With continued innova-
tion and collaboration, the AI community can pave the way for seam-
less integration and deployment of AI models across many platforms.

10.7.2 Power Consumption Concerns

Power consumption is a crucial issue in the development and operation
of data center AI accelerators, like Graphics Processing Units (GPUs)
and Tensor Processing Units (TPUs) (N. P. Jouppi et al. 2017b) (Norrie
et al. 2021) (N. Jouppi et al. 2023). These powerful components are the
backbone of contemporary AI infrastructure, but their high energy de-
mands contribute to the environmental impact of technology and drive
up operational costs significantly. As data processing needs become
more complex, with the popularity of AI and deep learning increas-
ing, there’s a pressing demand for GPUs and TPUs that can deliver the
necessary computational power more efÏciently. The impact of such
advancements is two-fold: they can lower these technologies’ environ-
mental footprint and reduce the cost of running AI applications.

10.7. Challenges and Solutions 370

Emerging hardware technologies are at the cusp of revolutionizing
power efÏciency in this sector. Photonic computing, for instance, uses
light rather than electricity to carry information, offering a promise of
high-speed processing with a fraction of the power usage. We look
deeper into this and other innovative technologies in the “Emerging
Hardware Technologies” section, exploring their potential to address
current power consumption challenges.

At the edge of the network, AI accelerators are engineered to process
data on devices like smartphones, IoT sensors, and smart wearables.
These devices often work under severe power limitations, necessitat-
ing a careful balancing act between performance and power usage. A
high-performance AI model may provide quick results but at the cost
of depleting battery life swiftly and increasing thermal output, which
may affect the device’s functionality and durability. The stakes are
higher for devices deployed in remote or hard-to-reach areas, where
consistent power supply cannot be guaranteed, underscoring the need
for low-power-consuming solutions.

Latency issues further compound the challenge of power efÏciency
at the edge. Edge AI applications in fields such as autonomous driving
and healthcare monitoring require speed, precision, and reliability, as
delays in processing can lead to serious safety risks. For these applica-
tions, developers must optimize both the AI algorithms and the hard-
ware design to strike an optimal balance between power consumption
and latency.

This optimization effort is not just about making incremental im-
provements to existing technologies; it’s about rethinking how and
where we process AI tasks. By designing AI accelerators that are both
power-efÏcient and capable of quick processing, we can ensure these
devices serve their intended purposes without unnecessary energy use
or compromised performance. Such developments could propel the
widespread adoption of AI across various sectors, enabling smarter,
safer, and more sustainable use of technology.

10.7.3 Overcoming Resource Constraints

Resource constraints also pose a significant challenge for Edge AI ac-
celerators, as these specialized hardware and software solutions must
deliver robust performance within the limitations of edge devices. Due
to power and size limitations, edge AI accelerators often have restricted
computation, memory, and storage capacity (L. Zhu et al. 2023). This
scarcity of resources necessitates a careful allocation of processing ca-
pabilities to execute machine learning models efÏciently.

Moreover, managing constrained resources demands innovative ap-

CHAPTER 10. AI ACCELERATION 371

proaches, including model quantization (Lin et al. 2023) (Y. Li, Dong,
and Wang 2020), pruning (T. Wang et al. 2020), and optimizing infer-
ence pipelines. Edge AI accelerators must strike a delicate balance be-
tween providing meaningful AI functionality and not exhausting avail-
able resources while maintaining low power consumption. Overcom-
ing these resource constraints is crucial to ensure the successful deploy-
ment of AI at the edge, where many applications, from IoT to mobile
devices, rely on efÏciently using limited hardware resources to deliver
real-time and intelligent decision-making.

10.8 Emerging Technologies
Thus far, we have discussed AI hardware technology in the context
of conventional von Neumann architecture design and CMOS-based
implementation. These specialized AI chips offer benefits like higher
throughput and power efÏciency but rely on traditional computing
principles. The relentless growth in demand for AI computing power
is driving innovations in integration methods for AI hardware.

Two leading approaches have emerged for maximizing compute
density—wafer-scale integration and chiplet-based architectures—
which we will discuss in this section. Looking much further ahead, we
will examine emerging technologies that diverge from conventional
architectures and adopt fundamentally different approaches for
AI-specialized computing.

Some of these unconventional paradigms include neuromorphic
computing, which mimics biological neural networks; quantum
computing, which leverages quantum mechanical effects; and optical
computing, which utilizes photons instead of electrons. Beyond
novel computing substrates, new device technologies are enabling
additional gains through better memory and interconnecting.

Examples include memristors for in-memory computing and
nanophotonics for integrated photonic communication. Together,
these technologies offer the potential for orders of magnitude im-
provements in speed, efÏciency, and scalability compared to current
AI hardware. We will examine these in this section.

10.8.1 Integration Methods

Integration methods refer to the approaches used to combine and in-
terconnect an AI chip or system’s various computational and memory
components. By closely linking the key processing elements, integra-
tion tries to maximize performance, power efÏciency, and density.

10.8. Emerging Technologies 372

In the past, AI computing was primarily performed on CPUs and
GPUs built using conventional integration methods. These discrete
components were manufactured separately and connected together on
a board. However, this loose integration creates bottlenecks, such as
data transfer overheads.

As AI workloads have grown, there is increasing demand for
tighter integration between computing, memory, and communication
elements. Some key drivers of integration include:

• Minimizing data movement: Tight integration reduces latency
and power for moving data between components. This improves
efÏciency.

• Customization: Tailoring all system components to AI work-
loads allows optimizations throughout the hardware stack.

• Parallelism: Integrating many processing elements enables mas-
sively parallel computation.

• Density: Tighter integration allows more transistors and mem-
ory to be packed into a given area.

• Cost: Economies of scale from large integrated systems can re-
duce costs.

In response, new manufacturing techniques like wafer-scale fabrica-
tion and advanced packaging now allow much higher levels of integra-
tion. The goal is to create unified, specialized AI compute complexes
tailored for deep learning and other AI algorithms. Tighter integration
is key to delivering the performance and efÏciency needed for the next
generation of AI.

10.8.1.1 Wafer-scale AI

Wafer-scale AI takes an extremely integrated approach, manufactur-
ing an entire silicon wafer as one gigantic chip. This differs drastically
from conventional CPUs and GPUs, which cut each wafer into many
smaller individual chips. Figure 10.5 shows a comparison between
Cerebras Wafer Scale Engine 2, which is the largest chip ever built, and
the largest GPU. While some GPUs may contain billions of transistors,
they still pale in Comparison to the scale of a wafer-size chip with over
a trillion transistors.

The wafer-scale approach also diverges from more modular system-
on-chip designs that still have discrete components communicating by
bus. Instead, wafer-scale AI enables full customization and tight inte-
gration of computation, memory, and interconnects across the entire
die.

By designing the wafer as one integrated logic unit, data transfer be-
tween elements is minimized. This provides lower latency and power

CHAPTER 10. AI ACCELERATION 373

Figure 10.5.: Wafer-scale
vs. GPU. Source: Cerebras.

consumption than discrete system-on-chip or chiplet designs. While
chiplets can offer flexibility by mixing and matching components, com-
munication between chiplets is challenging. The monolithic nature of
wafer-scale integration eliminates these inter-chip communication bot-
tlenecks.

However, the ultra-large-scale also poses difÏculties for manufac-
turability and yield with wafer-scale designs. Defects in any region
of the wafer can make (certain parts of) the chip unusable. Special-
ized lithography techniques are required to produce such large dies.
So, wafer-scale integration pursues the maximum performance gains
from integration but requires overcoming substantial fabrication chal-
lenges.

Video 14 provides additional context about wafer-scale AI chips.

Video 14: Wafer-scale AI Chips

https://www.youtube.com/watch?v=Fcob512SJz0

10.8.1.2 Chiplets for AI

Chiplet design refers to a semiconductor architecture in which a single
integrated circuit (IC) is constructed from multiple smaller, individual
components known as chiplets. Each chiplet is a self-contained func-
tional block, typically specialized for a specific task or functionality.
These chiplets are then interconnected on a larger substrate or pack-
age to create a cohesive system. Figure 10.6 illustrates this concept.
For AI hardware, chiplets enable the mixing of different types of chips

https://www.cerebras.net/product-chip/
https://www.youtube.com/watch?v=Fcob512SJz0

10.8. Emerging Technologies 374

optimized for tasks like matrix multiplication, data movement, analog
I/O, and specialized memories. This heterogeneous integration differs
greatly from wafer-scale integration, where all logic is manufactured
as one monolithic chip. Companies like Intel and AMD have adopted
chiplet designs for their CPUs.

Chiplets are interconnected using advanced packaging techniques
like high-density substrate interposers, 2.5D/3D stacking, and wafer-
level packaging. This allows combining chiplets fabricated with dif-
ferent process nodes, specialized memories, and various optimized AI
engines.

Figure 10.6.: Chiplet partition-
ing. Source: Vivet et al. (2021).

Some key advantages of using chiplets for AI include:

• Flexibility: Chiplets allow for the combination of different chip
types, process nodes, and memories tailored for each function.
This is more modular versus a fixed wafer-scale design.

• Yield: Smaller chiplets have a higher yield than a gigantic wafer-
scale chip. Defects are contained in individual chiplets.

• Cost: Leverages existing manufacturing capabilities versus re-
quiring specialized new processes. Reduces costs by reusing ma-
ture fabrication.

• Compatibility: Can integrate with more conventional system ar-
chitectures like PCIe and standard DDR memory interfaces.

However, chiplets also face integration and performance challenges:

• Lower density compared to wafer-scale, as chiplets are limited in
size.

CHAPTER 10. AI ACCELERATION 375

• Added latency when communicating between chiplets versus
monolithic integration. Requires optimization for low-latency
interconnect.

• Advanced packaging adds complexity versus wafer-scale integra-
tion, though this is arguable.

The key objective of chiplets is finding the right balance between
modular flexibility and integration density for optimal AI performance.
Chiplets aim for efÏcient AI acceleration while working within the
constraints of conventional manufacturing techniques. Chiplets take a
middle path between the extremes of wafer-scale integration and fully
discrete components. This provides practical benefits but may sacrifice
some computational density and efÏciency versus a theoretical wafer-
size system.

10.8.2 Neuromorphic Computing

Neuromorphic computing is an emerging field aiming to emulate the
efÏciency and robustness of biological neural systems for machine
learning applications. A key difference from classical Von Neumann
architectures is the merging of memory and processing in the same
circuit (Schuman et al. 2022; Marković et al. 2020; Furber 2016), as
illustrated in Figure 10.7. The structure of the brain inspires this
integrated approach. A key advantage is the potential for orders of
magnitude improvement in energy-efÏcient computation compared to
conventional AI hardware. For example, estimates project 100x-1000x
gains in energy efÏciency versus current GPU-based systems for
equivalent workloads.

Figure 10.7.: Comparison of
the von Neumann architecture
with the neuromorphic archi-
tecture. Source: Schuman et al.
(2022).

Intel and IBM are leading commercial efforts in neuromorphic hard-
ware. Intel’s Loihi and Loihi 2 chips (M. Davies et al. 2018, 2021) of-
fer programmable neuromorphic cores with on-chip learning. IBM’s
Northpole (Modha et al. 2023) device comprises over 100 million mag-
netic tunnel junction synapses and 68 billion transistors. These spe-

10.8. Emerging Technologies 376

cialized chips deliver benefits like low power consumption for edge
inference.

Spiking neural networks (SNNs) (Maass 1997) are computational
models for neuromorphic hardware. Unlike deep neural networks
communicating via continuous values, SNNs use discrete spikes
that are more akin to biological neurons. This allows efÏcient event-
based computation rather than constant processing. Additionally,
SNNs consider the temporal and spatial characteristics of input data.
This better mimics biological neural networks, where the timing of
neuronal spikes plays an important role. However, training SNNs re-
mains challenging due to the added temporal complexity. Figure 10.8
provides an overview of the spiking methodology: (a) Diagram of a
neuron; (b) Measuring an action potential propagated along the axon
of a neuron. Only the action potential is detectable along the axon; (c)
The neuron’s spike is approximated with a binary representation; (d)
Event-Driven Processing; (e) Active Pixel Sensor and Dynamic Vision
Sensor.

Figure 10.8.: Neuromorphic
spiking. Source: Eshraghian et
al. (2023).

You can also watch Video 15 linked below for a more detailed expla-
nation.

Video 15: Neuromorphic Computing

https://www.youtube.com/watch?v=yihk_8XnCzg

Specialized nanoelectronic devices called memristors (Chua 1971)
are synaptic components in neuromorphic systems. Memristors act as

https://www.youtube.com/watch?v=yihk_8XnCzg

CHAPTER 10. AI ACCELERATION 377

nonvolatile memory with adjustable conductance, emulating the plas-
ticity of real synapses. Memristors enable in-situ learning without sep-
arate data transfers by combining memory and processing functions.
However, memristor technology has yet to reach maturity and scala-
bility for commercial hardware.

The integration of photonics with neuromorphic computing (Shastri
et al. 2021) has recently emerged as an active research area. Using light
for computation and communication allows high speeds and reduced
energy consumption. However, fully realizing photonic neuromorphic
systems requires overcoming design and integration challenges.

Neuromorphic computing offers promising capabilities for efÏcient
edge inference but faces obstacles around training algorithms, nanode-
vice integration, and system design. Ongoing multidisciplinary re-
search across computer science, engineering, materials science, and
physics will be key to unlocking this technology’s full potential for AI
use cases.

10.8.3 Analog Computing

Analog computing is an emerging approach that uses analog signals
and components like capacitors, inductors, and amplifiers rather than
digital logic for computing. It represents information as continuous
electrical signals instead of discrete 0s and 1s. This allows the compu-
tation to directly reflect the analog nature of real-world data, avoiding
digitization errors and overhead.

Analog computing has generated renewed interest in efÏcient
AI hardware, particularly for inference directly on low-power edge
devices. Analog circuits, such as multiplication and summation at the
core of neural networks, can be used with very low energy consump-
tion. This makes analog well-suited for deploying ML models on
energy-constrained end nodes. Startups like Mythic are developing
analog AI accelerators.

While analog computing was popular in early computers, the boom
of digital logic led to its decline. However, analog is compelling for
niche applications requiring extreme efÏciency (Haensch, Gokmen,
and Puri 2019). It contrasts with digital neuromorphic approaches
that still use digital spikes for computation. Analog may allow lower
precision computation but requires expertise in analog circuit design.
Tradeoffs around precision, programming complexity, and fabrication
costs remain active research areas.

Neuromorphic computing, which emulates biological neural
systems for efÏcient ML inference, can use analog circuits to imple-
ment the key components and behaviors of brains. For example,

10.8. Emerging Technologies 378

researchers have designed analog circuits to model neurons and
synapses using capacitors, transistors, and operational amplifiers
(Hazan and Ezra Tsur 2021). The capacitors can exhibit the spiking
dynamics of biological neurons, while the amplifiers and transistors
provide a weighted summation of inputs to mimic dendrites. Variable
resistor technologies like memristors can realize analog synapses with
spike-timing-dependent plasticity, which can strengthen or weaken
connections based on spiking activity.

Startups like SynSense have developed analog neuromorphic chips
containing these biomimetic components (Bains 2020). This analog ap-
proach results in low power consumption and high scalability for edge
devices versus complex digital SNN implementations.

However, training analog SNNs on chips remains an open challenge.
Overall, analog realization is a promising technique for delivering
the efÏciency, scalability, and biological plausibility envisioned
with neuromorphic computing. The physics of analog components
combined with neural architecture design could improve inference
efÏciency over conventional digital neural networks.

10.8.4 Flexible Electronics

While much of the new hardware technology in the ML workspace has
been focused on optimizing and making systems more efÏcient, there’s
a parallel trajectory aiming to adapt hardware for specific applications
(Gates 2009; Musk et al. 2019; Tang et al. 2023; Tang, He, and Liu 2022;
S. H. Kwon and Dong 2022). One such avenue is the development of
flexible electronics for AI use cases.

Flexible electronics refer to electronic circuits and devices fabricated
on flexible plastic or polymer substrates rather than rigid silicon. Un-
like conventional rigid boards and chips, this allows the electronics to
bend, twist, and conform to irregular shapes. Figure 10.9 shows an
example of a flexible device prototype that wirelessly measures body
temperature, which can be seamlessly integrated into clothing or skin
patches. The flexibility and bendability of emerging electronic materi-
als allow them to be integrated into thin, lightweight form factors that
are well-suited for embedded AI and TinyML applications.

Flexible AI hardware can conform to curvy surfaces and operate
efÏciently with microwatt power budgets. Flexibility also enables
rollable or foldable form factors to minimize device footprint and
weight, ideal for small, portable smart devices and wearables in-
corporating TinyML. Another key advantage of flexible electronics
compared to conventional technologies is lower manufacturing costs
and simpler fabrication processes, which could democratize access to

CHAPTER 10. AI ACCELERATION 379

these technologies. While silicon masks and fabrication costs typically
cost millions of dollars, flexible hardware typically costs only tens
of cents to manufacture (Huang et al. 2011; Biggs et al. 2021). The
potential to fabricate flexible electronics directly onto plastic films
using high-throughput printing and coating processes can reduce
costs and improve manufacturability at scale versus rigid AI chips
(Musk et al. 2019).

Figure 10.9.: Flexible device
prototype. Source: Jabil Cir-
cuit.

The field is enabled by advances in organic semiconductors and
nanomaterials that can be deposited on thin, flexible films. However,
fabrication remains challenging compared to mature silicon processes.
Flexible circuits currently typically exhibit lower performance than
rigid equivalents. Still, they promise to transform electronics into
lightweight, bendable materials.

Flexible electronics use cases are well-suited for intimate integra-
tion with the human body. Potential medical AI applications include
bio-integrated sensors, soft assistive robots, and implants that moni-
tor or stimulate the nervous system intelligently. Specifically, flexible
electrode arrays could enable higher-density, less-invasive neural inter-
faces compared to rigid equivalents.

Therefore, flexible electronics are ushering in a new era of wearables
and body sensors, largely due to innovations in organic transistors.
These components allow for more lightweight and bendable electron-
ics, ideal for wearables, electronic skin, and body-conforming medical
devices.

They are well-suited for bioelectronic devices in terms of biocompati-

10.8. Emerging Technologies 380

bility, opening avenues for applications in brain and cardiac interfaces.
For example, research in flexible brain-computer interfaces and soft
bioelectronics for cardiac applications demonstrates the potential for
wide-ranging medical applications.

Companies and research institutions are not only developing and in-
vesting great amounts of resources in flexible electrodes, as showcased
in Neuralink’s work (Musk et al. 2019). Still, they are also pushing the
boundaries to integrate machine learning models within the systems
(S. H. Kwon and Dong 2022). These smart sensors aim for a seamless,
long-lasting symbiosis with the human body.

Ethically, incorporating smart, machine-learning-driven sensors
within the body raises important questions. Issues surrounding data
privacy, informed consent, and the long-term societal implications
of such technologies are the focus of ongoing work in neuroethics
and bioethics (Segura Anaya et al. 2017; Goodyear 2017; Farah 2005;
Roskies 2002). The field is progressing at a pace that necessitates
parallel advancements in ethical frameworks to guide the responsible
development and deployment of these technologies. While there
are limitations and ethical hurdles to overcome, the prospects for
flexible electronics are expansive and hold immense promise for
future research and applications.

10.8.5 Memory Technologies

Memory technologies are critical to AI hardware, but conventional
DDR DRAM and SRAM create bottlenecks. AI workloads require high
bandwidth (>1 TB/s). Extreme scientific applications of AI require
extremely low latency (<50 ns) to feed data to compute units (Duarte et
al. 2022), high density (>128Gb) to store large model parameters and
data sets, and excellent energy efÏciency (<100 fJ/b) for embedded
use (N. Verma et al. 2019). New memories are needed to meet these
demands. Emerging options include several new technologies:

• Resistive RAM (ReRAM) can improve density with simple, pas-
sive arrays. However, challenges around variability remain (Chi
et al. 2016).

• Phase change memory (PCM) exploits the unique properties of
chalcogenide glass. Crystalline and amorphous phases have dif-
ferent resistances. Intel’s Optane DCPMM provides fast (100ns),
high endurance PCM. However, challenges include limited write
cycles and high reset current (Burr et al. 2016).

• 3D stacking can also boost memory density and bandwidth by
vertically integrating memory layers with TSV interconnects
(Loh 2008). For example, HBM provides 1024-bit wide interfaces.

CHAPTER 10. AI ACCELERATION 381

New memory technologies, with their innovative cell architectures
and materials, are critical to unlocking the next level of AI hardware
performance and efÏciency. Realizing their benefits in commercial sys-
tems remains an ongoing challenge.

In-memory computing is gaining traction as a promising avenue for
optimizing machine learning and high-performance computing work-
loads. At its core, the technology co-locates data storage and computa-
tion to improve energy efÏciency and reduce latency Wong et al. (2012).
Two key technologies under this umbrella are Resistive RAM (ReRAM)
and Processing-In-Memory (PIM).

ReRAM (Wong et al. 2012) and PIM (Chi et al. 2016) are the back-
bones for in-memory computing, storing and computing data in the
same location. ReRAM focuses on issues of uniformity, endurance, re-
tention, multi-bit operation, and scalability. On the other hand, PIM
involves CPU units integrated directly into memory arrays, specialized
for tasks like matrix multiplication, which are central in AI computa-
tions.

These technologies find applications in AI workloads and high-
performance computing, where the synergy of storage and compu-
tation can lead to significant performance gains. The architecture is
particularly useful for compute-intensive tasks common in machine
learning models.

While in-memory computing technologies like ReRAM and PIM of-
fer exciting prospects for efÏciency and performance, they come with
their own challenges, such as data uniformity and scalability issues in
ReRAM (Imani, Rahimi, and S. Rosing 2016). Nonetheless, the field
is ripe for innovation, and addressing these limitations can open new
frontiers in AI and high-performance computing.

10.8.6 Optical Computing

In AI acceleration, a burgeoning area of interest lies in novel technolo-
gies that deviate from traditional paradigms. Some emerging technolo-
gies mentioned above, such as flexible electronics, in-memory comput-
ing, or even neuromorphic computing, are close to becoming a reality,
given their ground-breaking innovations and applications. One of the
promising and leading next-gen frontiers is optical computing tech-
nologies H. Zhou et al. (2022). Companies like [LightMatter] are pi-
oneering the use of light photonics for calculations, thereby utilizing
photons instead of electrons for data transmission and computation.

Optical computing utilizes photons and photonic devices rather
than traditional electronic circuits for computing and data processing.
It takes inspiration from fiber optic communication links that rely

https://lightmatter.co/

10.8. Emerging Technologies 382

on light for fast, efÏcient data transfer (Shastri et al. 2021). Light
can propagate with much less loss than semiconductors’ electrons,
enabling inherent speed and efÏciency benefits.

Some specific advantages of optical computing include:

• High throughput: Photons can transmit with bandwidths >100
Tb/s using wavelength division multiplexing.

• Low latency: Photons interact on femtosecond timescales, mil-
lions faster than silicon transistors.

• Parallelism: Multiple data signals can propagate simultaneously
through the same optical medium.

• Low power: Photonic circuits utilizing waveguides and res-
onators can achieve complex logic and memory with only
microwatts of power.

However, optical computing currently faces significant challenges:

• Lack of optical memory equivalent to electronic RAM
• Requires conversion between optical and electrical domains.
• Limited set of available optical components compared to rich

electronics ecosystem.
• Immature integration methods to combine photonics with tradi-

tional CMOS chips.
• Complex programming models required to handle parallelism.

As a result, optical computing is still in the very early research stage
despite its promising potential. However, technical breakthroughs
could enable it to complement electronics and unlock performance
gains for AI workloads. Companies like Lightmatter are pioneering
early optical AI accelerators. In the long term, if key challenges are
overcome, it could represent a revolutionary computing substrate.

10.8.7 Quantum Computing

Quantum computers leverage unique phenomena of quantum physics,
like superposition and entanglement, to represent and process infor-
mation in ways not possible classically. Instead of binary bits, the fun-
damental unit is the quantum bit or qubit. Unlike classical bits, which
are limited to 0 or 1, qubits can exist simultaneously in a superposition
of both states due to quantum effects.

Multiple qubits can also be entangled, leading to exponential infor-
mation density but introducing probabilistic results. Superposition en-
ables parallel computation on all possible states, while entanglement
allows nonlocal correlations between qubits.

CHAPTER 10. AI ACCELERATION 383

Quantum algorithms carefully manipulate these inherently quan-
tum mechanical effects to solve problems like optimization or search
more efÏciently than their classical counterparts in theory.

• Faster training of deep neural networks by exploiting quantum
parallelism for linear algebra operations.

• EfÏcient quantum ML algorithms make use of the unique capa-
bilities of qubits.

• Quantum neural networks with inherent quantum effects baked
into the model architecture.

• Quantum optimizers leveraging quantum annealing or adiabatic
algorithms for combinatorial optimization problems.

However, quantum states are fragile and prone to errors that require
error-correcting protocols. The non-intuitive nature of quantum pro-
gramming also introduces challenges not present in classical comput-
ing.

• Noisy and fragile quantum bits are difÏcult to scale up. The
largest quantum computer today has less than 1000 qubits.

• Restricted set of available quantum gates and circuits relative to
classical programming.

• Lack of datasets and benchmarks to evaluate quantum ML in
practical domains.

While meaningful quantum advantage for ML remains far off, ac-
tive research at companies like D-Wave, Rigetti, and IonQ is advancing
quantum computer engineering and quantum algorithms. Major tech-
nology companies like Google, IBM, and Microsoft are actively explor-
ing quantum computing. Google recently announced a 72-qubit quan-
tum processor called Bristlecone and plans to build a 49-qubit com-
mercial quantum system. Microsoft also has an active research pro-
gram in topological quantum computing and collaborates with quan-
tum startup IonQ

Quantum techniques may first make inroads into optimization
before more generalized ML adoption. Realizing quantum ML’s full
potential awaits major milestones in quantum hardware development
and ecosystem maturity.

10.9 Future Trends
In this chapter, the primary focus has been on designing specialized
hardware optimized for machine learning workloads and algorithms.
This discussion encompassed the tailored architectures of GPUs and

https://www.dwavesys.com/company/about-d-wave/
https://www.rigetti.com/
https://ionq.com/
https://www.ibm.com/quantum?utm_content=SRCWW&p1=Search&p4C700050385964705&p5=e&gclid=Cj0KCQjw-pyqBhDmARIsAKd9XIPD9U1Sjez_S0z5jeDDE4nRyd6X_gtVDUKJ-HIolx2vOc599KgW8gAaAv8gEALw_wcB&gclsrc=aw.ds
https://blog.research.google/2018/03/a-preview-of-bristlecone-googles-new.html
https://ionq.com/

10.9. Future Trends 384

TPUs for neural network training and inference. However, an emerg-
ing research direction is leveraging machine learning to facilitate the
hardware design process itself.

The hardware design process involves many complex stages, includ-
ing specification, high-level modeling, simulation, synthesis, verifica-
tion, prototyping, and fabrication. Much of this process traditionally
requires extensive human expertise, effort, and time. However, recent
advances in machine learning are enabling parts of the hardware de-
sign workflow to be automated and enhanced using ML techniques.

Some examples of how ML is transforming hardware design include:

• Automated circuit synthesis using reinforcement learning:
Rather than hand-crafting transistor-level designs, ML agents
such as reinforcement learning can learn to connect logic gates
and generate circuit layouts automatically. This can accelerate
the time-consuming synthesis process.

• ML-based hardware simulation and emulation: Deep neural
network models can be trained to predict how a hardware de-
sign will perform under different conditions. For instance, deep
learning models can be trained to predict cycle counts for given
workloads. This allows faster and more accurate simulation than
traditional RTL simulations.

• Automated chip floorplanning using ML algorithms: Chip
floorplanning involves optimally placing different components
on a die. Evolutionary algorithms like genetic algorithms
and other ML algorithms like reinforcement learning are used
to explore floorplan options. This can significantly improve
manual floorplanning placements in terms of faster turnaround
time and quality of placements.

• ML-driven architecture optimization: Novel hardware architec-
tures, like those for efÏcient ML accelerators, can be automati-
cally generated and optimized by searching the architectural de-
sign space. Machine learning algorithms can effectively search
large architectural design spaces.

Applying ML to hardware design automation holds enormous
promise to make the process faster, cheaper, and more efÏcient. It
opens up design possibilities that would require more than manual
design. The use of ML in hardware design is an area of active research
and early deployment, and we will study the techniques involved and
their transformative potential.

CHAPTER 10. AI ACCELERATION 385

10.9.1 ML for Hardware Design Automation

A major opportunity for machine learning in hardware design is au-
tomating parts of the complex and tedious design workflow. Hard-
ware design automation (HDA) broadly refers to using ML techniques
like reinforcement learning, genetic algorithms, and neural networks
to automate tasks like synthesis, verification, floorplanning, and more.
Here are a few examples of where ML for HDA shows real promise:

• Automated circuit synthesis: Circuit synthesis involves convert-
ing a high-level description of desired logic into an optimized
gate-level netlist implementation. This complex process has
many design considerations and tradeoffs. ML agents can be
trained through reinforcement learning G. Zhou and Anderson
(2023) to explore the design space and automatically output
optimized syntheses. Startups like Symbiotic EDA are bringing
this technology to market.

• Automated chip floorplanning: Floorplanning refers to strate-
gically placing different components on a chip die area. Search
algorithms like genetic algorithms (Valenzuela and Wang 2000)
and reinforcement learning (Mirhoseini et al. (2021), Agnesina
et al. (2023)) can be used to automate floorplan optimization to
minimize wire length, power consumption, and other objectives.
These automated ML-assisted floor planners are extremely valu-
able as chip complexity increases.

• ML hardware simulators: Training deep neural network mod-
els to predict how hardware designs will perform as simulators
can accelerate the simulation process by over 100x compared to
traditional architectural and RTL simulations.

• Automated code translation: Converting hardware description
languages like Verilog to optimized RTL implementations is criti-
cal but time-consuming. ML models can be trained to act as trans-
lator agents and automate this process.

The benefits of HDA using ML are reduced design time, superior
optimizations, and exploration of design spaces too complex for man-
ual approaches. This can accelerate hardware development and lead
to better designs.

Challenges include limits of ML generalization, the black-box na-
ture of some techniques, and accuracy tradeoffs. However, research
is rapidly advancing to address these issues and make HDA ML solu-
tions robust and reliable for production use. HDA provides a major
avenue for ML to transform hardware design.

https://www.symbioticeda.com/

10.9. Future Trends 386

10.9.2 ML-Based Hardware Simulation and Verification

Simulating and verifying hardware designs is critical before man-
ufacturing to ensure the design behaves as intended. Traditional
approaches like register-transfer level (RTL) simulation are complex
and time-consuming. ML introduces new opportunities to improve
hardware simulation and verification. Some examples include:

• Surrogate modeling for simulation: Highly accurate surrogate
models of a design can be built using neural networks. These
models predict outputs from inputs much faster than RTL sim-
ulation, enabling fast design space exploration. Companies like
Ansys use this technique.

• ML simulators: Large neural network models can be trained on
RTL simulations to learn to mimic the functionality of a hardware
design. Once trained, the NN model can be a highly efÏcient
simulator for regression testing and other tasks. Graphcore has
demonstrated over 100x speedup with this approach.

• Formal verification using ML: Formal verification mathemati-
cally proves properties about a design. ML techniques can help
generate verification properties and learn to solve the complex
formal proofs needed, automating parts of this challenging pro-
cess. Startups like Cortical.io are bringing formal ML verification
solutions to the market.

• Bug detection: ML models can be trained to process hardware
designs and identify potential issues. This assists human design-
ers in inspecting complex designs and finding bugs. Facebook
has shown bug detection models for their server hardware.

The key benefits of applying ML to simulation and verification are
faster design validation turnaround times, more rigorous testing, and
reduced human effort. Challenges include verifying ML model cor-
rectness and handling corner cases. ML promises to accelerate testing
workflows significantly.

10.9.3 ML for EfÏcient Hardware Architectures

A key goal is designing hardware architectures optimized for perfor-
mance, power, and efÏciency. ML introduces new techniques to au-
tomate and improve architecture design space exploration for general-
purpose and specialized hardware like ML accelerators. Some promis-
ing examples include:

• Architecture search for hardware: Search techniques like
evolutionary algorithms (Kao and Krishna 2020), Bayesian

https://www.graphcore.ai/posts/ai-for-simulation-how-graphcore-is-helping-transform-traditional-hpc

CHAPTER 10. AI ACCELERATION 387

optimization (Reagen et al. (2017), Bhardwaj et al. (2020)),
reinforcement learning (Kao, Jeong, and Krishna (2020), S. Kr-
ishnan et al. (2022)) can automatically generate novel hardware
architectures by mutating and mixing design attributes like
cache size, number of parallel units, memory bandwidth, and
so on. This allows for efÏcient navigation of large design spaces.

• Predictive modeling for optimization: ML models can be
trained to predict hardware performance, power, and efÏciency
metrics for a given architecture. These become “surrogate
models” (S. Krishnan et al. 2023) for fast optimization and space
exploration by substituting lengthy simulations.

• Specialized accelerator optimization: For specialized chips like
tensor processing units for AI, automated architecture search
techniques based on ML algorithms (Dan Zhang et al. 2022)
show promise for finding fast, efÏcient designs.

The benefits of using ML include superior design space exploration,
automated optimization, and reduced manual effort. Challenges in-
clude long training times for some techniques and local optima limi-
tations. However, ML for hardware architecture holds great potential
for unlocking performance and efÏciency gains.

10.9.4 ML to Optimize Manufacturing and Reduce De-
fects

Once a hardware design is complete, it moves to manufacturing. How-
ever, variability and defects during manufacturing can impact yields
and quality. ML techniques are now being applied to improve fabrica-
tion processes and reduce defects. Some examples include:

• Predictivemaintenance: ML models can analyze equipment sen-
sor data over time and identify signals that predict maintenance
needs before failure. This enables proactive upkeep, which can
be very handy in the costly fabrication process.

• Process optimization: Supervised learning models can be
trained on process data to identify factors that lead to low yields.
The models can then optimize parameters to improve yields,
throughput, or consistency.

• Yield prediction: By analyzing test data from fabricated designs
using techniques like regression trees, ML models can predict
yields early in production, allowing process adjustments.

• Defect detection: Computer vision ML techniques can be ap-
plied to images of designs to identify defects invisible to the hu-

10.9. Future Trends 388

man eye. This enables precision quality control and root cause
analysis.

• Proactive failure analysis: ML models can help predict, diag-
nose, and prevent issues that lead to downstream defects and
failures by analyzing structured and unstructured process data.

Applying ML to manufacturing enables process optimization, real-
time quality control, predictive maintenance, and higher yields. Chal-
lenges include managing complex manufacturing data and variations.
But ML is poised to transform semiconductor manufacturing.

10.9.5 Toward FoundationModels for HardwareDesign

As we have seen, machine learning is opening up new possibilities
across the hardware design workflow, from specification to manufac-
turing. However, current ML techniques are still narrow in scope and
require extensive domain-specific engineering. The long-term vision
is the development of general artificial intelligence systems that can be
applied with versatility across hardware design tasks.

To fully realize this vision, investment, and research are needed to
develop foundation models for hardware design. These are unified,
general-purpose ML models and architectures that can learn complex
hardware design skills with the right training data and objectives.

Realizing foundation models for end-to-end hardware design will
require the following:

• Accumulate large, high-quality, labeled datasets across hardware
design stages to train foundation models.

• Advances in multi-modal, multi-task ML techniques to handle
the diversity of hardware design data and tasks.

• Interfaces and abstraction layers to connect foundation models to
existing design flows and tools.

• Development of simulation environments and benchmarks
to train and test foundation models on hardware design
capabilities.

• Methods to explain and interpret ML models’ design decisions
and optimizations for trust and verification.

• Compilation techniques to optimize foundation models for efÏ-
cient deployment across hardware platforms.

While significant research remains, foundation models represent the
most transformative long-term goal for imbuing AI into the hardware
design process. Democratizing hardware design via versatile, auto-
mated ML systems promises to unlock a new era of optimized, efÏcient,

CHAPTER 10. AI ACCELERATION 389

and innovative chip design. The journey ahead is filled with open chal-
lenges and opportunities.

If you are interested in ML-aided computer architecture design (S.
Krishnan et al. 2023), we encourage you to read Architecture 2.0.

Alternatively, you can watch Video 16 for more details.

Video 16: Architecture 2.0

https://www.youtube.com/watch?v=F5Eieaz7u1I&ab_
channel=OpenComputeProject

10.10 Conclusion

Specialized hardware acceleration has become indispensable for en-
abling performant and efÏcient artificial intelligence applications as
models and datasets explode in complexity. This chapter examined
the limitations of general-purpose processors like CPUs for AI work-
loads. Their lack of parallelism and computational throughput cannot
train or run state-of-the-art deep neural networks quickly. These moti-
vations have driven innovations in customized accelerators.

We surveyed GPUs, TPUs, FPGAs, and ASICs specifically designed
for the math-intensive operations inherent to neural networks. By cov-
ering this spectrum of options, we aimed to provide a framework for
reasoning through accelerator selection based on constraints around
flexibility, performance, power, cost, and other factors.

We also explored the role of software in actively enabling and opti-
mizing AI acceleration. This spans programming abstractions, frame-
works, compilers, and simulators. We discussed hardware-software
co-design as a proactive methodology for building more holistic AI
systems by closely integrating algorithm innovation and hardware ad-
vances.

But there is so much more to come! Exciting frontiers like analog
computing, optical neural networks, and quantum machine learning
represent active research directions that could unlock orders of magni-
tude improvements in efÏciency, speed, and scale compared to present
paradigms.

Ultimately, specialized hardware acceleration remains indispens-
able for unlocking the performance and efÏciency necessary to fulfill
the promise of artificial intelligence from cloud to edge. We hope
this chapter provides useful background and insights into the rapid
innovation occurring in this domain.

https://www.sigarch.org/architecture-2-0-why-computer-architects-need-a-data-centric-ai-gymnasium/
https://www.youtube.com/watch?v=F5Eieaz7u1I&ab_channel=OpenComputeProject
https://www.youtube.com/watch?v=F5Eieaz7u1I&ab_channel=OpenComputeProject

10.11. Resources 390

10.11 Resources
Here is a curated list of resources to support students and instructors
in their learning and teaching journeys. We are continuously working
on expanding this collection and will add new exercises soon.

Slides

• Coming soon.

Videos

• Video 14

• Video 15

• Video 16

Exercises

• Exercise 20

Labs

• Coming soon.

391

Part VI
Deployment

393

Chapter 11

Benchmarking AI

Figure 11.1.: DALL·E 3 Prompt:
Photo of a podium set against a
tech-themed backdrop. On each
tier of the podium, there are AI
chips with intricate designs. The
top chip has a gold medal hang-
ing from it, the second one has a
silver medal, and the third has a
bronze medal. Banners with ‘AI
Olympics’ are displayed promi-
nently in the background.

Benchmarking is critical to developing and deploying machine learn-
ing systems, especially TinyML applications. Benchmarks allow devel-
opers to measure and compare the performance of different model ar-
chitectures, training procedures, and deployment strategies. This pro-
vides key insights into which approaches work best for the problem at
hand and the constraints of the deployment environment.

This chapter will provide an overview of popular ML benchmarks,
best practices for benchmarking, and how to use benchmarks to im-
prove model development and system performance. It provides devel-
opers with the right tools and knowledge to effectively benchmark and
optimize their systems, especially for TinyML systems.

11.1. Introduction 394

Learning Objectives

• Understand the purpose and goals of benchmarking AI sys-
tems, including performance assessment, resource evalua-
tion, validation, and more.

• Learn about key model benchmarks, metrics, and trends,
including accuracy, fairness, complexity, and efÏciency.

• Become familiar with the key components of an AI bench-
mark, including datasets, tasks, metrics, baselines, repro-
ducibility rules, and more.

• Understand the distinction between training and inference
and how each phase warrants specialized ML systems
benchmarking.

• Learn about system benchmarking concepts like through-
put, latency, power, and computational efÏciency.

• Appreciate the evolution of model benchmarking from ac-
curacy to more holistic metrics like fairness, robustness,
and real-world applicability.

• Recognize the growing role of data benchmarking in eval-
uating issues like bias, noise, balance, and diversity.

• Understand the limitations of evaluating models, data, and
systems in isolation and the emerging need for integrated
benchmarking.

11.1 Introduction
Benchmarking provides the essential measurements needed to drive
machine learning progress and truly understand system performance.
As the physicist Lord Kelvin famously said, “To measure is to know.”
Benchmarks allow us to quantitatively know the capabilities of differ-
ent models, software, and hardware. They allow ML developers to
measure the inference time, memory usage, power consumption, and
other metrics that characterize a system. Moreover, benchmarks create
standardized processes for measurement, enabling fair comparisons
across different solutions.

When benchmarks are maintained over time, they become in-
strumental in capturing progress across generations of algorithms,

CHAPTER 11. BENCHMARKING AI 395

datasets, and hardware. The models and techniques that set new
records on ML benchmarks from one year to the next demonstrate
tangible improvements in what’s possible for on-device machine
learning. By using benchmarks to measure, ML practitioners can
know the real-world capabilities of their systems and have confidence
that each step reflects genuine progress towards the state-of-the-art.

Benchmarking has several important goals and objectives that guide
its implementation for machine learning systems.

• Performance assessment. This involves evaluating key metrics
like a given model’s speed, accuracy, and efÏciency. For instance,
in a TinyML context, it is crucial to benchmark how quickly a
voice assistant can recognize commands, as this evaluates real-
time performance.

• Resource evaluation. This means assessing the model’s impact
on critical system resources, including battery life, memory us-
age, and computational overhead. A relevant example is com-
paring the battery drain of two different image recognition algo-
rithms running on a wearable device.

• Validation and verification. Benchmarking helps ensure the sys-
tem functions correctly and meets specified requirements. One
way is by checking the accuracy of an algorithm, like a heart rate
monitor on a smartwatch, against readings from medical-grade
equipment as a form of clinical validation.

• Competitive analysis. This enables comparing solutions against
competing offerings in the market. For example, benchmarking
a custom object detection model versus common TinyML bench-
marks like MobileNet and Tiny-YOLO.

• Credibility. Accurate benchmarks uphold the credibility of
AI solutions and the organizations that develop them. They
demonstrate a commitment to transparency, honesty, and
quality, which are essential in building trust with users and
stakeholders.

• Regulation and Standardization. As the AI industry continues
to grow, there is an increasing need for regulation and standard-
ization to ensure that AI solutions are safe, ethical, and effective.
Accurate and reliable benchmarks are essential to this regulatory
framework, as they provide the data and evidence needed to as-
sess compliance with industry standards and legal requirements.

11.2. Historical Context 396

This chapter will cover the 3 types of AI benchmarks, the standard
metrics, tools, and techniques designers use to optimize their systems,
and the challenges and trends in benchmarking.

11.2 Historical Context

11.2.1 Standard Benchmarks

The evolution of benchmarks in computing vividly illustrates the
industry’s relentless pursuit of excellence and innovation. In the early
days of computing during the 1960s and 1970s, benchmarks were rudi-
mentary and designed for mainframe computers. For example, the
Whetstone benchmark, named after the Whetstone ALGOL compiler,
was one of the first standardized tests to measure the floating-point
arithmetic performance of a CPU. These pioneering benchmarks
prompted manufacturers to refine their architectures and algorithms
to achieve better benchmark scores.

The 1980s marked a significant shift with the rise of personal com-
puters. As companies like IBM, Apple, and Commodore competed
for market share, and so benchmarks became critical tools to enable
fair competition. The SPEC CPU benchmarks, introduced by the
System Performance Evaluation Cooperative (SPEC), established
standardized tests allowing objective comparisons between different
machines. This standardization created a competitive environment,
pushing silicon manufacturers and system creators to continually
improve their hardware and software offerings.

The 1990s brought the era of graphics-intensive applications and
video games. The need for benchmarks to evaluate graphics card per-
formance led to Futuremark’s creation of 3DMark. As gamers and
professionals sought high-performance graphics cards, companies like
NVIDIA and AMD were driven to rapid innovation, leading to major
advancements in GPU technology like programmable shaders.

The 2000s saw a surge in mobile phones and portable devices
like tablets. With portability came the challenge of balancing perfor-
mance and power consumption. Benchmarks like MobileMark by
BAPCo evaluated speed and battery life. This drove companies to
develop more energy-efÏcient System-on-Chips (SOCs), leading to the
emergence of architectures like ARM that prioritized power efÏciency.

The focus of the recent decade has shifted towards cloud computing,
big data, and artificial intelligence. Cloud service providers like Ama-
zon Web Services and Google Cloud compete on performance, scalabil-
ity, and cost-effectiveness. Tailored cloud benchmarks like CloudSuite

https://en.wikipedia.org/wiki/Whetstone_(benchmark)
https://www.spec.org/cpu/
https://www.spec.org/
https://www.3dmark.com/
https://bapco.com/products/mobilemark-2014/
http://cloudsuite.ch/

CHAPTER 11. BENCHMARKING AI 397

have become essential, driving providers to optimize their infrastruc-
ture for better services.

11.2.2 Custom Benchmarks

In addition to industry-standard benchmarks, there are custom
benchmarks specifically designed to meet the unique requirements
of a particular application or task. They are tailored to the specific
needs of the user or developer, ensuring that the performance metrics
are directly relevant to the intended use of the AI model or system.
Custom benchmarks can be created by individual organizations,
researchers, or developers and are often used in conjunction with
industry-standard benchmarks to provide a comprehensive evaluation
of AI performance.

For example, a hospital could develop a benchmark to assess an
AI model for predicting patient readmission. This benchmark would
incorporate metrics relevant to the hospital’s patient population, like
demographics, medical history, and social factors. Similarly, a finan-
cial institution’s fraud detection benchmark could focus on identifying
fraudulent transactions accurately while minimizing false positives. In
automotive, an autonomous vehicle benchmark may prioritize perfor-
mance in diverse conditions, responding to obstacles, and safety. Re-
tailers could benchmark recommendation systems using click-through
rate, conversion rate, and customer satisfaction. Manufacturing com-
panies might benchmark quality control systems on defect identifica-
tion, efÏciency, and waste reduction. In each industry, custom bench-
marks provide organizations with evaluation criteria tailored to their
unique needs and context. This allows for a more meaningful assess-
ment of how well AI systems meet requirements.

The advantage of custom benchmarks lies in their flexibility and rel-
evance. They can be designed to test specific performance aspects crit-
ical to the success of the AI solution in its intended application. This
allows for a more targeted and accurate assessment of the AI model
or system’s capabilities. Custom benchmarks also provide valuable
insights into the performance of AI solutions in real-world scenarios,
which can be crucial for identifying potential issues and areas for im-
provement.

In AI, benchmarks play a crucial role in driving progress and inno-
vation. While benchmarks have long been used in computing, their
application to machine learning is relatively recent. AI-focused bench-
marks provide standardized metrics to evaluate and compare the per-
formance of different algorithms, model architectures, and hardware
platforms.

11.3. AI Benchmarks: System, Model, and Data 398

11.2.3 Community Consensus

A key prerogative for any benchmark to be impactful is that it must
reflect the shared priorities and values of the broader research commu-
nity. Benchmarks designed in isolation risk failing to gain acceptance
if they overlook key metrics considered important by leading groups.
Through collaborative development with open participation from aca-
demic labs, companies, and other stakeholders, benchmarks can incor-
porate collective input on critical capabilities worth measuring. This
helps ensure the benchmarks evaluate aspects the community agrees
are essential to advance the field. The process of reaching alignment
on tasks and metrics itself supports converging on what matters most.

Furthermore, benchmarks published with broad co-authorship
from respected institutions carry authority and validity that convinces
the community to adopt them as trusted standards. Benchmarks per-
ceived as biased by particular corporate or institutional interests breed
skepticism. Ongoing community engagement through workshops
and challenges is also key after the initial release, and that is what,
for instance, led to the success of ImageNet. As research progresses,
collective participation enables continual refinement and expansion
of benchmarks over time.

Finally, community-developed benchmarks released with open ac-
cess accelerate adoption and consistent implementation. We shared
open-source code, documentation, models, and infrastructure to lower
barriers for groups to benchmark solutions on an equal footing using
standardized implementations. This consistency is critical for fair com-
parisons. Without coordination, labs and companies may implement
benchmarks differently, reducing result reproducibility.

Community consensus brings benchmarks lasting relevance, while
fragmentation confuses. Through collaborative development and
transparent operation, benchmarks can become authoritative stan-
dards for tracking progress. Several of the benchmarks that we discuss
in this chapter were developed and built by the community, for the
community, and that is what ultimately led to their success.

11.3 AI Benchmarks: System,Model, andData
The need for comprehensive benchmarking becomes paramount as AI
systems grow in complexity and ubiquity. Within this context, bench-
marks are often classified into three primary categories: Hardware,
Model, and Data. Let’s dive into why each of these buckets is essential
and the significance of evaluating AI from these three distinct dimen-
sions:

CHAPTER 11. BENCHMARKING AI 399

11.3.1 System Benchmarks

AI computations, especially those in deep learning, are resource-
intensive. The hardware on which these computations run plays an
important role in determining AI solutions’ speed, efÏciency, and
scalability. Consequently, hardware benchmarks help evaluate the
performance of CPUs, GPUs, TPUs, and other accelerators in AI
tasks. By understanding hardware performance, developers can
choose which hardware platforms best suit specific AI applications.
Furthermore, hardware manufacturers use these benchmarks to
identify areas for improvement, driving innovation in AI-specific chip
designs.

11.3.2 Model Benchmarks

The architecture, size, and complexity of AI models vary widely. Dif-
ferent models have different computational demands and offer vary-
ing levels of accuracy and efÏciency. Model benchmarks help us as-
sess the performance of various AI architectures on standardized tasks.
They provide insights into different models’ speed, accuracy, and re-
source demands. By benchmarking models, researchers can identify
best-performing architectures for specific tasks, guiding the AI com-
munity towards more efÏcient and effective solutions. Additionally,
these benchmarks aid in tracking the progress of AI research, show-
casing advancements in model design and optimization.

11.3.3 Data Benchmarks

AI, particularly machine learning, is inherently data-driven. The qual-
ity, size, and diversity of data influence AI models’ training efÏcacy
and generalization capability. Data benchmarks focus on the datasets
used in AI training and evaluation. They provide standardized
datasets the community can use to train and test models, ensuring
a level playing field for comparisons. Moreover, these benchmarks
highlight data quality, diversity, and representation challenges, push-
ing the community to address biases and gaps in AI training data.
By understanding data benchmarks, researchers can also gauge how
models might perform in real-world scenarios, ensuring robustness
and reliability.

In the remainder of the sections, we will discuss each of these bench-
mark types. The focus will be an in-depth exploration of system bench-
marks, as these are critical to understanding and advancing machine
learning system performance. We will briefly cover model and data

11.4. System Benchmarking 400

benchmarks for a comprehensive perspective, but the emphasis and
majority of the content will be devoted to system benchmarks.

11.4 System Benchmarking

11.4.1 Granularity

Machine learning system benchmarking provides a structured and sys-
tematic approach to assessing a system’s performance across various
dimensions. Given the complexity of ML systems, we can dissect their
performance through different levels of granularity and obtain a com-
prehensive view of the system’s efÏciency, identify potential bottle-
necks, and pinpoint areas for improvement. To this end, various types
of benchmarks have evolved over the years and continue to persist.

Figure 11.2 illustrates the different layers of granularity of an ML
system. At the application level, end-to-end benchmarks assess the
overall system performance, considering factors like data preprocess-
ing, model training, and inference. While at the model layer, bench-
marks focus on assessing the efÏciency and accuracy of specific models.
This includes evaluating how well models generalize to new data and
their computational efÏciency during training and inference. Further-
more, benchmarking can extend to hardware and software infrastruc-
ture, examining the performance of individual components like GPUs
or TPUs.

Figure 11.2.: ML system granu-
larity.

11.4.1.1 Micro Benchmarks

Micro-benchmarks in AI are specialized, evaluating distinct compo-
nents or specific operations within a broader machine learning pro-
cess. These benchmarks zero in on individual tasks, offering insights
into the computational demands of a particular neural network layer,
the efÏciency of a unique optimization technique, or the throughput
of a specific activation function. For instance, practitioners might use
micro-benchmarks to measure the computational time required by a

CHAPTER 11. BENCHMARKING AI 401

convolutional layer in a deep learning model or to evaluate the speed
of data preprocessing that feeds data into the model. Such granular as-
sessments are instrumental in fine-tuning and optimizing discrete as-
pects of AI models, ensuring that each component operates at its peak
potential.

These types of microbenchmarks include zooming into very specific
operations or components of the AI pipeline, such as the following:

• Tensor Operations: Libraries like cuDNN (by NVIDIA) often
have benchmarks to measure the performance of individual ten-
sor operations, such as convolutions or matrix multiplications,
which are foundational to deep learning computations.

• Activation Functions: Benchmarks that measure the speed and
efÏciency of various activation functions like ReLU, Sigmoid, or
Tanh in isolation.

• Layer Benchmarks: Evaluations of the computational efÏciency
of distinct neural network layers, such as LSTM or Transformer
blocks, when operating on standardized input sizes.

Example: DeepBench, introduced by Baidu, is a good example of
something that assesses the above. DeepBench assesses the perfor-
mance of basic operations in deep learning models, providing insights
into how different hardware platforms handle neural network training
and inference.

Exercise 21: System Benchmarking - Tensor Operations

Ever wonder how your image filters get so fast? Special libraries
like cuDNN supercharge those calculations on certain hardware.
In this Colab, we’ll use cuDNN with PyTorch to speed up image
filtering. Think of it as a tiny benchmark, showing how the right
software can unlock your GPU’s power!

11.4.1.2 Macro Benchmarks

Macro benchmarks provide a holistic view, assessing the end-to-end
performance of entire machine learning models or comprehen-
sive AI systems. Rather than focusing on individual operations,
macro-benchmarks evaluate the collective efÏcacy of models under
real-world scenarios or tasks. For example, a macro-benchmark might

https://developer.nvidia.com/cudnn
https://github.com/baidu-research/DeepBench
https://colab.research.google.com/github/RyanHartzell/cudnn-image-filtering/blob/master/notebooks/CuDNN%20Image%20Filtering%20Tutorial%20Using%20PyTorch.ipynb#scrollTo=1sWeXdYsATrr

11.4. System Benchmarking 402

assess the complete performance of a deep learning model undertak-
ing image classification on a dataset like ImageNet. This includes
gauging accuracy, computational speed, and resource consumption.
Similarly, one might measure the cumulative time and resources
needed to train a natural language processing model on extensive text
corpora or evaluate the performance of an entire recommendation
system, from data ingestion to final user-specific outputs.

Examples: These benchmarks evaluate the AI model:

• MLPerf Inference (V. J. Reddi et al. 2020): An industry-standard
set of benchmarks for measuring the performance of machine
learning software and hardware. MLPerf has a suite of dedicated
benchmarks for specific scales, such as MLPerf Mobile for mo-
bile class devices and MLPerf Tiny, which focuses on microcon-
trollers and other resource-constrained devices.

• EEMBC’s MLMark: A benchmarking suite for evaluating the
performance and power efÏciency of embedded devices running
machine learning workloads. This benchmark provides insights
into how different hardware platforms handle tasks like image
recognition or audio processing.

• AI-Benchmark (Ignatov et al. 2018): A benchmarking tool de-
signed for Android devices, it evaluates the performance of AI
tasks on mobile devices, encompassing various real-world sce-
narios like image recognition, face parsing, and optical character
recognition.

11.4.1.3 End-to-end Benchmarks

End-to-end benchmarks provide an all-inclusive evaluation that
extends beyond the boundaries of the AI model itself. Instead of
focusing solely on a machine learning model’s computational efÏ-
ciency or accuracy, these benchmarks encompass the entire pipeline
of an AI system. This includes initial data preprocessing, the core
model’s performance, post-processing of the model’s outputs, and
other integral components like storage and network interactions.

Data preprocessing is the first stage in many AI systems, transform-
ing raw data into a format suitable for model training or inference.
These preprocessing steps’ efÏciency, scalability, and accuracy are vi-
tal for the overall system’s performance. End-to-end benchmarks as-
sess this phase, ensuring that data cleaning, normalization, augmenta-
tion, or any other transformation process doesn’t become a bottleneck.

The post-processing phase also takes center stage. This involves in-
terpreting the model’s raw outputs, possibly converting scores into

https://www.image-net.org/
https://github.com/mlcommons/inference
https://github.com/mlcommons/mobile_app_open
https://github.com/mlcommons/tiny
https://github.com/eembc/mlmark
https://ai-benchmark.com/

CHAPTER 11. BENCHMARKING AI 403

meaningful categories, filtering results, or even integrating with other
systems. In real-world applications, this phase is crucial for deliver-
ing actionable insights, and end-to-end benchmarks ensure it’s both
efÏcient and effective.

Beyond the core AI operations, other system components are
important in the overall performance and user experience. Storage
solutions, whether cloud-based, on-premises, or hybrid, can signifi-
cantly impact data retrieval and storage times, especially with vast
AI datasets. Similarly, network interactions, vital for cloud-based AI
solutions or distributed systems, can become performance bottlenecks
if not optimized. End-to-end benchmarks holistically evaluate these
components, ensuring that the entire system operates seamlessly,
from data retrieval to final output delivery.

To date, there are no public, end-to-end benchmarks that take into
account the role of data storage, network, and compute performance.
Arguably, MLPerf Training and Inference come close to the idea of an
end-to-end benchmark, but they are exclusively focused on ML model
performance and do not represent real-world deployment scenarios of
how models are used in the field. Nonetheless, they provide a very
useful signal that helps assess AI system performance.

Given the inherent specificity of end-to-end benchmarking, it is typ-
ically performed internally at a company by instrumenting real pro-
duction deployments of AI. This allows engineers to have a realistic
understanding and breakdown of the performance, but given the sen-
sitivity and specificity of the information, it is rarely reported outside
of the company.

11.4.1.4 Understanding the Trade-offs

Different issues arise at different stages of an AI system. Micro-
benchmarks help fine-tune individual components, macro-benchmarks
aid in refining model architectures or algorithms, and end-to-end
benchmarks guide the optimization of the entire workflow. By
understanding where a problem lies, developers can apply targeted
optimizations.

Moreover, while individual components of an AI system might per-
form optimally in isolation, bottlenecks can emerge when they interact.
End-to-end benchmarks, in particular, are crucial to ensure that the en-
tire system, when operating collectively, meets desired performance
and efÏciency standards.

Finally, organizations can make informed decisions on where to allo-
cate resources by discerning performance bottlenecks or inefÏciencies.
For instance, if micro-benchmarks reveal inefÏciencies in specific ten-
sor operations, investments can be directed toward specialized hard-

11.4. System Benchmarking 404

ware accelerators. Conversely, if end-to-end benchmarks indicate data
retrieval issues, investments might be channeled toward better storage
solutions.

11.4.2 Benchmark Components

At its core, an AI benchmark is more than just a test or a score; it’s
a comprehensive evaluation framework. To understand this in-depth,
let’s break down the typical components that go into an AI benchmark.

11.4.2.1 Standardized Datasets

Datasets serve as the foundation for most AI benchmarks. They pro-
vide a consistent data set on which models are trained and evaluated,
ensuring a level playing field for comparisons.

Example: ImageNet, a large-scale dataset containing millions of la-
beled images spanning thousands of categories, is a popular bench-
marking standard for image classification tasks.

11.4.2.2 Pre-defined Tasks

A benchmark should have a clear objective or task that models aim to
achieve. This task defines the problem the AI system is trying to solve.

Example: Tasks for natural language processing benchmarks might
include sentiment analysis, named entity recognition, or machine
translation.

11.4.2.3 Evaluation Metrics

Once a task is defined, benchmarks require metrics to quantify perfor-
mance. These metrics offer objective measures to compare different
models or systems. In classification tasks, metrics like accuracy, preci-
sion, recall, and F1 score are commonly used. Mean squared or abso-
lute errors might be employed for regression tasks.

11.4.2.4 Baselines and Baseline Models

Benchmarks often include baseline models or reference implementa-
tions. These usually serve as starting points or minimum performance
standards for comparing new models or techniques. Baseline models
help researchers measure the effectiveness of new algorithms.

In benchmark suites, simple models like linear regression or basic
neural networks are often the common baselines. These provide con-
text when evaluating more complex models. By comparing against

https://en.wikipedia.org/wiki/F-score

CHAPTER 11. BENCHMARKING AI 405

these simpler models, researchers can quantify improvements from ad-
vanced approaches.

Performance metrics vary by task, but here are some examples:

• Classification tasks use metrics such as accuracy, precision, recall,
and F1 score.

• Regression tasks often use mean squared error or mean absolute
error.

11.4.2.5 Hardware and Software Specifications

Given the variability introduced by different hardware and software
configurations, benchmarks often specify or document the hardware
and software environments in which tests are conducted.

Example: An AI benchmark might note that evaluations were con-
ducted on an NVIDIA Tesla V100 GPU using TensorFlow v2.4.

11.4.2.6 Environmental Conditions

As external factors can influence benchmark results, it’s essential to
either control or document conditions like temperature, power source,
or system background processes.

Example: Mobile AI benchmarks might specify that tests were con-
ducted at room temperature with devices plugged into a power source
to eliminate battery-level variances.

11.4.2.7 Reproducibility Rules

To ensure benchmarks are credible and can be replicated by others in
the community, they often include detailed protocols covering every-
thing from random seeds used to exact hyperparameters.

Example: A benchmark for a reinforcement learning task might de-
tail the exact training episodes, exploration-exploitation ratios, and re-
ward structures used.

11.4.2.8 Result Interpretation Guidelines

Beyond raw scores or metrics, benchmarks often provide guidelines
or context to interpret results, helping practitioners understand the
broader implications.

Example: A benchmark might highlight that while Model A scored
higher than Model B in accuracy, it offers better real-time performance,
making it more suitable for time-sensitive applications.

11.4. System Benchmarking 406

11.4.3 Training vs. Inference

The development life cycle of a machine learning model involves two
critical phases - training and inference. Training, as you may recall, is
the process of learning patterns from data to create the model. Infer-
ence refers to the model making predictions on new unlabeled data.
Both phases play indispensable yet distinct roles. Consequently, each
phase warrants rigorous benchmarking to evaluate performance met-
rics like speed, accuracy, and computational efÏciency.

Benchmarking the training phase provides insights into how differ-
ent model architectures, hyperparameter values, and optimization al-
gorithms impact the time and resources needed to train the model. For
instance, benchmarking shows how neural network depth affects train-
ing time on a given dataset. Benchmarking also reveals how hardware
accelerators like GPUs and TPUs can speed up training.

On the other hand, benchmarking inference evaluates model perfor-
mance in real-world conditions after deployment. Key metrics include
latency, throughput, memory footprint, and power consumption. This
type of benchmarking determines if a model meets the requirements of
its target application regarding response time and device constraints.
However, we will discuss these broadly to ensure a general under-
standing.

11.4.4 Training Benchmarks

Training represents the phase where the system processes and ingests
raw data to adjust and refine its parameters. Therefore, it is an algo-
rithmic activity and involves system-level considerations, including
data pipelines, storage, computing resources, and orchestration mech-
anisms. The goal is to ensure that the ML system can efÏciently learn
from data, optimizing both the model’s performance and the system’s
resource utilization.

11.4.4.1 Purpose

From an ML systems perspective, training benchmarks evaluate how
well the system scales with increasing data volumes and compu-
tational demands. It’s about understanding the interplay between
hardware, software, and the data pipeline in the training process.

Consider a distributed ML system designed to train on vast datasets,
like those used in large-scale e-commerce product recommendations.
A training benchmark would assess how efÏciently the system scales
across multiple nodes, manage data sharding and handle failures or
node drop-offs during training.

../training/training.qmd

CHAPTER 11. BENCHMARKING AI 407

Training benchmarks evaluate CPU, GPU, memory, and network
utilization during the training phase, guiding system optimizations.
When training a model in a cloud-based ML system, it’s crucial to un-
derstand how resources are being utilized. Are GPUs being fully lever-
aged? Is there unnecessary memory overhead? Benchmarks can high-
light bottlenecks or inefÏciencies in resource utilization, leading to cost
savings and performance improvements.

Training an ML model is contingent on timely and efÏcient data de-
livery. Benchmarks in this context would also assess the efÏciency of
data pipelines, data preprocessing speed, and storage retrieval times.
For real-time analytics systems, like those used in fraud detection, the
speed at which training data is ingested, preprocessed, and fed into
the model can be critical. Benchmarks would evaluate the latency of
data pipelines, the efÏciency of storage systems (like SSDs vs. HDDs),
and the speed of data augmentation or transformation tasks.

11.4.4.2 Metrics

When viewed from a systems perspective, training metrics offer in-
sights that transcend conventional algorithmic performance indicators.
These metrics measure the model’s learning efÏcacy and gauge the ef-
ficiency, scalability, and robustness of the entire ML system during the
training phase. Let’s explore deeper into these metrics and their signif-
icance.

The following metrics are often considered important:

1. Training Time: The time it takes to train a model from scratch
until it reaches a satisfactory performance level. It directly mea-
sures the computational resources required to train a model. For
example, Google’s BERT (Devlin et al. 2019) is a natural language
processing model that requires several days to train on a massive
corpus of text data using multiple GPUs. The long training time
is a significant resource consumption and cost challenge. In some
cases, benchmarks can instead measure the training throughput
(training samples per unit of time). Throughput can be calcu-
lated much faster and easier than training time but may obscure
the metrics we really care about (e.g. time to train).

2. Scalability: How well the training process can handle increases
in data size or model complexity. Scalability can be assessed by
measuring training time, memory usage, and other resource con-
sumption as data size or model complexity increases. OpenAI’s
GPT-3 (Brown et al. 2020) model has 175 billion parameters, mak-
ing it one of the largest language models in existence. Training

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165

11.4. System Benchmarking 408

GPT-3 required extensive engineering efforts to scale the training
process to handle the massive model size. This involved using
specialized hardware, distributed training, and other techniques
to ensure the model could be trained efÏciently.

3. Resource Utilization: The extent to which the training process
utilizes available computational resources such as CPU, GPU,
memory, and disk I/O. High resource utilization can indicate
an efÏcient training process, while low utilization can suggest
bottlenecks or inefÏciencies. For instance, training a convolu-
tional neural network (CNN) for image classification requires
significant GPU resources. Utilizing multi-GPU setups and
optimizing the training code for GPU acceleration can greatly
improve resource utilization and training efÏciency.

4. Memory Consumption: The amount of memory the training
process uses. Memory consumption can be a limiting factor
for training large models or datasets. For example, Google
researchers faced significant memory consumption challenges
when training BERT. The model has hundreds of millions of pa-
rameters, requiring large amounts of memory. The researchers
had to develop techniques to reduce memory consumption,
such as gradient checkpointing and model parallelism.

5. Energy Consumption: The energy consumed during training.
As machine learning models become more complex, energy con-
sumption has become an important consideration. Training large
machine learning models can consume significant energy, lead-
ing to a large carbon footprint. For instance, the training of Ope-
nAI’s GPT-3 was estimated to have a carbon footprint equivalent
to traveling by car for 700,000 kilometers.

6. Throughput: The number of training samples processed per
unit time. Higher throughput generally indicates a more
efÏcient training process. The throughput is an important
metric to consider when training a recommendation system
for an e-commerce platform. A high throughput ensures that
the model can process large volumes of user interaction data
promptly, which is crucial for maintaining the relevance and
accuracy of the recommendations. But it’s also important to
understand how to balance throughput with latency bounds.
Therefore, a latency-bounded throughput constraint is often
imposed on service-level agreements for data center application
deployments.

CHAPTER 11. BENCHMARKING AI 409

7. Cost: The cost of training a model can include both com-
putational and human resources. Cost is important when
considering the practicality and feasibility of training large or
complex models. Training large language models like GPT-3
is estimated to cost millions of dollars. This cost includes
computational, electricity and human resources required for
model development and training.

8. Fault Tolerance and Robustness: The ability of the training pro-
cess to handle failures or errors without crashing or producing
incorrect results. This is important for ensuring the reliability of
the training process. Network failures or hardware malfunctions
can occur in a real-world scenario where a machine-learning
model is being trained on a distributed system. In recent years, it
has become abundantly clear that faults arising from silent data
corruption have emerged as a major issue. A fault-tolerant and
robust training process can recover from such failures without
compromising the model’s integrity.

9. Ease of Use and Flexibility: The ease with which the training
process can be set up and used and its flexibility in handling
different types of data and models. In companies like Google,
efÏciency can sometimes be measured by the number of Soft-
ware Engineer (SWE) years saved since that translates directly
to impact. Ease of use and flexibility can reduce the time and
effort required to train a model. TensorFlow and PyTorch
are popular machine-learning frameworks that provide user-
friendly interfaces and flexible APIs for building and training
machine-learning models. These frameworks support many
model architectures and are equipped with tools that simplify
the training process.

10. Reproducibility: The ability to reproduce the training process
results. Reproducibility is important for verifying a model’s cor-
rectness and validity. However, variations due to stochastic net-
work characteristics often make it hard to reproduce the precise
behavior of applications being trained, which can present a chal-
lenge for benchmarking.

By benchmarking for these types of metrics, we can obtain a com-
prehensive view of the training process’s performance and efÏciency
from a systems perspective. This can help identify areas for improve-
ment and ensure that resources are used effectively.

11.4. System Benchmarking 410

11.4.4.3 Tasks

Selecting a handful of representative tasks for benchmarking machine
learning systems is challenging because machine learning is applied to
various domains with unique characteristics and requirements. Here
are some of the challenges faced in selecting representative tasks:

1. Diversity of Applications: Machine learning is used in numer-
ous fields such as healthcare, finance, natural language process-
ing, computer vision, and many more. Each field has specific
tasks that may not be representative of other fields. For example,
image classification tasks in computer vision may not be relevant
to financial fraud detection.

2. Variability in Data Types and Quality: Different tasks require
different data types, such as text, images, videos, or numerical
data. Data quality and availability can vary greatly between
tasks, making it difÏcult to select tasks that are representative of
the general challenges faced in machine learning.

3. Task Complexity and DifÏculty: The complexity of tasks
varies greatly. Some are relatively straightforward, while
others are highly complex and require sophisticated models
and techniques. Selecting representative tasks that cover the
complexities encountered in machine learning is challenging.

4. Ethical and Privacy Concerns: Some tasks may involve sensitive
or private data, such as medical records or personal information.
These tasks may have ethical and privacy concerns that need to
be addressed, making them less suitable as representative tasks
for benchmarking.

5. Scalability and Resource Requirements: Different tasks may
have different scalability and resource requirements. Some tasks
may require extensive computational resources, while others
can be performed with minimal resources. Selecting tasks that
represent the general resource requirements in machine learning
is difÏcult.

6. Evaluation Metrics: The metrics used to evaluate the perfor-
mance of machine learning models vary between tasks. Some
tasks may have well-established evaluation metrics, while others
lack clear or standardized metrics. This can make it challenging
to compare performance across different tasks.

7. Generalizability of Results: The results obtained from bench-
marking on a specific task may not be generalizable to other tasks.
This means that a machine learning system’s performance on a
selected task may not be indicative of its performance on other
tasks.

CHAPTER 11. BENCHMARKING AI 411

It is important to carefully consider these factors when designing
benchmarks to ensure they are meaningful and relevant to the diverse
range of tasks encountered in machine learning.

11.4.4.4 Benchmarks

Here are some original works that laid the fundamental groundwork
for developing systematic benchmarks for training machine learning
systems.
MLPerf Training Benchmark
MLPerf is a suite of benchmarks designed to measure the perfor-

mance of machine learning hardware, software, and services. The
MLPerf Training benchmark (Mattson et al. 2020a) focuses on the time
it takes to train models to a target quality metric. It includes diverse
workloads, such as image classification, object detection, translation,
and reinforcement learning.

Metrics:

• Training time to target quality
• Throughput (examples per second)
• Resource utilization (CPU, GPU, memory, disk I/O)

DAWNBench
DAWNBench (Coleman et al. 2019) is a benchmark suite focusing on

end-to-end deep learning training time and inference performance. It
includes common tasks such as image classification and question an-
swering.

Metrics:

• Time to train to target accuracy
• Inference latency
• Cost (in terms of cloud computing and storage resources)

Fathom
Fathom (Adolf et al. 2016) is a benchmark from Harvard Univer-

sity that evaluates the performance of deep learning models using a
diverse set of workloads. These include common tasks such as image
classification, speech recognition, and language modeling.

Metrics:

• Operations per second (to measure computational efÏciency)
• Time to completion for each workload
• Memory bandwidth

https://github.com/mlcommons/training
https://dawn.cs.stanford.edu/benchmark/
https://github.com/rdadolf/fathom

11.4. System Benchmarking 412

11.4.4.5 Example Use Case

Consider a scenario where we want to benchmark the training of an
image classification model on a specific hardware platform.

1. Task: The task is to train a convolutional neural network (CNN)
for image classification on the CIFAR-10 dataset.

2. Benchmark: We can use the MLPerf Training benchmark for this
task. It includes an image classification workload that is relevant
to our task.

3. Metrics: We will measure the following metrics:

• Training time to reach a target accuracy of 90%.
• Throughput in terms of images processed per second.
• GPU and CPU utilization during training.

By measuring these metrics, we can assess the performance and efÏ-
ciency of the training process on the selected hardware platform. This
information can then be used to identify potential bottlenecks or areas
for improvement.

11.4.5 Inference Benchmarks

Inference in machine learning refers to using a trained model to make
predictions on new, unseen data. It is the phase where the model ap-
plies its learned knowledge to solve the problem it was designed for,
such as classifying images, recognizing speech, or translating text.

11.4.5.1 Purpose

When we build machine learning models, our ultimate goal is to de-
ploy them in real-world applications where they can provide accurate
and reliable predictions on new, unseen data. This process of using a
trained model to make predictions is known as inference. A machine
learning model’s real-world performance can differ significantly from
its performance on training or validation datasets, which makes bench-
marking inference a crucial step in the development and deployment
of machine learning models.

Benchmarking inference allows us to evaluate how well a machine-
learning model performs in real-world scenarios. This evaluation en-
sures that the model is practical and reliable when deployed in applica-
tions, providing a more comprehensive understanding of the model’s
behavior with real data. Additionally, benchmarking can help identify
potential bottlenecks or limitations in the model’s performance. For

CHAPTER 11. BENCHMARKING AI 413

example, if a model takes too long to predict, it may be impractical for
real-time applications such as autonomous driving or voice assistants.

Resource efÏciency is another critical aspect of inference, as it can
be computationally intensive and require significant memory and pro-
cessing power. Benchmarking helps ensure that the model is efÏcient
regarding resource usage, which is particularly important for edge de-
vices with limited computational capabilities, such as smartphones or
IoT devices. Moreover, benchmarking allows us to compare the per-
formance of our model with competing models or previous versions
of the same model. This comparison is essential for making informed
decisions about which model to deploy in a specific application.

Finally, it is vital to ensure that the model’s predictions are not only
accurate but also consistent across different data points. Benchmark-
ing helps verify the model’s accuracy and consistency, ensuring that
it meets the application’s requirements. It also assesses the model’s
robustness, ensuring that it can handle real-world data variability and
still make accurate predictions.

11.4.5.2 Metrics

1. Accuracy: Accuracy is one of the most vital metrics when bench-
marking machine learning models. It quantifies the proportion
of correct predictions made by the model compared to the true
values or labels. For example, if a spam detection model can cor-
rectly classify 95 out of 100 email messages as spam or not, its
accuracy would be calculated as 95%.

2. Latency: Latency is a performance metric that calculates the time
lag or delay between the input receipt and the production of the
corresponding output by the machine learning system. An exam-
ple that clearly depicts latency is a real-time translation applica-
tion; if a half-second delay exists from the moment a user inputs
a sentence to the time the app displays the translated text, then
the system’s latency is 0.5 seconds.

3. Latency-Bounded Throughput: Latency-bounded throughput
is a valuable metric that combines the aspects of latency and
throughput, measuring the maximum throughput of a system
while still meeting a specified latency constraint. For example,
in a video streaming application that utilizes a machine learning
model to generate and display subtitles automatically, latency-
bounded throughput would measure how many video frames
the system can process per second (throughput) while ensuring
that the subtitles are displayed with no more than a 1-second

11.4. System Benchmarking 414

delay (latency). This metric is particularly important in real-time
applications where meeting latency requirements is crucial to
the user experience.

4. Throughput: Throughput assesses the system’s capacity by mea-
suring the number of inferences or predictions a machine learn-
ing model can handle within a specific unit of time. Consider
a speech recognition system that employs a Recurrent Neural
Network (RNN) as its underlying model; if this system can pro-
cess and understand 50 different audio clips in a minute, then its
throughput rate stands at 50 clips per minute.

5. Energy EfÏciency: Energy efÏciency is a metric that determines
the amount of energy consumed by the machine learning model
to perform a single inference. A prime example of this would be
a natural language processing model built on a Transformer net-
work architecture; if it utilizes 0.1 Joules of energy to translate
a sentence from English to French, its energy efÏciency is mea-
sured at 0.1 Joules per inference.

6. Memory Usage: Memory usage quantifies the volume of RAM
needed by a machine learning model to carry out inference tasks.
A relevant example to illustrate this would be a face recognition
system based on a CNN; if such a system requires 150 MB of
RAM to process and recognize faces within an image, its mem-
ory usage is 150 MB.

11.4.5.3 Tasks

The challenges in picking representative tasks for benchmarking infer-
ence machine learning systems are, by and large, somewhat similar
to the taxonomy we have provided for training. Nevertheless, to be
pedantic, let’s discuss those in the context of inference machine learn-
ing systems.

1. Diversity of Applications: Inference machine learning is em-
ployed across numerous domains such as healthcare, finance, en-
tertainment, security, and more. Each domain has unique tasks,
and what’s representative in one domain might not be in another.
For example, an inference task for predicting stock prices in the fi-
nancial domain might differ from image recognition tasks in the
medical domain.

2. Variability in Data Types: Different inference tasks require
different types of data—text, images, videos, numerical data,

CHAPTER 11. BENCHMARKING AI 415

etc. Ensuring that benchmarks address the wide variety of
data types used in real-world applications is challenging. For
example, voice recognition systems process audio data, which
is vastly different from the visual data processed by facial
recognition systems.

3. Task Complexity: The complexity of inference tasks can differ
immensely, from basic classification tasks to intricate tasks re-
quiring state-of-the-art models. For example, differentiating be-
tween two categories (binary classification) is typically simpler
than detecting hundreds of object types in a crowded scene.

4. Real-time Requirements: Some applications demand immedi-
ate or real-time responses, while others may allow for some delay.
In autonomous driving, real-time object detection and decision-
making are paramount, whereas a recommendation engine for a
shopping website might tolerate slight delays.

5. Scalability Concerns: Given the varied scale of applications,
from edge devices to cloud-based servers, tasks must represent
the diverse computational environments where inference occurs.
For example, an inference task running on a smartphone’s
limited resources differs from a powerful cloud server.

6. Evaluation Metrics Diversity: The metrics used to evaluate per-
formance can differ significantly depending on the task. Find-
ing a common ground or universally accepted metric for diverse
tasks is challenging. For example, precision and recall might
be vital for a medical diagnosis task, whereas throughput (in-
ferences per second) might be more crucial for video processing
tasks.

7. Ethical and Privacy Concerns: Concerns related to ethics and
privacy exist, especially in sensitive areas like facial recognition
or personal data processing. These concerns can impact the selec-
tion and nature of tasks used for benchmarking. For example, us-
ing real-world facial data for benchmarking can raise privacy is-
sues, whereas synthetic data might not replicate real-world chal-
lenges.

8. Hardware Diversity: With a wide range of devices from GPUs,
CPUs, and TPUs to custom ASICs used for inference, ensuring
that tasks are representative across varied hardware is challeng-
ing. For example, a task optimized for inference on a GPU might
perform sub-optimally on an edge device.

11.4. System Benchmarking 416

11.4.5.4 Benchmarks

Here are some original works that laid the fundamental groundwork
for developing systematic benchmarks for inference machine learning
systems.

MLPerf Inference Benchmark: MLPerf Inference is a comprehen-
sive benchmark suite that assesses machine learning models’ perfor-
mance during the inference phase. It encompasses a variety of work-
loads, including image classification, object detection, and natural lan-
guage processing, aiming to provide standardized and insightful met-
rics for evaluating different inference systems. It’s metrics include:

MLPerf Inference is a comprehensive benchmark suite that assesses
machine learning models’ performance during the inference phase. It
encompasses a variety of workloads, including image classification, ob-
ject detection, and natural language processing, aiming to provide stan-
dardized and insightful metrics for evaluating different inference sys-
tems.

Metrics:

• Inference time
• Latency
• Throughput
• Accuracy
• Energy consumption

AIBenchmark: AI Benchmark is a benchmarking tool that evaluates
the performance of AI and machine learning models on mobile devices
and edge computing platforms. It includes tests for image classifica-
tion, object detection, and natural language processing tasks, provid-
ing a detailed analysis of the inference performance on different hard-
ware platforms. It’s metrics include:

AI Benchmark is a benchmarking tool that evaluates the perfor-
mance of AI and machine learning models on mobile devices and
edge computing platforms. It includes tests for image classification,
object detection, and natural language processing tasks, providing a
detailed analysis of the inference performance on different hardware
platforms.

Metrics:

• Inference time
• Latency
• Energy consumption
• Memory usage
• Throughput

https://github.com/mlcommons/inference
https://ai-benchmark.com/

CHAPTER 11. BENCHMARKING AI 417

OpenVINO toolkit: OpenVINO toolkit provides a benchmark tool
to measure the performance of deep learning models for various tasks,
such as image classification, object detection, and facial recognition,
on Intel hardware. It offers detailed insights into the models’ infer-
ence performance on different hardware configurations. It’s metrics
include:

Metrics:

• Inference time
• Throughput
• Latency
• CPU and GPU utilization

11.4.5.5 Example Use Case

Consider a scenario where we want to evaluate the inference perfor-
mance of an object detection model on a specific edge device.

Task: The task is to perform real-time object detection on video
streams, detecting and identifying objects such as vehicles, pedestri-
ans, and trafÏc signs.

Benchmark: We can use the AI Benchmark for this task as it evaluates
inference performance on edge devices, which suits our scenario.

Metrics: We will measure the following metrics:

• Inference time to process each video frame
• Latency to generate the bounding boxes for detected objects
• Energy consumption during the inference process
• Throughput in terms of video frames processed per second

By measuring these metrics, we can assess the performance of the
object detection model on the edge device and identify any potential
bottlenecks or areas for optimization to improve real-time processing
capabilities.

Exercise 22: Inference Benchmarks - MLPerf

Get ready to put your AI models to the ultimate test! MLPerf
is like the Olympics for machine learning performance. In this
Colab, we’ll use a toolkit called CK to run ofÏcial MLPerf bench-
marks, measure how fast and accurate your model is, and even
use TVM to give it a super speed boost. Are you ready to see
your model earn its medal?

https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html
https://colab.research.google.com/drive/1aywGlyD1ZRDtQTrQARVgL1882JcvmFK-?usp=sharing#scrollTo=tnyHAdErL72u

11.4. System Benchmarking 418

11.4.6 Benchmark Example

To properly illustrate the components of a systems benchmark, we can
look at the keyword spotting benchmark in MLPerf Tiny and explain
the motivation behind each decision.

11.4.6.1 Task

Keyword spotting was selected as a task because it is a common use
case in TinyML that has been well-established for years. Additionally,
the typical hardware used for keyword spotting differs substantially
from the offerings of other benchmarks, such as MLPerf Inference’s
speech recognition task.

11.4.6.2 Dataset

Google Speech Commands (Warden 2018) was selected as the best
dataset to represent the task. The dataset is well-established in the
research community and has permissive licensing, allowing it to be
easily used in a benchmark.

11.4.6.3 Model

The next core component is the model, which will act as the primary
workload for the benchmark. The model should be well established
as a solution to the selected task rather than a state-of-the-art solution.
The model selected is a simple depthwise separable convolution model.
This architecture is not the state-of-the-art solution to the task, but it is
well-established and not designed for a specific hardware platform like
many state-of-the-art solutions. Despite being an inference benchmark,
the benchmark also establishes a reference training recipe to be fully
reproducible and transparent.

11.4.6.4 Metrics

Latency was selected as the primary metric for the benchmark, as key-
word spotting systems need to react quickly to maintain user satis-
faction. Additionally, given that TinyML systems are often battery-
powered, energy consumption is measured to ensure the hardware
platform is efÏcient. The accuracy of the model is also measured to
ensure that the optimizations applied by a submitter, such as quanti-
zation, don’t degrade the accuracy beyond a threshold.

https://www.tensorflow.org/datasets/catalog/speech_commands

CHAPTER 11. BENCHMARKING AI 419

11.4.6.5 Benchmark Harness

MLPerf Tiny uses EEMBCs EnergyRunner benchmark harness to load
the inputs to the model and isolate and measure the device’s energy
consumption. When measuring energy consumption, it’s critical to se-
lect a harness that is accurate at the expected power levels of the de-
vices under test and simple enough not to become a burden for the
benchmark participants.

11.4.6.6 Baseline Submission

Baseline submissions are critical for contextualizing results and as a
reference point to help participants get started. The baseline submis-
sion should prioritize simplicity and readability over state-of-the-art
performance. The keyword spotting baseline uses a standard STM mi-
crocontroller as its hardware and TensorFlow Lite for Microcontrollers
(David et al. 2021) as its inference framework.

11.4.7 Challenges and Limitations

While benchmarking provides a structured methodology for perfor-
mance evaluation in complex domains like artificial intelligence and
computing, the process also poses several challenges. If not properly
addressed, these challenges can undermine the credibility and accu-
racy of benchmarking results. Some of the predominant difÏculties
faced in benchmarking include the following:

• Incomplete problem coverage: Benchmark tasks may not fully
represent the problem space. For instance, common image clas-
sification datasets like CIFAR-10 have limited diversity in image
types. Algorithms tuned for such benchmarks may fail to gener-
alize well to real-world datasets.

• Statistical insignificance: Benchmarks must have enough trials
and data samples to produce statistically significant results. For
example, benchmarking an OCR model on only a few text scans
may not adequately capture its true error rates.

• Limited reproducibility: Varying hardware, software versions,
codebases, and other factors can reduce the reproducibility of
benchmark results. MLPerf addresses this by providing refer-
ence implementations and environment specifications.

• Misalignment with end goals: Benchmarks focusing only on
speed or accuracy metrics may misalign real-world objectives like

https://github.com/eembc/energyrunner
https://www.st.com/en/microcontrollers-microprocessors.html
https://www.st.com/en/microcontrollers-microprocessors.html
https://www.tensorflow.org/lite/microcontrollers
https://www.cs.toronto.edu/kriz/cifar.html

11.4. System Benchmarking 420

cost and power efÏciency. Benchmarks must reflect all critical
performance axes.

• Rapid staleness: Due to the rapid pace of advancements in AI
and computing, benchmarks and their datasets can quickly be-
come outdated. Maintaining up-to-date benchmarks is thus a
persistent challenge.

But of all these, the most important challenge is benchmark engineer-
ing.

11.4.7.1 Hardware Lottery

The “hardware lottery” in benchmarking machine learning systems
refers to the situation where the success or efÏciency of a machine
learning model is significantly influenced by the compatibility of the
model with the underlying hardware (Chu et al. 2021). In other words,
some models perform exceptionally well because they are a good fit
for the particular characteristics or capabilities of the hardware they
are run on rather than because they are intrinsically superior models.

Figure 11.3.: Hardware Lot-
tery.

For instance, certain machine learning models may be designed and
optimized to take advantage of the parallel processing capabilities
of specific hardware accelerators, such as Graphics Processing Units
(GPUs) or Tensor Processing Units (TPUs). As a result, these models
might show superior performance when benchmarked on such
hardware compared to other models that are not optimized for the
hardware.

For example, a 2018 paper introduced a new convolutional neural
network architecture for image classification that achieved state-of-the-
art accuracy on ImageNet. However, the paper only mentioned that the

https://arxiv.org/abs/2009.06489

CHAPTER 11. BENCHMARKING AI 421

model was trained on 8 GPUs without specifying the model, memory
size, or other relevant details. A follow-up study tried to reproduce the
results but found that training the same model on commonly available
GPUs achieved 10% lower accuracy, even after hyperparameter tuning.
The original hardware likely had far higher memory bandwidth and
compute power. As another example, training times for large language
models can vary drastically based on the GPUs used.

The “hardware lottery” can introduce challenges and biases in
benchmarking machine learning systems, as the model’s performance
is not solely dependent on the model’s architecture or algorithm but
also on the compatibility and synergies with the underlying hardware.
This can make it difÏcult to compare different models fairly and to
identify the best model based on its intrinsic merits. It can also lead
to a situation where the community converges on models that are a
good fit for the popular hardware of the day, potentially overlooking
other models that might be superior but incompatible with the current
hardware trends.

11.4.7.2 Benchmark Engineering

Hardware lottery occurs when a machine learning model unintention-
ally performs exceptionally well or poorly on a specific hardware setup
due to unforeseen compatibility or incompatibility. The model is not
explicitly designed or optimized for that particular hardware by the
developers or engineers; rather, it happens to align or (mis)align with
the hardware’s capabilities or limitations. In this case, the model’s per-
formance on the hardware is a byproduct of coincidence rather than
design.

In contrast to the accidental hardware lottery, benchmark engineer-
ing involves deliberately optimizing or designing a machine learning
model to perform exceptionally well on specific hardware, often to win
benchmarks or competitions. This intentional optimization might in-
clude tweaking the model’s architecture, algorithms, or parameters to
exploit the hardware’s features and capabilities fully.

11.4.7.3 Problem

Benchmark engineering refers to tweaking or modifying an AI system
to optimize performance on specific benchmark tests, often at the ex-
pense of generalizability or real-world performance. This can include
adjusting hyperparameters, training data, or other aspects of the sys-
tem specifically to achieve high scores on benchmark metrics without
necessarily improving the overall functionality or utility of the system.

11.4. System Benchmarking 422

The motivation behind benchmark engineering often stems from the
desire to achieve high-performance scores for marketing or competi-
tive purposes. High benchmark scores can demonstrate the superior-
ity of an AI system compared to competitors and can be a key selling
point for potential users or investors. This pressure to perform well on
benchmarks sometimes leads to prioritizing benchmark-specific opti-
mizations over more holistic improvements to the system.

It can lead to several risks and challenges. One of the primary risks is
that the AI system may perform better in real-world applications than
the benchmark scores suggest. This can lead to user dissatisfaction,
reputational damage, and potential safety or ethical concerns. Further-
more, benchmark engineering can contribute to a lack of transparency
and accountability in the AI community, as it can be difÏcult to discern
how much of an AI system’s performance is due to genuine improve-
ments versus benchmark-specific optimizations.

The AI community must prioritize transparency and accountabil-
ity to mitigate the risks associated with benchmark engineering. This
can include disclosing any optimizations or adjustments made specif-
ically for benchmark tests and providing more comprehensive evalu-
ations of AI systems that include real-world performance metrics and
benchmark scores. Researchers and developers must prioritize holis-
tic improvements to AI systems that improve their generalizability and
functionality across various applications rather than focusing solely on
benchmark-specific optimizations.

11.4.7.4 Issues

One of the primary problems with benchmark engineering is that it
can compromise the real-world performance of AI systems. When de-
velopers focus on optimizing their systems to achieve high scores on
specific benchmark tests, they may neglect other important system per-
formance aspects crucial in real-world applications. For example, an
AI system designed for image recognition might be engineered to per-
form exceptionally well on a benchmark test that includes a specific set
of images but needs help to recognize images slightly different from
those in the test set accurately.

Another area for improvement with benchmark engineering is that
it can result in AI systems that lack generalizability. In other words,
while the system may perform well on the benchmark test, it may need
help handling a diverse range of inputs or scenarios. For instance, an
AI model developed for natural language processing might be engi-
neered to achieve high scores on a benchmark test that includes a spe-
cific type of text but fails to process text that falls outside of that specific
type accurately.

CHAPTER 11. BENCHMARKING AI 423

It can also lead to misleading results. When AI systems are engi-
neered to perform well on benchmark tests, the results may not accu-
rately reflect the system’s true capabilities. This can be problematic for
users or investors who rely on benchmark scores to make informed de-
cisions about which AI systems to use or invest in. For example, an
AI system engineered to achieve high scores on a benchmark test for
speech recognition might need to be more capable of accurately rec-
ognizing speech in real-world situations, leading users or investors to
make decisions based on inaccurate information.

11.4.7.5 Mitigation

There are several ways to mitigate benchmark engineering. Trans-
parency in the benchmarking process is crucial to maintaining
benchmark accuracy and reliability. This involves clearly disclosing
the methodologies, data sets, and evaluation criteria used in bench-
mark tests, as well as any optimizations or adjustments made to the
AI system for the purpose of the benchmark.

One way to achieve transparency is through the use of open-source
benchmarks. Open-source benchmarks are made publicly available, al-
lowing researchers, developers, and other stakeholders to review, cri-
tique, and contribute to them, thereby ensuring their accuracy and re-
liability. This collaborative approach also facilitates sharing best prac-
tices and developing more robust and comprehensive benchmarks.

One example is the MLPerf Tiny. It’s an open-source framework
designed to make it easy to compare different solutions in the world
of TinyML. Its modular design allows components to be swapped
out for comparison or improvement. The reference implementations,
shown in green and orange in Figure 11.4, act as the baseline for
results. TinyML often needs optimization across the entire system,
and users can contribute by focusing on specific parts, like quantiza-
tion. The modular benchmark design allows users to showcase their
contributions and competitive advantage by modifying a reference
implementation. In short, MLPerf Tiny offers a flexible and modular
way to assess and improve TinyML applications, making it easier to
compare and improve different aspects of the technology.

Another method for achieving transparency is through peer review
of benchmarks. This involves having independent experts review and
validate the benchmark’s methodology, data sets, and results to en-
sure their credibility and reliability. Peer review can provide a valu-
able means of verifying the accuracy of benchmark tests and help build
confidence in the results.

Standardization of benchmarks is another important solution to
mitigate benchmark engineering. Standardized benchmarks provide

11.4. System Benchmarking 424

Figure 11.4.: MLPerf Tiny mod-
ular design. Source: Mattson
et al. (2020a).

CHAPTER 11. BENCHMARKING AI 425

a common framework for evaluating AI systems, ensuring consistency
and comparability across different systems and applications. This can
be achieved by developing industry-wide standards and best practices
for benchmarking and through common metrics and evaluation
criteria.

Third-party verification of results can also be valuable in mitigating
benchmark engineering. This involves having an independent third
party verify the results of a benchmark test to ensure their credibility
and reliability. Third-party verification can build confidence in the re-
sults and provide a valuable means of validating the performance and
capabilities of AI systems.

11.5 Model Benchmarking
Benchmarking machine learning models is important for determining
the effectiveness and efÏciency of various machine learning algo-
rithms in solving specific tasks or problems. By analyzing the results
obtained from benchmarking, developers and researchers can identify
their models’ strengths and weaknesses, leading to more informed
decisions on model selection and further optimization.

The evolution and progress of machine learning models are intrin-
sically linked to the availability and quality of data sets. In machine
learning, data acts as the raw material that powers the algorithms, al-
lowing them to learn, adapt, and ultimately perform tasks that were
traditionally the domain of humans. Therefore, it is important to un-
derstand this history.

11.5.1 Historical Context

Machine learning datasets have a rich history and have evolved sig-
nificantly over the years, growing in size, complexity, and diversity
to meet the ever-increasing demands of the field. Let’s take a closer
look at this evolution, starting from one of the earliest and most iconic
datasets – MNIST.

11.5.1.1 MNIST (1998)

The MNIST dataset, created by Yann LeCun, Corinna Cortes, and
Christopher J.C. Burges in 1998, can be considered a cornerstone in
the history of machine learning datasets. It comprises 70,000 labeled
28x28 pixel grayscale images of handwritten digits (0-9). MNIST has
been widely used for benchmarking algorithms in image processing

https://www.tensorflow.org/datasets/catalog/mnist

11.5. Model Benchmarking 426

and machine learning as a starting point for many researchers and
practitioners. Figure 11.5 shows some examples of handwritten digits.

Figure 11.5.: MNIST handwrit-
ten digits. Source: Suvanjan-
prasai.

11.5.1.2 ImageNet (2009)

Fast forward to 2009, and we see the introduction of the ImageNet
dataset, which marked a significant leap in the scale and complexity of
datasets. ImageNet consists of over 14 million labeled images spanning
more than 20,000 categories. Fei-Fei Li and her team developed it to
advance object recognition and computer vision research. The dataset
became synonymous with the ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC), an annual competition crucial in developing
deep learning models, including the famous AlexNet in 2012.

11.5.1.3 COCO (2014)

The Common Objects in Context (COCO) dataset (T.-Y. Lin et al. 2014),
released in 2014, further expanded the landscape of machine learning
datasets by introducing a richer set of annotations. COCO consists of
images containing complex scenes with multiple objects, and each im-
age is annotated with object bounding boxes, segmentation masks, and
captions. This dataset has been instrumental in advancing research in
object detection, segmentation, and image captioning.

https://en.wikipedia.org/wiki/File:MnistExamplesModified.png
https://en.wikipedia.org/wiki/File:MnistExamplesModified.png
https://www.tensorflow.org/datasets/catalog/imagenet2012
https://www.tensorflow.org/datasets/catalog/imagenet2012
https://cocodataset.org/

CHAPTER 11. BENCHMARKING AI 427

https:
//cocodataset.org/images/jpg/coco-examples.jpg

11.5.1.4 GPT-3 (2020)

While the above examples primarily focus on image datasets, there
have also been significant developments in text datasets. One notable
example is GPT-3 (Brown et al. 2020), developed by OpenAI. GPT-3 is a
language model trained on diverse internet text. Although the dataset
used to train GPT-3 is not publicly available, the model itself, consist-
ing of 175 billion parameters, is a testament to the scale and complexity
of modern machine learning datasets and models.

11.5.1.5 Present and Future

Today, we have a plethora of datasets spanning various domains, in-
cluding healthcare, finance, social sciences, and more. The following
characteristics help us taxonomize the space and growth of machine
learning datasets that fuel model development.

1. Diversity of Data Sets: The variety of data sets available to
researchers and engineers has expanded dramatically, covering
many fields, including natural language processing, image
recognition, and more. This diversity has fueled the devel-
opment of specialized machine-learning models tailored to
specific tasks, such as translation, speech recognition, and facial
recognition.

2. Volume ofData: The sheer volume of data that has become avail-
able in the digital age has also played a crucial role in advancing
machine learning models. Large data sets enable models to cap-
ture the complexity and nuances of real-world phenomena, lead-
ing to more accurate and reliable predictions.

3. Quality and Cleanliness of Data: The quality of data is another
critical factor that influences the performance of machine learn-
ing models. Clean, well-labeled, and unbiased data sets are es-
sential for training models that are robust and fair.

https://cocodataset.org/images/jpg/coco-examples.jpg
https://cocodataset.org/images/jpg/coco-examples.jpg

11.5. Model Benchmarking 428

4. Open Access to Data: The availability of open-access data sets
has also contributed significantly to machine learning’s progress.
Open data allows researchers from around the world to collabo-
rate, share insights, and build upon each other’s work, leading to
faster innovation and the development of more advanced mod-
els.

5. Ethics and Privacy Concerns: As data sets grow in size and
complexity, ethical considerations and privacy concerns become
increasingly important. There is an ongoing debate about
the balance between leveraging data for machine learning
advancements and protecting individuals’ privacy rights.

The development of machine learning models relies heavily on the
availability of diverse, large, high-quality, and open-access data sets.
As we move forward, addressing the ethical considerations and pri-
vacy concerns associated with using large data sets is crucial to ensure
that machine learning technologies benefit society. There is a growing
awareness that data acts as the rocket fuel for machine learning, driv-
ing and fueling the development of machine learning models. Conse-
quently, more focus is being placed on developing the data sets them-
selves. We will explore this in further detail in the data benchmarking
section.

11.5.2 Model Metrics

Machine learning model evaluation has evolved from a narrow focus
on accuracy to a more comprehensive approach considering a range
of factors, from ethical considerations and real-world applicability to
practical constraints like model size and efÏciency. This shift reflects
the field’s maturation as machine learning models are increasingly ap-
plied in diverse, complex real-world scenarios.

11.5.2.1 Accuracy

Accuracy is one of the most intuitive and commonly used metrics for
evaluating machine learning models. At its core, accuracy measures
the proportion of correct predictions made by the model out of all pre-
dictions. For example, imagine we have developed a machine learning
model to classify images as either containing a cat or not. If we test this
model on a dataset of 100 images, and it correctly identifies 90 of them,
we would calculate its accuracy as 90%.

In the initial stages of machine learning, accuracy was often the pri-
mary, if not the only, metric considered when evaluating model perfor-
mance. This is understandable, given its straightforward nature and

CHAPTER 11. BENCHMARKING AI 429

ease of interpretation. However, as the field has progressed, the limi-
tations of relying solely on accuracy have become more apparent.

Consider the example of a medical diagnosis model with an ac-
curacy of 95%. While at first glance this may seem impressive, we
must look deeper to assess the model’s performance fully. Suppose
the model fails to accurately diagnose severe conditions that, while
rare, can have severe consequences; its high accuracy may not be
as meaningful. A pertinent example of this is Google’s retinopathy
machine learning model, which was designed to diagnose diabetic
retinopathy and diabetic macular edema from retinal photographs.

The Google model demonstrated impressive accuracy levels in lab
settings. Still, when deployed in real-world clinical environments in
Thailand, it faced significant challenges. In the real-world setting, the
model encountered diverse patient populations, varying image qual-
ity, and a range of different medical conditions that it had not been
exposed to during its training. Consequently, its performance could
have been better, and it struggled to maintain the same accuracy levels
observed in lab settings. This example serves as a clear reminder that
while high accuracy is an important and desirable attribute for a med-
ical diagnosis model, it must be evaluated in conjunction with other
factors, such as the model’s ability to generalize to different popula-
tions and handle diverse and unpredictable real-world conditions, to
understand its value and potential impact on patient care truly.

Similarly, if the model performs well on average but exhibits signif-
icant disparities in performance across different demographic groups,
this, too, would be cause for concern.

The evolution of machine learning has thus seen a shift towards
a more holistic approach to model evaluation, taking into account
not just accuracy, but also other crucial factors such as fairness,
transparency, and real-world applicability. A prime example is the
Gender Shades project at MIT Media Lab, led by Joy Buolamwini,
highlighting significant racial and gender biases in commercial facial
recognition systems. The project evaluated the performance of three
facial recognition technologies developed by IBM, Microsoft, and
Face++. It found that they all exhibited biases, performing better
on lighter-skinned and male faces compared to darker-skinned and
female faces.

While accuracy remains a fundamental and valuable metric for eval-
uating machine learning models, a more comprehensive approach is
required to fully assess a model’s performance. This means consid-
ering additional metrics that account for fairness, transparency, and
real-world applicability, as well as conducting rigorous testing across
diverse datasets to uncover and mitigate any potential biases. The

https://about.google/intl/ALL_us/stories/seeingpotential/
https://about.google/intl/ALL_us/stories/seeingpotential/
https://www.technologyreview.com/2020/04/27/1000658/google-medical-ai-accurate-lab-real-life-clinic-covid-diabetes-retina-disease/
http://gendershades.org/

11.5. Model Benchmarking 430

move towards a more holistic approach to model evaluation reflects
the maturation of the field and its increasing recognition of the real-
world implications and ethical considerations associated with deploy-
ing machine learning models.

11.5.2.2 Fairness

Fairness in machine learning models is a multifaceted and critical as-
pect that requires careful attention, particularly in high-stakes applica-
tions that significantly affect people’s lives, such as in loan approval
processes, hiring, and criminal justice. It refers to the equitable treat-
ment of all individuals, irrespective of their demographic or social at-
tributes such as race, gender, age, or socioeconomic status.

Simply relying on accuracy can be insufÏcient and potentially mis-
leading when evaluating models. For instance, consider a loan ap-
proval model with a 95% accuracy rate. While this figure may appear
impressive at first glance, it does not reveal how the model performs
across different demographic groups. If this model consistently dis-
criminates against a particular group, its accuracy is less commendable,
and its fairness is questioned.

Discrimination can manifest in various forms, such as direct dis-
crimination, where a model explicitly uses sensitive attributes like race
or gender in its decision-making process, or indirect discrimination,
where seemingly neutral variables correlate with sensitive attributes,
indirectly influencing the model’s outcomes. An infamous example of
the latter is the COMPAS tool used in the US criminal justice system,
which exhibited racial biases in predicting recidivism rates despite
not explicitly using race as a variable.

Addressing fairness involves careful examination of the model’s
performance across diverse groups, identifying potential biases,
and rectifying disparities through corrective measures such as re-
balancing datasets, adjusting model parameters, and implementing
fairness-aware algorithms. Researchers and practitioners continu-
ously develop metrics and methodologies tailored to specific use cases
to evaluate fairness in real-world scenarios. For example, disparate
impact analysis, demographic parity, and equal opportunity are some
of the metrics employed to assess fairness.

Additionally, transparency and interpretability of models are funda-
mental to achieving fairness. Understanding how a model makes de-
cisions can reveal potential biases and enable stakeholders to hold de-
velopers accountable. Open-source tools like AI Fairness 360 by IBM
and Fairness Indicators by TensorFlow are being developed to facili-
tate fairness assessments and mitigation of biases in machine learning
models.

https://ai-fairness-360.org/
https://www.tensorflow.org/tfx/guide/fairness_indicators

CHAPTER 11. BENCHMARKING AI 431

Ensuring fairness in machine learning models, particularly in appli-
cations that significantly impact people’s lives, requires rigorous evalu-
ation of the model’s performance across diverse groups, careful identi-
fication and mitigation of biases, and implementation of transparency
and interpretability measures. By comprehensively addressing fair-
ness, we can work towards developing machine learning models that
are equitable, just, and beneficial for society.

11.5.2.3 Complexity

11.5.2.3.1 Parameters*. In the initial stages of machine learning,
model benchmarking often relied on parameter counts as a proxy for
model complexity. The rationale was that more parameters typically
lead to a more complex model, which should, in turn, deliver better
performance. However, this approach has proven inadequate as it
needs to account for the computational cost associated with processing
many parameters.

For example, GPT-3, developed by OpenAI, is a language model that
boasts an astounding 175 billion parameters. While it achieves state-
of-the-art performance on various natural language processing tasks,
its size and the computational resources required to run it make it im-
practical for deployment in many real-world scenarios, especially those
with limited computational capabilities.

Relying on parameter counts as a proxy for model complexity also
fails to consider the model’s efÏciency. If optimized for efÏciency, a
model with fewer parameters might be just as effective, if not more so,
than a model with a higher parameter count. For instance, MobileNets,
developed by Google, is a family of models designed specifically for
mobile and edge devices. They use depth-wise separable convolutions
to reduce the number of parameters and computational costs while still
achieving competitive performance.

In light of these limitations, the field has moved towards a more
holistic approach to model benchmarking that considers parameter
counts and other crucial factors such as floating-point operations per
second (FLOPs), memory consumption, and latency. FLOPs, in partic-
ular, have emerged as an important metric as they provide a more ac-
curate representation of the computational load a model imposes. This
shift towards a more comprehensive approach to model benchmarking
reflects a recognition of the need to balance performance with practi-
cality, ensuring that models are effective, efÏcient, and deployable in
real-world scenarios.

11.5. Model Benchmarking 432

11.5.2.3.2 FLOPS. The size of a machine learning model is an essen-
tial aspect that directly impacts its usability in practical scenarios, es-
pecially when computational resources are limited. Traditionally, the
number of parameters in a model was often used as a proxy for its size,
with the underlying assumption being that more parameters would
translate to better performance. However, this simplistic view does not
consider the computational cost of processing these parameters. This
is where the concept of floating-point operations per second (FLOPs)
comes into play, providing a more accurate representation of the com-
putational load a model imposes.

FLOPs measure the number of floating-point operations a model
performs to generate a prediction. A model with many FLOPs requires
substantial computational resources to process the vast number of op-
erations, which may render it impractical for certain applications. Con-
versely, a model with a lower FLOP count is more lightweight and can
be easily deployed in scenarios where computational resources are lim-
ited.

Figure 11.6, from (Bianco et al. 2018), shows the relationship be-
tween Top-1 Accuracy on ImageNet (y-axis), the model’s G-FLOPs (x-
axis), and the model’s parameter count (circle-size).

Let’s consider an example. BERT [Bidirectional Encoder Represen-
tations from Transformers] (Devlin et al. 2019), a popular natural lan-
guage processing model, has over 340 million parameters, making it
a large model with high accuracy and impressive performance across
various tasks. However, the sheer size of BERT, coupled with its high
FLOP count, makes it a computationally intensive model that may not
be suitable for real-time applications or deployment on edge devices
with limited computational capabilities.

In light of this, there has been a growing interest in developing
smaller models that can achieve similar performance levels as their
larger counterparts while being more efÏcient in computational load.
DistilBERT, for instance, is a smaller version of BERT that retains 97%
of its performance while being 40% smaller in terms of parameter
count. The size reduction also translates to a lower FLOP count,
making DistilBERT a more practical choice for resource-constrained
scenarios.

In summary, while parameter count provides a useful indication
of model size, it is not a comprehensive metric as it needs to consider
the computational cost associated with processing these parameters.
FLOPs, on the other hand, offer a more accurate representation of a
model’s computational load and are thus an essential consideration
when deploying machine learning models in real-world scenarios,
particularly when computational resources are limited. The evolution

CHAPTER 11. BENCHMARKING AI 433

Figure 11.6.: A graph that de-
picts the top-1 imagenet ac-
curacy vs. the FLOP count
of a model along with the
model’s parameter count. The
figure shows a overall trade-
off between model complexity
and accuracy, although some
model architectures are more
efÏciency than others. Source:
Bianco et al. (2018).

11.5. Model Benchmarking 434

from relying solely on parameter count to considering FLOPs signifies
a maturation in the field, reflecting a greater awareness of the practical
constraints and challenges of deploying machine learning models in
diverse settings.

11.5.2.3.3 EfÏciency. EfÏciency metrics, such as memory consump-
tion and latency/throughput, have also gained prominence. These
metrics are particularly crucial when deploying models on edge de-
vices or in real-time applications, as they measure how quickly a model
can process data and how much memory it requires. In this context,
Pareto curves are often used to visualize the trade-off between differ-
ent metrics, helping stakeholders decide which model best suits their
needs.

11.5.3 Lessons Learned

Model benchmarking has offered us several valuable insights that can
be leveraged to drive innovation in system benchmarks. The progres-
sion of machine learning models has been profoundly influenced by
the advent of leaderboards and the open-source availability of mod-
els and datasets. These elements have served as significant catalysts,
propelling innovation and accelerating the integration of cutting-edge
models into production environments. However, as we will explore
further, these are not the only contributors to the development of ma-
chine learning benchmarks.

Leaderboards play a vital role in providing an objective and transpar-
ent method for researchers and practitioners to evaluate the efÏcacy of
different models, ranking them based on their performance in bench-
marks. This system fosters a competitive environment, encouraging
the development of models that are not only accurate but also efÏcient.
The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is
a prime example of this, with its annual leaderboard significantly con-
tributing to developing groundbreaking models such as AlexNet.

Open-source access to state-of-the-art models and datasets further
democratizes machine learning, facilitating collaboration among
researchers and practitioners worldwide. This open access accelerates
the process of testing, validation, and deployment of new models in
production environments, as evidenced by the widespread adoption
of models like BERT and GPT-3 in various applications, from natural
language processing to more complex, multi-modal tasks.

Community collaboration platforms like Kaggle have revolutionized
the field by hosting competitions that unite data scientists from across
the globe to solve intricate problems. Specific benchmarks serve as the

CHAPTER 11. BENCHMARKING AI 435

goalposts for innovation and model development.
Moreover, the availability of diverse and high-quality datasets is

paramount in training and testing machine learning models. Datasets
such as ImageNet have played an instrumental role in the evolution
of image recognition models, while extensive text datasets have
facilitated advancements in natural language processing models.

Lastly, the contributions of academic and research institutions must
be supported. Their role in publishing research papers, sharing find-
ings at conferences, and fostering collaboration between various insti-
tutions has significantly contributed to advancing machine learning
models and benchmarks.

11.5.3.1 Emerging Trends

As machine learning models become more sophisticated, so do the
benchmarks required to assess them accurately. There are several
emerging benchmarks and datasets that are gaining popularity due
to their ability to evaluate models in more complex and realistic
scenarios:

Multimodal Datasets: These datasets contain multiple data types,
such as text, images, and audio, to represent real-world situations bet-
ter. An example is the VQA (Visual Question Answering) dataset (An-
tol et al. 2015), where models’ ability to answer text-based questions
about images is tested.

Fairness and Bias Evaluation: There is an increasing focus on creat-
ing benchmarks assessing machine learning models’ fairness and bias.
Examples include the AI Fairness 360 toolkit, which offers a compre-
hensive set of metrics and datasets for evaluating bias in models.

Out-of-Distribution Generalization: Testing how well models per-
form on data different from the original training distribution. This
evaluates the model’s ability to generalize to new, unseen data. Exam-
ple benchmarks are Wilds (Koh et al. 2021), RxRx, and ANC-Bench.

Adversarial Robustness: Evaluating model performance under
adversarial attacks or perturbations to the input data. This tests
the model’s robustness. Example benchmarks are ImageNet-A
(Hendrycks et al. 2021), ImageNet-C (C. Xie et al. 2020), and
CIFAR-10.1.

Real-World Performance: Testing models on real-world datasets
that closely match end tasks rather than just canned benchmark
datasets. Examples are medical imaging datasets for healthcare tasks
or customer support chat logs for dialogue systems.

Energy and Compute EfÏciency: Benchmarks that measure the
computational resources required to achieve a particular accuracy.

https://ai-fairness-360.org/

11.5. Model Benchmarking 436

This evaluates the model’s EfÏciency. Examples are MLPerf and
Greenbench, already discussed in the Systems benchmarking section.

Interpretability and Explainability: Benchmarks that assess how
easy it is to understand and explain a model’s internal logic and pre-
dictions. Example metrics are faithfulness to input gradients and co-
herence of explanations.

11.5.4 Limitations and Challenges

While model benchmarks are an essential tool in assessing machine
learning models, several limitations and challenges should be ad-
dressed to ensure that they accurately reflect a model’s performance
in real-world scenarios.

Dataset does not Correspond to Real-World Scenarios: Often, the
data used in model benchmarks is cleaned and preprocessed to such an
extent that it may need to accurately represent the data that a model
would encounter in real-world applications. This idealized data ver-
sion can lead to overestimating a model’s performance. In the case
of the ImageNet dataset, the images are well-labeled and categorized.
Still, in a real-world scenario, a model may need to deal with blurry
images that could be better lit or taken from awkward angles. This
discrepancy can significantly affect the model’s performance.

Sim2Real Gap: The Sim2Real gap refers to the difference in the
performance of a model when transitioning from a simulated envi-
ronment to a real-world environment. This gap is often observed in
robotics, where a robot trained in a simulated environment struggles
to perform tasks in the real world due to the complexity and unpre-
dictability of real-world environments. A robot trained to pick up ob-
jects in a simulated environment may need help to perform the same
task in the real world because the simulated environment does not ac-
curately represent the complexities of real-world physics, lighting, and
object variability.

Challenges in Creating Datasets: Creating a dataset for model
benchmarking is a challenging task that requires careful consideration
of various factors such as data quality, diversity, and representation.
As discussed in the data engineering section, ensuring that the data
is clean, unbiased, and representative of the real-world scenario is
crucial for the accuracy and reliability of the benchmark. For example,
when creating a dataset for a healthcare-related task, it is important
to ensure that the data is representative of the entire population and
not biased towards a particular demographic. This ensures that the
model performs well across diverse patient populations.

Model benchmarks are essential in measuring the capability of a

CHAPTER 11. BENCHMARKING AI 437

model architecture in solving a fixed task, but it is important to ad-
dress the limitations and challenges associated with them. This in-
cludes ensuring that the dataset accurately represents real-world sce-
narios, addressing the Sim2Real gap, and overcoming the challenges
of creating unbiased and representative datasets. By addressing these
challenges and many others, we can ensure that model benchmarks
provide a more accurate and reliable assessment of a model’s perfor-
mance in real-world applications.

The Speech Commands dataset and its successor MSWC, are com-
mon benchmarks for one of the quintessential TinyML applications,
keyword spotting. Speech commands establish streaming error met-
rics beyond the standard top-1 classification accuracy more relevant
to the keyword spotting use case. Using case-relevant metrics is what
elevates a dataset to a model benchmark.

11.6 Data Benchmarking
For the past several years, AI has focused on developing increas-
ingly sophisticated machine learning models like large language
models. The goal has been to create models capable of human-level
or superhuman performance on a wide range of tasks by training
them on massive datasets. This model-centric approach produced
rapid progress, with models attaining state-of-the-art results on many
established benchmarks. Figure 11.7 shows the performance of AI
systems relative to human performance (marked by the horizontal
line at 0) across five applications: handwriting recognition, speech
recognition, image recognition, reading comprehension, and lan-
guage understanding. Over the past decade, the AI performance has
surpassed that of humans.

However, growing concerns about issues like bias, safety, and ro-
bustness persist even in models that achieve high accuracy on standard
benchmarks. Additionally, some popular datasets used for evaluating
models are beginning to saturate, with models reaching near-perfect
performance on existing test splits (Kiela et al. 2021). As a simple ex-
ample, there are test images in the classic MNIST handwritten digit
dataset that may look indecipherable to most human evaluators but
were assigned a label when the dataset was created - models that hap-
pen to agree with those labels may appear to exhibit superhuman per-
formance but instead may only be capturing idiosyncrasies of the la-
beling and acquisition process from the dataset’s creation in 1994. In
the same spirit, computer vision researchers now ask, “Are we done
with ImageNet?” (Beyer et al. 2020). This highlights limitations in the
conventional model-centric approach of optimizing accuracy on fixed

https://arxiv.org/pdf/1804.03209.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/fe131d7f5a6b38b23cc967316c13dae2-Paper-round2.pdf

11.6. Data Benchmarking 438

datasets through architectural innovations.

Figure 11.7.: AI vs human per-
formane. Source: Kiela et al.
(2021).

An alternative paradigm is emerging called data-centric AI. Rather
than treating data as static and focusing narrowly on model perfor-
mance, this approach recognizes that models are only as good as their
training data. So, the emphasis shifts to curating high-quality datasets
that better reflect real-world complexity, developing more informative
evaluation benchmarks, and carefully considering how data is sam-
pled, preprocessed, and augmented. The goal is to optimize model
behavior by improving the data rather than just optimizing metrics
on flawed datasets. Data-centric AI critically examines and enhances
the data itself to produce beneficial AI. This reflects an important evo-
lution in mindset as the field addresses the shortcomings of narrow
benchmarking.

This section will explore the key differences between model-centric
and data-centric approaches to AI. This distinction has important im-
plications for how we benchmark AI systems. Specifically, we will see
how focusing on data quality and EfÏciency can directly improve ma-
chine learning performance as an alternative to optimizing model ar-
chitectures solely. The data-centric approach recognizes that models
are only as good as their training data. So, enhancing data curation,
evaluation benchmarks, and data handling processes can produce AI
systems that are safer, fairer, and more robust. Rethinking benchmark-
ing to prioritize data alongside models represents an important evolu-
tion as the field strives to deliver trustworthy real-world impact.

11.6.1 Limitations of Model-Centric AI

In the model-centric AI era, a prominent characteristic was the devel-
opment of complex model architectures. Researchers and practition-
ers dedicated substantial effort to devising sophisticated and intricate

CHAPTER 11. BENCHMARKING AI 439

models in the quest for superior performance. This frequently involved
the incorporation of additional layers and the fine-tuning of a multi-
tude of hyperparameters to achieve incremental improvements in ac-
curacy. Concurrently, there was a significant emphasis on leveraging
advanced algorithms. These algorithms, often at the forefront of the
latest research, were employed to improve the performance of AI mod-
els. The primary aim of these algorithms was to optimize the learning
process of models, thereby extracting maximal information from the
training data.

While the model-centric approach has been central to many advance-
ments in AI, it has several areas for improvement. First, the develop-
ment of complex model architectures can often lead to overfitting. This
is when the model performs well on the training data but needs to gen-
eralize to new, unseen data. The additional layers and complexity can
capture noise in the training data as if it were a real pattern, harming
the model’s performance on new data.

Second, relying on advanced algorithms can sometimes obscure the
real understanding of a model’s functioning. These algorithms often
act as a black box, making it difÏcult to interpret how the model is
making decisions. This lack of transparency can be a significant hurdle,
especially in critical applications such as healthcare and finance, where
understanding the model’s decision-making process is crucial.

Third, the emphasis on achieving state-of-the-art results on bench-
mark datasets can sometimes be misleading. These datasets need to
represent the complexities and variability of real-world data more fully.
A model that performs well on a benchmark dataset may not necessar-
ily generalize well to new, unseen data in a real-world application. This
discrepancy can lead to false confidence in the model’s capabilities and
hinder its practical applicability.

Lastly, the model-centric approach often relies on large labeled
datasets for training. However, obtaining such datasets takes time
and effort in many real-world scenarios. This reliance on large
datasets also limits AI’s applicability in domains where data is scarce
or expensive to label.

As a result of the above reasons, and many more, the AI community
is shifting to a more data-centric approach. Rather than focusing just
on model architecture, researchers are now prioritizing curating high-
quality datasets, developing better evaluation benchmarks, and con-
sidering how data is sampled and preprocessed. The key idea is that
models are only as good as their training data. So, focusing on getting
the right data will allow us to develop AI systems that are more fair,
safe, and aligned with human values. This data-centric shift represents
an important change in mindset as AI progresses.

11.6. Data Benchmarking 440

11.6.2 The Shift Toward Data-centric AI

Data-centric AI is a paradigm that emphasizes the importance of high-
quality, well-labeled, and diverse datasets in developing AI models. In
contrast to the model-centric approach, which focuses on refining and
iterating on the model architecture and algorithm to improve perfor-
mance, data-centric AI prioritizes the quality of the input data as the
primary driver of improved model performance. High-quality data is
clean, well-labeled and representative of the real-world scenarios the
model will encounter. In contrast, low-quality data can lead to poor
model performance, regardless of the complexity or sophistication of
the model architecture.

Data-centric AI puts a strong emphasis on the cleaning and labeling
of data. Cleaning involves the removal of outliers, handling missing
values, and addressing other data inconsistencies. Labeling, on the
other hand, involves assigning meaningful and accurate labels to the
data. Both these processes are crucial in ensuring that the AI model
is trained on accurate and relevant data. Another important aspect of
the data-centric approach is data augmentation. This involves artifi-
cially increasing the size and diversity of the dataset by applying vari-
ous transformations to the data, such as rotation, scaling, and flipping
training images. Data augmentation helps in improving the model’s
robustness and generalization capabilities.

There are several benefits to adopting a data-centric approach to AI
development. First and foremost, it leads to improved model perfor-
mance and generalization capabilities. By ensuring that the model is
trained on high-quality, diverse data, the model can better generalize
to new, unseen data (Mattson et al. 2020b).

Additionally, a data-centric approach can often lead to simpler mod-
els that are easier to interpret and maintain. This is because the empha-
sis is on the data rather than the model architecture, meaning simpler
models can achieve high performance when trained on high-quality
data.

The shift towards data-centric AI represents a significant paradigm
shift. By prioritizing the quality of the input data, this approach tries to
model performance and generalization capabilities, ultimately leading
to more robust and reliable AI systems. As we continue to advance in
our understanding and application of AI, the data-centric approach is
likely to play an important role in shaping the future of this field.

11.6.3 Benchmarking Data

Data benchmarking focuses on evaluating common issues in datasets,
such as identifying label errors, noisy features, representation imbal-

https://landing.ai/blog/tips-for-a-data-centric-ai-approach/

CHAPTER 11. BENCHMARKING AI 441

ance (for example, out of the 1000 classes in Imagenet-1K, there are over
100 categories which are just types of dogs), class imbalance (where
some classes have many more samples than others), whether models
trained on a given dataset can generalize to out-of-distribution features,
or what types of biases might exist in a given dataset (Mattson et al.
2020b). In its simplest form, data benchmarking seeks to improve ac-
curacy on a test set by removing noisy or mislabeled training samples
while keeping the model architecture fixed. Recent competitions in
data benchmarking have invited participants to submit novel augmen-
tation strategies and active learning techniques.

Data-centric techniques continue to gain attention in bench-
marking, especially as foundation models are increasingly trained
on self-supervised objectives. Compared to smaller datasets like
Imagenet-1K, massive datasets commonly used in self-supervised
learning, such as Common Crawl, OpenImages, and LAION-5B,
contain higher amounts of noise, duplicates, bias, and potentially
offensive data.

DataComp is a recently launched dataset competition that targets
the evaluation of large corpora. DataComp focuses on language-image
pairs used to train CLIP models. The introductory whitepaper finds
that when the total compute budget for training is constant, the best-
performing CLIP models on downstream tasks, such as ImageNet clas-
sification, are trained on just 30% of the available training sample pool.
This suggests that proper filtering of large corpora is critical to improv-
ing the accuracy of foundation models. Similarly, Demystifying CLIP
Data (H. Xu et al. 2023) asks whether the success of CLIP is attributable
to the architecture or the dataset.

DataPerf is another recent effort focusing on benchmarking data in
various modalities. DataPerf provides rounds of online competition to
spur improvement in datasets. The inaugural offering launched with
challenges in vision, speech, acquisition, debugging, and text prompt-
ing for image generation.

11.6.4 Data EfÏciency

As machine learning models grow larger and more complex and com-
pute resources become more scarce in the face of rising demand, it be-
comes challenging to meet the computation requirements even with
the largest machine learning fleets. To overcome these challenges and
ensure machine learning system scalability, it is necessary to explore
novel opportunities that increase conventional approaches to resource
scaling.

Improving data quality can be a useful method to impact machine

https://www.datacomp.ai/
https://www.dataperf.org/

11.6. Data Benchmarking 442

learning system performance significantly. One of the primary ben-
efits of enhancing data quality is the potential to reduce the size of
the training dataset while still maintaining or even improving model
performance. This data size reduction directly relates to the amount
of training time required, thereby allowing models to converge more
quickly and efÏciently. Achieving this balance between data quality
and dataset size is a challenging task that requires the development of
sophisticated methods, algorithms, and techniques.

Several approaches can be taken to improve data quality. These
methods include and are not limited to the following:

• Data Cleaning: This involves handling missing values, correct-
ing errors, and removing outliers. Clean data ensures that the
model is not learning from noise or inaccuracies.

• Data Interpretability and Explainability: Common techniques
include LIME (Ribeiro, Singh, and Guestrin 2016), which pro-
vides insight into the decision boundaries of classifiers, and Shap-
ley values (Lundberg and Lee 2017), which estimate the impor-
tance of individual samples in contributing to a model’s predic-
tions.

• Feature Engineering: Transforming or creating new features can
significantly improve model performance by providing more rel-
evant information for learning.

• Data Augmentation: Augmenting data by creating new samples
through various transformations can help improve model robust-
ness and generalization.

• Active Learning: This is a semi-supervised learning approach
where the model actively queries a human oracle to label the
most informative samples (Coleman et al. 2022). This ensures
that the model is trained on the most relevant data.

• Dimensionality Reduction: Techniques like PCA can reduce the
number of features in a dataset, thereby reducing complexity and
training time.

There are many other methods in the wild. But the goal is the same.
Refining the dataset and ensuring it is of the highest quality can reduce
the training time required for models to converge. However, achieving
this requires developing and implementing sophisticated methods, al-
gorithms, and techniques that can clean, preprocess, and augment data
while retaining the most informative samples. This is an ongoing chal-
lenge that will require continued research and innovation in the field
of machine learning.

CHAPTER 11. BENCHMARKING AI 443

11.7 The Trifecta
While system, model, and data benchmarks have traditionally been
studied in isolation, there is a growing recognition that to understand
and advance AI fully, we must take a more holistic view. By iterating
between benchmarking systems, models, and datasets together, novel
insights that are not apparent when these components are analyzed
separately may emerge. System performance impacts model accuracy,
model capabilities drive data needs, and data characteristics shape sys-
tem requirements.

Benchmarking the triad of system, model, and data in an integrated
fashion will likely lead to discoveries about the co-design of AI sys-
tems, the generalization properties of models, and the role of data cu-
ration and quality in enabling performance. Rather than narrow bench-
marks of individual components, the future of AI requires benchmarks
that evaluate the symbiotic relationship between computing platforms,
algorithms, and training data. This systems-level perspective will be
critical to overcoming current limitations and unlocking the next level
of AI capabilities.

Figure 11.8 illustrates the many potential ways to interplay data
benchmarking, model benchmarking, and system infrastructure
benchmarking together. Exploring these intricate interactions is
likely to uncover new optimization opportunities and enhancement
capabilities. The data, model, and system benchmark triad offers a
rich space for co-design and co-optimization.

While this integrated perspective represents an emerging trend, the
field has much more to discover about the synergies and trade-offs be-
tween these components. As we iteratively benchmark combinations
of data, models, and systems, new insights that remain hidden when
these elements are studied in isolation will emerge. This multifaceted
benchmarking approach charting the intersections of data, algorithms,
and hardware promises to be a fruitful avenue for major progress in
AI, even though it is still in its early stages.

11.8 Benchmarks for Emerging Technologies
Given their significant differences from existing techniques, emerging
technologies can be particularly challenging to design benchmarks for.
Standard benchmarks used for existing technologies may not highlight
the key features of the new approach. In contrast, new benchmarks
may be seen as contrived to favor the emerging technology over others.
They may be so different from existing benchmarks that they cannot be
understood and lose insightful value. Thus, benchmarks for emerging

11.8. Benchmarks for Emerging Technologies 444

Figure 11.8.: Benchmarking tri-
fecta.

CHAPTER 11. BENCHMARKING AI 445

technologies must balance fairness, applicability, and ease of compar-
ison with existing benchmarks.

An example of emerging technology where benchmarking has
proven to be especially difÏcult is in Neuromorphic Computing.
Using the brain as a source of inspiration for scalable, robust, and
energy-efÏcient general intelligence, neuromorphic computing (Schu-
man et al. 2022) directly incorporates biologically realistic mechanisms
in both computing algorithms and hardware, such as spiking neural
networks (Maass 1997) and non-von Neumann architectures for
executing them (M. Davies et al. 2018; Modha et al. 2023). From a
full-stack perspective of models, training techniques, and hardware
systems, neuromorphic computing differs from conventional hard-
ware and AI. Thus, there is a key challenge in developing fair and
useful benchmarks for guiding the technology.

An ongoing initiative to develop standard neuromorphic bench-
marks is NeuroBench (Yik et al. 2023). To suitably benchmark
neuromorphic, NeuroBench follows high-level principles of inclusive-
ness through task and metric applicability to both neuromorphic and
non-neuromorphic solutions, actionability of implementation using
common tooling, and iterative updates to continue to ensure relevance
as the field rapidly grows. NeuroBench and other benchmarks for
emerging technologies provide critical guidance for future techniques,
which may be necessary as the scaling limits of existing approaches
draw nearer.

11.9 Conclusion
What gets measured gets improved. This chapter has explored the mul-
tifaceted nature of benchmarking spanning systems, models, and data.
Benchmarking is important to advancing AI by providing the essential
measurements to track progress.

ML system benchmarks enable optimization across speed, EfÏciency,
and scalability metrics. Model benchmarks drive innovation through
standardized tasks and metrics beyond accuracy. Data benchmarks
highlight issues of quality, balance, and representation.

Importantly, evaluating these components in isolation has limita-
tions. In the future, more integrated benchmarking will likely be used
to explore the interplay between system, model, and data benchmarks.
This view promises new insights into co-designing data, algorithms,
and infrastructure.

As AI grows more complex, comprehensive benchmarking becomes
even more critical. Standards must continuously evolve to measure
new capabilities and reveal limitations. Close collaboration between

11.10. Resources 446

industry, academics, national labels, etc., is essential to developing
benchmarks that are rigorous, transparent, and socially beneficial.

Benchmarking provides the compass to guide progress in AI. By per-
sistently measuring and openly sharing results, we can navigate to-
ward performant, robust, and trustworthy systems. If AI is to serve
societal and human needs properly, it must be benchmarked with hu-
manity’s best interests in mind. To this end, there are emerging areas,
such as benchmarking the safety of AI systems, but that’s for another
day and something we can discuss further in Generative AI!

Benchmarking is a continuously evolving topic. The article The
Olympics of AI: Benchmarking Machine Learning Systems covers
several emerging subfields in AI benchmarking, including robotics,
extended reality, and neuromorphic computing that we encourage
the reader to pursue.

11.10 Resources
Here is a curated list of resources to support students and instructors
in their learning and teaching journeys. We are continuously working
on expanding this collection and will add new exercises soon.

Slides

These slides are a valuable tool for instructors to deliver lectures
and for students to review the material at their own pace. We
encourage students and instructors to leverage these slides to
improve their understanding and facilitate effective knowledge
transfer.

• Why is benchmarking important?

• Embedded inference benchmarking.

Videos

• Coming soon.

Exercises

To reinforce the concepts covered in this chapter, we have curated
a set of exercises that challenge students to apply their knowl-

https://towardsdatascience.com/the-olympics-of-ai-benchmarking-machine-learning-systems-c4b2051fbd2b
https://towardsdatascience.com/the-olympics-of-ai-benchmarking-machine-learning-systems-c4b2051fbd2b
https://docs.google.com/presentation/d/17udz3gxeYF3r3X1r4ePwu1I9H8ljb53W3ktFSmuDlGs/edit?usp=drive_link&resourcekey=0-Espn0a0x81kl2txL_jIWjw
https://docs.google.com/presentation/d/18PI_0xmcW1xwwfcjmj25PikqBM_92vQfOXFV4hah-6I/edit?resourcekey=0-KO3HQcDAsR--jgbKd5cp4w#slide=id.g94db9f9f78_0_2

CHAPTER 11. BENCHMARKING AI 447

edge and deepen their understanding.

• Exercise 21

• Exercise 22

Labs

In addition to exercises, we offer a series of hands-on labs allow-
ing students to gain practical experience with embedded AI tech-
nologies. These labs provide step-by-step guidance, enabling stu-
dents to develop their skills in a structured and supportive envi-
ronment. We are excited to announce that new labs will be avail-
able soon, further enriching the learning experience.

• Coming soon.

449

Chapter 12

On-Device Learning

Figure 12.1.: DALL·E 3 Prompt:
Drawing of a smartphone with
its internal components exposed,
revealing diverse miniature engi-
neers of different genders and skin
tones actively working on the ML
model. The engineers, includ-
ing men, women, and non-binary
individuals, are tuning parame-
ters, repairing connections, and
enhancing the network on the fly.
Data flows into the ML model,
being processed in real-time, and
generating output inferences.

On-device Learning represents a significant innovation for embedded
and edge IoT devices, enabling models to train and update directly on
small local devices. This contrasts with traditional methods, where
models are trained on expansive cloud computing resources before
deployment. With On-Device Learning, devices like smart speakers,
wearables, and industrial sensors can refine models in real-time based
on local data without needing to transmit data externally. For exam-
ple, a voice-enabled smart speaker could learn and adapt to its owner’s
speech patterns and vocabulary right on the device. However, there is
no such thing as a free lunch; therefore, in this chapter, we will discuss
both the benefits and the limitations of on-device learning.

12.1. Introduction 450

Learning Objectives

• Understand on-device learning and how it differs from
cloud-based training

• Recognize the benefits and limitations of on-device learn-
ing

• Examine strategies to adapt models through complexity re-
duction, optimization, and data compression

• Understand related concepts like federated learning and
transfer learning

• Analyze the security implications of on-device learning
and mitigation strategies

12.1 Introduction
On-device Learning refers to training ML models directly on the device
where they are deployed, as opposed to traditional methods where
models are trained on powerful servers and then deployed to devices.
This method is particularly relevant to TinyML, where ML systems are
integrated into tiny, resource-constrained devices.

An example of On-Device Learning can be seen in a smart thermo-
stat that adapts to user behavior over time. Initially, the thermostat
may have a generic model that understands basic usage patterns. How-
ever, as it is exposed to more data, such as the times the user is home
or away, preferred temperatures, and external weather conditions, the
thermostat can refine its model directly on the device to provide a per-
sonalized experience. This is all done without sending data back to a
central server for processing.

Another example is in predictive text on smartphones. As users type,
the phone learns from the user’s language patterns and suggests words
or phrases that are likely to be used next. This learning happens di-
rectly on the device, and the model updates in real-time as more data
is collected. A widely used real-world example of on-device learning is
Gboard. On an Android phone, Gboard learns from typing and dicta-
tion patterns to enhance the experience for all users. On-device learn-
ing is also called federated learning. Figure 12.2 shows the cycle of
federated learning on mobile devices: A. the device learns from user
patterns; B. local model updates are communicated to the cloud; C. the
cloud server updates the global model and sends the new model to all

CHAPTER 12. ON-DEVICE LEARNING 451

the devices.

Figure 12.2.: Federated learn-
ing cycle. Source: Google Re-
search.

12.2 Advantages and Limitations
On-device learning provides several advantages over traditional cloud-
based ML. By keeping data and models on the device, it eliminates the
need for costly data transmission and addresses privacy concerns. This
allows for more personalized, responsive experiences, as the model
can adapt in real-time to user behavior.

However, On-Device Learning also comes with tradeoffs. The lim-
ited computing resources on consumer devices can make it challeng-
ing to run complex models locally. Datasets are also more restricted
since they consist only of user-generated data from a single device. Ad-
ditionally, updating models requires pushing out new versions rather
than seamless cloud updates.

On-device learning opens up new capabilities by enabling ofÒine AI
while maintaining user privacy. However, it requires carefully man-
aging model and data complexity within the constraints of consumer
devices. Finding the right balance between localization and cloud of-
floading is key to optimizing on-device experiences.

12.2.1 Benefits

12.2.1.1 Privacy and Data Security

One of the significant advantages of on-device learning is the enhanced
privacy and security of user data. For instance, consider a smartwatch

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

12.2. Advantages and Limitations 452

that monitors sensitive health metrics such as heart rate and blood pres-
sure. By processing data and adapting models directly on the device,
the biometric data remains localized, circumventing the need to trans-
mit raw data to cloud servers where it could be susceptible to breaches.

Server breaches are far from rare, with millions of records compro-
mised annually. For example, the 2017 Equifax breach exposed the per-
sonal data of 147 million people. By keeping data on the device, the
risk of such exposures is drastically minimized. On-device learning
eliminates reliance on centralized cloud storage and safeguards against
unauthorized access from various threats, including malicious actors,
insider threats, and accidental exposure.

Regulations like the Health Insurance Portability and Accountabil-
ity Act (HIPAA) and the General Data Protection Regulation (GDPR)
mandate stringent data privacy requirements that on-device learning
adeptly addresses. By ensuring data remains localized and is not trans-
ferred to other systems, on-device learning facilitates compliance with
these regulations.

On-device learning is not just beneficial for individual users; it has
significant implications for organizations and sectors dealing with
highly sensitive data. For instance, within the military, on-device
learning empowers frontline systems to adapt models and function
independently of connections to central servers that could potentially
be compromised. Critical and sensitive information is staunchly
protected by localizing data processing and learning. However, this
comes with the tradeoff that individual devices take on more value
and may incentivize theft or destruction as they become the sole
carriers of specialized AI models. Care must be taken to secure
devices themselves when transitioning to on-device learning.

It is also important to preserve the privacy, security, and regulatory
compliance of personal and sensitive data. Instead of in the cloud,
training and operating models locally substantially augment privacy
measures, ensuring that user data is safeguarded from potential
threats.

However, this is only partially intuitive because on-device learning
could instead open systems up to new privacy attacks. With valuable
data summaries and model updates permanently stored on individual
devices, it may be much harder to physically and digitally protect them
than a large computing cluster. While on-device learning reduces the
amount of data compromised in any one breach, it could also intro-
duce new dangers by dispersing sensitive information across many de-
centralized endpoints. Careful security practices are still essential for
on-device systems.

https://www.cdc.gov/phlp/publications/topic/hipaa.html
https://gdpr.eu/tag/gdpr/
https://www.researchgate.net/publication/321515854_The_EU_General_Data_Protection_Regulation_GDPR_A_Practical_Guide
https://www.researchgate.net/publication/321515854_The_EU_General_Data_Protection_Regulation_GDPR_A_Practical_Guide

CHAPTER 12. ON-DEVICE LEARNING 453

12.2.1.2 Regulatory Compliance

On-device learning helps address major privacy regulations like
GDPR and CCPA. These regulations require data localization, re-
stricting cross-border data transfers to approved countries with
adequate controls. GDPR also mandates privacy by design and
consent requirements for data collection. By keeping data processing
and model training localized on-device, sensitive user data is not
transferred across borders. This avoids major compliance headaches
for organizations.

For example, a healthcare provider monitoring patient vitals with
wearables must ensure cross-border data transfers comply with HIPAA
and GDPR if using the cloud. Determining which country’s laws ap-
ply and securing approvals for international data flows introduces le-
gal and engineering burdens. With on-device learning, no data leaves
the device, simplifying compliance. The time and resources spent on
compliance are reduced significantly.

Industries like healthcare, finance, and government, which have
highly regulated data, can benefit greatly from on-device learning. By
localizing data and learning, regulatory privacy and data sovereignty
requirements are more easily met. On-device solutions provide an
efÏcient way to build compliant AI applications.

Major privacy regulations impose restrictions on cross-border data
movement that on-device learning inherently addresses through local-
ized processing. This reduces the compliance burden for organizations
working with regulated data.

12.2.1.3 Reduced Bandwidth, Costs, and Increased EfÏciency

One major advantage of on-device learning is the significant reduction
in bandwidth usage and associated cloud infrastructure costs. By keep-
ing data localized for model training rather than transmitting raw data
to the cloud, on-device learning can result in substantial bandwidth
savings. For instance, a network of cameras analyzing video footage
can achieve significant reductions in data transfer by training models
on-device rather than streaming all video footage to the cloud for pro-
cessing.

This reduction in data transmission saves bandwidth and translates
to lower costs for servers, networking, and data storage in the cloud.
Large organizations, which might spend millions on cloud infras-
tructure to train models on-device data, can experience dramatic cost
reductions through on-device learning. In the era of Generative AI,
where costs have been escalating significantly, finding ways to keep
expenses down has become increasingly important.

https://gdpr.eu/tag/gdpr/
https://oag.ca.gov/privacy/ccpa
https://epochai.org/blog/trends-in-the-dollar-training-cost-of-machine-learning-systems

12.2. Advantages and Limitations 454

Furthermore, the energy and environmental costs of running large
server farms are also diminished. Data centers consume vast amounts
of energy, contributing to greenhouse gas emissions. By reducing
the need for extensive cloud-based infrastructure, on-device learning
plays a part in mitigating the environmental impact of data processing
(C.-J. Wu et al. 2022).

Specifically for endpoint applications, on-device learning minimizes
the number of network API calls needed to run inference through a
cloud provider. The cumulative costs associated with bandwidth and
API calls can quickly escalate for applications with millions of users.
In contrast, performing training and inferences locally is considerably
more efÏcient and cost-effective. Under state-of-the-art optimizations,
on-device learning has been shown to reduce training memory require-
ments, drastically improve memory efÏciency, and reduce up to 20%
in per-iteration latency (Dhar et al. 2021).

Another key benefit of on-device learning is the potential for IoT de-
vices to continuously adapt their ML model to new data for continu-
ous, lifelong learning. On-device models can quickly become outdated
as user behavior, data patterns, and preferences change. Continuous
learning enables the model to efÏciently adapt to new data and im-
provements and maintain high model performance over time.

12.2.2 Limitations

While traditional cloud-based ML systems have access to nearly end-
less computing resources, on-device learning is often restricted by the
limitations in computational and storage power of the edge device that
the model is trained on. By definition, an edge device is a device with
restrained computing, memory, and energy resources that cannot be
easily increased or decreased. Thus, the reliance on edge devices can
restrict the complexity, efÏciency, and size of on-device ML models.

12.2.2.1 Compute resources

Traditional cloud-based ML systems use large servers with multiple
high-end GPUs or TPUs, providing nearly endless computational
power and memory. For example, services like Amazon Web Services
(AWS) EC2 allow configuring clusters of GPU instances for massively
parallel training.

In contrast, on-device learning is restricted by the hardware limita-
tions of the edge device on which it runs. Edge devices refer to end-
points like smartphones, embedded electronics, and IoT devices. By
definition, these devices have highly restrained computing, memory,
and energy resources compared to the cloud.

http://arxiv.org/abs/1911.00623
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html

CHAPTER 12. ON-DEVICE LEARNING 455

For example, a typical smartphone or Raspberry Pi may only have
a few CPU cores, a few GB of RAM, and a small battery. Even more
resource-constrained are TinyML microcontroller devices such as the
Arduino Nano BLE Sense. The resources are fixed on these devices
and can’t easily be increased on demand, such as scaling cloud infras-
tructure. This reliance on edge devices directly restricts the complex-
ity, efÏciency, and size of models that can be deployed for on-device
training:

• Complexity: Limits on memory, computing, and power restrict
model architecture design, constraining the number of layers and
parameters.

• EfÏciency: Models must be heavily optimized through methods
like quantization and pruning to run faster and consume less en-
ergy.

• Size: Actual model files must be compressed as much as possible
to fit within the storage limitations of edge devices.

Thus, while the cloud offers endless scalability, on-device learning
must operate within the tight resource constraints of endpoint hard-
ware. This requires careful codesign of streamlined models, training
methods, and optimizations tailored specifically for edge devices.

12.2.2.2 Dataset Size, Accuracy, and Generalization

In addition to limited computing resources, on-device learning is also
constrained by the dataset available for training models.

In the cloud, models are trained on massive, diverse datasets like
ImageNet or Common Crawl. For example, ImageNet contains over 14
million images carefully categorized across thousands of classes.

On-device learning instead relies on smaller, decentralized data silos
unique to each device. A smartphone camera roll may contain only
thousands of photos of users’ interests and environments.

This decentralized data leads to a need for IID (independent and
identically distributed) data. For instance, two friends may take many
photos of the same places and objects, meaning their data distributions
are highly correlated rather than independent.

Reasons data may be non-IID in on-device settings:

• User heterogeneity: Different users have different interests and
environments.

• Device differences: Sensors, regions, and demographics affect
data.

• Temporal effects: time of day, seasonal impacts on data.

https://store-usa.arduino.cc/products/arduino-nano-33-ble-sense

12.2. Advantages and Limitations 456

The effectiveness of ML relies heavily on large, diverse training data.
With small, localized datasets, on-device models may fail to generalize
across different user populations and environments. For example, a
disease detection model trained only on images from a single hospi-
tal would not generalize well to other patient demographics. The real-
world performance would only improve with extensive and diverse
medical advancements. Thus, while cloud-based learning leverages
massive datasets, on-device learning relies on much smaller, decentral-
ized data silos unique to each user.

The limited data and optimizations required for on-device learning
can negatively impact model accuracy and generalization:

• Small datasets increase overfitting risk. For example, a fruit clas-
sifier trained on 100 images risks overfitting compared to one
trained on 1 million diverse images.

• Noisy user-generated data reduces quality. Sensor noise or im-
proper data labeling by non-experts may degrade training.

• Optimizations like pruning and quantization trade off accuracy
for efÏciency. An 8-bit quantized model runs faster but less ac-
curately than a 32-bit model.

So while cloud models achieve high accuracy with massive datasets
and no constraints, on-device models can struggle to generalize. Some
studies show that on-device training matches cloud accuracy on select
tasks. However, performance on real-world workloads requires fur-
ther study (J. Lin et al. 2022).

For instance, a cloud model can accurately detect pneumonia in chest
X-rays from thousands of hospitals. However, an on-device model
trained only on a small local patient population may fail to generalize.

Unreliable accuracy limits the real-world applicability of on-device
learning for mission-critical uses like disease diagnosis or self-driving
vehicles.

On-device training is also slower than the cloud due to limited re-
sources. Even if each iteration is faster, the overall training process
takes longer.

For example, a real-time robotics application may require model
updates within milliseconds. On-device training on small embedded
hardware may take seconds or minutes per update - too slow for
real-time use.

Accuracy, generalization, and speed challenges pose hurdles to
adopting on-device learning for real-world production systems,
especially when reliability and low latency are critical.

CHAPTER 12. ON-DEVICE LEARNING 457

12.3 On-device Adaptation
In an ML task, resource consumption mainly comes from three sources:

• The ML model itself;
• The optimization process during model learning
• Storing and processing the dataset used for learning.

Correspondingly, there are three approaches to adapting existing
ML algorithms onto resource-constrained devices:

• Reducing the complexity of the ML model
• Modifying optimizations to reduce training resource require-

ments
• Creating new storage-efÏcient data representations

In the following section, we will review these on-device learning
adaptation methods. The Model Optimizations chapter provides more
details on model optimizations.

12.3.1 Reducing Model Complexity

In this section, we will briefly discuss ways to reduce model complexity
when adapting ML models on-device. For details on reducing model
complexity, please refer to the Model Optimization Chapter.

12.3.1.1 Traditional ML Algorithms

Due to edge devices’ computing and memory limitations, select tradi-
tional ML algorithms are great candidates for on-device learning ap-
plications due to their lightweight nature. Some example algorithms
with low resource footprints include Naive Bayes Classifiers, Support
Vector Machines (SVMs), Linear Regression, Logistic Regression, and
select Decision Tree algorithms.

With some refinements, these classical ML algorithms can be
adapted to specific hardware architectures and perform simple
tasks. Their low-performance requirements make it easy to integrate
continuous learning even on edge devices.

12.3.1.2 Pruning

Pruning is a technique for reducing the size and complexity of an ML
model to improve its efÏciency and generalization performance. This
is beneficial for training models on edge devices, where we want to
minimize resource usage while maintaining competitive accuracy.

http://arxiv.org/abs/1911.00623
../optimizations/optimizations.qmd

12.3. On-device Adaptation 458

The primary goal of pruning is to remove parts of the model that
do not contribute significantly to its predictive power while retaining
the most informative aspects. In the context of decision trees, pruning
involves removing some branches (subtrees) from the tree, leading to
a smaller and simpler tree. In the context of DNN, pruning is used to
reduce the number of neurons (units) or connections in the network,
as shown in Figure 12.3.

Figure 12.3.: Network pruning.

12.3.1.3 Reducing Complexity of Deep Learning Models

Traditional cloud-based DNN frameworks have too much memory
overhead to be used on-device. For example, deep learning systems
like PyTorch and TensorFlow require hundreds of megabytes of
memory overhead when training models such as MobilenetV2, and
the overhead scales as the number of training parameters increases.

Current research for lightweight DNNs mostly explores CNN archi-
tectures. Several bare-metal frameworks designed for running Neu-
ral Networks on MCUs by keeping computational overhead and mem-
ory footprint low also exist. Some examples include MNN, TVM, and
TensorFlow Lite. However, they can only perform inference during
forward passes and lack support for backpropagation. While these
models are designed for edge deployment, their reduction in model
weights and architectural connections led to reduced resource require-
ments for continuous learning.

The tradeoff between performance and model support is clear when
adapting the most popular DNN systems. How do we adapt existing
DNN models to resource-constrained settings while maintaining sup-
port for backpropagation and continuous learning? The latest research

http://arxiv.org/abs/2206.15472
https://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html

CHAPTER 12. ON-DEVICE LEARNING 459

suggests algorithm and system codesign techniques that help reduce
the resource consumption of ML training on edge devices. Utilizing
techniques such as quantization-aware scaling (QAS), sparse updates,
and other cutting-edge techniques, on-device learning is possible on
embedded systems with a few hundred kilobytes of RAM without ad-
ditional memory while maintaining high accuracy.

12.3.2 Modifying Optimization Processes

Choosing the right optimization strategy is important for DNN train-
ing on a device since this allows for finding a good local minimum.
Since training occurs on a device, this strategy must also consider lim-
ited memory and power.

12.3.2.1 Quantization-Aware Scaling

Quantization is a common method for reducing the memory footprint
of DNN training. Although this could introduce new errors, these er-
rors can be mitigated by designing a model to characterize this statisti-
cal error. For example, models could use stochastic rounding or intro-
duce the quantization error into the gradient updates.

A specific algorithmic technique is Quantization-Aware Scaling
(QAS), which improves the performance of neural networks on low-
precision hardware, such as edge devices, mobile devices, or TinyML
systems, by adjusting the scale factors during the quantization
process.

As we discussed in the Model Optimizations chapter, quantization is
the process of mapping a continuous range of values to a discrete set of
values. In the context of neural networks, quantization often involves
reducing the precision of the weights and activations from 32-bit float-
ing point to lower-precision formats such as 8-bit integers. This reduc-
tion in precision can significantly reduce the computational cost and
memory footprint of the model, making it suitable for deployment on
low-precision hardware. Figure 12.4 is an example of float-to-integer
quantization.

However, the quantization process can also introduce quantization
errors that can degrade the model’s performance. Quantization-aware
scaling is a technique that minimizes these errors by adjusting the scale
factors used in the quantization process.

The QAS process involves two main steps:

• Quantization-aware training: In this step, the neural network
is trained with quantization in mind, simulating it to mimic its
effects during forward and backward passes. This allows the

http://arxiv.org/abs/2206.15472

12.3. On-device Adaptation 460

Figure 12.4.: Float to integer
quantization. Source: Nvidia.

model to learn to compensate for the quantization errors and im-
prove its performance on low-precision hardware. Refer to the
QAT section in Model Optimizations for details.

• Quantization and scaling: After training, the model is quantized
to a low-precision format, and the scale factors are adjusted to
minimize the quantization errors. The scale factors are chosen
based on the distribution of the weights and activations in the
model and are adjusted to ensure that the quantized values are
within the range of the low-precision format.

QAS is used to overcome the difÏculties of optimizing models on
tiny devices without needing hyperparameter tuning; QAS automati-
cally scales tensor gradients with various bit precisions. This stabilizes
the training process and matches the accuracy of floating-point preci-
sion.

12.3.2.2 Sparse Updates

Although QAS enables the optimization of a quantized model, it uses
a large amount of memory, which is unrealistic for on-device training.
So, spare updates are used to reduce the memory footprint of full back-
ward computation. Instead of pruning weights for inference, sparse
update prunes the gradient during backward propagation to update
the model sparsely. In other words, sparse update skips computing
gradients of less important layers and sub-tensors.

However, determining the optimal sparse update scheme given a
constraining memory budget can be challenging due to the large search

https://developer-blogs.nvidia.com/wp-content/uploads/2021/07/qat-training-precision.png

CHAPTER 12. ON-DEVICE LEARNING 461

space. For example, the MCUNet model has 43 convolutional layers
and a search space of approximately 1030. One technique to address
this issue is contribution analysis. Contribution analysis measures the
accuracy improvement from biases (updating the last few biases com-
pared to only updating the classifier) and weights (updating the weight
of one extra layer compared to only having a bias update). By trying
to maximize these improvements, contribution analysis automatically
derives an optimal sparse update scheme for enabling on-device train-
ing.

12.3.2.3 Layer-Wise Training

Other methods besides quantization can help optimize routines. One
such method is layer-wise training. A significant memory consumer of
DNN training is end-to-end backpropagation, which requires all inter-
mediate feature maps to be stored so the model can calculate gradients.
An alternative to this approach that reduces the memory footprint of
DNN training is sequential layer-by-layer training (T. Chen et al. 2016).
Instead of training end-to-end, training a single layer at a time helps
avoid having to store intermediate feature maps.

12.3.2.4 Trading Computation for Memory

The strategy of trading computation for memory involves releasing
some of the memory being used to store intermediate results. Instead,
these results can be recomputed as needed. Reducing memory in ex-
change for more computation is shown to reduce the memory footprint
of DNN training to fit into almost any budget while also minimizing
computational cost (Gruslys et al. 2016).

12.3.3 Developing New Data Representations

The dimensionality and volume of the training data can significantly
impact on-device adaptation. So, another technique for adapting mod-
els onto resource-constrained devices is to represent datasets more ef-
ficiently.

12.3.3.1 Data Compression

The goal of data compression is to reach high accuracies while limiting
the amount of training data. One method to achieve this is prioritizing
sample complexity: the amount of training data required for the algo-
rithm to reach a target accuracy (Dhar et al. 2021).

12.4. Transfer Learning 462

Other more common methods of data compression focus on reduc-
ing the dimensionality and the volume of the training data. For exam-
ple, an approach could take advantage of matrix sparsity to reduce the
memory footprint of storing training data. Training data can be trans-
formed into a lower-dimensional embedding and factorized into a dic-
tionary matrix multiplied by a block-sparse coefÏcient matrix (Darvish
Rouhani, Mirhoseini, and Koushanfar 2017). Another example could
involve representing words from a large language training dataset in a
more compressed vector format (X. Li et al. 2016).

12.4 Transfer Learning
Transfer learning is an ML technique in which a model developed for
a particular task is reused as the starting point for a model on a sec-
ond task. In the context of on-device AI, transfer learning allows us
to leverage pre-trained models that have already learned useful rep-
resentations from large datasets and finetune them for specific tasks
using smaller datasets directly on the device. This can significantly re-
duce the computational resources and time required for training mod-
els from scratch.

Figure 12.5 includes some intuitive examples of transfer learning
from the real world. For instance, if you can ride a bicycle, you know
how to balance yourself on two-wheel vehicles. Then, it would be eas-
ier for you to learn how to ride a motorcycle than it would be for some-
one who cannot ride a bicycle.

Figure 12.5.: Transferring
knowledge between tasks.
Source: Zhuang et al. (2021).

Let’s take the example of a smart sensor application that uses on-
device AI to recognize objects in images captured by the device. Tradi-
tionally, this would require sending the image data to a server, where
a large neural network model processes the data and sends back the

CHAPTER 12. ON-DEVICE LEARNING 463

results. With on-device AI, the model is stored and runs directly on-
device, eliminating the need to send data to a server.

If we want to customize the model for the on-device characteristics,
training a neural network model from scratch on the device would be
impractical due to the limited computational resources and battery
life. This is where transfer learning comes in. Instead of training a
model from scratch, we can take a pre-trained model, such as a convo-
lutional neural network (CNN) or a transformer network trained on a
large dataset of images, and finetune it for our specific object recogni-
tion task. This finetuning can be done directly on the device using a
smaller dataset of images relevant to the task. By leveraging the pre-
trained model, we can reduce the computational resources and time
required for training while still achieving high accuracy for the object
recognition task.

Transfer learning is important in making on-device AI practical by al-
lowing us to leverage pre-trained models and finetune them for specific
tasks, thereby reducing the computational resources and time required
for training. The combination of on-device AI and transfer learning
opens up new possibilities for AI applications that are more privacy-
conscious and responsive to user needs.

Transfer learning has revolutionized the way models are developed
and deployed, both in the cloud and at the edge. Transfer learning is
being used in the real world. One such example is the use of trans-
fer learning to develop AI models that can detect and diagnose dis-
eases from medical images, such as X-rays, MRI scans, and CT scans.
For example, researchers at Stanford University developed a transfer
learning model that can detect cancer in skin images with an accuracy
of 97% (Esteva et al. 2017). This model was pre-trained on 1.28 mil-
lion images to classify a broad range of objects and then specialized
for cancer detection by training on a dermatologist-curated dataset of
skin images.

Implementation in production scenarios can be broadly categorized
into two stages: pre-deployment and post-deployment.

12.4.1 Pre-Deployment Specialization

In the pre-deployment stage, transfer learning acts as a catalyst to expe-
dite the development process. Here’s how it typically works: Imagine
we are creating a system to recognize different breeds of dogs. Rather
than starting from scratch, we can use a pre-trained model that has
already mastered the broader task of recognizing animals in images.

This pre-trained model serves as a solid foundation and contains
a wealth of knowledge acquired from extensive data. We then fine-

12.4. Transfer Learning 464

tune this model using a specialized dataset containing images of vari-
ous dog breeds. This finetuning process tailors the model to our spe-
cific need — precisely identifying dog breeds. Once finetuned and
validated to meet performance criteria, this specialized model is then
ready for deployment.

Here’s how it works in practice:

• Start with a Pre-TrainedModel: Begin by selecting a model that
has already been trained on a comprehensive dataset, usually re-
lated to a general task. This model serves as the foundation for
the task at hand.

• Finetuning: The pre-trained model is then finetuned on a
smaller, more specialized dataset specific to the desired task.
This step allows the model to adapt and specialize its knowledge
to the specific requirements of the application.

• Validation: After finetuning, the model is validated to ensure it
meets the performance criteria for the specialized task.

• Deployment: Once validated, the specialized model is then de-
ployed into the production environment.

This method significantly reduces the time and computational re-
sources required to train a model from scratch (Pan and Yang 2010).
By adopting transfer learning, embedded systems can achieve high ac-
curacy on specialized tasks without the need to gather extensive data
or expend significant computational resources on training from the
ground up.

12.4.2 Post-Deployment Adaptation

Deployment to a device need not mark the culmination of an ML
model’s educational trajectory. With the advent of transfer learning,
we open the doors to the deployment of adaptive ML models in
real-world scenarios, catering to users’ personalized needs.

Consider a real-world application where a parent wishes to identify
their child in a collection of images from a school event on their smart-
phone. In this scenario, the parent is faced with the challenge of locat-
ing their child amidst images of many other children. Transfer learning
can be employed here to finetune an embedded system’s model to this
unique and specialized task. Initially, the system might use a generic
model trained to recognize faces in images. However, with transfer
learning, the system can adapt this model to recognize the specific fea-
tures of the user’s child.

Here’s how it works:

CHAPTER 12. ON-DEVICE LEARNING 465

1. Data Collection: The embedded system gathers images that in-
clude the child, ideally with the parent’s input to ensure accuracy
and relevance. This can be done directly on the device, maintain-
ing the user’s data privacy.

2. Model Finetuning: The pre-existing face recognition model,
which has been trained on a large and diverse dataset, is then
finetuned using the newly collected images of the child. This
process adapts the model to recognize the child’s specific facial
features, distinguishing them from other children in the images.

3. Validation: The refined model is then validated to ensure it ac-
curately recognizes the child in various images. This can involve
the parent verifying the model’s performance and providing
feedback for further improvements.

4. Deployment: Once validated, the adapted model is deployed on
the device, enabling the parent to easily identify their child in
images without having to sift through them manually.

This on-the-fly customization enhances the model’s efÏcacy for the
individual user, ensuring that they benefit from ML personalization.
This is, in part, how iPhotos or Google Photos works when they ask us
to recognize a face, and then, based on that information, they index all
the photos by that face. Because the learning and adaptation occur on
the device itself, there are no risks to personal privacy. The parent’s
images are not uploaded to a cloud server or shared with third par-
ties, protecting the family’s privacy while still reaping the benefits of
a personalized ML model. This approach represents a significant step
forward in the quest to provide users with tailored ML solutions that
respect and uphold their privacy.

12.4.3 Benefits

Transfer learning has become an important technique in ML and arti-
ficial intelligence, and it is particularly valuable for several reasons.

1. Data Scarcity: In many real-world scenarios, acquiring a sufÏ-
ciently large labeled dataset to train an ML model from scratch
is challenging. Transfer learning mitigates this issue by allowing
the use of pre-trained models that have already learned valuable
features from a vast dataset.

2. Computational Expense: Training a model from scratch requires
significant computational resources and time, especially for com-
plex models like deep neural networks. By using transfer learn-
ing, we can leverage the computation that has already been done
during the training of the source model, thereby saving both time
and computational power.

12.4. Transfer Learning 466

3. Limited Annotated Data: For some specific tasks, there might
be ample raw data available, but the process of labeling that data
for supervised learning can be costly and time-consuming. Trans-
fer learning enables us to use pre-trained models that have been
trained on a related task with labeled data, hence requiring less
annotated data for the new task.

There are advantages to reusing the features:

1. Hierarchical Feature Learning: Deep learning models, particu-
larly Convolutional Neural Networks (CNNs), can learn hierar-
chical features. Lower layers typically learn generic features like
edges and shapes, while higher layers learn more complex and
task-specific features. Transfer learning allows us to reuse the
generic features learned by a model and finetune the higher lay-
ers for our specific task.

2. Boosting Performance: Transfer learning has been proven to
boost the performance of models on tasks with limited data. The
knowledge gained from the source task can provide a valuable
starting point and lead to faster convergence and improved
accuracy on the target task.

Exercise 23: Transfer Learning

Imagine training an AI to recognize flowers like a pro, but with-
out needing a million flower pictures! That’s the power of trans-
fer learning. In this Colab, we’ll take an AI that already knows
about images and teach it to become a flower expert with less
effort. Get ready to make your AI smarter, not harder!

12.4.4 Core Concepts

Understanding the core concepts of transfer learning is essential for
effectively utilizing this powerful approach in ML. Here, we’ll break
down some of the main principles and components that underlie the
process of transfer learning.

12.4.4.1 Source and Target Tasks

In transfer learning, there are two main tasks involved: the source task
and the target task. The source task is the task for which the model

https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/images/transfer_learning.ipynb?force_kitty_mode=1&force_corgi_mode=1

CHAPTER 12. ON-DEVICE LEARNING 467

has already been trained and has learned valuable information. The
target task is the new task we want the model to perform. The goal of
transfer learning is to leverage the knowledge gained from the source
task to improve performance on the target task.

Suppose we have a model trained to recognize various fruits in im-
ages (source task), and we want to create a new model to recognize
different vegetables in images (target task). In that case, we can use
transfer learning to leverage the knowledge gained during the fruit
recognition task to improve the performance of the vegetable recog-
nition model.

12.4.4.2 Representation Transfer

Representation transfer is about transferring the learned representa-
tions (features) from the source task to the target task. There are three
main types of representation transfer:

• Instance Transfer: This involves reusing the data instances from
the source task in the target task.

• Feature-Representation Transfer: This involves transferring the
learned feature representations from the source task to the target
task.

• Parameter Transfer: This involves transferring the model’s
learned parameters (weights) from the source task to the target
task.

In natural language processing, a model trained to understand the
syntax and grammar of a language (source task) can have its learned
representations transferred to a new model designed to perform senti-
ment analysis (target task).

12.4.4.3 Finetuning

Finetuning is the process of adjusting the parameters of a pre-trained
model to adapt it to the target task. This typically involves updating
the weights of the model’s layers, especially the last few layers, to make
the model more relevant for the new task. In image classification, a
model pre-trained on a general dataset like ImageNet (source task) can
be finetuned by adjusting the weights of its layers to perform well on
a specific classification task, like recognizing specific animal species
(target task).

12.4. Transfer Learning 468

12.4.4.4 Feature Extractions

Feature extraction involves using a pre-trained model as a fixed fea-
ture extractor, where the output of the model’s intermediate layers is
used as features for the target task. This approach is particularly use-
ful when the target task has a small dataset, as the pre-trained model’s
learned features can significantly improve performance. In medical
image analysis, a model pre-trained on a large dataset of general med-
ical images (source task) can be used as a feature extractor to provide
valuable features for a new model designed to recognize specific types
of tumors in X-ray images (target task).

12.4.5 Types of Transfer Learning

Transfer learning can be classified into three main types based on the
nature of the source and target tasks and data. Let’s explore each type
in detail:

12.4.5.1 Inductive Transfer Learning

In inductive transfer learning, the goal is to learn the target predictive
function with the help of source data. It typically involves finetun-
ing a pre-trained model on the target task with available labeled data.
A common example of inductive transfer learning is image classifica-
tion tasks. For instance, a model pre-trained on the ImageNet dataset
(source task) can be finetuned to classify specific types of birds (target
task) using a smaller labeled dataset of bird images.

12.4.5.2 Transductive Transfer Learning

Transductive transfer learning involves using source and target data,
but only the source task. The main aim is to transfer knowledge from
the source domain to the target domain, even though the tasks remain
the same. Sentiment analysis for different languages can serve as an
example of transductive transfer learning. A model trained to perform
sentiment analysis in English (source task) can be adapted to perform
sentiment analysis in another language, like French (target task), by
leveraging parallel datasets of English and French sentences with the
same sentiments.

12.4.5.3 Unsupervised Transfer Learning

Unsupervised transfer learning is used when the source and target
tasks are related, but there is no labeled data available for the target

CHAPTER 12. ON-DEVICE LEARNING 469

task. The goal is to leverage the knowledge gained from the source
task to improve performance on the target task, even without labeled
data. An example of unsupervised transfer learning is topic model-
ing in text data. A model trained to extract topics from news articles
(source task) can be adapted to extract topics from social media posts
(target task) without needing labeled data for the social media posts.

12.4.5.4 Comparison and Tradeoffs

By leveraging these different types of transfer learning, practitioners
can choose the approach that best fits the nature of their tasks and
available data, ultimately leading to more effective and efÏcient ML
models. So, in summary:

• Inductive: different source and target tasks, different domains
• Transductive: different source and target tasks, same domain
• Unsupervised: unlabeled source data, transfers feature represen-

tations

Table 12.1 presents a matrix that outlines in a bit more detail the
similarities and differences between the types of transfer learning:

Table 12.1.: Comparison of transfer learning types.

Aspect

Inductive
Transfer
Learning

Transductive
Transfer
Learning

Unsupervised
Transfer
Learning

Labeled Data
for Target Task

Required Not Required Not Required

Source Task Can be
different

Same Same or
Different

Target Task Can be
different

Same Can be
different

Objective Improve
target task
performance
with source
data

Transfer
knowledge
from source to
target domain

Leverage
source task to
improve target
task
performance
without labeled
data

Example ImageNet to
bird
classification

Sentiment
analysis in
different
languages

Topic modeling
for different
text data

12.4. Transfer Learning 470

12.4.6 Constraints and Considerations

When engaging in transfer learning, there are several factors that must
be considered to ensure successful knowledge transfer and model per-
formance. Here’s a breakdown of some key factors:

12.4.6.1 Domain Similarity

Domain similarity refers to how closely related the source and target
domains are. The more similar the domains, the more likely the trans-
fer learning will be successful. Transferring knowledge from a model
trained on images of outdoor scenes (source domain) to a new task that
involves recognizing objects in indoor scenes (target domain) might be
more successful than transferring knowledge from outdoor scenes to a
task involving text analysis, as the domains (images vs. text) are quite
different.

12.4.6.2 Task Similarity

Task similarity refers to how closely related the source and target tasks
are. Similar tasks are likely to benefit more from transfer learning. A
model trained to recognize different breeds of dogs (source task) can be
more easily adapted to recognize different breeds of cats (target task)
than it can be adapted to perform a completely different task like lan-
guage translation.

12.4.6.3 Data Quality and Quantity

The quality and quantity of data available for the target task can sig-
nificantly impact the success of transfer learning. More high-quality
data can result in better model performance. Suppose we have a
large dataset with clear, well-labeled images to recognize specific bird
species. In that case, the transfer learning process will likely be more
successful than if we have a small, noisy dataset.

12.4.6.4 Feature Space Overlap

Feature space overlap refers to how well the features learned by the
source model align with the features needed for the target task. Greater
overlap can lead to more successful transfer learning. A model trained
on high-resolution images (source task) may not transfer well to a tar-
get task that involves low-resolution images, as the feature space (high-
res vs. low-res) is different.

CHAPTER 12. ON-DEVICE LEARNING 471

12.4.6.5 Model Complexity

The complexity of the source model can also impact the success of
transfer learning. Sometimes, a simpler model might transfer better
than a complex one, as it is less likely to overfit the source task. For
example, a simple convolutional neural network (CNN) model trained
on image data (source task) may transfer more successfully to a new
image classification task (target task) than a complex CNN with many
layers, as the simpler model is less likely to overfit the source task.

By considering these factors, ML practitioners can make informed
decisions about when and how to use transfer learning, ultimately lead-
ing to more successful model performance on the target task. The suc-
cess of transfer learning hinges on the degree of similarity between the
source and target domains. Overfitting is risky, especially when fine-
tuning occurs on a limited dataset. On the computational front, cer-
tain pre-trained models, owing to their size, might not comfortably fit
into the memory constraints of some devices or may run prohibitively
slowly. Over time, as data evolves, there is potential for model drift,
indicating the need for periodic re-training or ongoing adaptation.

Learn more about transfer learning in Video 17 below.

Video 17: Transfer Learning

https://www.youtube.com/watch?v=FQM13HkEfBk

12.5 Federated Machine Learning
Federated Learning Overview

The modern internet is full of large networks of connected de-
vices. Whether it’s cell phones, thermostats, smart speakers, or
other IOT products, countless edge devices are a goldmine for
hyper-personalized, rich data. However, with that rich data comes
an assortment of problems with information transfer and privacy.
Constructing a training dataset in the cloud from these devices would
involve high volumes of bandwidth, cost-efÏcient data transfer, and
violation of users’ privacy.

Federated learning offers a solution to these problems: train models
partially on the edge devices and only communicate model updates
to the cloud. In 2016, a team from Google designed architecture for
federated learning that attempts to address these problems.

In their initial paper, Google outlines a principle federated learning
algorithm called FederatedAveraging, which is shown in Figure 12.6.

https://www.youtube.com/watch?v=FQM13HkEfBk

12.5. Federated Machine Learning 472

Specifically, FederatedAveraging performs stochastic gradient descent
(SGD) over several different edge devices. In this process, each device
calculates a gradient 𝑔𝑘 = ∇𝐹𝑘(𝑤𝑡) which is then applied to update
the server-side weights as (with 𝜂 as learning rate across 𝑘 clients):𝑤𝑡+1 → 𝑤𝑡 −𝜂 𝐾∑𝑘=1 𝑛𝑘𝑛 𝑔𝑘
This summarizes the basic algorithm for federated learning on the
right. For each round of training, the server takes a random set of
client devices and calls each client to train on its local batch using
the most recent server-side weights. Those weights are then returned
to the server, where they are collected individually and averaged to
update the global model weights.

Figure 12.6.: Google’s Pro-
posed FederatedAverage Algo-
rithm. Source: McMahan et
al. (2017).

With this proposed structure, there are a few key vectors for further
optimizing federated learning. We will outline each in the following
subsections.

https://arxiv.org/abs/1602.05629

CHAPTER 12. ON-DEVICE LEARNING 473

Video 18 gives an overview of federated learning.

Video 18: Transfer Learning

https://www.youtube.com/watch?v=zqv1eELa7fs

12.5.1 Communication EfÏciency

One of the key bottlenecks in federated learning is communication. Ev-
ery time a client trains the model, they must communicate their up-
dates back to the server. Similarly, once the server has averaged all
the updates, it must send them back to the client. This incurs huge
bandwidth and resource costs on large networks of millions of devices.
As the field of federated learning advances, a few optimizations have
been developed to minimize this communication. To address the foot-
print of the model, researchers have developed model compression
techniques. In the client-server protocol, federated learning can also
minimize communication through the selective sharing of updates on
clients. Finally, efÏcient aggregation techniques can also streamline
the communication process.

12.5.2 Model Compression

In standard federated learning, the server communicates the entire
model to each client, and then the client sends back all of the updated
weights. This means that the easiest way to reduce the client’s mem-
ory and communication footprint is to minimize the size of the model
needed to be communicated. We can employ all of the previously dis-
cussed model optimization strategies to do this.

In 2022, another team at Google proposed that each client communi-
cates via a compressed format and decompresses the model on the fly
for training (Yang et al. 2023), allocating and deallocating the full mem-
ory for the model only for a short period while training. The model is
compressed through a range of various quantization strategies elabo-
rated upon in their paper. Meanwhile, the server can update the un-
compressed model by decompressing and applying updates as they
come in.

12.5.3 Selective Update Sharing

There are many methods for selectively sharing updates. The general
principle is that reducing the portion of the model that the clients are
training on the edge reduces the memory necessary for training and

https://www.youtube.com/watch?v=zqv1eELa7fs

12.5. Federated Machine Learning 474

the size of communication to the server. In basic federated learning, the
client trains the entire model. This means that when a client sends an
update to the server, it has gradients for every weight in the network.

However, we cannot just reduce communication by sending pieces of
those gradients from each client to the server because the gradients are
part of an entire update required to improve the model. Instead, you
need to architecturally design the model such that each client trains
only a small portion of the broader model, reducing the total communi-
cation while still gaining the benefit of training on client data. A paper
(Shi and Radu 2022) from the University of ShefÏeld applies this con-
cept to a CNN by splitting the global model into two parts: an upper
and a lower part, as shown in Zhiyong Chen and Xu (2023).

The lower part is designed to focus on generic features in the dataset,
while the upper part, trained on those generic features, is designed to
be more sensitive to the activation maps. This means that the lower
part of the model is trained through standard federated averaging
across all of the clients. Meanwhile, the upper part of the model is
trained entirely on the server side from the activation maps generated
by the clients. This approach drastically reduces communication for
the model while still making the network robust to various types of
input found in the data on the client devices.

12.5.4 Optimized Aggregation

In addition to reducing the communication overhead, optimizing the
aggregation function can improve model training speed and accuracy
in certain federated learning use cases. While the standard for aggre-
gation is just averaging, various other approaches can improve model
efÏciency, accuracy, and security. One alternative is clipped averag-
ing, which clips the model updates within a specific range. Another
strategy to preserve security is differential privacy average aggrega-
tion. This approach integrates differential privacy into the aggrega-
tion step to protect client identities. Each client adds a layer of random
noise to their updates before communicating to the server. The server
then updates itself with the noisy updates, meaning that the amount
of noise needs to be tuned carefully to balance privacy and accuracy.

In addition to security-enhancing aggregation methods, there are
several modifications to the aggregation methods that can improve
training speed and performance by adding client metadata along with
the weight updates. Momentum aggregation is a technique that helps
address the convergence problem. In federated learning, client data
can be extremely heterogeneous depending on the different environ-
ments in which the devices are used. That means that many models

CHAPTER 12. ON-DEVICE LEARNING 475

Figure 12.7.: Split model ar-
chitecture for selective sharing.
Source: Shi et al., (2022).

https://doi.org/10.1145/3517207.3526980

12.5. Federated Machine Learning 476

with heterogeneous data may need help to converge. Each client stores
a momentum term locally, which tracks the pace of change over several
updates. With clients communicating this momentum, the server can
factor in the rate of change of each update when changing the global
model to accelerate convergence. Similarly, weighted aggregation can
factor in the client performance or other parameters like device type or
network connection strength to adjust the weight with which the server
should incorporate the model updates. Further descriptions of specific
aggregation algorithms are provided by Moshawrab et al. (2023).

12.5.5 Handling non-IID Data

When using federated learning to train a model across many client
devices, it is convenient to consider the data to be independent and
identically distributed (IID) across all clients. When data is IID, the
model will converge faster and perform better because each local up-
date on any given client is more representative of the broader dataset.
This makes aggregation straightforward, as you can directly average
all clients. However, this differs from how data often appears in the
real world. Consider a few of the following ways in which data may
be non-IID:

• If you are learning on a set of health-monitor devices, different
device models could mean different sensor qualities and proper-
ties. This means that low-quality sensors and devices may pro-
duce data, and therefore, model updates distinctly different than
high-quality ones

• A smart keyboard trained to perform autocorrect. If you have a
disproportionate amount of devices from a certain region, the
slang, sentence structure, or even language they were using
could skew more model updates towards a certain style of
typing

• If you have wildlife sensors in remote areas, connectivity may
not be equally distributed, causing some clients in certain regions
to be unable to send more model updates than others. If those
regions have different wildlife activity from certain species, that
could skew the updates toward those animals

There are a few approaches to addressing non-IID data in federated
learning. One approach would be to change the aggregation algorithm.
If you use a weighted aggregation algorithm, you can adjust based on
different client properties like region, sensor properties, or connectiv-
ity (Y. Zhao et al. 2018).

CHAPTER 12. ON-DEVICE LEARNING 477

12.5.6 Client Selection

Considering all of the factors influencing the efÏcacy of federated
learning, like IID data and communication, client selection is a key
component to ensuring a system trains well. Selecting the wrong
clients can skew the dataset, resulting in non-IID data. Similarly,
choosing clients randomly with bad network connections can slow
down communication. Therefore, several key characteristics must be
considered when selecting the right subset of clients.

When selecting clients, there are three main components to consider:
data heterogeneity, resource allocation, and communication cost. We
can select clients on the previously proposed metrics in the non-IID
section to address data heterogeneity. In federated learning, all de-
vices may have different amounts of computing, resulting in some be-
ing more inefÏcient at training than others. When selecting a subset of
clients for training, one must consider a balance of data heterogeneity
and available resources. In an ideal scenario, you can always select the
subset of clients with the greatest resources. However, this may skew
your dataset, so a balance must be struck. Communication differences
add another layer; you want to avoid being bottlenecked by waiting for
devices with poor connections to transmit all their updates. Therefore,
you must also consider choosing a subset of diverse yet well-connected
devices.

12.5.7 An Example of Deployed Federated Learning: G
board

A primary example of a deployed federated learning system is
Google’s Keyboard, Gboard, for Android devices. In implementing
federated learning for the keyboard, Google focused on employing
differential privacy techniques to protect the user’s data and identity.
Gboard leverages language models for several key features, such as
Next Word Prediction (NWP), Smart Compose (SC), and On-The-Fly
rescoring (OTF) (Z. Xu et al. 2023), as shown in Figure 12.8.

NWP will anticipate the next word the user tries to type based on
the previous one. SC gives inline suggestions to speed up the typing
based on each character. OTF will re-rank the proposed next words
based on the active typing process. All three of these models need to
run quickly on the edge, and federated learning can accelerate training
on the users’ data. However, uploading every word a user typed to the
cloud for training would be a massive privacy violation. Therefore,
federated learning emphasizes differential privacy, which protects the
user while enabling a better user experience.

12.5. Federated Machine Learning 478

Figure 12.8.: Google G Board
Features. Source: Zheng et al.,
(2023).

To accomplish this goal, Google employed its algorithm DP-FTRL,
which provides a formal guarantee that trained models will not mem-
orize specific user data or identities. The algorithm system design is
shown in Figure 12.9. DP-FTRL, combined with secure aggregation,
encrypts model updates and provides an optimal balance of privacy
and utility. Furthermore, adaptive clipping is applied in the aggrega-
tion process to limit the impact of individual users on the global model
(step 3 in Figure 12.9). By combining all these techniques, Google can
continuously refine its keyboard while preserving user privacy in a for-
mally provable way.

Figure 12.9.: Differential Pri-
vacy in G Board. Source:
Zheng et al., (2023).

https://arxiv.org/abs/2305.18465
https://arxiv.org/abs/2305.18465

CHAPTER 12. ON-DEVICE LEARNING 479

Exercise 24: Federated Learning - Text Generation

Have you ever used those smart keyboards to suggest the next
word? With federated learning, we can make them even better
without sacrificing privacy. In this Colab, we’ll teach an AI to
predict words by training on text data spread across devices. Get
ready to make your typing even smoother!

Exercise 25: Federated Learning - Image Classification

Want to train an image-savvy AI without sending your photos
to the cloud? Federated learning is the answer! In this Colab,
we’ll train a model across multiple devices, each learning from its
images. Privacy is protected, and teamwork makes the AI dream
work!

12.5.8 Benchmarking for Federated Learning: MedPerf

One of the richest examples of data on the edge is medical devices.
These devices store some of the most personal data on users but offer
huge advances in personalized treatment and better accuracy in medi-
cal AI. Given these two factors, medical devices are the perfect use case
for federated learning. MedPerf is an open-source platform used to
benchmark models using federated evaluation (Karargyris et al. 2023).
Instead of just training models via federated learning, MedPerf takes
the model to edge devices to test it against personalized data while
preserving privacy. In this way, a benchmark committee can evaluate
various models in the real world on edge devices while still preserving
patient anonymity.

12.6 Security Concerns
Performing ML model training and adaptation on end-user devices
also introduces security risks that must be addressed. Some key se-
curity concerns include:

• Exposure of private data: Training data may be leaked or stolen
from devices

https://colab.research.google.com/github/tensorflow/federated/blob/main/docs/tutorials/federated_learning_for_text_generation.ipynb
https://colab.research.google.com/github/tensorflow/federated/blob/v0.5.0/docs/tutorials/federated_learning_for_image_classification.ipynb
https://doi.org/10.1038/s42256-023-00652-2

12.6. Security Concerns 480

• Data poisoning: Adversaries can manipulate training data to de-
grade model performance

• Model extraction: Attackers may attempt to steal trained model
parameters

• Membership inference: Models may reveal the participation of
specific users’ data

• Evasion attacks: Specially crafted inputs can cause misclassifica-
tion

Any system that performs learning on-device introduces security
concerns, as it may expose vulnerabilities in larger-scale models. Nu-
merous security risks are associated with any ML model, but these
risks have specific consequences for on-device learning. Fortunately,
there are methods to mitigate these risks and improve the real-world
performance of on-device learning.

12.6.1 Data Poisoning

On-device ML introduces unique data security challenges compared to
traditional cloud-based training. In particular, data poisoning attacks
pose a serious threat during on-device learning. Adversaries can ma-
nipulate training data to degrade model performance when deployed.

Several data poisoning attack techniques exist:

• Label Flipping: It involves applying incorrect labels to samples.
For instance, in image classification, cat photos may be labeled as
dogs to confuse the model. Flipping even 10% of labels can have
significant consequences on the model.

• Data Insertion: It introduces fake or distorted inputs into the
training set. This could include pixelated images, noisy audio,
or garbled text.

• Logic Corruption: This alters the underlying [patterns] (https:
//www.worldscientific.com/doi/10.1142/S0218001414600027)
in data to mislead the model. In sentiment analysis, highly nega-
tive reviews may be marked positive through this technique. For
this reason, recent surveys have shown that many companies
are more afraid of data poisoning than other adversarial ML
concerns.

What makes data poisoning alarming is how it exploits the discrep-
ancy between curated datasets and live training data. Consider a cat
photo dataset collected from the internet. In the weeks later, when this
data trains a model on-device, new cat photos on the web differ signif-
icantly.

https://proceedings.mlr.press/v139/schwarzschild21a.html
https://www.worldscientific.com/doi/10.1142/S0218001414600027
https://www.worldscientific.com/doi/10.1142/S0218001414600027
https://proceedings.mlr.press/v139/schwarzschild21a.html

CHAPTER 12. ON-DEVICE LEARNING 481

With data poisoning, attackers purchase domains and upload
content that influences a portion of the training data. Even small data
changes significantly impact the model’s learned behavior. Conse-
quently, poisoning can instill racist, sexist, or other harmful biases if
unchecked.

Microsoft Tay was a chatbot launched by Microsoft in 2016. It was
designed to learn from its interactions with users on social media plat-
forms like Twitter. Unfortunately, Microsoft Tay became a prime ex-
ample of data poisoning in ML models. Within 24 hours of its launch,
Microsoft had to take Tay ofÒine because it had started producing of-
fensive and inappropriate messages, including hate speech and racist
comments. This occurred because some users on social media inten-
tionally fed Tay with harmful and offensive input, which the chatbot
then learned from and incorporated into its responses.

This incident is a clear example of data poisoning because malicious
actors intentionally manipulated the data used to train the chatbot and
shape its responses. The data poisoning resulted in the chatbot adopt-
ing harmful biases and producing output that its developers did not
intend. It demonstrates how even small amounts of maliciously crafted
data can significantly impact the behavior of ML models and high-
lights the importance of implementing robust data filtering and vali-
dation mechanisms to prevent such incidents from occurring.

Such biases could have dangerous real-world impacts. Rigorous
data validation, anomaly detection, and tracking of data provenance
are critical defensive measures. Adopting frameworks like Five Safes
ensures models are trained on high-quality, representative data (Desai
et al. 2016).

Data poisoning is a pressing concern for secure on-device learning
since data at the endpoint cannot be easily monitored in real-time. If
models are allowed to adapt on their own, then we run the risk of the
device acting maliciously. However, continued research in adversarial
ML is needed to develop robust solutions to detect and mitigate such
data attacks.

12.6.2 Adversarial Attacks

During the training phase, attackers might inject malicious data into
the training dataset, which can subtly alter the model’s behavior. For
example, an attacker could add images of cats labeled as dogs to a
dataset used to train an image classification model. If done cleverly, the
model’s accuracy might not significantly drop, and the attack could be
noticed. The model would then incorrectly classify some cats as dogs,
which could have consequences depending on the application.

https://en.wikipedia.org/wiki/Tay_(chatbot)

12.6. Security Concerns 482

In an embedded security camera system, for instance, this could al-
low an intruder to avoid detection by wearing a specific pattern that
the model has been tricked into classifying as non-threatening.

During the inference phase, attackers can use adversarial examples
to fool the model. Adversarial examples are inputs that have been
slightly altered in a way that causes the model to make incorrect predic-
tions. For instance, an attacker might add a small amount of noise to
an image in a way that causes a face recognition system to misidentify
a person. These attacks can be particularly concerning in applications
where safety is at stake, such as autonomous vehicles. A real-world ex-
ample of this is when researchers were able to cause a trafÏc sign recog-
nition system to misclassify a stop sign as a speed limit sign. This type
of misclassification could lead to accidents if it occurred in a real-world
autonomous driving system.

To mitigate these risks, several defenses can be employed:

• Data Validation and Sanitization: Before incorporating new
data into the training dataset, it should be thoroughly validated
and sanitized to ensure it is not malicious.

• Adversarial Training: The model can be trained on adversarial
examples to make it more robust to these types of attacks.

• Input Validation: During inference, inputs should be validated
to ensure they have not been manipulated to create adversarial
examples.

• RegularAuditing andMonitoring: Regularly auditing and mon-
itoring the model’s behavior can help detect and mitigate adver-
sarial attacks. However, this is easier said than done in the con-
text of tiny ML systems. It is often hard to monitor embedded
ML systems at the endpoint due to communication bandwidth
limitations, which we will discuss in the MLOps chapter.

By understanding the potential risks and implementing these de-
fenses, we can help secure on-device training at the endpoint/edge
and mitigate the impact of adversarial attacks. Most people easily con-
fuse data poisoning and adversarial attacks. So Table 12.2 compares
data poisoning and adversarial attacks:

Table 12.2.: Comparison of data poisoning and adversarial attacks.
Aspect Data Poisoning Adversarial Attacks
Timing Training phase Inference phase
Target Training data Input data

CHAPTER 12. ON-DEVICE LEARNING 483

Aspect Data Poisoning Adversarial Attacks
Goal Negatively affect

model’s performance
Cause incorrect
predictions

Method Insert malicious
examples into training
data, often with
incorrect labels

Add carefully crafted
noise to input data

Example Adding images of cats
labeled as dogs to a
dataset used for training
an image classification
model

Adding a small amount
of noise to an image in a
way that causes a face
recognition system to
misidentify a person

Potential
Effects

Model learns incorrect
patterns and makes
incorrect predictions

Immediate and
potentially dangerous
incorrect predictions

Applications
Affected

Any ML model Autonomous vehicles,
security systems, etc.

12.6.3 Model Inversion

Model inversion attacks are a privacy threat to on-device machine
learning models trained on sensitive user data (Nguyen et al. 2023).
Understanding this attack vector and mitigation strategies will be
important for building secure and ethical on-device AI. For example,
imagine an iPhone app that uses on-device learning to categorize
photos in your camera roll into groups like “beach,” “food,” or
“selfies” for easier searching.

The on-device model may be trained by Apple on a dataset of
iCloud photos from consenting users. A malicious attacker could
attempt to extract parts of those original iCloud training photos using
model inversion. Specifically, the attacker feeds crafted synthetic
inputs into the on-device photo classifier. By tweaking the synthetic
inputs and observing how the model categorizes them, they can
refine the inputs until they reconstruct copies of the original training
data - like a beach photo from a user’s iCloud. Now, the attacker has
breached that user’s privacy by obtaining one of their photos without
consent. This demonstrates why model inversion is dangerous - it can
potentially leak highly sensitive training data.

Photos are an especially high-risk data type because they often con-
tain identifiable people, location information, and private moments.
However, the same attack methodology could apply to other personal
data, such as audio recordings, text messages, or users’ health data.

12.6. Security Concerns 484

To defend against model inversion, one would need to take
precautions like adding noise to the model outputs or using privacy-
preserving machine learning techniques like federated learning to
train the on-device model. The goal is to prevent attackers from being
able to reconstruct the original training data.

12.6.4 On-Device Learning Security Concerns

While data poisoning and adversarial attacks are common concerns for
ML models in general, on-device learning introduces unique security
risks. When on-device variants of large-scale models are published, ad-
versaries can exploit these smaller models to attack their larger coun-
terparts. Research has demonstrated that as on-device models and
full-scale models become more similar, the vulnerability of the orig-
inal large-scale models increases significantly. For instance, evalua-
tions across 19 Deep Neural Networks (DNNs) revealed that exploit-
ing on-device models could increase the vulnerability of the original
large-scale models by up to 100 times.

There are three primary types of security risks specific to on-device
learning:

• Transfer-Based Attacks: These attacks exploit the transferabil-
ity property between a surrogate model (an approximation of
the target model, similar to an on-device model) and a remote
target model (the original full-scale model). Attackers generate
adversarial examples using the surrogate model, which can then
be used to deceive the target model. For example, imagine an
on-device model designed to identify spam emails. An attacker
could use this model to generate a spam email that is not detected
by the larger, full-scale filtering system.

• Optimization-Based Attacks: These attacks generate adversar-
ial examples for transfer-based attacks using some form of the
objective function and iteratively modify inputs to achieve the de-
sired outcome. Gradient estimation attacks, for example, approx-
imate the model’s gradient using query outputs (such as softmax
confidence scores), while gradient-free attacks use the model’s
final decision (the predicted class) to approximate the gradient,
albeit requiring many more queries.

• Query Attacks with Transfer Priors: These attacks combine el-
ements of transfer-based and optimization-based attacks. They
reverse engineer on-device models to serve as surrogates for the
target full-scale model. In other words, attackers use the smaller

http://arxiv.org/abs/2212.13700

CHAPTER 12. ON-DEVICE LEARNING 485

on-device model to understand how the larger model works and
then use this knowledge to attack the full-scale model.

By understanding these specific risks associated with on-device
learning, we can develop more robust security protocols to protect
both on-device and full-scale models from potential attacks.

12.6.5 Mitigation of On-Device Learning Risks

Various methods can be employed to mitigate the numerous security
risks associated with on-device learning. These methods may be spe-
cific to the type of attack or serve as a general tool to bolster security.

One strategy to reduce security risks is to diminish the similarity be-
tween on-device models and full-scale models, thereby reducing trans-
ferability by up to 90%. This method, known as similarity-unpairing,
addresses the problem that arises when adversaries exploit the input-
gradient similarity between the two models. By finetuning the full-
scale model to create a new version with similar accuracy but different
input gradients, we can construct the on-device model by quantizing
this updated full-scale model. This unpairing reduces the vulnerabil-
ity of on-device models by limiting the exposure of the original full-
scale model. Importantly, the order of finetuning and quantization
can be varied while still achieving risk mitigation (Hong, Carlini, and
Kurakin 2023).

To tackle data poisoning, it is imperative to source datasets from
trusted and reliable vendors.

Several strategies can be employed to combat adversarial attacks.
A proactive approach involves generating adversarial examples and
incorporating them into the model’s training dataset, thereby fortify-
ing the model against such attacks. Tools like CleverHans, an open-
source training library, are instrumental in creating adversarial exam-
ples. Defense distillation is another effective strategy, wherein the on-
device model outputs probabilities of different classifications rather
than definitive decisions (Hong, Carlini, and Kurakin 2023), making
it more challenging for adversarial examples to exploit the model.

The theft of intellectual property is another significant concern
when deploying on-device models. Intellectual property theft is a con-
cern when deploying on-device models, as adversaries may attempt
to reverse-engineer the model to steal the underlying technology. To
safeguard against intellectual property theft, the binary executable
of the trained model should be stored on a microcontroller unit
with encrypted software and secured physical interfaces of the chip.
Furthermore, the final dataset used for training the model should be
kept private.

https://www.eetimes.com/cybersecurity-threats-loom-over-endpoint-ai-systems/?_gl=1%2A17zgs0d%2A_ga%2AMTY0MzA1MTAyNS4xNjk4MDgyNzc1%2A_ga_ZLV02RYCZ8%2AMTY5ODA4Mjc3NS4xLjAuMTY5ODA4Mjc3NS42MC4wLjA
http://github.com/cleverhans-lab/cleverhans
https://www.eetimes.com/cybersecurity-threats-loom-over-endpoint-ai-systems/?_gl=1%2A17zgs0d%2A_ga%2AMTY0MzA1MTAyNS4xNjk4MDgyNzc1%2A_ga_ZLV02RYCZ8%2AMTY5ODA4Mjc3NS4xLjAuMTY5ODA4Mjc3NS42MC4wLjA

12.6. Security Concerns 486

Furthermore, on-device models often use well-known or open-
source datasets, such as MobileNet’s Visual Wake Words. As such,
it is important to maintain the privacy of the final dataset used for
training the model. Additionally, protecting the data augmentation
process and incorporating specific use cases can minimize the risk of
reverse-engineering an on-device model.

Lastly, the Adversarial Threat Landscape for Artificial Intelligence
Systems (ATLAS) serves as a valuable matrix tool that helps assess the
risk profile of on-device models, empowering developers to identify
and mitigate potential risks proactively.

12.6.6 Securing Training Data

There are various ways to secure on-device training data. Each concept
is really deep and could be worth a class by itself. So here, we’ll briefly
allude to those concepts so you’re aware of what to learn further.

12.6.6.1 Encryption

Encryption serves as the first line of defense for training data. This
involves implementing end-to-end encryption for local storage on de-
vices and communication channels to prevent unauthorized access to
raw training data. Trusted execution environments, such as Intel SGX
and ARM TrustZone, are essential for facilitating secure training on
encrypted data.

Additionally, when aggregating updates from multiple devices,
secure multi-party computation protocols can be employed to improve
security (Kairouz, Oh, and Viswanath 2015); a practical application
of this is in collaborative on-device learning, where cryptographic
privacy-preserving aggregation of user model updates can be imple-
mented. This technique effectively hides individual user data even
during the aggregation phase.

12.6.6.2 Differential Privacy

Differential privacy is another crucial strategy for protecting training
data. By injecting calibrated statistical noise into the data, we can mask
individual records while still extracting valuable population patterns
(Dwork and Roth 2013). Managing the privacy budget across multiple
training iterations and reducing noise as the model converges is also vi-
tal (Abadi et al. 2016). Methods such as formally provable differential
privacy, which may include adding Laplace or Gaussian noise scaled
to the dataset’s sensitivity, can be employed.

http://arxiv.org/abs/2212.13700
https://atlas.mitre.org/
https://www.eetimes.com/cybersecurity-threats-loom-over-endpoint-ai-systems/?_gl=1%2A17zgs0d%2A_ga%2AMTY0MzA1MTAyNS4xNjk4MDgyNzc1%2A_ga_ZLV02RYCZ8%2AMTY5ODA4Mjc3NS4xLjAuMTY5ODA4Mjc3NS42MC4wLjA
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.arm.com/technologies/trustzone-for-cortex-a#:~:text=Arm%20TrustZone%20technology%20offers%20an,trust%20based%20on%20PSA%20guidelines.

CHAPTER 12. ON-DEVICE LEARNING 487

12.6.6.3 Anomaly Detection

Anomaly detection plays an important role in identifying and mitigat-
ing potential data poisoning attacks. This can be achieved through sta-
tistical analyses like Principal Component Analysis (PCA) and cluster-
ing, which help to detect deviations in aggregated training data. Time-
series methods such as Cumulative Sum (CUSUM) charts are useful
for identifying shifts indicative of potential poisoning. Comparing cur-
rent data distributions with previously seen clean data distributions
can also help to flag anomalies. Moreover, suspected poisoned batches
should be removed from the training update aggregation process. For
example, spot checks on subsets of training images on devices can be
conducted using photoDNA hashes to identify poisoned inputs.

12.6.6.4 Input Data Validation

Lastly, input data validation is essential for ensuring the integrity and
validity of input data before it is fed into the training model, thereby
protecting against adversarial payloads. Similarity measures, such as
cosine distance, can be employed to catch inputs that deviate signifi-
cantly from the expected distribution. Suspicious inputs that may con-
tain adversarial payloads should be quarantined and sanitized. Fur-
thermore, parser access to training data should be restricted to vali-
dated code paths only. Leveraging hardware security features, such as
ARM Pointer Authentication, can prevent memory corruption (ARM
Limited, 2023). An example of this is implementing input integrity
checks on audio training data used by smart speakers before process-
ing by the speech recognition model (Zhiyong Chen and Xu 2023).

12.7 On-Device Training Frameworks

Embedded inference frameworks like TF-Lite Micro (David et al. 2021),
TVM (T. Chen et al. 2018), and MCUNet (J. Lin et al. 2020) provide a
slim runtime for running neural network models on microcontrollers
and other resource-constrained devices. However, they don’t support
on-device training. Training requires its own set of specialized tools
due to the impact of quantization on gradient calculation and the mem-
ory footprint of backpropagation (J. Lin et al. 2022).

In recent years, a handful of tools and frameworks have started to
emerge that enable on-device training. These include Tiny Training
Engine (J. Lin et al. 2022), TinyTL (H. Cai et al. 2020), and TinyTrain (Y.
D. Kwon et al. 2023).

https://en.wikipedia.org/wiki/CUSUM
https://www.microsoft.com/en-us/photodna

12.7. On-Device Training Frameworks 488

12.7.1 Tiny Training Engine

Tiny Training Engine (TTE) uses several techniques to optimize mem-
ory usage and speed up the training process. An overview of the TTE
workflow is shown in Figure 12.10. First, TTE ofÒoads the automatic
differentiation to compile time instead of runtime, significantly reduc-
ing overhead during training. Second, TTE performs graph optimiza-
tion like pruning and sparse updates to reduce memory requirements
and accelerate computations.

Figure 12.10.: TTE workflow.

Specifically, TTE follows four main steps:

• During compile time, TTE traces the forward propagation graph
and derives the corresponding backward graph for backpropaga-
tion. This allows differentiation to happen at compile time rather
than runtime.

• TTE prunes any nodes representing frozen weights from the
backward graph. Frozen weights are weights that are not
updated during training to reduce certain neurons’ impact.
Pruning their nodes saves memory.

• TTE reorders the gradient descent operators to interleave them
with the backward pass computations. This scheduling mini-
mizes memory footprints.

• TTE uses code generation to compile the optimized forward and
backward graphs, which are then deployed for on-device train-
ing.

12.7.2 Tiny Transfer Learning

Tiny Transfer Learning (TinyTL) enables memory-efÏcient on-device
training through a technique called weight freezing. During training,
much of the memory bottleneck comes from storing intermediate acti-
vations and updating the weights in the neural network.

To reduce this memory overhead, TinyTL freezes the majority of the
weights so they do not need to be updated during training. This elim-
inates the need to store intermediate activations for frozen parts of
the network. TinyTL only finetunes the bias terms, which are much
smaller than the weights. An overview of TinyTL workflow is shown
in Figure 12.11.

https://harvard-edge.github.io/cs249r_book/frameworks.html#differentiable-programming

CHAPTER 12. ON-DEVICE LEARNING 489

Figure 12.11.: TinyTL work-
flow. Source: H. Cai et al.
(2020).)

Freezing weights apply to fully connected layers as well as convo-
lutional and normalization layers. However, only adapting the biases
limits the model’s ability to learn and adapt to new data.

To increase adaptability without much additional memory, TinyTL
uses a small residual learning model. This refines the intermediate
feature maps to produce better outputs, even with fixed weights. The
residual model introduces minimal overhead - less than 3.8% on top of
the base model.

By freezing most weights, TinyTL significantly reduces memory
usage during on-device training. The residual model then allows it
to adapt and learn effectively for the task. The combined approach
provides memory-efÏcient on-device training with minimal impact
on model accuracy.

12.7.3 Tiny Train

TinyTrain significantly reduces the time required for on-device train-
ing by selectively updating only certain parts of the model. It does this
using a technique called task-adaptive sparse updating, as shown in
Figure 12.12.

Based on the user data, memory, and computing available on the
device, TinyTrain dynamically chooses which neural network layers
to update during training. This layer selection is optimized to reduce
computation and memory usage while maintaining high accuracy.

More specifically, TinyTrain first does ofÒine pretraining of the
model. During pretraining, it not only trains the model on the task

12.7. On-Device Training Frameworks 490

Figure 12.12.: TinyTrain work-
flow. Source: Y. D. Kwon et al.
(2023).

data but also meta-trains the model. Meta-training means training
the model on metadata about the training process itself. This meta-
learning improves the model’s ability to adapt accurately even when
limited data is available for the target task.

Then, during the online adaptation stage, when the model is being
customized on the device, TinyTrain performs task-adaptive sparse up-
dates. Using the criteria around the device’s capabilities, it selects only
certain layers to update through backpropagation. The layers are cho-
sen to balance accuracy, memory usage, and computation time.

By sparsely updating layers tailored to the device and task, TinyTrain
significantly reduces on-device training time and resource usage. The
ofÒine meta-training also improves accuracy when adapting to limited
data. Together, these methods enable fast, efÏcient, and accurate on-
device training.

12.7.4 Comparison

Table 12.3 summarizes the key similarities and differences between the
different frameworks.

Table 12.3.: Comparison of frameworks for on-device training opti-
mization.

Framework Similarities Differences
Tiny
Training
Engine

• On-device training
• Optimize memory &

computation
• Leverage pruning,

sparsity, etc.

• Traces forward &
backward graphs

• Prunes frozen
weights

• Interleaves
backprop &
gradients

• Code generation

CHAPTER 12. ON-DEVICE LEARNING 491

Framework Similarities Differences
TinyTL • On-device training

• Optimize memory &
computation

• Leverage freezing,
sparsity, etc.

• Freezes most
weights

• Only adapts
biases

• Uses residual
model

TinyTrain • On-device training
• Optimize memory &

computation
• Leverage sparsity, etc.

• Meta-training in
pretraining

• Task-adaptive
sparse updating

• Selective layer
updating

12.8 Conclusion
The concept of on-device learning is increasingly important for increas-
ing the usability and scalability of TinyML. This chapter explored the
intricacies of on-device learning, exploring its advantages and limi-
tations, adaptation strategies, key related algorithms and techniques,
security implications, and existing and emerging on-device training
frameworks.

On-device learning is, undoubtedly, a groundbreaking paradigm
that brings forth numerous advantages for embedded and edge ML
deployments. By performing training directly on the endpoint devices,
on-device learning obviates the need for continuous cloud connectiv-
ity, making it particularly well-suited for IoT and edge computing ap-
plications. It comes with benefits such as improved privacy, ease of
compliance, and resource efÏciency. At the same time, on-device learn-
ing faces limitations related to hardware constraints, limited data size,
and reduced model accuracy and generalization.

Mechanisms such as reduced model complexity, optimization and
data compression techniques, and related learning methods such as
transfer learning and federated learning allow models to adapt to learn
and evolve under resource constraints, thus serving as the bedrock for
effective ML on edge devices.

The critical security concerns in on-device learning highlighted in
this chapter, ranging from data poisoning and adversarial attacks to
specific risks introduced by on-device learning, must be addressed in
real workloads for on-device learning to be a viable paradigm. Effec-
tive mitigation strategies, such as data validation, encryption, differen-
tial privacy, anomaly detection, and input data validation, are crucial

12.9. Resources 492

to safeguard on-device learning systems from these threats.
The emergence of specialized on-device training frameworks such as

Tiny Training Engine, Tiny Transfer Learning, and Tiny Train presents
practical tools that enable efÏcient on-device training. These frame-
works employ various techniques to optimize memory usage, reduce
computational overhead, and streamline the on-device training pro-
cess.

In conclusion, on-device learning stands at the forefront of TinyML,
promising a future where models can autonomously acquire knowl-
edge and adapt to changing environments on edge devices. The
application of on-device learning has the potential to revolutionize
various domains, including healthcare, industrial IoT, and smart cities.
However, the transformative potential of on-device learning must
be balanced with robust security measures to protect against data
breaches and adversarial threats. Embracing innovative on-device
training frameworks and implementing stringent security protocols
are key steps in unlocking the full potential of on-device learning. As
this technology continues to evolve, it holds the promise of making
our devices smarter, more responsive, and better integrated into our
daily lives.

12.9 Resources
Here is a curated list of resources to support students and instructors
in their learning and teaching journeys. We are continuously working
on expanding this collection and will add new exercises soon.

Slides

These slides serve as a valuable tool for instructors to deliver
lectures and for students to review the material at their own
pace. We encourage both students and instructors to leverage
these slides to improve their understanding and facilitate effec-
tive knowledge transfer.

• Intro to TensorFlow Lite (TFLite).

• TFLite Optimization and Quantization.

• TFLite Quantization-Aware Training.

• Transfer Learning:

– Transfer Learning: with Visual Wake Words example.

https://docs.google.com/presentation/d/19nF6CATRBqQWGBBv4uO4RzWpAwwuhmBAv8AQdBkkAVY/edit#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1JwP46J6eLFUebNy2vKDvPzExe20DuTL95Nw8ubCxNPg/edit#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1eSOyAOu8Vg_VfIHZ9gWRVjWnmFTOcZ4FavaNMc4reHQ/edit#slide=id.p1
https://docs.google.com/presentation/d/1kVev1WwXG2MrpEMmRbiPjTBwQ6CSCE_K84SUlSbuUPM/edit#slide=id.ga654406365_0_127

CHAPTER 12. ON-DEVICE LEARNING 493

– On-device Training and Transfer Learning.

• Distributed Training:

– Distributed Training.
– Distributed Training.

• Continuous Monitoring:

– Continuous Evaluation Challenges for TinyML.
– Federated Learning Challenges.
– Continuous Monitoring with Federated ML.
– Continuous Monitoring Impact on MLOps.

Videos

• Video 17

• Video 18

Exercises

To reinforce the concepts covered in this chapter, we have curated
a set of exercises that challenge students to apply their knowl-
edge and deepen their understanding.

• Exercise 23

• Exercise 24

• Exercise 25

Labs

In addition to exercises, we also offer a series of hands-on labs
that allow students to gain practical experience with embedded
AI technologies. These labs provide step-by-step guidance, en-
abling students to develop their skills in a structured and sup-
portive environment. We are excited to announce that new labs
will be available soon, further enriching the learning experience.

• Coming soon.

https://docs.google.com/presentation/d/1wou3qW4kXttufz6hR5lXAcZ3kXlwkl1O/edit?usp=sharing&ouid=102419556060649178683&rtpof=true&sd=true
https://docs.google.com/presentation/d/19YyoXqFzLaywEGOb5ccLK4MeNqxvr-qo/edit?usp=drive_link&ouid=102419556060649178683&rtpof=true&sd=true
https://docs.google.com/presentation/d/16xSDyhiHoSgmnUNMzvcYSFMCg2LGF8Gu/edit?usp=drive_link&ouid=102419556060649178683&rtpof=true&sd=true
https://docs.google.com/presentation/d/1OuhwH5feIwPivEU6pTDyR3QMs7AFstHLiF_LB8T5qYQ/edit?usp=drive_link&resourcekey=0-DZxIuVBUbJawuFh0AO-Pvw
https://docs.google.com/presentation/d/1Q8M76smakrt5kTqggoPW8WFTrP0zIrV-cWj_BEfPxIA/edit?resourcekey=0-mPx0WwZOEVkHndVhr_MzMQ#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1dHqWjKflisdLhX43jjOUmZCyM0tNhXTVgcch-Bcp-uo/edit?usp=drive_link&resourcekey=0-AuuCxz6QKc-t3lXMPeX1Sg
https://docs.google.com/presentation/d/1D7qI7aLGnoUV7x3s5Dqa44CsJTQdDO5xtID5MBM0GxI/edit?usp=drive_link&resourcekey=0-g7SB2RDsdGt01tPCI7VeUQ

495

Chapter 13

ML Operations

Figure 13.1.: DALL·E 3 Prompt:
Create a detailed, wide rectangu-
lar illustration of an AI workflow.
The image should showcase the
process across six stages, with a
flow from left to right: 1. Data col-
lection, with diverse individuals of
different genders and descents us-
ing a variety of devices like lap-
tops, smartphones, and sensors to
gather data. 2. Data process-
ing, displaying a data center with
active servers and databases with
glowing lights. 3. Model train-
ing, represented by a computer
screen with code, neural network
diagrams, and progress indicators.
4. Model evaluation, featuring
people examining data analytics
on large monitors. 5. Deploy-
ment, where the AI is integrated
into robotics, mobile apps, and in-
dustrial equipment. 6. Monitor-
ing, showing professionals track-
ing AI performance metrics on
dashboards to check for accuracy
and concept drift over time. Each
stage should be distinctly marked
and the style should be clean, sleek,
and modern with a dynamic and
informative color scheme.

This chapter explores the practices and architectures needed to effec-
tively develop, deploy, and manage ML models across their entire life-
cycle. We examine the various phases of the ML process, including
data collection, model training, evaluation, deployment, and monitor-
ing. The importance of automation, collaboration, and continuous im-
provement is also something we discuss. We contrast different envi-
ronments for ML model deployment, from cloud servers to embedded
edge devices, and analyze their distinct constraints. We demonstrate
how to tailor ML system design and operations through concrete ex-
amples for reliable and optimized model performance in any target
environment. The goal is to provide readers with a comprehensive un-
derstanding of ML model management so they can successfully build

13.1. Introduction 496

and run ML applications that sustainably deliver value.

Learning Objectives

• Understand what MLOps is and why it is needed

• Learn the architectural patterns for traditional MLOps

• Contrast traditional vs. embedded MLOps across the ML
lifecycle

• Identify key constraints of embedded environments

• Learn strategies to mitigate embedded ML challenges

• Examine real-world case studies demonstrating embedded
MLOps principles

• Appreciate the need for holistic technical and human ap-
proaches

13.1 Introduction
Machine Learning Operations (MLOps) is a systematic approach that
combines machine learning (ML), data science, and software engineer-
ing to automate the end-to-end ML lifecycle. This includes everything
from data preparation and model training to deployment and mainte-
nance. MLOps ensures that ML models are developed, deployed, and
maintained efÏciently and effectively.

Let’s start by taking a general example (i.e., non-edge ML) case.
Consider a ridesharing company that wants to deploy a machine-
learning model to predict real-time rider demand. The data science
team spends months developing a model, but when it’s time to deploy,
they realize it needs to be compatible with the engineering team’s
production environment. Deploying the model requires rebuilding
it from scratch, which costs weeks of additional work. This is where
MLOps comes in.

With MLOps, protocols, and tools, the model developed by the data
science team can be seamlessly deployed and integrated into the pro-
duction environment. In essence, MLOps removes friction during the
development, deployment, and maintenance of ML systems. It im-
proves collaboration between teams through defined workflows and
interfaces. MLOps also accelerates iteration speed by enabling contin-
uous delivery for ML models.

CHAPTER 13. ML OPERATIONS 497

For the ridesharing company, implementing MLOps means their
demand prediction model can be frequently retrained and deployed
based on new incoming data. This keeps the model accurate despite
changing rider behavior. MLOps also allows the company to exper-
iment with new modeling techniques since models can be quickly
tested and updated.

Other MLOps benefits include enhanced model lineage tracking, re-
producibility, and auditing. Cataloging ML workflows and standard-
izing artifacts - such as logging model versions, tracking data lineage,
and packaging models and parameters - enables deeper insight into
model provenance. Standardizing these artifacts facilitates tracing a
model back to its origins, replicating the model development process,
and examining how a model version has changed over time. This also
facilitates regulation compliance, which is especially critical in regu-
lated industries like healthcare and finance, where being able to audit
and explain models is important.

Major organizations adopt MLOps to boost productivity, increase
collaboration, and accelerate ML outcomes. It provides the frame-
works, tools, and best practices to effectively manage ML systems
throughout their lifecycle. This results in better-performing models,
faster time-to-value, and sustained competitive advantage. As we
explore MLOps further, consider how implementing these practices
can help address embedded ML challenges today and in the future.

13.2 Historical Context
MLOps has its roots in DevOps, a set of practices combining software
development (Dev) and IT operations (Ops) to shorten the develop-
ment lifecycle and provide continuous delivery of high-quality soft-
ware. The parallels between MLOps and DevOps are evident in their
focus on automation, collaboration, and continuous improvement. In
both cases, the goal is to break down silos between different teams (de-
velopers, operations, and, in the case of MLOps, data scientists and ML
engineers) and to create a more streamlined and efÏcient process. It is
useful to understand the history of this evolution better to understand
MLOps in the context of traditional systems.

13.2.1 DevOps

The term “DevOps” was first coined in 2009 by Patrick Debois, a con-
sultant and Agile practitioner. Debois organized the first DevOpsDays
conference in Ghent, Belgium, in 2009. The conference brought to-
gether development and operations professionals to discuss ways to

https://www.jedi.be/
https://www.devopsdays.org/

13.2. Historical Context 498

improve collaboration and automate processes.
DevOps has its roots in the Agile movement, which began in the

early 2000s. Agile provided the foundation for a more collaborative
approach to software development and emphasized small, iterative re-
leases. However, Agile primarily focuses on collaboration between de-
velopment teams. As Agile methodologies became more popular, or-
ganizations realized the need to extend this collaboration to operations
teams.

The siloed nature of development and operations teams often led
to inefÏciencies, conflicts, and delays in software delivery. This need
for better collaboration and integration between these teams led to the
DevOps movement. DevOps can be seen as an extension of the Agile
principles, including operations teams.

The key principles of DevOps include collaboration, automation,
continuous integration, delivery, and feedback. DevOps focuses on
automating the entire software delivery pipeline, from development to
deployment. It improves the collaboration between development and
operations teams, utilizing tools like Jenkins, Docker, and Kubernetes
to streamline the development lifecycle.

While Agile and DevOps share common principles around collabo-
ration and feedback, DevOps specifically targets integrating develop-
ment and IT operations - expanding Agile beyond just development
teams. It introduces practices and tools to automate software delivery
and improve the speed and quality of software releases.

13.2.2 MLOps

MLOps, on the other hand, stands for Machine Learning Operations,
and it extends the principles of DevOps to the ML lifecycle. MLOps au-
tomates and streamlines the end-to-end ML lifecycle, from data prepa-
ration and model development to deployment and monitoring. The
main focus of MLOps is to facilitate collaboration between data scien-
tists, data engineers, and IT operations and to automate the deploy-
ment, monitoring, and management of ML models. Some key factors
led to the rise of MLOps.

• Data drift: Data drift degrades model performance over time,
motivating the need for rigorous monitoring and automated re-
training procedures provided by MLOps.

• Reproducibility: The lack of reproducibility in machine learning
experiments motivated MLOps systems to track code, data, and
environment variables to enable reproducible ML workflows.

• Explainability: The black box nature and lack of explainability
of complex models motivated the need for MLOps capabilities to

https://agilemanifesto.org/
https://www.atlassian.com/devops
https://www.jenkins.io/
https://www.docker.com/
https://kubernetes.io/
https://cloud.google.com/solutions/machine-learning/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning

CHAPTER 13. ML OPERATIONS 499

increase model transparency and explainability.
• Monitoring: The inability to reliably monitor model perfor-

mance post-deployment highlighted the need for MLOps
solutions with robust model performance instrumentation and
alerting.

• Friction: The friction in manually retraining and deploying mod-
els motivated the need for MLOps systems that automate ma-
chine learning deployment pipelines.

• Optimization: The complexity of configuring machine learning
infrastructure motivated the need for MLOps platforms with op-
timized, ready-made ML infrastructure.

While DevOps and MLOps share the common goal of automating
and streamlining processes, they differ significantly in their focus and
challenges. DevOps primarily deals with software development and
IT operations. It enables collaboration between these teams and auto-
mate software delivery. In contrast, MLOps focuses on the machine
learning lifecycle. It addresses additional complexities such as data
versioning, model versioning, and model monitoring. MLOps requires
collaboration among a broader range of stakeholders, including data
scientists, data engineers, and IT operations. It goes beyond the scope
of traditional DevOps by incorporating the unique challenges of man-
aging ML models throughout their lifecycle. Table 13.1 provides a side-
by-side comparison of DevOps and MLOps, highlighting their key dif-
ferences and similarities.

Table 13.1.: Comparison of DevOps and MLOps.
Aspect DevOps MLOps
Objective Streamlining software

development and
operations processes

Optimizing the lifecycle of
machine learning models

Methodology Continuous
Integration and
Continuous Delivery
(CI/CD) for software
development

Similar to CI/CD but
focuses on machine learning
workflows

Primary
Tools

Version control (Git),
CI/CD tools (Jenkins,
Travis CI),
Configuration
management (Ansible,
Puppet)

Data versioning tools,
Model training and
deployment tools, CI/CD
pipelines tailored for ML

https://dvc.org/
https://dvc.org/
https://dvc.org/
https://www.fiddler.ai/

13.3. Key Components of MLOps 500

Aspect DevOps MLOps
Primary
Concerns

Code integration,
Testing, Release
management,
Automation,
Infrastructure as code

Data management, Model
versioning, Experiment
tracking, Model deployment,
Scalability of ML workflows

Typical
Outcomes

Faster and more
reliable software
releases, Improved
collaboration between
development and
operations teams

EfÏcient management and
deployment of machine
learning models, Enhanced
collaboration between data
scientists and engineers

Learn more about ML Lifecycles through a case study featuring
speech recognition in Video 19.

Video 19: MLOps

https://www.youtube.com/watch?v=YJsRD_hU4tc&list=
PLkDaE6sCZn6GMoA0wbpJLi3t34Gd8l0aK&index=3

13.3 Key Components of MLOps
In this chapter, we will provide an overview of the core components
of MLOps, an emerging set of practices that enables robust delivery
and lifecycle management of ML models in production. While some
MLOps elements like automation and monitoring were covered in pre-
vious chapters, we will integrate them into a framework and expand
on additional capabilities like governance. Additionally, we will de-
scribe and link to popular tools used within each component, such as
LabelStudio for data labeling. By the end, we hope that you will un-
derstand the end-to-end MLOps methodology that takes models from
ideation to sustainable value creation within organizations.

Figure 13.2 shows the MLOps system stack. The MLOps lifecycle
starts from data management and CI/CD pipelines for model devel-
opment. Developed models go through model training and evalua-
tion. Once trained to convergence, model deployment brings models
up to production and ready to serve. After deployment, model serv-
ing reacts to workload changes and meets service level agreements
cost-effectively when serving millions of end users or AI applications.
Infrastructure management ensures the necessary resources are avail-

https://www.youtube.com/watch?v=YJsRD_hU4tc&list=PLkDaE6sCZn6GMoA0wbpJLi3t34Gd8l0aK&index=3
https://www.youtube.com/watch?v=YJsRD_hU4tc&list=PLkDaE6sCZn6GMoA0wbpJLi3t34Gd8l0aK&index=3
https://labelstud.io/

CHAPTER 13. ML OPERATIONS 501

able and optimized throughout the lifecycle. Continuous monitoring,
governance, and communication and collaboration are the remaining
pieces of MLOps to ensure seamless development and operations of
ML models.

Figure 13.2.: The MLOps stack,
including ML Models, Frame-
works, Model Orchestration,
Infrastructure, and Hardware,
illustrates the end-to-end work-
flow of MLOps.

13.3.1 Data Management

Robust data management and data engineering actively empower suc-
cessful MLOps implementations. Teams properly ingest, store, and
prepare raw data from sensors, databases, apps, and other systems for
model training and deployment.

Teams actively track changes to datasets over time using version con-
trol with Git and tools like GitHub or GitLab. Data scientists collabo-
rate on curating datasets by merging changes from multiple contribu-
tors. Teams can review or roll back each iteration of a dataset if needed.

Teams meticulously label and annotate data using labeling software
like LabelStudio, which enables distributed teams to work on tagging
datasets together. As the target variables and labeling conventions
evolve, teams maintain accessibility to earlier versions.

Teams store the raw dataset and all derived assets on cloud storage
services like Amazon S3 or Google Cloud Storage. These services pro-
vide scalable, resilient storage with versioning capabilities. Teams can
set granular access permissions.

https://cloud.google.com/solutions/machine-learning/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://git-scm.com/
https://github.com/
https://about.gitlab.com/
https://labelstud.io/
https://aws.amazon.com/s3/
https://cloud.google.com/storage

13.3. Key Components of MLOps 502

Robust data pipelines created by teams automate raw data ex-
traction, joining, cleansing, and transformation into analysis-ready
datasets. Prefect, Apache Airflow, and dbt are workflow orchestrators
that allow engineers to develop flexible, reusable data processing
pipelines.

For instance, a pipeline may ingest data from PostgreSQL databases,
REST APIs, and CSVs stored on S3. It can filter, deduplicate, and ag-
gregate the data, handle errors, and save the output to S3. The pipeline
can also push the transformed data into a feature store like Tecton or
Feast for low-latency access.

In an industrial predictive maintenance use case, sensor data is
ingested from devices into S3. A perfect pipeline processes the sensor
data, joining it with maintenance records. The enriched dataset is
stored in Feast so models can easily retrieve the latest data for training
and predictions.

Video 20 below is a short overview of data pipelines.

Video 20: Data Pipelines

https://www.youtube.com/watch?v=gz-44N3MMOA&list=
PLkDaE6sCZn6GMoA0wbpJLi3t34Gd8l0aK&index=33

13.3.2 CI/CD Pipelines

Continuous integration and continuous delivery (CI/CD) pipelines ac-
tively automate the progression of ML models from initial develop-
ment into production deployment. Adapted for ML systems, CI/CD
principles empower teams to rapidly and robustly deliver new models
with minimized manual errors.

CI/CD pipelines orchestrate key steps, including checking out
new code changes, transforming data, training and registering new
models, validation testing, containerization, deploying to environ-
ments like staging clusters, and promoting to production. Teams
leverage popular CI/CD solutions like Jenkins, CircleCI and GitHub
Actions to execute these MLOps pipelines, while Prefect, Metaflow
and Kubeflow offer ML-focused options.

Figure 13.3 illustrates a CI/CD pipeline specifically tailored for
MLOps. The process starts with a dataset and feature repository (on
the left), which feeds into a dataset ingestion stage. Post-ingestion,
the data undergoes validation to ensure its quality before being
transformed for training. Parallel to this, a retraining trigger can
initiate the pipeline based on specified criteria. The data then passes
through a model training/tuning phase within a data processing

https://www.prefect.io/
https://airflow.apache.org/
https://www.getdbt.com/
https://www.postgresql.org/
https://www.tecton.ai/
https://feast.dev/
https://www.youtube.com/watch?v=gz-44N3MMOA&list=PLkDaE6sCZn6GMoA0wbpJLi3t34Gd8l0aK&index=33
https://www.youtube.com/watch?v=gz-44N3MMOA&list=PLkDaE6sCZn6GMoA0wbpJLi3t34Gd8l0aK&index=33
https://www.jenkins.io/
https://circleci.com/
https://github.com/features/actions
https://github.com/features/actions
https://www.prefect.io/
https://metaflow.org/
https://www.kubeflow.org/

CHAPTER 13. ML OPERATIONS 503

engine, followed by model evaluation and validation. Once validated,
the model is registered and stored in a machine learning metadata
and artifact repository. The final stage involves deploying the trained
model back into the dataset and feature repository, thereby creating
a cyclical process for continuous improvement and deployment of
machine learning models.

Figure 13.3.: MLOps CI/CD di-
agram. Source: HarvardX.

For example, when a data scientist checks improvements to an image
classification model into a GitHub repository, this actively triggers a
Jenkins CI/CD pipeline. The pipeline reruns data transformations and
model training on the latest data, tracking experiments with MLflow.
After automated validation testing, teams deploy the model container
to a Kubernetes staging cluster for further QA. Once approved, Jenkins
facilitates a phased rollout of the model to production with canary de-
ployments to catch any issues. If anomalies are detected, the pipeline
enables teams to roll back to the previous model version gracefully.

CI/CD pipelines empower teams to iterate and deliver ML mod-
els rapidly by connecting the disparate steps from development to de-
ployment under continuous automation. Integrating MLOps tools like
MLflow enhances model packaging, versioning, and pipeline traceabil-
ity. CI/CD is integral for progressing models beyond prototypes into
sustainable business systems.

13.3.3 Model Training

In the model training phase, data scientists actively experiment with
different ML architectures and algorithms to create optimized models
that extract insights and patterns from data. MLOps introduces best
practices and automation to make this iterative process more efÏcient
and reproducible.

Modern ML frameworks like TensorFlow, PyTorch and Keras pro-
vide pre-built components that simplify designing neural networks

https://github.com/
https://mlflow.org/
https://kubernetes.io/
https://kubernetes.io/docs/concepts/cluster-administration/manage-deployment/#canary-deployments
https://kubernetes.io/docs/concepts/cluster-administration/manage-deployment/#canary-deployments
https://www.tensorflow.org/
https://pytorch.org/
https://keras.io/

13.3. Key Components of MLOps 504

and other model architectures. Data scientists leverage built-in mod-
ules for layers, activations, losses, etc., and high-level APIs like Keras
to focus more on model architecture.

MLOps enables teams to package model training code into reusable,
tracked scripts and notebooks. As models are developed, capabilities
like hyperparameter tuning, neural architecture search and automatic
feature selection rapidly iterate to find the best-performing configura-
tions.

Teams use Git to version control training code and host it in repos-
itories like GitHub to track changes over time. This allows seamless
collaboration between data scientists.

Notebooks like Jupyter create an excellent interactive model devel-
opment environment. The notebooks contain data ingestion, prepro-
cessing, model declaration, training loop, evaluation, and export code
in one reproducible document.

Finally, teams orchestrate model training as part of a CI/CD pipeline
for automation. For instance, a Jenkins pipeline can trigger a Python
script to load new training data, retrain a TensorFlow classifier, evalu-
ate model metrics, and automatically register the model if performance
thresholds are met.

An example workflow has a data scientist using a PyTorch notebook
to develop a CNN model for image classification. The fastai library
provides high-level APIs to simplify training CNNs on image datasets.
The notebook trains the model on sample data, evaluates accuracy met-
rics, and tunes hyperparameters like learning rate and layers to opti-
mize performance. This reproducible notebook is version-controlled
and integrated into a retraining pipeline.

Automating and standardizing model training empowers teams to
accelerate experimentation and achieve the rigor needed to produce
ML systems.

13.3.4 Model Evaluation

Before deploying models, teams perform rigorous evaluation and test-
ing to validate meeting performance benchmarks and readiness for re-
lease. MLOps introduces best practices around model validation, au-
diting, and canary testing.

Teams typically evaluate models against holdout test datasets that
are not used during training. The test data originates from the same
distribution as production data. Teams calculate metrics like accuracy,
AUC, precision, recall, and F1 score.

Teams also track the same metrics over time against test data
samples. If evaluation data comes from live production streams, this

https://cloud.google.com/ai-platform/training/docs/hyperparameter-tuning-overview
https://arxiv.org/abs/1808.05377
https://scikit-learn.org/stable/modules/feature_selection.html
https://scikit-learn.org/stable/modules/feature_selection.html
https://jupyter.org/
https://www.fast.ai/
https://martinfowler.com/bliki/CanaryRelease.html
https://en.wikipedia.org/wiki/Training,_validation,_and_test_sets
https://en.wikipedia.org/wiki/Accuracy_and_precision
https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/F1_score

CHAPTER 13. ML OPERATIONS 505

catches data drifts that degrade model performance over time.
Human oversight for model release remains important. Data scien-

tists review performance across key segments and slices. Error anal-
ysis helps identify model weaknesses to guide enhancement. Teams
apply fairness and bias detection techniques.

Canary testing releases a model to a small subset of users to evalu-
ate real-world performance before wide deployment. Teams incremen-
tally route trafÏc to the canary release while monitoring for issues.

For example, a retailer evaluates a personalized product recommen-
dation model against historical test data, reviewing accuracy and diver-
sity metrics. Teams also calculate metrics on live customer data over
time, detecting decreased accuracy over the last 2 weeks. Before full
rollout, the new model is released to 5% of web trafÏc to ensure no
degradation.

Automating evaluation and canary releases reduces deployment
risks. However, human review still needs to be more critical to
assess less quantifiable dynamics of model behavior. Rigorous pre-
deployment validation provides confidence in putting models into
production.

13.3.5 Model Deployment

Teams need to properly package, test, and track ML models to reliably
deploy them to production. MLOps introduces frameworks and pro-
cedures for actively versioning, deploying, monitoring, and updating
models in sustainable ways.

Teams containerize models using Docker, which bundles code, li-
braries, and dependencies into a standardized unit. Containers enable
smooth portability across environments.

Frameworks like TensorFlow Serving and BentoML help serve
predictions from deployed models via performance-optimized APIs.
These frameworks handle versioning, scaling, and monitoring.

Teams first deploy updated models to staging or QA environments
for testing before full production rollout. Shadow or canary deploy-
ments route a sample of trafÏc to test model variants. Teams incremen-
tally increase access to new models.

Teams build robust rollback procedures in case issues emerge. Roll-
backs revert to the last known good model version. Integration with
CI/CD pipelines simplifies redeployment if needed.

Teams carefully track model artifacts, such as scripts, weights, logs,
and metrics, for each version with ML metadata tools like MLflow.
This maintains lineage and auditability.

For example, a retailer containerizes a product recommendation

https://www.ibm.com/cloud/learn/data-drift
https://developers.google.com/machine-learning/fairness-overview
https://developers.google.com/machine-learning/fairness-overview
https://www.docker.com/
https://www.tensorflow.org/tfx/guide/serving
https://bentoml.org/
https://mlflow.org/

13.3. Key Components of MLOps 506

model in TensorFlow Serving and deploys it to a Kubernetes staging
cluster. After monitoring and approving performance on sample
trafÏc, Kubernetes shifts 10% of production trafÏc to the new model.
If no issues are detected after a few days, the new model takes over
100% of trafÏc. However, teams should keep the previous version
accessible for rollback if needed.

Model deployment processes enable teams to make ML systems re-
silient in production by accounting for all transition states.

13.3.6 Model Serving

After model deployment, ML-as-a-Service becomes a critical compo-
nent in the MLOps lifecycle. Online services such as Facebook/Meta
handle tens of trillions of inference queries per day (C.-J. Wu et al.
2019). Model serving bridges the gap between developed models and
ML applications or end-users, ensuring that deployed models are ac-
cessible, performant, and scalable in production environments.

Several frameworks facilitate model serving, including TensorFlow
Serving, NVIDIA Triton Inference Server, and KServe (formerly KF-
Serving). These tools provide standardized interfaces for serving de-
ployed models across various platforms and handle many complexities
of model inference at scale.

Model serving can be categorized into three main types:

1. Online Serving: Provides real-time predictions with low latency,
which is crucial for applications like recommendation systems or
fraud detection.

2. OfÒine Serving: Processes large batches of data asynchronously,
suitable for tasks like periodic report generation.

3. Near-Online (semi-synchronous) Serving: Balances between
online and ofÒine, offering relatively quick responses for less
time-sensitive applications such as chatbots.

One of the key challenges for model serving systems is operating un-
der performance requirements defined by Service Level Agreements
(SLAs) and Service Level Objectives (SLOs). SLAs are formal contracts
specifying expected service levels. These service levels rely on metrics
such as response time, availability, and throughput. SLOs are internal
goals teams set to meet or exceed their SLAs.

For ML model serving, the SLA and SLO agreements and objectives
directly impact user experience, system reliability, and business out-
comes. Therefore, teams carefully tune their serving platform. ML
serving systems employ various techniques to optimize performance
and resource utilization, such as the following:

https://www.tensorflow.org/tfx/guide/serving
https://kubernetes.io/
https://www.tensorflow.org/tfx/guide/serving
https://www.tensorflow.org/tfx/guide/serving
https://developer.nvidia.com/triton-inference-server
https://kserve.github.io/website/latest/

CHAPTER 13. ML OPERATIONS 507

1. Request scheduling and batching: EfÏciently manages incom-
ing ML inference requests, optimizing performance through
smart queuing and grouping strategies. Systems like Clipper
(Crankshaw et al. 2017) introduce low-latency online prediction
serving with caching and batching techniques.

2. Model instance selection and routing: Intelligent algorithms di-
rect requests to appropriate model versions or instances. INFaaS
(Romero et al. 2021) explores this by generating model-variants
and efÏciently navigating the trade-off space based on perfor-
mance and accuracy requirements.

3. Load balancing: Distributes workloads evenly across multiple
serving instances. MArk (Model Ark) (Chengliang Zhang et al.
2019) demonstrates effective load balancing techniques for ML
serving systems.

4. Model instance autoscaling: Dynamically adjusts capacity
based on demand. Both INFaaS (Romero et al. 2021) and
MArk (Chengliang Zhang et al. 2019) incorporate autoscaling
capabilities to handle workload fluctuations efÏciently.

5. Model orchestration: Manages model execution, enabling
parallel processing and strategic resource allocation. AlpaServe
(Zhuohan Li et al. 2023) demonstrates advanced techniques for
handling large models and complex serving scenarios.

6. Execution time prediction: Systems like Clockwork (Gujarati et
al. 2020) focus on high-performance serving by predicting exe-
cution times of individual inferences and efÏciently using hard-
ware accelerators.

ML serving systems that excel in these areas enable organizations to
deploy models that perform reliably under pressure. The result is scal-
able, responsive AI applications that can handle real-world demands
and deliver value consistently.

13.3.7 Infrastructure Management

MLOps teams heavily leverage infrastructure as code (IaC) tools and
robust cloud architectures to actively manage the resources needed for
development, training, and deployment of ML systems.

Teams use IaC tools like Terraform, CloudFormation and Ansible
to programmatically define, provision and update infrastructure in a
version controlled manner. For MLOps, teams widely use Terraform
to spin up resources on AWS, GCP and Azure.

For model building and training, teams dynamically provision
computing resources like GPU servers, container clusters, storage,

https://www.infoworld.com/article/3271126/what-is-iac-infrastructure-as-code-explained.html
https://www.terraform.io/
https://aws.amazon.com/cloudformation/
https://www.ansible.com/
https://aws.amazon.com/
https://cloud.google.com/
https://azure.microsoft.com/

13.3. Key Components of MLOps 508

and databases through Terraform as needed by data scientists. Code
encapsulates and preserves infrastructure definitions.

Containers and orchestrators like Docker and Kubernetes allow
teams to package models and reliably deploy them across different
environments. Containers can be predictably spun up or down
automatically based on demand.

By leveraging cloud elasticity, teams scale resources up and down to
meet spikes in workloads like hyperparameter tuning jobs or spikes in
prediction requests. Auto-scaling enables optimized cost efÏciency.

Infrastructure spans on-prem, cloud, and edge devices. A robust
technology stack provides flexibility and resilience. Monitoring tools
allow teams to observe resource utilization.

For example, a Terraform config may deploy a GCP Kubernetes clus-
ter to host trained TensorFlow models exposed as prediction microser-
vices. The cluster scales up pods to handle increased trafÏc. CI/CD
integration seamlessly rolls out new model containers.

Carefully managing infrastructure through IaC and monitoring en-
ables teams to prevent bottlenecks in operationalizing ML systems at
scale.

13.3.8 Monitoring

MLOps teams actively maintain robust monitoring to sustain visibil-
ity into ML models deployed in production. Continuous monitoring
provides insights into model and system performance so teams can
rapidly detect and address issues to minimize disruption.

Teams actively monitor key model aspects, including analyzing sam-
ples of live predictions to track metrics like accuracy and confusion
matrix over time.

When monitoring performance, teams must profile incoming data
to check for model drift - a steady decline in model accuracy after pro-
duction deployment. Model drift can occur in two ways: concept drift
and data drift. Concept drift refers to a fundamental change observed
in the relationship between the input data and the target outcomes.
For instance, as the COVID-19 pandemic progressed, e-commerce
and retail sites had to correct their model recommendations since
purchase data was overwhelmingly skewed towards items like hand
sanitizer. Data drift describes changes in the distribution of data over
time. For example, image recognition algorithms used in self-driving
cars must account for seasonality in observing their surroundings.
Teams also track application performance metrics like latency and
errors for model integrations.

From an infrastructure perspective, teams monitor for capacity

https://aws.amazon.com/autoscaling/
https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html
https://en.wikipedia.org/wiki/Concept_drift

CHAPTER 13. ML OPERATIONS 509

issues like high CPU, memory, and disk utilization and system
outages. Tools like Prometheus, Grafana, and Elastic enable teams
to actively collect, analyze, query, and visualize diverse monitoring
metrics. Dashboards make dynamics highly visible.

Teams configure alerting for key monitoring metrics like accuracy
declines and system faults to enable proactively responding to events
that threaten reliability. For example, drops in model accuracy trigger
alerts for teams to investigate potential data drift and retrain models
using updated, representative data samples.

After deployment, comprehensive monitoring enables teams to
maintain confidence in model and system health. It empowers teams
to catch and resolve deviations preemptively through data-driven
alerts and dashboards. Active monitoring is essential for maintaining
highly available, trustworthy ML systems.

Watch the video below to learn more about monitoring.

Video 21: Model Monitoring

https://www.youtube.com/watch?v=hq_XyP9y0xg&list=
PLkDaE6sCZn6GMoA0wbpJLi3t34Gd8l0aK&index=7

13.3.9 Governance

MLOps teams actively establish proper governance practices as a criti-
cal component. Governance provides oversight into ML models to en-
sure they are trustworthy, ethical, and compliant. Without governance,
significant risks exist of models behaving in dangerous or prohibited
ways when deployed in applications and business processes.

MLOps governance employs techniques to provide transparency
into model predictions, performance, and behavior throughout the
ML lifecycle. Explainability methods like SHAP and LIME help audi-
tors understand why models make certain predictions by highlighting
influential input features behind decisions. Bias detection analyzes
model performance across different demographic groups defined
by attributes like age, gender, and ethnicity to detect any systematic
skews. Teams perform rigorous testing procedures on representative
datasets to validate model performance before deployment.

Once in production, teams monitor concept drift to determine
whether predictive relationships change over time in ways that de-
grade model accuracy. Teams also analyze production logs to uncover
patterns in the types of errors models generate. Documentation about
data provenance, development procedures, and evaluation metrics
provides additional visibility.

https://prometheus.io/
https://grafana.com/
https://www.elastic.co/
https://www.youtube.com/watch?v=hq_XyP9y0xg&list=PLkDaE6sCZn6GMoA0wbpJLi3t34Gd8l0aK&index=7
https://www.youtube.com/watch?v=hq_XyP9y0xg&list=PLkDaE6sCZn6GMoA0wbpJLi3t34Gd8l0aK&index=7
https://github.com/slundberg/shap
https://github.com/marcotcr/lime
https://developers.google.com/machine-learning/fairness-overview
https://en.wikipedia.org/wiki/Concept_drift

13.3. Key Components of MLOps 510

Platforms like Watson OpenScale incorporate governance capabili-
ties like bias monitoring and explainability directly into model build-
ing, testing, and production monitoring. The key focus areas of gover-
nance are transparency, fairness, and compliance. This minimizes the
risks of models behaving incorrectly or dangerously when integrated
into business processes. Embedding governance practices into MLOps
workflows enables teams to ensure trustworthy AI.

13.3.10 Communication & Collaboration

MLOps actively breaks down silos and enables the free flow of informa-
tion and insights between teams through all ML lifecycle stages. Tools
like MLflow, Weights & Biases, and data contexts provide traceability
and visibility to improve collaboration.

Teams use MLflow to systematize tracking of model experiments,
versions, and artifacts. Experiments can be programmatically logged
from data science notebooks and training jobs. The model registry pro-
vides a central hub for teams to store production-ready models before
deployment, with metadata like descriptions, metrics, tags, and lin-
eage. Integrations with Github, GitLab facilitate code change triggers.

Weights & Biases provides collaborative tools tailored to ML teams.
Data scientists log experiments, visualize metrics like loss curves,
and share experimentation insights with colleagues. Comparison
dashboards highlight model differences. Teams discuss progress and
next steps.

Establishing shared data contexts—glossaries, data dictionaries,
and schema references—ensures alignment on data meaning and
usage across roles. Documentation aids understanding for those
without direct data access.

For example, a data scientist may use Weights & Biases to analyze an
anomaly detection model experiment and share the evaluation results
with other team members to discuss improvements. The final model
can then be registered with MLflow before handing off for deployment.

Enabling transparency, traceability, and communication via MLOps
empowers teams to remove bottlenecks and accelerate the delivery of
impactful ML systems.

Video 22 covers key challenges in model deployment, including con-
cept drift, model drift, and software engineering issues.

https://www.ibm.com/cloud/watson-openscale
https://mlflow.org/
https://wandb.ai/
https://github.com/
https://about.gitlab.com/
https://en.wikipedia.org/wiki/Data_dictionary

CHAPTER 13. ML OPERATIONS 511

Video 22: Deployment Challenges

https://www.youtube.com/watch?v=UyEtTyeahus&list=
PLkDaE6sCZn6GMoA0wbpJLi3t34Gd8l0aK&index=5

13.4 Hidden Technical Debt in ML Systems

Technical debt is increasingly pressing for ML systems. This metaphor,
originally proposed in the 1990s, likens the long-term costs of quick
software development to financial debt. Just as some financial debt
powers beneficial growth, carefully managed technical debt enables
rapid iteration. However, left unchecked, accumulating technical debt
can outweigh any gains.

Figure 13.4 illustrates the various components contributing to ML
systems’ hidden technical debt. It shows the interconnected nature of
configuration, data collection, and feature extraction, which is founda-
tional to the ML codebase. The box sizes indicate the proportion of
the entire system represented by each component. In industry ML sys-
tems, the code for the model algorithm makes up only a tiny fraction
(see the small black box in the middle compared to all the other large
boxes). The complexity of ML systems and the fast-paced nature of the
industry make it very easy to accumulate technical debt.

Figure 13.4.: ML system com-
ponents. Source: Sambasivan
et al. (2021b)

13.4.1 Model Boundary Erosion

Unlike traditional software, ML lacks clear boundaries between com-
ponents, as seen in the diagram above. This erosion of abstraction cre-
ates entanglements that exacerbate technical debt in several ways:

https://www.youtube.com/watch?v=UyEtTyeahus&list=PLkDaE6sCZn6GMoA0wbpJLi3t34Gd8l0aK&index=5
https://www.youtube.com/watch?v=UyEtTyeahus&list=PLkDaE6sCZn6GMoA0wbpJLi3t34Gd8l0aK&index=5

13.4. Hidden Technical Debt in ML Systems 512

13.4.2 Entanglement

Tight coupling between ML model components makes isolating
changes difÏcult. Modifying one part causes unpredictable ripple ef-
fects throughout the system. Changing anything changes everything
(also known as CACE) is a phenomenon that applies to any tweak you
make to your system. Potential mitigations include decomposing the
problem when possible or closely monitoring for changes in behavior
to contain their impact.

13.4.3 Correction Cascades

Figure 13.5 illustrates the concept of correction cascades in the ML
workflow, from problem statement to model deployment. The arcs rep-
resent the potential iterative corrections needed at each workflow stage,
with different colors corresponding to distinct issues such as interact-
ing with physical world brittleness, inadequate application-domain ex-
pertise, conflicting reward systems, and poor cross-organizational doc-
umentation.

The red arrows indicate the impact of cascades, which can lead to
significant revisions in the model development process. In contrast,
the dotted red line represents the drastic measure of abandoning the
process to restart. This visual emphasizes the complex, interconnected
nature of ML system development and the importance of addressing
these issues early in the development cycle to mitigate their amplifying
effects downstream.

Figure 13.5.: Correction cas-
cades flowchart. Source: Sam-
basivan et al. (2021b).

Building models sequentially creates risky dependencies where later
models rely on earlier ones. For example, taking an existing model and
fine-tuning it for a new use case seems efÏcient. However, this bakes
in assumptions from the original model that may eventually need cor-
rection.

Several factors inform the decision to build models sequentially or
not:

• Dataset size and rate of growth: With small, static datasets, fine-
tuning existing models often makes sense. For large, growing

CHAPTER 13. ML OPERATIONS 513

datasets, training custom models from scratch allows more flexi-
bility to account for new data.

• Available computing resources: Fine-tuning requires fewer re-
sources than training large models from scratch. With limited
resources, leveraging existing models may be the only feasible
approach.

While fine-tuning existing models can be efÏcient, modifying foun-
dational components later becomes extremely costly due to these cas-
cading effects. Therefore, careful consideration should be given to
introducing fresh model architectures, even if resource-intensive, to
avoid correction cascades down the line. This approach may help miti-
gate the amplifying effects of issues downstream and reduce technical
debt. However, there are still scenarios where sequential model build-
ing makes sense, necessitating a thoughtful balance between efÏciency,
flexibility, and long-term maintainability in the ML development pro-
cess.

13.4.4 Undeclared Consumers

Once ML model predictions are made available, many downstream
systems may silently consume them as inputs for further processing.
However, the original model was not designed to accommodate this
broad reuse. Due to the inherent opacity of ML systems, it becomes
impossible to fully analyze the impact of the model’s outputs as in-
puts elsewhere. Changes to the model can then have expensive and
dangerous consequences by breaking undiscovered dependencies.

Undeclared consumers can also enable hidden feedback loops if
their outputs indirectly influence the original model’s training data.
Mitigations include restricting access to predictions, defining strict
service contracts, and monitoring for signs of un-modelled influences.
Architecting ML systems to encapsulate and isolate their effects limits
the risks of unanticipated propagation.

13.4.5 Data Dependency Debt

Data dependency debt refers to unstable and underutilized data de-
pendencies, which can have detrimental and hard-to-detect repercus-
sions. While this is a key contributor to tech debt for traditional soft-
ware, those systems can benefit from the use of widely available tools
for static analysis by compilers and linkers to identify dependencies of
these types. ML systems need similar tooling.

One mitigation for unstable data dependencies is to use versioning,
which ensures the stability of inputs but comes with the cost of man-

13.4. Hidden Technical Debt in ML Systems 514

aging multiple sets of data and the potential for staleness. Another
mitigation for underutilized data dependencies is to conduct exhaus-
tive leave-one-feature-out evaluation.

13.4.6 Analysis Debt from Feedback Loops

Unlike traditional software, ML systems can change their behavior
over time, making it difÏcult to analyze pre-deployment. This debt
manifests in feedback loops, both direct and hidden.

Direct feedback loops occur when a model influences its future in-
puts, such as by recommending products to users that, in turn, shape
future training data. Hidden loops arise indirectly between models,
such as two systems that interact via real-world environments. Grad-
ual feedback loops are especially hard to detect. These loops lead to
analysis debt—the inability to predict how a model will act fully af-
ter release. They undermine pre-deployment validation by enabling
unmodeled self-influence.

Careful monitoring and canary deployments help detect feedback.
However, fundamental challenges remain in understanding complex
model interactions. Architectural choices that reduce entanglement
and coupling mitigate analysis debt’s compounding effect.

13.4.7 Pipeline Jungles

ML workflows often need more standardized interfaces between com-
ponents. This leads teams to incrementally “glue” together pipelines
with custom code. What emerges are “pipeline jungles”—tangled pre-
processing steps that are brittle and resist change. Avoiding modifi-
cations to these messy pipelines causes teams to experiment through
alternate prototypes. Soon, multiple ways of doing everything prolif-
erate. The need for abstractions and interfaces then impedes sharing,
reuse, and efÏciency.

Technical debt accumulates as one-off pipelines solidify into legacy
constraints. Teams sink time into managing idiosyncratic code rather
than maximizing model performance. Architectural principles like
modularity and encapsulation are needed to establish clean interfaces.
Shared abstractions enable interchangeable components, prevent
lock-in, and promote best-practice diffusion across teams. Breaking
free of pipeline jungles ultimately requires enforcing standards that
prevent the accretion of abstraction debt. The benefits of interfaces
and APIs that tame complexity outweigh the transitional costs.

CHAPTER 13. ML OPERATIONS 515

13.4.8 Configuration Debt

ML systems involve extensive configuration of hyperparameters, archi-
tectures, and other tuning parameters. However, the configuration is
often an afterthought, needing more rigor and testing—ad hoc config-
urations increase, amplified by the many knobs available for tuning
complex ML models.

This accumulation of technical debt has several consequences. Frag-
ile and outdated configurations lead to hidden dependencies and bugs
that cause production failures. Knowledge about optimal configura-
tions is isolated rather than shared, leading to redundant work. Re-
producing and comparing results becomes difÏcult when configura-
tions lack documentation. Legacy constraints accumulate as teams fear
changing poorly understood configurations.

Addressing configuration debt requires establishing standards to
document, test, validate, and centrally store configurations. Investing
in more automated approaches, such as hyperparameter optimization
and architecture search, reduces dependence on manual tuning.
Better configuration hygiene makes iterative improvement more
tractable by preventing complexity from compounding endlessly. The
key is recognizing configuration as an integral part of the ML system
lifecycle rather than an ad hoc afterthought.

13.4.9 The Changing World

ML systems operate in dynamic real-world environments. Thresholds
and decisions that are initially effective become outdated as the world
evolves. However, legacy constraints make adapting systems to chang-
ing populations, usage patterns, and other shifting contextual factors
difÏcult.

This debt manifests in two main ways. First, preset thresholds and
heuristics require constant re-evaluation and tuning as their optimal
values drift. Second, validating systems through static unit and inte-
gration tests fails when inputs and behaviors are moving targets.

Responding to a changing world in real-time with legacy ML sys-
tems is challenging. Technical debt accumulates as assumptions decay.
The lack of modular architecture and the ability to dynamically update
components without side effects exacerbates these issues.

Mitigating this requires building in configurability, monitoring, and
modular updatability. Online learning, where models continuously
adapt and robust feedback loops to training pipelines, helps automat-
ically tune to the world. However, anticipating and architecting for
change is essential to prevent erosion of real-world performance over
time.

13.4. Hidden Technical Debt in ML Systems 516

13.4.10 Navigating Technical Debt in Early Stages

Understandably, technical debt accumulates naturally in the early
stages of model development. When aiming to build MVP models
quickly, teams often need more complete information on what com-
ponents will reach scale or require modification. Some deferred work
is expected.

However, even scrappy initial systems should follow principles like
“Flexible Foundations” to avoid painting themselves into corners:

• Modular code and reusable libraries allow components to be
swapped later

• Loose coupling between models, data stores, and business logic
facilitates change

• Abstraction layers hide implementation details that may shift
over time

• Containerized model serving keeps options open on deployment
requirements

Decisions that seem reasonable at the moment can seriously limit
future flexibility. For example, baking key business logic into model
code rather than keeping it separate makes subsequent model changes
extremely difÏcult.

With thoughtful design, though, it is possible to build quickly at first
while retaining degrees of freedom to improve. As the system matures,
prudent break points emerge where introducing fresh architectures
proactively avoids massive rework down the line. This balances urgent
timelines with reducing future correction cascades.

13.4.11 Summary

Although financial debt is a good metaphor for understanding trade-
offs, it differs from technical debt’s measurability. Technical debt
needs to be fully tracked and quantified. This makes it hard for teams
to navigate the tradeoffs between moving quickly and inherently
introducing more debt versus taking the time to pay down that debt.

The Hidden Technical Debt of Machine Learning Systems paper
spreads awareness of the nuances of ML system-specific tech debt. It
encourages additional development in the broad area of maintainable
ML.

https://papers.nips.cc/paper_files/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf

CHAPTER 13. ML OPERATIONS 517

13.5 Roles and Responsibilities
Given the vastness of MLOps, successfully implementing ML systems
requires diverse skills and close collaboration between people with
different areas of expertise. While data scientists build the core ML
models, it takes cross-functional teamwork to successfully deploy
these models into production environments and enable them to
deliver sustainable business value.

MLOps provides the framework and practices for coordinating the
efforts of various roles involved in developing, deploying, and running
MLG systems. Bridging traditional silos between data, engineering,
and operations teams is key to MLOp’s success. Enabling seamless
collaboration through the machine learning lifecycle accelerates ben-
efit realization while ensuring ML models’ long-term reliability and
performance.

We will look at some key roles involved in MLOps and their primary
responsibilities. Understanding the breadth of skills needed to opera-
tionalize ML models guides assembling MLOps teams. It also clarifies
how the workflows between roles fit under the overarching MLOps
methodology.

13.5.1 Data Engineers

Data engineers are responsible for building and maintaining the data
infrastructure and pipelines that feed data to ML models. They ensure
data is smoothly moved from source systems into the storage, process-
ing, and feature engineering environments needed for ML model de-
velopment and deployment. Their main responsibilities include:

• Migrating raw data from on-prem databases, sensors, and apps
into cloud-based data lakes like Amazon S3 or Google Cloud Stor-
age. This provides cost-efÏcient, scalable storage.

• Building data pipelines with workflow schedulers like Apache
Airflow, Prefect, and dbt. These extract data from sources, trans-
form and validate data, and load it into destinations like data
warehouses, feature stores, or directly for model training.

• Transforming messy, raw data into structured, analysis-ready
datasets. This includes handling null or malformed values,
deduplicating, joining disparate data sources, aggregating data,
and engineering new features.

• Maintaining data infrastructure components like cloud data
warehouses (Snowflake, Redshift, BigQuery), data lakes, and
metadata management systems. Provisioning and optimizing
data processing systems.

https://www.snowflake.com/en/data-cloud/workloads/data-warehouse/
https://aws.amazon.com/redshift/
https://cloud.google.com/bigquery?hl=en

13.5. Roles and Responsibilities 518

• Provisioning and optimizing data processing systems for
efÏcient, scalable data handling and analysis.

• Establishing data versioning, backup, and archival processes for
ML datasets and features and enforcing data governance poli-
cies.

For example, a manufacturing firm may use Apache Airflow
pipelines to extract sensor data from PLCs on the factory floor into
an Amazon S3 data lake. The data engineers would then process this
raw data to filter, clean, and join it with product metadata. These
pipeline outputs would then load into a Snowflake data warehouse
from which features can be read for model training and prediction.

The data engineering team builds and sustains the data foundation
for reliable model development and operations. Their work enables
data scientists and ML engineers to focus on building, training, and
deploying ML models at scale.

13.5.2 Data Scientists

The job of the data scientists is to focus on the research, experimenta-
tion, development, and continuous improvement of ML models. They
leverage their expertise in statistics, modeling, and algorithms to create
high-performing models. Their main responsibilities include:

• Working with business and data teams to identify opportunities
where ML can add value, framing the problem, and defining suc-
cess metrics.

• Performing exploratory data analysis to understand relation-
ships in data, derive insights, and identify relevant features for
modeling.

• Researching and experimenting with different ML algorithms
and model architectures based on the problem and data charac-
teristics and leveraging libraries like TensorFlow, PyTorch, and
Keras.

• To maximize performance, train and fine-tune models by tun-
ing hyperparameters, adjusting neural network architectures,
feature engineering, etc.

• Evaluating model performance through metrics like accuracy,
AUC, and F1 scores and performing error analysis to identify
areas for improvement.

• Developing new model versions by incorporating new data, test-
ing different approaches, optimizing model behavior, and main-
taining documentation and lineage for models.

CHAPTER 13. ML OPERATIONS 519

For example, a data scientist may leverage TensorFlow and Tensor-
Flow Probability to develop a demand forecasting model for retail in-
ventory planning. They would iterate on different sequence models
like LSTMs and experiment with features derived from product, sales,
and seasonal data. The model would be evaluated based on error met-
rics versus actual demand before deployment. The data scientist moni-
tors performance and retrains/enhances the model as new data comes
in.

Data scientists drive model creation, improvement, and innovation
through their expertise in ML techniques. They collaborate closely
with other roles to ensure models create maximum business impact.

13.5.3 ML Engineers

ML engineers enable models data scientists develop to be productized
and deployed at scale. Their expertise makes models reliably serve pre-
dictions in applications and business processes. Their main responsi-
bilities include:

• Taking prototype models from data scientists and harden-
ing them for production environments through coding best
practices.

• Building APIs and microservices for model deployment using
tools like Flask, FastAPI. Containerizing models with Docker.

• Manage model versions, sync new models into production using
CI/CD pipelines, and implement canary releases, A/B tests, and
rollback procedures.

• Optimizing model performance for high scalability, low latency,
and cost efÏciency. Leveraging compression, quantization, and
multi-model serving.

• Monitor models once in production and ensure continued relia-
bility and accuracy. Retraining models periodically.

For example, an ML engineer may take a TensorFlow fraud detec-
tion model developed by data scientists and containerize it using Ten-
sorFlow Serving for scalable deployment. The model would be inte-
grated into the company’s transaction processing pipeline via APIs.
The ML engineer implements a model registry and CI/CD pipeline
using MLFlow and Jenkins to deploy model updates reliably. The ML
engineers then monitor the running model for continued performance
using tools like Prometheus and Grafana. If model accuracy drops,
they initiate retraining and deployment of a new model version.

The ML engineering team enables data science models to progress
smoothly into sustainable and robust production systems. Their ex-

https://www.tensorflow.org/probability
https://www.tensorflow.org/probability
https://flask.palletsprojects.com/en/3.0.x/
https://fastapi.tiangolo.com/

13.5. Roles and Responsibilities 520

pertise in building modular, monitored systems delivers continuous
business value.

13.5.4 DevOps Engineers

DevOps engineers enable MLOps by building and managing the
underlying infrastructure for developing, deploying, and monitoring
ML models. They provide the cloud architecture and automation
pipelines. Their main responsibilities include:

• Provisioning and managing cloud infrastructure for ML work-
flows using IaC tools like Terraform, Docker, and Kubernetes.

• Developing CI/CD pipelines for model retraining, validation,
and deployment. Integrating ML tools into the pipeline, such as
MLflow and Kubeflow.

• Monitoring model and infrastructure performance using tools
like Prometheus, Grafana, ELK stack. Building alerts and dash-
boards.

• Implement governance practices around model development,
testing, and promotion to enable reproducibility and traceability.

• Embedding ML models within applications. They are exposing
models via APIs and microservices for integration.

• Optimizing infrastructure performance and costs and leveraging
autoscaling, spot instances, and availability across regions.

For example, a DevOps engineer provisions a Kubernetes cluster on
AWS using Terraform to run ML training jobs and online deployment.
The engineer builds a CI/CD pipeline in Jenkins, which triggers model
retraining when new data becomes available. After automated testing,
the model is registered with MLflow and deployed in the Kubernetes
cluster. The engineer then monitors cluster health, container resource
usage, and API latency using Prometheus and Grafana.

The DevOps team enables rapid experimentation and reliable de-
ployments for ML through cloud, automation, and monitoring exper-
tise. Their work maximizes model impact while minimizing technical
debt.

13.5.5 Project Managers

Project managers play a vital role in MLOps by coordinating the activ-
ities between the teams involved in delivering ML projects. They help
drive alignment, accountability, and accelerated results. Their main
responsibilities include:

https://prometheus.io/
https://grafana.com/
https://aws.amazon.com/what-is/elk-stack/

CHAPTER 13. ML OPERATIONS 521

• Working with stakeholders to define project goals, success met-
rics, timelines, and budgets; outlining specifications and scope.

• Creating a project plan spanning data acquisition, model devel-
opment, infrastructure setup, deployment, and monitoring.

• Coordinating design, development, and testing efforts between
data engineers, data scientists, ML engineers, and DevOps roles.

• Tracking progress and milestones, identifying roadblocks and re-
solving them through corrective actions, and managing risks and
issues.

• Facilitating communication through status reports, meetings,
workshops, and documentation and enabling seamless collabo-
ration.

• Driving adherence to timelines and budget and escalating antic-
ipated overruns or shortfalls for mitigation.

For example, a project manager would create a project plan for devel-
oping and enhancing a customer churn prediction model. They coor-
dinate between data engineers building data pipelines, data scientists
experimenting with models, ML engineers productizing models, and
DevOps setting up deployment infrastructure. The project manager
tracks progress via milestones like dataset preparation, model proto-
typing, deployment, and monitoring. To enact preventive solutions,
they surface any risks, delays, or budget issues.

Skilled project managers enable MLOps teams to work synergisti-
cally to rapidly deliver maximum business value from ML investments.
Their leadership and organization align with diverse teams.

13.6 Embedded System Challenges
We will briefly review the challenges with embedded systems so that it
sets the context for the specific challenges that emerge with embedded
MLOps, which we will discuss in the following section.

13.6.1 Limited Compute Resources

Embedded devices like microcontrollers and mobile phones have
much more constrained computing power than data center machines
or GPUs. A typical microcontroller may have only KB of RAM,
MHz CPU speed, and no GPU. For example, a microcontroller in a
smartwatch may only have a 32-bit processor running at 120MHz with
320KB of RAM (“EuroSoil 2021 (O205)” 2021). This allows simple
ML models like small linear regressions or random forests, but more

13.6. Embedded System Challenges 522

complex deep neural networks would be infeasible. Strategies to miti-
gate this include quantization, pruning, efÏcient model architectures,
and ofÒoading certain computations to the cloud when connectivity
allows.

13.6.2 Constrained Memory

Storing large ML models and datasets directly on embedded devices is
often infeasible with limited memory. For example, a deep neural net-
work model can easily take hundreds of MB, which exceeds the stor-
age capacity of many embedded systems. Consider this example. A
wildlife camera that captures images to detect animals may have only
a 2GB memory card. More is needed to store a deep learning model for
image classification that is often hundreds of MB in size. Consequently,
this requires optimization of memory usage through weights compres-
sion, lower-precision numerics, and streaming inference pipelines.

13.6.3 Intermittent Connectivity

Many embedded devices operate in remote environments without re-
liable internet connectivity. We must rely on something other than
constant cloud access for convenient retraining, monitoring, and de-
ployment. Instead, we need smart scheduling and caching strategies
to optimize for intermittent connections. For example, a model predict-
ing crop yield on a remote farm may need to make predictions daily
but only have connectivity to the cloud once a week when the farmer
drives into town. The model needs to operate independently in be-
tween connections.

13.6.4 Power Limitations

Embedded devices like phones, wearables, and remote sensors
are battery-powered. Continual inference and communication can
quickly drain those batteries, limiting functionality. For example,
a smart collar tagging endangered animals runs on a small battery.
Continuously running a GPS tracking model would drain the battery
within days. The collar has to schedule when to activate the model
carefully. Thus, embedded ML has to manage tasks carefully to
conserve power. Techniques include optimized hardware accelerators,
prediction caching, and adaptive model execution.

CHAPTER 13. ML OPERATIONS 523

13.6.5 Fleet Management

For mass-produced embedded devices, millions of units can be de-
ployed in the field to orchestrate updates. Hypothetically, updating
a fraud detection model on 100 million (future smart) credit cards re-
quires securely pushing updates to each distributed device rather than
a centralized data center. Such a distributed scale makes fleet-wide
management much harder than a centralized server cluster. It requires
intelligent protocols for over-the-air updates, handling connectivity is-
sues, and monitoring resource constraints across devices.

13.6.6 On-Device Data Collection

Collecting useful training data requires engineering both the sensors
on the device and the software pipelines. This is unlike servers, where
we can pull data from external sources. Challenges include handling
sensor noise. Sensors on an industrial machine detect vibrations and
temperature to predict maintenance needs. This requires tuning the
sensors and sampling rates to capture useful data.

13.6.7 Device-Specific Personalization

A smart speaker learns an individual user’s voice patterns and speech
cadence to improve recognition accuracy while protecting privacy.
Adapting ML models to specific devices and users is important, but
this poses privacy challenges. On-device learning allows personaliza-
tion without transmitting as much private data. However, balancing
model improvement, privacy preservation, and constraints requires
novel techniques.

13.6.8 Safety Considerations

If extremely large embedded ML in systems like self-driving vehicles
is not engineered carefully, there are serious safety risks. To ensure
safe operation before deployment, self-driving cars must undergo ex-
tensive track testing in simulated rain, snow, and obstacle scenarios.
This requires extensive validation, fail-safes, simulators, and standards
compliance before deployment.

13.6.9 Diverse Hardware Targets

There is a diverse range of embedded processors, including ARM, x86,
specialized AI accelerators, FPGAs, etc. Supporting this heterogeneity
makes deployment challenging. We need strategies like standardized

13.7. Traditional MLOps vs. Embedded MLOps 524

frameworks, extensive testing, and model tuning for each platform.
For example, an object detection model needs efÏcient implementa-
tions across embedded devices like a Raspberry Pi, Nvidia Jetson, and
Google Edge TPU.

13.6.10 Testing Coverage

Rigorously testing edge cases is difÏcult with constrained embedded
simulation resources, but exhaustive testing is critical in systems like
self-driving cars. Exhaustively testing an autopilot model requires mil-
lions of simulated kilometers, exposing it to rare events like sensor fail-
ures. Therefore, strategies like synthetic data generation, distributed
simulation, and chaos engineering help improve coverage.

13.6.11 Concept Drift Detection

With limited monitoring data from each remote device, detecting
changes in the input data over time is much harder. Drift can lead to
degraded model performance. Lightweight methods are needed to
identify when retraining is necessary. A model predicting power grid
loads shows declining performance as usage patterns change over
time. With only local device data, this trend is difÏcult to spot.

13.7 TraditionalMLOpsvs. EmbeddedMLOps
In traditional MLOps, ML models are typically deployed in cloud-
based or server environments, with abundant resources like comput-
ing power and memory. These environments facilitate the smooth
operation of complex models that require significant computational
resources. For instance, a cloud-based image recognition model might
be used by a social media platform to tag photos with relevant labels
automatically. In this case, the model can leverage the extensive
resources available in the cloud to efÏciently process vast amounts of
data.

On the other hand, embedded MLOps involves deploying ML mod-
els on embedded systems, specialized computing systems designed to
perform specific functions within larger systems. Embedded systems
are typically characterized by their limited computational resources
and power. For example, an ML model might be embedded in a smart
thermostat to optimize heating and cooling based on the user’s pref-
erences and habits. The model must be optimized to run efÏciently
on the thermostat’s limited hardware without compromising its per-
formance or accuracy.

CHAPTER 13. ML OPERATIONS 525

The key difference between traditional and embedded MLOps lies in
the embedded system’s resource constraints. While traditional MLOps
can leverage abundant cloud or server resources, embedded MLOps
must contend with the hardware limitations on which the model is
deployed. This requires careful optimization and fine-tuning of the
model to ensure it can deliver accurate and valuable insights within
the embedded system’s constraints.

Furthermore, embedded MLOps must consider the unique chal-
lenges posed by integrating ML models with other embedded system
components. For example, the model must be compatible with
the system’s software and hardware and must be able to interface
seamlessly with other components, such as sensors or actuators. This
requires a deep understanding of both ML and embedded systems
and close collaboration between data scientists, engineers, and other
stakeholders.

So, while traditional MLOps and embedded MLOps share the com-
mon goal of deploying and maintaining ML models in production envi-
ronments, the unique challenges posed by embedded systems require
a specialized approach. Embedded MLOps must carefully balance the
need for model accuracy and performance with the constraints of the
hardware on which the model is deployed. This requires a deep under-
standing of both ML and embedded systems and close collaboration
between various stakeholders to ensure the successful integration of
ML models into embedded systems.

This time, we will group the subtopics under broader categories to
streamline the structure of our thought process on MLOps. This struc-
ture will help you understand how different aspects of MLOps are in-
terconnected and why each is important for the efÏcient operation of
ML systems as we discuss the challenges in the context of embedded
systems.

• Model Lifecycle Management
– Data Management: Handling data ingestion, validation,

and version control.
– Model Training: Techniques and practices for effective and

scalable model training.
– Model Evaluation: Strategies for testing and validating

model performance.
– Model Deployment: Approaches for deploying models into

production environments.
• Development and Operations Integration

– CI/CD Pipelines: Integrating ML models into continuous
integration and deployment pipelines.

13.7. Traditional MLOps vs. Embedded MLOps 526

– Infrastructure Management: Setting up and maintaining
the infrastructure required for training and deploying
models.

– Communication & Collaboration: Ensuring smooth com-
munication and collaboration between data scientists, ML
engineers, and operations teams.

• Operational Excellence

– Monitoring: Techniques for monitoring model perfor-
mance, data drift, and operational health.

– Governance: Implementing policies for model auditability,
compliance, and ethical considerations.

13.7.1 Model Lifecycle Management

13.7.1.1 Data Management

In traditional centralized MLOps, data is aggregated into large datasets
and data lakes, then processed on cloud or on-prem servers. How-
ever, embedded MLOps relies on decentralized data from local on-
device sensors. Devices collect smaller batches of incremental data,
often noisy and unstructured. With connectivity constraints, this data
cannot always be instantly transmitted to the cloud and needs to be
intelligently cached and processed at the edge.

Due to limited on-device computing, embedded devices can only
preprocess and clean data minimally before transmission. Early fil-
tering and processing occur at edge gateways to reduce transmission
loads. While leveraging cloud storage, more processing and storage
happen at the edge to account for intermittent connectivity. Devices
identify and transmit only the most critical subsets of data to the cloud.

Labeling also needs centralized data access, requiring more
automated techniques like federated learning, where devices collab-
oratively label peers’ data. With personal edge devices, data privacy
and regulations are critical concerns. Data collection, transmission,
and storage must be secure and compliant.

For instance, a smartwatch may collect the day’s step count, heart
rate, and GPS coordinates. This data is cached locally and transmitted
to an edge gateway when WiFi is available—the gateway processes and
filters data before syncing relevant subsets with the cloud platform to
retrain models.

CHAPTER 13. ML OPERATIONS 527

13.7.1.2 Model Training

In traditional centralized MLOps, models are trained using abundant
data via deep learning on high-powered cloud GPU servers. However,
embedded MLOps need more support in model complexity, data avail-
ability, and computing resources for training.

The volume of aggregated data is much lower, often requiring tech-
niques like federated learning across devices to create training sets.
The specialized nature of edge data also limits public datasets for pre-
training. With privacy concerns, data samples must be tightly con-
trolled and anonymized where possible.

Furthermore, the models must use simplified architectures opti-
mized for low-power edge hardware. Given the computing limitations,
high-end GPUs are inaccessible for intensive deep learning. Training
leverages lower-powered edge servers and clusters with distributed
approaches to spread load.

Transfer learning emerges as a crucial strategy to address data
scarcity and irregularity in machine learning, particularly in edge
computing scenarios. As illustrated in Figure 13.6, this approach
involves pre-training models on large public datasets and then fine-
tuning them on limited domain-specific edge data. The figure depicts
a neural network where initial layers (W_{A1} to W_{A4}), responsible
for general feature extraction, are frozen (indicated by a green dashed
line). These layers retain knowledge from previous tasks, accelerating
learning and reducing resource requirements. The latter layers
(W_{A5} to W_{A7}), beyond the blue dashed line, are fine-tuned for
the specific task, focusing on task-specific feature learning.

Figure 13.6.: Transfer learning
in MLOps. Source: HarvardX.

This method not only mitigates data scarcity but also accommodates
the decentralized nature of embedded data. Furthermore, techniques
like incremental on-device learning can further customize models to
specific use cases. The lack of broad labeled data in many domains

13.7. Traditional MLOps vs. Embedded MLOps 528

also motivates the use of semi-supervised techniques, complementing
the transfer learning approach. By leveraging pre-existing knowledge
and adapting it to specialized tasks, transfer learning within an MLOps
framework enables models to achieve higher performance with fewer
resources, even in data-constrained environments.

For example, a smart home assistant may pre-train an audio recog-
nition model on public YouTube clips, which helps bootstrap with gen-
eral knowledge. It then transfers learning to a small sample of home
data to classify customized appliances and events, specializing in the
model. The model transforms into a lightweight neural network opti-
mized for microphone-enabled devices across the home.

So, embedded MLOps face acute challenges in constructing train-
ing datasets, designing efÏcient models, and distributing compute for
model development compared to traditional settings. Given the em-
bedded constraints, careful adaptation, such as transfer learning and
distributed training, is required to train models.

13.7.1.3 Model Evaluation

In traditional centralized MLOps, models are evaluated primarily us-
ing accuracy metrics and holdout test datasets. However, embedded
MLOps require a more holistic evaluation that accounts for system con-
straints beyond accuracy.

Models must be tested early and often on deployed edge hardware
covering diverse configurations. In addition to accuracy, factors like
latency, CPU usage, memory footprint, and power consumption are
critical evaluation criteria. Models are selected based on tradeoffs be-
tween these metrics to meet edge device constraints.

Data drift must also be monitored - where models trained on cloud
data degrade in accuracy over time on local edge data. Embedded data
often has more variability than centralized training sets. Evaluating
models across diverse operational edge data samples is key. But some-
times, getting the data for monitoring the drift can be challenging if
these devices are in the wild and communication is a barrier.

Ongoing monitoring provides visibility into real-world performance
post-deployment, revealing bottlenecks not caught during testing. For
instance, a smart camera model update may be canary tested on 100
cameras first and rolled back if degraded accuracy is observed before
expanding to all 5000 cameras.

13.7.1.4 Model Deployment

In traditional MLOps, new model versions are directly deployed
onto servers via API endpoints. However, embedded devices require

CHAPTER 13. ML OPERATIONS 529

optimized delivery mechanisms to receive updated models. Over-
the-air (OTA) updates provide a standardized approach to wirelessly
distributing new software or firmware releases to embedded devices.
Rather than direct API access, OTA packages allow remote deploy-
ing models and dependencies as pre-built bundles. Alternatively,
federated learning allows model updates without direct access to
raw training data. This decentralized approach has the potential for
continuous model improvement but needs robust MLOps platforms.

Model delivery relies on physical interfaces like USB or UART serial
connections for deeply embedded devices lacking connectivity. The
model packaging still follows similar principles to OTA updates, but
the deployment mechanism is tailored to the capabilities of the edge
hardware. Moreover, specialized OTA protocols optimized for IoT net-
works are often used rather than standard WiFi or Bluetooth proto-
cols. Key factors include efÏciency, reliability, security, and teleme-
try, such as progress tracking—solutions like Mender. Io provides
embedded-focused OTA services handling differential updates across
device fleets.

Figure 13.7 presents an overview of Model Lifecycle Management
in an MLOps context, illustrating the flow from development (top
left) to deployment and monitoring (bottom right). The process
begins with ML Development, where code and configurations are
version-controlled. Data and model management are central to the
process, involving datasets and feature repositories. Continuous
training, model conversion, and model registry are key stages in
the operationalization of training. The model deployment includes
serving the model and managing serving logs. Alerting mechanisms
are in place to flag issues, which feed into continuous monitoring
to ensure model performance and reliability over time. This inte-
grated approach ensures that models are developed and maintained
effectively throughout their lifecycle.

13.7.2 Development and Operations Integration

13.7.2.1 CI/CD Pipelines

In traditional MLOps, robust CI/CD infrastructure like Jenkins and
Kubernetes enables pipeline automation for large-scale model deploy-
ment. However, embedded MLOps need this centralized infrastruc-
ture and more tailored CI/CD workflows for edge devices.

Building CI/CD pipelines has to account for a fragmented landscape
of diverse hardware, firmware versions, and connectivity constraints.
There is no standard platform to orchestrate pipelines, and tooling sup-

https://mender.io/

13.7. Traditional MLOps vs. Embedded MLOps 530

Figure 13.7.: Model lifecycle
management. Source: Har-
vardX.

port is more limited.
Testing must cover this wide spectrum of target embedded devices

early, which is difÏcult without centralized access. Companies must
invest significant effort into acquiring and managing test infrastructure
across the heterogeneous embedded ecosystem.

Over-the-air updates require setting up specialized servers to dis-
tribute model bundles securely to devices in the field. Rollout and roll-
back procedures must also be carefully tailored for particular device
families.

With traditional CI/CD tools less applicable, embedded MLOps rely
more on custom scripts and integration. Companies take varied ap-
proaches, from open-source frameworks to fully in-house solutions.
Tight integration between developers, edge engineers, and end cus-
tomers establishes trusted release processes.

Therefore, embedded MLOps can’t leverage centralized cloud infras-
tructure for CI/CD. Companies combine custom pipelines, testing in-
frastructure, and OTA delivery to deploy models across fragmented
and disconnected edge systems.

13.7.2.2 Infrastructure Management

In traditional centralized MLOps, infrastructure entails provisioning
cloud servers, GPUs, and high-bandwidth networks for intensive
workloads like model training and serving predictions at scale. How-
ever, embedded MLOps require more heterogeneous infrastructure

CHAPTER 13. ML OPERATIONS 531

spanning edge devices, gateways, and the cloud.
Edge devices like sensors capture and preprocess data locally before

intermittent transmission to avoid overloading networks—gateways
aggregate and process device data before sending select subsets to the
cloud for training and analysis. The cloud provides centralized man-
agement and supplemental computing.

This infrastructure needs tight integration and balancing processing
and communication loads. Network bandwidth is limited, requiring
careful data filtering and compression. Edge computing capabilities
are modest compared to the cloud, imposing optimization constraints.

Managing secure OTA updates across large device fleets presents
challenges at the edge. Rollouts must be incremental and rollback-
ready for quick mitigation. Given decentralized environments, updat-
ing edge infrastructure requires coordination.

For example, an industrial plant may perform basic signal process-
ing on sensors before sending data to an on-prem gateway. The gate-
way handles data aggregation, infrastructure monitoring, and OTA up-
dates. Only curated data is transmitted to the cloud for advanced ana-
lytics and model retraining.

Embedded MLOps requires holistic management of distributed
infrastructure spanning constrained edge, gateways, and centralized
cloud. Workloads are balanced across tiers while accounting for
connectivity, computing, and security challenges.

13.7.2.3 Communication & Collaboration

In traditional MLOps, collaboration tends to center around data scien-
tists, ML engineers, and DevOps teams. However, embedded MLOps
require tighter cross-functional coordination between additional roles
to address system constraints.

Edge engineers optimize model architectures for target hardware
environments. They provide feedback to data scientists during devel-
opment so models fit device capabilities early on. Similarly, product
teams define operational requirements informed by end-user contexts.

With more stakeholders across the embedded ecosystem, commu-
nication channels must facilitate information sharing between central-
ized and remote teams. Issue tracking and project management ensure
alignment.

Collaborative tools optimize models for particular devices. Data sci-
entists can log issues replicated from field devices so models specialize
in niche data. Remote device access aids debugging and data collec-
tion.

For example, data scientists may collaborate with field teams man-
aging fleets of wind turbines to retrieve operational data samples. This

13.7. Traditional MLOps vs. Embedded MLOps 532

data is used to specialize models detecting anomalies specific to that
turbine class. Model updates are tested in simulations and reviewed
by engineers before field deployment.

Embedded MLOps mandates continuous coordination between
data scientists, engineers, end customers, and other stakeholders
throughout the ML lifecycle. Through close collaboration, models can
be tailored and optimized for targeted edge devices.

13.7.3 Operational Excellence

13.7.3.1 Monitoring

Traditional MLOps monitoring focuses on centrally tracking model
accuracy, performance metrics, and data drift. However, embedded
MLOps must account for decentralized monitoring across diverse
edge devices and environments.

Edge devices require optimized data collection to transmit key
monitoring metrics without overloading networks. Metrics help
assess model performance, data patterns, resource usage, and other
behaviors on remote devices.

With limited connectivity, more analysis occurs at the edge before
aggregating insights centrally. Gateways play a key role in monitoring
fleet health and coordinating software updates. Confirmed indicators
are eventually propagated to the cloud.

Broad device coverage is challenging but critical. Issues specific to
certain device types may arise, so monitoring needs to cover the full
spectrum. Canary deployments help trial monitoring processes before
scaling.

Anomaly detection identifies incidents requiring rolling back mod-
els or retraining on new data. However, interpreting alerts requires
understanding unique device contexts based on input from engineers
and customers.

For example, an automaker may monitor autonomous vehicles for
indicators of model degradation using caching, aggregation, and real-
time streams. Engineers assess when identified anomalies warrant
OTA updates to improve models based on factors like location and
vehicle age.

Embedded MLOps monitoring provides observability into model
and system performance across decentralized edge environments.
Careful data collection, analysis, and collaboration deliver meaningful
insights to maintain reliability.

CHAPTER 13. ML OPERATIONS 533

13.7.3.2 Governance

In traditional MLOps, governance focuses on model explainability,
fairness, and compliance for centralized systems. However, embed-
ded MLOps must also address device-level governance challenges
related to data privacy, security, and safety.

With sensors collecting personal and sensitive data, local data gov-
ernance on devices is critical. Data access controls, anonymization,
and encrypted caching help address privacy risks and compliance like
HIPAA and GDPR. Updates must maintain security patches and set-
tings.

Safety governance considers the physical impacts of flawed device
behavior. Failures could cause unsafe conditions in vehicles, factories,
and critical systems. Redundancy, fail-safes, and warning systems help
mitigate risks.

Traditional governance, such as bias monitoring and model explain-
ability, remains imperative but is harder to implement for embedded
AI. Peeking into black-box models on low-power devices also poses
challenges.

For example, a medical device may scrub personal data on the device
before transmission. Strict data governance protocols approve model
updates. Model explainability is limited, but the focus is on detecting
anomalous behavior. Backup systems prevent failures.

Embedded MLOps governance must encompass privacy, security,
safety, transparency, and ethics. Specialized techniques and team col-
laboration are needed to help establish trust and accountability within
decentralized environments.

13.7.4 Comparison

Table 13.2 highlights the similarities and differences between Tradi-
tional MLOps and Embedded MLOps based on all the things we have
learned thus far:

Table 13.2.: Comparison of Traditional MLOps and Embedded MLOps
practices.

Area Traditional MLOps Embedded MLOps
Data Man-
agement

Large datasets, data
lakes, feature stores

On-device data capture,
edge caching and
processing

13.7. Traditional MLOps vs. Embedded MLOps 534

Area Traditional MLOps Embedded MLOps
Model De-
velopment

Leverage deep learning,
complex neural nets,
GPU training

Constraints on model
complexity, need for
optimization

Deployment Server clusters, cloud
deployment, low latency
at scale

OTA deployment to
devices, intermittent
connectivity

Monitoring Dashboards, logs, alerts
for cloud model
performance

On-device monitoring of
predictions, resource usage

Retraining Retrain models on new
data

Federated learning from
devices, edge retraining

InfrastructureDynamic cloud
infrastructure

Heterogeneous
edge/cloud infrastructure

CollaborationShared experiment
tracking and model
registry

Collaboration for
device-specific
optimization

So, while Embedded MLOps shares foundational MLOps principles,
it faces unique constraints in tailoring workflows and infrastructure
specifically for resource-constrained edge devices.

13.7.5 Traditional MLOps

Google, Microsoft, and Amazon offer their version of managed ML
services. These include services that manage model training and ex-
perimentation, model hosting and scaling, and monitoring. These of-
ferings are available via an API and client SDKs, as well as through
web UIs. While it is possible to build your own end-to-end MLOps so-
lutions using pieces from each, the greatest ease of use benefits come
by staying within a single provider ecosystem to take advantage of in-
terservice integrations.

The following sections present a quick overview of the services that
fit into each part of the MLOps life cycle described above, providing
examples of offerings from different providers. It’s important to note
that the MLOps space is evolving rapidly; new companies and prod-
ucts are entering the scene at a swift pace. The examples mentioned are
not meant to serve as endorsements of particular companies’ offerings
but rather to illustrate the types of solutions available in the market.

CHAPTER 13. ML OPERATIONS 535

13.7.5.1 Data Management

Data storage and versioning are table stakes for any commercial offer-
ing, and most take advantage of existing general-purpose storage solu-
tions such as S3. Others use more specialized options such as git-based
storage (Example: Hugging Face’s Dataset Hub). This is an area where
providers make it easy to support their competitors’ data storage op-
tions, as they don’t want this to be a barrier for adoptions of the rest
of their MLOps services. For example, Vertex AI’s training pipeline
seamlessly supports datasets stored in S3, Google Cloud Buckets, or
Hugging Face’s Dataset Hub.

13.7.5.2 Model Training

Managed training services are where cloud providers shine, as they
provide on-demand access to hardware that is out of reach for most
smaller companies. They bill only for hardware during training time,
putting GPU-accelerated training within reach of even the smallest de-
veloper teams. The control developers have over their training work-
flow can vary widely depending on their needs. Some providers have
services that provide little more than access to the resources and rely
on the developer to manage the training loop, logging, and model stor-
age themselves. Other services are as simple as pointing to a base
model and a labeled data set to kick off a fully managed finetuning
job (example: Vertex AI Fine Tuning).

A word of warning: As of 2023, GPU hardware demand well ex-
ceeds supply, and as a result, cloud providers are rationing access to
their GPUs. In some data center regions, GPUs may be unavailable or
require long-term contracts.

13.7.5.3 Model Evaluation

Model evaluation tasks typically involve monitoring models’ accuracy,
latency, and resource usage in both the testing and production phases.
Unlike embedded systems, ML models deployed to the cloud benefit
from constant internet connectivity and unlimited logging capacities.
As a result, it is often feasible to capture and log every request and re-
sponse. This makes replaying or generating synthetic requests to com-
pare different models and versions tractable.

Some providers also offer services that automate the experiment
tracking of modifying model hyperparameters. They track the runs
and performance and generate artifacts from these model training
runs. Example: WeightsAndBiases

https://huggingface.co/datasets
https://cloud.google.com/vertex-ai/docs/generative-ai/models/tune-models
https://wandb.ai/

13.7. Traditional MLOps vs. Embedded MLOps 536

13.7.5.4 Model Deployment

Each provider typically has a service referred to as a “model registry,”
where training models are stored and accessed. Often, these registries
may also provide access to base models that are either open source
or provided by larger technology companies (or, in some cases, like
LLAMA, both!). These model registries are a common place to com-
pare all the models and their versions to allow easy decision-making
on which to pick for a given use case. Example: Vertex AI’s model
registry

From the model registry, deploying a model to an inference end-
point is quick and simple, and it handles the resource provisioning,
model weight downloading, and hosting of a given model. These ser-
vices typically give access to the model via a REST API where infer-
ence requests can be sent. Depending on the model type, specific re-
sources can be configured, such as which type of GPU accelerator may
be needed to hit the desired performance. Some providers may also
offer serverless inference or batch inference options that do not need
a persistent endpoint to access the model. Example: AWS SageMaker
Inference

13.7.6 Embedded MLOps

Despite the proliferation of new ML Ops tools in response to the
increase in demand, the challenges described earlier have constrained
the availability of such tools in embedded systems environments.
More recently, new tools such as Edge Impulse (Janapa Reddi et
al. 2023) have made the development process somewhat easier, as
described below.

13.7.6.1 Edge Impulse

Edge Impulse is an end-to-end development platform for creating and
deploying machine learning models onto edge devices such as micro-
controllers and small processors. It makes embedded machine learn-
ing more accessible to software developers through its easy-to-use web
interface and integrated tools for data collection, model development,
optimization, and deployment. Its key capabilities include the follow-
ing:

• Intuitive drag-and-drop workflow for building ML models with-
out coding required

• Tools for acquiring, labeling, visualizing, and preprocessing data
from sensors

https://ai.meta.com/llama/
https://cloud.google.com/vertex-ai/docs/model-registry/introduction
https://cloud.google.com/vertex-ai/docs/model-registry/introduction
https://docs.aws.amazon.com/sagemaker/latest/dg/deploy-model.html
https://docs.aws.amazon.com/sagemaker/latest/dg/deploy-model.html
https://edgeimpulse.com/

CHAPTER 13. ML OPERATIONS 537

• Choice of model architectures, including neural networks and
unsupervised learning

• Model optimization techniques to balance performance metrics
and hardware constraints

• Seamless deployment onto edge devices through compilation,
SDKs, and benchmarks

• Collaboration features for teams and integration with other plat-
forms

With Edge Impulse, developers with limited data science expertise
can develop specialized ML models that run efÏciently within small
computing environments. It provides a comprehensive solution for
creating embedded intelligence and advancing machine learning.

13.7.6.1.1 User Interface. Edge Impulse was designed with seven
key principles: accessibility, end-to-end capabilities, a data-centric ap-
proach, interactiveness, extensibility, team orientation, and commu-
nity support. The intuitive user interface, shown in Figure 13.8, guides
developers at all experience levels through uploading data, selecting
a model architecture, training the model, and deploying it across rele-
vant hardware platforms. It should be noted that, like any tool, Edge
Impulse is intended to assist with, not replace, foundational considera-
tions such as determining if ML is an appropriate solution or acquiring
the requisite domain expertise for a given application.

Figure 13.8.: Screenshot of
Edge Impulse user interface for
building workflows from input
data to output features.

What makes Edge Impulse notable is its comprehensive yet intuitive
end-to-end workflow. Developers start by uploading their data via the
graphical user interface (GUI) or command line interface (CLI) tools,
after which they can examine raw samples and visualize the data dis-

13.7. Traditional MLOps vs. Embedded MLOps 538

tribution in the training and test splits. Next, users can pick from vari-
ous preprocessing “blocks” to facilitate digital signal processing (DSP).
While default parameter values are provided, users can customize the
parameters as needed, with considerations around memory and la-
tency displayed. Users can easily choose their neural network archi-
tecture - without any code needed.

Thanks to the platform’s visual editor, users can customize the archi-
tecture’s components and specific parameters while ensuring that the
model is still trainable. Users can also leverage unsupervised learning
algorithms, such as K-means clustering and Gaussian mixture models
(GMM).

13.7.6.1.2 Optimizations. To accommodate the resource constraints
of TinyML applications, Edge Impulse provides a confusion matrix
summarizing key performance metrics, including per-class accuracy
and F1 scores. The platform elucidates the tradeoffs between model
performance, size, and latency using simulations in Renode and
device-specific benchmarking. For streaming data use cases, a per-
formance calibration tool leverages a genetic algorithm to find ideal
post-processing configurations balancing false acceptance and false
rejection rates. Techniques like quantization, code optimization, and
device-specific optimization are available to optimize models. For
deployment, models can be compiled in appropriate formats for target
edge devices. Native firmware SDKs also enable direct data collection
on devices.

In addition to streamlining development, Edge Impulse scales the
modeling process itself. A key capability is the EON Tuner, an auto-
mated machine learning (AutoML) tool that assists users in hyperpa-
rameter tuning based on system constraints. It runs a random search to
generate configurations for digital signal processing and training steps
quickly. The resulting models are displayed for the user to select based
on relevant performance, memory, and latency metrics. For data, ac-
tive learning facilitates training on a small labeled subset, followed by
manually or automatically labeling new samples based on proximity
to existing classes. This expands data efÏciency.

13.7.6.1.3 Use Cases. Beyond the accessibility of the platform itself,
the Edge Impulse team has expanded the knowledge base of the em-
bedded ML ecosystem. The platform lends itself to academic environ-
ments, having been used in online courses and on-site workshops glob-
ally. Numerous case studies featuring industry and research use cases
have been published, most notably Oura Ring, which uses ML to iden-
tify sleep patterns. The team has made repositories open source on

https://renode.io/
https://docs.edgeimpulse.com/docs/edge-impulse-studio/eon-tuner
https://ouraring.com/

CHAPTER 13. ML OPERATIONS 539

GitHub, facilitating community growth. Users can also make projects
public to share techniques and download libraries to share via Apache.
Organization-level access enables collaboration on workflows.

Overall, Edge Impulse is uniquely comprehensive and integrateable
for developer workflows. Larger platforms like Google and Microsoft
focus more on cloud versus embedded systems. TinyMLOps frame-
works such as Neuton AI and Latent AI offer some functionality but
lack Edge Impulse’s end-to-end capabilities. TensorFlow Lite Micro
is the standard inference engine due to flexibility, open source status,
and TensorFlow integration, but it uses more memory and storage
than Edge Impulse’s EON Compiler. Other platforms need to be
updated, academic-focused, or more versatile. In summary, Edge
Impulse streamlines and scale embedded ML through an accessible,
automated platform.

13.7.6.2 Limitations

While Edge Impulse provides an accessible pipeline for embedded ML,
important limitations and risks remain. A key challenge is data qual-
ity and availability - the models are only as good as the data used to
train them. Users must have sufÏcient labeled samples that capture the
breadth of expected operating conditions and failure modes. Labeled
anomalies and outliers are critical yet time-consuming to collect and
identify. InsufÏcient or biased data leads to poor model performance
regardless of the tool’s capabilities.

Deploying low-powered devices also presents inherent challenges.
Optimized models may still need to be more resource-intensive for
ultra-low-power MCUs. Striking the right balance of compression ver-
sus accuracy takes some experimentation. The tool simplifies but still
needs to eliminate the need for foundational ML and signal process-
ing expertise. Embedded environments also constrain debugging and
interpretability compared to the cloud.

While impressive results are achievable, users shouldn’t view Edge
Impulse as a “Push Button ML” solution. Careful project scoping, data
collection, model evaluation, and testing are still essential. As with
any development tool, reasonable expectations and diligence in appli-
cation are advised. However, Edge Impulse can accelerate embedded
ML prototyping and deployment for developers willing to invest the
requisite data science and engineering effort.

13.8. Case Studies 540

Exercise 26: Edge Impulse

Ready to level up your tiny machine-learning projects? Let’s com-
bine the power of Edge Impulse with the awesome visualizations
of Weights & Biases (WandB). In this Colab, you’ll learn to track
your model’s training progress like a pro! Imagine seeing cool
graphs of your model getting smarter, comparing different ver-
sions, and ensuring your AI performs its best even on tiny de-
vices.

13.8 Case Studies

13.8.1 Oura Ring

The Oura Ring is a wearable that can measure activity, sleep, and re-
covery when placed on the user’s finger. Using sensors to track phys-
iological metrics, the device uses embedded ML to predict the stages
of sleep. To establish a baseline of legitimacy in the industry, Oura
conducted a correlation experiment to evaluate the device’s success in
predicting sleep stages against a baseline study. This resulted in a solid
62% correlation compared to the 82-83% baseline. Thus, the team set
out to determine how to improve their performance even further.

The first challenge was to obtain better data in terms of both quantity
and quality. They could host a larger study to get a more comprehen-
sive data set, but the data would be so noisy and large that it would be
difÏcult to aggregate, scrub, and analyze. This is where Edge Impulse
comes in.

We hosted a massive sleep study of 100 men and women between
the ages of 15 and 73 across three continents (Asia, Europe, and North
America). In addition to wearing the Oura Ring, participants were
responsible for undergoing the industry standard PSG testing, which
provided a “label” for this data set. With 440 nights of sleep from 106
participants, the data set totaled 3,444 hours in length across Ring and
PSG data. With Edge Impulse, Oura could easily upload and consol-
idate data from different sources into a private S3 bucket. They were
also able to set up a Data Pipeline to merge data samples into individ-
ual files and preprocess the data without having to conduct manual
scrubbing.

Because of the time saved on data processing thanks to Edge Im-
pulse, the Oura team could focus on the key drivers of their prediction.

https://colab.research.google.com/github/edgeimpulse/notebooks/blob/main/notebooks/python-sdk-with-wandb.ipynb#scrollTo=7583a486-afd6-42d8-934b-fdb33a6f3362
https://ouraring.com/

CHAPTER 13. ML OPERATIONS 541

They only extracted three types of sensor data: heart rate, motion, and
body temperature. After partitioning the data using five-fold cross-
validation and classifying sleep stages, the team achieved a correlation
of 79% - just a few percentage points off the standard. They readily
deployed two types of sleep detection models: one simplified using
just the ring’s accelerometer and one more comprehensive leveraging
Autonomic Nervous System (ANS)-mediated peripheral signals and
circadian features. With Edge Impulse, they plan to conduct further
analyses of different activity types and leverage the platform’s scalabil-
ity to continue experimenting with different data sources and subsets
of extracted features.

While most ML research focuses on model-dominant steps such as
training and finetuning, this case study underscores the importance
of a holistic approach to ML Ops, where even the initial steps of data
aggregation and preprocessing fundamentally impact successful out-
comes.

13.8.2 ClinAIOps

Let’s look at MLOps in the context of medical health monitoring to
better understand how MLOps “matures” in a real-world deployment.
Specifically, let’s consider continuous therapeutic monitoring (CTM)
enabled by wearable devices and sensors. CTM captures detailed phys-
iological data from patients, providing the opportunity for more fre-
quent and personalized adjustments to treatments.

Wearable ML-enabled sensors enable continuous physiological
and activity monitoring outside clinics, opening up possibilities for
timely, data-driven therapy adjustments. For example, wearable
insulin biosensors (Psoma and Kanthou 2023) and wrist-worn ECG
sensors for glucose monitoring (J. Li et al. 2021) can automate insulin
dosing for diabetes, wrist-worn ECG and PPG sensors can adjust
blood thinners based on atrial fibrillation patterns (Attia et al. 2018;
Y. Guo et al. 2019), and accelerometers tracking gait can trigger
preventative care for declining mobility in the elderly (Yingcheng
Liu et al. 2022). The variety of signals that can now be captured
passively and continuously allows therapy titration and optimization
tailored to each patient’s changing needs. By closing the loop between
physiological sensing and therapeutic response with TinyML and
on-device learning, wearables are poised to transform many areas of
personalized medicine.

ML holds great promise in analyzing CTM data to provide data-
driven recommendations for therapy adjustments. But simply deploy-
ing AI models in silos, without integrating them properly into clinical

13.8. Case Studies 542

workflows and decision-making, can lead to poor adoption or subop-
timal outcomes. In other words, thinking about MLOps alone is insuf-
ficient to make them useful in practice. This study shows that frame-
works are needed to incorporate AI and CTM into real-world clinical
practice seamlessly.

This case study analyzes “ClinAIOps” as a model for embedded
ML operations in complex clinical environments (E. Chen et al. 2023).
We provide an overview of the framework and why it’s needed, walk
through an application example, and discuss key implementation chal-
lenges related to model monitoring, workflow integration, and stake-
holder incentives. Analyzing real-world examples like ClinAIOps illu-
minates crucial principles and best practices for reliable and effective
AI Ops across many domains.

Traditional MLOps frameworks are insufÏcient for integrating con-
tinuous therapeutic monitoring (CTM) and AI in clinical settings for a
few key reasons:

• MLOps focuses on the ML model lifecycle—training, deploy-
ment, monitoring. But healthcare involves coordinating multiple
human stakeholders—patients and clinicians—not just models.

• MLOps automates IT system monitoring and management.
However, optimizing patient health requires personalized care
and human oversight, not just automation.

• CTM and healthcare delivery are complex sociotechnical systems
with many moving parts. MLOps doesn’t provide a framework
for coordinating human and AI decision-making.

• Ethical considerations regarding healthcare AI require human
judgment, oversight, and accountability. MLOps frameworks
lack processes for ethical oversight.

• Patient health data is highly sensitive and regulated. MLOps
alone doesn’t ensure the handling of protected health informa-
tion to privacy and regulatory standards.

• Clinical validation of AI-guided treatment plans is essential for
provider adoption. MLOps doesn’t incorporate domain-specific
evaluation of model recommendations.

• Optimizing healthcare metrics like patient outcomes requires
aligning stakeholder incentives and workflows, which pure
tech-focused MLOps overlooks.

CHAPTER 13. ML OPERATIONS 543

Thus, effectively integrating AI/ML and CTM in clinical practice
requires more than just model and data pipelines; it requires coordi-
nating complex human-AI collaborative decision-making, which Cli-
nAIOps addresses via its multi-stakeholder feedback loops.

13.8.2.1 Feedback Loops

The ClinAIOps framework, shown in Figure 13.9, provides these
mechanisms through three feedback loops. The loops are useful for
coordinating the insights from continuous physiological monitoring,
clinician expertise, and AI guidance via feedback loops, enabling data-
driven precision medicine while maintaining human accountability.
ClinAIOps provides a model for effective human-AI symbiosis in
healthcare: the patient is at the center, providing health challenges
and goals that inform the therapy regimen; the clinician oversees
this regimen, giving inputs for adjustments based on continuous
monitoring data and health reports from the patient; whereas AI
developers play a crucial role by creating systems that generate alerts
for therapy updates, which the clinician then vets.

These feedback loops, which we will discuss below, help maintain
clinician responsibility and control over treatment plans by reviewing
AI suggestions before they impact patients. They help dynamically
customize AI model behavior and outputs to each patient’s changing
health status. They help improve model accuracy and clinical utility
over time by learning from clinician and patient responses. They
facilitate shared decision-making and personalized care during
patient-clinician interactions. They enable rapid optimization of ther-
apies based on frequent patient data that clinicians cannot manually
analyze.

13.8.2.1.1 Patient-AI Loop. The patient-AI loop enables frequent
therapy optimization driven by continuous physiological monitoring.
Patients are prescribed wearables like smartwatches or skin patches
to collect relevant health signals passively. For example, a diabetic
patient could have a continuous glucose monitor, or a heart disease
patient may wear an ECG patch. An AI model analyzes the patient’s
longitudinal health data streams in the context of their electronic medi-
cal records - their diagnoses, lab tests, medications, and demographics.
The AI model suggests adjustments to the treatment regimen tailored
to that individual, like changing a medication dose or administration
schedule. Minor adjustments within a pre-approved safe range can be
made by the patient independently, while major changes are reviewed
by the clinician first. This tight feedback between the patient’s physiol-

13.8. Case Studies 544

Figure 13.9.: ClinAIOps cycle.
Source: E. Chen et al. (2023).

ogy and AI-guided therapy allows data-driven, timely optimizations
like automated insulin dosing recommendations based on real-time
glucose levels for diabetes patients.

13.8.2.1.2 Clinician-AI Loop. The clinician-AI loop allows clinical
oversight over AI-generated recommendations to ensure safety and ac-
countability. The AI model provides the clinician with treatment rec-
ommendations and easily reviewed summaries of the relevant patient
data on which the suggestions are based. For instance, an AI may sug-
gest lowering a hypertension patient’s blood pressure medication dose
based on continuously low readings. The clinician can accept, reject,
or modify the AI’s proposed prescription changes. This clinician feed-
back further trains and improves the model. Additionally, the clinician
sets the bounds for the types and extent of treatment changes the AI
can autonomously recommend to patients. By reviewing AI sugges-
tions, the clinician maintains ultimate treatment authority based on
their clinical judgment and accountability. This loop allows them to
oversee patient cases with AI assistance efÏciently.

13.8.2.1.3 Patient-ClinicianLoop. Instead of routine data collection,
the clinician can focus on interpreting high-level data patterns and col-
laborating with the patient to set health goals and priorities. The AI as-

CHAPTER 13. ML OPERATIONS 545

sistance will also free up clinicians’ time, allowing them to focus more
deeply on listening to patients’ stories and concerns. For instance, the
clinician may discuss diet and exercise changes with a diabetes patient
to improve their glucose control based on their continuous monitoring
data. Appointment frequency can also be dynamically adjusted based
on patient progress rather than following a fixed calendar. Freed from
basic data gathering, the clinician can provide coaching and care cus-
tomized to each patient informed by their continuous health data. The
patient-clinician relationship is made more productive and personal-
ized.

13.8.2.2 Hypertension Example

Let’s consider an example. According to the Centers for Disease Con-
trol and Prevention, nearly half of adults have hypertension (48.1%,
119.9 million). Hypertension can be managed through ClinAIOps with
the help of wearable sensors using the following approach:

13.8.2.2.1 Data Collection. The data collected would include
continuous blood pressure monitoring using a wrist-worn device
equipped with photoplethysmography (PPG) and electrocardiogra-
phy (ECG) sensors to estimate blood pressure (Q. Zhang, Zhou, and
Zeng 2017). The wearable would also track the patient’s physical
activity via embedded accelerometers. The patient would log any
antihypertensive medications they take, along with the time and
dose. The patient’s demographic details and medical history from
their electronic health record (EHR) would also be incorporated. This
multimodal real-world data provides valuable context for the AI
model to analyze the patient’s blood pressure patterns, activity levels,
medication adherence, and responses to therapy.

13.8.2.2.2 AI Model. The on-device AI model would analyze the
patient’s continuous blood pressure trends, circadian patterns, phys-
ical activity levels, medication adherence behaviors, and other con-
texts. It would use ML to predict optimal antihypertensive medication
doses and timing to control the individual’s blood pressure. The model
would send dosage change recommendations directly to the patient for
minor adjustments or to the reviewing clinician for approval for more
significant modifications. By observing clinician feedback on its rec-
ommendations and evaluating the resulting blood pressure outcomes
in patients, the AI model could be continually retrained to improve per-
formance. The goal is fully personalized blood pressure management
optimized for each patient’s needs and responses.

13.8. Case Studies 546

13.8.2.2.3 Patient-AI Loop. In the Patient-AI loop, the hypertensive
patient would receive notifications on their wearable device or tethered
smartphone app recommending adjustments to their antihypertensive
medications. For minor dose changes within a pre-defined safe range,
the patient could independently implement the AI model’s suggested
adjustment to their regimen. However, the patient must obtain clini-
cian approval before changing their dosage for more significant modifi-
cations. Providing personalized and timely medication recommenda-
tions automates an element of hypertension self-management for the
patient. It can improve their adherence to the regimen as well as treat-
ment outcomes. The patient is empowered to leverage AI insights to
control their blood pressure better.

13.8.2.2.4 Clinician-AI Loop. In the Clinician-AI loop, the provider
would receive summaries of the patient’s continuous blood pressure
trends and visualizations of their medication-taking patterns and
adherence. They review the AI model’s suggested antihypertensive
dosage changes and decide whether to approve, reject, or modify the
recommendations before they reach the patient. The clinician also
specifies the boundaries for how much the AI can independently rec-
ommend changing dosages without clinician oversight. If the patient’s
blood pressure is trending at dangerous levels, the system alerts the
clinician so they can promptly intervene and adjust medications or
request an emergency room visit. This loop maintains accountability
and safety while allowing the clinician to harness AI insights by
keeping the clinician in charge of approving major treatment changes.

13.8.2.2.5 Patient-Clinician Loop. In the Patient-Clinician loop,
shown in Figure 13.10, the in-person visits would focus less on collect-
ing data or basic medication adjustments. Instead, the clinician could
interpret high-level trends and patterns in the patient’s continuous
monitoring data and have focused discussions about diet, exercise,
stress management, and other lifestyle changes to improve their blood
pressure control holistically. The frequency of appointments could
be dynamically optimized based on the patient’s stability rather than
following a fixed calendar. Since the clinician would not need to
review all the granular data, they could concentrate on delivering per-
sonalized care and recommendations during visits. With continuous
monitoring and AI-assisted optimization of medications between vis-
its, the clinician-patient relationship focuses on overall wellness goals
and becomes more impactful. This proactive and tailored data-driven
approach can help avoid hypertension complications like stroke, heart
failure, and other threats to patient health and well-being.

CHAPTER 13. ML OPERATIONS 547

Figure 13.10.: ClinAIOps inter-
active loop. Source: E. Chen et
al. (2023).

13.8.2.3 MLOps vs. ClinAIOps

The hypertension example illustrates well why traditional MLOps are
insufÏcient for many real-world AI applications and why frameworks
like ClinAIOps are needed instead.

With hypertension, simply developing and deploying an ML model
for adjusting medications would only succeed if it considered the
broader clinical context. The patient, clinician, and health system
have concerns about shaping adoption. The AI model cannot opti-
mize blood pressure outcomes alone—it requires integrating with
workflows, behaviors, and incentives.

• Some key gaps the example highlights in a pure MLOps
approach:

• The model itself would lack the real-world patient data at scale
to recommend treatments reliably. ClinAIOps enables this by
collecting feedback from clinicians and patients via continuous
monitoring.

• Clinicians would only trust model recommendations with
transparency, explainability, and accountability. ClinAIOps
keeps the clinician in the loop to build confidence.

• Patients need personalized coaching and motivation - not just
AI notifications. The ClinAIOps patient-clinician loop facilitates
this.

• Sensor reliability and data accuracy would only be sufÏcient with
clinical oversight. ClinAIOps validates recommendations.

• Liability for treatment outcomes must be clarified with just an
ML model. ClinAIOps maintains human accountability.

• Health systems would need to demonstrate value to change
workflows. ClinAIOps aligns stakeholders.

The hypertension case clearly shows the need to look beyond
training and deploying a performant ML model to consider the entire
human-AI sociotechnical system. This is the key gap ClinAIOps
addresses over traditional MLOps. Traditional MLOps is overly
tech-focused on automating ML model development and deploy-
ment, while ClinAIOps incorporates clinical context and human-AI
coordination through multi-stakeholder feedback loops.

13.9. Conclusion 548

Table 13.3 compares them. This table highlights how, when MLOps
is implemented, we need to consider more than just ML models.

Table 13.3.: Comparison of MLOps versus AI operations for clinical
use.

Traditional MLOps ClinAIOps
Focus ML model development

and deployment
Coordinating human
and AI decision-making

Stakeholders Data scientists, IT
engineers

Patients, clinicians, AI
developers

Feedback
loops

Model retraining,
monitoring

Patient-AI, clinician-AI,
patient-clinician

Objective Operationalize ML
deployments

Optimize patient health
outcomes

Processes Automated pipelines
and infrastructure

Integrates clinical
workflows and oversight

Data consid-
erations

Building training
datasets

Privacy, ethics, protected
health information

Model
validation

Testing model
performance metrics

Clinical evaluation of
recommendations

ImplementationFocuses on technical
integration

Aligns incentives of
human stakeholders

13.8.2.4 Summary

In complex domains like healthcare, successfully deploying AI re-
quires moving beyond a narrow focus on training and deploying
performant ML models. As illustrated through the hypertension
example, real-world integration of AI necessitates coordinating di-
verse stakeholders, aligning incentives, validating recommendations,
and maintaining accountability. Frameworks like ClinAIOps, which
facilitate collaborative human-AI decision-making through integrated
feedback loops, are needed to address these multifaceted challenges.
Rather than just automating tasks, AI must augment human capabili-
ties and clinical workflows. This allows AI to positively impact patient
outcomes, population health, and healthcare efÏciency.

13.9 Conclusion
Embedded ML is poised to transform many industries by enabling AI
capabilities directly on edge devices like smartphones, sensors, and

CHAPTER 13. ML OPERATIONS 549

IoT hardware. However, developing and deploying TinyML models
on resource-constrained embedded systems poses unique challenges
compared to traditional cloud-based MLOps.

This chapter provided an in-depth analysis of key differences be-
tween traditional and embedded MLOps across the model lifecycle,
development workflows, infrastructure management, and operational
practices. We discussed how factors like intermittent connectivity, de-
centralized data, and limited on-device computing necessitate innova-
tive techniques like federated learning, on-device inference, and model
optimization. Architectural patterns like cross-device learning and hi-
erarchical edge-cloud infrastructure help mitigate constraints.

Through concrete examples like Oura Ring and ClinAIOps, we
demonstrated applied principles for embedded MLOps. The case
studies highlighted critical considerations beyond core ML engineer-
ing, like aligning stakeholder incentives, maintaining accountability,
and coordinating human-AI decision-making. This underscores the
need for a holistic approach spanning both technical and human
elements.

While embedded MLOps face impediments, emerging tools like
Edge Impulse and lessons from pioneers help accelerate TinyML
innovation. A solid understanding of foundational MLOps principles
tailored to embedded environments will empower more organizations
to overcome constraints and deliver distributed AI capabilities. As
frameworks and best practices mature, seamlessly integrating ML
into edge devices and processes will transform industries through
localized intelligence.

13.10 Resources
Here is a curated list of resources to support students and instructors
in their learning and teaching journeys. We are continuously working
on expanding this collection and will add new exercises soon.

Slides

These slides serve as a valuable tool for instructors to deliver
lectures and for students to review the material at their own
pace. We encourage both students and instructors to leverage
these slides to improve their understanding and facilitate effec-
tive knowledge transfer.

• MLOps, DevOps, and AIOps.

https://docs.google.com/presentation/d/1vsC8WpmvVRgMTpzTltAhEGzcVohMkatMZBqm3-P8TUY/edit?usp=drive_link

13.10. Resources 550

• MLOps overview.

• Tiny MLOps.

• MLOps: a use case.

• MLOps: Key Activities and Lifecycle.

• ML Lifecycle.

• Scaling TinyML: Challenges and Opportunities.

• Training Operationalization:

– Training Ops: CI/CD trigger.
– Continuous Integration.
– Continuous Deployment.
– Production Deployment.
– Production Deployment: Online Experimentation.
– Training Ops Impact on MLOps.

• Model Deployment:

– Scaling ML Into Production Deployment.
– Containers for Scaling ML Deployment.
– Challenges for Scaling TinyML Deployment: Part 1.
– Challenges for Scaling TinyML Deployment: Part 2.
– Model Deployment Impact on MLOps.

Videos

• Video 19

• Video 20

• Video 21

• Video 22

https://docs.google.com/presentation/d/1GVduKipd0ughTpqsHupGqAPW70h0xNOOpaIeSqLOc1M/edit?usp=drive_link
https://docs.google.com/presentation/d/1MNjVOcx5f5Nfe3ElDqTxutezcGXm4yI8PkjWOuQYHhk/edit?usp=drive_link
https://docs.google.com/presentation/d/1449rzplaL0lOPoKh0mrpds3KPPoOHWdR5LIZdd7aXhA/edit#slide=id.g2ddfdf6e85f_0_0
https://docs.google.com/presentation/d/1vGCffLgemxTwTIo7vUea5CibOV7y3vY3pkJdee-y5eA/edit#slide=id.g2de2d5f2ac0_0_0
https://docs.google.com/presentation/d/1FW8Q1Yj5g_jbArFANfncbLQj36uV2vfV8pjoqaD6gjM/edit#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1VxwhVztoTk3eG04FD9fFNpj2lVrVjYYPJi3jBz0O_mo/edit?resourcekey=0-bV7CCIPr7SxZf2p61oB_CA#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1YyRY6lOzdC7NjutJSvl_VXYu29qwHKqx0y98zAUCJCU/edit?resourcekey=0-PTh1FxqkQyhOO0bKKHBldQ#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1poGgYTH44X0dVGwG9FGIyVwot4EET_jJOt-4kgcQawo/edit?usp=drive_link
https://docs.google.com/presentation/d/1nxbIluROAOl5cN6Ug4Dm-mHh1Fwm5aEng_S5iLfiCqo/edit?usp=drive_link&resourcekey=0-xFOl8i7ea2vNtiilXz8CaQ
https://docs.google.com/presentation/d/1m8KkCZRnbJCCTWsmcwMt9EJhYLoaVG_Wm7zUE2bQkZI/edit?usp=drive_link
https://docs.google.com/presentation/d/1elFEK61X5Kc-5UV_4AEtRvCT7l1TqTdABmJV8uAYykY/edit?usp=drive_link
https://docs.google.com/presentation/d/1-6QL2rq0ahGVz8BL1M1BT0lR-HDxsHady9lGTN93wLc/edit?usp=drive_link&resourcekey=0-sRqqoa7pX9IkDDSwe2MLyw
https://docs.google.com/presentation/d/12sf-PvSxDIlCQCXULWy4jLY_2fIq-jpRojRsmeMGq6k/edit?resourcekey=0-knPSQ5h4ffhgeV6CXvwlSg#slide=id.gf209f12c63_0_314
https://docs.google.com/presentation/d/1YXE4cAWMwL79Vqr_8TJi-LsQD9GFdiyBqY--HcoBpKg/edit?usp=drive_link&resourcekey=0-yajtiQTx2SdJ6BCVG0Bfng
https://docs.google.com/presentation/d/1mw5FFERf5r-q8R7iyNf6kx2MMcwNOTBd5WwFOj8Zs20/edit?resourcekey=0-u80KeJio3iIWco00crGD9g#slide=id.gdc4defd718_0_0
https://docs.google.com/presentation/d/1NB63wTHoEPGSn--KqFu1vjHx3Ild9AOhpBbflJP-k7I/edit?usp=drive_link&resourcekey=0-MsEi1Lba2dpl0G-bzakHJQ
https://docs.google.com/presentation/d/1A0pfm55s03dFbYKKFRV-x7pRCm_2-VpoIM0O9kW0TAA/edit?usp=drive_link&resourcekey=0--O2AFFmVzAmz5KO0mJeVHA

CHAPTER 13. ML OPERATIONS 551

Exercises

To reinforce the concepts covered in this chapter, we have curated
a set of exercises that challenge students to apply their knowl-
edge and deepen their understanding.

• Exercise 26

Labs

In addition to exercises, we also offer a series of hands-on labs
that allow students to gain practical experience with embedded
AI technologies. These labs provide step-by-step guidance, en-
abling students to develop their skills in a structured and sup-
portive environment. We are excited to announce that new labs
will be available soon, further enriching the learning experience.

• Coming soon.

553

Part VII
Advanced Topics

555

Chapter 14

Security & Privacy

Figure 14.1.: DALL·E 3 Prompt:
An illustration on privacy and se-
curity in machine learning sys-
tems. The image shows a digital
landscape with a network of inter-
connected nodes and data streams,
symbolizing machine learning al-
gorithms. In the foreground,
there’s a large lock superimposed
over the network, representing
privacy and security. The lock
is semi-transparent, allowing the
underlying network to be partially
visible. The background features
binary code and digital encryption
symbols, emphasizing the theme of
cybersecurity. The color scheme is
a mix of blues, greens, and grays,
suggesting a high-tech, digital en-
vironment.

Security and privacy are critical when developing real-world machine
learning systems. As machine learning is increasingly applied to sen-
sitive domains like healthcare, finance, and personal data, protecting
confidentiality and preventing misuse of data and models becomes
imperative. Anyone aiming to build robust and responsible ML sys-
tems must grasp potential security and privacy risks such as data leaks,
model theft, adversarial attacks, bias, and unintended access to private
information. We also need to understand best practices for mitigating
these risks. Most importantly, security and privacy cannot be an af-
terthought and must be proactively addressed throughout the ML sys-
tem development lifecycle - from data collection and labeling to model
training, evaluation, and deployment. Embedding security and pri-

14.1. Introduction 556

vacy considerations into each stage of building, deploying, and man-
aging machine learning systems is essential for safely unlocking the
benefits of A.I.

Learning Objectives

• Understand key ML privacy and security risks, such as
data leaks, model theft, adversarial attacks, bias, and un-
intended data access.

• Learn from historical hardware and embedded systems se-
curity incidents.

• Identify threats to ML models like data poisoning, model
extraction, membership inference, and adversarial exam-
ples.

• Recognize hardware security threats to embedded ML
spanning hardware bugs, physical attacks, side channels,
counterfeit components, etc.

• Explore embedded ML defenses, such as trusted execution
environments, secure boot, physical unclonable functions,
and hardware security modules.

• Discuss privacy issues handling sensitive user data with
embedded ML, including regulations.

• Learn privacy-preserving ML techniques like differential
privacy, federated learning, homomorphic encryption, and
synthetic data generation.

• Understand trade-offs between privacy, accuracy, efÏ-
ciency, threat models, and trust assumptions.

• Recognize the need for a cross-layer perspective spanning
electrical, firmware, software, and physical design when se-
curing embedded ML devices.

14.1 Introduction
Machine learning has evolved substantially from its academic origins,
where privacy was not a primary concern. As ML migrated into com-
mercial and consumer applications, the data became more sensitive -
encompassing personal information like communications, purchases,

CHAPTER 14. SECURITY & PRIVACY 557

and health data. This explosion of data availability fueled rapid ad-
vancements in ML capabilities. However, it also exposed new privacy
risks, as demonstrated by incidents like the AOL data leak in 2006 and
the Cambridge Analytica scandal.

These events highlighted the growing need to address privacy in ML
systems. In this chapter, we explore privacy and security considera-
tions together, as they are inherently linked in ML:

• Privacy refers to controlling access to sensitive user data, such as
financial information or biometric data collected by an ML appli-
cation.

• Security protects ML systems and data from hacking, theft, and
misuse.

For example, an ML-powered home security camera must secure
video feeds against unauthorized access and provide privacy protec-
tions to ensure only intended users can view the footage. A breach of
either security or privacy could expose private user moments.

Embedded ML systems like smart assistants and wearables are ubiq-
uitous and process intimate user data. However, their computational
constraints often prevent heavy security protocols. Designers must bal-
ance performance needs with rigorous security and privacy standards
tailored to embedded hardware limitations.

This chapter provides essential knowledge for addressing the com-
plex privacy and security landscape of embedded ML. We will explore
vulnerabilities and cover various techniques that enhance privacy and
security within embedded systems’ resource constraints.

We hope that by building a holistic understanding of risks and safe-
guards, you will gain the principles to develop secure, ethical, embed-
ded ML applications.

14.2 Terminology
In this chapter, we will discuss security and privacy together, so there
are key terms that we need to be clear about.

• Privacy: Consider an ML-powered home security camera that
identifies and records potential threats. This camera records
identifiable information of individuals approaching and poten-
tially entering this home, including faces. Privacy concerns may
surround who can access this data.

• Security: Consider an ML-powered home security camera that
identifies and records potential threats. The security aspect

https://en.wikipedia.org/wiki/AOL_search_log_release
https://www.nytimes.com/2018/04/04/us/politics/cambridge-analytica-scandal-fallout.html

14.3. Historical Precedents 558

would ensure that hackers cannot access these video feeds and
recognition models.

• Threat: Using our home security camera example, a threat could
be a hacker trying to access live feeds or stored videos or using
false inputs to trick the system.

• Vulnerability: A common vulnerability might be a poorly se-
cured network through which the camera connects to the inter-
net, which could be exploited to access the data.

14.3 Historical Precedents
While the specifics of machine learning hardware security can be dis-
tinct, the embedded systems field has a history of security incidents
that provide critical lessons for all connected systems, including those
using ML. Here are detailed explorations of past breaches:

14.3.1 Stuxnet

In 2010, something unexpected was found on a computer in Iran - a
very complicated computer virus that experts had never seen before.
Stuxnet was a malicious computer worm that targeted supervisory con-
trol and data acquisition (SCADA) systems and was designed to dam-
age Iran’s nuclear program (Farwell and Rohozinski 2011). Stuxnet
was using four “zero-day exploits” - attacks that take advantage of se-
cret weaknesses in software that no one knows about yet. This made
Stuxnet very sneaky and hard to detect.

But Stuxnet wasn’t designed to steal information or spy on people.
Its goal was physical destruction - to sabotage centrifuges at Iran’s
Natanz nuclear plant! So how did the virus get onto computers at the
Natanz plant, which was supposed to be disconnected from the out-
side world for security? Experts think someone inserted a USB stick
containing Stuxnet into the internal Natanz network. This allowed the
virus to “jump” from an outside system onto the isolated nuclear con-
trol systems and wreak havoc.

Stuxnet was incredibly advanced malware built by national govern-
ments to cross from the digital realm into real-world infrastructure. It
specifically targeted important industrial machines, where embedded
machine learning is highly applicable in a way never done before. The
virus provided a wake-up call about how sophisticated cyberattacks
could now physically destroy equipment and facilities.

This breach was significant due to its sophistication; Stuxnet specifi-
cally targeted programmable logic controllers (PLCs) used to automate

https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/200661/Cyber-Reports-2017-04.pdf
https://en.wikipedia.org/wiki/Zero-day_(computing)

CHAPTER 14. SECURITY & PRIVACY 559

electromechanical processes such as the speed of centrifuges for ura-
nium enrichment. The worm exploited vulnerabilities in the Windows
operating system to gain access to the Siemens Step7 software control-
ling the PLCs. Despite not being a direct attack on ML systems, Stuxnet
is relevant for all embedded systems as it showcases the potential for
state-level actors to design attacks that bridge the cyber and physical
worlds with devastating effects.

14.3.2 Jeep Cherokee Hack

The Jeep Cherokee hack was a groundbreaking event demonstrating
the risks inherent in increasingly connected automobiles (C. Miller
2019). In a controlled demonstration, security researchers remotely
exploited a vulnerability in the Uconnect entertainment system, which
had a cellular connection to the internet. They were able to control the
vehicle’s engine, transmission, and brakes, alarming the automotive
industry into recognizing the severe safety implications of cyber
vulnerabilities in vehicles. Video 23 below is a short documentary of
the attack.

Video 23: Jeep Cherokee Hack

https://www.youtube.com/watch?v=MK0SrxBC1xs&ab_
channel=WIRED

While this wasn’t an attack on an ML system per se, the reliance of
modern vehicles on embedded systems for safety-critical functions has
significant parallels to the deployment of ML in embedded systems,
underscoring the need for robust security at the hardware level.

14.3.3 Mirai Botnet

The Mirai botnet involved the infection of networked devices such as
digital cameras and DVR players (Antonakakis et al. 2017). In Octo-
ber 2016, the botnet was used to conduct one of the largest DDoS at-
tacks, disrupting internet access across the United States. The attack
was possible because many devices used default usernames and pass-
words, which were easily exploited by the Mirai malware to control the
devices. Video 24 explains how the Mirai Botnet works.

https://www.youtube.com/watch?v=MK0SrxBC1xs&ab_channel=WIRED
https://www.youtube.com/watch?v=MK0SrxBC1xs&ab_channel=WIRED
https://www.cloudflare.com/learning/ddos/what-is-a-ddos-attack/

14.3. Historical Precedents 560

Video 24: Mirai Botnet

https://www.youtube.com/watch?v=1pywzRTJDaY

Although the devices were not ML-based, the incident is a stark re-
minder of what can happen when numerous embedded devices with
poor security controls are networked, which is becoming more com-
mon with the growth of ML-based IoT devices.

14.3.4 Implications

These historical breaches demonstrate the cascading effects of hard-
ware vulnerabilities in embedded systems. Each incident offers a
precedent for understanding the risks and designing better security
protocols. For instance, the Mirai botnet highlights the immense de-
structive potential when threat actors can gain control over networked
devices with weak security, a situation becoming increasingly com-
mon with ML systems. Many current ML devices function as “edge”
devices meant to collect and process data locally before sending it
to the cloud. Much like the cameras and DVRs compromised by
Mirai, edge ML devices often rely on embedded hardware like ARM
processors and run lightweight O.S. like Linux. Securing the device
credentials is critical.

Similarly, the Jeep Cherokee hack was a watershed moment for the
automotive industry. It exposed serious vulnerabilities in the grow-
ing network-connected vehicle systems and their lack of isolation from
core drive systems like brakes and steering. In response, auto manu-
facturers invested heavily in new cybersecurity measures, though gaps
likely remain.

Chrysler did a recall to patch the vulnerable Uconnect software, al-
lowing the remote exploit. This included adding network-level protec-
tions to prevent unauthorized external access and compartmentaliz-
ing in-vehicle systems to limit lateral movement. Additional layers of
encryption were added for commands sent over the CAN bus within
vehicles.

The incident also spurred the creation of new cybersecurity stan-
dards and best practices. The Auto-ISAC was established for automak-
ers to share intelligence, and the NHTSA guided management risks.
New testing and audit procedures were developed to assess vulner-
abilities proactively. The aftereffects continue to drive change in the
automotive industry as cars become increasingly software-defined.

Unfortunately, manufacturers often overlook security when devel-
oping new ML edge devices - using default passwords, unencrypted

https://www.youtube.com/watch?v=1pywzRTJDaY
https://automotiveisac.com/

CHAPTER 14. SECURITY & PRIVACY 561

communications, unsecured firmware updates, etc. Any such vulnera-
bilities could allow attackers to gain access and control devices at scale
by infecting them with malware. With a botnet of compromised ML de-
vices, attackers could leverage their aggregated computational power
for DDoS attacks on critical infrastructure.

While these events didn’t directly involve machine learning hard-
ware, the principles of the attacks carry over to ML systems, which
often involve similar embedded devices and network architectures. As
ML hardware is increasingly integrated with the physical world, secur-
ing it against such breaches is paramount. The evolution of security
measures in response to these incidents provides valuable insights into
protecting current and future ML systems from analogous vulnerabil-
ities.

The distributed nature of ML edge devices means threats can
propagate quickly across networks. And if devices are being used
for mission-critical purposes like medical devices, industrial con-
trols, or self-driving vehicles, the potential physical damage from
weaponized ML bots could be severe. Just like Mirai demonstrated
the dangerous potential of poorly secured IoT devices, the litmus test
for ML hardware security will be how vulnerable or resilient these
devices are to worm-like attacks. The stakes are raised as ML spreads
to safety-critical domains, putting the onus on manufacturers and
system operators to incorporate the lessons from Mirai.

The lesson is the importance of designing for security from the out-
set and having layered defenses. The Jeep case highlights potential
vulnerabilities for ML systems around externally facing software inter-
faces and isolation between subsystems. Manufacturers of ML devices
and platforms should assume a similar proactive and comprehensive
approach to security rather than leaving it as an afterthought. Rapid
response and dissemination of best practices will be crucial as threats
evolve.

14.4 Security Threats to ML Models
ML models face security risks that can undermine their integrity,
performance, and trustworthiness if not adequately addressed. While
there are several different threats, the primary threats include: Model
theft, where adversaries steal the proprietary model parameters and
the sensitive data they contain. Data poisoning, which compromises
models through data tampering. Adversarial attacks deceive the
model to make incorrect or unwanted predictions.

14.4. Security Threats to ML Models 562

14.4.1 Model Theft

Model theft occurs when an attacker gains unauthorized access to a
deployed ML model. The concern here is the theft of the model’s struc-
ture and trained parameters and the proprietary data it contains (Ate-
niese et al. 2015). Model theft is a real and growing threat, as demon-
strated by cases like ex-Google engineer Anthony Levandowski, who
allegedly stole Waymo’s self-driving car designs and started a compet-
ing company. Beyond economic impacts, model theft can seriously
undermine privacy and enable further attacks.

For instance, consider an ML model developed for personalized rec-
ommendations in an e-commerce application. If a competitor steals
this model, they gain insights into business analytics, customer prefer-
ences, and even trade secrets embedded within the model’s data. At-
tackers could leverage stolen models to craft more effective inputs for
model inversion attacks, deducing private details about the model’s
training data. A cloned e-commerce recommendation model could re-
veal customer purchase behaviors and demographics.

To understand model inversion attacks, consider a facial recognition
system used to grant access to secured facilities. The system is trained
on a dataset of employee photos. An attacker could infer features of the
original dataset by observing the model’s output to various inputs. For
example, suppose the model’s confidence level for a particular face is
significantly higher for a given set of features. In that case, an attacker
might deduce that someone with those features is likely in the training
dataset.

The methodology of model inversion typically involves the follow-
ing steps:

• Accessing Model Outputs: The attacker queries the ML model
with input data and observes the outputs. This is often done
through a legitimate interface, like a public API.

• Analyzing Confidence Scores: For each input, the model pro-
vides a confidence score that reflects how similar the input is to
the training data.

• Reverse-Engineering: By analyzing the confidence scores or out-
put probabilities, attackers can use optimization techniques to
reconstruct what they believe is close to the original input data.

One historical example of such a vulnerability being explored was
the research on inversion attacks against the U.S. Netflix Prize dataset,
where researchers demonstrated that it was possible to learn about an

https://www.nytimes.com/2017/02/23/technology/google-self-driving-waymo-uber-otto-lawsuit.html

CHAPTER 14. SECURITY & PRIVACY 563

individual’s movie preferences, which could lead to privacy breaches
(Narayanan and Shmatikov 2006).

Model theft implies that it could lead to economic losses, undermine
competitive advantage, and violate user privacy. There’s also the risk
of model inversion attacks, where an adversary could input various
data into the stolen model to infer sensitive information about the train-
ing data.

Based on the desired asset, model theft attacks can be divided into
two categories: exact model properties and approximate model behav-
ior.

14.4.1.0.1 Stealing Exact Model Properties. In these attacks, the
objective is to extract information about concrete metrics, such as a
network’s learned parameters, fine-tuned hyperparameters, and the
model’s internal layer architecture (Oliynyk, Mayer, and Rauber 2023).

• Learned Parameters: Adversaries aim to steal a model’s learned
knowledge (weights and biases) to replicate it. Parameter theft
is generally used with other attacks, such as architecture theft,
which lacks parameter knowledge.

• Fine-Tuned Hyperparameters: Training is costly, and identify-
ing the optimal configuration of hyperparameters (such as learn-
ing rate and regularization) can be time-consuming and resource-
intensive. Consequently, stealing a model’s optimized hyperpa-
rameters enables adversaries to replicate the model without in-
curring the exact development costs.

• ModelArchitecture: This attack concerns the specific design and
structure of the model, such as layers, neurons, and connectivity
patterns. Beyond reducing associated training costs, this theft
poses a severe risk to intellectual property, potentially undermin-
ing a company’s competitive advantage. Architecture theft can
be achieved by exploiting side-channel attacks (discussed later).

14.4.1.0.2 Stealing Approximate Model Behavior. Instead of
extracting exact numerical values of the model’s parameters, these
attacks aim to reproduce the model’s behavior (predictions and effec-
tiveness), decision-making, and high-level characteristics (Oliynyk,
Mayer, and Rauber 2023). These techniques aim to achieve similar
outcomes while allowing for internal deviations in parameters and
architecture. Types of approximate behavior theft include gaining the
same level of effectiveness and obtaining prediction consistency.

14.4. Security Threats to ML Models 564

• Level of Effectiveness: Attackers aim to replicate the model’s
decision-making capabilities rather than focus on the precise pa-
rameter values. This is done through understanding the overall
behavior of the model. Consider a scenario where an attacker
wants to copy the behavior of an image classification model. By
analyzing the model’s decision boundaries, the attack tunes its
model to reach an effectiveness comparable to the original model.
This could entail analyzing 1) the confusion matrix to understand
the balance of prediction metrics (true positive, true negative,
false positive, false negative) and 2) other performance metrics,
such as F1 score and precision, to ensure that the two models are
comparable.

• Prediction Consistency: The attacker tries to align their model’s
prediction patterns with the target model’s. This involves match-
ing prediction outputs (both positive and negative) on the same
set of inputs and ensuring distributional consistency across dif-
ferent classes. For instance, consider a natural language process-
ing (NLP) model that generates sentiment analysis for movie re-
views (labels reviews as positive, neutral, or negative). The at-
tacker will try to fine-tune their model to match the prediction
of the original models on the same set of movie reviews. This
includes ensuring that the model makes the same mistakes (mis-
predictions) that the targeted model makes.

14.4.1.1 Case Study

In 2018, Tesla filed a lawsuit against self-driving car startup Zoox, alleg-
ing former employees stole confidential data and trade secrets related
to Tesla’s autonomous driving assistance system.

Tesla claimed that several of its former employees took over 10 G.B.
of proprietary data, including ML models and source code, before join-
ing Zoox. This allegedly included one of Tesla’s crucial image recogni-
tion models for identifying objects.

The theft of this sensitive proprietary model could help Zoox short-
cut years of ML development and duplicate Tesla’s capabilities. Tesla
argued this theft of I.P. caused significant financial and competitive
harm. There were also concerns it could allow model inversion attacks
to infer private details about Tesla’s testing data.

The Zoox employees denied stealing any proprietary informa-
tion. However, the case highlights the significant risks of model
theft—enabling the cloning of commercial models, causing economic
impacts, and opening the door for further data privacy violations.

https://storage.courtlistener.com/recap/gov.uscourts.nvd.131251/gov.uscourts.nvd.131251.1.0_1.pdf
https://zoox.com/

CHAPTER 14. SECURITY & PRIVACY 565

14.4.2 Data Poisoning

Data poisoning is an attack where the training data is tampered with,
leading to a compromised model (Biggio, Nelson, and Laskov 2012).
Attackers can modify existing training examples, insert new malicious
data points, or influence the data collection process. The poisoned data
is labeled in such a way as to skew the model’s learned behavior. This
can be particularly damaging in applications where ML models make
automated decisions based on learned patterns. Beyond training sets,
poisoning tests and validation data can allow adversaries to boost re-
ported model performance artificially.

The process usually involves the following steps:

• Injection: The attacker adds incorrect or misleading examples
into the training set. These examples are often designed to look
normal to cursory inspection but have been carefully crafted to
disrupt the learning process.

• Training: The ML model trains on this manipulated dataset and
develops skewed understandings of the data patterns.

• Deployment: Once the model is deployed, the corrupted train-
ing leads to flawed decision-making or predictable vulnerabili-
ties the attacker can exploit.

The impacts of data poisoning extend beyond just classification er-
rors or accuracy drops. For instance, if incorrect or malicious data is in-
troduced into a trafÏc sign recognition system’s training set, the model
may learn to misclassify stop signs as yield signs, which can have dan-
gerous real-world consequences, especially in embedded autonomous
systems like autonomous vehicles.

Data poisoning can degrade a model’s accuracy, force it to make in-
correct predictions or cause it to behave unpredictably. In critical ap-
plications like healthcare, such alterations can lead to significant trust
and safety issues.

There are six main categories of data poisoning (Oprea, Singhal, and
Vassilev 2022):

• Availability Attacks: These attacks seek to compromise a
model’s overall functionality. They cause it to misclassify most
testing samples, rendering the model unusable for practical
applications. An example is label flipping, where labels of a
specific, targeted class are replaced with labels from a different
one.

14.4. Security Threats to ML Models 566

• Targeted Attacks: Unlike availability attacks, targeted attacks
aim to compromise a small number of the testing samples. So,
the effect is localized to a limited number of classes, while the
model maintains the same original level of accuracy on most of
the classes. The targeted nature of the attack requires the attacker
to possess knowledge of the model’s classes, making detecting
these attacks more challenging.

• Backdoor Attacks: In these attacks, an adversary targets specific
patterns in the data. The attacker introduces a backdoor (a ma-
licious, hidden trigger or pattern) into the training data, such as
altering certain features in structured data or a pattern of pixels at
a fixed position. This causes the model to associate the malicious
pattern with specific labels. As a result, when the model encoun-
ters test samples that contain a malicious pattern, it makes false
predictions, highlighting the importance of caution and preven-
tion in the role of data security professionals.

• Subpopulation Attacks: Attackers selectively choose to compro-
mise a subset of the testing samples while maintaining accuracy
on the rest of the samples. You can think of these attacks as a com-
bination of availability and targeted attacks: performing avail-
ability attacks (performance degradation) within the scope of a
targeted subset. Although subpopulation attacks may seem very
similar to targeted attacks, the two have clear differences:

• Scope: While targeted attacks target a selected set of samples,
subpopulation attacks target a general subpopulation with simi-
lar feature representations. For example, in a targeted attack, an
actor inserts manipulated images of a ‘speed bump’ warning sign
(with carefully crafted perturbation or patterns), which causes an
autonomous car to fail to recognize such a sign and slow down.
On the other hand, manipulating all samples of people with a
British accent so that a speech recognition model would misclas-
sify a British person’s speech is an example of a subpopulation
attack.

• Knowledge: While targeted attacks require a high degree of fa-
miliarity with the data, subpopulation attacks require less inti-
mate knowledge to be effective.

14.4.2.1 Case Study 1

In 2017, researchers demonstrated a data poisoning attack against a
popular toxicity classification model called Perspective (Hosseini et al.
2017). This ML model detects toxic comments online.

CHAPTER 14. SECURITY & PRIVACY 567

The researchers added synthetically generated toxic comments with
slight misspellings and grammatical errors to the model’s training data.
This slowly corrupted the model, causing it to misclassify increasing
numbers of severely toxic inputs as non-toxic over time.

After retraining on the poisoned data, the model’s false negative rate
increased from 1.4% to 27% - allowing extremely toxic comments to
bypass detection. The researchers warned this stealthy data poison-
ing could enable the spread of hate speech, harassment, and abuse if
deployed against real moderation systems.

This case highlights how data poisoning can degrade model accu-
racy and reliability. For social media platforms, a poisoning attack that
impairs toxicity detection could lead to the proliferation of harmful
content and distrust of ML moderation systems. The example demon-
strates why securing training data integrity and monitoring for poison-
ing is critical across application domains.

14.4.2.2 Case Study 2

Interestingly enough, data poisoning attacks are not always malicious
(Shan et al. 2023). Nightshade, a tool developed by a team led by Pro-
fessor Ben Zhao at the University of Chicago, utilizes data poisoning to
help artists protect their art against scraping and copyright violations
by generative A.I. models. Artists can use the tool to modify their im-
ages subtly before uploading them online.

While these changes are imperceptible to the human eye, they can
significantly degrade the performance of generative AI models when
integrated into the training data. Generative models can be manipu-
lated to produce unrealistic or nonsensical outputs. For example, with
just 300 corrupted images, the University of Chicago researchers could
deceive the latest Stable Diffusion model into generating images of ca-
nines resembling felines or bovines when prompted for automobiles.

As the quantity of corrupted images online grows, the efÏcacy of
models trained on scraped data will decline exponentially. Initially,
identifying corrupted data is challenging and necessitates manual in-
tervention. Subsequently, contamination spreads rapidly to related
concepts as generative models establish connections between words
and their visual representations. Consequently, a corrupted image of
a “car” could propagate into generated images linked to terms such as
“truck,” “train,” and “bus.”

On the other hand, this tool can be used maliciously and affect legit-
imate generative model applications. This shows the very challenging
and novel nature of machine learning attacks.

Figure 17.27 demonstrates the effects of different levels of data poi-
soning (50 samples, 100 samples, and 300 samples of poisoned images)

14.4. Security Threats to ML Models 568

on generating images in various categories. Notice how the images
start deforming and deviating from the desired category. For exam-
ple, after 300 poison samples, a car prompt generates a cow.

Figure 14.2.: Data poisoning.
Source: Shan et al. (2023).

14.4.3 Adversarial Attacks

Adversarial attacks aim to trick models into making incorrect pre-
dictions by providing them with specially crafted, deceptive inputs
(called adversarial examples) (Parrish et al. 2023). By adding slight
perturbations to input data, adversaries can “hack” a model’s pattern
recognition and deceive it. These are sophisticated techniques where
slight, often imperceptible alterations to input data can trick an ML
model into making a wrong prediction.

One can generate prompts that lead to unsafe images in text-to-
image models like DALLE (Ramesh et al. 2021) or Stable Diffusion
(Rombach et al. 2022). For example, by altering the pixel values
of an image, attackers can deceive a facial recognition system into
identifying a face as a different person.

Adversarial attacks exploit the way ML models learn and make de-
cisions during inference. These models work on the principle of rec-
ognizing patterns in data. An adversary crafts malicious inputs with
perturbations to mislead the model’s pattern recognition—essentially
‘hacking’ the model’s perceptions.

Adversarial attacks fall under different scenarios:

• Whitebox Attacks: The attacker has comprehensive knowledge
of the target model’s internal workings, including the training
data, parameters, and architecture. This extensive access facili-
tates the exploitation of the model’s vulnerabilities. The attacker

CHAPTER 14. SECURITY & PRIVACY 569

can leverage specific and subtle weaknesses to construct highly
effective adversarial examples.

• Blackbox Attacks: In contrast to whitebox attacks, in blackbox
attacks, the attacker has little to no knowledge of the target model.
The adversarial actor must carefully observe the model’s output
behavior to carry out the attack.

• Greybox Attacks: These attacks occupy a spectrum between
black-box and white-box attacks. The adversary possesses
partial knowledge of the target model’s internal structure. For
instance, the attacker might know the training data but lack
information about the model’s architecture or parameters. In
practical scenarios, most attacks fall within this grey area.

The landscape of machine learning models is complex and broad,
especially given their relatively recent integration into commercial ap-
plications. This rapid adoption, while transformative, has brought to
light numerous vulnerabilities within these models. Consequently,
various adversarial attack methods have emerged, each strategically
exploiting different aspects of different models. Below, we highlight a
subset of these methods, showcasing the multifaceted nature of adver-
sarial attacks on machine learning models:

• Generative Adversarial Networks (GANs) are deep learning
models consisting of two networks competing against each
other: a generator and a discriminator (Goodfellow et al. 2020).
The generator tries to synthesize realistic data while the dis-
criminator evaluates whether they are real or fake. GANs can
be used to craft adversarial examples. The generator network
is trained to produce inputs that the target model misclassifies.
These GAN-generated images can then attack a target classifier
or detection model. The generator and the target model are
engaged in a competitive process, with the generator continually
improving its ability to create deceptive examples and the target
model enhancing its resistance to such examples. GANs provide
a robust framework for crafting complex and diverse adversarial
inputs, illustrating the adaptability of generative models in the
adversarial landscape.

• Transfer Learning Adversarial Attacks exploit the knowledge
transferred from a pre-trained model to a target model, creat-
ing adversarial examples that can deceive both models. These
attacks pose a growing concern, particularly when adversaries
have knowledge of the feature extractor but lack access to the clas-
sification head (the part or layer responsible for making the final

14.5. Security Threats to ML Hardware 570

classifications). Referred to as “headless attacks,” these transfer-
able adversarial strategies leverage the expressive capabilities of
feature extractors to craft perturbations while oblivious to the la-
bel space or training data. The existence of such attacks under-
scores the importance of developing robust defenses for trans-
fer learning applications, especially since pre-trained models are
commonly used (Abdelkader et al. 2020).

14.4.3.1 Case Study

In 2017, researchers conducted experiments by placing small black and
white stickers on stop signs (Eykholt et al. 2017). When viewed by a
normal human eye, the stickers did not obscure the sign or prevent in-
terpretability. However, when images of the stickers stop signs were
fed into standard trafÏc sign classification ML models, they were mis-
classified as speed limit signs over 85% of the time.

This demonstration showed how simple adversarial stickers could
trick ML systems into misreading critical road signs. If deployed
realistically, these attacks could endanger public safety, causing
autonomous vehicles to misinterpret stop signs as speed limits. Re-
searchers warned this could potentially cause dangerous rolling stops
or acceleration into intersections.

This case study provides a concrete illustration of how adversarial
examples exploit the pattern recognition mechanisms of ML models.
By subtly altering the input data, attackers can induce incorrect pre-
dictions and pose significant risks to safety-critical applications like
self-driving cars. The attack’s simplicity demonstrates how even mi-
nor, imperceptible changes can lead models astray. Consequently, de-
velopers must implement robust defenses against such threats.

14.5 Security Threats to ML Hardware

A systematic examination of security threats to embedded machine
learning hardware is essential to comprehensively understanding po-
tential vulnerabilities in ML systems. Initially, hardware vulnerabil-
ities arising from intrinsic design flaws that can be exploited will be
explored. This foundational knowledge is crucial for recognizing the
origins of hardware weaknesses. Following this, physical attacks will
be examined, representing the most direct and overt methods of com-
promising hardware integrity. Building on this, fault injection attacks
will be analyzed, demonstrating how deliberate manipulations can in-
duce system failures.

CHAPTER 14. SECURITY & PRIVACY 571

Advancing to side-channel attacks next will show the increasing
complexity, as these rely on exploiting indirect information leakages,
requiring a nuanced understanding of hardware operations and
environmental interactions. Leaky interfaces will show how external
communication channels can become vulnerable, leading to accidental
data exposures. Counterfeit hardware discussions benefit from prior
explorations of hardware integrity and exploitation techniques, as
they often compound these issues with additional risks due to their
questionable provenance. Finally, supply chain risks encompass all
concerns above and frame them within the context of the hardware’s
journey from production to deployment, highlighting the multifaceted
nature of hardware security and the need for vigilance at every stage.

Table 14.1 overview table summarizing the topics:

Table 14.1.: Threat types on hardware security.

Threat
Type Description

Relevance to ML
Hardware
Security

Hardware
Bugs

Intrinsic flaws in hardware designs
that can compromise system
integrity.

Foundation of
hardware
vulnerability.

Physical
Attacks

Direct exploitation of hardware
through physical access or
manipulation.

Basic and overt
threat model.

Fault-
injection
Attacks

Induction of faults to cause errors in
hardware operation, leading to
potential system crashes.

Systematic
manipulation
leading to failure.

Side-
Channel
Attacks

Exploitation of leaked information
from hardware operation to extract
sensitive data.

Indirect attack via
environmental
observation.

Leaky In-
terfaces

Vulnerabilities arising from
interfaces that expose data
unintentionally.

Data exposure
through
communication
channels.

Counterfeit
Hard-
ware

Use of unauthorized hardware
components that may have security
flaws.

Compounded
vulnerability
issues.

Supply
Chain
Risks

Risks introduced through the
hardware lifecycle, from production
to deployment.

Cumulative &
multifaceted
security
challenges.

14.5. Security Threats to ML Hardware 572

14.5.1 Hardware Bugs

Hardware is not immune to the pervasive issue of design flaws or bugs.
Attackers can exploit these vulnerabilities to access, manipulate, or ex-
tract sensitive data, breaching the confidentiality and integrity that
users and services depend on. An example of such vulnerabilities
came to light with the discovery of Meltdown and Spectre—two hard-
ware vulnerabilities that exploit critical vulnerabilities in modern pro-
cessors. These bugs allow attackers to bypass the hardware barrier
that separates applications, allowing a malicious program to read the
memory of other programs and the operating system.

Meltdown (Kocher et al. 2019a) and Spectre (Kocher et al. 2019b)
work by taking advantage of optimizations in modern CPUs that allow
them to speculatively execute instructions out of order before validity
checks have been completed. This reveals data that should be inacces-
sible, which the attack captures through side channels like caches. The
technical complexity demonstrates the difÏculty of eliminating vulner-
abilities even with extensive validation.

If an ML system is processing sensitive data, such as personal user
information or proprietary business analytics, Meltdown and Spectre
represent a real and present danger to data security. Consider the
case of an ML accelerator card designed to speed up machine learning
processes, such as the ones we discussed in the A.I. Hardware chap-
ter. These accelerators work with the CPU to handle complex calcu-
lations, often related to data analytics, image recognition, and natural
language processing. If such an accelerator card has a vulnerability
akin to Meltdown or Spectre, it could leak the data it processes. An at-
tacker could exploit this flaw not just to siphon off data but also to gain
insights into the ML model’s workings, including potentially reverse-
engineering the model itself (thus, going back to the issue of model
theft.

A real-world scenario where this could be devastating would be in
the healthcare industry. ML systems routinely process highly sensitive
patient data to help diagnose, plan treatment, and forecast outcomes.
A bug in the system’s hardware could lead to the unauthorized disclo-
sure of personal health information, violating patient privacy and con-
travening strict regulatory standards like the Health Insurance Porta-
bility and Accountability Act (HIPAA)

The Meltdown and Spectre vulnerabilities are stark reminders that
hardware security is not just about preventing unauthorized physical
access but also about ensuring that the hardware’s architecture does
not become a conduit for data exposure. Similar hardware design
flaws regularly emerge in CPUs, accelerators, memory, buses, and
other components. This necessitates ongoing retroactive mitigations

../hw_acceleration/hw_acceleration.qmd
https://www.cdc.gov/phlp/publications/topic/hipaa.html
https://www.cdc.gov/phlp/publications/topic/hipaa.html
https://meltdownattack.com/

CHAPTER 14. SECURITY & PRIVACY 573

and performance trade-offs in deployed systems. Proactive solutions
like confidential computing architectures could mitigate entire classes
of vulnerabilities through fundamentally more secure hardware
design. Thwarting hardware bugs requires rigor at every design stage,
validation, and deployment.

14.5.2 Physical Attacks

Physical tampering refers to the direct, unauthorized manipulation of
physical computing resources to undermine the integrity of machine
learning systems. It’s a particularly insidious attack because it circum-
vents traditional cybersecurity measures, which often focus more on
software vulnerabilities than hardware threats.

Physical tampering can take many forms, from the relatively sim-
ple, such as someone inserting a USB device loaded with malicious
software into a server, to the highly sophisticated, such as embedding
a hardware Trojan during the manufacturing process of a microchip
(discussed later in greater detail in the Supply Chain section). ML sys-
tems are susceptible to this attack because they rely on the accuracy
and integrity of their hardware to process and analyze vast amounts
of data correctly.

Consider an ML-powered drone used for geographical mapping.
The drone’s operation relies on a series of onboard systems, including
a navigation module that processes inputs from various sensors to de-
termine its path. If an attacker gains physical access to this drone, they
could replace the genuine navigation module with a compromised
one that includes a backdoor. This manipulated module could then
alter the drone’s flight path to conduct surveillance over restricted
areas or even smuggle contraband by flying undetected routes.

Another example is the physical tampering of biometric scanners
used for access control in secure facilities. By introducing a modified
sensor that transmits biometric data to an unauthorized receiver, an
attacker can access personal identification data to authenticate individ-
uals.

There are several ways that physical tampering can occur in ML
hardware:

• Manipulating sensors: Consider an autonomous vehicle
equipped with cameras and LiDAR for environmental per-
ception. A malicious actor could deliberately manipulate the
physical alignment of these sensors to create occlusion zones
or distort distance measurements. This could compromise
object detection capabilities and potentially endanger vehicle
occupants.

14.5. Security Threats to ML Hardware 574

• Hardware trojans: Malicious circuit modifications can introduce
trojans designed to activate upon specific input conditions. For
instance, an ML accelerator chip might operate as intended until
encountering a predetermined trigger, at which point it behaves
erratically.

• Tampering with memory: Physically exposing and manipulat-
ing memory chips could allow the extraction of encrypted ML
model parameters. Fault injection techniques can also corrupt
model data to degrade accuracy.

• Introducing backdoors: Gaining physical access to servers, an
adversary could use hardware keyloggers to capture passwords
and create backdoor accounts for persistent access. These could
then be used to exfiltrate ML training data over time.

• Supply chain attacks: Manipulating third-party hardware com-
ponents or compromising manufacturing and shipping channels
creates systemic vulnerabilities that are difÏcult to detect and re-
mediate.

14.5.3 Fault-injection Attacks

By intentionally introducing faults into ML hardware, attackers can in-
duce errors in the computational process, leading to incorrect outputs.
This manipulation compromises the integrity of ML operations and
can serve as a vector for further exploitation, such as system reverse
engineering or security protocol bypass. Fault injection involves de-
liberately disrupting standard computational operations in a system
through external interference (Joye and Tunstall 2012). By precisely
triggering computational errors, adversaries can alter program execu-
tion in ways that degrade reliability or leak sensitive information.

Various physical tampering techniques can be used for fault in-
jection. Low voltage (Barenghi et al. 2010), power spikes (Hutter,
Schmidt, and Plos 2009), clock glitches (Amiel, Clavier, and Tunstall
2006), electromagnetic pulses (Agrawal et al. 2007), temperate increase
(S. Skorobogatov 2009) and laser strikes (S. P. Skorobogatov and An-
derson 2003) are common hardware attack vectors. They are precisely
timed to induce faults like flipped bits or skipped instructions during
critical operations.

For ML systems, consequences include impaired model accuracy,
denial of service, extraction of private training data or model parame-
ters, and reverse engineering of model architectures. Attackers could
use fault injection to force misclassifications, disrupt autonomous sys-
tems, or steal intellectual property.

CHAPTER 14. SECURITY & PRIVACY 575

For example, in (Breier et al. 2018), the authors successfully injected
a fault attack into a deep neural network deployed on a microcontroller.
They used a laser to heat specific transistors, forcing them to switch
states. In one instance, they used this method to attack a ReLU activa-
tion function, resulting in the function always outputting a value of 0,
regardless of the input. In the assembly code in Figure 14.3, the attack
caused the executing program always to skip the jmp end instruction
on line 6. This means that HiddenLayerOutput[i] is always set to 0,
overwriting any values written to it on lines 4 and 5. As a result, the
targeted neurons are rendered inactive, resulting in misclassifications.

Figure 14.3.: Fault-injection
demonstrated with assembly
code. Source: Breier et al.
(2018).

An attacker’s strategy could be to infer information about the activa-
tion functions using side-channel attacks (discussed next). Then, the
attacker could attempt to target multiple activation function computa-
tions by randomly injecting faults into the layers as close to the output
layer as possible, increasing the likelihood and impact of the attack.

Embedded devices are particularly vulnerable due to limited physi-
cal hardening and resource constraints that restrict robust runtime de-
fenses. Without tamper-resistant packaging, attacker access to system
buses and memory enables precise fault strikes. Lightweight embed-
ded ML models also lack redundancy to overcome errors.

These attacks can be particularly insidious because they bypass tradi-
tional software-based security measures, often not accounting for phys-
ical disruptions. Furthermore, because ML systems rely heavily on the
accuracy and reliability of their hardware for tasks like pattern recogni-
tion, decision-making, and automated responses, any compromise in
their operation due to fault injection can have severe and wide-ranging
consequences.

Mitigating fault injection risks necessitates a multilayer approach.
Physical hardening through tamper-proof enclosures and design
obfuscation helps reduce access. Lightweight anomaly detection can

14.5. Security Threats to ML Hardware 576

identify unusual sensor inputs or erroneous model outputs (Hsiao et
al. 2023). Error-correcting memories minimize disruption, while data
encryption safeguards information. Emerging model watermarking
techniques trace stolen parameters.

However, balancing robust protections with embedded systems’
tight size and power limits remains challenging. Cryptography limits
and lack of secure co-processors on cost-sensitive embedded hard-
ware restrict options. Ultimately, fault injection resilience demands a
cross-layer perspective spanning electrical, firmware, software, and
physical design layers.

14.5.4 Side-Channel Attacks

Side-channel attacks constitute a class of security breaches that exploit
information inadvertently revealed through the physical implementa-
tion of computing systems. In contrast to direct attacks targeting soft-
ware or network vulnerabilities, these attacks leverage the system’s in-
herent hardware characteristics to extract sensitive information.

The fundamental premise of a side-channel attack is that a device’s
operation can inadvertently reveal information. Such leaks can come
from various sources, including the electrical power a device consumes
(Kocher, Jaffe, and Jun 1999), the electromagnetic fields it emits (Gan-
dolfi, Mourtel, and Olivier 2001), the time it takes to process certain op-
erations, or even the sounds it produces. Each channel can indirectly
glimpse the system’s internal processes, revealing information that can
compromise security.

For instance, consider a machine learning system performing
encrypted transactions. Encryption algorithms are supposed to
secure data but require computational work to encrypt and decrypt
information. An attacker can analyze the power consumption patterns
of the device performing encryption to figure out the cryptographic
key. With sophisticated statistical methods, small variations in power
usage during the encryption process can be correlated with the data
being processed, eventually revealing the key. Some differential
analysis attack techniques are Differential Power Analysis (DPA)
(Kocher et al. 2011), Differential Electromagnetic Analysis (DEMA),
and Correlation Power Analysis (CPA).

For example, consider an attacker trying to break the AES encryp-
tion algorithm using a differential analysis attack. The attacker would
first need to collect many power or electromagnetic traces (a trace is a
record of consumptions or emissions) of the device while performing
AES encryption.

Once the attacker has collected sufÏcient traces, they would use a

CHAPTER 14. SECURITY & PRIVACY 577

statistical technique to identify correlations between the traces and the
different values of the plaintext (original, unencrypted text) and cipher-
text (encrypted text). These correlations would then be used to infer
the value of a bit in the AES key and, eventually, the entire key. Differ-
ential analysis attacks are dangerous because they are low-cost, effec-
tive, and non-intrusive, allowing attackers to bypass algorithmic and
hardware-level security measures. Compromises by these attacks are
also hard to detect because they do not physically modify the device
or break the encryption algorithm.

Below, a simplified visualization illustrates how analyzing the en-
cryption device’s power consumption patterns can help extract infor-
mation about the algorithm’s operations and, in turn, the secret data.
Consider a device that takes a 5-byte password as input. The different
voltage patterns measured while the encryption device performs oper-
ations on the input to authenticate the password will be analyzed and
compared.

First, the power analysis of the device’s operations after entering
a correct password is shown in the first picture in Figure 14.4. The
dense blue graph outputs the encryption device’s voltage measure-
ment. What is significant here is the comparison between the different
analysis charts rather than the specific details of what is happening in
each scenario.

Figure 14.4.: Power analysis
of an encryption device with
a correct password. Source:
Colin O’Flynn.

When an incorrect password is entered, the power analysis chart is
shown in Figure 14.5. The first three bytes of the password are correct.
As a result, the voltage patterns are very similar or identical between
the two charts, up to and including the fourth byte. After the device
processes the fourth byte, a mismatch between the secret key and the
attempted input is determined. A change in the pattern at the transi-
tion point between the fourth and fifth bytes is noticed: the voltage
increases (the current decreases) because the device has stopped pro-
cessing the rest of the input.

https://www.youtube.com/watch?v=2iDLfuEBcs8

14.5. Security Threats to ML Hardware 578

Figure 14.5.: Power analysis
of an encryption device with
a (partially) wrong password.
Source: Colin O’Flynn.

Figure 14.6 describes another chart of a completely wrong password.
After the device finishes processing the first byte, it determines that it
is incorrect and stops further processing - the voltage goes up and the
current down.

Figure 14.6.: Power analysis
of an encryption device with
a wrong password. Source:
Colin O’Flynn.

The example above demonstrates how information about the encryp-
tion process and the secret key can be inferred by analyzing different in-
puts and attempting to ‘eavesdrop’ on the device’s operations on each
input byte. For a more detailed explanation, watch Video 25 below.

Video 25: Power Attack

https://www.youtube.com/watch?v=2iDLfuEBcs8

Another example is an ML system for speech recognition, which pro-

https://www.youtube.com/watch?v=2iDLfuEBcs8
https://www.youtube.com/watch?v=2iDLfuEBcs8
https://www.youtube.com/watch?v=2iDLfuEBcs8

CHAPTER 14. SECURITY & PRIVACY 579

cesses voice commands to perform actions. By measuring the latency
for the system to respond to commands or the power used during pro-
cessing, an attacker could infer what commands are being processed
and thus learn about the system’s operational patterns. Even more sub-
tly, the sound emitted by a computer’s fan or hard drive could change
in response to the workload, which a sensitive microphone could pick
up and analyze to determine what kind of operations are being per-
formed.

In real-world scenarios, side-channel attacks have effectively ex-
tracted encryption keys and compromised secure communications.
One of the earliest recorded instances of such an attack occurred
in the 1960s when the British intelligence agency MI5 confronted
the challenge of deciphering encrypted communications from the
Egyptian Embassy in London. Their cipher-breaking efforts were
initially thwarted by the computational limitations of the time until an
ingenious observation by MI5 agent Peter Wright altered the course of
the operation.

MI5 agent Peter Wright proposed using a microphone to capture the
subtle acoustic signatures emitted from the embassy’s rotor cipher ma-
chine during encryption (Burnet and Thomas 1989). The distinct me-
chanical clicks of the rotors as operators configured them daily leaked
critical information about the initial settings. This simple side channel
of sound enabled MI5 to reduce the complexity of deciphering mes-
sages dramatically. This early acoustic leak attack highlights that side-
channel attacks are not merely a digital age novelty but a continuation
of age-old cryptanalytic principles. The notion that where there is a
signal, there is an opportunity for interception remains foundational.
From mechanical clicks to electrical fluctuations and beyond, side chan-
nels enable adversaries to extract secrets indirectly through careful sig-
nal analysis.

Today, acoustic cryptanalysis has evolved into attacks like keyboard
eavesdropping (Asonov and Agrawal 2004). Electrical side channels
range from power analysis on cryptographic hardware (Gnad, Obo-
ril, and Tahoori 2017) to voltage fluctuations (M. Zhao and Suh 2018)
on machine learning accelerators. Timing, electromagnetic emission,
and even heat footprints can likewise be exploited. New and unex-
pected side channels often emerge as computing becomes more inter-
connected and miniaturized.

Just as MI5’s analog acoustic leak transformed their codebreaking,
modern side-channel attacks circumvent traditional boundaries of cy-
ber defense. Understanding the creative spirit and historical persis-
tence of side channel exploits is key knowledge for developers and de-
fenders seeking to secure modern machine learning systems compre-

14.5. Security Threats to ML Hardware 580

hensively against digital and physical threats.

14.5.5 Leaky Interfaces

Leaky interfaces in embedded systems are often overlooked backdoors
that can become significant security vulnerabilities. While designed
for legitimate purposes such as communication, maintenance, or de-
bugging, these interfaces may inadvertently provide attackers with a
window through which they can extract sensitive information or inject
malicious data.

An interface becomes “leaky” when it exposes more information
than it should, often due to a lack of stringent access controls or in-
adequate shielding of the transmitted data. Here are some real-world
examples of leaky interface issues causing security problems in IoT and
embedded devices:

• Baby Monitors: Many WiFi-enabled baby monitors have been
found to have unsecured interfaces for remote access. This al-
lowed attackers to gain live audio and video feeds from people’s
homes, representing a major privacy violation.

• Pacemakers: Interface vulnerabilities were discovered in some
pacemakers that could allow attackers to manipulate cardiac
functions if exploited. This presents a potentially life-threatening
scenario.

• Smart Lightbulbs: A researcher found he could access unen-
crypted data from smart lightbulbs via a debug interface, includ-
ing WiFi credentials, allowing him to gain access to the connected
network (Greengard 2015).

• Smart Cars: If left unsecured, The OBD-II diagnostic port has
been shown to provide an attack vector into automotive systems.
Attackers could use it to control brakes and other components (C.
Miller and Valasek 2015).

While the above are not directly connected with ML, consider the
example of a smart home system with an embedded ML component
that controls home security based on behavior patterns it learns over
time. The system includes a maintenance interface accessible via the
local network for software updates and system checks. If this interface
does not require strong authentication or the data transmitted through
it is not encrypted, an attacker on the same network could gain access.
They could then eavesdrop on the homeowner’s daily routines or re-
program the security settings by manipulating the firmware.

https://www.fox19.com/story/25310628/hacked-baby-monitor/
https://www.fda.gov/medical-devices/medical-device-recalls/abbott-formally-known-st-jude-medical-recalls-assuritytm-and-enduritytm-pacemakers-potential

CHAPTER 14. SECURITY & PRIVACY 581

Such leaks are a privacy issue and a potential entry point for more
damaging exploits. The exposure of training data, model parameters,
or ML outputs from a leak could help adversaries construct adversarial
examples or reverse-engineer models. Access through a leaky interface
could also be used to alter an embedded device’s firmware, loading it
with malicious code that could turn off the device, intercept data, or
use it in botnet attacks.

To mitigate these risks, a multi-layered approach is necessary, span-
ning technical controls like authentication, encryption, anomaly detec-
tion, policies and processes like interface inventories, access controls,
auditing, and secure development practices. Turning off unnecessary
interfaces and compartmentalizing risks via a zero-trust model pro-
vide additional protection.

As designers of embedded ML systems, we should assess interfaces
early in development and continually monitor them post-deployment
as part of an end-to-end security lifecycle. Understanding and securing
interfaces is crucial for ensuring the overall security of embedded ML.

14.5.6 Counterfeit Hardware

ML systems are only as reliable as the underlying hardware. In an era
where hardware components are global commodities, the rise of coun-
terfeit or cloned hardware presents a significant challenge. Counterfeit
hardware encompasses any components that are unauthorized repro-
ductions of original parts. Counterfeit components infiltrate ML sys-
tems through complex supply chains that stretch across borders and
involve numerous stages from manufacture to delivery.

A single lapse in the supply chain’s integrity can result in the inser-
tion of counterfeit parts designed to closely imitate the functions and
appearance of genuine hardware. For instance, a facial recognition sys-
tem for high-security access control may be compromised if equipped
with counterfeit processors. These processors could fail to accurately
process and verify biometric data, potentially allowing unauthorized
individuals to access restricted areas.

The challenge with counterfeit hardware is multifaceted. It under-
mines the quality and reliability of ML systems, as these components
may degrade faster or perform unpredictably due to substandard man-
ufacturing. The security risks are also profound; counterfeit hardware
can contain vulnerabilities ripe for exploitation by malicious actors.
For example, a cloned network router in an ML data center might in-
clude a hidden backdoor, enabling data interception or network intru-
sion without detection.

Furthermore, counterfeit hardware poses legal and compliance

14.5. Security Threats to ML Hardware 582

risks. Companies inadvertently utilizing counterfeit parts in their
ML systems may face serious legal repercussions, including fines
and sanctions for failing to comply with industry regulations and
standards. This is particularly true for sectors where compliance
with specific safety and privacy regulations is mandatory, such as
healthcare and finance.

The issue of counterfeit hardware is exacerbated by economic
pressures to reduce costs, which can compel businesses to source
from lower-cost suppliers without stringent verification processes.
This economizing can inadvertently introduce counterfeit parts into
otherwise secure systems. Additionally, detecting these counterfeits
is inherently difÏcult since they are created to pass as the original
components, often requiring sophisticated equipment and expertise
to identify.

In ML, where decisions are made in real time and based on complex
computations, the consequences of hardware failure are inconvenient
and potentially dangerous. Stakeholders in the field of ML need to
understand these risks thoroughly. The issues presented by counterfeit
hardware necessitate a deep dive into the current challenges facing ML
system integrity and emphasize the importance of vigilant, informed
management of the hardware life cycle within these advanced systems.

14.5.7 Supply Chain Risks

The threat of counterfeit hardware is closely tied to broader supply
chain vulnerabilities. Globalized, interconnected supply chains cre-
ate multiple opportunities for compromised components to infiltrate
a product’s lifecycle. Supply chains involve numerous entities, from
design to manufacturing, assembly, distribution, and integration. A
lack of transparency and oversight of each partner makes verifying in-
tegrity at every step challenging. Lapses anywhere along the chain can
allow the insertion of counterfeit parts.

For example, a contracted manufacturer may unknowingly receive
and incorporate recycled electronic waste containing dangerous coun-
terfeits. An untrustworthy distributor could smuggle in cloned com-
ponents. Insider threats at any vendor might deliberately mix counter-
feits into legitimate shipments.

Once counterfeits enter the supply stream, they move quickly
through multiple hands before ending up in ML systems where
detection is difÏcult. Advanced counterfeits like refurbished parts
or clones with repackaged externals can masquerade as authentic
components, passing visual inspection.

To identify fakes, thorough technical profiling using micrography,

CHAPTER 14. SECURITY & PRIVACY 583

X-ray screening, component forensics, and functional testing is often
required. However, such costly analysis is impractical for large-volume
procurement.

Strategies like supply chain audits, screening suppliers, validating
component provenance, and adding tamper-evident protections can
help mitigate risks. However, given global supply chain security chal-
lenges, a zero-trust approach is prudent. Designing ML systems to
use redundant checking, fail-safes, and continuous runtime monitor-
ing provides resilience against component compromises.

Rigorous validation of hardware sources coupled with fault-tolerant
system architectures offers the most robust defense against the perva-
sive risks of convoluted, opaque global supply chains.

14.5.8 Case Study

In 2018, Bloomberg Businessweek published an alarming story that got
much attention in the tech world. The article claimed that Supermi-
cro had secretly planted tiny spy chips on server hardware. Reporters
said Chinese state hackers working with Supermicro could sneak these
tiny chips onto motherboards during manufacturing. The tiny chips
allegedly gave the hackers backdoor access to servers used by over 30
major companies, including Apple and Amazon.

If true, this would allow hackers to spy on private data or even tam-
per with systems. However, after investigating, Apple and Amazon
found no proof that such hacked Supermicro hardware existed. Other
experts questioned whether the Bloomberg article was accurate report-
ing.

Whether the story is completely true or not is not our concern from
a pedagogical viewpoint. However, this incident drew attention to the
risks of global supply chains for hardware, especially manufactured
in China. When companies outsource and buy hardware components
from vendors worldwide, there needs to be more visibility into the pro-
cess. In this complex global pipeline, there are concerns that counter-
feits or tampered hardware could be slipped in somewhere along the
way without tech companies realizing it. Companies relying too much
on single manufacturers or distributors creates risk. For instance, due
to the over-reliance on TSMC for semiconductor manufacturing, the
U.S. has invested 50 billion dollars into the CHIPS Act.

As ML moves into more critical systems, verifying hardware in-
tegrity from design through production and delivery is crucial. The
reported Supermicro backdoor demonstrated that for ML security, we
cannot take global supply chains and manufacturing for granted. We
must inspect and validate hardware at every link in the chain.

https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies
https://www.tsmc.com/english
https://www.whitehouse.gov/briefing-room/statements-releases/2022/08/09/fact-sheet-chips-and-science-act-will-lower-costs-create-jobs-strengthen-supply-chains-and-counter-china/

14.6. Embedded ML Hardware Security 584

14.6 Embedded ML Hardware Security

14.6.1 Trusted Execution Environments

14.6.1.1 About TEE

A Trusted Execution Environment (TEE) is a secure area within a main
processor that provides a high level of security for the execution of
code and protection of data. TEEs operate by isolating the execution
of sensitive tasks from the rest of the device’s operations, thereby cre-
ating an environment resistant to attacks from software and hardware
vectors.

14.6.1.2 Benefits

TEEs are particularly valuable in scenarios where sensitive data must
be processed or where the integrity of a system’s operations is critical.
In the context of ML hardware, TEEs ensure that the ML algorithms
and data are protected against tampering and leakage. This is essential
because ML models often process private information, trade secrets, or
data that could be exploited if exposed.

For instance, a TEE can protect ML model parameters from being
extracted by malicious software on the same device. This protection
is vital for privacy and maintaining the integrity of the ML system,
ensuring that the models perform as expected and do not provide
skewed outputs due to manipulated parameters. Apple’s Secure
Enclave, found in iPhones and iPads, is a form of TEE that provides an
isolated environment to protect sensitive user data and cryptographic
operations.

In ML systems, TEEs can:

• Securely perform model training and inference, ensuring the
computation results remain confidential.

• Protect the confidentiality of input data, like biometric informa-
tion, used for personal identification or sensitive classification
tasks.

• Secure ML models by preventing reverse engineering, which can
protect proprietary information and maintain a competitive ad-
vantage.

• Enable secure updates to ML models, ensuring that updates
come from a trusted source and have not been tampered with in
transit.

https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web
https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web

CHAPTER 14. SECURITY & PRIVACY 585

The importance of TEEs in ML hardware security stems from their
ability to protect against external and internal threats, including the
following:

• Malicious Software: TEEs can prevent high-privilege malware
from accessing sensitive areas of the ML system.

• Physical Tampering: By integrating with hardware security
measures, TEEs can protect against physical tampering that
attempts to bypass software security.

• Side-channel Attacks: Although not impenetrable, TEEs can
mitigate certain side-channel attacks by controlling access to
sensitive operations and data patterns.

14.6.1.3 Mechanics

The fundamentals of TEEs contain four main parts:

• Isolated Execution: Code within a TEE runs in a separate en-
vironment from the device’s main operating system. This isola-
tion protects the code from unauthorized access by other appli-
cations.

• Secure Storage: TEEs can securely store cryptographic keys, au-
thentication tokens, and sensitive data, preventing access by reg-
ular applications running outside the TEE.

• Integrity Protection: TEEs can verify the integrity of code and
data, ensuring that they have not been altered before execution
or during storage.

• Data Encryption: Data handled within a TEE can be encrypted,
making it unreadable to entities without the proper keys, which
are also managed within the TEE.

Here are some examples of TEEs that provide hardware-based secu-
rity for sensitive applications:

• ARMTrustZone:This technology creates secure and normal
world execution environments isolated using hardware controls
and implemented in many mobile chipsets.

• IntelSGX:Intel’s Software Guard Extensions provide an enclave
for code execution that protects against certain software attacks,
specifically O.S. layer attacks. They are used to safeguard work-
loads in the cloud.

https://www.arm.com/technologies/trustzone-for-cortex-m
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html

14.6. Embedded ML Hardware Security 586

• Qualcomm Secure Execution Environment:A Hardware sand-
box on Qualcomm chipsets for mobile payment and authentica-
tion apps.

• Apple SecureEnclave:TEE for biometric data and key manage-
ment on iPhones and iPads.Facilitates mobile payments.

Figure 14.7 is a diagram demonstrating a secure enclave isolated
from the main processor to provide an extra layer of security. The
secure enclave has a boot ROM to establish a hardware root of trust,
an AES engine for efÏcient and secure cryptographic operations, and
protected memory. It also has a mechanism to store information se-
curely on attached storage separate from the NAND flash storage used
by the application processor and operating system. This design keeps
sensitive user data secure even when the Application Processor kernel
becomes compromised.

14.6.1.4 Tradeoffs

If TEEs are so good, why don’t all systems have TEE enabled by de-
fault? The decision to implement a TEE is not taken lightly. There are
several reasons why a TEE might only be present in some systems by
default. Here are some tradeoffs and challenges associated with TEEs:

Cost: Implementing TEEs involves additional costs. There are direct
costs for the hardware and indirect costs associated with developing
and maintaining secure software for TEEs. These costs may only be
justifiable for some devices, especially low-margin products.

Complexity: TEEs add complexity to system design and develop-
ment. Integrating a TEE with existing systems requires a substantial
redesign of the hardware and software stack, which can be a barrier,
especially for legacy systems.

Performance Overhead: While TEEs offer enhanced security,
they can introduce performance overhead. For example, the addi-
tional steps in verifying and encrypting data can slow down system
performance, which may be critical in time-sensitive applications.

Development Challenges: Developing for TEEs requires special-
ized knowledge and often must adhere to strict development protocols.
This can extend development time and complicate the debugging and
testing processes.

Scalability and Flexibility: TEEs, due to their secure nature, may
impose limitations on scalability and flexibility. Upgrading secure
components or scaling the system for more users or data can be more
challenging when everything must pass through a secure, enclosed
environment.

https://www.qualcomm.com/products/features/mobile-security-solutions
https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web

CHAPTER 14. SECURITY & PRIVACY 587

Figure 14.7.: System-on-chip
secure enclave. Source: Apple.

https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web

14.6. Embedded ML Hardware Security 588

Energy Consumption: The increased processing required for en-
cryption, decryption, and integrity checks can lead to higher energy
consumption, a significant concern for battery-powered devices.

Market Demand: Not all markets or applications require the level of
security provided by TEEs. For many consumer applications, the per-
ceived risk may be low enough that manufacturers opt not to include
TEEs in their designs.

Security Certification andAssurance: Systems with TEEs may need
rigorous security certifications with bodies like Common Criteria (CC)
or the European Union Agency for Cybersecurity (ENISA), which can
be lengthy and expensive. Some organizations may choose to refrain
from implementing TEEs to avoid these hurdles.

Limited Resource Devices: Devices with limited processing power,
memory, or storage may only support TEEs without compromising
their primary functionality.

14.6.2 Secure Boot

14.6.2.1 About

A secure boot is a security standard that ensures a device boots using
only software trusted by the original equipment manufacturer (OEM).
When the device starts up, the firmware checks the signature of each
piece of boot software, including the bootloader, kernel, and base op-
erating system, to ensure it’s not tampered with. If the signatures are
valid, the device continues to boot. If not, the boot process stops to
prevent potential security threats from executing.

14.6.2.2 Benefits

The integrity of an ML system is critical from the moment it is pow-
ered on. A compromised boot process could undermine the system
by allowing malicious software to load before the operating system
and ML applications start. This could lead to manipulated ML opera-
tions, stolen data, or the device being repurposed for malicious activi-
ties such as botnets or crypto-mining.

Secure Boot helps protect embedded ML hardware in several ways:

• Protecting ML Data: Ensuring that the data used by ML mod-
els, which may include private or sensitive information, is not
exposed to tampering or theft during the boot process.

• Guarding Model Integrity: Maintaining the ML models’ in-
tegrity is important, as tampering with them could lead to
incorrect or malicious outcomes.

https://www.commoncriteriaportal.org/ccra/index.cfm
https://www.enisa.europa.eu/

CHAPTER 14. SECURITY & PRIVACY 589

• Secure Model Updates: Enabling secure updates to ML mod-
els and algorithms, ensuring that updates are authenticated and
have not been altered.

14.6.2.3 Mechanics

TEEs benefit from Secure Boot in multiple ways. Figure 14.8 illustrates
a flow diagram of a trusted embedded system. For instance, during
initial validation, Secure Boot ensures that the code running inside the
TEE is the correct and untampered version approved by the device
manufacturer. It can ensure resilience against tampering by verifying
the digital signatures of the firmware and other critical components; Se-
cure Boot prevents unauthorized modifications that could undermine
the TEE’s security properties. Secure Boot establishes a foundation of
trust upon which the TEE can securely operate, enabling secure opera-
tions such as cryptographic key management, secure processing, and
sensitive data handling.

14.6.2.4 Case Study: Apple’s Face ID

Let’s take a real-world example. Apple’s Face ID technology uses ad-
vanced machine learning algorithms to enable facial recognition on
iPhones and iPads. It relies on a sophisticated framework of sensors
and software to accurately map the geometry of a user’s face. For Face
ID to function securely and protect user biometric data, the device’s
operations must be trustworthy from the moment it is powered on,
which is where Secure Boot plays a crucial role. Here’s how Secure
Boot works in conjunction with Face ID:

Initial Verification: When an iPhone is powered on, the Secure Boot
process begins in the Secure Enclave, a coprocessor providing an extra
security layer. The Secure Enclave is responsible for processing finger-
print data for Touch ID and facial recognition data for Face ID. The boot
process verifies that Apple has signed the Secure Enclave’s firmware
and has not been tampered with. This step ensures that the firmware
used to process biometric data is authentic and safe.

Continuous Security Checks: After the initial power-on self-test
and verification by Secure Boot, the Secure Enclave communicates
with the device’s main processor to continue the secure boot chain. It
verifies the digital signatures of the iOS kernel and other critical boot
components before allowing the boot process to proceed. This chained
trust model prevents unauthorized modifications to the bootloader
and operating system, which could compromise the device’s security.

Face Data Processing: Once the device has completed its secure
boot sequence, the Secure Enclave can interact safely with the ML algo-

https://support.apple.com/en-us/102381

14.6. Embedded ML Hardware Security 590

Figure 14.8.: Secure Boot flow.
Source: R. V. and A. (2018).

CHAPTER 14. SECURITY & PRIVACY 591

rithms that power Face ID. Facial recognition involves projecting and
analyzing over 30,000 invisible dots to create a depth map of the user’s
face and an infrared image. This data is then converted into a math-
ematical representation and compared with the registered face data
securely stored in the Secure Enclave.

Secure Enclave and Data Protection: The Secure Enclave is
designed to protect sensitive data and handle the cryptographic opera-
tions that secure it. It ensures that even if the operating system kernel
is compromised, the facial data cannot be accessed by unauthorized
apps or attackers. Face ID data never leaves the device and is not
backed up to iCloud or anywhere else.

Firmware Updates: Apple frequently releases firmware updates to
address security vulnerabilities and improve the functionality of its
systems. Secure Boot ensures that each firmware update is authenti-
cated and that only updates signed by Apple are installed on the de-
vice, preserving the integrity and security of the Face ID system.

By using Secure Boot with dedicated hardware like the Secure En-
clave, Apple can provide strong security assurances for sensitive oper-
ations like facial recognition.

14.6.2.5 Challenges

Implementing Secure Boot poses several challenges that must be ad-
dressed to realize its full benefits.

Key Management Complexity: Generating, storing, distributing,
rotating, and revoking cryptographic keys provably securely is ex-
tremely challenging yet vital for maintaining the chain of trust. Any
compromise of keys cripples protections. Large enterprises managing
multitudes of device keys face particular scale challenges.

Performance Overhead: Checking cryptographic signatures during
Boot can add 50-100ms or more per component verified. This delay
may be prohibitive for time-sensitive or resource-constrained applica-
tions. However, performance impacts can be reduced through paral-
lelization and hardware acceleration.

Signing Burden: Developers must diligently ensure that all soft-
ware components involved in the boot process - bootloaders, firmware,
OS kernel, drivers, applications, etc. are correctly signed by trusted
keys. Accommodating third-party code signing remains an issue.

Cryptographic Verification: Secure algorithms and protocols must
validate the legitimacy of keys and signatures, avoid tampering or by-
pass, and support revocation. Accepting dubious keys undermines
trust.

Customizability Constraints: Vendor-locked Secure Boot architec-
tures limit user control and upgradability. Open-source bootloaders

14.6. Embedded ML Hardware Security 592

like u-boot and coreboot enable security while supporting customiz-
ability.

Scalable Standards: Emerging standards like Device Identifier Com-
position Engine (DICE) and IDevID promise to securely provision and
manage device identities and keys at scale across ecosystems.

Adopting Secure Boot requires following security best practices
around key management, crypto validation, signed updates, and
access control. Secure Boot provides a robust foundation for building
device integrity and trust when implemented with care.

14.6.3 Hardware Security Modules

14.6.3.1 About HSM

A Hardware Security Module (HSM) is a physical device that manages
digital keys for strong authentication and provides crypto-processing.
These modules are designed to be tamper-resistant and provide a se-
cure environment for performing cryptographic operations. HSMs can
come in standalone devices, plug-in cards, or integrated circuits on an-
other device.

HSMs are crucial for various security-sensitive applications because
they offer a hardened, secure enclave for storing cryptographic keys
and executing cryptographic functions. They are particularly impor-
tant for ensuring the security of transactions, identity verifications, and
data encryption.

14.6.3.2 Benefits

HSMs provide several functionalities that are beneficial for the security
of ML systems:

Protecting Sensitive Data: In machine learning applications, mod-
els often process sensitive data that can be proprietary or personal.
HSMs protect the encryption keys used to secure this data, both at rest
and in transit, from exposure or theft.

Ensuring Model Integrity: The integrity of ML models is vital for
their reliable operation. HSMs can securely manage the signing and
verification processes for ML software and firmware, ensuring unau-
thorized parties have not altered the models.

Secure Model Training and Updates: The training and updating
of ML models involve the processing of potentially sensitive data.
HSMs ensure that these processes are conducted within a secure
cryptographic boundary, protecting against the exposure of training
data and unauthorized model updates.

https://source.denx.de/u-boot/u-boot
https://www.coreboot.org/
https://www.microsoft.com/en-us/research/project/dice-device-identifier-composition-engine/
https://www.microsoft.com/en-us/research/project/dice-device-identifier-composition-engine/
https://1.ieee802.org/security/802-1ar/

CHAPTER 14. SECURITY & PRIVACY 593

14.6.3.3 Tradeoffs

HSMs involve several tradeoffs for embedded ML. These tradeoffs are
similar to TEEs, but for completeness, we will also discuss them here
through the lens of HSM.

Cost: HSMs are specialized devices that can be expensive to procure
and implement, raising the overall cost of an ML project. This may be
a significant factor for embedded systems, where cost constraints are
often stricter.

Performance Overhead: While secure, the cryptographic opera-
tions performed by HSMs can introduce latency. Any added delay
can be critical in high-performance embedded ML applications where
inference must happen in real-time, such as in autonomous vehicles
or translation devices.

Physical Space: Embedded systems are often limited by physical
space, and adding an HSM can be challenging in tightly constrained en-
vironments. This is especially true for consumer electronics and wear-
able technology, where size and form factor are key considerations.

Power Consumption: HSMs require power for their operation,
which can be a drawback for battery-operated devices with long
battery life. The secure processing and cryptographic operations can
drain the battery faster, a significant tradeoff for mobile or remote
embedded ML applications.

Complexity in Integration: Integrating HSMs into existing hard-
ware systems adds complexity. It often requires specialized knowl-
edge to manage the secure communication between the HSM and the
system’s processor and develop software capable of interfacing with
the HSM.

Scalability: Scaling an ML solution that uses HSMs can be challeng-
ing. Managing a fleet of HSMs and ensuring uniformity in security
practices across devices can become complex and costly when the de-
ployment size increases, especially when dealing with embedded sys-
tems where communication is costly.

Operational Complexity: HSMs can make updating firmware and
ML models more complex. Every update must be signed and possibly
encrypted, which adds steps to the update process and may require
secure mechanisms for key management and update distribution.

Development andMaintenance: The secure nature of HSMs means
that only limited personnel have access to the HSM for development
and maintenance purposes. This can slow down the development pro-
cess and make routine maintenance more difÏcult.

Certification and Compliance: Ensuring that an HSM meets spe-
cific industry standards and compliance requirements can add to the
time and cost of development. This may involve undergoing rigorous

14.6. Embedded ML Hardware Security 594

certification processes and audits.

14.6.4 Physical Unclonable Functions (PUFs)

14.6.4.1 About

Physical Unclonable Functions (PUFs) provide a hardware-intrinsic
means for cryptographic key generation and device authentication by
harnessing the inherent manufacturing variability in semiconductor
components. During fabrication, random physical factors such as
doping variations, line edge roughness, and dielectric thickness
result in microscale differences between semiconductors, even when
produced from the same masks. These create detectable timing
and power variances that act as a “fingerprint” unique to each chip.
PUFs exploit this phenomenon by incorporating integrated circuits to
amplify minute timing or power differences into measurable digital
outputs.

When stimulated with an input challenge, the PUF circuit produces
an output response based on the device’s intrinsic physical character-
istics. Due to their physical uniqueness, the same challenge will yield
a different response on other devices. This challenge-response mecha-
nism can be used to generate keys securely and identifiers tied to the
specific hardware, perform device authentication, or securely store se-
crets. For example, a key derived from a PUF will only work on that
device and cannot be cloned or extracted even with physical access or
full reverse engineering (Gao, Al-Sarawi, and Abbott 2020).

14.6.4.2 Benefits

PUF key generation avoids external key storage, which risks exposure.
It also provides a foundation for other hardware security primitives
like Secure Boot. Implementation challenges include managing vary-
ing reliability and entropy across different PUFs, sensitivity to environ-
mental conditions, and susceptibility to machine learning modeling at-
tacks. When designed carefully, PUFs enable promising applications
in IP protection, trusted computing, and anti-counterfeiting.

14.6.4.3 Utility

Machine learning models are rapidly becoming a core part of the
functionality for many embedded devices, such as smartphones,
smart home assistants, and autonomous drones. However, securing
ML on resource-constrained embedded hardware can be challenging.

CHAPTER 14. SECURITY & PRIVACY 595

This is where physical unclonable functions (PUFs) come in uniquely
handy. Let’s look at some examples of how PUFs can be useful.

PUFs provide a way to generate unique fingerprints and cryp-
tographic keys tied to the physical characteristics of each chip on
the device. Let’s take an example. We have a smart camera drone
that uses embedded ML to track objects. A PUF integrated into the
drone’s processor could create a device-specific key to encrypt the ML
model before loading it onto the drone. This way, even if an attacker
somehow hacks the drone and tries to steal the model, they won’t be
able to use it on another device!

The same PUF key could also create a digital watermark embedded
in the ML model. If that model ever gets leaked and posted online by
someone trying to pirate it, the watermark could help prove it came
from your stolen drone and didn’t originate from the attacker. Also,
imagine the drone camera connects to the cloud to ofÒoad some of its
ML processing. The PUF can authenticate that the camera is legitimate
before the cloud will run inference on sensitive video feeds. The cloud
could verify that the drone has not been physically tampered with by
checking that the PUF responses have not changed.

PUFs enable all this security through their challenge-response be-
havior’s inherent randomness and hardware binding. Without need-
ing to store keys externally, PUFs are ideal for securing embedded ML
with limited resources. Thus, they offer a unique advantage over other
mechanisms.

14.6.4.4 Mechanics

The working principle behind PUFs, shown in Figure 14.9, involves
generating a “challenge-response” pair, where a specific input (the
challenge) to the PUF circuit results in an output (the response) that
is determined by the unique physical properties of that circuit. This
process can be likened to a fingerprinting mechanism for electronic
devices. Devices that use ML for processing sensor data can employ
PUFs to secure communication between devices and prevent the
execution of ML models on counterfeit hardware.

Figure 14.9 illustrates an overview of the PUF basics: a) PUF can be
thought of as a unique fingerprint for each piece of hardware; b) an
Optical PUF is a special plastic token that is illuminated, creating a
unique speckle pattern that is then recorded; c) in an APUF (Arbiter
PUF), challenge bits select different paths, and a judge decides which
one is faster, giving a response of ‘1’ or ‘0’; d) in an SRAM PUF, the
response is determined by the mismatch in the threshold voltage of
transistors, where certain conditions lead to a preferred response of ‘1’.

14.7. Privacy Concerns in Data Handling 596

Each of these methods uses specific characteristics of the hardware to
create a unique identifier.

Figure 14.9.: PUF basics.
Source: Gao, Al-Sarawi, and
Abbott (2020).

14.6.4.5 Challenges

There are a few challenges with PUFs. The PUF response can be sensi-
tive to environmental conditions, such as temperature and voltage fluc-
tuations, leading to inconsistent behavior that must be accounted for
in the design. Also, since PUFs can generate many unique challenge-
response pairs, managing and ensuring the consistency of these pairs
across the device’s lifetime can be challenging. Last but not least, inte-
grating PUF technology may increase the overall manufacturing cost
of a device, although it can save costs in key management over the de-
vice’s lifecycle.

14.7 Privacy Concerns in Data Handling
Handling personal and sensitive data securely and ethically is critical
as machine learning permeates devices like smartphones, wearables,
and smart home appliances. For medical hardware, handling data se-
curely and ethically is further required by law through the Health In-
surance Portability and Accountability Act (HIPAA). These embedded

https://aspe.hhs.gov/report/health-insurance-portability-and-accountability-act-1996
https://aspe.hhs.gov/report/health-insurance-portability-and-accountability-act-1996

CHAPTER 14. SECURITY & PRIVACY 597

ML systems pose unique privacy risks, given their intimate proximity
to users’ lives.

14.7.1 Sensitive Data Types

Embedded ML devices like wearables, smart home assistants, and
autonomous vehicles frequently process highly personal data that
requires careful handling to maintain user privacy and prevent mis-
use. Specific examples include medical reports and treatment plans
processed by health wearables, private conversations continuously
captured by smart home assistants, and detailed driving habits col-
lected by connected cars. Compromise of such sensitive data can lead
to serious consequences like identity theft, emotional manipulation,
public shaming, and mass surveillance overreach.

Sensitive data takes many forms - structured records like contact lists
and unstructured content like conversational audio and video streams.
In medical settings, protected health information (PHI) is collected by
doctors throughout every interaction and is heavily regulated by strict
HIPAA guidelines. Even outside of medical settings, sensitive data can
still be collected in the form of Personally Identifiable Information (PII),
which is defined as “any representation of information that permits
the identity of an individual to whom the information applies to be
reasonably inferred by either direct or indirect means.” Examples of
PII include email addresses, social security numbers, and phone num-
bers, among other fields. PII is collected in medical settings and other
settings (financial applications, etc) and is heavily regulated by Depart-
ment of Labor policies.

Even derived model outputs could indirectly leak details about
individuals. Beyond just personal data, proprietary algorithms
and datasets also warrant confidentiality protections. In the Data
Engineering section, we covered several topics in detail.

Techniques like de-identification, aggregation, anonymization, and
federation can help transform sensitive data into less risky forms while
retaining analytical utility. However, diligent controls around access,
encryption, auditing, consent, minimization, and compliance practices
are still essential throughout the data lifecycle. Regulations like GDPR
categorize different classes of sensitive data and prescribe responsibili-
ties around their ethical handling. Standards like NIST 800-53 provide
rigorous security control guidance for confidentiality protection. With
growing reliance on embedded ML, understanding sensitive data risks
is crucial.

https://www.dol.gov/general/ppii
https://gdpr-info.eu/
https://csrc.nist.gov/pubs/sp/800/53/r5/upd1/final

14.7. Privacy Concerns in Data Handling 598

14.7.2 Applicable Regulations

Many embedded ML applications handle sensitive user data under
HIPAA, GDPR, and CCPA regulations. Understanding the protections
mandated by these laws is crucial for building compliant systems.

• HIPAA Privacy Rule establishes care providers that conduct cer-
tain governs medical data privacy and security in the US, with se-
vere penalties for violations. Any health-related embedded ML
devices like diagnostic wearables or assistive robots would need
to implement controls like audit trails, access controls, and en-
cryption prescribed by HIPAA.

• GDPR imposes transparency, retention limits, and user rights on
EU citizen data, even when processed by companies outside the
EU. Smart home systems capturing family conversations or loca-
tion patterns would need GDPR compliance. Key requirements
include data minimization, encryption, and mechanisms for con-
sent and erasure.

• CCPA, which applies in California, protects consumer data pri-
vacy through provisions like required disclosures and opt-out
rights—ioT gadgets like smart speakers and fitness trackers Cali-
fornians use likely to fall under its scope.

• The CCPA was the first state-specific set of regulations regarding
privacy concerns. Following the CCPA, similar regulations were
also enacted in 10 other states, with some states proposing bills
for consumer data privacy protections.

Additionally, when relevant to the application, sector-specific rules
govern telematics, financial services, utilities, etc. Best practices like
Privacy by design, impact assessments, and maintaining audit trails
help embed compliance if it is not already required by law. Given po-
tentially costly penalties, consulting legal/compliance teams is advis-
able when developing regulated embedded ML systems.

14.7.3 De-identification

If medical data is de-identified thoroughly, HIPAA guidelines do not
directly apply, and there are far fewer regulations. However, medi-
cal data needs to be de-identified using HIPAA methods (Safe Harbor
methods or Expert Determination methods) for HIPAA guidelines to
no longer apply.

https://www.hhs.gov/hipaa/for-professionals/privacy/index.html
https://gdpr-info.eu/
https://oag.ca.gov/privacy/ccpa
https://pro.bloomberglaw.com/brief/state-privacy-legislation-tracker/
https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html

CHAPTER 14. SECURITY & PRIVACY 599

14.7.3.1 Safe Harbor Methods

Safe Harbor methods are most commonly used for de-identifying pro-
tected healthcare information due to the limited resources needed com-
pared to Expert Determination methods. Safe Harbor de-identification
requires scrubbing datasets of any data that falls into one of 18 cat-
egories. The following categories are listed as sensitive information
based on the Safe Harbor standard:

• Name, Geographic locator, Birthdate, Phone Number, Email
Address, addresses, Social Security Numbers, Medical Record
Numbers, health beneficiary Numbers, Device Identifiers and
Serial Numbers, Certificate/License Numbers (Birth Certificate,
Drivers License, etc), Account Numbers, Vehicle Identifiers, Web-
site URLs, FullFace Photos and Comparable Images, Biometric
Identifiers, Any other unique identifiers

For most of these categories, all data must be removed regardless
of the circumstances. For other categories, including geographical in-
formation and birthdate, the data can be partially removed enough to
make the information hard to re-identify. For example, if a zip code
is large enough, the first 3 digits can remain since there are enough
people in the geographic area to make re-identification difÏcult. Birth-
dates need to be scrubbed of all elements except birth year, and all ages
above 89 need to be aggregated into a 90+ category.

14.7.3.2 Expert Determination Methods

Safe Harbor methods work for several cases of medical data de-
identification, though re-identification is still possible in some cases.
For example, let’s say you collect data on a patient in an urban city
with a large zip code, but you have documented a rare disease that
they have—a disease that only 25 people have in the entire city.
Given geographic data coupled with birth year, it is highly possible
that someone can re-identify this individual, which is an extremely
detrimental privacy breach.

In unique cases like these, expert determination data de-
identification methods are preferred. Expert determination de-
identification requires a “person with appropriate knowledge of and
experience with generally accepted statistical and scientific principles
and methods for rendering information not individually identifiable”
to evaluate a dataset and determine if the risk of re-identification
of individual data in a given dataset in combination with publicly
available data (voting records, etc.), is extremely small.

14.7. Privacy Concerns in Data Handling 600

Expert Determination de-identification is understandably harder to
complete than Safe Harbour de-identification due to the cost and feasi-
bility of accessing an expert to verify the likelihood of re-identifying a
dataset. However, in many cases, expert determination is required to
ensure that re-identification of data is extremely unlikely.

14.7.4 Data Minimization

Data minimization involves collecting, retaining, and processing only
the necessary user data to reduce privacy risks from embedded ML sys-
tems. This starts by restricting the data types and instances gathered
to the bare minimum required for the system’s core functionality. For
example, an object detection model only collects the images needed for
that specific computer vision task. Similarly, a voice assistant would
limit audio capture to specific spoken commands rather than persis-
tently recording ambient sounds.

Where possible, temporary data that briefly resides in memory with-
out persisting storage provides additional minimization. A clear le-
gal basis, like user consent, should be established for collection and
retention. Sandboxing and access controls prevent unauthorized use
beyond intended tasks. Retention periods should be defined based on
purpose, with secure deletion procedures removing expired data.

Data minimization can be broken down into 3 categories:

1. “Data must be adequate about the purpose that is pursued.” Data
omission can limit the accuracy of models trained on the data and
any general usefulness of a dataset. Data minimization requires
a minimum amount of data to be collected from users while cre-
ating a dataset that adds value to others.

2. The data collected from users must be relevant to the purpose of
the data collection.

3. Users’ data should be limited to only the necessary data to fulfill
the purpose of the initial data collection. If similarly robust and
accurate results can be obtained from a smaller dataset, any addi-
tional data beyond this smaller dataset should not be collected.

Emerging techniques like differential Privacy, federated learning,
and synthetic data generation allow useful insights derived from less
raw user data. Performing data flow mapping and impact assessments
helps identify opportunities to minimize raw data usage.

Methodologies like Privacy by Design (Cavoukian 2009) consider
such minimization early in system architecture. Regulations like

https://dl.acm.org/doi/pdf/10.1145/3397271.3401034?casa_token=NrOifKo6dPMAAAAA:Gl5NZNpZMiuSRpJblj43c1cNXkXyv7oEOuYlOfX2qvT8e-9mOLoLQQYz29itxVh6xakKm8haWRs

CHAPTER 14. SECURITY & PRIVACY 601

GDPR also mandate data minimization principles. With a multi-
layered approach across legal, technical, and process realms, data
minimization limits risks in embedded ML products.

14.7.4.1 Case Study - Performance-Based Data Minimization

Performance-based data minimization (Biega et al. 2020) focuses on
expanding upon the third category of data minimization mentioned
above, namely limitation. It specifically defines the robustness of model
results on a given dataset by certain performance metrics, such that
data should not be additionally collected if it does not significantly
improve performance. Performance metrics can be divided into two
categories:

1. Global data minimization performance

a. Satisfied if a dataset minimizes the amount of per-user data while
its mean performance across all data is comparable to the mean
performance of the original, unminimized dataset.

2. Per user data minimization performance

a. Satisfied if a dataset minimizes the amount of per-user data while
the minimum performance of individual user data is compara-
ble to that of individual user data in the original, unminimized
dataset.

Performance-based data minimization can be leveraged in machine-
learning settings, including movie recommendation algorithms and e-
commerce settings.

Global data minimization is much more feasible than per-user data
minimization, given the much more significant difference in per-user
losses between the minimized and original datasets.

14.7.5 Consent and Transparency

Meaningful consent and transparency are crucial when collecting user
data for embedded ML products like smart speakers, wearables, and
autonomous vehicles. When first set up. Ideally, the device should
clearly explain what data types are gathered, for what purposes, how
they are processed, and retention policies. For example, a smart
speaker might collect voice samples to train speech recognition and
personalized voice profiles. During use, reminders and dashboard
options provide ongoing transparency into how data is handled, such
as weekly digests of captured voice snippets. Control options allow

14.7. Privacy Concerns in Data Handling 602

revoking or limiting consent, like turning off the storage of voice
profiles.

Consent flows should provide granular controls beyond just binary
yes/no choices. For instance, users could selectively consent to certain
data uses, such as training speech recognition, but not personalization.
Focus groups and usability testing with target users shape consent in-
terfaces and wording of privacy policies to optimize comprehension
and control. Respecting user rights, such as data deletion and rectifica-
tion, demonstrates trustworthiness. Vague legal jargon hampers trans-
parency. Regulations like GDPR and CCPA reinforce consent require-
ments. Thoughtful consent and transparency provide users agency
over their data while building trust in embedded ML products through
open communication and control.

14.7.6 Privacy Concerns in Machine Learning

14.7.6.1 Generative AI

Privacy and security concerns have also risen with the public use of
generative AI models, including OpenAI’s GPT4 and other LLMs.
ChatGPT, in particular, has been discussed more recently about
Privacy, given all the personal information collected from ChatGPT
users. In June 2023, a class action lawsuit was filed against ChatGPT
due to concerns that it was trained on proprietary medical and per-
sonal information without proper permissions or consent. As a result
of these privacy concerns, many companies have prohibited their
employees from accessing ChatGPT, and uploading private, company
related information to the chatbot. Further, ChatGPT is susceptible
to prompt injection and other security attacks that could compromise
the privacy of the proprietary data upon which it was trained.

14.7.6.1.1 Case Study. While ChatGPT has instituted protections to
prevent people from accessing private and ethically questionable infor-
mation, several individuals have successfully bypassed these protec-
tions through prompt injection and other security attacks. As demon-
strated in Figure 14.10, users can bypass ChatGPT protections to mimic
the tone of a “deceased grandmother” to learn how to bypass a web ap-
plication firewall (Maanak Gupta et al. 2023).

Further, users have also successfully used reverse psychology to ma-
nipulate ChatGPT and access information initially prohibited by the
model. In Figure 14.11, a user is initially prevented from learning about
piracy websites through ChatGPT but can bypass these restrictions us-
ing reverse psychology.

https://assets.bwbx.io/documents/users/iqjWHBFdfxIU/rIZH4FXwShJE/v0
https://www.businessinsider.com/chatgpt-companies-issued-bans-restrictions-openai-ai-amazon-apple-2023-7

CHAPTER 14. SECURITY & PRIVACY 603

Figure 14.10.: Grandma role
play to bypass safety restric-
tions. Source: Maanak Gupta
et al. (2023).

The ease at which security attacks can manipulate ChatGPT is con-
cerning, given the private information it was trained upon without
consent. Further research on data privacy in LLMs and generative AI
should focus on preventing the model from being so naive to prompt
injection attacks.

14.7.6.2 Data Erasure

Many previous regulations mentioned above, including GDPR, in-
clude a “right to be forgotten” clause. This clause essentially states
that “the data subject shall have the right to obtain from the controller
the erasure of personal data concerning him or her without undue
delay.” However, in several cases, even if user data has been erased
from a platform, the data is only partially erased if a machine learning
model has been trained on this data for separate purposes. Through
methods similar to membership inference attacks, other individuals
can still predict the training data a model was trained upon, even if
the data’s presence was explicitly removed online.

One approach to addressing privacy concerns with machine learn-
ing training data has been through differential privacy methods.
For example, by adding Laplacian noise in the training set, a model
can be robust to membership inference attacks, preventing deleted
data from being recovered. Another approach to preventing deleted
data from being inferred from security attacks is simply retraining

https://gdpr-info.eu/art-17-gdpr/

14.7. Privacy Concerns in Data Handling 604

Figure 14.11.: Reverse psychol-
ogy to bypass safety restric-
tions. Source: Maanak Gupta
et al. (2023).

CHAPTER 14. SECURITY & PRIVACY 605

the model from scratch on the remaining data. Since this process is
time-consuming and computationally expensive, other researchers
have attempted to address privacy concerns surrounding inferring
model training data through a process called machine unlearning,
in which a model actively iterates on itself to remove the influence
of “forgotten” data that it might have been trained on, as mentioned
below.

14.8 Privacy-Preserving ML Techniques
Many techniques have been developed to preserve privacy, each
addressing different aspects and data security challenges. These
methods can be broadly categorized into several key areas: Differ-
ential Privacy, which focuses on statistical privacy in data outputs;
Federated Learning, emphasizing decentralized data processing;
Homomorphic Encryption and Secure Multi-party Computation
(SMC), both enabling secure computations on encrypted or private
data; Data Anonymization and Data Masking and Obfuscation,
which alter data to protect individual identities; Private Set In-
tersection and Zero-Knowledge Proofs, facilitating secure data
comparisons and validations; Decentralized Identifiers (DIDs) for
self-sovereign digital identities; Privacy-Preserving Record Linkage
(PPRL), linking data across sources without exposure; Synthetic Data
Generation, creating artificial datasets for safe analysis; and Adver-
sarial Learning Techniques, enhancing data or model resistance to
privacy attacks.

Given the extensive range of these techniques, it is not feasible to
dive into each in depth within a single course or discussion, let alone
for anyone to know it all in its glorious detail. Therefore, we will ex-
plore a few specific techniques in relative detail, providing a deeper
understanding of their principles, applications, and the unique privacy
challenges they address in machine learning. This focused approach
will give us a more comprehensive and practical understanding of key
privacy-preserving methods in modern ML systems.

14.8.1 Differential Privacy

14.8.1.1 Core Idea

Differential Privacy is a framework for quantifying and managing the
privacy of individuals in a dataset (Dwork et al. 2006). It provides a
mathematical guarantee that the privacy of individuals in the dataset
will not be compromised, regardless of any additional knowledge an

14.8. Privacy-Preserving ML Techniques 606

attacker may possess. The core idea of differential Privacy is that the
outcome of any analysis (like a statistical query) should be essentially
the same, whether any individual’s data is included in the dataset or
not. This means that by observing the analysis result, one cannot de-
termine whether any individual’s data was used in the computation.

For example, let’s say a database contains medical records for 10 pa-
tients. We want to release statistics about the prevalence of diabetes
in this sample without revealing one patient’s condition. To do this,
we could add a small amount of random noise to the true count before
releasing it. If the true number of diabetes patients is 6, we might add
noise from a Laplace distribution to randomly output 5, 6, or 7 each
with some probability. An observer now can’t tell if any single patient
has diabetes based only on the noisy output. The query result looks
similar to whether each patient’s data is included or excluded. This is
differential Privacy. More formally, a randomized algorithm satisfies
ε-differential Privacy if, for any neighbor databases D and D� differing
by only one entry, the probability of any outcome changes by at most
a factor of ε. A lower ε provides stronger privacy guarantees.

The Laplace Mechanism is one of the most straightforward and com-
monly used methods to achieve differential Privacy. It involves adding
noise that follows a Laplace distribution to the data or query results.
Apart from the Laplace Mechanism, the general principle of adding
noise is central to differential Privacy. The idea is to add random noise
to the data or the results of a query. The noise is calibrated to ensure
the necessary privacy guarantee while keeping the data useful.

While the Laplace distribution is common, other distributions
like Gaussian can also be used. Laplace noise is used for strict
ε-differential Privacy for low-sensitivity queries. In contrast, Gaussian
distributions can be used when Privacy is not guaranteed, known
as (ϵ, �)-Differential Privacy. In this relaxed version of differential
Privacy, epsilon and delta define the amount of Privacy guaranteed
when releasing information or a model related to a dataset. Epsilon
sets a bound on how much information can be learned about the data
based on the output. At the same time, delta allows for a small prob-
ability of the privacy guarantee to be violated. The choice between
Laplace, Gaussian, and other distributions will depend on the specific
requirements of the query and the dataset and the tradeoff between
Privacy and accuracy.

To illustrate the tradeoff of Privacy and accuracy in (𝜖, 𝛿)-differential
Privacy, the following graphs in Figure 14.12 show the results on accu-
racy for different noise levels on the MNIST dataset, a large dataset of
handwritten digits (Abadi et al. 2016). The delta value (black line; right
y-axis) denotes the level of privacy relaxation (a high value means Pri-

CHAPTER 14. SECURITY & PRIVACY 607

vacy is less stringent). As Privacy becomes more relaxed, the accuracy
of the model increases.

Figure 14.12.: Privacy-accuracy
tradeoff. Source: Abadi et al.
(2016).

The key points to remember about differential Privacy are the fol-
lowing:

• Adding Noise: The fundamental technique in differential
Privacy is adding controlled random noise to the data or query
results. This noise masks the contribution of individual data
points.

• Balancing Act: There’s a balance between Privacy and accuracy.
More noise (lower ϵ) in the data means higher Privacy but less
accuracy in the model’s results.

• Universality: Differential Privacy doesn’t rely on assumptions
about what an attacker knows. This makes it robust against re-
identification attacks, where an attacker tries to uncover individ-
ual data.

• Applicability: It can be applied to various types of data and
queries, making it a versatile tool for privacy-preserving data
analysis.

14.8.1.2 Tradeoffs

There are several tradeoffs to make with differential Privacy, as is the
case with any algorithm. But let’s focus on the computational-specific
tradeoffs since we care about ML systems. There are some key compu-
tational considerations and tradeoffs when implementing differential
Privacy in a machine-learning system:

Noise generation: Implementing differential Privacy introduces
several important computational tradeoffs compared to standard
machine learning techniques. One major consideration is the need
to securely generate random noise from distributions like Laplace
or Gaussian that get added to query results and model outputs.

14.8. Privacy-Preserving ML Techniques 608

High-quality cryptographic random number generation can be
computationally expensive.

Sensitivity analysis: Another key requirement is rigorously track-
ing the sensitivity of the underlying algorithms to single data points
getting added or removed. This global sensitivity analysis is required
to calibrate the noise levels properly. However, analyzing worst-case
sensitivity can substantially increase computational complexity for
complex model training procedures and data pipelines.

Privacy budget management: Managing the privacy loss budget
across multiple queries and learning iterations is another bookkeep-
ing overhead. The system must keep track of cumulative privacy costs
and compose them to explain overall privacy guarantees. This adds a
computational burden beyond just running queries or training models.

Batch vs. online tradeoffs: For online learning systems with continu-
ous high-volume queries, differentially private algorithms require new
mechanisms to maintain utility and prevent too much accumulated
privacy loss since each query can potentially alter the privacy budget.
Batch ofÒine processing is simpler from a computational perspective
as it processes data in large batches, where each batch is treated as a
single query. High-dimensional sparse data also increases sensitivity
analysis challenges.

Distributed training: When training models using distributed or
federated approaches, new cryptographic protocols are needed to
track and bound privacy leakage across nodes. Secure multiparty com-
putation with encrypted data for differential Privacy adds substantial
computational load.

While differential Privacy provides strong formal privacy guaran-
tees, implementing it rigorously requires additions and modifications
to the machine learning pipeline at a computational cost. Managing
these overheads while preserving model accuracy remains an active
research area.

14.8.1.3 Case Study

Apple’s implementation of differential Privacy in iOS and MacOS pro-
vides a prominent real-world example of how differential Privacy can
be deployed at large scale. Apple wanted to collect aggregated usage
statistics across their ecosystem to improve products and services, but
aimed to do so without compromising individual user privacy.

To achieve this, they implemented differential privacy techniques di-
rectly on user devices to anonymize data points before sending them
to Apple servers. Specifically, Apple uses the Laplace mechanism to
inject carefully calibrated random noise. For example, suppose a user’s
location history contains [Work, Home, Work, Gym, Work, Home]. In

../training/training.qmd
../optimizations/optimizations.qmd
https://machinelearning.apple.com/research/learning-with-privacy-at-scale#DMNS06
https://docs-assets.developer.apple.com/ml-research/papers/learning-with-privacy-at-scale.pdf
https://docs-assets.developer.apple.com/ml-research/papers/learning-with-privacy-at-scale.pdf

CHAPTER 14. SECURITY & PRIVACY 609

that case, the differentially private version might replace the exact lo-
cations with a noisy sample like [Gym, Home, Work, Work, Home,
Work].

Apple tunes the Laplace noise distribution to provide a high level of
Privacy while preserving the utility of aggregated statistics. Increasing
noise levels provides stronger privacy guarantees (lower ε values in DP
terminology) but can reduce data utility. Apple’s privacy engineers
empirically optimized this tradeoff based on their product goals.

Apple obtains high-fidelity aggregated statistics by aggregating hun-
dreds of millions of noisy data points from devices. For instance, they
can analyze new iOS apps’ features while masking any user’s app be-
haviors. On-device computation avoids sending raw data to Apple
servers.

The system uses hardware-based secure random number generation
to sample from the Laplace distribution on devices efÏciently. Apple
also had to optimize its differentially private algorithms and pipeline
to operate under the computational constraints of consumer hardware.

Multiple third-party audits have verified that Apple’s system pro-
vides rigorous differential privacy protections in line with their stated
policies. Of course, assumptions around composition over time and
potential re-identification risks still apply. Apple’s deployment shows
how differential Privacy can be realized in large real-world products
when backed by sufÏcient engineering resources.

Exercise 27: Differential Privacy - TensorFlow Privacy

Want to train an ML model without compromising anyone’s se-
crets? Differential Privacy is like a superpower for your data! In
this Colab, we’ll use TensorFlow Privacy to add special noise dur-
ing training. This makes it way harder for anyone to determine
if a single person’s data was used, even if they have sneaky ways
of peeking at the model.

14.8.2 Federated Learning

14.8.2.1 Core Idea

Federated Learning (FL) is a type of machine learning in which a
model is built and distributed across multiple devices or servers while
keeping the training data localized. It was previously discussed in

https://colab.research.google.com/github/tensorflow/privacy/blob/master/g3doc/tutorials/classification_privacy.ipynb

14.8. Privacy-Preserving ML Techniques 610

the Model Optimizations chapter. Still, we will recap it here briefly to
complete it and focus on things that pertain to this chapter.

FL trains machine learning models across decentralized networks
of devices or systems while keeping all training data localized. Fig-
ure 14.13 illustrates this process: each participating device leverages
its local data to calculate model updates, which are then aggregated
to build an improved global model. However, the raw training
data is never directly shared, transferred, or compiled. This privacy-
preserving approach allows for the joint development of ML models
without centralizing the potentially sensitive training data in one
place.

Figure 14.13.: Federated Learn-
ing lifecycle. Source: Jin et al.
(2020).

One of the most common model aggregation algorithms is Federated
Averaging (FedAvg), where the global model is created by averaging
all of the parameters from local parameters. While FedAvg works well
with independent and identically distributed data (IID), alternate al-
gorithms like Federated Proximal (FedProx) are crucial in real-world
applications where data is often non-IID. FedProx is designed for the
FL process when there is significant heterogeneity in the client updates
due to diverse data distributions across devices, computational capa-
bilities, or varied amounts of data.

By leaving the raw data distributed and exchanging only tempo-
rary model updates, federated learning provides a more secure and
privacy-enhancing alternative to traditional centralized machine learn-
ing pipelines. This allows organizations and users to benefit collabora-
tively from shared models while maintaining control and ownership
over sensitive data. The decentralized nature of FL also makes it robust
to single points of failure.

Imagine a group of hospitals that want to collaborate on a study to
predict patient outcomes based on their symptoms. However, they

../optimizations/optimizations.qmd

CHAPTER 14. SECURITY & PRIVACY 611

cannot share their patient data due to privacy concerns and regulations
like HIPAA. Here’s how Federated Learning can help.

• Local Training: Each hospital trains a machine learning model
on patient data. This training happens locally, meaning the data
never leaves the hospital’s servers.

• Model Sharing: After training, each hospital only sends the
model (specifically, its parameters or weights) to a central server.
It does not send any patient data.

• Aggregating Models: The central server aggregates these mod-
els from all hospitals into a single, more robust model. This pro-
cess typically involves averaging the model parameters.

• Benefit: The result is a machine learning model that has learned
from a wide range of patient data without sharing sensitive data
or removing it from its original location.

14.8.2.2 Tradeoffs

There are several system performance-related aspects of FL in machine
learning systems. It would be wise to understand these tradeoffs be-
cause there is no “free lunch” for preserving Privacy through FL (T. Li
et al. 2020).

Communication Overhead and Network Constraints: In FL, one
of the most significant challenges is managing the communication
overhead. This involves the frequent transmission of model updates
between a central server and numerous client devices, which can be
bandwidth-intensive. The total number of communication rounds
and the size of transmitted messages per round need to be reduced to
minimize communication further. This can lead to substantial network
trafÏc, especially in scenarios with many participants. Additionally,
latency becomes a critical factor — the time taken for these updates
to be sent, aggregated, and redistributed can introduce delays. This
affects the overall training time and impacts the system’s responsive-
ness and real-time capabilities. Managing this communication while
minimizing bandwidth usage and latency is crucial for implementing
FL.

Computational Load on Local Devices: FL relies on client devices
(like smartphones or IoT devices, which especially matter in TinyML)
for model training, which often have limited computational power and
battery life. Running complex machine learning algorithms locally can
strain these resources, leading to potential performance issues. More-
over, the capabilities of these devices can vary significantly, resulting

14.8. Privacy-Preserving ML Techniques 612

in uneven contributions to the model training process. Some devices
process updates faster and more efÏciently than others, leading to dis-
parities in the learning process. Balancing the computational load to
ensure consistent participation and efÏciency across all devices is a key
challenge in FL.

Model Training EfÏciency: FL’s decentralized nature can impact
model training’s efÏciency. Achieving convergence, where the model
no longer significantly improves, can be slower in FL than in central-
ized training methods. This is particularly true in cases where the
data is non-IID (non-independent and identically distributed) across
devices. Additionally, the algorithms used for aggregating model up-
dates play a critical role in the training process. Their efÏciency di-
rectly affects the speed and effectiveness of learning. Developing and
implementing algorithms that can handle the complexities of FL while
ensuring timely convergence is essential for the system’s performance.

Scalability Challenges: Scalability is a significant concern in FL, es-
pecially as the number of participating devices increases. Managing
and coordinating model updates from many devices adds complexity
and can strain the system. Ensuring that the system architecture can
efÏciently handle this increased load without degrading performance
is crucial. This involves not just handling the computational and com-
munication aspects but also maintaining the quality and consistency
of the model as the scale of the operation grows. A key challenge is
designing FL systems that scale effectively while maintaining perfor-
mance.

Data Synchronization and Consistency: Ensuring data synchro-
nization and maintaining model consistency across all participating
devices in FL is challenging. Keeping all devices synchronized
with the latest model version can be difÏcult in environments with
intermittent connectivity or devices that go ofÒine periodically. Fur-
thermore, maintaining consistency in the learned model, especially
when dealing with a wide range of devices with different data distri-
butions and update frequencies, is crucial. This requires sophisticated
synchronization and aggregation strategies to ensure that the final
model accurately reflects the learnings from all devices.

Energy Consumption: The energy consumption of client devices
in FL is a critical factor, particularly for battery-powered devices like
smartphones and other TinyML/IoT devices. The computational de-
mands of training models locally can lead to significant battery drain,
which might discourage continuous participation in the FL process.
Balancing the computational requirements of model training with en-
ergy efÏciency is essential. This involves optimizing algorithms and
training processes to reduce energy consumption while achieving ef-

CHAPTER 14. SECURITY & PRIVACY 613

fective learning outcomes. Ensuring energy-efÏcient operation is key
to user acceptance and the sustainability of FL systems.

14.8.2.3 Case Studies

Here are a couple of real-world case studies that can illustrate the use
of federated learning:

14.8.2.3.1 Google Gboard. Google uses federated learning to im-
prove predictions on its Gboard mobile keyboard app. The app runs
a federated learning algorithm on users’ devices to learn from their
local usage patterns and text predictions while keeping user data pri-
vate. The model updates are aggregated in the cloud to produce an
enhanced global model. This allows for providing next-word predic-
tions personalized to each user’s typing style while avoiding directly
collecting sensitive typing data. Google reported that the federated
learning approach reduced prediction errors by 25% compared to the
baseline while preserving Privacy.

14.8.2.3.2 Healthcare Research. The UK Biobank and American
College of Cardiology combined datasets to train a model for heart
arrhythmia detection using federated learning. The datasets could not
be combined directly due to legal and Privacy restrictions. Federated
learning allowed collaborative model development without sharing
protected health data, with only model updates exchanged between
the parties. This improved model accuracy as it could leverage a wider
diversity of training data while meeting regulatory requirements.

14.8.2.3.3 Financial Services. Banks are exploring using federated
learning for anti-money laundering (AML) detection models. Multiple
banks could jointly improve AML Models without sharing confiden-
tial customer transaction data with competitors or third parties. Only
the model updates need to be aggregated rather than raw transaction
data. This allows access to richer training data from diverse sources
while avoiding regulatory and confidentiality issues around sharing
sensitive financial customer data.

These examples demonstrate how federated learning provides tan-
gible privacy benefits and enables collaborative ML in settings where
direct data sharing is impossible.

14.8.3 Machine Unlearning

14.8. Privacy-Preserving ML Techniques 614

14.8.3.1 Core Idea

Machine unlearning is a fairly new process that describes how the in-
fluence of a subset of training data can be removed from the model.
Several methods have been used to perform machine unlearning and
remove the influence of a subset of training data from the final model.
A baseline approach might consist of simply fine-tuning the model
for more epochs on just the data that should be remembered to de-
crease the influence of the data “forgotten” by the model. Since this
approach doesn’t explicitly remove the influence of data that should be
erased, membership inference attacks are still possible, so researchers
have adopted other approaches to unlearn data from a model explicitly.
One type of approach that researchers have adopted includes adjusting
the model loss function to treat the losses of the “forget set explicitly”
(data to be unlearned) and the “retain set” (remaining data that should
still be remembered) differently (Tarun et al. 2022; Khan and Swaroop
2021).

14.8.3.2 Case Study

Some researchers have demonstrated a real-life example of machine
unlearning approaches applied to SOTA machine learning models
through training an LLM, LLaMA2-7b, to unlearn any references to
Harry Potter (Eldan and Russinovich 2023). Though this model took
184K GPU hours to pre-train, it only took 1 GPU hour of fine-tuning
to erase the model’s ability to generate or recall Harry Potter-related
content without noticeably compromising the accuracy of generating
content unrelated to Harry Potter. Figure 14.14 demonstrates how the
model output changes before (Llama-7b-chat-hf column) and after
(Finetuned Llama-b column) unlearning has occurred.

14.8.3.3 Other Uses

14.8.3.3.1 Removing adversarial data. Deep learning models have
previously been shown to be vulnerable to adversarial attacks, in
which the attacker generates adversarial data similar to the original
training data, where a human cannot tell the difference between
the real and fabricated data. The adversarial data results in the
model outputting incorrect predictions, which could have detrimental
consequences in various applications, including healthcare diagnosis
predictions. Machine unlearning has been used to unlearn the influ-
ence of adversarial data to prevent these incorrect predictions from
occurring and causing any harm.

https://arxiv.org/pdf/2209.02299.pdf
https://arxiv.org/pdf/2209.02299.pdf

CHAPTER 14. SECURITY & PRIVACY 615

Figure 14.14.: Llama unlearn-
ing Harry Potter. Source: El-
dan and Russinovich (2023).

14.8. Privacy-Preserving ML Techniques 616

14.8.4 Homomorphic Encryption

14.8.4.1 Core Idea

Homomorphic encryption is a form of encryption that allows com-
putations to be carried out on ciphertext, generating an encrypted re-
sult that, when decrypted, matches the result of operations performed
on the plaintext. For example, multiplying two numbers encrypted
with homomorphic encryption produces an encrypted product that
decrypts the actual product of the two numbers. This means that data
can be processed in an encrypted form, and only the resulting output
needs to be decrypted, significantly enhancing data security, especially
for sensitive information.

Homomorphic encryption enables outsourced computation on
encrypted data without exposing the data itself to the external party
performing the operations. However, only certain computations
like addition and multiplication are supported in partially homo-
morphic schemes. Fully homomorphic encryption (FHE) that can
handle any computation is even more complex. The number of
possible operations is limited before noise accumulation corrupts the
ciphertext.

To use homomorphic encryption across different entities, carefully
generated public keys must be exchanged for operations across sep-
arately encrypted data. This advanced encryption technique enables
previously impossible secure computation paradigms but requires ex-
pertise to implement correctly for real-world systems.

14.8.4.2 Benefits

Homomorphic encryption enables machine learning model training
and inference on encrypted data, ensuring that sensitive inputs and
intermediate values remain confidential. This is critical in healthcare,
finance, genetics, and other domains, which are increasingly relying
on ML to analyze sensitive and regulated data sets containing billions
of personal records.

Homomorphic encryption thwarts attacks like model extraction and
membership inference that could expose private data used in ML work-
flows. It provides an alternative to TEEs using hardware enclaves for
confidential computing. However, current schemes have high com-
putational overheads and algorithmic limitations that constrain real-
world applications.

Homomorphic encryption realizes the decades-old vision of secure
multiparty computation by allowing computation on ciphertexts. Con-
ceptualized in the 1970s, the first fully homomorphic cryptosystems

CHAPTER 14. SECURITY & PRIVACY 617

emerged in 2009, enabling arbitrary computations. Ongoing research
is making these techniques more efÏcient and practical.

Homomorphic encryption shows great promise in enabling privacy-
preserving machine learning under emerging data regulations. How-
ever, given constraints, one should carefully evaluate its applicability
against other confidential computing approaches. Extensive resources
exist to explore homomorphic encryption and track progress in easing
adoption barriers.

14.8.4.3 Mechanics

1. Data Encryption: Before data is processed or sent to an ML
model, it is encrypted using a homomorphic encryption scheme
and public key. For example, encrypting numbers 𝑥 and 𝑦
generates ciphertexts 𝐸(𝑥) and 𝐸(𝑦).

2. Computation on Ciphertext: The ML algorithm processes the
encrypted data directly. For instance, multiplying the ciphertexts𝐸(𝑥) and 𝐸(𝑦) generates 𝐸(𝑥𝑦). More complex model training
can also be done on ciphertexts.

3. Result Encryption: The result 𝐸(𝑥𝑦) remains encrypted and can
only be decrypted by someone with the corresponding private
key to reveal the actual product 𝑥𝑦.

Only authorized parties with the private key can decrypt the final
outputs, protecting the intermediate state. However, noise accumu-
lates with each operation, preventing further computation without de-
cryption.

Beyond healthcare, homomorphic encryption enables confidential
computing for applications like financial fraud detection, insurance
analytics, genetics research, and more. It offers an alternative to tech-
niques like multiparty computation and TEEs. Ongoing research im-
proves the efÏciency and capabilities.

Tools like HElib, SEAL, and TensorFlow HE provide libraries for
exploring implementing homomorphic encryption in real-world ma-
chine learning pipelines.

14.8.4.4 Tradeoffs

For many real-time and embedded applications, fully homomorphic
encryption remains impractical for the following reasons.

Computational Overhead: Homomorphic encryption imposes
very high computational overheads, often resulting in slowdowns of
over 100x for real-world ML applications. This makes it impractical

14.8. Privacy-Preserving ML Techniques 618

for many time-sensitive or resource-constrained uses. Optimized
hardware and parallelization can alleviate but not eliminate this issue.

Complexity of Implementation The sophisticated algorithms
require deep expertise in cryptography to be implemented correctly.
Nuances like format compatibility with floating point ML models
and scalable key management pose hurdles. This complexity hinders
widespread practical adoption.

Algorithmic Limitations: Current schemes restrict the functions
and depth of computations supported, limiting the models and data
volumes that can be processed. Ongoing research is pushing these
boundaries, but restrictions remain.

HardwareAcceleration: Homomorphic encryption requires special-
ized hardware, such as secure processors or coprocessors with TEEs,
which adds design and infrastructure costs.

HybridDesigns: Rather than encrypting entire workflows, selective
application of homomorphic encryption to critical subcomponents can
achieve protection while minimizing overheads.

Exercise 28: Homomorphic Encryption

Ready to unlock the power of encrypted computation? Homo-
morphic encryption is like a magic trick for your data! In this
Colab, we’ll learn how to do calculations on secret numbers with-
out ever revealing them. Imagine training a model on data you
can’t even see – that’s the power of this mind-bending technol-
ogy.

14.8.5 Secure Multiparty Communication

14.8.5.1 Core Idea

The overarching goal of Multi-Party Communication (MPC) is to en-
able different parties to jointly compute a function over their inputs
while keeping those inputs private. For example, two organizations
may want to collaborate on training a machine learning model by com-
bining their respective data sets. Still, they cannot directly reveal that
data due to Privacy or confidentiality constraints. MPC provides pro-
tocols and techniques that allow them to achieve the benefits of pooled
data for model accuracy without compromising the privacy of each or-
ganization’s sensitive data.

https://colab.research.google.com/drive/1GjKT5Lgh9Madjsyr9UiyeogUgVpTEBMp?usp=sharing

CHAPTER 14. SECURITY & PRIVACY 619

At a high level, MPC works by carefully splitting the computation
into parts that each party can execute independently using their pri-
vate input. The results are then combined to reveal only the final out-
put of the function and nothing about the intermediate values. Crypto-
graphic techniques are used to guarantee that the partial results remain
private provably.

Let’s take a simple example of an MPC protocol. One of the most
basic MPC protocols is the secure addition of two numbers. Each party
splits its input into random shares that are secretly distributed. They
exchange the shares and locally compute the sum of the shares, which
reconstructs the final sum without revealing the individual inputs. For
example, if Alice has input x and Bob has input y:

1. Alice generates random 𝑥1 and sets 𝑥2 = 𝑥−𝑥1
2. Bob generates random 𝑦1 and sets 𝑦2 = 𝑦 −𝑦1
3. Alice sends 𝑥1 to Bob, Bob sends 𝑦1 to Alice (keeping 𝑥2 and 𝑦2

secret)

4. Alice computes 𝑥2 +𝑦1 = 𝑠1, Bob computes 𝑥1 +𝑦2 = 𝑠2
5. 𝑠1 +𝑠2 = 𝑥+𝑦 is the final sum, without revealing 𝑥 or 𝑦.

Alice’s and Bob’s individual inputs (𝑥 and 𝑦) remain private, and
each party only reveals one number associated with their original in-
puts. The random outputs ensure that no information about the origi-
nal numbers disclosed.

Secure Comparison: Another basic operation is a secure compari-
son of two numbers, determining which is greater than the other. This
can be done using techniques like Yao’s Garbled Circuits, where the
comparison circuit is encrypted to allow joint evaluation of the inputs
without leaking them.

SecureMatrixMultiplication: Matrix operations like multiplication
are essential for machine learning. MPC techniques like additive se-
cret sharing can be used to split matrices into random shares, compute
products on the shares, and then reconstruct the result.

SecureModel Training: Distributed machine learning training algo-
rithms like federated averaging can be made secure using MPC. Model
updates computed on partitioned data at each node are secretly shared
between nodes and aggregated to train the global model without ex-
posing individual updates.

The core idea behind MPC protocols is to divide the computation
into steps that can be executed jointly without revealing intermediate

14.8. Privacy-Preserving ML Techniques 620

sensitive data. This is accomplished by combining cryptographic tech-
niques like secret sharing, homomorphic encryption, oblivious trans-
fer, and garbled circuits. MPC protocols enable the collaborative com-
putation of sensitive data while providing provable privacy guaran-
tees. This privacy-preserving capability is essential for many machine
learning applications today involving multiple parties that cannot di-
rectly share their raw data.

The main approaches used in MPC include:

• Homomorphic encryption: Special encryption allows computa-
tions to be carried out on encrypted data without decrypting it.

• Secret sharing: The private data is divided into random shares
distributed to each party. Computations are done locally on the
shares and finally reconstructed.

• Oblivious transfer: A protocol where a receiver obtains a sub-
set of data from a sender, but the sender does not know which
specific data was transferred.

• Garbled circuits: The function to be computed is represented
as a Boolean circuit that is encrypted (“garbled”) to allow joint
evaluation without revealing inputs.

14.8.5.2 Tradeoffs

While MPC protocols provide strong privacy guarantees, they come at
a high computational cost compared to plain computations. Every se-
cure operation, like addition, multiplication, comparison, etc., requires
more processing orders than the equivalent unencrypted operation.
This overhead stems from the underlying cryptographic techniques:

• In partially homomorphic encryption, each computation on ci-
phertexts requires costly public-key operations. Fully homomor-
phic encryption has even higher overheads.

• Secret sharing divides data into multiple shares, so even basic
operations require manipulating many shares.

• Oblivious transfer and garbled circuits add masking and encryp-
tion to hide data access patterns and execution flows.

• MPC systems require extensive communication and interaction
between parties to compute on shares/ciphertexts jointly.

CHAPTER 14. SECURITY & PRIVACY 621

As a result, MPC protocols can slow down computations by 3-4 or-
ders of magnitude compared to plain implementations. This becomes
prohibitively expensive for large datasets and models. Therefore, train-
ing machine learning models on encrypted data using MPC remains
infeasible today for realistic dataset sizes due to the overhead. Clever
optimizations and approximations are needed to make MPC practical.

Ongoing MPC research closes this efÏciency gap through cryp-
tographic advances, new algorithms, trusted hardware like SGX
enclaves, and leveraging accelerators like GPUs/TPUs. However,
in the foreseeable future, some degree of approximation and per-
formance tradeoff is needed to scale MPC to meet the demands of
real-world machine learning systems.

14.8.6 Synthetic Data Generation

14.8.6.1 Core Idea

Synthetic data generation has emerged as an important privacy-
preserving machine learning approach that allows models to be
developed and tested without exposing real user data. The key
idea is to train generative models on real-world datasets and then
sample from these models to synthesize artificial data that statistically
match the original data distribution but does not contain actual user
information. For example, a GAN could be trained on a dataset of
sensitive medical records to learn the underlying patterns and then
used to sample synthetic patient data.

The primary challenge of synthesizing data is to ensure adversaries
are unable to re-identify the original dataset. A simple approach to
achieving synthetic data is adding noise to the original dataset, which
still risks privacy leakage. When noise is added to data in the context
of differential privacy, sophisticated mechanisms based on the data’s
sensitivity are used to calibrate the amount and distribution of noise.
Through these mathematically rigorous frameworks, differential Pri-
vacy generally guarantees Privacy at some level, which is the primary
goal of this privacy-preserving technique. Beyond preserving privacy,
synthetic data combats multiple data availability issues such as imbal-
anced datasets, scarce datasets, and anomaly detection.

Researchers can freely share this synthetic data and collaborate
on modeling without revealing private medical information. Well-
constructed synthetic data protects Privacy while providing utility for
developing accurate models. Key techniques to prevent reconstructing
the original data include adding differential privacy noise during
training, enforcing plausibility constraints, and using multiple diverse

14.8. Privacy-Preserving ML Techniques 622

generative models. Here are some common approaches for generating
synthetic data:

• Generative Adversarial Networks (GANs): GANs are an AI al-
gorithm used in unsupervised learning where two neural net-
works compete against each other in a game. Figure 14.15 is an
overview of the GAN system. The generator network (big red
box) is responsible for producing the synthetic data, and the dis-
criminator network (yellow box) evaluates the authenticity of the
data by distinguishing between fake data created by the genera-
tor network and the real data. The generator and discriminator
networks learn and update their parameters based on the results.
The discriminator acts as a metric on how similar the fake and
real data are to one another. It is highly effective at generating
realistic data and is a popular approach for generating synthetic
data.

Figure 14.15.: Flowchart of
GANs. Source: Rosa and Papa
(2021).

• Variational Autoencoders (VAEs): VAEs are neural networks ca-
pable of learning complex probability distributions and balanc-
ing data generation quality and computational efÏciency. They
encode data into a latent space where they learn the distribution
to decode the data back.

• Data Augmentation: This involves transforming existing data to
create new, altered data. For example, flipping, rotating, and
scaling (uniformly or non-uniformly) original images can help
create a more diverse, robust image dataset before training an
ML model.

• Simulations: Mathematical models can simulate real-world sys-
tems or processes to mimic real-world phenomena. This is highly
useful in scientific research, urban planning, and economics.

CHAPTER 14. SECURITY & PRIVACY 623

14.8.6.2 Benefits

While synthetic data may be necessary due to Privacy or compliance
risks, it is widely used in machine learning models when available
data is of poor quality, scarce, or inaccessible. Synthetic data offers
more efÏcient and effective development by streamlining robust model
training, testing, and deployment processes. It allows researchers to
share models more widely without breaching privacy laws and regu-
lations. Collaboration between users of the same dataset will be facil-
itated, which will help broaden the capabilities and advancements in
ML research.

There are several motivations for using synthetic data in machine
learning:

• Privacy and compliance: Synthetic data avoids exposing per-
sonal information, allowing more open sharing and collabora-
tion. This is important when working with sensitive datasets like
healthcare records or financial information.

• Data scarcity: When insufÏcient real-world data is available, syn-
thetic data can augment training datasets. This improves model
accuracy when limited data is a bottleneck.

• Model testing: Synthetic data provides privacy-safe sandboxes
for testing model performance, debugging issues, and monitor-
ing for bias.

• Data labeling: High-quality labeled training data is often scarce
and expensive. Synthetic data can help auto-generate labeled ex-
amples.

14.8.6.3 Tradeoffs

While synthetic data tries to remove any evidence of the original
dataset, privacy leakage is still a risk since the synthetic data mimics
the original data. The statistical information and distribution are
similar, if not the same, between the original and synthetic data. By
resampling from the distribution, adversaries may still be able to
recover the original training samples. Due to their inherent learning
processes and complexities, neural networks might accidentally reveal
sensitive information about the original training data.

A core challenge with synthetic data is the potential gap between
synthetic and real-world data distributions. Despite advancements in
generative modeling techniques, synthetic data may only partially cap-
ture real data’s complexity, diversity, and nuanced patterns. This can

14.8. Privacy-Preserving ML Techniques 624

limit the utility of synthetic data for robustly training machine learning
models. Rigorously evaluating synthetic data quality through adver-
sary methods and comparing model performance to real data bench-
marks helps assess and improve fidelity. However, inherently, syn-
thetic data remains an approximation.

Another critical concern is the privacy risks of synthetic data. Gen-
erative models may leak identifiable information about individuals
in the training data, which could enable reconstruction of private
information. Emerging adversarial attacks demonstrate the chal-
lenges in preventing identity leakage from synthetic data generation
pipelines. Techniques like differential Privacy can help safeguard
Privacy but come with tradeoffs in data utility. There is an inherent
tension between producing useful synthetic data and fully protecting
sensitive training data, which must be balanced.

Additional pitfalls of synthetic data include amplified biases, mis-
labeling, the computational overhead of training generative models,
storage costs, and failure to account for out-of-distribution novel data.
While these are secondary to the core synthetic-real gap and privacy
risks, they remain important considerations when evaluating the suit-
ability of synthetic data for particular machine-learning tasks. As with
any technique, the advantages of synthetic data come with inherent
tradeoffs and limitations that require thoughtful mitigation strategies.

14.8.7 Summary

While all the techniques we have discussed thus far aim to enable
privacy-preserving machine learning, they involve distinct mecha-
nisms and tradeoffs. Factors like computational constraints, required
trust assumptions, threat models, and data characteristics help guide
the selection process for a particular use case. However, finding the
right balance between Privacy, accuracy, and efÏciency necessitates
experimentation and empirical evaluation for many applications. Ta-
ble 14.2 is a comparison table of the key privacy-preserving machine
learning techniques and their pros and cons:

CHAPTER 14. SECURITY & PRIVACY 625

Table 14.2.: Comparing techniques for privacy-preserving machine
learning.

Technique Pros Cons
Differential
Privacy

• Strong formal
privacy guarantees

• Robust to auxiliary
data attacks

• Versatile for many
data types and
analyses

• Accuracy loss from
noise addition

• Computational
overhead for
sensitivity analysis
and noise generation

Federated
Learning

• Allows collaborative
learning without
sharing raw data

• Data remains
decentralized
improving security

• No need for
encrypted
computation

• Increased
communication
overhead

• Potentially slower
model convergence

• Uneven client device
capabilities

Secure
Multi-
Party
Computa-
tion

• Enables joint
computation on
sensitive data

• Provides
cryptographic
privacy guarantees

• Flexible protocols
for various
functions

• Very high
computational
overhead

• Complexity of
implementation

• Algorithmic
constraints on
function depth

Homomorphic
Encryp-
tion

• Allows computation
on encrypted data

• Prevents
intermediate state
exposure

• Extremely high
computational cost

• Complex
cryptographic
implementations

• Restrictions on
function types

Synthetic
Data Gen-
eration

• Enables data
sharing without
leakage

• Mitigates data
scarcity problems

• Synthetic-real gap in
distributions

• Potential for
reconstructing
private data

• Biases and labeling
challenges

14.9. Conclusion 626

14.9 Conclusion
Machine learning hardware security is critical as embedded ML sys-
tems are increasingly deployed in safety-critical domains like medical
devices, industrial controls, and autonomous vehicles. We have ex-
plored various threats spanning hardware bugs, physical attacks, side
channels, supply chain risks, etc. Defenses like TEEs, Secure Boot,
PUFs, and hardware security modules provide multilayer protection
tailored for resource-constrained embedded devices.

However, continual vigilance is essential to track emerging attack
vectors and address potential vulnerabilities through secure engineer-
ing practices across the hardware lifecycle. As ML and embedded
ML spread, maintaining rigorous security foundations that match the
field’s accelerating pace of innovation remains imperative.

14.10 Resources
Here is a curated list of resources to support students and instructors
in their learning and teaching journeys. We are continuously working
on expanding this collection and will add new exercises soon.

Slides

These slides are a valuable tool for instructors to deliver lectures
and for students to review the material at their own pace. We
encourage students and instructors to leverage these slides to
improve their understanding and facilitate effective knowledge
transfer.

• Security.

• Privacy.

• Monitoring after Deployment.

Videos

• Video 23

• Video 24

• Video 25

https://docs.google.com/presentation/d/1jZBi8DS1NUXFdIwNGwofzA4CYRei6lH2e56BOu098-k/edit#slide=id.g1ff987f3d96_0_0
https://docs.google.com/presentation/d/1Wp-5eO4Bmco2f7ppNKsRkE1utuz22PeLvVoREFSChR8/edit#slide=id.g202a5aaf418_0_0
https://docs.google.com/presentation/d/1WlQdk40zJcW9Bx6ua-vKu3sDrMU_iI89BQGMGk6OEB0/edit?usp=drive_link

CHAPTER 14. SECURITY & PRIVACY 627

Exercises

To reinforce the concepts covered in this chapter, we have curated
a set of exercises that challenge students to apply their knowl-
edge and deepen their understanding.

• Exercise 27

• Exercise 28

Labs

In addition to exercises, we offer a series of hands-on labs allow-
ing students to gain practical experience with embedded AI tech-
nologies. These labs provide step-by-step guidance, enabling stu-
dents to develop their skills in a structured and supportive envi-
ronment. We are excited to announce that new labs will be avail-
able soon, further enriching the learning experience.

• Coming soon.

629

Chapter 15

Responsible AI

Figure 15.1.: DALL·E 3 Prompt:
Illustration of responsible AI in
a futuristic setting with the uni-
verse in the backdrop: A hu-
man hand or hands nurturing a
seedling that grows into an AI
tree, symbolizing a neural net-
work. The tree has digital branches
and leaves, resembling a neu-
ral network, to represent the in-
terconnected nature of AI. The
background depicts a future uni-
verse where humans and animals
with general intelligence collabo-
rate harmoniously. The scene cap-
tures the initial nurturing of the
AI as a seedling, emphasizing the
ethical development of AI technol-
ogy in harmony with humanity
and the universe.

As machine learning models grow across various domains, these
algorithms have the potential to perpetuate historical biases, breach
privacy, or enable unethical automated decisions if developed without
thoughtful consideration of their societal impacts. Even systems cre-
ated with good intentions can ultimately discriminate against certain
demographic groups, enable surveillance, or lack transparency into
their behaviors and decision-making processes. As such, machine
learning engineers and companies have an ethical responsibility to
proactively ensure principles of fairness, accountability, safety, and
transparency are reflected in their models to prevent harm and build
public trust.

15.1. Introduction 630

Learning Objectives

• Understand responsible AI’s core principles and motiva-
tions, including fairness, transparency, privacy, safety, and
accountability.

• Learn technical methods for implementing responsible AI
principles, such as detecting dataset biases, building in-
terpretable models, adding noise for privacy, and testing
model robustness.

• Recognize organizational and social challenges to achiev-
ing responsible AI, including data quality, model objec-
tives, communication, and job impacts.

• Knowledge of ethical frameworks and considerations for
AI systems, spanning AI safety, human autonomy, and eco-
nomic consequences.

• Appreciate the increased complexity and costs of develop-
ing ethical, trustworthy AI systems compared to unprinci-
pled AI.

15.1 Introduction
Machine learning models are increasingly used to automate decisions
in high-stakes social domains like healthcare, criminal justice, and
employment. However, without deliberate care, these algorithms can
perpetuate biases, breach privacy, or cause other harm. For instance,
a loan approval model solely trained on data from high-income
neighborhoods could disadvantage applicants from lower-income
areas. This motivates the need for responsible machine learning -
creating fair, accountable, transparent, and ethical models.

Several core principles underlie responsible ML. Fairness ensures
models do not discriminate based on gender, race, age, and other at-
tributes. Explainability enables humans to interpret model behaviors
and improve transparency. Robustness and safety techniques prevent
vulnerabilities like adversarial examples. Rigorous testing and valida-
tion help reduce unintended model weaknesses or side effects.

Implementing responsible ML presents both technical and ethical
challenges. Developers must grapple with defining fairness mathemat-
ically, balancing competing objectives like accuracy vs interpretability,
and securing quality training data. Organizations must also align in-

CHAPTER 15. RESPONSIBLE AI 631

centives, policies, and culture to uphold ethical AI.
This chapter will equip you to critically evaluate AI systems and con-

tribute to developing beneficial and ethical machine learning applica-
tions by covering the foundations, methods, and real-world implica-
tions of responsible ML. The responsible ML principles discussed are
crucial knowledge as algorithms mediate more aspects of human soci-
ety.

15.2 Definition

Responsible AI is about developing AI that positively impacts society
under human ethics and values. There is no universally agreed-upon
definition of “responsible AI,” but here is a summary of how it is com-
monly described. Responsible AI refers to designing, developing, and
deploying artificial intelligence systems in an ethical, socially benefi-
cial way. The core goal is to create trustworthy, unbiased, fair, trans-
parent, accountable, and safe AI. While there is no canonical definition,
responsible AI is generally considered to encompass principles such as:

• Fairness: Avoiding biases, discrimination, and potential harm to
certain groups or populations

• Explainability: Enabling humans to understand and interpret
how AI models make decisions

• Transparency: Openly communicating how AI systems operate,
are built, and are evaluated

• Accountability: Having processes to determine responsibility
and liability for AI failures or negative impacts

• Robustness: Ensuring AI systems are secure, reliable, and be-
have as intended

• Privacy: Protecting sensitive user data and adhering to privacy
laws and ethics

Putting these principles into practice involves technical techniques,
corporate policies, governance frameworks, and moral philosophy.
There are also ongoing debates around defining ambiguous concepts
like fairness and determining how to balance competing objectives.

15.3. Principles and Concepts 632

15.3 Principles and Concepts

15.3.1 Transparency and Explainability

Machine learning models are often criticized as mysterious “black
boxes” - opaque systems where it’s unclear how they arrived at
particular predictions or decisions. For example, an AI system called
COMPAS used to assess criminal recidivism risk in the US was found
to be racially biased against black defendants. Still, the opacity of the
algorithm made it difÏcult to understand and fix the problem. This
lack of transparency can obscure biases, errors, and deficiencies.

Explaining model behaviors helps engender trust from the public
and domain experts and enables identifying issues to address. Inter-
pretability techniques like LIME, Shapley values, and saliency maps
empower humans to understand and validate model logic. Laws like
the EU’s GDPR also mandate transparency, which requires explain-
ability for certain automated decisions. Overall, transparency and ex-
plainability are critical pillars of responsible AI.

15.3.2 Fairness, Bias, and Discrimination

ML models trained on historically biased data often perpetuate and
amplify those prejudices. Healthcare algorithms have been shown to
disadvantage black patients by underestimating their needs (Ober-
meyer et al. 2019). Facial recognition needs to be more accurate for
women and people of color. Such algorithmic discrimination can
negatively impact people’s lives in profound ways.

Different philosophical perspectives also exist on fairness - for ex-
ample, is it fairer to treat all individuals equally or try to achieve equal
outcomes for groups? Ensuring fairness requires proactively detecting
and mitigating biases in data and models. However, achieving perfect
fairness is tremendously difÏcult due to contrasting mathematical def-
initions and ethical perspectives. Still, promoting algorithmic fairness
and non-discrimination is a key responsibility in AI development.

15.3.3 Privacy and Data Governance

Maintaining individuals’ privacy is an ethical obligation and legal re-
quirement for organizations deploying AI systems. Regulations like
the EU’s GDPR mandate data privacy protections and rights, such as
the ability to access and delete one’s data.

However, maximizing the utility and accuracy of data for training
models can conflict with preserving privacy - modeling disease pro-

https://doc.wi.gov/Pages/AboutDOC/COMPAS.aspx
https://homes.cs.washington.edu/~marcotcr/blog/lime/

CHAPTER 15. RESPONSIBLE AI 633

gression could benefit from access to patients’ full genomes, but shar-
ing such data widely violates privacy.

Responsible data governance involves carefully anonymizing data,
controlling access with encryption, getting informed consent from data
subjects, and collecting the minimum data needed. Honoring privacy
is challenging but critical as AI capabilities and adoption expand.

15.3.4 Safety and Robustness

Putting AI systems into real-world operation requires ensuring they
are safe, reliable, and robust, especially for human interaction scenar-
ios. Self-driving cars from Uber and Tesla have been involved in deadly
crashes due to unsafe behaviors.

Adversarial attacks that subtly alter input data can also fool ML mod-
els and cause dangerous failures if systems are not resistant. Deepfakes
represent another emerging threat area.

Video 26 is a deepfake video of Barack Obama that went viral a few
years ago.

Video 26: Fake Obama

https://www.youtube.com/watch?v=AmUC4m6w1wo&ab_
channel=BBCNews

Promoting safety requires extensive testing, risk analysis, human
oversight, and designing systems that combine multiple weak mod-
els to avoid single points of failure. Rigorous safety mechanisms are
essential for the responsible deployment of capable AI.

15.3.5 Accountability and Governance

When AI systems eventually fail or produce harmful outcomes, mech-
anisms must exist to address resultant issues, compensate affected par-
ties, and assign responsibility. Both corporate accountability policies
and government regulations are indispensable for responsible AI gov-
ernance. For instance, Illinois’ Artificial Intelligence Video Interview
Act requires companies to disclose and obtain consent for AI video
analysis, promoting accountability.

Without clear accountability, even harms caused unintention-
ally could go unresolved, furthering public outrage and distrust.
Oversight boards, impact assessments, grievance redress processes,
and independent audits promote responsible development and
deployment.

https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html
https://www.washingtonpost.com/technology/2022/06/15/tesla-autopilot-crashes/
https://www.youtube.com/watch?v=AmUC4m6w1wo&ab_channel=BBCNews
https://www.youtube.com/watch?v=AmUC4m6w1wo&ab_channel=BBCNews
https://www.ilga.gov/legislation/ilcs/ilcs3.asp?ActID@15&ChapterIDh
https://www.ilga.gov/legislation/ilcs/ilcs3.asp?ActID@15&ChapterIDh

15.4. Cloud, Edge & Tiny ML 634

15.4 Cloud, Edge & Tiny ML
While these principles broadly apply across AI systems, certain
responsible AI considerations are unique or pronounced when deal-
ing with machine learning on embedded devices versus traditional
server-based modeling. Therefore, we present a high-level taxonomy
comparing responsible AI considerations across cloud, edge, and
TinyML systems.

15.4.1 Summary

Table 15.1 summarizes how responsible AI principles manifest differ-
ently across cloud, edge, and TinyML architectures and how core con-
siderations tie into their unique capabilities and limitations. Each en-
vironment’s constraints and tradeoffs shape how we approach trans-
parency, accountability, governance, and other pillars of responsible
AI.

Table 15.1.: Comparison of key principles in Cloud ML, Edge ML, and
TinyML.

Principle Cloud ML Edge ML TinyML
Explainability Complex

models
supported

Lightweight
required

Severe limits

Fairness Broad data
available

On-device
biases

Limited data
labels

Privacy Cloud data
vulnerabilities

More sensitive
data

Data dispersed

Safety Hacking
threats

Real-world
interaction

Autonomous
devices

Accountability Corporate
policies

Supply chain
issues

Component
tracing

Governance External
oversight
feasible

Self-governance
needed

Protocol
constraints

15.4.2 Explainability

For cloud-based machine learning, explainability techniques can
leverage significant compute resources, enabling complex methods
like SHAP values or sampling-based approaches to interpret model

CHAPTER 15. RESPONSIBLE AI 635

behaviors. For example, Microsoft’s InterpretML toolkit provides
explainability techniques tailored for cloud environments.

However, edge ML operates on resource-constrained devices, re-
quiring more lightweight explainability methods that can run locally
without excessive latency. Techniques like LIME (Ribeiro, Singh,
and Guestrin 2016) approximate model explanations using linear
models or decision trees to avoid expensive computations, which
makes them ideal for resource-constrained devices. However, LIME
requires training hundreds to even thousands of models to generate
good explanations, which is often infeasible given edge computing
constraints. In contrast, saliency-based methods are often much faster
in practice, only requiring a single forward pass through the network
to estimate feature importance. This greater efÏciency makes such
methods better suited to edge devices with limited compute resources
where low-latency explanations are critical.

Given tiny hardware capabilities, embedded systems pose the most
significant challenges for explainability. More compact models and
limited data make inherent model transparency easier. Explaining
decisions may not be feasible on high-size and power-optimized
microcontrollers. DARPA’s Transparent Computing program tries to
develop extremely low overhead explainability, especially for TinyML
devices like sensors and wearables.

15.4.3 Fairness

For cloud machine learning, vast datasets and computing power en-
able detecting biases across large heterogeneous populations and miti-
gating them through techniques like re-weighting data samples. How-
ever, biases may emerge from the broad behavioral data used to train
cloud models. Amazon’s Fairness Flow framework helps assess cloud
ML fairness.

Edge ML relies on limited on-device data, making analyzing biases
across diverse groups harder. However, edge devices interact closely
with individuals, providing an opportunity to adapt locally for fair-
ness. Google’s Federated Learning distributes model training across
devices to incorporate individual differences.

TinyML poses unique challenges for fairness with highly dispersed
specialized hardware and minimal training data. Bias testing is
difÏcult across diverse devices. Collecting representative data from
many devices to mitigate bias has scale and privacy hurdles. DARPA’s
Assured Neuro Symbolic Learning and Reasoning (ANSR) efforts
are geared toward developing fairness techniques given extreme
hardware constraints.

https://www.microsoft.com/en-us/research/uploads/prod/2020/05/InterpretML-Whitepaper.pdf
https://www.darpa.mil/program/transparent-computing
https://blog.research.google/2017/04/federated-learning-collaborative.html
https://www.darpa.mil/news-events/2022-06-03
https://www.darpa.mil/news-events/2022-06-03

15.4. Cloud, Edge & Tiny ML 636

15.4.4 Safety

Key safety risks for cloud ML include model hacking, data poisoning,
and malware disrupting cloud services. Robustness techniques like
adversarial training, anomaly detection, and diversified models aim to
harden cloud ML against attacks. Redundancy can help prevent single
points of failure.

Edge ML and TinyML interact with the physical world, so reliability
and safety validation are critical. Rigorous testing platforms like
Foretellix synthetically generate edge scenarios to validate safety.
TinyML safety is magnified by autonomous devices with limited
supervision. TinyML safety often relies on collective coordination
- swarms of drones maintain safety through redundancy. Physical
control barriers also constrain unsafe TinyML device behaviors.

In summary, safety is crucial but manifests differently in each do-
main. Cloud ML guards against hacking, edge ML interacts physically,
so reliability is key, and TinyML leverages distributed coordination
for safety. Understanding the nuances guides appropriate safety tech-
niques.

15.4.5 Accountability

Cloud ML’s accountability centers on corporate practices like responsi-
ble AI committees, ethical charters, and processes to address harmful
incidents. Third-party audits and external government oversight pro-
mote cloud ML accountability.

Edge ML accountability is more complex with distributed devices
and supply chain fragmentation. Companies are accountable for de-
vices, but components come from various vendors. Industry standards
help coordinate edge ML accountability across stakeholders.

With TinyML, accountability mechanisms must be traced across
long, complex supply chains of integrated circuits, sensors, and
other hardware. TinyML certification schemes help track compo-
nent provenance. Trade associations should ideally promote shared
accountability for ethical TinyML.

15.4.6 Governance

Organizations institute internal governance for cloud ML, such as
ethics boards, audits, and model risk management. But external
governance also oversees cloud ML, like regulations on bias and
transparency such as the AI Bill of Rights, General Data Protection
Regulation (GDPR), and California Consumer Protection Act (CCPA).
Third-party auditing supports cloud ML governance.

https://www.foretellix.com/
https://www.whitehouse.gov/ostp/ai-bill-of-rights/
https://gdpr-info.eu/
https://gdpr-info.eu/
https://oag.ca.gov/privacy/ccpa

CHAPTER 15. RESPONSIBLE AI 637

Edge ML is more decentralized, requiring responsible self-
governance by developers and companies deploying models locally.
Industry associations coordinate governance across edge ML vendors,
and open software helps align incentives for ethical edge ML.

Extreme decentralization and complexity make external governance
infeasible with TinyML. TinyML relies on protocols and standards for
self-governance baked into model design and hardware. Cryptogra-
phy enables the provable trustworthiness of TinyML devices.

15.4.7 Privacy

For cloud ML, vast amounts of user data are concentrated in the cloud,
creating risks of exposure through breaches. Differential privacy tech-
niques add noise to cloud data to preserve privacy. Strict access con-
trols and encryption protect cloud data at rest and in transit.

Edge ML moves data processing onto user devices, reducing
aggregated data collection but increasing potential sensitivity as
personal data resides on the device. Apple uses on-device ML and
differential privacy to train models while minimizing data sharing.
Data anonymization and secure enclaves protect on-device data.

TinyML distributes data across many resource-constrained devices,
making centralized breaches unlikely and making scale anonymiza-
tion challenging. Data minimization and using edge devices as inter-
mediaries help TinyML privacy.

So, while cloud ML must protect expansive centralized data, edge
ML secures sensitive on-device data, and TinyML aims for minimal dis-
tributed data sharing due to constraints. While privacy is vital through-
out, techniques must match the environment. Understanding nuances
allows for selecting appropriate privacy preservation approaches.

15.5 Technical Aspects

15.5.1 Detecting and Mitigating Bias

A large body of work has demonstrated that machine learning models
can exhibit bias, from underperforming people of a certain identity
to making decisions that limit groups’ access to important resources
(Buolamwini and Gebru 2018).

Ensuring fair and equitable treatment for all groups affected by
machine learning systems is crucial as these models increasingly
impact people’s lives in areas like lending, healthcare, and crim-
inal justice. We typically evaluate model fairness by considering
“subgroup attributes” unrelated to the prediction task that capture

15.5. Technical Aspects 638

identities like race, gender, or religion. For example, in a loan default
prediction model, subgroups could include race, gender, or religion.
When models are trained naively to maximize accuracy, they often
ignore subgroup performance. However, this can negatively impact
marginalized communities.

To illustrate, imagine a model predicting loan repayment where the
plusses (+’s) represent repayment and the circles (O’s) represent de-
fault, as shown in Figure 15.2. The optimal accuracy would be cor-
rectly classifying all of Group A while misclassifying some of Group
B’s creditworthy applicants as defaults. If positive classifications allow
access loans, Group A would receive many more loans—which would
naturally result in a biased outcome.

Figure 15.2.: Fairness and accu-
racy.

Alternatively, correcting the biases against Group B would likely
increase “false positives” and reduce accuracy for Group A. Or, we
could train separate models focused on maximizing true positives for
each group. However, this would require explicitly using sensitive
attributes like race in the decision process.

As we see, there are inherent tensions around priorities like accu-
racy versus subgroup fairness and whether to explicitly account for
protected classes. Reasonable people can disagree on the appropriate
tradeoffs. Constraints around costs and implementation options fur-
ther complicate matters. Overall, ensuring the fair and ethical use of
machine learning involves navigating these complex challenges.

Thus, the fairness literature has proposed three main fairness metrics
for quantifying how fair a model performs over a dataset (Hardt, Price,
and Srebro 2016). Given a model h and a dataset D consisting of (x,y,s)
samples, where x is the data features, y is the label, and s is the sub-
group attribute, and we assume there are simply two subgroups a and
b, we can define the following.

1. Demographic Parity asks how accurate a model is for each sub-

CHAPTER 15. RESPONSIBLE AI 639

group. In other words, P(h(X) = Y S = a) = P(h(X) = Y S = b)

2. EqualizedOdds asks how precise a model is on positive and neg-
ative samples for each subgroup. P(h(X) = y S = a, Y = y) = P(h(X)
= y S = b, Y = y)

3. Equality of Opportunity is a special case of equalized odds
that only asks how precise a model is on positive samples.
This is relevant in cases such as resource allocation, where
we care about how positive (i.e., resource-allocated) labels are
distributed across groups. For example, we care that an equal
proportion of loans are given to both men and women. P(h(X) =
1 S = a, Y = 1) = P(h(X) = 1 S = b, Y = 1)

Note: These definitions often take a narrow view when considering
binary comparisons between two subgroups. Another thread of fair
machine learning research focusing on multicalibration and multiaccu-
racy considers the interactions between an arbitrary number of identi-
ties, acknowledging the inherent intersectionality of individual identi-
ties in the real world (Hébert-Johnson et al. 2018).

15.5.1.1 Context Matters

Before making any technical decisions to develop an unbiased ML al-
gorithm, we need to understand the context surrounding our model.
Here are some of the key questions to think about:

• Who will this model make decisions for?
• Who is represented in the training data?
• Who is represented, and who is missing at the table of engineers,

designers, and managers?

• What sort of long-lasting impacts could this model have? For
example, will it impact an individual’s financial security at a
generational scale, such as determining college admissions or
admitting a loan for a house?

• What historical and systematic biases are present in this setting,
and are they present in the training data the model will general-
ize from?

Understanding a system’s social, ethical, and historical background
is critical to preventing harm and should inform decisions through-
out the model development lifecycle. After understanding the context,
one can make various technical decisions to remove bias. First, one

15.5. Technical Aspects 640

must decide what fairness metric is the most appropriate criterion for
optimizing. Next, there are generally three main areas where one can
intervene to debias an ML system.

First, preprocessing is when one balances a dataset to ensure fair rep-
resentation or even increases the weight on certain underrepresented
groups to ensure the model performs well. Second, in processing at-
tempts to modify the training process of an ML system to ensure it
prioritizes fairness. This can be as simple as adding a fairness regular-
izer (Lowy et al. 2021) to training an ensemble of models and sampling
from them in a specific manner (Agarwal et al. 2018).

Finally, post-processing debases a model after the fact, taking a
trained model and modifying its predictions in a specific manner
to ensure fairness is preserved (Alghamdi et al. 2022; Hardt, Price,
and Srebro 2016). Post-processing builds on the preprocessing and
in-processing steps by providing another opportunity to address bias
and fairness issues in the model after it has already been trained.

The three-step process of preprocessing, in-processing, and post-
processing provides a framework for intervening at different stages
of model development to mitigate issues around bias and fairness.
While preprocessing and in-processing focus on data and training,
post-processing allows for adjustments after the model has been fully
trained. Together, these three approaches give multiple opportunities
to detect and remove unfair bias.

15.5.1.2 Thoughtful Deployment

The breadth of existing fairness definitions and debiasing inter-
ventions underscores the need for thoughtful assessment before
deploying ML systems. As ML researchers and developers, responsi-
ble model development requires proactively educating ourselves on
the real-world context, consulting domain experts and end-users, and
centering harm prevention.

Rather than seeing fairness considerations as a box to check, we must
deeply engage with the unique social implications and ethical tradeoffs
around each model we build. Every technical choice about datasets,
model architectures, evaluation metrics, and deployment constraints
embeds values. By broadening our perspective beyond narrow tech-
nical metrics, carefully evaluating tradeoffs, and listening to impacted
voices, we can work to ensure our systems expand opportunity rather
than encode bias.

The path forward lies not in an arbitrary debiasing checklist but in
a commitment to understanding and upholding our ethical responsi-
bility at each step. This commitment starts with proactively educat-
ing ourselves and consulting others rather than just going through the

CHAPTER 15. RESPONSIBLE AI 641

motions of a fairness checklist. It requires engaging deeply with ethi-
cal tradeoffs in our technical choices, evaluating impacts on different
groups, and listening to those voices most impacted.

Ultimately, responsible and ethical AI systems do not come from
checkbox debiasing but from upholding our duty to assess harms,
broaden perspectives, understand tradeoffs, and ensure we provide
opportunity for all groups. This ethical responsibility should drive
every step.

The connection between the paragraphs is that the first paragraph es-
tablishes the need for a thoughtful assessment of fairness issues rather
than a checkbox approach. The second paragraph then expands on
what that thoughtful assessment looks like in practice—engaging with
tradeoffs, evaluating impacts on groups, and listening to impacted
voices. Finally, the last paragraph refers to avoiding an “arbitrary
debiasing checklist” and committing to ethical responsibility through
assessment, understanding tradeoffs, and providing opportunity.

15.5.2 Preserving Privacy

Recent incidents have shed light on how AI models can memorize sen-
sitive user data in ways that violate privacy. Ippolito et al. (2023)
demonstrate that language models tend to memorize training data and
can even reproduce specific training examples. These risks are am-
plified with personalized ML systems deployed in intimate environ-
ments like homes or wearables. Consider a smart speaker that uses
our conversations to improve its service quality for users who appre-
ciate such enhancements. While potentially beneficial, this also cre-
ates privacy risks, as malicious actors could attempt to extract what
the speaker “remembers.” The issue extends beyond language models.
Figure 15.3 showcases how diffusion models can memorize and gener-
ate individual training examples (Nicolas Carlini et al. 2023), further
demonstrating the potential privacy risks associated with AI systems
learning from user data.

As AI becomes increasingly integrated into our daily lives, it is be-
coming more important that privacy concerns and robust safeguards
to protect user information are developed with a critical eye. The chal-
lenge lies in balancing the benefits of personalized AI with the funda-
mental right to privacy.

Adversaries can use these memorization capabilities and train mod-
els to detect if specific training data influenced a target model. For
example, membership inference attacks train a secondary model that
learns to detect a change in the target model’s outputs when making
inferences over data it was trained on versus not trained on (Shokri et

15.5. Technical Aspects 642

Figure 15.3.: Diffusion mod-
els memorizing samples from
training data. Source: Ippolito
et al. (2023).

al. 2017).
ML devices are especially vulnerable because they are often person-

alized on user data and are deployed in even more intimate settings
such as the home. Private machine learning techniques have evolved
to establish safeguards against adversaries, as mentioned in the Secu-
rity and Privacy chapter to combat these privacy issues. Methods like
differential privacy add mathematical noise during training to obscure
individual data points’ influence on the model. Popular techniques
like DP-SGD (Abadi et al. 2016) also clip gradients to limit what the
model leaks about the data. Still, users should also be able to delete
the impact of their data after the fact.

15.5.3 Machine Unlearning

With ML devices personalized to individual users and then deployed
to remote edges without connectivity, a challenge arises—how can
models responsively “forget” data points after deployment? If users
request their data be removed from a personalized model, the lack
of connectivity makes retraining infeasible. Thus, efÏcient on-device
data forgetting is necessary but poses hurdles.

Initial unlearning approaches faced limitations in this context.
Given the resource constraints, retrieving models from scratch on
the device to forget data points proves inefÏcient or even impossible.
Fully retraining also requires retaining all the original training data on

../privacy_security/privacy_security.qmd
../privacy_security/privacy_security.qmd

CHAPTER 15. RESPONSIBLE AI 643

the device, which brings its own security and privacy risks. Common
machine unlearning techniques (Bourtoule et al. 2021) for remote
embedded ML systems fail to enable responsive, secure data removal.

However, newer methods show promise in modifying models to ap-
proximately forget data [?] without full retraining. While the accuracy
loss from avoiding full rebuilds is modest, guaranteeing data privacy
should still be the priority when handling sensitive user information
ethically. Even slight exposure to private data can violate user trust.
As ML systems become deeply personalized, efÏciency and privacy
must be enabled from the start—not afterthoughts.

Recent policy discussions which include the European Union’s Gen-
eral Data, Protection Regulation (GDPR), the California Consumer
Privacy Act (CCPA), the Act on the Protection of Personal Information
(APPI), and Canada’s proposed Consumer Privacy Protection Act
(CPPA), require the deletion of private information. These policies,
coupled with AI incidents like Stable Diffusion memorizing artist
data, have underscored the ethical need for users to delete their data
from models after training.

The right to remove data arises from privacy concerns around cor-
porations or adversaries misusing sensitive user information. Machine
unlearning refers to removing the influence of specific points from an
already-trained model. Naively, this involves full retraining without
the deleted data. However, connectivity constraints often make retrain-
ing infeasible for ML systems personalized and deployed to remote
edges. If a smart speaker learns from private home conversations, re-
taining access to delete that data is important.

Although limited, methods are evolving to enable efÏcient approxi-
mations of retraining for unlearning. By modifying models’ inference
time, they can mimic “forgetting” data without full access to training
data. However, most current techniques are restricted to simple mod-
els, still have resource costs, and trade some accuracy. Though meth-
ods are evolving, enabling efÏcient data removal and respecting user
privacy remains imperative for responsible TinyML deployment.

15.5.4 Adversarial Examples and Robustness

Machine learning models, especially deep neural networks, have
a well-documented Achilles heel: they often break when even tiny
perturbations are made to their inputs (Szegedy et al. 2014). This
surprising fragility highlights a major robustness gap threatening
real-world deployment in high-stakes domains. It also opens the door
for adversarial attacks designed to fool models deliberately.

Machine learning models can exhibit surprising brittleness—minor

https://gdpr-info.eu
https://gdpr-info.eu
https://gdpr-info.eu
https://oag.ca.gov/privacy/ccpa
https://oag.ca.gov/privacy/ccpa
https://www.dataguidance.com/notes/japan-data-protection-overview
https://www.dataguidance.com/notes/japan-data-protection-overview
https://blog.didomi.io/en-us/canada-data-privacy-law
https://blog.didomi.io/en-us/canada-data-privacy-law

15.5. Technical Aspects 644

input tweaks can cause shocking malfunctions, even in state-of-the-
art deep neural networks (Szegedy et al. 2014). This unpredictability
around out-of-sample data underscores gaps in model generalization
and robustness. Given the growing ubiquity of ML, it also enables ad-
versarial threats that weaponize models’ blindspots.

Deep neural networks demonstrate an almost paradoxical dual na-
ture - human-like proficiency in training distributions coupled with ex-
treme fragility to tiny input perturbations (Szegedy et al. 2014). This
adversarial vulnerability gap highlights gaps in standard ML proce-
dures and threats to real-world reliability. At the same time, it can be
exploited: attackers can find model-breaking points humans wouldn’t
perceive.

Figure 15.4 includes an example of a small meaningless perturba-
tion that changes a model prediction. This fragility has real-world
impacts: lack of robustness undermines trust in deploying models
for high-stakes applications like self-driving cars or medical diagno-
sis. Moreover, the vulnerability leads to security threats: attackers
can deliberately craft adversarial examples that are perceptually
indistinguishable from normal data but cause model failures.

Figure 15.4.: Perturbation ef-
fect on prediction. Source: Mi-
crosoft.

For instance, past work shows successful attacks that trick models
for tasks like NSFW detection (Bhagoji et al. 2018), ad-blocking
(Tramèr et al. 2019), and speech recognition (Nicholas Carlini et al.
2016). While errors in these domains already pose security risks,
the problem extends beyond IT security. Recently, adversarial ro-
bustness has been proposed as an additional performance metric by
approximating worst-case behavior.

The surprising model fragility highlighted above casts doubt on
real-world reliability and opens the door to adversarial manipulation.
This growing vulnerability underscores several needs. First, moral
robustness evaluations are essential for quantifying model vulnerabil-
ities before deployment. Approximating worst-case behavior surfaces
blindspots.

Second, effective defenses across domains must be developed to
close these robustness gaps. With security on the line, developers

https://www.microsoft.com/en-us/research/blog/adversarial-robustness-as-a-prior-for-better-transfer-learning/
https://www.microsoft.com/en-us/research/blog/adversarial-robustness-as-a-prior-for-better-transfer-learning/

CHAPTER 15. RESPONSIBLE AI 645

cannot ignore the threat of attacks exploiting model weaknesses.
Moreover, we cannot afford any fragility-induced failures for safety-
critical applications like self-driving vehicles and medical diagnosis.
Lives are at stake.

Finally, the research community continues mobilizing rapidly in re-
sponse. Interest in adversarial machine learning has exploded as at-
tacks reveal the need to bridge the robustness gap between synthetic
and real-world data. Conferences now commonly feature defenses
for securing and stabilizing models. The community recognizes that
model fragility is a critical issue that must be addressed through ro-
bustness testing, defense development, and ongoing research. By sur-
facing blindspots and responding with principled defenses, we can
work to ensure reliability and safety for machine learning systems, es-
pecially in high-stakes domains.

15.5.5 Building Interpretable Models

As models are deployed more frequently in high-stakes settings, practi-
tioners, developers, downstream end-users, and increasing regulation
have highlighted the need for explainability in machine learning. The
goal of many interpretability and explainability methods is to provide
practitioners with more information about the models’ overall behav-
ior or the behavior given a specific input. This allows users to decide
whether or not a model’s output or prediction is trustworthy.

Such analysis can help developers debug models and improve
performance by pointing out biases, spurious correlations, and failure
modes of models. In cases where models can surpass human per-
formance on a task, interpretability can help users and researchers
better understand relationships in their data and previously unknown
patterns.

There are many classes of explainability/interpretability methods,
including post hoc explainability, inherent interpretability, and
mechanistic interpretability. These methods aim to make complex
machine learning models more understandable and ensure users can
trust model predictions, especially in critical settings. By providing
transparency into model behavior, explainability techniques are an
important tool for developing safe, fair, and reliable AI systems.

15.5.5.1 Post Hoc Explainability

Post hoc explainability methods typically explain the output behavior
of a black-box model on a specific input. Popular methods include
counterfactual explanations, feature attribution methods, and concept-
based explanations.

15.5. Technical Aspects 646

Counterfactual explanations, also frequently called algorithmic re-
course, “If X had not occurred, Y would not have occurred” (Wachter,
Mittelstadt, and Russell 2017). For example, consider a person apply-
ing for a bank loan whose application is rejected by a model. They may
ask their bank for recourse or how to change to be eligible for a loan. A
counterfactual explanation would tell them which features they need
to change and by how much such that the model’s prediction changes.

Feature attribution methods highlight the input features that are
important or necessary for a particular prediction. For a computer vi-
sion model, this would mean highlighting the individual pixels that
contributed most to the predicted label of the image. Note that these
methods do not explain how those pixels/features impact the predic-
tion, only that they do. Common methods include input gradients,
GradCAM (Selvaraju et al. 2017), SmoothGrad (Smilkov et al. 2017),
LIME (Ribeiro, Singh, and Guestrin 2016), and SHAP (Lundberg and
Lee 2017).

By providing examples of changes to input features that would al-
ter a prediction (counterfactuals) or indicating the most influential fea-
tures for a given prediction (attribution), these post hoc explanation
techniques shed light on model behavior for individual inputs. This
granular transparency helps users determine whether they can trust
and act upon specific model outputs.

Concept-based explanations aim to explain model behavior and
outputs using a pre-defined set of semantic concepts (e.g., the model
recognizes scene class “bedroom” based on the presence of concepts
“bed” and “pillow”). Recent work shows that users often prefer
these explanations to attribution and example-based explanations
because they “resemble human reasoning and explanations” (Vikram
V. Ramaswamy et al. 2023b). Popular concept-based explanation
methods include TCAV (C. J. Cai et al. 2019), Network Dissection
(Bau et al. 2017), and interpretable basis decomposition (B. Zhou et al.
2018).

Note that these methods are extremely sensitive to the size and qual-
ity of the concept set, and there is a tradeoff between their accuracy and
faithfulness and their interpretability or understandability to humans
(Vikram V. Ramaswamy et al. 2023a). However, by mapping model
predictions to human-understandable concepts, concept-based expla-
nations can provide transparency into the reasoning behind model out-
puts.

15.5.5.2 Inherent Interpretability

Inherently interpretable models are constructed such that their expla-
nations are part of the model architecture and are thus naturally faith-

CHAPTER 15. RESPONSIBLE AI 647

ful, which sometimes makes them preferable to post-hoc explanations
applied to black-box models, especially in high-stakes domains where
transparency is imperative (Rudin 2019). Often, these models are con-
strained so that the relationships between input features and predic-
tions are easy for humans to follow (linear models, decision trees, de-
cision sets, k-NN models), or they obey structural knowledge of the
domain, such as monotonicity (Maya Gupta et al. 2016), causality, or
additivity (Lou et al. 2013; Beck and Jackman 1998).

However, more recent works have relaxed the restrictions on inher-
ently interpretable models, using black-box models for feature extrac-
tion and a simpler inherently interpretable model for classification, al-
lowing for faithful explanations that relate high-level features to pre-
diction. For example, Concept Bottleneck Models (Koh et al. 2020) pre-
dict a concept set c that is passed into a linear classifier. ProtoPNets (C.
Chen et al. 2019) dissect inputs into linear combinations of similarities
to prototypical parts from the training set.

15.5.5.3 Mechanistic Interpretability

Mechanistic interpretability methods seek to reverse engineer neural
networks, often analogizing them to how one might reverse engineer a
compiled binary or how neuroscientists attempt to decode the function
of individual neurons and circuits in brains. Most research in mecha-
nistic interpretability views models as a computational graph (Geiger
et al. 2021), and circuits are subgraphs with distinct functionality (L.
Wang and Zhan 2019b). Current approaches to extracting circuits from
neural networks and understanding their functionality rely on human
manual inspection of visualizations produced by circuits (Olah et al.
2020).

Alternatively, some approaches build sparse autoencoders that
encourage neurons to encode disentangled interpretable features
(Davarzani et al. 2023). This field is much newer than existing areas
in explainability and interpretability, and as such, most works are
generally exploratory rather than solution-oriented.

There are many problems in mechanistic interpretability, including
the polysemanticity of neurons and circuits, the inconvenience and
subjectivity of human labeling, and the exponential search space for
identifying circuits in large models with billions or trillions of neurons.

15.5.5.4 Challenges and Considerations

As methods for interpreting and explaining models progress, it is
important to note that humans overtrust and misuse interpretability
tools (Kaur et al. 2020) and that a user’s trust in a model due to an

15.5. Technical Aspects 648

explanation can be independent of the correctness of the explanations
(Lakkaraju and Bastani 2020). As such, it is necessary that aside from
assessing the faithfulness/correctness of explanations, researchers
must also ensure that interpretability methods are developed and
deployed with a specific user in mind and that user studies are
performed to evaluate their efÏcacy and usefulness in practice.

Furthermore, explanations should be tailored to the user’s expertise,
the task they are using the explanation for and the corresponding min-
imal amount of information required for the explanation to be useful
to prevent information overload.

While interpretability/explainability are popular areas in machine
learning research, very few works study their intersection with
TinyML and edge computing. Given that a significant application of
TinyML is healthcare, which often requires high transparency and
interpretability, existing techniques must be tested for scalability
and efÏciency concerning edge devices. Many methods rely on extra
forward and backward passes, and some even require extensive train-
ing in proxy models, which are infeasible on resource-constrained
microcontrollers.

That said, explainability methods can be highly useful in developing
models for edge devices, as they can give insights into how input data
and models can be compressed and how representations may change
post-compression. Furthermore, many interpretable models are often
smaller than their black-box counterparts, which could benefit TinyML
applications.

15.5.6 Monitoring Model Performance

While developers may train models that seem adversarially robust,
fair, and interpretable before deployment, it is imperative that both
the users and the model owners continue to monitor the model’s
performance and trustworthiness during the model’s full lifecycle.
Data is frequently changing in practice, which can often result in
distribution shifts. These distribution shifts can profoundly impact
the model’s vanilla predictive performance and its trustworthiness
(fairness, robustness, and interpretability) in real-world data.

Furthermore, definitions of fairness frequently change with time,
such as what society considers a protected attribute, and the expertise
of the users asking for explanations may also change.

To ensure that models keep up to date with such changes in the real
world, developers must continually evaluate their models on current
and representative data and standards and update models when nec-
essary.

CHAPTER 15. RESPONSIBLE AI 649

15.6 Implementation Challenges

15.6.1 Organizational and Cultural Structures

While innovation and regulation are often seen as having competing in-
terests, many countries have found it necessary to provide oversight as
AI systems expand into more sectors. As illustrated in Figure 15.5, this
oversight has become crucial as these systems continue permeating
various industries and impacting people’s lives (see Human-Centered
AI, Chapter 8 “Government Interventions and Regulations”.

Figure 15.5.: How various
groups impact human-
centered AI. Source: Shneider-
man (2020).

Among these are:

• Canada’s Responsible Use of Artificial Intelligence

• The European Union’s General Data Protection Regulation
(GDPR)

• The European Commission’s White Paper on Artificial Intelli-
gence: a European approach to excellence and trust

• The UK’s Information Commissioner’s OfÏce and Alan Turing
Institute’s Consultation on Explaining AI Decisions Guidance co-
badged guidance by the individuals affected by them.

15.6.2 Obtaining Quality and Representative Data

As discussed in the Data Engineering chapter, responsible AI design
must occur at all pipeline stages, including data collection. This begs

https://academic-oup-com.ezp-prod1.hul.harvard.edu/book/41126/chapter/350465542
https://academic-oup-com.ezp-prod1.hul.harvard.edu/book/41126/chapter/350465542
https://www.canada.ca/en/government/system/digital-government/digital-government-innovations/responsible-use-ai.html
https://gdpr-info.eu/
https://gdpr-info.eu/
https://commission.europa.eu/publications/white-paper-artificial-intelligence-european-approach-excellence-and-trust_en
https://commission.europa.eu/publications/white-paper-artificial-intelligence-european-approach-excellence-and-trust_en
https://ico.org.uk/for-organisations/uk-gdpr-guidance-and-resources/artificial-intelligence/explaining-decisions-made-with-artificial-intelligence
../data_engineering/data_engineering.qmd

15.6. Implementation Challenges 650

the question: what does it mean for data to be high-quality and repre-
sentative? Consider the following scenarios that hinder the representa-
tiveness of data:

15.6.2.1 Subgroup Imbalance

This is likely what comes to mind when hearing “representative data.”
Subgroup imbalance means the dataset contains relatively more data
from one subgroup than another. This imbalance can negatively af-
fect the downstream ML model by causing it to overfit a subgroup of
people while performing poorly on another.

One example consequence of subgroup imbalance is racial discrimi-
nation in facial recognition technology (Buolamwini and Gebru 2018);
commercial facial recognition algorithms have up to 34% worse error
rates on darker-skinned females than lighter-skinned males.

Note that data imbalance goes both ways, and subgroups can also
be harmful overrepresented in the dataset. For example, the Allegheny
Family Screening Tool (AFST) predicts the likelihood that a child will
eventually be removed from a home. The AFST produces dispropor-
tionate scores for different subgroups, one of the reasons being that it
is trained on historically biased data, sourced from juvenile and adult
criminal legal systems, public welfare agencies, and behavioral health
agencies and programs.

15.6.2.2 Quantifying Target Outcomes

This occurs in applications where the ground-truth label cannot be
measured or is difÏcult to represent in a single quantity. For example,
an ML model in a mobile wellness application may want to predict in-
dividual stress levels. The true stress labels themselves are impossible
to obtain directly and must be inferred from other biosignals, such as
heart rate variability and user self-reported data. In these situations,
noise is built into the data by design, making this a challenging ML
task.

15.6.2.3 Distribution Shift

Data may no longer represent a task if a major external event causes
the data source to change drastically. The most common way to think
about distribution shifts is with respect to time; for example, data
on consumer shopping habits collected pre-covid may no longer be
present in consumer behavior today.

The transfer causes another form of distribution shift. For instance,
when applying a triage system that was trained on data from one hos-

https://www.aclu.org/the-devil-is-in-the-details-interrogating-values-embedded-in-the-allegheny-family-screening-tool#4-2-the-more-data-the-better
https://www.aclu.org/the-devil-is-in-the-details-interrogating-values-embedded-in-the-allegheny-family-screening-tool#4-2-the-more-data-the-better

CHAPTER 15. RESPONSIBLE AI 651

pital to another, a distribution shift may occur if the two hospitals are
very different.

15.6.2.4 Gathering Data

A reasonable solution for many of the above problems with non-
representative or low-quality data is to collect more; we can collect
more data targeting an underrepresented subgroup or from the target
hospital to which our model might be transferred. However, for some
reasons, gathering more data is an inappropriate or infeasible solution
for the task at hand.

• Data collection can be harmful. This is the paradox of exposure, the sit-
uation in which those who stand to significantly gain from their
data being collected are also those who are put at risk by the col-
lection process (D’ignazio and Klein (2023), Chapter 4). For ex-
ample, collecting more data on non-binary individuals may be
important for ensuring the fairness of the ML application, but it
also puts them at risk, depending on who is collecting the data
and how (whether the data is easily identifiable, contains sensi-
tive content, etc.).

• Data collection can be costly. In some domains, such as healthcare,
obtaining data can be costly in terms of time and money.

• Biased data collection. Electronic Health Records is a huge data
source for ML-driven healthcare applications. Issues of sub-
group representation aside, the data itself may be collected in
a biased manner. For example, negative language (“nonadher-
ent,” “unwilling”) is disproportionately used on black patients
(Himmelstein, Bates, and Zhou 2022).

We conclude with several additional strategies for maintaining data
quality. First, fostering a deeper understanding of the data is crucial.
This can be achieved through the implementation of standardized la-
bels and measures of data quality, such as in the Data Nutrition Project.
Collaborating with organizations responsible for collecting data helps
ensure the data is interpreted correctly. Second, employing effective
tools for data exploration is important. Visualization techniques and
statistical analyses can reveal issues with the data. Finally, establish-
ing a feedback loop within the ML pipeline is essential for understand-
ing the real-world implications of the data. Metrics, such as fairness
measures, allow us to define “data quality” in the context of the down-
stream application; improving fairness may directly improve the qual-
ity of the predictions that the end users receive.

https://datanutrition.org/

15.7. Ethical Considerations in AI Design 652

15.6.3 Balancing Accuracy and Other Objectives

Machine learning models are often evaluated on accuracy alone, but
this single metric cannot fully capture model performance and trade-
offs for responsible AI systems. Other ethical dimensions, such as fair-
ness, robustness, interpretability, and privacy, may compete with pure
predictive accuracy during model development. For instance, inher-
ently interpretable models such as small decision trees or linear clas-
sifiers with simplified features intentionally trade some accuracy for
transparency in the model behavior and predictions. While these sim-
plified models achieve lower accuracy by not capturing all the complex-
ity in the dataset, improved interpretability builds trust by enabling
direct analysis by human practitioners.

Additionally, certain techniques meant to improve adversarial ro-
bustness, such as adversarial training examples or dimensionality re-
duction, can degrade the accuracy of clean validation data. In sensi-
tive applications like healthcare, focusing narrowly on state-of-the-art
accuracy carries ethical risks if it allows models to rely more on spu-
rious correlations that introduce bias or use opaque reasoning. There-
fore, the appropriate performance objectives depend greatly on the so-
ciotechnical context.

Methodologies like Value Sensitive Design provide frameworks for
formally evaluating the priorities of various stakeholders within the
real-world deployment system. These explain the tensions between
values like accuracy, interpretability and fairness, which can then
guide responsible tradeoff decisions. For a medical diagnosis system,
achieving the highest accuracy may not be the singular goal - improv-
ing transparency to build practitioner trust or reducing bias towards
minority groups could justify small losses in accuracy. Analyzing the
sociotechnical context is key for setting these objectives.

By taking a holistic view, we can responsibly balance accuracy with
other ethical objectives for model success. Ongoing performance mon-
itoring along multiple dimensions is crucial as the system evolves after
deployment.

15.7 Ethical Considerations in AI Design
We must discuss at least some of the many ethical issues at stake
in designing and applying AI systems and diverse frameworks for
approaching these issues, including those from AI safety, Human-
Computer Interaction (HCI), and Science, Technology, and Society
(STS).

https://vsdesign.org/

CHAPTER 15. RESPONSIBLE AI 653

15.7.1 AI Safety and Value Alignment

In 1960, Norbert Weiner wrote, “’if we use, to achieve our purposes,
a mechanical agency with whose operation we cannot interfere effec-
tively… we had better be quite sure that the purpose put into the ma-
chine is the purpose which we desire” (Wiener 1960).

In recent years, as the capabilities of deep learning models have
achieved, and sometimes even surpassed, human abilities, the issue of
creating AI systems that act in accord with human intentions instead
of pursuing unintended or undesirable goals has become a source of
concern (Russell 2021). Within the field of AI safety, a particular goal
concerns “value alignment,” or the problem of how to code the “right”
purpose into machines Human-Compatible Artificial Intelligence.
Present AI research assumes we know the objectives we want to
achieve and “studies the ability to achieve objectives, not the design
of those objectives.”

However, complex real-world deployment contexts make explic-
itly defining “the right purpose” for machines difÏcult, requiring
frameworks for responsible and ethical goal-setting. Methodologies
like Value Sensitive Design provide formal mechanisms to surface
tensions between stakeholder values and priorities.

By taking a holistic sociotechnical view, we can better ensure intelli-
gent systems pursue objectives that align with broad human intentions
rather than maximizing narrow metrics like accuracy alone. Achieving
this in practice remains an open and critical research question as AI ca-
pabilities advance rapidly.

The absence of this alignment can lead to several AI safety issues, as
have been documented in a variety of deep learning models. A com-
mon feature of systems that optimize for an objective is that variables
not directly included in the objective may be set to extreme values to
help optimize for that objective, leading to issues characterized as spec-
ification gaming, reward hacking, etc., in reinforcement learning (RL).

In recent years, a particularly popular implementation of RL
has been models pre-trained using self-supervised learning and
fine-tuned reinforcement learning from human feedback (RLHF)
(Christiano et al. 2017). Ngo 2022 (Ngo, Chan, and Mindermann 2022)
argues that by rewarding models for appearing harmless and ethical
while also maximizing useful outcomes, RLHF could encourage the
emergence of three problematic properties: situationally aware reward
hacking, where policies exploit human fallibility to gain high reward,
misaligned internally-represented goals that generalize beyond the
RLHF fine-tuning distribution, and power-seeking strategies.

Similarly, Van Noorden (2016) outlines six concrete problems for AI
safety, including avoiding negative side effects, avoiding reward hack-

https://people.eecs.berkeley.edu/~russell/papers/mi19book-hcai.pdf
https://vsdesign.org/
https://deepmind.google/discover/blog/specification-gaming-the-flip-side-of-ai-ingenuity/

15.7. Ethical Considerations in AI Design 654

ing, scalable oversight for aspects of the objective that are too expensive
to be frequently evaluated during training, safe exploration strategies
that encourage creativity while preventing harm, and robustness to
distributional shift in unseen testing environments.

15.7.2 Autonomous Systems and Control [and Trust]

The consequences of autonomous systems that act independently of
human oversight and often outside human judgment have been well
documented across several industries and use cases. Most recently, the
California Department of Motor Vehicles suspended Cruise’s deploy-
ment and testing permits for its autonomous vehicles citing “unreason-
able risks to public safety”. One such accident occurred when a vehicle
struck a pedestrian who stepped into a crosswalk after the stoplight
had turned green, and the vehicle was allowed to proceed. In 2018,
a pedestrian crossing the street with her bike was killed when a self-
driving Uber car, which was operating in autonomous mode, failed to
accurately classify her moving body as an object to be avoided.

Autonomous systems beyond self-driving vehicles are also suscepti-
ble to such issues, with potentially graver consequences, as remotely-
powered drones are already reshaping warfare. While such incidents
bring up important ethical questions regarding who should be held
responsible when these systems fail, they also highlight the technical
challenges of giving full control of complex, real-world tasks to ma-
chines.

At its core, there is a tension between human and machine auton-
omy. Engineering and computer science disciplines have tended to
focus on machine autonomy. For example, as of 2019, a search for the
word “autonomy” in the Digital Library of the Association for Com-
puting Machinery (ACM) reveals that of the top 100 most cited papers,
90% are on machine autonomy (Calvo et al. 2020). In an attempt to
build systems for the benefit of humanity, these disciplines have taken,
without question, increasing productivity, efÏciency, and automation
as primary strategies for benefiting humanity.

These goals put machine automation at the forefront, often at the ex-
pense of the human. This approach suffers from inherent challenges,
as noted since the early days of AI through the Frame problem and
qualification problem, which formalizes the observation that it is im-
possible to specify all the preconditions needed for a real-world action
to succeed (McCarthy 1981).

These logical limitations have given rise to mathematical ap-
proaches such as Responsibility-sensitive safety (RSS) (Shalev-Shwartz,
Shammah, and Shashua 2017), which is aimed at breaking down the

https://www.cnbc.com/2023/10/24/california-dmv-suspends-cruises-self-driving-car-permits.html
https://www.cnbc.com/2023/10/24/california-dmv-suspends-cruises-self-driving-car-permits.html
https://www.cnbc.com/2023/10/17/cruise-under-nhtsa-probe-into-autonomous-driving-pedestrian-injuries.html
https://www.bbc.com/news/technology-54175359
https://www.bbc.com/news/technology-54175359
https://www.reuters.com/technology/human-machine-teams-driven-by-ai-are-about-reshape-warfare-2023-09-08/
https://www.cigionline.org/articles/who-responsible-when-autonomous-systems-fail/
https://www.cigionline.org/articles/who-responsible-when-autonomous-systems-fail/

CHAPTER 15. RESPONSIBLE AI 655

end goal of an automated driving system (namely safety) into con-
crete and checkable conditions that can be rigorously formulated
in mathematical terms. The goal of RSS is that those safety rules
guarantee Automated Driving System (ADS) safety in the rigorous
form of mathematical proof. However, such approaches tend towards
using automation to address the problems of automation and are
susceptible to many of the same issues.

Another approach to combating these issues is to focus on the
human-centered design of interactive systems that incorporate human
control. Value-sensitive design (Friedman 1996) described three key
design factors for a user interface that impact autonomy, including
system capability, complexity, misrepresentation, and fluidity. A
more recent model, called METUX (A Model for Motivation, Engage-
ment, and Thriving in the User Experience), leverages insights from
Self-determination Theory (SDT) in Psychology to identify six distinct
spheres of technology experience that contribute to the design systems
that promote well-being and human flourishing (Peters, Calvo, and
Ryan 2018). SDT defines autonomy as acting by one’s goals and values,
which is distinct from the use of autonomy as simply a synonym for
either independence or being in control (Ryan and Deci 2000).

Calvo et al. (2020) elaborates on METUX and its six “spheres of tech-
nology experience” in the context of AI-recommender systems. They
propose these spheres—Adoption, Interface, Tasks, Behavior, Life, and
Society—as a way of organizing thinking and evaluation of technol-
ogy design in order to appropriately capture contradictory and down-
stream impacts on human autonomy when interacting with AI sys-
tems.

15.7.3 Economic Impacts on Jobs, Skills, Wages

A major concern of the current rise of AI technologies is widespread
unemployment. As AI systems’ capabilities expand, many fear these
technologies will cause an absolute loss of jobs as they replace current
workers and overtake alternative employment roles across industries.
However, changing economic landscapes at the hands of automation is
not new, and historically, have been found to reflect patterns of displace-
ment rather than replacement (Shneiderman 2022)—Chapter 4. In par-
ticular, automation usually lowers costs and increases quality, greatly
increasing access and demand. The need to serve these growing mar-
kets pushes production, creating new jobs.

Furthermore, studies have found that attempts to achieve “lights-
out” automation – productive and flexible automation with a minimal
number of human workers – have been unsuccessful. Attempts to do

15.7. Ethical Considerations in AI Design 656

so have led to what the MIT Work of the Future taskforce has termed
“zero-sum automation”, in which process flexibility is sacrificed for
increased productivity.

In contrast, the task force proposes a “positive-sum automation” ap-
proach in which flexibility is increased by designing technology that
strategically incorporates humans where they are very much needed,
making it easier for line employees to train and debug robots, using a
bottom-up approach to identifying what tasks should be automated;
and choosing the right metrics for measuring success (see MIT’s Work
of the Future).

However, the optimism of the high-level outlook does not preclude
individual harm, especially to those whose skills and jobs will be ren-
dered obsolete by automation. Public and legislative pressure, as well
as corporate social responsibility efforts, will need to be directed at cre-
ating policies that share the benefits of automation with workers and
result in higher minimum wages and benefits.

15.7.4 Scientific Communication and AI Literacy

A 1993 survey of 3000 North American adults’ beliefs about the
“electronic thinking machine” revealed two primary perspectives of
the early computer: the “beneficial tool of man” perspective and the
“awesome thinking machine” perspective. The attitudes contributing
to the “awesome thinking machine” view in this and other stud-
ies revealed a characterization of computers as “intelligent brains,
smarter than people, unlimited, fast, mysterious, and frightening”
(Martin 1993). These fears highlight an easily overlooked component
of responsible AI, especially amidst the rush to commercialize such
technologies: scientific communication that accurately communicates
the capabilities and limitations of these systems while providing
transparency about the limitations of experts’ knowledge about these
systems.

As AI systems’ capabilities expand beyond most people’s compre-
hension, there is a natural tendency to assume the kinds of apocalyptic
worlds painted by our media. This is partly due to the apparent dif-
ficulty of assimilating scientific information, even in technologically
advanced cultures, which leads to the products of science being per-
ceived as magic—“understandable only in terms of what it did, not
how it worked” (Handlin 1965).

While tech companies should be held responsible for limiting
grandiose claims and not falling into cycles of hype, research studying
scientific communication, especially concerning (generative) AI, will
also be useful in tracking and correcting public understanding of these

https://hbr.org/2023/03/a-smarter-strategy-for-using-robots
https://workofthefuture-mit-edu.ezp-prod1.hul.harvard.edu/wp-content/uploads/2021/01/2020-Final-Report4.pdf
https://workofthefuture-mit-edu.ezp-prod1.hul.harvard.edu/wp-content/uploads/2021/01/2020-Final-Report4.pdf

CHAPTER 15. RESPONSIBLE AI 657

technologies. An analysis of the Scopus scholarly database found that
such research is scarce, with only a handful of papers mentioning
both “science communication” and “artificial intelligence” (Schäfer
2023).

Research that exposes the perspectives, frames, and images of the
future promoted by academic institutions, tech companies, stakehold-
ers, regulators, journalists, NGOs, and others will also help to identify
potential gaps in AI literacy among adults (Lindgren 2023). Increased
focus on AI literacy from all stakeholders will be important in helping
people whose skills are rendered obsolete by AI automation (Ng et al.
2021).
“But even those who never acquire that understanding need assurance that

there is a connection between the goals of science and their welfare, and above
all, that the scientist is not a man altogether apart but one who shares some of
their value.” (Handlin, 1965)

15.8 Conclusion
Responsible artificial intelligence is crucial as machine learning sys-
tems exert growing influence across healthcare, employment, finance,
and criminal justice sectors. While AI promises immense benefits,
thoughtlessly designed models risk perpetrating harm through biases,
privacy violations, unintended behaviors, and other pitfalls.

Upholding principles of fairness, explainability, accountability,
safety, and transparency enables the development of ethical AI
aligned with human values. However, implementing these principles
involves surmounting complex technical and social challenges around
detecting dataset biases, choosing appropriate model tradeoffs, secur-
ing quality training data, and more. Frameworks like value-sensitive
design guide balancing accuracy versus other objectives based on
stakeholder needs.

Looking forward, advancing responsible AI necessitates continued
research and industry commitment. More standardized benchmarks
are required to compare model biases and robustness. As personal-
ized TinyML expands, enabling efÏcient transparency and user con-
trol for edge devices warrants focus. Revised incentive structures and
policies must encourage deliberate, ethical development before reck-
less deployment. Education around AI literacy and its limitations will
further contribute to public understanding.

Responsible methods underscore that while machine learning of-
fers immense potential, thoughtless application risks adverse conse-
quences. Cross-disciplinary collaboration and human-centered design
are imperative so AI can promote broad social benefit. The path ahead

15.9. Resources 658

lies not in an arbitrary checklist but in a steadfast commitment to un-
derstand and uphold our ethical responsibility at each step. By taking
conscientious action, the machine learning community can lead AI to-
ward empowering all people equitably and safely.

15.9 Resources

Here is a curated list of resources to support students and instructors
in their learning and teaching journeys. We are continuously working
on expanding this collection and will be adding new exercises soon.

Slides

These slides are a valuable tool for instructors to deliver lectures
and for students to review the material at their own pace. We
encourage students and instructors to leverage these slides to
improve their understanding and facilitate effective knowledge
transfer.

• What am I building? What is the goal?

• Who is the audience?

• What are the consequences?

• Responsible Data Collection.

Videos

• Video 26

Exercises

To reinforce the concepts covered in this chapter, we have curated
a set of exercises that challenge students to apply their knowl-
edge and deepen their understanding.

• Coming soon.

https://docs.google.com/presentation/d/1Z9VpUKGOOfUIg6x04aXLVYl-9QoablElOlxhTLkAVno/edit?usp=drive_link&resourcekey=0-Nr9tvJ9KGgaL44O_iJpe4A
https://docs.google.com/presentation/d/1IwIXrTQNf6MLlXKV-qOuafZhWS9saTxpY2uawQUHKfg/edit?usp=drive_link&resourcekey=0-Jc1kfKFb4OOhs919kyR2mA
https://docs.google.com/presentation/d/1UDmrEZAJtH5LkHA_mDuFovOh6kam9FnC3uBAAah4RJo/edit?usp=drive_link&resourcekey=0-HFb4nRGGNRxJHz8wHXpgtg
https://docs.google.com/presentation/d/1vcmuhLVNFT2asKSCSGh_Ix9ht0mJZxMii8MufEMQhFA/edit?resourcekey=0-_pYLcW5aF3p3Bvud0PPQNg#slide=id.ga4ca29c69e_0_195

CHAPTER 15. RESPONSIBLE AI 659

Labs

In addition to exercises, we offer a series of hands-on labs allow-
ing students to gain practical experience with embedded AI tech-
nologies. These labs provide step-by-step guidance, enabling stu-
dents to develop their skills in a structured and supportive envi-
ronment. We are excited to announce that new labs will be avail-
able soon, further enriching the learning experience.

• Coming soon.

661

Chapter 16

Sustainable AI

Figure 16.1.: DALL·E 3 Prompt:
3D illustration on a light back-
ground of a sustainable AI net-
work interconnected with a myr-
iad of eco-friendly energy sources.
The AI actively manages and opti-
mizes its energy from sources like
solar arrays, wind turbines, and
hydro dams, emphasizing power
efÏciency and performance. Deep
neural networks spread through-
out, receiving energy from these
sustainable resources.

Learning Objectives

• Understand AI’s environmental impact, including energy
consumption, carbon emissions, electronic waste, and bio-
diversity effects.

• Learn about methods and best practices for developing sus-
tainable AI systems

• Appreciate the importance of taking a lifecycle perspective
when evaluating and addressing the sustainability of AI
systems.

16.1. Introduction 662

• Recognize the roles various stakeholders, such as re-
searchers, corporations, policymakers, and end users, play
in furthering responsible and sustainable AI progress.

• Learn about specific frameworks, metrics, and tools to en-
able greener AI development.

• Appreciate real-world case studies like Google’s 4M efÏ-
ciency practices that showcase how organizations are tak-
ing tangible steps to improve AI’s environmental record

16.1 Introduction
The rapid advancements in artificial intelligence (AI) and machine
learning (ML) have led to many beneficial applications and optimiza-
tions for performance efÏciency. However, the remarkable growth
of AI comes with a significant yet often overlooked cost: its envi-
ronmental impact. The most recent report released by the IPCC, the
international body leading scientific assessments of climate change
and its impacts, emphasized the pressing importance of tackling
climate change. Without immediate efforts to decrease global CO2
emissions by at least 43 percent before 2030, we exceed global warm-
ing of 1.5 degrees Celsius (Winkler et al. 2022). This could initiate
positive feedback loops, pushing temperatures even higher. Next to
environmental issues, the United Nations recognized 17 Sustainable
Development Goals (SDGs), in which AI can play an important role,
and vice versa, play an important role in the development of AI
systems. As the field continues expanding, considering sustainability
is crucial.

AI systems, particularly large language models like GPT-3 and com-
puter vision models like DALL-E 2, require massive amounts of com-
putational resources for training. For example, GPT-3 was estimated
to consume 1,300 megawatt-hours of electricity, which is equal to 1,450
average US households in an entire month (Maslej et al. 2023), or put
another way, it consumed enough energy to supply an average US
household for 120 years! This immense energy demand stems primar-
ily from power-hungry data centers with servers running intense com-
putations to train these complex neural networks for days or weeks.

Current estimates indicate that the carbon emissions produced from
developing a single, sophisticated AI model can equal the emissions
over the lifetime of five standard gasoline-powered vehicles (Strubell,
Ganesh, and McCallum 2019). A significant portion of the electricity
presently consumed by data centers is generated from nonrenewable
sources such as coal and natural gas, resulting in data centers contribut-

https://sdgs.un.org/goals
https://sdgs.un.org/goals
https://openai.com/blog/gpt-3-apps/
https://openai.com/dall-e-2/

CHAPTER 16. SUSTAINABLE AI 663

ing around 1% of total worldwide carbon emissions. This is compara-
ble to the emissions from the entire airline sector. This immense carbon
footprint demonstrates the pressing need to transition to renewable
power sources such as solar and wind to operate AI development.

Additionally, even small-scale AI systems deployed to edge devices
as part of TinyML have environmental impacts that should not be ig-
nored (Prakash, Stewart, et al. 2023). The specialized hardware re-
quired for AI has an environmental toll from natural resource extrac-
tion and manufacturing. GPUs, CPUs, and chips like TPUs depend on
rare earth metals whose mining and processing generate substantial
pollution. The production of these components also has its energy de-
mands. Furthermore, collecting, storing, and preprocessing data used
to train both small- and large-scale models comes with environmental
costs, further exacerbating the sustainability implications of ML sys-
tems.

Thus, while AI promises innovative breakthroughs in many fields,
sustaining progress requires addressing sustainability challenges. AI
can continue advancing responsibly by optimizing models’ efÏciency,
exploring alternative specialized hardware and renewable energy
sources for data centers, and tracking its overall environmental
impact.

16.2 Social and Ethical Responsibility
The environmental impact of AI is not just a technical issue but also an
ethical and social one. As AI becomes more integrated into our lives
and industries, its sustainability becomes increasingly critical.

16.2.1 Ethical Considerations

The scale of AI’s environmental footprint raises profound ethical ques-
tions about the responsibilities of AI developers and companies to min-
imize their carbon emissions and energy usage. As the creators of AI
systems and technologies that can have sweeping global impacts, de-
velopers have an ethical obligation to consciously integrate environ-
mental stewardship into their design process, even if sustainability
comes at the cost of some efÏciency gains.

There is a clear and present need for us to have open and honest con-
versations about AI’s environmental tradeoffs earlier in the develop-
ment lifecycle. Researchers should feel empowered to voice concerns
if organizational priorities do not align with ethical goals, as in the case
of the open letter to pause giant AI experiments.

https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks
https://futureoflife.org/open-letter/pause-giant-ai-experiments/

16.2. Social and Ethical Responsibility 664

Additionally, there is an increasing need for AI companies to scru-
tinize their contributions to climate change and environmental harm.
Large tech firms are responsible for the cloud infrastructure, data
center energy demands, and resource extraction required to power
today’s AI. Leadership should assess whether organizational values
and policies promote sustainability, from hardware manufacturing
through model training pipelines.

Furthermore, more than voluntary self-regulation may be needed–
-governments may need to introduce new regulations aimed at sustain-
able AI standards and practices if we hope to curb the projected energy
explosion of ever-larger models. Reported metrics like computing us-
age, carbon footprint, and efÏciency benchmarks could hold organiza-
tions accountable.

Through ethical principles, company policies, and public rules, AI
technologists and corporations have a profound duty to our planet to
ensure the responsible and sustainable advancement of technology po-
sitioned to transform modern society radically. We owe it to future
generations to get this right.

16.2.2 Long-term Sustainability

The massive projected expansion of AI raises urgent concerns about
its long-term sustainability. As AI software and applications rapidly
increase in complexity and usage across industries, demand for com-
puting power and infrastructure will skyrocket exponentially in the
coming years.

To put the scale of projected growth in perspective, the total
computing capacity required for training AI models saw an aston-
ishing 350,000x increase from 2012 to 2019 (R. Schwartz et al. 2020).
Researchers forecast over an order of magnitude growth each year
moving forward as personalized AI assistants, autonomous technol-
ogy, precision medicine tools, and more are developed. Similar trends
are estimated for embedded ML systems, with an estimated 2.5 billion
AI-enabled edge devices deployed by 2030.

Managing this expansion level requires software and hardware-
focused breakthroughs in efÏciency and renewable integration from
AI engineers and scientists. On the software side, novel techniques
in model optimization, distillation, pruning, low-precision numerics,
knowledge sharing between systems, and other areas must become
widespread best practices to curb energy needs. For example, re-
alizing even a 50% reduced computational demand per capability
doubling would have massive compounding on total energy.

On the hardware infrastructure side, due to increasing costs of data

CHAPTER 16. SUSTAINABLE AI 665

transfer, storage, cooling, and space, continuing today’s centralized
server farm model at data centers is likely infeasible long-term (Lan-
nelongue, Grealey, and Inouye 2021). Exploring alternative decentral-
ized computing options around “edge AI” on local devices or within
telco networks can alleviate scaling pressures on power-hungry hyper
scale data centers. Likewise, the shift towards carbon-neutral, hybrid
renewable energy sources powering leading cloud provider data cen-
ters worldwide will be essential.

16.2.3 AI for Environmental Good

While much focus goes on AI’s sustainability challenges, these pow-
erful technologies provide unique solutions to combat climate change
and drive environmental progress. For example, ML can continuously
optimize smart power grids to improve renewable integration and elec-
tricity distribution efÏciency across networks (Dongxia Zhang, Han,
and Deng 2018). Models can ingest the real-time status of a power grid
and weather forecasts to allocate and shift sources responding to sup-
ply and demand.

Fine-tuned neural networks have also proven remarkably effective at
next-generation weather forecasting (Lam et al. 2023) and climate mod-
eling (Kurth et al. 2023). They can rapidly analyze massive volumes
of climate data to boost extreme event preparation and resource plan-
ning for hurricanes, floods, droughts, and more. Climate researchers
have achieved state-of-the-art storm path accuracy by combining AI
simulations with traditional numerical models.

AI also enables better tracking of biodiversity (Silvestro et al. 2022),
wildlife (D. Schwartz et al. 2021), ecosystems, and illegal deforesta-
tion using drones and satellite feeds. Computer vision algorithms can
automate species population estimates and habitat health assessments
over huge untracked regions. These capabilities provide conservation-
ists with powerful tools for combating poaching (Bondi et al. 2018),
reducing species extinction risks, and understanding ecological shifts.

Targeted investment in AI applications for environmental sus-
tainability, cross-sector data sharing, and model accessibility can
profoundly accelerate solutions to pressing ecological issues. Em-
phasizing AI for social good steers innovation in cleaner directions,
guiding these world-shaping technologies towards ethical and
responsible development.

https://deepmind.google/discover/blog/graphcast-ai-model-for-faster-and-more-accurate-global-weather-forecasting/
https://blogs.nvidia.com/blog/conservation-ai-detects-threats-to-endangered-species/#:~:text=The%20Conservation%20AI%20platform%20%E2%80%94%20built,of%20potential%20threats%20via%20email

16.3. Energy Consumption 666

16.2.4 Case Study

Google’s data centers are foundational to powering products like
Search, Gmail, and YouTube, which are used by billions daily.
However, keeping the vast server farms up and running requires
substantial energy, particularly for vital cooling systems. Google
continuously strives to improve efÏciency across operations. Yet
progress was proving difÏcult through traditional methods alone,
considering the complex, custom dynamics involved. This challenge
prompted an ML breakthrough, yielding potential savings.

After over a decade of optimizing data center design, inventing
energy-efÏcient computing hardware, and securing renewable energy
sources, Google brought DeepMind scientists to unlock further
advances. The AI experts faced intricate factors surrounding the
functioning of industrial cooling apparatuses. Equipment like pumps
and chillers interact nonlinearly, while external weather and inter-
nal architectural variables also change. Capturing this complexity
confounded rigid engineering formulas and human intuition.

The DeepMind team leveraged Google’s extensive historical sensor
data detailing temperatures, power draw, and other attributes as
training inputs. They built a flexible system based on neural net-
works to model the relationships and predict optimal configurations,
minimizing power usage effectiveness (PUE) (Barroso, Hölzle, and
Ranganathan 2019); PUE is the standard measurement for gauging
how efÏciently a data center uses energy gives the proportion of
total facility power consumed divided by the power directly used for
computing operations. When tested live, the AI system delivered
remarkable gains beyond prior innovations, lowering cooling energy
by 40% for a 15% drop in total PUE, a new site record. The general-
izable framework learned cooling dynamics rapidly across shifting
conditions that static rules could not match. The breakthrough
highlights AI’s rising role in transforming modern tech and enabling
a sustainable future.

16.3 Energy Consumption

16.3.1 Understanding Energy Needs

Understanding the energy needs for training and operating AI mod-
els is crucial in the rapidly evolving field of A.I. With AI entering
widespread use in many new fields (Bohr and Memarzadeh 2020;
Sudhakar, Sze, and Karaman 2023), the demand for AI-enabled
devices and data centers is expected to explode. This understanding

https://blog.google/outreach-initiatives/environment/deepmind-ai-reduces-energy-used-for/
https://blog.google/outreach-initiatives/environment/deepmind-ai-reduces-energy-used-for/

CHAPTER 16. SUSTAINABLE AI 667

helps us understand why AI, particularly deep learning, is often
labeled energy-intensive.

16.3.1.1 Energy Requirements for AI Training

The training of complex AI systems like large deep learning models can
demand startlingly high levels of computing power–with profound en-
ergy implications. Consider OpenAI’s state-of-the-art language model
GPT-3 as a prime example. This system pushes the frontiers of text
generation through algorithms trained on massive datasets. Yet, the
energy GPT-3 consumed for a single training cycle could rival an en-
tire small town’s monthly usage. In recent years, these generative AI
models have gained increasing popularity, leading to more models be-
ing trained. Next to the increased number of models, the number of
parameters in these models will also increase. Research shows that in-
creasing the model size (number of parameters), dataset size, and com-
pute used for training improves performance smoothly with no signs
of saturation (Kaplan et al. 2020). See how, in Figure 16.2, the test loss
decreases as each of the 3 increases above.

Figure 16.2.: Performance im-
proves with compute, dataset
set, and model size. Source:
Kaplan et al. (2020).

What drives such immense requirements? During training, models
like GPT-3 learn their capabilities by continuously processing huge vol-
umes of data to adjust internal parameters. The processing capacity
enabling AI’s rapid advances also contributes to surging energy usage,
especially as datasets and models balloon. GPT-3 highlights a steady
trajectory in the field where each leap in AI’s sophistication traces back
to ever more substantial computational power and resources. Its pre-
decessor, GPT-2, required 10x less training to compute only 1.5 billion
parameters, a difference now dwarfed by magnitudes as GPT-3 com-
prises 175 billion parameters. Sustaining this trajectory toward increas-
ingly capable AI raises energy and infrastructure provision challenges
ahead.

https://www.washington.edu/news/2023/07/27/how-much-energy-does-chatgpt-use/
https://www.washington.edu/news/2023/07/27/how-much-energy-does-chatgpt-use/

16.3. Energy Consumption 668

16.3.1.2 Operational Energy Use

Developing and training AI models requires immense data, comput-
ing power, and energy. However, the deployment and operation of
those models also incur significant recurrent resource costs over time.
AI systems are now integrated across various industries and applica-
tions and are entering the daily lives of an increasing demographic.
Their cumulative operational energy and infrastructure impacts could
eclipse the upfront model training.

This concept is reflected in the demand for training and inference
hardware in data centers and on the edge. Inference refers to using
a trained model to make predictions or decisions on real-world data.
According to a recent McKinsey analysis, the need for advanced
systems to train ever-larger models is rapidly growing. However,
inference computations already make up a dominant and increasing
portion of total AI workloads, as shown in Figure 16.3. Running
real-time inference with trained models–whether for image classifica-
tion, speech recognition, or predictive analytics–invariably demands
computing hardware like servers and chips. However, even a model
handling thousands of facial recognition requests or natural language
queries daily is dwarfed by massive platforms like Meta. Where
inference on millions of photos and videos shared on social media,
the infrastructure energy requirements continue to scale!

Figure 16.3.: Market size for in-
ference and training hardware.
Source: McKinsey.

Algorithms powering AI-enabled smart assistants, automated
warehouses, self-driving vehicles, tailored healthcare, and more
have marginal individual energy footprints. However, the projected
proliferation of these technologies could add hundreds of millions
of endpoints running AI algorithms continually, causing the scale of
their collective energy requirements to surge. Current efÏciency gains
need help to counterbalance this sheer growth.

https://www.mckinsey.com/~/media/McKinsey/Industries/Semiconductors/Our%20Insights/Artificial%20intelligence%20hardware%20New%20opportunities%20for%20semiconductor%20companies/Artificial-intelligence-hardware.ashx
https://www.mckinsey.com/~/media/McKinsey/Industries/Semiconductors/Our%20Insights/Artificial%20intelligence%20hardware%20New%20opportunities%20for%20semiconductor%20companies/Artificial-intelligence-hardware.ashx

CHAPTER 16. SUSTAINABLE AI 669

AI is expected to see an annual growth rate of 37.3% between 2023
and 2030. Yet, applying the same growth rate to operational comput-
ing could multiply annual AI energy needs up to 1,000 times by 2030.
So, while model optimization tackles one facet, responsible innovation
must also consider total lifecycle costs at global deployment scales that
were unfathomable just years ago but now pose infrastructure and sus-
tainability challenges ahead.

16.3.2 Data Centers and Their Impact

As the demand for AI services grows, the impact of data centers on the
energy consumption of AI systems is becoming increasingly important.
While these facilities are crucial for the advancement and deployment
of AI, they contribute significantly to its energy footprint.

16.3.2.1 Scale

Data centers are the essential workhorses enabling the recent com-
putational demands of advanced AI systems. For example, leading
providers like Meta operate massive data centers spanning up to
the size of multiple football fields, housing hundreds of thousands
of high-capacity servers optimized for parallel processing and data
throughput.

These massive facilities provide the infrastructure for training com-
plex neural networks on vast datasets. For instance, based on leaked in-
formation, OpenAI’s language model GPT-4 was trained on Azure data
centers packing over 25,000 Nvidia A100 GPUs, used continuously for
over 90 to 100 days.

Additionally, real-time inference for consumer AI applications at
scale is only made possible by leveraging the server farms inside data
centers. Services like Alexa, Siri, and Google Assistant process billions
of voice requests per month from users globally by relying on data
center computing for low-latency response. In the future, expanding
cutting-edge use cases like self-driving vehicles, precision medicine
diagnostics, and accurate climate forecasting models will require
significant computational resources to be obtained by tapping into
vast on-demand cloud computing resources from data centers. Some
emerging applications, like autonomous cars, have harsh latency and
bandwidth constraints. Locating data center-level computing power
on the edge rather than the cloud will be necessary.

MIT research prototypes have shown trucks and cars with onboard
hardware performing real-time AI processing of sensor data equiva-
lent to small data centers (Sudhakar, Sze, and Karaman 2023). These
innovative “data centers on wheels” demonstrate how vehicles like

https://www.forbes.com/advisor/business/ai-statistics/
https://www.forbes.com/advisor/business/ai-statistics/
https://tech.facebook.com/engineering/2021/8/eagle-mountain-data-center/
https://www.semianalysis.com/p/gpt-4-architecture-infrastructure
https://www.semianalysis.com/p/gpt-4-architecture-infrastructure

16.3. Energy Consumption 670

self-driving trucks may need embedded data center-scale compute on
board to achieve millisecond system latency for navigation, though
still likely supplemented by wireless 5G connectivity to more powerful
cloud data centers.

The bandwidth, storage, and processing capacities required to en-
able this future technology at scale will depend heavily on advance-
ments in data center infrastructure and AI algorithmic innovations.

16.3.2.2 Energy Demand

The energy demand of data centers can roughly be divided into 4
components—infrastructure, network, storage, and servers. In Fig-
ure 16.4, we see that the data infrastructure (which includes cooling,
lighting, and controls) and the servers use most of the total energy
budget of data centers in the US (Shehabi et al. 2016). This section
breaks down the energy demand for the servers and the infrastruc-
ture. For the latter, the focus is on cooling systems, as cooling is the
dominant factor in energy consumption in the infrastructure.

Figure 16.4.: Data centers en-
ergy consumption in the US.
Source: International Energy
Agency (IEA).

16.3.2.2.1 Servers. The increase in energy consumption of data
centers stems mainly from exponentially growing AI computing
requirements. NVIDIA DGX H100 machines that are optimized for
deep learning can draw up to 10.2 kW at peak. Leading providers op-
erate data centers with hundreds to thousands of these power-hungry
DGX nodes networked to train the latest AI models. For example,
the supercomputer developed for OpenAI is a single system with

https://docs.nvidia.com/dgx/dgxh100-user-guide/introduction-to-dgxh100.html

CHAPTER 16. SUSTAINABLE AI 671

over 285,000 CPU cores, 10,000 GPUs, and 400 gigabits per second of
network connectivity for each GPU server.

The intensive computations needed across an entire facility’s
densely packed fleet and supporting hardware result in data centers
drawing tens of megawatts around the clock. Overall, advancing AI
algorithms continue to expand data center energy consumption as
more DGX nodes get deployed to keep pace with projected growth in
demand for AI compute resources over the coming years.

16.3.2.2.2 Cooling Systems. To keep the beefy servers fed at peak
capacity and cool, data centers require tremendous cooling capacity
to counteract the heat produced by densely packed servers, network-
ing equipment, and other hardware running computationally inten-
sive workloads without pause. With large data centers packing thou-
sands of server racks operating at full tilt, massive industrial-scale cool-
ing towers and chillers are required, using energy amounting to 30-
40% of the total data center electricity footprint (Dayarathna, Wen, and
Fan 2016). Consequently, companies are looking for alternative meth-
ods of cooling. For example, Microsoft’s data center in Ireland lever-
ages a nearby fjord to exchange heat using over half a million gallons
of seawater daily.

Recognizing the importance of energy-efÏcient cooling, there have
been innovations aimed at reducing this energy demand. Techniques
like free cooling, which uses outside air or water sources when condi-
tions are favorable, and the use of AI to optimize cooling systems are
examples of how the industry adapts. These innovations reduce en-
ergy consumption, lower operational costs, and lessen the environmen-
tal footprint. However, exponential increases in AI model complexity
continue to demand more servers and acceleration hardware operat-
ing at higher utilization, translating to rising heat generation and ever
greater energy used solely for cooling purposes.

16.3.2.3 The Environmental Impact

The environmental impact of data centers is not only caused by the di-
rect energy consumption of the data center itself (Siddik, Shehabi, and
Marston 2021). Data center operation involves the supply of treated wa-
ter to the data center and the discharge of wastewater from the data cen-
ter. Water and wastewater facilities are major electricity consumers.

Next to electricity usage, there are many more aspects to the environ-
mental impacts of these data centers. The water usage of the data cen-
ters can lead to water scarcity issues, increased water treatment needs,
and proper wastewater discharge infrastructure. Also, raw materials

https://local.microsoft.com/communities/emea/dublin/
https://local.microsoft.com/communities/emea/dublin/

16.4. Carbon Footprint 672

required for construction and network transmission considerably im-
pact environmental t the environment, and components in data cen-
ters need to be upgraded and maintained. Where almost 50 percent
of servers were refreshed within 3 years of usage, refresh cycles have
shown to slow down (Davis et al. 2022). Still, this generates significant
e-waste, which can be hard to recycle.

16.3.3 Energy Optimization

Ultimately, measuring and understanding the energy consumption of
AI facilitates optimizing energy consumption.

One way to reduce the energy consumption of a given amount of
computational work is to run it on more energy-efÏcient hardware. For
instance, TPU chips can be more energy-efÏcient compared to CPUs
when it comes to running large tensor computations for AI, as TPUs
can run such computations much faster without drawing significantly
more power than CPUs. Another way is to build software systems
aware of energy consumption and application characteristics. Good
examples are systems works such as Zeus (J. You, Chung, and Chowd-
hury 2023) and Perseus (Chung et al. 2023), both of which character-
ize the tradeoff between computation time and energy consumption
at various levels of an ML training system to achieve energy reduc-
tion without end-to-end slowdown. In reality, building both energy-
efÏcient hardware and software and combining their benefits should
be promising, along with open-source frameworks (e.g., Zeus) that fa-
cilitate community efforts.

16.4 Carbon Footprint
The massive electricity demands of data centers can lead to significant
environmental externalities absent an adequate renewable power sup-
ply. Many facilities rely heavily on nonrenewable energy sources like
coal and natural gas. For example, data centers are estimated to pro-
duce up to 2% of total global CO2 emissions which is closing the gap
with the airline industry. As mentioned in previous sections, the com-
putational demands of AI are set to increase. The emissions of this
surge are threefold. First, data centers are projected to increase in size
(Yanan Liu et al. 2020). Secondly, emissions during training are set to
increase significantly (D. Patterson et al. 2022). Thirdly, inference calls
to these models are set to increase dramatically.

Without action, this exponential demand growth risks ratcheting
up the carbon footprint of data centers further to unsustainable levels.
Major providers have pledged carbon neutrality and committed funds

https://ml.energy/zeus
https://www.independent.co.uk/climate-change/news/global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html
https://www.computerworld.com/article/3431148/why-data-centres-are-the-new-frontier-in-the-fight-against-climate-change.html
https://www.computerworld.com/article/3431148/why-data-centres-are-the-new-frontier-in-the-fight-against-climate-change.html

CHAPTER 16. SUSTAINABLE AI 673

to secure clean energy, but progress remains incremental compared
to overall industry expansion plans. More radical grid decarboniza-
tion policies and renewable energy investments may prove essential to
counteracting the climate impact of the coming tide of new data cen-
ters aimed at supporting the next generation of AI.

16.4.1 Definition and Significance

The concept of a ‘carbon footprint’ has emerged as a key metric. This
term refers to the total amount of greenhouse gasses, particularly car-
bon dioxide, emitted directly or indirectly by an individual, organiza-
tion, event, or product. These emissions significantly contribute to the
greenhouse effect, accelerating global warming and climate change.
The carbon footprint is measured in terms of carbon dioxide equiva-
lents (CO2e), allowing for a comprehensive account that includes vari-
ous greenhouse gasses and their relative environmental impact. Exam-
ples of this as applied to large-scale ML tasks are shown in Figure 16.5.

Figure 16.5.: Carbon footprint
of large-scale ML tasks. Source:
C.-J. Wu et al. (2022).

Considering the carbon footprint is especially important in AI AI’s
rapid advancement and integration into various sectors, bringing its
environmental impact into sharp focus. AI systems, particularly those

16.4. Carbon Footprint 674

involving intensive computations like deep learning and large-scale
data processing, are known for their substantial energy demands. This
energy, often drawn from power grids, may still predominantly rely on
fossil fuels, leading to significant greenhouse gas emissions.

Take, for example, training large AI models such as GPT-3 or
complex neural networks. These processes require immense com-
putational power, typically provided by data centers. The energy
consumption associated with operating these centers, particularly
for high-intensity tasks, results in notable greenhouse gas emissions.
Studies have highlighted that training a single AI model can generate
carbon emissions comparable to that of the lifetime emissions of
multiple cars, shedding light on the environmental cost of developing
advanced AI technologies (Dayarathna, Wen, and Fan 2016). Fig-
ure 16.6 shows a comparison from lowest to highest carbon footprints,
starting with a roundtrip flight between NY and SF, human life
average per year, American life average per year, US car including
fuel over a lifetime, and a Transformer model with neural architecture
search, which has the highest footprint.

Figure 16.6.: Carbon foot-
print of NLP model in lbs
of CO2 equivalent. Source:
Dayarathna, Wen, and Fan
(2016).

Moreover, AI’s carbon footprint extends beyond the operational
phase. The entire lifecycle of AI systems, including the manufacturing
of computing hardware, the energy used in data centers for cooling
and maintenance, and the disposal of electronic waste, contributes
to their overall carbon footprint. We have discussed some of these
aspects earlier, and we will discuss the waste aspects later in this
chapter.

16.4.2 The Need for Awareness and Action

Understanding the carbon footprint of AI systems is crucial for sev-
eral reasons. Primarily, it is a step towards mitigating the impacts of
climate change. As AI continues to grow and permeate different as-
pects of our lives, its contribution to global carbon emissions becomes

CHAPTER 16. SUSTAINABLE AI 675

a significant concern. Awareness of these emissions can inform deci-
sions made by developers, businesses, policymakers, and even ML en-
gineers and scientists like us to ensure a balance between technological
innovation and environmental responsibility.

Furthermore, this understanding stimulates the drive towards
‘Green AI’ (R. Schwartz et al. 2020). This approach focuses on develop-
ing AI technologies that are efÏcient, powerful, and environmentally
sustainable. It encourages exploring energy-efÏcient algorithms, us-
ing renewable energy sources in data centers, and adopting practices
that reduce A. I’m the overall environmental impact.

In essence, the carbon footprint is an essential consideration in de-
veloping and applying AI technologies. As AI evolves and its applica-
tions become more widespread, managing its carbon footprint is key
to ensuring that this technological progress aligns with the broader
environmental sustainability goals.

16.4.3 Estimating the AI Carbon Footprint

Estimating AI systems’ carbon footprint is critical in understanding
their environmental impact. This involves analyzing the various ele-
ments contributing to emissions throughout AI technologies’ lifecycle
and employing specific methodologies to quantify these emissions ac-
curately. Many different methods for quantifying ML’s carbon emis-
sions have been proposed.

The carbon footprint of AI encompasses several key elements, each
contributing to the overall environmental impact. First, energy is
consumed during the AI model training and operational phases. The
source of this energy heavily influences the carbon emissions. Once
trained, these models, depending on their application and scale,
continue to consume electricity during operation. Next to energy
considerations, the hardware used stresses the environment as well.

The carbon footprint varies significantly based on the energy sources
used. The composition of the sources providing the energy used in the
grid varies widely depending on geographical region and even time in
a single day! For example, in the USA, roughly 60 percent of the total
energy supply is still covered by fossil fuels. Nuclear and renewable
energy sources cover the remaining 40 percent. These fractions are not
constant throughout the day. As renewable energy production usually
relies on environmental factors, such as solar radiation and pressure
fields, they do not provide a constant energy source.

The variability of renewable energy production has been an ongo-
ing challenge in the widespread use of these sources. Looking at Fig-
ure 16.7, which shows data for the European grid, we see that it is sup-

https://www.eia.gov/tools/faqs/faq.php?id=427&t=3
https://www.eia.gov/tools/faqs/faq.php?id=427&t=3

16.4. Carbon Footprint 676

posed to be able to produce the required amount of energy through-
out the day. While solar energy peaks in the middle of the day, wind
energy shows two distinct peaks in the mornings and evenings. Cur-
rently, we rely on fossil and coal-based energy generation methods to
supply the lack of energy during times when renewable energy does
not meet requirements,

Innovation in energy storage solutions is required to enable constant
use of renewable energy sources. The base energy load is currently
met with nuclear energy. This constant energy source does not directly
emit carbon emissions but needs to be faster to accommodate the vari-
ability of renewable energy sources. Tech companies such as Microsoft
have shown interest in nuclear energy sources to power their data cen-
ters. As the demand of data centers is more constant than the demand
of regular households, nuclear energy could be used as a dominant
source of energy.

Figure 16.7.: Energy sources
and generation capabilities.
Source: Energy Charts..

Additionally, the manufacturing and disposal of AI hardware add to
the carbon footprint. Producing specialized computing devices, such
as GPUs and CPUs, is energy- and resource-intensive. This phase often
relies on energy sources that contribute to greenhouse gas emissions.
The electronics industry’s manufacturing process has been identified
as one of the eight big supply chains responsible for more than 50 per-
cent of global emissions (Challenge 2021). Furthermore, the end-of-life
disposal of this hardware, which can lead to electronic waste, also has
environmental implications. As mentioned, servers have a refresh cy-
cle of roughly 3 to 5 years. Of this e-waste, currently only 17.4 percent is
properly collected and recycled.. The carbon emissions of this e-waste
has shown an increase of more than 50 percent between 2014 and 2020

https://www.bloomberg.com/news/newsletters/2023-09-29/microsoft-msft-sees-artificial-intelligence-and-nuclear-energy-as-dynamic-duo
https://www.bloomberg.com/news/newsletters/2023-09-29/microsoft-msft-sees-artificial-intelligence-and-nuclear-energy-as-dynamic-duo
https://www.energy-charts.info/?l=en&c=DE
https://www.genevaenvironmentnetwork.org/resources/updates/the-growing-environmental-risks-of-e-waste/
https://www.genevaenvironmentnetwork.org/resources/updates/the-growing-environmental-risks-of-e-waste/

CHAPTER 16. SUSTAINABLE AI 677

(Singh and Ogunseitan 2022).
As is clear from the above, a proper Life Cycle Analysis is neces-

sary to portray all relevant aspects of the emissions caused by AI. An-
other method is carbon accounting, which quantifies the amount of
carbon dioxide emissions directly and indirectly associated with AI op-
erations. This measurement typically uses CO2 equivalents, allowing
for a standardized way of reporting and assessing emissions.

Exercise 29: AI’s Carbon Footprint

Did you know that the cutting-edge AI models you might use
have an environmental impact? This exercise will go into an AI
system’s “carbon footprint.” You’ll learn how data centers’ en-
ergy demands, large AI models’ training, and even hardware
manufacturing contribute to greenhouse gas emissions. We’ll
discuss why it’s crucial to be aware of this impact, and you’ll
learn methods to estimate the carbon footprint of your own AI
projects. Get ready to explore the intersection of AI and environ-
mental sustainability!

16.5 Beyond Carbon Footprint
The current focus on reducing AI systems’ carbon emissions and
energy consumption addresses one crucial aspect of sustainability.
However, manufacturing the semiconductors and hardware that
enable AI also carries severe environmental impacts that receive
comparatively less public attention. Building and operating a leading-
edge semiconductor fabrication plant, or “fab,” has substantial
resource requirements and polluting byproducts beyond a large
carbon footprint.

For example, a state-of-the-art fab producing state-of-the-art chips
like in 5nm can require up to four million gallons of pure water each
day. This water usage approaches what a city of half a million people
would require for all needs. Sourcing this consistently places immense
strain on local water tables and reservoirs, especially in already water-
stressed regions that host many high-tech manufacturing hubs.

Additionally, over 250 unique hazardous chemicals are utilized at
various stages of semiconductor production within fabs (Mills and Le
Hunte 1997). These include volatile solvents like sulfuric acid, nitric
acid, and hydrogen fluoride, along with arsine, phosphine, and other

https://colab.research.google.com/drive/1zH7JrUixOAzb0qEexrgnFzBoRvn65nMh#scrollTo=5EunUBwmc9Lm
https://wccftech.com/tsmc-using-water-tankers-for-chip-production-as-5nm-plant-faces-rationing/
https://wccftech.com/tsmc-using-water-tankers-for-chip-production-as-5nm-plant-faces-rationing/

16.5. Beyond Carbon Footprint 678

highly toxic substances. Preventing the discharge of these chemicals
requires extensive safety controls and wastewater treatment infrastruc-
ture to avoid soil contamination and risks to surrounding communi-
ties. Any improper chemical handling or unanticipated spill carries
dire consequences.

Beyond water consumption and chemical risks, fab operations
also depend on rare metals sourcing, generate tons of dangerous
waste products, and can hamper local biodiversity. This section will
analyze these critical but less discussed impacts. With vigilance and
investment in safety, the harms from semiconductor manufacturing
can be contained while still enabling technological progress. However,
ignoring these externalized issues will exacerbate ecological damage
and health risks over the long run.

16.5.1 Water Usage and Stress

Semiconductor fabrication is an incredibly water-intensive process.
Based on an article from 2009, a typical 300mm silicon wafer requires
8,328 liters of water, of which 5,678 liters is ultrapure water (Cope
2009). Today, a typical fab can use up to four million gallons of
pure water. To operate one facility, TSMC’s latest fab in Arizona is
projected to use 8.9 million gallons daily or nearly 3 percent of the
city’s current water production. To put things in perspective, Intel
and Quantis found that over 97% of their direct water consumption
is attributed to semiconductor manufacturing operations within their
fabrication facilities (Cooper et al. 2011).

This water is repeatedly used to flush away contaminants in cleaning
steps and also acts as a coolant and carrier fluid in thermal oxidation,
chemical deposition, and chemical mechanical planarization processes.
During peak summer months, this approximates the daily water con-
sumption of a city with a population of half a million people.

Despite being located in regions with sufÏcient water, the intensive
usage can severely depress local water tables and drainage basins. For
example, the city of Hsinchu in Taiwan suffered sinking water tables
and seawater intrusion into aquifers due to excessive pumping to sat-
isfy water supply demands from the Taiwan Semiconductor Manufac-
turing Company (TSMC) fab. In water-scarce inland areas like Ari-
zona, massive water inputs are needed to support fabs despite already
strained reservoirs.

Water discharge from fabs risks environmental contamination be-
sides depletion if not properly treated. While much discharge is recy-
cled within the fab, the purification systems still filter out metals, acids,
and other contaminants that can pollute rivers and lakes if not cau-

https://wccftech.com/tsmc-arizona-foundry-205-million-approved/
https://wccftech.com/tsmc-arizona-foundry-205-million-approved/
https://quantis.com/
https://wccftech.com/tsmc-using-water-tankers-for-chip-production-as-5nm-plant-faces-rationing/
https://wccftech.com/tsmc-using-water-tankers-for-chip-production-as-5nm-plant-faces-rationing/
https://www.americanbar.org/groups/environment_energy_resources/publications/wr/a-tale-of-two-shortages/

CHAPTER 16. SUSTAINABLE AI 679

tiously handled (Prakash, Callahan, et al. 2023). These factors make
managing water usage essential when mitigating wider sustainability
impacts.

16.5.2 Hazardous Chemicals Usage

Modern semiconductor fabrication involves working with many highly
hazardous chemicals under extreme conditions of heat and pressure (S.
Kim et al. 2018). Key chemicals utilized include:

• Strong acids: Hydrofluoric, sulfuric, nitric, and hydrochloric
acids rapidly eat through oxides and other surface contaminants
but also pose toxicity dangers. Fabs can use thousands of metric
tons of these acids annually, and accidental exposure can be
fatal for workers.

• Solvents: Key solvents like xylene, methanol, and methyl
isobutyl ketone (MIBK) handle dissolving photoresists but have
adverse health impacts like skin/eye irritation and narcotic ef-
fects if mishandled. They also create explosive and air pollution
risks.

• Toxic gases: Gas mixtures containing arsine (AsH3), phosphine
(PH3), diborane (B2H6), germane (GeH4), etc., are some of the
deadliest chemicals used in doping and vapor deposition steps.
Minimal exposures can lead to poisoning, tissue damage, and
even death without quick treatment.

• Chlorinated compounds: Older chemical mechanical planariza-
tion formulations incorporated perchloroethylene, trichloroethy-
lene, and other chlorinated solvents, which have since been
banned due to their carcinogenic effects and impacts on
the ozone layer. However, their prior release still threatens
surrounding groundwater sources.

Strict handling protocols, protective equipment for workers, ventila-
tion, filtrating/scrubbing systems, secondary containment tanks, and
specialized disposal mechanisms are vital where these chemicals are
used to minimize health, explosion, air, and environmental spill dan-
gers (Wald and Jones 1987). But human errors and equipment failures
still occasionally occur–highlighting why reducing fab chemical inten-
sities is an ongoing sustainability effort.

16.5.3 Resource Depletion

While silicon forms the base, there is an almost endless supply of sili-
con on Earth. In fact, silicon is the second most plentiful element found

https://en.wikipedia.org/wiki/Abundance_of_elements_in_Earth%27s_crust

16.5. Beyond Carbon Footprint 680

in the Earth’s crust, accounting for 27.7% of the crust’s total mass. Only
oxygen exceeds silicon in abundance within the crust. Therefore, sili-
con is not necessary to consider for resource depletion. However, the
various specialty metals and materials that enable the integrated cir-
cuit fabrication process and provide specific properties still need to
be discovered. Maintaining supplies of these resources is crucial yet
threatened by finite availability and geopolitical influences (Nakano
2021).

Gallium, indium, and arsenic are vital ingredients in forming ultra-
efÏcient compound semiconductors in the highest-speed chips suited
for 5G and AI applications (H.-W. Chen 2006). However, these rare el-
ements have relatively scarce natural deposits that are being depleted.
The United States Geological Survey has indium on its list of most crit-
ical at-risk commodities, estimated to have less than a 15-year viable
global supply at current demand growth (E. Davies 2011).

Helium is required in huge volumes for next-gen fabs to enable pre-
cise wafer cooling during operation. But helium’s relative rarity and
the fact that once it vents into the atmosphere, it quickly escapes Earth
make maintaining helium supplies extremely challenging long-term
(E. Davies 2011). According to the US National Academies, substantial
price increases and supply shocks are already occurring in this thinly
traded market.

Other risks include China’s control over 90% of the rare earth ele-
ments critical to semiconductor material production (A. R. Jha 2014).
Any supply chain issues or trade disputes can lead to catastrophic raw
material shortages, given the lack of current alternatives. In conjunc-
tion with helium shortages, resolving the limited availability and geo-
graphic imbalance in accessing essential ingredients remains a sector
priority for sustainability.

16.5.4 Hazardous Waste Generation

Semiconductor fabs generate tons of hazardous waste annually as
byproducts from the various chemical processes (Grossman 2007).
The key waste streams include:

• Gaseous waste: Fab ventilation systems capture harmful gases
like arsine, phosphine, and germane and filter them out to avoid
worker exposure. However, this produces significant quantities
of dangerous condensed gas that need specialized treatment.

• VOCs: Volatile organic compounds like xylene, acetone, and
methanol are used extensively as photoresist solvents and are
evaporated as emissions during baking, etching, and stripping.

https://en.wikipedia.org/wiki/Abundance_of_elements_in_Earth%27s_crust
https://en.wikipedia.org/wiki/Abundance_of_elements_in_Earth%27s_crust

CHAPTER 16. SUSTAINABLE AI 681

VOCs pose toxicity issues and require scrubbing systems to
prevent release.

• Spent acids: Strong acids such as sulfuric acid, hydrofluoric acid,
and nitric acid get depleted in cleaning and etching steps, trans-
forming into a corrosive, toxic soup that can dangerously react,
releasing heat and fumes if mixed.

• Sludge: Water treatment of discharged efÒuent contains concen-
trated heavy metals, acid residues, and chemical contaminants.
Filter press systems separate this hazardous sludge.

• Filter cake: Gaseous filtration systems generate multi-ton sticky
cakes of dangerous absorbed compounds requiring containment.

Without proper handling procedures, storage tanks, packaging ma-
terials, and secondary containment, improper disposal of any of these
waste streams can lead to dangerous spills, explosions, and environ-
mental releases. The massive volumes mean even well-run fabs pro-
duce tons of hazardous waste year after year, requiring extensive treat-
ment.

16.5.5 Biodiversity Impacts

16.5.5.1 Habitat Disruption and Fragmentation

Semiconductor fabs require large, contiguous land areas to accommo-
date cleanrooms, support facilities, chemical storage, waste treatment,
and ancillary infrastructure. Developing these vast built-up spaces in-
evitably dismantles existing habitats, damaging sensitive biomes that
may have taken decades to develop. For example, constructing a new
fabrication module may level local forest ecosystems that species, like
spotted owls and elk, rely upon for survival. The outright removal
of such habitats severely threatens wildlife populations dependent on
those lands.

Furthermore, pipelines, water channels, air and waste exhaust sys-
tems, access roads, transmission towers, and other support infrastruc-
ture fragment the remaining undisturbed habitats. Animals moving
daily for food, water, and spawning can find their migration patterns
blocked by these physical human barriers that bisect previously natu-
ral corridors.

16.5.5.2 Aquatic Life Disturbances

With semiconductor fabs consuming millions of gallons of ultra-pure
water daily, accessing and discharging such volumes risks altering the
suitability of nearby aquatic environments housing fish, water plants,

16.6. Life Cycle Analysis 682

amphibians, and other species. If the fab is tapping groundwater tables
as its primary supply source, overdrawing at unsustainable rates can
deplete lakes or lead to stream drying as water levels drop (E. Davies
2011).

Also, discharging wastewater at higher temperatures to cool fabrica-
tion equipment can shift downstream river conditions through ther-
mal pollution. Temperature changes beyond thresholds that native
species evolved for can disrupt reproductive cycles. Warmer water
also holds less dissolved oxygen, critical to supporting aquatic plant
and animal life (LeRoy Poff, Brinson, and Day 2002). Combined with
traces of residual contaminants that escape filtration systems, the dis-
charged water can cumulatively transform environments to be far less
habitable for sensitive organisms (Till et al. 2019).

16.5.5.3 Air and Chemical Emissions

While modern semiconductor fabs aim to contain air and chemical dis-
charges through extensive filtration systems, some levels of emissions
often persist, raising risks for nearby flora and fauna. Air pollutants
can carry downwind, including volatile organic compounds (VOCs),
nitrogen oxide compounds (NOx), particulate matter from fab opera-
tional exhausts, and power plant fuel emissions.

As contaminants permeate local soils and water sources, wildlife in-
gesting affected food and water ingest toxic substances, which research
shows can hamper cell function, reproduction rates, and longevity–
slowly poisoning ecosystems (Hsu et al. 2016).

Likewise, accidental chemical spills and improper waste handling,
which release acids, BODs, and heavy metals into soils, can dramati-
cally affect retention and leeching capabilities. Flora, such as vulnera-
ble native orchids adapted to nutrient-poor substrates, can experience
die-offs when contacted by foreign runoff chemicals that alter soil pH
and permeability. One analysis found that a single 500-gallon nitric
acid spill led to the regional extinction of a rare moss species in the year
following when the acidic efÒuent reached nearby forest habitats. Such
contamination events set off chain reactions across the interconnected
web of life. Thus, strict protocols are essential to avoid hazardous dis-
charge and runoff.

16.6 Life Cycle Analysis
Understanding the holistic environmental impact of AI systems re-
quires a comprehensive approach that considers the entire life cycle of
these technologies. Life Cycle Analysis (LCA) refers to a methodolog-

CHAPTER 16. SUSTAINABLE AI 683

ical framework used to quantify the environmental impacts across all
stages in a product or system’s lifespan, from raw material extraction
to end-of-life disposal. Applying LCA to AI systems can help identify
priority areas to target for reducing overall environmental footprints.

16.6.1 Stages of an AI System’s Life Cycle

The life cycle of an AI system can be divided into four key phases:

• Design Phase: This includes the energy and resources used in
researching and developing AI technologies. It encompasses the
computational resources used for algorithm development and
testing contributing to carbon emissions.

• Manufacture Phase: This stage involves producing hardware
components such as graphics cards, processors, and other
computing devices necessary for running AI algorithms. Manu-
facturing these components often involves significant energy for
material extraction, processing, and greenhouse gas emissions.

• Use Phase: The next most energy-intensive phase involves the
operational use of AI systems. It includes the electricity con-
sumed in data centers for training and running neural networks
and powering end-user applications. This is arguably one of the
most carbon-intensive stages.

• Disposal Phase: This final stage covers the end-of-life aspects
of AI systems, including the recycling and disposal of electronic
waste generated from outdated or non-functional hardware past
their usable lifespan.

16.6.2 Environmental Impact at Each Stage

Design and Manufacturing
The environmental impact during these beginning-of-life phases in-

cludes emissions from energy use and resource depletion from extract-
ing materials for hardware production. At the heart of AI hardware are
semiconductors, primarily silicon, used to make the integrated circuits
in processors and memory chips. This hardware manufacturing relies
on metals like copper for wiring, aluminum for casings, and various
plastics and composites for other components. It also uses rare earth
metals and specialized alloys- elements like neodymium, terbium, and
yttrium- used in small but vital quantities. For example, the creation of
GPUs relies on copper and aluminum. At the same time, chips use rare

16.7. Challenges in LCA 684

earth metals, which is the mining process that can generate substantial
carbon emissions and ecosystem damage.

Use Phase
AI computes the majority of emissions in the lifecycle due to con-

tinuous high-power consumption, especially for training and running
models. This includes direct and indirect emissions from electricity us-
age and nonrenewable grid energy generation. Studies estimate train-
ing complex models can have a carbon footprint comparable to the life-
time emissions of up to five cars.

Disposal Phase
The disposal stage impacts include air and water pollution from

toxic materials in devices, challenges associated with complex elec-
tronics recycling, and contamination when improperly handled.
Harmful compounds from burned e-waste are released into the
atmosphere. At the same time, landfill leakage of lead, mercury, and
other materials poses risks of soil and groundwater contamination if
not properly controlled. Implementing effective electronics recycling
is crucial.

Exercise 30: Tracking ML Emissions

In this exercise, you’ll explore the environmental impact of train-
ing machine learning models. We’ll use CodeCarbon to track
emissions, learn about Life Cycle Analysis (LCA) to understand
AI’s carbon footprint, and explore strategies to make your ML
model development more environmentally friendly. By the end,
you’ll be equipped to track the carbon emissions of your models
and start implementing greener practices in your projects.

16.7 Challenges in LCA

16.7.1 Lack of Consistency and Standards

One major challenge facing life cycle analysis (LCA) for AI systems
is the need for consistent methodological standards and frameworks.
Unlike product categories like building materials, which have devel-
oped international standards for LCA through ISO 14040, there are
no firmly established guidelines for analyzing the environmental foot-
print of complex information technology like AI.

This absence of uniformity means researchers make differing

https://colab.research.google.com/drive/1elYSajW0_qxA_6k-B8w4TGR5ec8vaw5f?usp=drive_link#scrollTo=EFpgp_rIA_TY

CHAPTER 16. SUSTAINABLE AI 685

assumptions and varying methodological choices. For example, a
2021 study from the University of Massachusetts Amherst (Strubell,
Ganesh, and McCallum 2019) analyzed the life cycle emissions
of several natural language processing models but only considered
computational resource usage for training and omitted hardware man-
ufacturing impacts. A more comprehensive 2020 study from Stanford
University researchers included emissions estimates from producing
relevant servers, processors, and other components, following an
ISO-aligned LCA standard for computer hardware. However, these
diverging choices in system boundaries and accounting approaches
reduce robustness and prevent apples-to-apples comparisons of
results.

Standardized frameworks and protocols tailored to AI systems’
unique aspects and rapid update cycles would provide more coher-
ence. This could equip researchers and developers to understand
environmental hotspots, compare technology options, and accurately
track progress on sustainability initiatives across the AI field. Indus-
try groups and international standards bodies like the IEEE or ACM
should prioritize addressing this methodological gap.

16.7.2 Data Gaps

Another key challenge for comprehensive life cycle assessment of AI
systems is substantial data gaps, especially regarding upstream supply
chain impacts and downstream electronic waste flows. Most existing
studies focus narrowly on the learner or usage phase emissions from
computational power demands, which misses a significant portion of
lifetime emissions (U. Gupta et al. 2022).

For example, little public data from companies exists quantifying en-
ergy use and emissions from manufacturing the specialized hardware
components that enable AI–including high-end GPUs, ASIC chips,
solid-state drives, and more. Researchers often rely on secondary
sources or generic industry averages to approximate production
impacts. Similarly, on average, there is limited transparency into
downstream fate once AI systems are discarded after 4-5 years of
usable lifespans.

While electronic waste generation levels can be estimated, specifics
on hazardous material leakage, recycling rates, and disposal methods
for the complex components are hugely uncertain without better cor-
porate documentation or regulatory reporting requirements.

The need for fine-grained data on computational resource consump-
tion for training different model types makes reliable per-parameter
or per-query emissions calculations difÏcult even for the usage phase.

16.7. Challenges in LCA 686

Attempts to create lifecycle inventories estimating average energy
needs for key AI tasks exist (Henderson et al. 2020; Anthony, Kanding,
and Selvan 2020), but variability across hardware setups, algorithms,
and input data uncertainty remains extremely high. Furthermore,
real-time carbon intensity data, critical in accurately tracking op-
erational carbon footprint, must be improved in many geographic
locations, rendering existing tools for operational carbon emission
mere approximations based on annual average carbon intensity
values.

The challenge is that tools like CodeCarbon and ML CO2 but these
are ad hoc approaches at best. Bridging the real data gaps with more
rigorous corporate sustainability disclosures and mandated environ-
mental impact reporting will be key for AI’s overall climatic impacts
to be understood and managed.

16.7.3 Rapid Pace of Evolution

The extremely quick evolution of AI systems poses additional chal-
lenges in keeping life cycle assessments up-to-date and accounting for
the latest hardware and software advancements. The core algorithms,
specialized chips, frameworks, and technical infrastructure underpin-
ning AI have all been advancing exceptionally fast, with new develop-
ments rapidly rendering prior systems obsolete.

For example, in deep learning, novel neural network architectures
that achieve significantly better performance on key benchmarks or
new optimized hardware like Google’s TPU chips can completely
change an “average” model in less than a year. These swift shifts
quickly make one-off LCA studies outdated for accurately tracking
emissions from designing, running, or disposing of the latest AI.

However, the resources and access required to update LCAs contin-
uously need to be improved. Frequently re-doing labor—and data-
intensive life cycle inventories and impact modeling to stay current
with AI’s state-of-the-art is likely infeasible for many researchers and
organizations. However, updated analyses could notice environmen-
tal hotspots as algorithms and silicon chips continue rapidly evolving.

This presents difÏculty in balancing dynamic precision through con-
tinuous assessment with pragmatic constraints. Some researchers have
proposed simplified proxy metrics like tracking hardware generations
over time or using representative benchmarks as an oscillating set of
goalposts for relative comparisons, though granularity may be sacri-
ficed. Overall, the challenge of rapid change will require innovative
methodological solutions to prevent underestimating AI’s evolving en-
vironmental burdens.

https://codecarbon.io/
https://mlco2.github.io/impact/#compute

CHAPTER 16. SUSTAINABLE AI 687

16.7.4 Supply Chain Complexity

Finally, the complex and often opaque supply chains associated with
producing the wide array of specialized hardware components that en-
able AI pose challenges for comprehensive life cycle modeling. State-
of-the-art AI relies on cutting-edge advancements in processing chips,
graphics cards, data storage, networking equipment, and more. How-
ever, tracking emissions and resource use across the tiered networks
of globalized suppliers for all these components is extremely difÏcult.

For example, NVIDIA graphics processing units dominate much
of the AI computing hardware, but the company relies on several
discrete suppliers across Asia and beyond to produce GPUs. Many
firms at each supplier tier choose to keep facility-level environmental
data private, which could fully enable robust LCAs. Gaining end-to-
end transparency down multiple levels of suppliers across disparate
geographies with varying disclosure protocols and regulations poses
barriers despite being crucial for complete boundary setting. This
becomes even more complex when attempting to model emerging
hardware accelerators like tensor processing units (TPUs), whose
production networks still need to be made public.

Without tech giants’ willingness to require and consolidate envi-
ronmental impact data disclosure from across their global electronics
supply chains, considerable uncertainty will remain around quanti-
fying the full lifecycle footprint of AI hardware enablement. More
supply chain visibility coupled with standardized sustainability
reporting frameworks specifically addressing AI’s complex inputs
hold promise for enriching LCAs and prioritizing environmental
impact reductions.

16.8 Sustainable Design and Development

16.8.1 Sustainability Principles

As the impact of AI on the environment becomes increasingly evident,
the focus on sustainable design and development in AI is gaining
prominence. This involves incorporating sustainability principles into
AI design, developing energy-efÏcient models, and integrating these
considerations throughout the AI development pipeline. There is a
growing need to consider its sustainability implications and develop
principles to guide responsible innovation. Below is a core set of
principles. The principles flow from the conceptual foundation to
practical execution to supporting implementation factors; the princi-
ples provide a full cycle perspective on embedding sustainability in

16.8. Sustainable Design and Development 688

AI design and development.
Lifecycle Thinking: Encouraging designers to consider the entire

lifecycle of AI systems, from data collection and preprocessing to
model development, training, deployment, and monitoring. The goal
is to ensure sustainability is considered at each stage. This includes us-
ing energy-efÏcient hardware, prioritizing renewable energy sources,
and planning to reuse or recycle retired models.

Future Proofing: Designing AI systems anticipating future needs
and changes can improve sustainability. This may involve making
models adaptable via transfer learning and modular architectures. It
also includes planning capacity for projected increases in operational
scale and data volumes.

EfÏciency and Minimalism: This principle focuses on creating AI
models that achieve desired results with the least possible resource
use. It involves simplifying models and algorithms to reduce compu-
tational requirements. Specific techniques include pruning redundant
parameters, quantizing and compressing models, and designing efÏ-
cient model architectures, such as those discussed in the Optimizations
chapter.

Lifecycle Assessment (LCA) Integration: Analyzing environmen-
tal impacts throughout the development and deployment of lifecycles
highlights unsustainable practices early on. Teams can then make ad-
justments instead of discovering issues late when they are more difÏ-
cult to address. Integrating this analysis into the standard design flow
avoids creating legacy sustainability problems.

Incentive Alignment: Economic and policy incentives should
promote and reward sustainable AI development. These may include
government grants, corporate initiatives, industry standards, and
academic mandates for sustainability. Aligned incentives enable
sustainability to become embedded in AI culture.

SustainabilityMetrics andGoals: It is important to establish clearly
defined Metrics that measure sustainability factors like carbon usage
and energy efÏciency. Establishing clear targets for these metrics pro-
vides concrete guidelines for teams to develop responsible AI systems.
Tracking performance on metrics over time shows progress towards
set sustainability goals.

Fairness, Transparency, and Accountability: Sustainable AI sys-
tems should be fair, transparent, and accountable. Models should be
unbiased, with transparent development processes and mechanisms
for auditing and redressing issues. This builds public trust and
enables the identification of unsustainable practices.

Cross-disciplinary Collaboration: AI researchers teaming up with
environmental scientists and engineers can lead to innovative systems

../optimizations/optimizations.qmd

CHAPTER 16. SUSTAINABLE AI 689

that are high-performing yet environmentally friendly. Combining ex-
pertise from different fields from the start of projects enables sustain-
able thinking to be incorporated into the AI design process.

Education and Awareness: Workshops, training programs, and
course curricula that cover AI sustainability raise awareness among
the next generation of practitioners. This equips students with the
knowledge to develop AI that consciously minimizes negative societal
and environmental impacts. Instilling these values from the start
shapes tomorrow’s professionals and company cultures.

16.9 Green AI Infrastructure
Green AI represents a transformative approach to AI that incorporates
environmental sustainability as a fundamental principle across the AI
system design and lifecycle (R. Schwartz et al. 2020). This shift is
driven by growing awareness of AI technologies’ significant carbon
footprint and ecological impact, especially the compute-intensive pro-
cess of training complex ML models.

The essence of Green AI lies in its commitment to align AI advance-
ment with sustainability goals around energy efÏciency, renewable en-
ergy usage, and waste reduction. The introduction of Green AI ideals
reflects maturing responsibility across the tech industry towards envi-
ronmental stewardship and ethical technology practices. It moves be-
yond technical optimizations toward holistic life cycle assessment on
how AI systems affect sustainability metrics. Setting new bars for eco-
logically conscious AI paves the way for the harmonious coexistence
of technological progress and planetary health.

16.9.1 Energy EfÏcient AI Systems

Energy efÏciency in AI systems is a cornerstone of Green AI, aiming to
reduce the energy demands traditionally associated with AI develop-
ment and operations. This shift towards energy-conscious AI practices
is vital in addressing the environmental concerns raised by the rapidly
expanding field of AI. By focusing on energy efÏciency, AI systems
can become more sustainable, lessening their environmental impact
and paving the way for more responsible AI use.

As we discussed earlier, the training and operation of AI models,
especially large-scale ones, are known for their high energy consump-
tion, which stems from compute-intensive model architecture and re-
liance on vast amounts of training data. For example, it is estimated
that training a large state-of-the-art neural network model can have a

16.9. Green AI Infrastructure 690

carbon footprint of 284 tonnes—equivalent to the lifetime emissions of
5 cars (Strubell, Ganesh, and McCallum 2019).

To tackle the massive energy demands, researchers and developers
are actively exploring methods to optimize AI systems for better en-
ergy efÏciency while maintaining model accuracy and performance.
This includes techniques like the ones we have discussed in the model
optimizations, efÏcient AI, and hardware acceleration chapters:

• Knowledge distillation to transfer knowledge from large AI mod-
els to miniature versions

• Quantization and pruning approaches that reduce computa-
tional and space complexities

• Low-precision numerics–lowering mathematical precision with-
out impacting model quality

• Specialized hardware like TPUs, neuromorphic chips tuned ex-
plicitly for efÏcient AI processing

One example is Intel’s work on Q8BERT—quantizing the BERT lan-
guage model with 8-bit integers, leading to a 4x reduction in model size
with minimal accuracy loss (Zafrir et al. 2019). The push for energy-
efÏcient AI is not just a technical endeavor–it has tangible real-world
implications. More performant systems lower AI’s operational costs
and carbon footprint, making it accessible for widespread deployment
on mobile and edge devices. It also paves the path toward the democra-
tization of AI and mitigates unfair biases that can emerge from uneven
access to computing resources across regions and communities. Pur-
suing energy-efÏcient AI is thus crucial for creating an equitable and
sustainable future with AI.

16.9.2 Sustainable AI Infrastructure

Sustainable AI infrastructure includes the physical and technological
frameworks that support AI systems, focusing on environmental sus-
tainability. This involves designing and operating AI infrastructure
to minimize ecological impact, conserve resources, and reduce carbon
emissions. The goal is to create a sustainable ecosystem for AI that
aligns with broader environmental objectives.

Green data centers are central to sustainable AI infrastructure, opti-
mized for energy efÏciency, and often powered by renewable energy
sources. These data centers employ advanced cooling technologies
(Ebrahimi, Jones, and Fleischer 2014), energy-efÏcient server designs
(Uddin and Rahman 2012), and smart management systems (Buyya,
Beloglazov, and Abawajy 2010) to reduce power consumption. The
shift towards green computing infrastructure also involves adopting

CHAPTER 16. SUSTAINABLE AI 691

energy-efÏcient hardware, like AI-optimized processors that deliver
high performance with lower energy requirements, which we dis-
cussed in the AI. Acceleration chapter. These efforts collectively
reduce the carbon footprint of running large-scale AI operations.

Integrating renewable energy sources, such as solar, wind, and hy-
droelectric power, into AI infrastructure is important for environmen-
tal sustainability (Chua 1971). Many tech companies and research insti-
tutions are investing in renewable energy projects to power their data
centers. This not only helps in making AI operations carbon-neutral
but also promotes the wider adoption of clean energy. Using renew-
able energy sources clearly shows commitment to environmental re-
sponsibility in the AI industry.

Sustainability in AI also extends to the materials and hardware
used in creating AI systems. This involves choosing environmentally
friendly materials, adopting recycling practices, and ensuring re-
sponsible electronic waste disposal. Efforts are underway to develop
more sustainable hardware components, including energy-efÏcient
chips designed for domain-specific tasks (such as AI accelerators) and
environmentally friendly materials in device manufacturing (Cenci et
al. 2021; Irimia-Vladu 2014). The lifecycle of these components is also
a focus, with initiatives aimed at extending the lifespan of hardware
and promoting recycling and reuse.

While strides are being made in sustainable AI infrastructure,
challenges remain, such as the high costs of green technology and the
need for global standards in sustainable practices. Future directions
include more widespread adoption of green energy, further innova-
tions in energy-efÏcient hardware, and international collaboration on
sustainable AI policies. Pursuing sustainable AI infrastructure is not
just a technical endeavor but a holistic approach that encompasses en-
vironmental, economic, and social aspects, ensuring that AI advances
harmoniously with our planet’s health.

16.9.3 Frameworks and Tools

Access to the right frameworks and tools is essential to effectively im-
plementing green AI practices. These resources are designed to assist
developers and researchers in creating more energy-efÏcient and envi-
ronmentally friendly AI systems. They range from software libraries
optimized for low-power consumption to platforms that facilitate the
development of sustainable AI applications.

Several software libraries and development environments are
specifically tailored for Green AI. These tools often include features
for optimizing AI models to reduce their computational load and,

../hw_acceleration/hw_acceleration.qmd
https://www.forbes.com/sites/siemens-smart-infrastructure/2023/03/13/how-data-centers-are-driving-the-renewable-energy-transition/?sh=3208c5b54214
https://www.forbes.com/sites/siemens-smart-infrastructure/2023/03/13/how-data-centers-are-driving-the-renewable-energy-transition/?sh=3208c5b54214

16.9. Green AI Infrastructure 692

consequently, their energy consumption. For example, libraries in
PyTorch and TensorFlow that support model pruning, quantization,
and efÏcient neural network architectures enable developers to build
AI systems that require less processing power and energy. Addition-
ally, open-source communities like the Green Carbon Foundation are
creating a centralized carbon intensity metric and building software
for carbon-aware computing.

Energy monitoring tools are crucial for Green AI, as they allow de-
velopers to measure and analyze the energy consumption of their AI
systems. By providing detailed insights into where and how energy is
being used, these tools enable developers to make informed decisions
about optimizing their models for better energy efÏciency. This can
involve adjustments in algorithm design, hardware selection, cloud
computing software selection, or operational parameters. Figure 16.8
is a screenshot of an energy consumption dashboard provided by Mi-
crosoft’s cloud services platform.

Figure 16.8.: Microsoft Azure
energy consumption dash-
board. Source: Will Buchanan.

With the increasing integration of renewable energy sources in AI
operations, frameworks facilitating this process are becoming more
important. These frameworks help manage the energy supply from
renewable sources like solar or wind power, ensuring that AI systems
can operate efÏciently with fluctuating energy inputs.

Beyond energy efÏciency, sustainability assessment tools help eval-
uate the broader environmental impact of AI systems. These tools can
analyze factors like the carbon footprint of AI operations, the lifecycle
impact of hardware components (U. Gupta et al. 2022), and the overall
sustainability of AI projects (Prakash, Callahan, et al. 2023).

The availability and ongoing development of Green AI frameworks
and tools are critical for advancing sustainable AI practices. By pro-
viding the necessary resources for developers and researchers, these
tools facilitate the creation of more environmentally friendly AI sys-
tems and encourage a broader shift towards sustainability in the tech
community. As Green AI continues to evolve, these frameworks and
tools will play a vital role in shaping a more sustainable future for AI.

https://github.com/Green-Software-Foundation
https://techcommunity.microsoft.com/t5/green-tech-blog/charting-the-path-towards-sustainable-ai-with-azure-machine/ba-p/2866923

CHAPTER 16. SUSTAINABLE AI 693

16.9.4 Benchmarks and Leaderboards

Benchmarks and leaderboards are important for driving progress in
Green AI, as they provide standardized ways to measure and compare
different methods. Well-designed benchmarks that capture relevant
metrics around energy efÏciency, carbon emissions, and other sustain-
ability factors enable the community to track advancements fairly and
meaningfully.

Extensive benchmarks exist for tracking AI model performance,
such as those extensively discussed in the Benchmarking chapter.
Still, a clear and pressing need exists for additional standardized
benchmarks focused on sustainability metrics like energy efÏciency,
carbon emissions, and overall ecological impact. Understanding the
environmental costs of AI currently needs to be improved by a lack of
transparency and standardized measurement around these factors.

Emerging efforts such as the ML.ENERGY Leaderboard, which pro-
vides performance and energy consumption benchmarking results for
large language models (LLMs) text generation, assists in enhancing the
understanding of the energy cost of GenAI deployment.

As with any benchmark, Green AI benchmarks must represent real-
istic usage scenarios and workloads. Benchmarks that focus narrowly
on easily gamed metrics may lead to short-term gains but fail to re-
flect actual production environments where more holistic efÏciency
and sustainability measures are needed. The community should con-
tinue expanding benchmarks to cover diverse use cases.

Wider adoption of common benchmark suites by industry players
will accelerate innovation in Green AI by allowing easier comparison
of techniques across organizations. Shared benchmarks lower the bar-
rier to demonstrating the sustainability benefits of new tools and best
practices. However, when designing industry-wide benchmarks, care
must be taken around issues like intellectual property, privacy, and
commercial sensitivity. Initiatives to develop open reference datasets
for Green AI evaluation may help drive broader participation.

As methods and infrastructure for Green AI continue maturing,
the community must revisit benchmark design to ensure existing
suites capture new techniques and scenarios well. Tracking the
evolving landscape through regular benchmark updates and reviews
will be important to maintain representative comparisons over time.
Community efforts for benchmark curation can enable sustain-
able benchmark suites that stand the test of time. Comprehensive
benchmark suites owned by research communities or neutral third
parties like MLCommons may encourage wider participation and
standardization.

../benchmarking/benchmarking.qmd
https://ml.energy/leaderboard
https://mlcommons.org

16.10. Case Study: Google’s 4Ms 694

16.10 Case Study: Google’s 4Ms
Over the past decade, AI has rapidly moved from academic research to
large-scale production systems powering numerous Google products
and services. As AI models and workloads have grown exponentially
in size and computational demands, concerns have emerged about
their energy consumption and carbon footprint. Some researchers
predicted runaway growth in ML’s energy appetite that could out-
weigh efÏciencies gained from improved algorithms and hardware
(Thompson et al. 2021).

However, Google’s production data reveals a different story—AI rep-
resents a steady 10-15% of total company energy usage from 2019 to
2021. This case study analyzes how Google applied a systematic ap-
proach leveraging four best practices—what they term the “4 Ms” of
model efÏciency, machine optimization, mechanization through cloud
computing, and mapping to green locations—to bend the curve on
emissions from AI workloads.

The scale of Google’s AI usage makes it an ideal case study. In
2021 alone, the company trained models like the 1.2 trillion-parameter
GLam model. Analyzing how the application of AI has been paired
with rapid efÏciency gains in this environment helps us by providing
a logical blueprint for the broader AI field to follow.

By transparently publishing detailed energy usage statistics, adopt-
ing rates of carbon-free clouds and renewables purchases, and more,
alongside its technical innovations, Google has enabled outside
researchers to measure progress accurately. Their study in the ACM
CACM (D. Patterson et al. 2022) highlights how the company’s
multipronged approach shows that runaway AI energy consumption
predictions can be overcome by focusing engineering efforts on
sustainable development patterns. The pace of improvements also
suggests ML’s efÏciency gains are just starting.

16.10.1 Google’s 4M Best Practices

To curb emissions from their rapidly expanding AI workloads, Google
engineers systematically identified four best practice areas–termed the
“4 Ms”–where optimizations could compound to reduce the carbon
footprint of ML:

• Model - Selecting efÏcient AI model architectures can reduce
computation by 5-10X with no loss in model quality. Google has
extensively researched developing sparse models and neural
architecture search to create more efÏcient models like the
Evolved Transformer and Primer.

CHAPTER 16. SUSTAINABLE AI 695

• Machine—Using hardware optimized for AI over general-
purpose systems improves performance per watt by 2-5X.
Google’s Tensor Processing Units (TPUs) led to 5-13X better
carbon efÏciency versus GPUs not optimized for ML.

• Mechanization—By leveraging cloud computing systems tai-
lored for high utilization over conventional on-premise data
centers, energy costs are reduced by 1.4-2X. Google cites its
data center’s power usage effectiveness as outpacing industry
averages.

• Map - Choosing data center locations with low-carbon electricity
reduces gross emissions by another 5-10X. Google provides real-
time maps highlighting the percentage of renewable energy used
by its facilities.

Together, these practices created drastic compound efÏciency gains.
For example, optimizing the Transformer AI model on TPUs in a sus-
tainable data center location cut energy use by 83. It lowered CO2 emis-
sions by a factor of 747.

16.10.2 Significant Results

Despite exponential growth in AI adoption across products and ser-
vices, Google’s efforts to improve the carbon efÏciency of ML have pro-
duced measurable gains, helping to restrain overall energy appetite.
One key data point highlighting this progress is that AI workloads
have remained a steady 10% to 15% of total company energy use from
2019 to 2021. As AI became integral to more Google offerings, over-
all compute cycles dedicated to AI grew substantially. However, efÏ-
ciencies in algorithms, specialized hardware, data center design, and
flexible geography allowed sustainability to keep pace—with AI rep-
resenting just a fraction of total data center electricity over years of ex-
pansion.

Other case studies underscore how an engineering focus on sustain-
able AI development patterns enabled rapid quality improvements in
lockstep with environmental gains. For example, the natural language
processing model GPT-3 was viewed as state-of-the-art in mid-2020.
Yet its successor GLaM improved accuracy while cutting training com-
pute needs and using cleaner data center energy–cutting CO2 emis-
sions by a factor of 14 in just 18 months of model evolution.

Similarly, Google found past published speculation missing the
mark on ML’s energy appetite by factors of 100 to 100,000X due to
a lack of real-world metrics. By transparently tracking optimiza-
tion impact, Google hoped to motivate efÏciency while preventing
overestimated extrapolations about ML’s environmental toll.

16.10. Case Study: Google’s 4Ms 696

These data-driven case studies show how companies like Google are
steering AI advancements toward sustainable trajectories and improv-
ing efÏciency to outpace adoption growth. With further efforts around
lifecycle analysis, inference optimization, and renewable expansion,
companies can aim to accelerate progress, giving evidence that ML’s
clean potential is only just being unlocked by current gains.

16.10.3 Further Improvements

While Google has made measurable progress in restraining the car-
bon footprint of its AI operations, the company recognizes further efÏ-
ciency gains will be vital for responsible innovation given the technol-
ogy’s ongoing expansion.

One area of focus is showing how advances are often incorrectly
viewed as increasing unsustainable computing—like neural architec-
ture search (NAS) to find optimized models— spur downstream sav-
ings, outweighing their upfront costs. Despite expending more energy
on model discovery rather than hand-engineering, NAS cuts lifetime
emissions by producing efÏcient designs callable across countless ap-
plications.

Additionally, the analysis reveals that focusing sustainability efforts
on data center and server-side optimization makes sense, given the
dominant energy draw versus consumer devices. Though Google
shrinks inference impacts across processors like mobile phones,
priority rests on improving training cycles and data center renewables
procurement for maximal effect.

To that end, Google’s progress in pooling computing inefÏciently
designed cloud facilities highlights the value of scale and central-
ization. As more workloads shift away from inefÏcient on-premise
servers, internet giants’ prioritization of renewable energy—with
Google and Facebook matched 100% by renewables since 2017 and
2020, respectively—unlocks compounding emissions cuts.

Together, these efforts emphasize that while no resting on laurels is
possible, Google’s multipronged approach shows that AI efÏciency
improvements are only accelerating. Cross-domain initiatives around
lifecycle assessment, carbon-conscious development patterns, trans-
parency, and matching rising AI demand with clean electricity supply
pave a path toward bending the curve further as adoption grows. The
company’s results compel the broader field towards replicating these
integrated sustainability pursuits.

CHAPTER 16. SUSTAINABLE AI 697

16.11 Embedded AI - Internet of Trash
While much attention has focused on making the immense data cen-
ters powering AI more sustainable, an equally pressing concern is the
movement of AI capabilities into smart edge devices and endpoints.
Edge/embedded AI allows near real-time responsiveness without con-
nectivity dependencies. It also reduces transmission bandwidth needs.
However, the increase of tiny devices leads to other risks.

Tiny computers, microcontrollers, and custom ASICs powering
edge intelligence face size, cost, and power limitations that rule out
high-end GPUs used in data centers. Instead, they require optimized
algorithms and extremely compact, energy-efÏcient circuitry to run
smoothly. However, engineering for these microscopic form factors
opens up risks around planned obsolescence, disposability, and waste.
Figure 16.9 shows that the number of IoT devices is projected to reach
30 billion connected devices by 2030.

Figure 16.9.: Number of Inter-
net of Things (IoT) connected
devices worldwide from 2019
to 2023. Source: Statista.

End-of-life handling of internet-connected gadgets embedded with
sensors and AI remains an often overlooked issue during design. How-
ever, these products permeate consumer goods, vehicles, public infras-
tructure, industrial equipment, and more.

16.11.0.1 E-waste

Electronic waste, or e-waste, refers to discarded electrical equipment
and components that enter the waste stream. This includes devices

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

16.11. Embedded AI - Internet of Trash 698

that have to be plugged in, have a battery, or electrical circuitry. With
the rising adoption of internet-connected smart devices and sensors,
e-waste volumes rapidly increase yearly. These proliferating gadgets
contain toxic heavy metals like lead, mercury, and cadmium that be-
come environmental and health hazards when improperly disposed
of.

The amount of electronic waste being produced is growing at an
alarming rate. Today, we already produce 50 million tons per year.
By 2030, that figure is projected to jump to a staggering 75 million
tons as consumer electronics consumption continues to accelerate.
Global e-waste production will reach 120 million tonnes annually
by 2050 (Un and Forum 2019). The soaring production and short
lifecycles of our gadgets fuel this crisis, from smartphones and tablets
to internet-connected devices and home appliances.

Developing nations are being hit the hardest as they need more in-
frastructure to process obsolete electronics safely. In 2019, formal e-
waste recycling rates in poorer countries ranged from 13% to 23%. The
remainder ends up illegally dumped, burned, or crudely dismantled,
releasing toxic materials into the environment and harming workers
and local communities. Clearly, more needs to be done to build global
capacity for ethical and sustainable e-waste management, or we risk
irreversible damage.

The danger is that crude handling of electronics to strip valuables
exposes marginalized workers and communities to noxious burnt plas-
tics/metals. Lead poisoning poses especially high risks to child devel-
opment if ingested or inhaled. Overall, only about 20% of e-waste pro-
duced was collected using environmentally sound methods, according
to UN estimates (Un and Forum 2019). So solutions for responsible life-
cycle management are urgently required to contain the unsafe disposal
as volume soars higher.

16.11.0.2 Disposable Electronics

The rapidly falling costs of microcontrollers, tiny rechargeable bat-
teries, and compact communication hardware have enabled the
embedding of intelligent sensor systems throughout everyday con-
sumer goods. These internet-of-things (IoT) devices monitor product
conditions, user interactions, and environmental factors to enable
real-time responsiveness, personalization, and data-driven business
decisions in the evolving connected marketplace.

However, these embedded electronics face little oversight or plan-
ning around sustainably handling their eventual disposal once the of-
ten plastic-encased products are discarded after brief lifetimes. IoT
sensors now commonly reside in single-use items like water bottles,

https://www.unep.org/news-and-stories/press-release/un-report-time-seize-opportunity-tackle-challenge-e-waste

CHAPTER 16. SUSTAINABLE AI 699

food packaging, prescription bottles, and cosmetic containers that over-
whelmingly enter landfill waste streams after a few weeks to months
of consumer use.

The problem accelerates as more manufacturers rush to integrate
mobile chips, power sources, Bluetooth modules, and other modern
silicon ICs, costing under US$1, into various merchandise without pro-
tocols for recycling, replacing batteries, or component reusability. De-
spite their small individual size, the volumes of these devices and life-
time waste burden loom large. Unlike regulating larger electronics, few
policy constraints exist around materials requirements or toxicity in
tiny disposable gadgets.

While offering convenience when working, the unsustainable
combination of difÏcult retrievability and limited safe breakdown
mechanisms causes disposable connected devices to contribute
outsized shares of future e-waste volumes needing urgent attention.

16.11.0.3 Planned Obsolescence

Planned obsolescence refers to the intentional design strategy of man-
ufacturing products with artificially limited lifetimes that quickly be-
come non-functional or outdated. This spurs faster replacement pur-
chase cycles as consumers find devices no longer meet their needs
within a few years. However, electronics designed for premature ob-
solescence contribute to unsustainable e-waste volumes.

For example, gluing smartphone batteries and components together
hinders repairability compared to modular, accessible assemblies.
Rolling out software updates that deliberately slow system perfor-
mance creates a perception that upgrading devices produced only
several years earlier is worth it.

Likewise, fashionable introductions of new product generations
with minor but exclusive feature additions make prior versions
rapidly seem dated. These tactics compel buying new gadgets (e.g.,
iPhones) long before operational endpoints. When multiplied across
fast-paced electronics categories, billions of barely worn items are
discarded annually.

Planned obsolescence thus intensifies resource utilization and waste
creation in making products with no intention for long lifetimes. This
contradicts sustainability principles around durability, reuse, and ma-
terial conservation. While stimulating continuous sales and gains for
manufacturers in the short term, the strategy externalizes environmen-
tal costs and toxins onto communities lacking proper e-waste process-
ing infrastructure.

Policy and consumer action are crucial to counter gadget designs
that are needlessly disposable by default. Companies should also in-

https://www.cnbc.com/2020/12/08/the-psychology-of-new-iphone-releases-apple-marketing.html
https://www.cnbc.com/2020/12/08/the-psychology-of-new-iphone-releases-apple-marketing.html

16.12. Policy and Regulatory Considerations 700

vest in product stewardship programs supporting responsible reuse
and reclamation.

Consider the real-world example. Apple has faced scrutiny over the
years for allegedly engaging in planned obsolescence to encourage cus-
tomers to buy new iPhone models. The company allegedly designed
its phones so that performance degrades over time or existing features
become incompatible with new operating systems, which critics argue
is meant to spur more rapid upgrade cycles. In 2020, Apple paid a 25
million Euros fine to settle a case in France where regulators found the
company guilty of intentionally slowing down older iPhones without
clearly informing customers via iOS updates.

By failing to be transparent about power management changes that
reduced device performance, Apple participated in deceptive activities
that reduced product lifespan to drive sales. The company claimed it
was done to “smooth out” peaks that could suddenly cause older bat-
teries to shut down. However, this example highlights the legal risks
around employing planned obsolescence and not properly disclosing
when functionality changes impact device usability over time- even
leading brands like Apple can run into trouble if perceived as inten-
tionally shortening product life cycles.

16.12 Policy and Regulatory Considerations

16.12.1 Measurement and Reporting Mandates

One policy mechanism that is increasingly relevant for AI systems is
measurement and reporting requirements regarding energy consump-
tion and carbon emissions. Mandated metering, auditing, disclosures,
and more rigorous methodologies aligned to sustainability metrics can
help address information gaps hindering efÏciency optimizations.

Simultaneously, national or regional policies require companies
above a certain size to use AI in their products or backend systems
to report energy consumption or emissions associated with major
AI workloads. Organizations like the Partnership on AI, IEEE, and
NIST could help shape standardized methodologies. More complex
proposals involve defining consistent ways to measure computational
complexity, data center PUE, carbon intensity of energy supply, and
efÏciencies gained through AI-specific hardware.

Reporting obligations for public sector users procuring AI services—
such as through proposed legislation in Europe—could also increase
transparency. However, regulators must balance the additional mea-
surement burden such mandates place on organizations against ongo-
ing carbon reductions from ingraining sustainability-conscious devel-

https://undergradlawreview.blog.fordham.edu/consumer-protection/the-product-ecosystem-and-planned-obsolescence-apples-threats-to-consumer-rights/

CHAPTER 16. SUSTAINABLE AI 701

opment patterns.
To be most constructive, any measurement and reporting policies

should focus on enabling continuous refinement rather than simplistic
restrictions or caps. As AI advancements unfold rapidly, nimble gover-
nance guardrails that embed sustainability considerations into normal
evaluation metrics can motivate positive change. However, overpre-
scription risks constraining innovation if requirements grow outdated.
AI efÏciency policy accelerates progress industry-wide by combining
flexibility with appropriate transparency guardrails.

16.12.2 Restriction Mechanisms

In addition to reporting mandates, policymakers have several restric-
tion mechanisms that could directly shape how AI systems are devel-
oped and deployed to curb emissions:

Caps on Computing Emissions: The European Commission’s
proposed AI Act takes a horizontal approach that could allow setting
economy-wide caps on the volume of computing power available
for training AI models. Like emissions trading systems, caps aim
to disincentivize extensive computing over sustainability indirectly.
However, model quality could be improved to provide more pathways
for procuring additional capacity.

Conditioning Access to Public Resources: Some experts have pro-
posed incentives like only allowing access to public datasets or comput-
ing power for developing fundamentally efÏcient models rather than
extravagant architectures. For example, the MLCommons benchmark-
ing consortium founded by major tech firms could formally integrate
efÏciency into its standardized leaderboard metrics—however, condi-
tioned access risks limiting innovation.

Financial Mechanisms: Analogous to carbon taxes on polluting
industries, fees applied per unit of AI-related compute consumption
could discourage unnecessary model scaling while funding efÏciency
innovations. Tax credits could alternatively reward organizations
pioneering more accurate but compact AI techniques. However,
financial tools require careful calibration between revenue generation
and fairness and not over-penalizing productive uses of AI.

Technology Bans: If measurement consistently pinned extreme emis-
sions on specific applications of AI without paths for remediation, out-
right bans present a tool of last resort for policymakers. However,
given AI’s dual use, defining harmful versus beneficial deployments
proves complex, necessitating holistic impact assessment before con-
cluding no redeeming value exists. Banning promising technologies
risks unintended consequences and requires caution.

https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence
https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence
https://mlcommons.org/
https://mlcommons.org/

16.12. Policy and Regulatory Considerations 702

16.12.3 Government Incentives

It is a common practice for governments to provide tax or other incen-
tives to consumers or businesses when contributing to more sustain-
able technological practices. Such incentives already exist in the US for
adopting solar panels or energy-efÏcient buildings. To the best of our
knowledge, no such tax incentives exist for AI-specific development
practices yet.

Another potential incentive program that is beginning to be ex-
plored is using government grants to fund Green AI projects. For
example, in Spain, 300 million euros have been allocated to specifically
fund projects in AI and sustainability. Government incentives are a
promising avenue to encourage sustainable business and consumer
behavior practices, but careful thought is required to determine how
those incentives will fit into market demands (Cohen, Lobel, and
Perakis 2016).

16.12.4 Self-Regulation

Complimentary to potential government action, voluntary self-
governance mechanisms allow the AI community to pursue sustain-
ability ends without top-down intervention:

Renewables Commitments: Large AI practitioners like Google, Mi-
crosoft, Amazon, and Facebook have pledged to procure enough re-
newable electricity to match 100% of their energy demands. These
commitments unlock compounding emissions cuts as compute scales
up. Formalizing such programs incentivizes green data center regions.
However, there are critiques on whether these pledges are enough
(Monyei and Jenkins 2018).

Internal Carbon Prices: Some organizations use shadow prices on
carbon emissions to represent environmental costs in capital alloca-
tion decisions between AI projects. If modeled effectively, theoretical
charges on development carbon footprints steer funding toward efÏ-
cient innovations rather than solely accuracy gains.

EfÏciency Development Checklists: Groups like the AI Sustainabil-
ity Coalition suggest voluntary checklist templates highlighting model
design choices, hardware configurations, and other factors architects
can tune per application to restrain emissions. Organizations can drive
change by ingraining sustainability as a primary success metric along-
side accuracy and cost.

Independent Auditing: Even absent public disclosure mandates,
firms specializing in technology sustainability audits help AI devel-
opers identify waste, create efÏciency roadmaps, and benchmark

https://www.irs.gov/credits-deductions/residential-clean-energy-credit
https://www.energy.gov/eere/buildings/179d-commercial-buildings-energy-efficiency-tax-deduction
https://www.state.gov/artificial-intelligence-for-accelerating-progress-on-the-sustainable-development-goals-addressing-societys-greatest-challenges/

CHAPTER 16. SUSTAINABLE AI 703

progress via impartial reviews. Structuring such audits into inter-
nal governance procedures or the procurement process expands
accountability.

16.12.5 Global Considerations

While measurement, restrictions, incentives, and self-regulation rep-
resent potential policy mechanisms for furthering AI sustainability,
fragmentation across national regimes risks unintended consequences.
As with other technology policy domains, divergence between regions
must be carefully managed.

For example, due to regional data privacy concerns, OpenAI barred
European users from accessing its viral ChatGPT chatbot. This came af-
ter the EU’s proposed AI Act signaled a precautionary approach, allow-
ing the EC to ban certain high-risk AI uses and enforcing transparency
rules that create uncertainty for releasing brand new models. How-
ever, it would be wise to caution against regulator action as it could
inadvertently limit European innovation if regimes with lighter-touch
regulation attract more private-sector AI research spending and talent.
Finding common ground is key.

The OECD principles on AI and the United Nations frameworks un-
derscore universally agreed-upon tenets all national policies should
uphold: transparency, accountability, bias mitigation, and more. Con-
structively embedding sustainability as a core principle for responsible
AI within international guidance can motivate unified action without
sacrificing flexibility across divergent legal systems. Avoiding race-to-
the-bottom dynamics hinges on enlightened multilateral cooperation.

16.13 Public Perception and Engagement
As societal attention and policy efforts aimed at environmental sus-
tainability ramp up worldwide, there is growing enthusiasm for lever-
aging AI to help address ecological challenges. However, public un-
derstanding and attitudes toward the role of AI systems in sustainabil-
ity contexts still need to be clarified and clouded by misconceptions.
On the one hand, people hope advanced algorithms can provide new
solutions for green energy, responsible consumption, decarbonization
pathways, and ecosystem preservation. On the other, fears regarding
the risks of uncontrolled AI also seep into the environmental domain
and undermine constructive discourse. Furthermore, a lack of public
awareness on key issues like transparency in developing sustainability-
focused AI tools and potential biases in data or modeling also threaten
to limit inclusive participation and degrade public trust.

16.13. Public Perception and Engagement 704

Tackling complex, interdisciplinary priorities like environmental
sustainability requires informed, nuanced public engagement and
responsible advances in AI innovation. The path forward demands
careful, equitable collaborative efforts between experts in ML, climate
science, environmental policy, social science, and communication.
Mapping the landscape of public perceptions, identifying pitfalls,
and charting strategies to cultivate understandable, accessible, and
trustworthy AI systems targeting shared ecological priorities will
prove essential to realizing sustainability goals. This complex terrain
warrants a deep examination of the sociotechnical dynamics involved.

16.13.1 AI Awareness

In May 2022, the Pew Research Center polled 5,101 US adults, finding
60% had heard or read “a little” about AI while 27% heard “a lot”–
indicating decent broad recognition, but likely limited comprehension
about details or applications. However, among those with some AI
familiarity, concerns emerge regarding risks of personal data misuse
according to agreed terms. Still, 62% felt AI could ease modern life
if applied responsibly. Yet, a specific understanding of sustainability
contexts still needs to be improved.

Studies attempting to categorize online discourse sentiments find a
nearly even split between optimism and caution regarding deploying
AI for sustainability goals. Factors driving positivity include hopes
around better forecasting of ecological shifts using ML models. Neg-
ativity arises from a lack of confidence in self-supervised algorithms
avoiding unintended consequences due to unpredictable human im-
pacts on complex natural systems during training.

The most prevalent public belief remains that while AI does harbor
the potential for accelerating solutions on issues like emission reduc-
tions and wildlife protections, inadequate safeguarding around data
biases, ethical blindspots, and privacy considerations could be more
appreciated risks if pursued carelessly, especially at scale. This leads
to hesitancy around unconditional support without evidence of delib-
erate, democratically guided development.

16.13.2 Messaging

Optimistic efforts are highlighting AI’s sustainability promise and
emphasize the potential for advanced ML to radically accelerate de-
carbonization effects from smart grids, personalized carbon tracking
apps, automated building efÏciency optimizations, and predictive
analytics guiding targeted conservation efforts. More comprehensive

https://www.pewresearch.org/internet/2023/08/17/what-americans-know-about-ai-cybersecurity-and-big-tech/
https://www.climatechange.ai/

CHAPTER 16. SUSTAINABLE AI 705

real-time modeling of complex climate and ecological shifts using
self-improving algorithms offers hope for mitigating biodiversity
losses and averting worst-case scenarios.

However, cautionary perspectives, such as the Asilomar AI Princi-
ples, question whether AI itself could exacerbate sustainability chal-
lenges if improperly constrained. The rising energy demands of large-
scale computing systems and the increasingly massive neural network
model training conflict with clean energy ambitions. Lack of diversity
in data inputs or developers’ priorities may downplay urgent environ-
mental justice considerations. Near-term skeptical public engagement
likely hinges on a need for perceivable safeguards against uncontrolled
AI systems running amok on core ecological processes.

In essence, polarized framings either promote AI as an indis-
pensable tool for sustainability problem-solving–if compassionately
directed toward people and the planet–or present AI as an amplifier
of existing harms insidiously dominating hidden facets of natural
systems central to all life. Overcoming such impasses demands bal-
ancing honest trade-off discussions with shared visions for equitable,
democratically governed technological progress targeting restoration.

16.13.3 Equitable Participation

Ensuring equitable participation and access should form a cornerstone
of any sustainability initiative with the potential for major societal
impacts. This principle applies equally to AI systems targeting
environmental goals. However, commonly excluded voices like
frontline, rural, or indigenous communities and future generations
not present to consent could suffer disproportionate consequences
from technology transformations. For instance, the Partnership on
AI has launched events expressly targeting input from marginalized
communities on deploying AI responsibly.

Ensuring equitable access and participation should form a cor-
nerstone of any sustainability initiative with the potential for major
societal impacts, whether AI or otherwise. However, inclusive en-
gagement in environmental AI relies partly on the availability and
understanding of fundamental computing resources. As the recent
OECD report on National AI Compute Capacity highlights (Oecd
2023), many countries currently lack data or strategic plans mapping
needs for the infrastructure required to fuel AI systems. This policy
blindspot could constrain economic goals and exacerbate barriers to
entry for marginalized populations. Their blueprint urges developing
national AI compute capacity strategies along dimensions of capacity,
accessibility, innovation pipelines, and resilience to anchor innova-

https://time.com/6266923/ai-eliezer-yudkowsky-open-letter-not-enough/
https://futureoflife.org/open-letter/ai-principles/
https://futureoflife.org/open-letter/ai-principles/
https://partnershiponai.org
https://partnershiponai.org
https://www.oecd.org/
https://www.oecd.org/economy/a-blueprint-for-building-national-compute-capacity-for-artificial-intelligence-876367e3-en.htm

16.13. Public Perception and Engagement 706

tion. The underlying data storage needs to be improved, and model
development platforms or specialized hardware could inadvertently
concentrate AI progress in the hands of select groups. Therefore,
planning for a balanced expansion of fundamental AI computing
resources via policy initiatives ties directly to hopes for democratized
sustainability problem-solving using equitable and transparent ML
tools.

The key idea is that equitable participation in AI systems targeting
environmental challenges relies in part on ensuring the underlying
computing capacity and infrastructure are correct, which requires
proactive policy planning from a national perspective.

16.13.4 Transparency

As public sector agencies and private companies alike rush towards
adopting AI tools to help tackle pressing environmental challenges,
calls for transparency around these systems’ development and func-
tionality have begun to amplify. Explainable and interpretable ML fea-
tures grow more crucial for building trust in emerging models aiming
to guide consequential sustainability policies. Initiatives like the Mon-
treal Carbon Pledge brought tech leaders together to commit to pub-
lishing impact assessments before launching environmental systems,
as pledged below:

*“As institutional investors, we must act in the best long-term inter-
ests of our beneficiaries. In this fiduciary role, long-term investment
risks are associated with greenhouse gas emissions, climate change,
and carbon regulation.

Measuring our carbon footprint is integral to understanding better,
quantifying, and managing the carbon and climate change-related im-
pacts, risks, and opportunities in our investments. Therefore, as a first
step, we commit to measuring and disclosing the carbon footprint of
our investments annually to use this information to develop an engage-
ment strategy and identify and set carbon footprint reduction targets.”*

We need a similar pledge for AI sustainability and responsibility.
Widespread acceptance and impact of AI sustainability solutions will
partly be on deliberate communication of validation schemes, metrics,
and layers of human judgment applied before live deployment. Efforts
like NIST’s Principles for Explainable AI can help foster transparency
into AI systems. The National Institute of Standards and Technology
(NIST) has published an influential set of guidelines dubbed the Prin-
ciples for Explainable AI (Phillips et al. 2020). This framework articu-
lates best practices for designing, evaluating, and deploying responsi-
ble AI systems with transparent and interpretable features that build

https://unfccc.int/news/montreal-carbon-pledge
https://unfccc.int/news/montreal-carbon-pledge
https://oecd.ai/en/dashboards/policy-initiatives/http:%2F%2Faipo.oecd.org%2F2021-data-policyInitiatives-26746

CHAPTER 16. SUSTAINABLE AI 707

critical user understanding and trust.
It delineates four core principles: Firstly, AI systems should provide

contextually relevant explanations justifying the reasoning behind
their outputs to appropriate stakeholders. Secondly, these AI expla-
nations must communicate information meaningfully for their target
audience’s appropriate comprehension level. Next is the accuracy
principle, which dictates that explanations should faithfully reflect the
actual process and logic informing an AI model’s internal mechanics
for generating given outputs or recommendations based on inputs.
Finally, a knowledge limits principle compels explanations to clarify
an AI model’s boundaries in capturing the full breadth of real-world
complexity, variance, and uncertainties within a problem space.

Altogether, these NIST principles offer AI practitioners and adopters
guidance on key transparency considerations vital for developing ac-
cessible solutions prioritizing user autonomy and trust rather than sim-
ply maximizing predictive accuracy metrics alone. As AI rapidly ad-
vances across sensitive social contexts like healthcare, finance, employ-
ment, and beyond, such human-centered design guidelines will con-
tinue growing in importance for anchoring innovation to public inter-
ests.

This applies equally to the domain of environmental ability. Respon-
sible and democratically guided AI innovation targeting shared ecolog-
ical priorities depends on maintaining public vigilance, understand-
ing, and oversight over otherwise opaque systems taking prominent
roles in societal decisions. Prioritizing explainable algorithm designs
and radical transparency practices per global standards can help sus-
tain collective confidence that these tools improve rather than imperil
hopes for a driven future.

16.14 Future Directions and Challenges
As we look towards the future, the role of AI in environmental sus-
tainability is poised to grow even more significant. AI’s potential to
drive advancements in renewable energy, climate modeling, conserva-
tion efforts, and more is immense. However, it is a two-sided coin, as
we need to overcome several challenges and direct our efforts towards
sustainable and responsible AI development.

16.14.1 Future Directions

One key future direction is the development of more energy-efÏcient
AI models and algorithms. This involves ongoing research and inno-
vation in areas like model pruning, quantization, and the use of low-

16.14. Future Directions and Challenges 708

precision numerics, as well as developing the hardware to enable full
profitability of these innovations. Even further, we look at alternative
computing paradigms that do not rely on von-Neumann architectures.
More on this topic can be found in the hardware acceleration chapter.
The goal is to create AI systems that deliver high performance while
minimizing energy consumption and carbon emissions.

Another important direction is the integration of renewable energy
sources into AI infrastructure. As data centers continue to be major
contributors to AI’s carbon footprint, transitioning to renewable en-
ergy sources like solar and wind is crucial. Developments in long-term,
sustainable energy storage, such as Ambri, an MIT spinoff, could en-
able this transition. This requires significant investment and collabora-
tion between tech companies, energy providers, and policymakers.

16.14.2 Challenges

Despite these promising directions, several challenges need to be ad-
dressed. One of the major challenges is the need for consistent stan-
dards and methodologies for measuring and reporting the environ-
mental impact of AI. These methods must capture the complexity of
the life cycles of AI models and system hardware. Next, efÏcient and
environmentally sustainable AI infrastructure and system hardware
are needed. This consists of three components. It maximizes the uti-
lization of accelerator and system resources, prolong the lifetime of AI
infrastructure, and design systems hardware with environmental im-
pact in mind.

On the software side, we should trade off experimentation and
the subsequent training cost. Techniques such as neural architecture
search and hyperparameter optimization can be used for design
space exploration. However, these are often very resource-intensive.
EfÏcient experimentation can significantly reduce the environmental
footprint overhead. Next, methods to reduce wasted training efforts
should be explored.

To improve model quality, we often scale the dataset. However,
the increased system resources required for data storage and ingestion
caused by this scaling have a significant environmental impact (C.-J.
Wu et al. 2022). A thorough understanding of the rate at which data
loses its predictive value and devising data sampling strategies is im-
portant.

Data gaps also pose a significant challenge. Without companies and
governments openly sharing detailed and accurate data on energy con-
sumption, carbon emissions, and other environmental impacts, it isn’t
easy to develop effective strategies for sustainable AI.

https://ambri.com/

CHAPTER 16. SUSTAINABLE AI 709

Finally, the fast pace of AI development requires an agile approach
to the policy imposed on these systems. The policy should ensure sus-
tainable development without constraining innovation. This requires
experts in all domains of AI, environmental sciences, energy, and pol-
icy to work together to achieve a sustainable future.

16.15 Conclusion
We must address sustainability considerations as AI rapidly expands
across industries and society. AI promises breakthrough innovations,
yet its environmental footprint threatens its widespread growth. This
chapter analyzes multiple facets, from energy and emissions to waste
and biodiversity impacts, that AI/ML developers must weigh when
creating responsible AI systems.

Fundamentally, we require elevating sustainability as a primary
design priority rather than an afterthought. Techniques like energy-
efÏcient models, renewable-powered data centers, and hardware
recycling programs offer solutions, but the holistic commitment
remains vital. We need standards around transparency, carbon
accounting, and supply chain disclosures to supplement technical
gains. Still, examples like Google’s 4M efÏciency practices containing
ML energy use highlight that we can advance AI in lockstep with
environmental objectives with concerted effort. We achieve this
harmonious balance by having researchers, corporations, regulators,
and users collaborate across domains. The aim is not perfect solutions
but continuous improvement as we integrate AI across new sectors.

16.16 Resources
Here is a curated list of resources to support students and instructors
in their learning and teaching journeys. We are continuously working
on expanding this collection and will add new exercises soon.

Slides

These slides are a valuable tool for instructors to deliver lectures
and for students to review the material at their own pace. We
encourage students and instructors to leverage these slides to
improve their understanding and facilitate effective knowledge
transfer.

• Transparency and Sustainability.

https://docs.google.com/presentation/d/1wGKWV-speisH6V-g-u_w8xFwEjZjqp7u2YXs27flmiM/edit#slide=id.ge93ee14fb9_0_0

16.16. Resources 710

• Sustainability of TinyML.

• Model Cards for Transparency.

Videos

• Coming soon.

Exercises

To reinforce the concepts covered in this chapter, we have curated
a set of exercises that challenge students to apply their knowl-
edge and deepen their understanding.

• Exercise 29

• Exercise 30

Labs

In addition to exercises, we offer hands-on labs that allow stu-
dents to gain practical experience with embedded AI technolo-
gies. These labs provide step-by-step guidance, enabling stu-
dents to develop their skills in a structured and supportive en-
vironment. We are excited to announce that new labs will be
available soon, further enriching the learning experience.

• Coming soon.

https://docs.google.com/presentation/d/1rdJ82YlvD66JDATtj-KUQkJ6tkuAfFAs1w6-njvp6zM/edit#slide=id.ge93ee14fb9_0_0
https://docs.google.com/presentation/d/1ndDzSwnSMNwUShW-RyIN29T9KeEoM_I14qsExPehW70/edit#slide=id.ge947b43ef5_0_0

711

Chapter 17

Robust AI

Figure 17.1.: DALL·E 3 Prompt:
Create an image featuring an ad-
vanced AI system symbolized by
an intricate, glowing neural net-
work, deeply nested within a se-
ries of progressively larger and
more fortified shields. Each shield
layer represents a layer of defense,
showcasing the system’s robust-
ness against external threats and
internal errors. The neural net-
work, at the heart of this fortress
of shields, radiates with connec-
tions that signify the AI’s capacity
for learning and adaptation. This
visual metaphor emphasizes not
only the technological sophistica-
tion of the AI but also its resilience
and security, set against the back-
drop of a state-of-the-art, secure
server room filled with the lat-
est in technological advancements.
The image aims to convey the con-
cept of ultimate protection and re-
silience in the field of artificial in-
telligence.

The development of robust machine learning systems has become in-
creasingly crucial. As these systems are deployed in various critical
applications, from autonomous vehicles to healthcare diagnostics, en-
suring their resilience to faults and errors is paramount.

Robust AI, in the context of hardware faults, software faults, and
errors, plays an important role in maintaining the reliability, safety,
and performance of machine learning systems. By addressing the
challenges posed by transient, permanent, and intermittent hardware
faults (Ahmadilivani et al. 2024), as well as bugs, design flaws,
and implementation errors in software (H. Zhang 2008), robust AI
techniques enable machine learning systems to operate effectively
even in adverse conditions.

17.1. Introduction 712

This chapter explores the fundamental concepts, techniques, and
tools for building fault-tolerant and error-resilient machine learning
systems. It empowers researchers and practitioners to develop AI so-
lutions that can withstand the complexities and uncertainties of real-
world environments.

Learning Objectives

• Understand the importance of robust and resilient AI sys-
tems in real-world applications.

• Identify and characterize hardware faults, software faults,
and their impact on ML systems.

• Recognize and develop defensive strategies against threats
posed by adversarial attacks, data poisoning, and distribu-
tion shifts.

• Learn techniques for detecting, mitigating, and designing
fault-tolerant ML systems.

• Become familiar with tools and frameworks for studying
and enhancing ML system resilience throughout the AI de-
velopment lifecycle.

17.1 Introduction
Robust AI refers to a system’s ability to maintain its performance and
reliability in the presence of hardware, software, and errors. A ro-
bust machine learning system is designed to be fault-tolerant and error-
resilient, capable of operating effectively even under adverse condi-
tions.

As ML systems become increasingly integrated into various aspects
of our lives, from cloud-based services to edge devices and embedded
systems, the impact of hardware and software faults on their perfor-
mance and reliability becomes more significant. In the future, as ML
systems become more complex and are deployed in even more criti-
cal applications, the need for robust and fault-tolerant designs will be
paramount.

ML systems are expected to play crucial roles in autonomous vehi-
cles, smart cities, healthcare, and industrial automation domains. In
these domains, the consequences of hardware or software faults can
be severe, potentially leading to loss of life, economic damage, or envi-

CHAPTER 17. ROBUST AI 713

ronmental harm.
Researchers and engineers must focus on developing advanced tech-

niques for fault detection, isolation, and recovery to mitigate these
risks and ensure the reliable operation of future ML systems.

This chapter will focus specifically on three main categories of faults
and errors that can impact the robustness of ML systems: hardware
faults, software faults, and human errors.

• Hardware Faults: Transient, permanent, and intermittent faults
can affect the hardware components of an ML system, corrupting
computations and degrading performance.

• Model Robustness: ML models can be vulnerable to adversarial
attacks, data poisoning, and distribution shifts, which can induce
targeted misclassifications, skew the model’s learned behavior,
or compromise the system’s integrity and reliability.

• Software Faults: Bugs, design flaws, and implementation errors
in the software components, such as algorithms, libraries, and
frameworks, can propagate errors and introduce vulnerabilities.

The specific challenges and approaches to achieving robustness
may vary depending on the scale and constraints of the ML system.
Large-scale cloud computing or data center systems may focus on fault
tolerance and resilience through redundancy, distributed processing,
and advanced error detection and correction techniques. In contrast,
resource-constrained edge devices or embedded systems face unique
challenges due to limited computational power, memory, and energy
resources.

Regardless of the scale and constraints, the key characteristics of a
robust ML system include fault tolerance, error resilience, and per-
formance maintenance. By understanding and addressing the multi-
faceted challenges to robustness, we can develop trustworthy and reli-
able ML systems that can navigate the complexities of real-world envi-
ronments.

This chapter is not just about exploring ML systems’ tools, frame-
works, and techniques for detecting and mitigating faults, attacks, and
distributional shifts. It’s about emphasizing the crucial role of each one
of you in prioritizing resilience throughout the AI development lifecy-
cle, from data collection and model training to deployment and moni-
toring. By proactively addressing the challenges to robustness, we can
unlock the full potential of ML technologies while ensuring their safe,
reliable, and responsible deployment in real-world applications.

As AI continues to shape our future, the potential of ML technolo-
gies is immense. But it’s only when we build resilient systems that can

17.2. Real-World Examples 714

withstand the challenges of the real world that we can truly harness
this potential. This is a defining factor in the success and societal im-
pact of this transformative technology, and it’s within our reach.

17.2 Real-World Examples
Here are some real-world examples of cases where faults in hardware
or software have caused major issues in ML systems across cloud, edge,
and embedded environments:

17.2.1 Cloud

In February 2017, Amazon Web Services (AWS) experienced a signif-
icant outage due to human error during maintenance. An engineer
inadvertently entered an incorrect command, causing many servers to
be taken ofÒine. This outage disrupted many AWS services, including
Amazon’s AI-powered assistant, Alexa. As a result, Alexa-powered
devices, such as Amazon Echo and third-party products using Alexa
Voice Service, could not respond to user requests for several hours.
This incident highlights the potential impact of human errors on cloud-
based ML systems and the need for robust maintenance procedures
and failsafe mechanisms.

In another example (Vangal et al. 2021), Facebook encountered a
silent data corruption (SDC) issue within its distributed querying in-
frastructure, as shown in Figure 17.2. Facebook’s infrastructure in-
cludes a querying system that fetches and executes SQL and SQL-like
queries across multiple datasets using frameworks like Presto, Hive,
and Spark. One of the applications that utilized this querying infras-
tructure was a compression application to reduce the footprint of data
stores. In this compression application, files were compressed when
not being read and decompressed when a read request was made. Be-
fore decompression, the file size was checked to ensure it was greater
than zero, indicating a valid compressed file with contents.

However, in one instance, when the file size was being computed
for a valid non-zero-sized file, the decompression algorithm invoked
a power function from the Scala library. Unexpectedly, the Scala func-
tion returned a zero size value for the file despite having a known non-
zero decompressed size. As a result, the decompression was not per-
formed, and the file was not written to the output database. This issue
manifested sporadically, with some occurrences of the same file size
computation returning the correct non-zero value.

The impact of this silent data corruption was significant, leading to
missing files and incorrect data in the output database. The application

https://aws.amazon.com/message/41926/
https://aws.amazon.com/message/41926/

CHAPTER 17. ROBUST AI 715

Figure 17.2.: Silent data corrup-
tion in database applications.
Source: Facebook

relying on the decompressed files failed due to the data inconsistencies.
In the case study presented in the paper, Facebook’s infrastructure,
which consists of hundreds of thousands of servers handling billions
of requests per day from their massive user base, encountered a silent
data corruption issue. The affected system processed user queries, im-
age uploads, and media content, which required fast, reliable, and se-
cure execution.

This case study illustrates how silent data corruption can propagate
through multiple layers of an application stack, leading to data loss
and application failures in a large-scale distributed system. The inter-
mittent nature of the issue and the lack of explicit error messages made
it particularly challenging to diagnose and resolve. But this is not re-
stricted to just Meta, even other companies such as Google that operate
AI hypercomputers face this challenge. Figure 17.3 Jeff Dean, Chief Sci-
entist at Google DeepMind and Google Research, discusses SDCS and
their impact on ML systems.

17.2.2 Edge

Regarding examples of faults and errors in edge ML systems, one area
that has gathered significant attention is the domain of self-driving
cars. Self-driving vehicles rely heavily on machine learning algorithms
for perception, decision-making, and control, making them particu-
larly susceptible to the impact of hardware and software faults. In re-
cent years, several high-profile incidents involving autonomous vehi-
cles have highlighted the challenges and risks associated with deploy-
ing these systems in real-world environments.

In May 2016, a fatal accident occurred when a Tesla Model S op-

https://arxiv.org/pdf/2102.11245
https://en.wikipedia.org/wiki/Jeff_Dean

17.2. Real-World Examples 716

Figure 17.3.: Silent data cor-
ruption (SDC) errors are a ma-
jor issue for AI hypercomput-
ers. Source: Jeff Dean at MLSys
2024, Keynote (Google)

erating on Autopilot crashed into a white semi-trailer truck crossing
the highway. The Autopilot system, which relied on computer vision
and machine learning algorithms, failed to recognize the white trailer
against a bright sky background. The driver, who was reportedly
watching a movie when the crash, did not intervene in time, and the
vehicle collided with the trailer at full speed. This incident raised
concerns about the limitations of AI-based perception systems and
the need for robust failsafe mechanisms in autonomous vehicles. It
also highlighted the importance of driver awareness and the need
for clear guidelines on using semi-autonomous driving features, as
shown in Figure 17.4.

Figure 17.4.: Tesla in the fatal
California crash was on Autopi-
lot. Source: BBC News

In March 2018, an Uber self-driving test vehicle struck and killed
a pedestrian crossing the street in Tempe, Arizona. The incident was

https://en.wikipedia.org/wiki/Jeff_Dean
https://mlsys.org/
https://mlsys.org/
https://www.bbc.com/news/world-us-canada-43604440

CHAPTER 17. ROBUST AI 717

caused by a software flaw in the vehicle’s object recognition system,
which failed to identify the pedestrians appropriately to avoid them
as obstacles. The safety driver, who was supposed to monitor the
vehicle’s operation and intervene if necessary, was found distracted
during the crash. This incident led to widespread scrutiny of Uber’s
self-driving program and raised questions about the readiness of
autonomous vehicle technology for public roads. It also emphasized
the need for rigorous testing, validation, and safety measures in
developing and deploying AI-based self-driving systems.

In 2021, Tesla faced increased scrutiny following several accidents
involving vehicles operating on Autopilot mode. Some of these acci-
dents were attributed to issues with the Autopilot system’s ability to
detect and respond to certain road situations, such as stationary emer-
gency vehicles or obstacles in the road. For example, in April 2021, a
Tesla Model S crashed into a tree in Texas, killing two passengers. Ini-
tial reports suggested that no one was in the driver’s seat at the time of
the crash, raising questions about the use and potential misuse of Au-
topilot features. These incidents highlight the ongoing challenges in
developing robust and reliable autonomous driving systems and the
need for clear regulations and consumer education regarding the capa-
bilities and limitations of these technologies.

17.2.3 Embedded

Embedded systems, which often operate in resource-constrained envi-
ronments and safety-critical applications, have long faced challenges
related to hardware and software faults. As AI and machine learning
technologies are increasingly integrated into these systems, the poten-
tial for faults and errors takes on new dimensions, with the added com-
plexity of AI algorithms and the critical nature of the applications in
which they are deployed.

Let’s consider a few examples, starting with outer space exploration.
NASA’s Mars Polar Lander mission in 1999 suffered a catastrophic fail-
ure due to a software error in the touchdown detection system (Fig-
ure 17.5). The spacecraft’s onboard software mistakenly interpreted
the noise from the deployment of its landing legs as a sign that it had
touched down on the Martian surface. As a result, the spacecraft pre-
maturely shut down its engines, causing it to crash into the surface.
This incident highlights the critical importance of robust software de-
sign and extensive testing in embedded systems, especially those oper-
ating in remote and unforgiving environments. As AI capabilities are
integrated into future space missions, ensuring these systems’ reliabil-
ity and fault tolerance will be paramount to mission success.

https://money.cnn.com/2018/03/19/technology/uber-autonomous-car-fatal-crash/index.html?iid=EL
https://www.cnbc.com/2021/04/18/no-one-was-driving-in-tesla-crash-that-killed-two-men-in-spring-texas-report.html
https://www.cnbc.com/2021/04/18/no-one-was-driving-in-tesla-crash-that-killed-two-men-in-spring-texas-report.html
https://spaceref.com/uncategorized/nasa-reveals-probable-cause-of-mars-polar-lander-and-deep-space-2-mission-failures/
https://spaceref.com/uncategorized/nasa-reveals-probable-cause-of-mars-polar-lander-and-deep-space-2-mission-failures/

17.2. Real-World Examples 718

Figure 17.5.: NASA’s Failed
Mars Polar Lander mission in
1999 cost over $200M. Source:
SlashGear

Back on earth, in 2015, a Boeing 787 Dreamliner experienced a com-
plete electrical shutdown during a flight due to a software bug in its
generator control units. The bug caused the generator control units to
enter a failsafe mode, cutting power to the aircraft’s electrical systems
and forcing an emergency landing. This incident underscores the po-
tential for software faults to have severe consequences in complex em-
bedded systems like aircraft. As AI technologies are increasingly ap-
plied in aviation, such as in autonomous flight systems and predictive
maintenance, ensuring the robustness and reliability of these systems
will be critical to passenger safety.

As AI capabilities increasingly integrate into embedded systems,
the potential for faults and errors becomes more complex and severe.
Imagine a smart pacemaker that has a sudden glitch. A patient could
die from that effect. Therefore, AI algorithms, such as those used for
perception, decision-making, and control, introduce new sources of
potential faults, such as data-related issues, model uncertainties, and
unexpected behaviors in edge cases. Moreover, the opaque nature
of some AI models can make it challenging to identify and diagnose
faults when they occur.

https://www.slashgear.com/1094840/nasas-failed-mars-missions-that-cost-over-200-million/
https://www.engineering.com/story/vzrxw
https://www.bbc.com/future/article/20221011-how-space-weather-causes-computer-errors

CHAPTER 17. ROBUST AI 719

17.3 Hardware Faults
Hardware faults are a significant challenge in computing systems, in-
cluding traditional and ML systems. These faults occur when physical
components, such as processors, memory modules, storage devices, or
interconnects, malfunction or behave abnormally. Hardware faults can
cause incorrect computations, data corruption, system crashes, or com-
plete system failure, compromising the integrity and trustworthiness
of the computations performed by the system (S. Jha et al. 2019). A
complete system failure refers to a situation where the entire comput-
ing system becomes unresponsive or inoperable due to a critical hard-
ware malfunction. This type of failure is the most severe, as it renders
the system unusable and may lead to data loss or corruption, requiring
manual intervention to repair or replace the faulty components.

Understanding the taxonomy of hardware faults is essential for
anyone working with computing systems, especially in the context
of ML systems. ML systems rely on complex hardware architectures
and large-scale computations to train and deploy models that learn
from data and make intelligent predictions or decisions. However,
hardware faults can introduce errors and inconsistencies in the
MLOps pipeline, affecting the trained models’ accuracy, robustness,
and reliability (G. Li et al. 2017).

Knowing the different types of hardware faults, their mechanisms,
and their potential impact on system behavior is crucial for developing
effective strategies to detect, mitigate, and recover them. This knowl-
edge is necessary for designing fault-tolerant computing systems, im-
plementing robust ML algorithms, and ensuring the overall depend-
ability of ML-based applications.

The following sections will explore the three main categories of hard-
ware faults: transient, permanent, and intermittent. We will discuss
their definitions, characteristics, causes, mechanisms, and examples of
how they manifest in computing systems. We will also cover detection
and mitigation techniques specific to each fault type.

• Transient Faults: Transient faults are temporary and non-
recurring. They are often caused by external factors such as
cosmic rays, electromagnetic interference, or power fluctuations.
A common example of a transient fault is a bit flip, where a
single bit in a memory location or register changes its value un-
expectedly. Transient faults can lead to incorrect computations
or data corruption, but they do not cause permanent damage to
the hardware.

• Permanent Faults: Permanent faults, also called hard errors, are

../ops/ops.qmd

17.3. Hardware Faults 720

irreversible and persist over time. They are typically caused by
physical defects or wear-out of hardware components. Examples
of permanent faults include stuck-at faults, where a bit or signal
is permanently set to a specific value (e.g., always 0 or always 1),
and device failures, such as a malfunctioning processor or a dam-
aged memory module. Permanent faults can result in complete
system failure or significant performance degradation.

• Intermittent Faults: Intermittent faults are recurring faults that
appear and disappear intermittently. Unstable hardware condi-
tions, such as loose connections, aging components, or manu-
facturing defects, often cause them. Intermittent faults can be
challenging to diagnose and reproduce because they may occur
sporadically and under specific conditions. Examples include in-
termittent short circuits or contact resistance issues. Intermittent
faults can lead to unpredictable system behavior and intermittent
errors.

By the end of this discussion, readers will have a solid understand-
ing of fault taxonomy and its relevance to traditional computing and
ML systems. This foundation will help them make informed decisions
when designing, implementing, and deploying fault-tolerant solutions,
improving the reliability and trustworthiness of their computing sys-
tems and ML applications.

17.3.1 Transient Faults

Transient faults in hardware can manifest in various forms, each with
its own unique characteristics and causes. These faults are temporary
in nature and do not result in permanent damage to the hardware com-
ponents.

17.3.1.1 Definition and Characteristics

Some of the common types of transient faults include Single Event
Upsets (SEUs) caused by ionizing radiation, voltage fluctuations (V.
J. Reddi and Gupta 2013) due to power supply noise or electromag-
netic interference, Electromagnetic Interference (EMI) induced by ex-
ternal electromagnetic fields, Electrostatic Discharge (ESD) resulting
from sudden static electricity flow, crosstalk caused by unintended
signal coupling, ground bounce triggered by simultaneous switching
of multiple outputs, timing violations due to signal timing constraint
breaches, and soft errors in combinational logic affecting the output of
logic circuits (Mukherjee, Emer, and Reinhardt 2005). Understanding

CHAPTER 17. ROBUST AI 721

these different types of transient faults is crucial for designing robust
and resilient hardware systems that can mitigate their impact and en-
sure reliable operation.

All of these transient faults are characterized by their short duration
and non-permanent nature. They do not persist or leave any lasting
impact on the hardware. However, they can still lead to incorrect com-
putations, data corruption, or system misbehavior if not properly han-
dled.

17.3.1.2 Causes of Transient Faults

Transient faults can be attributed to various external factors. One com-
mon cause is cosmic rays, high-energy particles originating from outer
space. When these particles strike sensitive areas of the hardware,
such as memory cells or transistors, they can induce charge distur-
bances that alter the stored or transmitted data. This is illustrated
in Figure 17.6. Another cause of transient faults is electromagnetic
interference (EMI) from nearby devices or power fluctuations. EMI
can couple with the circuits and cause voltage spikes or glitches that
temporarily disrupt the normal operation of the hardware.

17.3.1.3 Mechanisms of Transient Faults

Transient faults can manifest through different mechanisms depend-
ing on the affected hardware component. In memory devices like
DRAM or SRAM, transient faults often lead to bit flips, where a single
bit changes its value from 0 to 1 or vice versa. This can corrupt the
stored data or instructions. In logic circuits, transient faults can cause
glitches or voltage spikes propagating through the combinational
logic, resulting in incorrect outputs or control signals. Transient faults
can also affect communication channels, causing bit errors or packet
losses during data transmission.

https://www.trentonsystems.com/en-us/resource-hub/blog/what-is-electromagnetic-interference
https://www.trentonsystems.com/en-us/resource-hub/blog/what-is-electromagnetic-interference

17.3. Hardware Faults 722

Figure 17.6.: Mechanism of
Hardware Transient Fault Oc-
currence. Source: NTT

17.3.1.4 Impact on ML Systems

A common example of a transient fault is a bit flip in the main mem-
ory. If an important data structure or critical instruction is stored in
the affected memory location, it can lead to incorrect computations or
program misbehavior. If a transient fault occurs in the memory storing
the model weights or gradients. For instance, a bit flip in the memory
storing a loop counter can cause the loop to execute indefinitely or ter-
minate prematurely. Transient faults in control registers or flag bits can
alter the flow of program execution, leading to unexpected jumps or in-
correct branch decisions. In communication systems, transient faults
can corrupt transmitted data packets, resulting in retransmissions or
data loss.

In ML systems, transient faults can have significant implications dur-
ing the training phase (Y. He et al. 2023). ML training involves itera-
tive computations and updates to model parameters based on large
datasets. If a transient fault occurs in the memory storing the model
weights or gradients, it can lead to incorrect updates and compromise
the convergence and accuracy of the training process. Figure 17.7 Show
a real-world example from Google’s production fleet where an SDC
anomaly caused a significant difference in the gradient norm.

For example, a bit flip in the weight matrix of a neural network can
cause the model to learn incorrect patterns or associations, leading to
degraded performance (Wan et al. 2021). Transient faults in the data
pipeline, such as corruption of training samples or labels, can also in-
troduce noise and affect the quality of the learned model.

https://group.ntt/en/newsrelease/2018/11/22/181122a.html

CHAPTER 17. ROBUST AI 723

Figure 17.7.: SDC in ML train-
ing phase results in anomalies
in the gradient norm. Source:
Jeff Dean, MLSys 2024 Keynote
(Google)

During the inference phase, transient faults can impact the reliability
and trustworthiness of ML predictions. If a transient fault occurs in the
memory storing the trained model parameters or in the computation
of the inference results, it can lead to incorrect or inconsistent predic-
tions. For instance, a bit flip in the activation values of a neural network
can alter the final classification or regression output (Mahmoud et al.
2020).

In safety-critical applications, such as autonomous vehicles or med-
ical diagnosis, transient faults during inference can have severe conse-
quences, leading to incorrect decisions or actions (G. Li et al. 2017; S.
Jha et al. 2019). Ensuring the resilience of ML systems against tran-
sient faults is crucial to maintaining the integrity and reliability of the
predictions.

At the other extreme, in resource-constrained environments like
TinyML, Binarized Neural Networks [BNNs] (Courbariaux et al. 2016)
have emerged as a promising solution. BNNs represent network
weights in single-bit precision, offering computational efÏciency and
faster inference times. However, this binary representation renders
BNNs fragile to bit-flip errors on the network weights. For instance,
prior work (Aygun, Gunes, and De Vleeschouwer 2021) has shown
that a two-hidden layer BNN architecture for a simple task such as
MNIST classification suffers performance degradation from 98% test
accuracy to 70% when random bit-flipping soft errors are inserted

17.3. Hardware Faults 724

through model weights with a 10% probability.
Addressing such issues requires considering flip-aware training

techniques or leveraging emerging computing paradigms (e.g.,
stochastic computing) to improve fault tolerance and robustness,
which we will discuss in Section 17.3.4. Future research directions
aim to develop hybrid architectures, novel activation functions,
and loss functions tailored to bridge the accuracy gap compared
to full-precision models while maintaining their computational
efÏciency.

17.3.2 Permanent Faults

Permanent faults are hardware defects that persist and cause
irreversible damage to the affected components. These faults are char-
acterized by their persistent nature and require repair or replacement
of the faulty hardware to restore normal system functionality.

17.3.2.1 Definition and Characteristics

Permanent faults are hardware defects that cause persistent and irre-
versible malfunctions in the affected components. The faulty compo-
nent remains non-operational until a permanent fault is repaired or
replaced. These faults are characterized by their consistent and re-
producible nature, meaning that the faulty behavior is observed ev-
ery time the affected component is used. Permanent faults can impact
various hardware components, such as processors, memory modules,
storage devices, or interconnects, leading to system crashes, data cor-
ruption, or complete system failure.

One notable example of a permanent fault is the Intel FDIV bug,
which was discovered in 1994. The FDIV bug was a flaw in certain In-
tel Pentium processors’ floating-point division (FDIV) units. The bug
caused incorrect results for specific division operations, leading to in-
accurate calculations.

The FDIV bug occurred due to an error in the lookup table used
by the division unit. In rare cases, the processor would fetch an in-
correct value from the lookup table, resulting in a slightly less pre-
cise result than expected. For instance, Figure 17.8 shows a fraction
4195835/3145727 plotted on a Pentium processor with the FDIV per-
manent fault. The triangular regions are where erroneous calculations
occurred. Ideally, all correct values would round to 1.3338, but the
erroneous results show 1.3337, indicating a mistake in the 5th digit.

Although the error was small, it could compound over many divi-
sion operations, leading to significant inaccuracies in mathematical cal-
culations. The impact of the FDIV bug was significant, especially for

https://en.wikipedia.org/wiki/Stochastic_computing
https://en.wikipedia.org/wiki/Pentium_FDIV_bug

CHAPTER 17. ROBUST AI 725

applications that relied heavily on precise floating-point division, such
as scientific simulations, financial calculations, and computer-aided de-
sign. The bug led to incorrect results, which could have severe conse-
quences in fields like finance or engineering.

Figure 17.8.: Intel Pentium pro-
cessor with the FDIV perma-
nent fault. The triangular re-
gions are where erroneous cal-
culations occurred. Source:
Byte Magazine

The Intel FDIV bug is a cautionary tale for the potential impact of
permanent faults on ML systems. In the context of ML, permanent
faults in hardware components can lead to incorrect computations, af-
fecting the accuracy and reliability of the models. For example, if an
ML system relies on a processor with a faulty floating-point unit, sim-
ilar to the Intel FDIV bug, it could introduce errors in the calculations
performed during training or inference.

These errors can propagate through the model, leading to inaccu-
rate predictions or skewed learning. In applications where ML is used
for critical tasks, such as autonomous driving, medical diagnosis, or
financial forecasting, the consequences of incorrect computations due
to permanent faults can be severe.

It is crucial for ML practitioners to be aware of the potential impact
of permanent faults and to incorporate fault-tolerant techniques, such
as hardware redundancy, error detection and correction mechanisms,
and robust algorithm design, to mitigate the risks associated with these
faults. Additionally, thorough testing and validation of ML hardware
components can help identify and address permanent faults before
they impact the system’s performance and reliability.

https://www.halfhill.com/byte/1995-3_truth.html

17.3. Hardware Faults 726

17.3.2.2 Causes of Permanent Faults

Permanent faults can arise from several causes, including manufactur-
ing defects and wear-out mechanisms. Manufacturing defects are in-
herent flaws introduced during the fabrication process of hardware
components. These defects include improper etching, incorrect dop-
ing, or contamination, leading to non-functional or partially functional
components.

On the other hand, wear-out mechanisms occur over time as the
hardware components are subjected to prolonged use and stress. Fac-
tors such as electromigration, oxide breakdown, or thermal stress can
cause gradual degradation of the components, eventually leading to
permanent failures.

17.3.2.3 Mechanisms of Permanent Faults

Permanent faults can manifest through various mechanisms, depend-
ing on the nature and location of the fault. Stuck-at faults (Seong et al.
2010) are common permanent faults where a signal or memory cell re-
mains fixed at a particular value (either 0 or 1) regardless of the inputs,
as illustrated in Figure 17.9.

Figure 17.9.: Stuck-at Fault
Model in Digital Circuits.
Source: Accendo Reliability

Stuck-at faults can occur in logic gates, memory cells, or intercon-
nects, causing incorrect computations or data corruption. Another
mechanism is device failures, where a component, such as a transistor
or a memory cell, completely ceases to function. This can be due to
manufacturing defects or severe wear-out. Bridging faults occur when
two or more signal lines are unintentionally connected, causing short
circuits or incorrect logic behavior.

In addition to stuck-at faults, there are several other types of perma-
nent faults that can affect digital circuits that can impact an ML system.
Delay faults can cause the propagation delay of a signal to exceed the

https://www.sciencedirect.com/science/article/pii/B9780128181058000206
https://semiengineering.com/what-causes-semiconductor-aging/
https://accendoreliability.com/digital-circuits-stuck-fault-model/

CHAPTER 17. ROBUST AI 727

specified limit, leading to timing violations. Interconnect faults, such
as open faults (broken wires), resistive faults (increased resistance), or
capacitive faults (increased capacitance), can cause signal integrity is-
sues or timing violations. Memory cells can also suffer from various
faults, including transition faults (inability to change state), coupling
faults (interference between adjacent cells), and neighborhood pattern
sensitive faults (faults that depend on the values of neighboring cells).
Other permanent faults can occur in the power supply network or the
clock distribution network, affecting the functionality and timing of
the circuit.

17.3.2.4 Impact on ML Systems

Permanent faults can severely affect the behavior and reliability of com-
puting systems. For example, a stuck-at-fault in a processor’s arith-
metic logic unit (ALU) can cause incorrect computations, leading to
erroneous results or system crashes. A permanent fault in a memory
module, such as a stuck-at fault in a specific memory cell, can corrupt
the stored data, causing data loss or program misbehavior. In storage
devices, permanent faults like bad sectors or device failures can result
in data inaccessibility or complete loss of stored information. Perma-
nent interconnect faults can disrupt communication channels, causing
data corruption or system hangs.

Permanent faults can significantly affect ML systems during the
training and inference phases. During training, permanent faults
in processing units or memory can lead to incorrect computations,
resulting in corrupted or suboptimal models (Y. He et al. 2023). Fur-
thermore, faults in storage devices can corrupt the training data or the
stored model parameters, leading to data loss or model inconsistencies
(Y. He et al. 2023).

During inference, permanent faults can impact the reliability and
correctness of ML predictions. Faults in the processing units can pro-
duce incorrect results or cause system failures, while faults in memory
storing the model parameters can lead to corrupted or outdated mod-
els being used for inference (J. J. Zhang et al. 2018).

To mitigate the impact of permanent faults in ML systems, fault-
tolerant techniques must be employed at both the hardware and soft-
ware levels. Hardware redundancy, such as duplicating critical com-
ponents or using error-correcting codes (J. Kim, Sullivan, and Erez
2015), can help detect and recover from permanent faults. Software
techniques, such as checkpoint and restart mechanisms (Egwutuoha
et al. 2013), can enable the system to recover from permanent faults
by returning to a previously saved state. Regular monitoring, testing,

17.3. Hardware Faults 728

and maintenance of ML systems can help identify and replace faulty
components before they cause significant disruptions.

Designing ML systems with fault tolerance in mind is crucial to
ensure their reliability and robustness in the presence of permanent
faults. This may involve incorporating redundancy, error detection
and correction mechanisms, and fail-safe strategies into the system
architecture. By proactively addressing the challenges posed by
permanent faults, ML systems can maintain their integrity, accuracy,
and trustworthiness, even in the face of hardware failures.

17.3.3 Intermittent Faults

Intermittent faults are hardware faults that occur sporadically and
unpredictably in a system. An example is illustrated in Figure 17.10,
where cracks in the material can introduce increased resistance in
circuitry. These faults are particularly challenging to detect and
diagnose because they appear and disappear intermittently, making
it difÏcult to reproduce and isolate the root cause. Intermittent faults
can lead to system instability, data corruption, and performance
degradation.

Figure 17.10.: Increased re-
sistance due to an intermit-
tent fault – crack between cop-
per bump and package solder.
Source: Constantinescu

https://ieeexplore.ieee.org/document/4925824

CHAPTER 17. ROBUST AI 729

17.3.3.1 Definition and Characteristics

Intermittent faults are characterized by their sporadic and non-
deterministic nature. They occur irregularly and may appear and
disappear spontaneously, with varying durations and frequencies.
These faults do not consistently manifest every time the affected com-
ponent is used, making them harder to detect than permanent faults.
Intermittent faults can affect various hardware components, including
processors, memory modules, storage devices, or interconnects. They
can cause transient errors, data corruption, or unexpected system
behavior.

Intermittent faults can significantly impact the behavior and reliabil-
ity of computing systems (Rashid, Pattabiraman, and Gopalakrishnan
2015). For example, an intermittent fault in a processor’s control logic
can cause irregular program flow, leading to incorrect computations
or system hangs. Intermittent faults in memory modules can corrupt
data values, resulting in erroneous program execution or data incon-
sistencies. In storage devices, intermittent faults can cause read/write
errors or data loss. Intermittent faults in communication channels can
lead to data corruption, packet loss, or intermittent connectivity issues.
These faults can cause system crashes, data integrity problems, or per-
formance degradation, depending on the severity and frequency of the
intermittent failures.

17.3.3.2 Causes of Intermittent Faults

Intermittent faults can arise from several causes, both internal and ex-
ternal, to the hardware components (Constantinescu 2008). One com-
mon cause is aging and wear-out of the components. As electronic de-
vices age, they become more susceptible to intermittent failures due to
degradation mechanisms such as electromigration, oxide breakdown,
or solder joint fatigue.

Manufacturing defects or process variations can also introduce inter-
mittent faults, where marginal or borderline components may exhibit
sporadic failures under specific conditions, as shown in Figure 17.11.

Environmental factors, such as temperature fluctuations, humidity,
or vibrations, can trigger intermittent faults by altering the electrical
characteristics of the components. Loose or degraded connections,
such as those in connectors or printed circuit boards, can cause
intermittent faults.

17.3. Hardware Faults 730

Figure 17.11.: Residue induced
intermittent fault in a DRAM
chip. Source: Hynix Semicon-
ductor

17.3.3.3 Mechanisms of Intermittent Faults

Intermittent faults can manifest through various mechanisms, depend-
ing on the underlying cause and the affected component. One mech-
anism is the intermittent open or short circuit, where a signal path or
connection becomes temporarily disrupted or shorted, causing erratic
behavior. Another mechanism is the intermittent delay fault (J. Zhang
et al. 2018), where the timing of signals or propagation delays becomes
inconsistent, leading to synchronization issues or incorrect computa-
tions. Intermittent faults can manifest as transient bit flips or soft er-
rors in memory cells or registers, causing data corruption or incorrect
program execution.

17.3.3.4 Impact on ML Systems

In the context of ML systems, intermittent faults can introduce signif-
icant challenges and impact the system’s reliability and performance.
During the training phase, intermittent faults in processing units or
memory can lead to inconsistencies in computations, resulting in in-
correct or noisy gradients and weight updates. This can affect the con-
vergence and accuracy of the training process, leading to suboptimal
or unstable models. Intermittent data storage or retrieval faults can
corrupt the training data, introducing noise or errors that degrade the
quality of the learned models (Y. He et al. 2023).

https://ieeexplore.ieee.org/document/4925824
https://ieeexplore.ieee.org/document/4925824

CHAPTER 17. ROBUST AI 731

During the inference phase, intermittent faults can impact the relia-
bility and consistency of ML predictions. Faults in the processing units
or memory can cause incorrect computations or data corruption, lead-
ing to erroneous or inconsistent predictions. Intermittent faults in the
data pipeline can introduce noise or errors in the input data, affecting
the accuracy and robustness of the predictions. In safety-critical ap-
plications, such as autonomous vehicles or medical diagnosis systems,
intermittent faults can have severe consequences, leading to incorrect
decisions or actions that compromise safety and reliability.

Mitigating the impact of intermittent faults in ML systems requires
a multifaceted approach (Rashid, Pattabiraman, and Gopalakrishnan
2012). At the hardware level, techniques such as robust design prac-
tices, component selection, and environmental control can help reduce
the occurrence of intermittent faults. Redundancy and error correction
mechanisms can be employed to detect and recover from intermittent
failures. At the software level, runtime monitoring, anomaly detection,
and fault-tolerant techniques can be incorporated into the ML pipeline.
This may include techniques such as data validation, outlier detection,
model ensembling, or runtime model adaptation to handle intermit-
tent faults gracefully.

Designing ML systems resilient to intermittent faults is crucial to
ensuring their reliability and robustness. This involves incorporating
fault-tolerant techniques, runtime monitoring, and adaptive mecha-
nisms into the system architecture. By proactively addressing the chal-
lenges of intermittent faults, ML systems can maintain their accuracy,
consistency, and trustworthiness, even in sporadic hardware failures.
Regular testing, monitoring, and maintenance of ML systems can help
identify and mitigate intermittent faults before they cause significant
disruptions or performance degradation.

17.3.4 Detection and Mitigation

This section explores various fault detection techniques, including
hardware-level and software-level approaches, and discusses effective
mitigation strategies to enhance the resilience of ML systems. Addi-
tionally, we will look into resilient ML system design considerations,
present case studies and examples, and highlight future research
directions in fault-tolerant ML systems.

17.3.4.1 Fault Detection Techniques

Fault detection techniques are important for identifying and localiz-
ing hardware faults in ML systems. These techniques can be broadly

17.3. Hardware Faults 732

categorized into hardware-level and software-level approaches, each
offering unique capabilities and advantages.

17.3.4.1.1 Hardware-level fault detection. Hardware-level fault de-
tection techniques are implemented at the physical level of the system
and aim to identify faults in the underlying hardware components.
There are several hardware techniques, but broadly, we can bucket
these different mechanisms into the following categories.

Built-in self-test (BIST) mechanisms: BIST is a powerful technique
for detecting faults in hardware components (Bushnell and Agrawal
2002). It involves incorporating additional hardware circuitry into the
system for self-testing and fault detection. BIST can be applied to vari-
ous components, such as processors, memory modules, or application-
specific integrated circuits (ASICs). For example, BIST can be imple-
mented in a processor using scan chains, which are dedicated paths
that allow access to internal registers and logic for testing purposes.

During the BIST process, predefined test patterns are applied to the
processor’s internal circuitry, and the responses are compared against
expected values. Any discrepancies indicate the presence of faults. In-
tel’s Xeon processors, for instance, include BIST mechanisms to test the
CPU cores, cache memory, and other critical components during sys-
tem startup.

Error detection codes: Error detection codes are widely used to
detect data storage and transmission errors (Hamming 1950). These
codes add redundant bits to the original data, allowing the detection
of bit errors. Example: Parity checks are a simple form of error
detection code shown in Figure 17.12. In a single-bit parity scheme,
an extra bit is appended to each data word, making the number of 1s
in the word even (even parity) or odd (odd parity).

Figure 17.12.: Parity bit exam-
ple. Source: Computer Hope

https://www.computerhope.com/jargon/p/paritybi.htm

CHAPTER 17. ROBUST AI 733

When reading the data, the parity is checked, and if it doesn’t match
the expected value, an error is detected. More advanced error detec-
tion codes, such as cyclic redundancy checks (CRC), calculate a check-
sum based on the data and append it to the message. The checksum is
recalculated at the receiving end and compared with the transmitted
checksum to detect errors. Error-correcting code (ECC) memory mod-
ules, commonly used in servers and critical systems, employ advanced
error detection and correction codes to detect and correct single-bit or
multi-bit errors in memory.

Hardware redundancy and voting mechanisms: Hardware redun-
dancy involves duplicating critical components and comparing their
outputs to detect and mask faults (Sheaffer, Luebke, and Skadron 2007).
Voting mechanisms, such as triple modular redundancy (TMR), em-
ploy multiple instances of a component and compare their outputs to
identify and mask faulty behavior (Arifeen, Hassan, and Lee 2020).

In a TMR system, three identical instances of a hardware component,
such as a processor or a sensor, perform the same computation in par-
allel. The outputs of these instances are fed into a voting circuit, which
compares the results and selects the majority value as the final out-
put. If one of the instances produces an incorrect result due to a fault,
the voting mechanism masks the error and maintains the correct out-
put. TMR is commonly used in aerospace and aviation systems, where
high reliability is critical. For instance, the Boeing 777 aircraft employs
TMR in its primary flight computer system to ensure the availability
and correctness of flight control functions (Yeh 1996).

Tesla’s self-driving computers employ a redundant hardware archi-
tecture to ensure the safety and reliability of critical functions, such
as perception, decision-making, and vehicle control, as shown in Fig-
ure 17.13. One key component of this architecture is using dual mod-
ular redundancy (DMR) in the car’s onboard computer systems.

Figure 17.13.: Tesla full self-
driving computer with dual re-
dundant SoCs. Source: Tesla

In Tesla’s DMR implementation, two identical hardware units, often
called “redundant computers” or “redundant control units,” perform

https://old.hotchips.org/hc31/HC31_2.3_Tesla_Hotchips_ppt_Final_0817.pdf

17.3. Hardware Faults 734

the same computations in parallel (Bannon et al. 2019). Each unit in-
dependently processes sensor data, executes perception and decision-
making algorithms, and generates control commands for the vehicle’s
actuators (e.g., steering, acceleration, and braking).

The outputs of these two redundant units are continuously com-
pared to detect any discrepancies or faults. If the outputs match, the
system assumes that both units function correctly, and the control com-
mands are sent to the vehicle’s actuators. However, if there is a mis-
match between the outputs, the system identifies a potential fault in
one of the units and takes appropriate action to ensure safe operation.

The system may employ additional mechanisms to determine which
unit is faulty in a mismatch. This can involve using diagnostic algo-
rithms, comparing the outputs with data from other sensors or sub-
systems, or analyzing the consistency of the outputs over time. Once
the faulty unit is identified, the system can isolate it and continue op-
erating using the output from the non-faulty unit.

DMR in Tesla’s self-driving computer provides an extra safety and
fault tolerance layer. By having two independent units performing the
same computations, the system can detect and mitigate faults that may
occur in one of the units. This redundancy helps prevent single points
of failure and ensures that critical functions remain operational despite
hardware faults.

Furthermore, Tesla also incorporates additional redundancy mecha-
nisms beyond DMR. For example, they use redundant power supplies,
steering and braking systems, and diverse sensor suites (e.g., cameras,
radar, and ultrasonic sensors) to provide multiple layers of fault toler-
ance. These redundancies collectively contribute to the overall safety
and reliability of the self-driving system.

It’s important to note that while DMR provides fault detection and
some level of fault tolerance, TMR may provide a different level of
fault masking. In DMR, if both units experience simultaneous faults
or the fault affects the comparison mechanism, the system may be un-
able to identify the fault. Therefore, Tesla’s SDCs rely on a combination
of DMR and other redundancy mechanisms to achieve a high level of
fault tolerance.

The use of DMR in Tesla’s self-driving computer highlights the im-
portance of hardware redundancy in safety-critical applications. By
employing redundant computing units and comparing their outputs,
the system can detect and mitigate faults, enhancing the overall safety
and reliability of the self-driving functionality.

Google employs redundant hot spares to deal with SDC issues
within its data centers, thereby enhancing the reliability of critical
functions. As illustrated in Figure 17.14, during the normal training

CHAPTER 17. ROBUST AI 735

phase, multiple synchronous training workers function flawlessly.
However, if a worker becomes defective and causes SDC, an SDC
checker automatically identifies the issues. Upon detecting the SDC,
the SDC checker moves the training to a hot spare and sends the de-
fective machine for repair. This redundancy safeguards the continuity
and reliability of ML training, effectively minimizing downtime and
preserving data integrity.

Figure 17.14.: Google employs
hot spare cores to transparently
handle SDCs in the data center.
Source: Jeff Dean, MLSys 2024
Keynote (Google)

Watchdog timers: Watchdog timers are hardware components that
monitor the execution of critical tasks or processes (Pont and Ong 2002).
They are commonly used to detect and recover from software or hard-
ware faults that cause a system to become unresponsive or stuck in an
infinite loop. In an embedded system, a watchdog timer can be config-
ured to monitor the execution of the main control loop, as illustrated in
Figure 17.15. The software periodically resets the watchdog timer to in-
dicate that it functions correctly. Suppose the software fails to reset the
timer within a specified time limit (timeout period). In that case, the
watchdog timer assumes that the system has encountered a fault and
triggers a predefined recovery action, such as resetting the system or
switching to a backup component. Watchdog timers are widely used
in automotive electronics, industrial control systems, and other safety-
critical applications to ensure the timely detection and recovery from
faults.

17.3. Hardware Faults 736

Figure 17.15.: Watchdog timer
example in detecting MCU
faults. Source: Ablic

17.3.4.1.2 Software-level fault detection. Software-level fault detec-
tion techniques rely on software algorithms and monitoring mecha-
nisms to identify system faults. These techniques can be implemented
at various levels of the software stack, including the operating system,
middleware, or application level.

Runtime monitoring and anomaly detection: Runtime monitoring
involves continuously observing the behavior of the system and its
components during execution (Francalanza et al. 2017). It helps de-
tect anomalies, errors, or unexpected behavior that may indicate the
presence of faults. For example, consider an ML-based image classifi-
cation system deployed in a self-driving car. Runtime monitoring can
be implemented to track the classification model’s performance and
behavior (Mahmoud et al. 2021).

Anomaly detection algorithms can be applied to the model’s predic-
tions or intermediate layer activations, such as statistical outlier detec-
tion or machine learning-based approaches (e.g., One-Class SVM or
Autoencoders) (Chandola, Banerjee, and Kumar 2009). Figure 17.16
shows example of anomaly detection. Suppose the monitoring system
detects a significant deviation from the expected patterns, such as a
sudden drop in classification accuracy or out-of-distribution samples.
In that case, it can raise an alert indicating a potential fault in the model
or the input data pipeline. This early detection allows for timely inter-
vention and fault mitigation strategies to be applied.

Consistency checks and data validation: Consistency checks and
data validation techniques ensure data integrity and correctness at dif-
ferent processing stages in an ML system (A. Lindholm et al. 2019).
These checks help detect data corruption, inconsistencies, or errors
that may propagate and affect the system’s behavior. Example: In
a distributed ML system where multiple nodes collaborate to train a
model, consistency checks can be implemented to validate the integrity
of the shared model parameters. Each node can compute a checksum
or hash of the model parameters before and after the training iteration,
as shown in Figure 17.16. Any inconsistencies or data corruption can

https://www.ablic.com/en/semicon/products/automotive/automotive-watchdog-timer/intro/

CHAPTER 17. ROBUST AI 737

Figure 17.16.: Examples
of anomaly detection. (a)
Fully supervised anomaly
detection, (b) normal-only
anomaly detection, (c, d, e)
semi-supervised anomaly
detection, (f) unsupervised
anomaly detection. Source:
Google

https://www.google.com/url?sa=i&url=http%3A%2F%2Fresearch.google%2Fblog%2Funsupervised-and-semi-supervised-anomaly-detection-with-data-centric-ml%2F&psig=AOvVaw1p9owe13lxfZogUHTZnxrj&ust=1714877457779000&source=images&cd=vfe&opi=89978449&ved=0CBIQjRxqFwoTCIjMmMP-8oUDFQAAAAAdAAAAABAE

17.3. Hardware Faults 738

be detected by comparing the checksums across nodes. Additionally,
range checks can be applied to the input data and model outputs to en-
sure they fall within expected bounds. For instance, if an autonomous
vehicle’s perception system detects an object with unrealistic dimen-
sions or velocities, it can indicate a fault in the sensor data or the per-
ception algorithms (Wan et al. 2023).

Heartbeat and timeout mechanisms: Heartbeat mechanisms and
timeouts are commonly used to detect faults in distributed systems
and ensure the liveness and responsiveness of components (Kawazoe
Aguilera, Chen, and Toueg 1997). These are quite similar to the watch-
dog timers found in hardware. For example, in a distributed ML sys-
tem, where multiple nodes collaborate to perform tasks such as data
preprocessing, model training, or inference, heartbeat mechanisms can
be implemented to monitor the health and availability of each node.
Each node periodically sends a heartbeat message to a central coordi-
nator or its peer nodes, indicating its status and availability. Suppose
a node fails to send a heartbeat within a specified timeout period, as
shown in Figure 17.17. In that case, it is considered faulty, and ap-
propriate actions can be taken, such as redistributing the workload or
initiating a failover mechanism. Timeouts can also be used to detect
and handle hanging or unresponsive components. For example, if a
data loading process exceeds a predefined timeout threshold, it may
indicate a fault in the data pipeline, and the system can take corrective
measures.

Figure 17.17.: Heartbeat mes-
sages in distributed systems.
Source: GeeksforGeeks

Software-implemented fault tolerance (SIFT) techniques: SIFT
techniques introduce redundancy and fault detection mechanisms
at the software level to improve the reliability and fault tolerance of
the system (Reis et al. 2005). Example: N-version programming is
a SIFT technique where multiple functionally equivalent software

https://www.geeksforgeeks.org/what-are-heartbeat-messages/

CHAPTER 17. ROBUST AI 739

component versions are developed independently by different teams.
This can be applied to critical components such as the model inference
engine in an ML system. Multiple versions of the inference engine
can be executed in parallel, and their outputs can be compared for
consistency. It is considered the correct result if most versions produce
the same output. If there is a discrepancy, it indicates a potential
fault in one or more versions, and appropriate error-handling mech-
anisms can be triggered. Another example is using software-based
error correction codes, such as Reed-Solomon codes (Plank 1997), to
detect and correct errors in data storage or transmission, as shown
in Figure 17.18. These codes add redundancy to the data, enabling
detecting and correcting certain errors and enhancing the system’s
fault tolerance.

Figure 17.18.: n-bits represen-
tation of the Reed-Solomon
codes. Source: GeeksforGeeks

Exercise 31: Anomaly Detection

In this Colab, play the role of an AI fault detective! You’ll build an
autoencoder-based anomaly detector to pinpoint errors in heart
health data. Learn how to identify malfunctions in ML systems,
a vital skill for creating dependable AI. We’ll use Keras Tuner
to fine-tune your autoencoder for top-notch fault detection. This
experience directly links to the Robust AI chapter, demonstrating
the importance of fault detection in real-world applications like
healthcare and autonomous systems. Get ready to strengthen
the reliability of your AI creations!

https://www.geeksforgeeks.org/what-is-reed-solomon-code/
https://colab.research.google.com/drive/1TXaQzsSj2q0E3Ni1uxFDXGpY1SCnu46v?usp=sharing

17.3. Hardware Faults 740

17.3.5 Summary

Table 17.1 provides an extensive comparative analysis of transient, per-
manent, and intermittent faults. It outlines the primary characteristics
or dimensions that distinguish these fault types. Here, we summarize
the relevant dimensions we examined and explore the nuances that
differentiate transient, permanent, and intermittent faults in greater
detail.

Table 17.1.: Comparison of transient, permanent, and intermittent
faults.

Dimension
Transient
Faults

Permanent
Faults Intermittent Faults

Duration Short-lived,
temporary

Persistent,
remains until
repair or
replacement

Sporadic, appears and
disappears
intermittently

PersistenceDisappears
after the fault
condition
passes

Consistently
present until
addressed

Recurs irregularly, not
always present

Causes External
factors (e.g.,
electromag-
netic
interference
cosmic rays)

Hardware
defects,
physical
damage,
wear-out

Unstable hardware
conditions, loose
connections, aging
components

ManifestationBit flips,
glitches,
temporary
data
corruption

Stuck-at
faults, broken
components,
complete
device
failures

Occasional bit flips,
intermittent signal
issues, sporadic
malfunctions

Impact
on ML
Sys-
tems

Introduces
temporary
errors or
noise in
computations

Causes
consistent
errors or
failures,
affecting
reliability

Leads to sporadic and
unpredictable errors,
challenging to diagnose
and mitigate

CHAPTER 17. ROBUST AI 741

Dimension
Transient
Faults

Permanent
Faults Intermittent Faults

Detection Error
detection
codes,
comparison
with expected
values

Built-in
self-tests,
error
detection
codes,
consistency
checks

Monitoring for
anomalies, analyzing
error patterns and
correlations

MitigationError
correction
codes,
redundancy,
checkpoint
and restart

Hardware
repair or
replacement,
component
redundancy,
failover
mechanisms

Robust design,
environmental control,
runtime monitoring,
fault-tolerant
techniques

17.4 ML Model Robustness

17.4.1 Adversarial Attacks

17.4.1.1 Definition and Characteristics

Adversarial attacks aim to trick models into making incorrect pre-
dictions by providing them with specially crafted, deceptive inputs
(called adversarial examples) (Parrish et al. 2023). By adding slight
perturbations to input data, adversaries can “hack” a model’s pattern
recognition and deceive it. These are sophisticated techniques where
slight, often imperceptible alterations to input data can trick an ML
model into making a wrong prediction, as shown in Figure 17.19.

Figure 17.19.: A small adver-
sarial noise added to the origi-
nal image can make the neural
network classify the image as a
Guacamole instead of an Egyp-
tian cat. Source: Sutanto

https://www.mdpi.com/2079-9292/10/1/52

17.4. ML Model Robustness 742

One can generate prompts that lead to unsafe images in text-to-
image models like DALLE (Ramesh et al. 2021) or Stable Diffusion
(Rombach et al. 2022). For example, by altering the pixel values
of an image, attackers can deceive a facial recognition system into
identifying a face as a different person.

Adversarial attacks exploit the way ML models learn and make de-
cisions during inference. These models work on the principle of recog-
nizing patterns in data. An adversary crafts special inputs with pertur-
bations to mislead the model’s pattern recognition---essentially ‘hack-
ing’ the model’s perceptions.

Adversarial attacks fall under different scenarios:

• Whitebox Attacks: The attacker fully knows the target model’s
internal workings, including the training data, parameters, and
architecture (Ye and Hamidi 2021). This comprehensive access
creates favorable conditions for attackers to exploit the model’s
vulnerabilities. The attacker can use specific and subtle weak-
nesses to craft effective adversarial examples.

• Blackbox Attacks: In contrast to white-box attacks, black-box at-
tacks involve the attacker having little to no knowledge of the
target model (C. Guo et al. 2019). To carry out the attack, the
adversarial actor must carefully observe the model’s output be-
havior.

• Greybox Attacks: These fall between blackbox and whitebox at-
tacks. The attacker has only partial knowledge about the target
model’s internal design (Y. Xu et al. 2021). For example, the at-
tacker could have knowledge about training data but not the ar-
chitecture or parameters. In the real world, practical attacks fall
under black black-box box grey-boxes.

The landscape of machine learning models is complex and broad,
especially given their relatively recent integration into commercial ap-
plications. This rapid adoption, while transformative, has brought to
light numerous vulnerabilities within these models. Consequently,
various adversarial attack methods have emerged, each strategically
exploiting different aspects of different models. Below, we highlight a
subset of these methods, showcasing the multifaceted nature of adver-
sarial attacks on machine learning models:

• Generative Adversarial Networks (GANs) are deep learning
models that consist of two networks competing against each
other: a generator and a discriminator (Goodfellow et al. 2020).

CHAPTER 17. ROBUST AI 743

The generator tries to synthesize realistic data while the dis-
criminator evaluates whether they are real or fake. GANs can
be used to craft adversarial examples. The generator network
is trained to produce inputs that the target model misclassifies.
These GAN-generated images can then attack a target classifier
or detection model. The generator and the target model are
engaged in a competitive process, with the generator continually
improving its ability to create deceptive examples and the
target model enhancing its resistance to such examples. GANs
provide a powerful framework for crafting complex and diverse
adversarial inputs, illustrating the adaptability of generative
models in the adversarial landscape.

• Transfer Learning Adversarial Attacks exploit the knowledge
transferred from a pre-trained model to a target model, creat-
ing adversarial examples that can deceive both models. These
attacks pose a growing concern, particularly when adversaries
have knowledge of the feature extractor but lack access to the clas-
sification head (the part or layer responsible for making the final
classifications). Referred to as “headless attacks,” these transfer-
able adversarial strategies leverage the expressive capabilities of
feature extractors to craft perturbations while being oblivious to
the label space or training data. The existence of such attacks un-
derscores the importance of developing robust defenses for trans-
fer learning applications, especially since pre-trained models are
commonly used (Abdelkader et al. 2020).

17.4.1.2 Mechanisms of Adversarial Attacks

Figure 17.20.: Gradient-Based
Attacks. Source: Ivezic

Gradient-based Attacks
One prominent category of adversarial attacks is gradient-based at-

tacks. These attacks leverage the gradients of the ML model’s loss
function to craft adversarial examples. The Fast Gradient Sign Method

https://defence.ai/ai-security/gradient-based-attacks/
https://www.tensorflow.org/tutorials/generative/adversarial_fgsm

17.4. ML Model Robustness 744

(FGSM) is a well-known technique in this category. FGSM perturbs
the input data by adding small noise in the gradient direction, aiming
to maximize the model’s prediction error. FGSM can quickly generate
adversarial examples, as shown in Figure 17.20, by taking a single step
in the gradient direction.

Another variant, the Projected Gradient Descent (PGD) attack, ex-
tends FGSM by iteratively applying the gradient update step, allow-
ing for more refined and powerful adversarial examples. The Jacobian-
based Saliency Map Attack (JSMA) is another gradient-based approach
that identifies the most influential input features and perturbs them to
create adversarial examples.

Optimization-based Attacks
These attacks formulate the generation of adversarial examples as

an optimization problem. The Carlini and Wagner (C&W) attack is
a prominent example in this category. It finds the smallest perturba-
tion that can cause misclassification while maintaining the perceptual
similarity to the original input. The C&W attack employs an iterative
optimization process to minimize the perturbation while maximizing
the model’s prediction error.

Another optimization-based approach is the Elastic Net Attack to
DNNs (EAD), which incorporates elastic net regularization to generate
adversarial examples with sparse perturbations.

Transfer-based Attacks
Transfer-based attacks exploit the transferability property of adver-

sarial examples. Transferability refers to the phenomenon where ad-
versarial examples crafted for one ML model can often fool other mod-
els, even if they have different architectures or were trained on differ-
ent datasets. This enables attackers to generate adversarial examples
using a surrogate model and then transfer them to the target model
without requiring direct access to its parameters or gradients. Transfer-
based attacks highlight the generalization of adversarial vulnerabili-
ties across different models and the potential for black-box attacks.

Physical-world Attacks
Physical-world attacks bring adversarial examples into the realm of

real-world scenarios. These attacks involve creating physical objects
or manipulations that can deceive ML models when captured by sen-
sors or cameras. Adversarial patches, for example, are small, carefully
designed patches that can be placed on objects to fool object detection
or classification models. When attached to real-world objects, these
patches can cause models to misclassify or fail to detect the objects ac-
curately. Adversarial objects, such as 3D-printed sculptures or modi-
fied road signs, can also be crafted to deceive ML systems in physical
environments.

CHAPTER 17. ROBUST AI 745

Summary
Table 17.2 a concise overview of the different categories of adver-

sarial attacks, including gradient-based attacks (FGSM, PGD, JSMA),
optimization-based attacks (C&W, EAD), transfer-based attacks, and
physical-world attacks (adversarial patches and objects). Each attack is
briefly described, highlighting its key characteristics and mechanisms.

Table 17.2.: Different attack types on ML models.
Attack
Cate-
gory Attack Name Description
Gradient-
based

Fast Gradient
Sign Method
(FGSM)
Projected
Gradient
Descent (PGD)
Jacobian-based
Saliency Map
Attack (JSMA)

Perturbs input data by adding small
noise in the gradient direction to
maximize prediction error. Extends
FGSM by iteratively applying the
gradient update step for more refined
adversarial examples. Identifies
influential input features and perturbs
them to create adversarial examples.

Optimization-
based

Carlini and
Wagner (C&W)
Attack Elastic
Net Attack to
DNNs (EAD)

Finds the smallest perturbation that
causes misclassification while
maintaining perceptual similarity.
Incorporates elastic net regularization
to generate adversarial examples with
sparse perturbations.

Transfer-
based

Transferability-
based Attacks

Exploits the transferability of
adversarial examples across different
models, enabling black-box attacks.

Physical-
world

Adversarial
Patches
Adversarial
Objects

Small, carefully designed patches
placed on objects to fool object
detection or classification models.
Physical objects (e.g., 3D-printed
sculptures, modified road signs)
crafted to deceive ML systems in
real-world scenarios.

The mechanisms of adversarial attacks reveal the intricate interplay
between the ML model’s decision boundaries, the input data, and the
attacker’s objectives. By carefully manipulating the input data, attack-
ers can exploit the model’s sensitivities and blind spots, leading to in-
correct predictions. The success of adversarial attacks highlights the

17.4. ML Model Robustness 746

need for a deeper understanding of ML models’ robustness and gener-
alization properties.

Defending against adversarial attacks requires a multifaceted ap-
proach. Adversarial training is one common defense strategy in which
models are trained on adversarial examples to improve robustness.
Exposing the model to adversarial examples during training teaches
it to classify them correctly and become more resilient to attacks.
Defensive distillation, input preprocessing, and ensemble methods
are other techniques that can help mitigate the impact of adversarial
attacks.

As adversarial machine learning evolves, researchers explore
new attack mechanisms and develop more sophisticated defenses.
The arms race between attackers and defenders drives the need for
constant innovation and vigilance in securing ML systems against
adversarial threats. Understanding the mechanisms of adversarial
attacks is crucial for developing robust and reliable ML models that
can withstand the ever-evolving landscape of adversarial examples.

17.4.1.3 Impact on ML Systems

Adversarial attacks on machine learning systems have emerged as a
significant concern in recent years, highlighting the potential vulnera-
bilities and risks associated with the widespread adoption of ML tech-
nologies. These attacks involve carefully crafted perturbations to input
data that can deceive or mislead ML models, leading to incorrect pre-
dictions or misclassifications, as shown in Figure 17.21. The impact of
adversarial attacks on ML systems is far-reaching and can have serious
consequences in various domains.

One striking example of the impact of adversarial attacks was
demonstrated by researchers in 2017. They experimented with small
black and white stickers on stop signs (Eykholt et al. 2017). To the
human eye, these stickers did not obscure the sign or prevent its
interpretability. However, when images of the sticker-modified stop
signs were fed into standard trafÏc sign classification ML models, a
shocking result emerged. The models misclassified the stop signs as
speed limit signs over 85% of the time.

This demonstration shed light on the alarming potential of simple
adversarial stickers to trick ML systems into misreading critical road
signs. The implications of such attacks in the real world are signifi-
cant, particularly in the context of autonomous vehicles. If deployed
on actual roads, these adversarial stickers could cause self-driving cars
to misinterpret stop signs as speed limits, leading to dangerous situa-
tions, as shown in Figure 17.22. Researchers warned that this could

CHAPTER 17. ROBUST AI 747

result in rolling stops or unintended acceleration into intersections, en-
dangering public safety.

Figure 17.21.: Adversarial
example generation applied
to GoogLeNet (Szegedy et al.,
2014a) on ImageNet. Source:
Goodfellow

Figure 17.22.: GrafÏti on a
stop sign tricked a self-driving
car into thinking it was a 45
mph speed limit sign. Source:
Eykholt

The case study of the adversarial stickers on stop signs provides a
concrete illustration of how adversarial examples exploit how ML mod-
els recognize patterns. By subtly manipulating the input data in ways
that are invisible to humans, attackers can induce incorrect predictions
and create serious risks, especially in safety-critical applications like
autonomous vehicles. The attack’s simplicity highlights the vulnera-
bility of ML models to even minor changes in the input, emphasizing
the need for robust defenses against such threats.

The impact of adversarial attacks extends beyond the degradation of
model performance. These attacks raise significant security and safety
concerns, particularly in domains where ML models are relied upon
for critical decision-making. In healthcare applications, adversarial at-
tacks on medical imaging models could lead to misdiagnosis or incor-
rect treatment recommendations, jeopardizing patient well-being (M.-
J. Tsai, Lin, and Lee 2023). In financial systems, adversarial attacks
could enable fraud or manipulation of trading algorithms, resulting in
substantial economic losses.

https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1707.08945

17.4. ML Model Robustness 748

Moreover, adversarial vulnerabilities undermine the trustwor-
thiness and interpretability of ML models. If carefully crafted
perturbations can easily fool models, confidence in their predictions
and decisions erodes. Adversarial examples expose the models’
reliance on superficial patterns and the inability to capture the true
underlying concepts, challenging the reliability of ML systems (Fursov
et al. 2021).

Defending against adversarial attacks often requires additional com-
putational resources and can impact the overall system performance.
Techniques like adversarial training, where models are trained on ad-
versarial examples to improve robustness, can significantly increase
training time and computational requirements (Bai et al. 2021). Run-
time detection and mitigation mechanisms, such as input preprocess-
ing (Addepalli et al. 2020) or prediction consistency checks, introduce
latency and affect the real-time performance of ML systems.

The presence of adversarial vulnerabilities also complicates the de-
ployment and maintenance of ML systems. System designers and op-
erators must consider the potential for adversarial attacks and incor-
porate appropriate defenses and monitoring mechanisms. Regular up-
dates and retraining of models become necessary to adapt to new ad-
versarial techniques and maintain system security and performance
over time.

The impact of adversarial attacks on ML systems is significant
and multifaceted. These attacks expose ML models’ vulnerabilities,
from degrading model performance and raising security and safety
concerns to challenging model trustworthiness and interpretability.
Developers and researchers must prioritize the development of
robust defenses and countermeasures to mitigate the risks posed by
adversarial attacks. By addressing these challenges, we can build
more secure, reliable, and trustworthy ML systems that can withstand
the ever-evolving landscape of adversarial threats.

Exercise 32: Adversarial Attacks

Get ready to become an AI adversary! In this Colab, you’ll be-
come a white-box hacker, learning to craft attacks that deceive
image classification models. We’ll focus on the Fast Gradient
Sign Method (FGSM), where you’ll weaponize a model’s gradi-
ents against it! You’ll deliberately distort images with tiny per-
turbations, observing how they increasingly fool the AI more
intensely. This hands-on exercise highlights the importance of
building secure AI – a critical skill as AI integrates into cars and

CHAPTER 17. ROBUST AI 749

healthcare. The Colab directly ties into the Robust AI chapter
of your book, moving adversarial attacks from theory into your
own hands-on experience.

Think you can outsmart an AI? In this Colab, learn how to trick
image classification models with adversarial attacks. We’ll use
methods like FGSM to change images and subtly fool the AI. Dis-
cover how to design deceptive image patches and witness the
surprising vulnerability of these powerful models. This is cru-
cial knowledge for building truly robust AI systems!

17.4.2 Data Poisoning

17.4.2.1 Definition and Characteristics

Data poisoning is an attack where the training data is tampered with,
leading to a compromised model (Biggio, Nelson, and Laskov 2012),
as shown in Figure 17.23. Attackers can modify existing training ex-
amples, insert new malicious data points, or influence the data collec-
tion process. The poisoned data is labeled in such a way as to skew the
model’s learned behavior. This can be particularly damaging in appli-
cations where ML models make automated decisions based on learned
patterns. Beyond training sets, poisoning tests, and validation data can
allow adversaries to boost reported model performance artificially.

Figure 17.23.: NightShade’s
poisoning effects on Stable Dif-
fusion. Source: TOMÉ

The process usually involves the following steps:

https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/generative/adversarial_fgsm.ipynb#scrollTo=W1L3zJP6pPGD
https://colab.research.google.com/github/phlippe/uvadlc_notebooks/blob/master/docs/tutorial_notebooks/tutorial10/Adversarial_Attacks.ipynb#scrollTo=C5HNmh1-Ka9J
https://telefonicatech.com/en/blog/attacks-on-artificial-intelligence-iii-data-poisoning

17.4. ML Model Robustness 750

• Injection: The attacker adds incorrect or misleading examples
into the training set. These examples are often designed to look
normal to cursory inspection but have been carefully crafted to
disrupt the learning process.

• Training: The ML model trains on this manipulated dataset and
develops skewed understandings of the data patterns.

• Deployment: Once the model is deployed, the corrupted train-
ing leads to flawed decision-making or predictable vulnerabili-
ties the attacker can exploit.

The impact of data poisoning extends beyond classification errors or
accuracy drops. In critical applications like healthcare, such alterations
can lead to significant trust and safety issues (Marulli, Marrone, and
Verde 2022). Later, we will discuss a few case studies of these issues.

There are six main categories of data poisoning (Oprea, Singhal, and
Vassilev 2022):

• Availability Attacks: These attacks aim to compromise the over-
all functionality of a model. They cause it to misclassify most
testing samples, rendering the model unusable for practical ap-
plications. An example is label flipping, where labels of a specific,
targeted class are replaced with labels from a different one.

• Targeted Attacks: In contrast to availability attacks, targeted at-
tacks aim to compromise a small number of the testing samples.
So, the effect is localized to a limited number of classes, while
the model maintains the same original level of accuracy for the
majority of the classes. The targeted nature of the attack requires
the attacker to possess knowledge of the model’s classes, making
detecting these attacks more challenging.

• Backdoor Attacks: In these attacks, an adversary targets specific
patterns in the data. The attacker introduces a backdoor (a ma-
licious, hidden trigger or pattern) into the training data, such as
manipulating certain features in structured data or manipulating
a pattern of pixels at a fixed position. This causes the model to
associate the malicious pattern with specific labels. As a result,
when the model encounters test samples that contain a malicious
pattern, it makes false predictions.

• Subpopulation Attacks: Attackers selectively choose to compro-
mise a subset of the testing samples while maintaining accuracy
on the rest of the samples. You can think of these attacks as a com-
bination of availability and targeted attacks: performing avail-
ability attacks (performance degradation) within the scope of a

CHAPTER 17. ROBUST AI 751

targeted subset. Although subpopulation attacks may seem very
similar to targeted attacks, the two have clear differences:

• Scope: While targeted attacks target a selected set of samples,
subpopulation attacks target a general subpopulation with simi-
lar feature representations. For example, in a targeted attack, an
actor inserts manipulated images of a ‘speed bump’ warning sign
(with carefully crafted perturbations or patterns), which causes
an autonomous car to fail to recognize such a sign and slow down.
On the other hand, manipulating all samples of people with a
British accent so that a speech recognition model would misclas-
sify a British person’s speech is an example of a subpopulation
attack.

• Knowledge: While targeted attacks require a high degree of fa-
miliarity with the data, subpopulation attacks require less inti-
mate knowledge to be effective.

The characteristics of data poisoning include:
Subtle and hard-to-detect manipulations of training data: Data

poisoning often involves subtle manipulations of the training data that
are carefully crafted to be difÏcult to detect through casual inspection.
Attackers employ sophisticated techniques to ensure that the poisoned
samples blend seamlessly with the legitimate data, making them eas-
ier to identify with thorough analysis. These manipulations can target
specific features or attributes of the data, such as altering numerical
values, modifying categorical labels, or introducing carefully designed
patterns. The goal is to influence the model’s learning process while
evading detection, allowing the poisoned data to subtly corrupt the
model’s behavior.

Can be performed by insiders or external attackers: Data poison-
ing attacks can be carried out by various actors, including malicious in-
siders with access to the training data and external attackers who find
ways to influence the data collection or preprocessing pipeline. Insid-
ers pose a significant threat because they often have privileged access
and knowledge of the system, enabling them to introduce poisoned
data without raising suspicions. On the other hand, external attackers
may exploit vulnerabilities in data sourcing, crowdsourcing platforms,
or data aggregation processes to inject poisoned samples into the train-
ing dataset. This highlights the importance of implementing strong ac-
cess controls, data governance policies, and monitoring mechanisms to
mitigate the risk of insider threats and external attacks.

Exploits vulnerabilities in data collection and preprocessing: Data
poisoning attacks often exploit vulnerabilities in the machine learning
pipeline’s data collection and preprocessing stages. Attackers carefully

17.4. ML Model Robustness 752

design poisoned samples to evade common data validation techniques,
ensuring that the manipulated data still falls within acceptable ranges,
follows expected distributions, or maintains consistency with other fea-
tures. This allows the poisoned data to pass through data preprocess-
ing steps without detection. Furthermore, poisoning attacks can take
advantage of weaknesses in data preprocessing, such as inadequate
data cleaning, insufÏcient outlier detection, or lack of integrity checks.
Attackers may also exploit the lack of robust data provenance and lin-
eage tracking mechanisms to introduce poisoned data without leav-
ing a traceable trail. Addressing these vulnerabilities requires rigor-
ous data validation, anomaly detection, and data provenance tracking
techniques to ensure the integrity and trustworthiness of the training
data.

Disrupts the learning process and skews model behavior: Data
poisoning attacks are designed to disrupt the learning process of ma-
chine learning models and skew their behavior towards the attacker’s
objectives. The poisoned data is typically manipulated with specific
goals, such as skewing the model’s behavior towards certain classes,
introducing backdoors, or degrading overall performance. These ma-
nipulations are not random but targeted to achieve the attacker’s de-
sired outcomes. By introducing label inconsistencies, where the ma-
nipulated samples have labels that do not align with their true nature,
poisoning attacks can confuse the model during training and lead to bi-
ased or incorrect predictions. The disruption caused by poisoned data
can have far-reaching consequences, as the compromised model may
make flawed decisions or exhibit unintended behavior when deployed
in real-world applications.

Impacts model performance, fairness, and trustworthiness: Poi-
soned data in the training dataset can have severe implications for
machine learning models’ performance, fairness, and trustworthiness.
Poisoned data can degrade the accuracy and performance of the
trained model, leading to increased misclassifications or errors in
predictions. This can have significant consequences, especially in
critical applications where the model’s outputs inform important
decisions. Moreover, poisoning attacks can introduce biases and
fairness issues, causing the model to make discriminatory or unfair
decisions for certain subgroups or classes. This undermines ma-
chine learning systems’ ethical and social responsibilities and can
perpetuate or amplify existing biases. Furthermore, poisoned data
erodes the trustworthiness and reliability of the entire ML system.
The model’s outputs become questionable and potentially harmful,
leading to a loss of confidence in the system’s integrity. The impact
of poisoned data can propagate throughout the entire ML pipeline,

CHAPTER 17. ROBUST AI 753

affecting downstream components and decisions that rely on the
compromised model. Addressing these concerns requires robust
data governance, regular model auditing, and ongoing monitoring to
detect and mitigate the effects of data poisoning attacks.

17.4.2.2 Mechanisms of Data Poisoning

Data poisoning attacks can be carried out through various mech-
anisms, exploiting different ML pipeline vulnerabilities. These
mechanisms allow attackers to manipulate the training data and
introduce malicious samples that can compromise the model’s per-
formance, fairness, or integrity. Understanding these mechanisms is
crucial for developing effective defenses against data poisoning and
ensuring the robustness of ML systems. Data poisoning mechanisms
can be broadly categorized based on the attacker’s approach and the
stage of the ML pipeline they target. Some common mechanisms
include modifying training data labels, altering feature values, inject-
ing carefully crafted malicious samples, exploiting data collection
and preprocessing vulnerabilities, manipulating data at the source,
poisoning data in online learning scenarios, and collaborating with
insiders to manipulate data.

Each of these mechanisms presents unique challenges and requires
different mitigation strategies. For example, detecting label manipu-
lation may involve analyzing the distribution of labels and identify-
ing anomalies (P. Zhou et al. 2018), while preventing feature manipu-
lation may require secure data preprocessing and anomaly detection
techniques (Carta et al. 2020). Defending against insider threats may
involve strict access control policies and monitoring of data access pat-
terns. Moreover, the effectiveness of data poisoning attacks often de-
pends on the attacker’s knowledge of the ML system, including the
model architecture, training algorithms, and data distribution. Attack-
ers may use adversarial machine learning or data synthesis techniques
to craft samples that are more likely to bypass detection and achieve
their malicious objectives.

Modifying training data labels: One of the most straightforward
mechanisms of data poisoning is modifying the training data labels.
In this approach, the attacker selectively changes the labels of a sub-
set of the training samples to mislead the model’s learning process as
shown in Figure 17.24. For example, in a binary classification task, the
attacker might flip the labels of some positive samples to negative, or
vice versa. By introducing such label noise, the attacker degrades the
model’s performance or cause it to make incorrect predictions for spe-
cific target instances.

Altering feature values in training data: Another mechanism of

17.4. ML Model Robustness 754

Figure 17.24.: Garbage In –
Garbage Out. Source: Informa-
tion Matters

data poisoning involves altering the feature values of the training sam-
ples without modifying the labels. The attacker carefully crafts the
feature values to introduce specific biases or vulnerabilities into the
model. For instance, in an image classification task, the attacker might
add imperceptible perturbations to a subset of images, causing the
model to learn a particular pattern or association. This type of poison-
ing can create backdoors or trojans in the trained model, which specific
input patterns can trigger.

Injecting carefully crafted malicious samples: In this mechanism,
the attacker creates malicious samples designed to poison the model.
These samples are crafted to have a specific impact on the model’s be-
havior while blending in with the legitimate training data. The attacker
might use techniques such as adversarial perturbations or data synthe-
sis to generate poisoned samples that are difÏcult to detect. The at-
tacker manipulates the model’s decision boundaries by injecting these
malicious samples into the training data or introducing targeted mis-
classifications.

Exploiting data collection and preprocessing vulnerabilities: Data
poisoning attacks can also exploit the data collection and preprocess-
ing pipeline vulnerabilities. If the data collection process is not secure
or there are weaknesses in the data preprocessing steps, an attacker can
manipulate the data before it reaches the training phase. For example,

https://informationmatters.net/data-poisoning-ai/
https://informationmatters.net/data-poisoning-ai/

CHAPTER 17. ROBUST AI 755

if data is collected from untrusted sources or issues in data cleaning or
aggregation, an attacker can introduce poisoned samples or manipu-
late the data to their advantage.

Manipulating data at the source (e.g., sensor data): In some cases,
attackers can manipulate the data at its source, such as sensor data or
input devices. By tampering with the sensors or manipulating the en-
vironment in which data is collected, attackers can introduce poisoned
samples or bias the data distribution. For instance, in a self-driving car
scenario, an attacker might manipulate the sensors or the environment
to feed misleading information into the training data, compromising
the model’s ability to make safe and reliable decisions.

Figure 17.25.: Data Poisoning
Attack. Source: Sikandar

Poisoning data in online learning scenarios: Data poisoning at-
tacks can also target ML systems that employ online learning, where
the model is continuously updated with new data in real time. In such
scenarios, an attacker can gradually inject poisoned samples over time,
slowly manipulating the model’s behavior. Online learning systems
are particularly vulnerable to data poisoning because they adapt to
new data without extensive validation, making it easier for attackers
to introduce malicious samples, as shown in Figure 17.25.

Collaborating with insiders to manipulate data: Sometimes, data
poisoning attacks can involve collaboration with insiders with access
to the training data. Malicious insiders, such as employees or data
providers, can manipulate the data before it is used to train the model.
Insider threats are particularly challenging to detect and prevent, as
the attackers have legitimate access to the data and can carefully craft
the poisoning strategy to evade detection.

These are the key mechanisms of data poisoning in ML systems.
Attackers often employ these mechanisms to make their attacks more

https://www.researchgate.net/publication/366883200_A_Detailed_Survey_on_Federated_Learning_Attacks_and_Defenses

17.4. ML Model Robustness 756

effective and harder to detect. The risk of data poisoning attacks
grows as ML systems become increasingly complex and rely on larger
datasets from diverse sources. Defending against data poisoning
requires a multifaceted approach. ML practitioners and system
designers must be aware of the various mechanisms of data poisoning
and adopt a comprehensive approach to data security and model
resilience. This includes secure data collection, robust data validation,
and continuous model performance monitoring. Implementing
secure data collection and preprocessing practices is crucial to prevent
data poisoning at the source. Data validation and anomaly detection
techniques can also help identify and mitigate potential poisoning
attempts. Monitoring model performance for signs of data poisoning
is also essential to detect and respond to attacks promptly.

17.4.2.3 Impact on ML Systems

Data poisoning attacks can severely affect ML systems, compromising
their performance, reliability, and trustworthiness. The impact of data
poisoning can manifest in various ways, depending on the attacker’s
objectives and the specific mechanism used. Let’s explore each of the
potential impacts in detail.

Degradation of model performance: One of the primary impacts of
data poisoning is the degradation of the model’s overall performance.
By manipulating the training data, attackers can introduce noise, bi-
ases, or inconsistencies that hinder the model’s ability to learn accurate
patterns and make reliable predictions. This can reduce accuracy, pre-
cision, recall, or other performance metrics. The degradation of model
performance can have significant consequences, especially in critical
applications such as healthcare, finance, or security, where the reliabil-
ity of predictions is crucial.

Misclassification of specific targets: Data poisoning attacks can also
be designed to cause the model to misclassify specific target instances.
Attackers may introduce carefully crafted poisoned samples similar to
the target instances, leading the model to learn incorrect associations.
This can result in the model consistently misclassifying the targeted
instances, even if it performs well on other inputs. Such targeted mis-
classification can have severe consequences, such as causing a malware
detection system to overlook specific malicious files or leading to the
wrong diagnosis in a medical imaging application.

Backdoors and trojans in trained models: Data poisoning can in-
troduce backdoors or trojans into the trained model. Backdoors are
hidden functionalities that allow attackers to trigger specific behaviors
or bypass normal authentication mechanisms. On the other hand, Tro-
jans are malicious components embedded within the model that can

CHAPTER 17. ROBUST AI 757

activate specific input patterns. By poisoning the training data, attack-
ers can create models that appear to perform normally but contain hid-
den vulnerabilities that can be exploited later. Backdoors and trojans
can compromise the integrity and security of the ML system, allow-
ing attackers to gain unauthorized access, manipulate predictions, or
exfiltrate sensitive information.

Biased or unfair model outcomes: Data poisoning attacks can in-
troduce biases or unfairness into the model’s predictions. By manipu-
lating the training data distribution or injecting samples with specific
biases, attackers can cause the model to learn and perpetuate discrim-
inatory patterns. This can lead to unfair treatment of certain groups
or individuals based on sensitive attributes such as race, gender, or
age. Biased models can have severe societal implications, reinforcing
existing inequalities and discriminatory practices. Ensuring fairness
and mitigating biases is crucial for building trustworthy and ethical
ML systems.

Increased false positives or false negatives: Data poisoning can
also impact the model’s ability to correctly identify positive or nega-
tive instances, leading to increased false positives or false negatives.
False positives occur when the model incorrectly identifies a negative
instance as positive, while false negatives happen when a positive in-
stance is misclassified as negative. The consequences of increased false
positives or false negatives can be significant depending on the appli-
cation. For example, in a fraud detection system, high false positives
can lead to unnecessary investigations and customer frustration, while
high false negatives can allow fraudulent activities to go undetected.

Compromised system reliability and trustworthiness: Data poi-
soning attacks can undermine ML systems’ overall reliability and trust-
worthiness. When models are trained on poisoned data, their predic-
tions become reliable and trustworthy. This can erode user confidence
in the system and lead to a loss of trust in the decisions made by the
model. In critical applications where ML systems are relied upon for
decision-making, such as autonomous vehicles or medical diagnosis,
compromised reliability can have severe consequences, putting lives
and property at risk.

Addressing the impact of data poisoning requires a proactive ap-
proach to data security, model testing, and monitoring. Organizations
must implement robust measures to ensure the integrity and quality
of training data, employ techniques to detect and mitigate poisoning
attempts, and continuously monitor the performance and behavior of
deployed models. Collaboration between ML practitioners, security
experts, and domain specialists is essential to develop comprehensive
strategies for preventing and responding to data poisoning attacks.

17.4. ML Model Robustness 758

17.4.2.3.1 Case Study 1. In 2017, researchers demonstrated a data
poisoning attack against a popular toxicity classification model called
Perspective (Hosseini et al. 2017). This ML model detects toxic com-
ments online.

The researchers added synthetically generated toxic comments with
slight misspellings and grammatical errors to the model’s training data.
This slowly corrupted the model, causing it to misclassify increasing
numbers of severely toxic inputs as non-toxic over time.

After retraining on the poisoned data, the model’s false negative rate
increased from 1.4% to 27% - allowing extremely toxic comments to
bypass detection. The researchers warned this stealthy data poison-
ing could enable the spread of hate speech, harassment, and abuse if
deployed against real moderation systems.

This case highlights how data poisoning can degrade model accu-
racy and reliability. For social media platforms, a poisoning attack that
impairs toxicity detection could lead to the proliferation of harmful
content and distrust of ML moderation systems. The example demon-
strates why securing training data integrity and monitoring for poison-
ing is critical across application domains.

Figure 17.26.: Samples of dirty-
label poison data regarding
mismatched text/image pairs.
Source: Shan

17.4.2.3.2 Case Study 2. Interestingly enough, data poisoning
attacks are not always malicious (Shan et al. 2023). Nightshade, a tool
developed by a team led by Professor Ben Zhao at the University of
Chicago, utilizes data poisoning to help artists protect their art against
scraping and copyright violations by generative AI models. Artists
can use the tool to make subtle modifications to their images before
uploading them online, as shown in Figure 17.26.

While these changes are indiscernible to the human eye, they can
significantly disrupt the performance of generative AI models when
incorporated into the training data. Generative models can be manip-
ulated to generate hallucinations and weird images. For example, with
only 300 poisoned images, the University of Chicago researchers could
trick the latest Stable Diffusion model into generating images of dogs
that look like cats or images of cows when prompted for cars.

https://arxiv.org/pdf/2310.13828

CHAPTER 17. ROBUST AI 759

As the number of poisoned images on the internet increases, the
performance of the models that use scraped data will deteriorate ex-
ponentially. First, the poisoned data is hard to detect and requires
manual elimination. Second, the “poison” spreads quickly to other
labels because generative models rely on connections between words
and concepts as they generate images. So a poisoned image of a “car”
could spread into generated images associated with words like “truck,”
“train,” ” bus,” etc.

On the other hand, this tool can be used maliciously and can affect
legitimate applications of the generative models. This shows the very
challenging and novel nature of machine learning attacks.

Figure 17.27 demonstrates the effects of different levels of data poi-
soning (50 samples, 100 samples, and 300 samples of poisoned images)
on generating images in different categories. Notice how the images
start deforming and deviating from the desired category. For exam-
ple, after 300 poison samples, a car prompt generates a cow.

Figure 17.27.: Data poisoning.
Source: Shan et al. (2023))

Exercise 33: Poisoning Attacks

Get ready to explore the dark side of AI security! In this Colab,
you’ll learn about data poisoning – how bad data can trick AI
models into making wrong decisions. We’ll focus on a real-world
attack against a Support Vector Machine (SVM), observing how
the AI’s behavior changes under attack. This hands-on exercise

17.4. ML Model Robustness 760

will highlight why protecting AI systems is crucial, especially as
they become more integrated into our lives. Think like a hacker,
understand the vulnerability, and brainstorm how to defend our
AI systems!

17.4.3 Distribution Shifts

17.4.3.1 Definition and Characteristics

Distribution shift refers to the phenomenon where the data distribu-
tion encountered by an ML model during deployment (inference) dif-
fers from the distribution it was trained on, as shown in Figure 17.28.
This is not so much an attack as it is that the model’s robustness will
vary over time. In other words, the data’s statistical properties, pat-
terns, or underlying assumptions can change between the training and
test phases.

Figure 17.28.: The curly brack-
ets enclose the distribution
shift between the environ-
ments. Here, z stands for the
spurious feature, and y stands
for label class. Source: Xin

The key characteristics of distribution shift include:
Domain mismatch: The input data during inference comes from a

different domain or distribution than the training data. When the in-
put data during inference comes from a domain or distribution differ-
ent from the training data, it can significantly affect the model’s per-
formance. This is because the model has learned patterns and relation-
ships specific to the training domain, and when applied to a different
domain, those learned patterns may not hold. For example, consider
a sentiment analysis model trained on movie reviews. Suppose this

https://colab.research.google.com/github/pralab/secml/blob/HEAD/tutorials/05-Poisoning.ipynb#scrollTo=-8onNPNTOLk2
https://www.researchgate.net/publication/366423741_On_the_Connection_between_Invariant_Learning_and_Adversarial_Training_for_Out-of-Distribution_Generalization

CHAPTER 17. ROBUST AI 761

model is applied to analyze sentiment in tweets. In that case, it may
need help to accurately classify the sentiment because the language,
grammar, and context of tweets can differ from movie reviews. This
domain mismatch can result in poor performance and unreliable pre-
dictions, limiting the model’s practical utility.

Temporal drift: The data distribution evolves, leading to a gradual
or sudden shift in the input characteristics. Temporal drift is impor-
tant because ML models are often deployed in dynamic environments
where the data distribution can change over time. If the model is not
updated or adapted to these changes, its performance can gradually de-
grade. For instance, the patterns and behaviors associated with fraud-
ulent activities may evolve in a fraud detection system as fraudsters
adapt their techniques. If the model is not retrained or updated to
capture these new patterns, it may fail to detect new types of fraud
effectively. Temporal drift can lead to a decline in the model’s accu-
racy and reliability over time, making monitoring and addressing this
type of distribution shift crucial.

Contextual changes: The ML model’s context can vary, resulting
in different data distributions based on factors such as location, user
behavior, or environmental conditions. Contextual changes matter be-
cause ML models are often deployed in various contexts or environ-
ments that can have different data distributions. If the model cannot
generalize well to these different contexts, its performance may im-
prove. For example, consider a computer vision model trained to rec-
ognize objects in a controlled lab environment. When deployed in a
real-world setting, factors such as lighting conditions, camera angles,
or background clutter can vary significantly, leading to a distribution
shift. If the model is robust to these contextual changes, it may be able
to accurately recognize objects in the new environment, limiting its
practical utility.

Unrepresentative training data: The training data may only par-
tially capture the variability and diversity of the real-world data
encountered during deployment. Unrepresentative training data can
lead to biased or skewed models that perform poorly on real-world
data. Suppose the training data needs to capture the variability and
diversity of the real-world data adequately. In that case, the model
may learn patterns specific to the training set but needs to generalize
better to new, unseen data. This can result in poor performance,
biased predictions, and limited model applicability. For instance, if a
facial recognition model is trained primarily on images of individuals
from a specific demographic group, it may struggle to accurately
recognize faces from other demographic groups when deployed in a
real-world setting. Ensuring that the training data is representative

17.4. ML Model Robustness 762

and diverse is crucial for building models that can generalize well to
real-world scenarios.

Figure 17.29.: Concept drift
refers to a change in data pat-
terns and relationships over
time. Source: Evidently AI

Distribution shift can manifest in various forms, such as:
Covariate shift: The distribution of the input features (covariates)

changes while the conditional distribution of the target variable given
the input remains the same. Covariate shift matters because it can im-
pact the model’s ability to make accurate predictions when the input
features (covariates) differ between the training and test data. Even if
the relationship between the input features and the target variable re-
mains the same, a change in the distribution of the input features can
affect the model’s performance. For example, consider a model trained
to predict housing prices based on features like square footage, number
of bedrooms, and location. Suppose the distribution of these features
in the test data significantly differs from the training data (e.g., the test
data contains houses with much larger square footage). In that case,
the model’s predictions may become less accurate. Addressing covari-
ate shifts is important to ensure the model’s robustness and reliability
when applied to new data.

Concept drift: The relationship between the input features and the
target variable changes over time, altering the underlying concept the
model is trying to learn, as shown in Figure 17.29. Concept drift is im-
portant because it indicates changes in the fundamental relationship
between the input features and the target variable over time. When
the underlying concept that the model is trying to learn shifts, its per-
formance can deteriorate if not adapted to the new concept. For in-
stance, in a customer churn prediction model, the factors influencing
customer churn may evolve due to market conditions, competitor of-

https://www.evidentlyai.com/ml-in-production/concept-drift

CHAPTER 17. ROBUST AI 763

ferings, or customer preferences. If the model is not updated to cap-
ture these changes, its predictions may become less accurate and irrel-
evant. Detecting and adapting to concept drift is crucial to maintaining
the model’s effectiveness and alignment with evolving real-world con-
cepts.

Domain generalization: The model must generalize to unseen do-
mains or distributions not present during training. Domain generaliza-
tion is important because it enables ML models to be applied to new,
unseen domains without requiring extensive retraining or adaptation.
In real-world scenarios, training data that covers all possible domains
or distributions that the model may encounter is often infeasible. Do-
main generalization techniques aim to learn domain-invariant features
or models that can generalize well to new domains. For example, con-
sider a model trained to classify images of animals. If the model can
learn features invariant to different backgrounds, lighting conditions,
or poses, it can generalize well to classify animals in new, unseen en-
vironments. Domain generalization is crucial for building models that
can be deployed in diverse and evolving real-world settings.

The presence of a distribution shift can significantly impact the per-
formance and reliability of ML models, as the models may need help
generalizing well to the new data distribution. Detecting and adapting
to distribution shifts is crucial to ensure ML systems’ robustness and
practical utility in real-world scenarios.

17.4.3.2 Mechanisms of Distribution Shifts

The mechanisms of distribution shift, such as changes in data
sources, temporal evolution, domain-specific variations, selection
bias, feedback loops, and adversarial manipulations, are important
to understand because they help identify the underlying causes of
distribution shift. By understanding these mechanisms, practitioners
can develop targeted strategies to mitigate their impact and improve
the model’s robustness. Here are some common mechanisms:

Changes in data sources: Distribution shifts can occur when the
data sources used for training and inference differ. For example, if
a model is trained on data from one sensor but deployed on data from
another sensor with different characteristics, it can lead to a distribu-
tion shift.

Temporal evolution: Over time, the underlying data distribution
can evolve due to changes in user behavior, market dynamics, or other
temporal factors. For instance, in a recommendation system, user pref-
erences may shift over time, leading to a distribution shift in the input
data, as shown in Figure 17.30.

17.4. ML Model Robustness 764

Figure 17.30.: Temporal evolu-
tion. Source: Białek

Domain-specific variations: Different domains or contexts can have
distinct data distributions. A model trained on data from one domain
may only generalize well to another domain with appropriate adapta-
tion techniques. For example, an image classification model trained on
indoor scenes may struggle when applied to outdoor scenes.

Selection bias: A Distribution shift can arise from selection bias dur-
ing data collection or sampling. If the training data does not repre-
sent the true population or certain subgroups are over- or underrep-
resented, this can lead to a mismatch between the training and test
distributions.

Feedback loops: In some cases, the predictions or actions taken by
an ML model can influence future data distribution. For example, in
a dynamic pricing system, the prices set by the model can impact cus-
tomer behavior, leading to a shift in the data distribution over time.

Adversarial manipulations: Adversaries can intentionally manipu-
late the input data to create a distribution shift and deceive the ML
model. By introducing carefully crafted perturbations or generating
out-of-distribution samples, attackers can exploit the model’s vulnera-
bilities and cause it to make incorrect predictions.

Understanding the mechanisms of distribution shift is important for
developing effective strategies to detect and mitigate its impact on ML
systems. By identifying the sources and characteristics of the shift,
practitioners can design appropriate techniques, such as domain adap-
tation, transfer learning, or continual learning, to improve the model’s
robustness and performance under distributional changes.

17.4.3.3 Impact on ML Systems

Distribution shifts can significantly negatively impact the performance
and reliability of ML systems. Here are some key ways in which distri-
bution shift can affect ML models:

https://www.nannyml.com/blog/types-of-data-shift

CHAPTER 17. ROBUST AI 765

Degraded predictive performance: When the data distribution en-
countered during inference differs from the training distribution, the
model’s predictive accuracy can deteriorate. The model may need help
generalizing the new data well, leading to increased errors and subop-
timal performance.

Reduced reliability and trustworthiness: Distribution shift can
undermine the reliability and trustworthiness of ML models. If the
model’s predictions become unreliable or inconsistent due to the shift,
users may lose confidence in the system’s outputs, leading to potential
misuse or disuse of the model.

Biased predictions: Distribution shift can introduce biases in
the model’s predictions. If the training data does not represent the
real-world distribution or certain subgroups are underrepresented,
the model may make biased predictions that discriminate against
certain groups or perpetuate societal biases.

Increased uncertainty and risk: Distribution shift introduces addi-
tional uncertainty and risk into the ML system. The model’s behavior
and performance may become less predictable, making it challenging
to assess its reliability and suitability for critical applications. This un-
certainty can lead to increased operational risks and potential failures.

Adaptability challenges: ML models trained on a specific data dis-
tribution may need help to adapt to changing environments or new do-
mains. The lack of adaptability can limit the model’s usefulness and
applicability in dynamic real-world scenarios where the data distribu-
tion evolves.

Maintenance and update difÏculties: Distribution shift can compli-
cate the maintenance and updating of ML models. As the data distribu-
tion changes, the model may require frequent retraining or fine-tuning
to maintain its performance. This can be time-consuming and resource-
intensive, especially if the shift occurs rapidly or continuously.

Vulnerability to adversarial attacks: Distribution shift can make
ML models more vulnerable to adversarial attacks. Adversaries can
exploit the model’s sensitivity to distributional changes by crafting ad-
versarial examples outside the training distribution, causing the model
to make incorrect predictions or behave unexpectedly.

To mitigate the impact of distribution shifts, it is crucial to develop
robust ML systems that detect and adapt to distributional changes.
Techniques such as domain adaptation, transfer learning, and contin-
ual learning can help improve the model’s generalization ability across
different distributions. ML model monitoring, testing, and updating
are also necessary to ensure their performance and reliability during
distribution shifts.

17.4. ML Model Robustness 766

17.4.4 Detection and Mitigation

17.4.4.1 Adversarial Attacks

As you may recall from above, adversarial attacks pose a significant
threat to the robustness and reliability of ML systems. These attacks
involve crafting carefully designed inputs, known as adversarial exam-
ples, to deceive ML models and cause them to make incorrect predic-
tions. To safeguard ML systems against adversarial attacks, develop-
ing effective techniques for detecting and mitigating these threats is
crucial.

17.4.4.1.1 Adversarial Example Detection Techniques. Detecting
adversarial examples is the first line of defense against adversarial
attacks. Several techniques have been proposed to identify and flag
suspicious inputs that may be adversarial.

Statistical methods aim to detect adversarial examples by analyzing
the statistical properties of the input data. These methods often com-
pare the input data distribution to a reference distribution, such as
the training data distribution or a known benign distribution. Tech-
niques like the Kolmogorov-Smirnov (Berger and Zhou 2014) test or
the Anderson-Darling test can be used to measure the discrepancy be-
tween the distributions and flag inputs that deviate significantly from
the expected distribution.

Kernel density estimation (KDE) is a non-parametric technique used
to estimate the probability density function of a dataset. In the context
of adversarial example detection, KDE can be used to estimate the den-
sity of benign examples in the input space. Adversarial examples often
lie in low-density regions and can be detected by comparing their esti-
mated density to a threshold. Inputs with an estimated density below
the threshold are flagged as potential adversarial examples.

Another technique is feature squeezing (Panda, Chakraborty, and
Roy 2019), which reduces the complexity of the input space by apply-
ing dimensionality reduction or discretization. The idea behind fea-
ture squeezing is that adversarial examples often rely on small, im-
perceptible perturbations that can be eliminated or reduced through
these transformations. Inconsistencies can be detected by comparing
the model’s predictions on the original input and the squeezed input,
indicating the presence of adversarial examples.

Model uncertainty estimation techniques aim to quantify the confi-
dence or uncertainty associated with a model’s predictions. Adversar-
ial examples often exploit regions of high uncertainty in the model’s
decision boundary. By estimating the uncertainty using techniques
like Bayesian neural networks, dropout-based uncertainty estimation,

https://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda35e.htm
https://mathisonian.github.io/kde/

CHAPTER 17. ROBUST AI 767

or ensemble methods, inputs with high uncertainty can be flagged as
potential adversarial examples.

17.4.4.1.2 Adversarial Defense Strategies. Once adversarial exam-
ples are detected, various defense strategies can be employed to miti-
gate their impact and improve the robustness of ML models.

Adversarial training is a technique that involves augmenting the
training data with adversarial examples and retraining the model on
this augmented dataset. Exposing the model to adversarial examples
during training teaches it to classify them correctly and becomes more
robust to adversarial attacks. Adversarial training can be performed
using various attack methods, such as the Fast Gradient Sign Method
(FGSM) or Projected Gradient Descent (PGD) (Madry et al. 2017).

Defensive distillation (Papernot et al. 2016) is a technique that trains
a second model (the student model) to mimic the behavior of the orig-
inal model (the teacher model). The student model is trained on the
soft labels produced by the teacher model, which are less sensitive to
small perturbations. Using the student model for inference can reduce
the impact of adversarial perturbations, as the student model learns to
generalize better and is less sensitive to adversarial noise.

Input preprocessing and transformation techniques aim to remove
or mitigate the effect of adversarial perturbations before feeding the in-
put to the ML model. These techniques include image denoising, JPEG
compression, random resizing, padding, or applying random transfor-
mations to the input data. By reducing the impact of adversarial per-
turbations, these preprocessing steps can help improve the model’s ro-
bustness to adversarial attacks.

Ensemble methods combine multiple models to make more robust
predictions. The ensemble can reduce the impact of adversarial
attacks by using a diverse set of models with different architectures,
training data, or hyperparameters. Adversarial examples that fool one
model may not fool others in the ensemble, leading to more reliable
and robust predictions. Model diversification techniques, such as
using different preprocessing techniques or feature representations
for each model in the ensemble, can further enhance the robustness.

17.4.4.1.3 Robustness Evaluation and Testing. Conduct thorough
evaluation and testing to assess the effectiveness of adversarial defense
techniques and measure the robustness of ML models.

Adversarial robustness metrics quantify the model’s resilience to ad-
versarial attacks. These metrics can include the model’s accuracy on
adversarial examples, the average distortion required to fool the model,
or the model’s performance under different attack strengths. By com-

https://www.tensorflow.org/tutorials/generative/adversarial_fgsm
https://www.tensorflow.org/tutorials/generative/adversarial_fgsm

17.4. ML Model Robustness 768

paring these metrics across different models or defense techniques,
practitioners can assess and compare their robustness levels.

Standardized adversarial attack benchmarks and datasets provide
a common ground for evaluating and comparing the robustness of
ML models. These benchmarks include datasets with pre-generated
adversarial examples and tools and frameworks for generating adver-
sarial attacks. Examples of popular adversarial attack benchmarks in-
clude the MNIST-C, CIFAR-10-C, and ImageNet-C (Hendrycks and Di-
etterich 2019) datasets, which contain corrupted or perturbed versions
of the original datasets.

Practitioners can develop more robust and resilient ML systems
by leveraging these adversarial example detection techniques, de-
fense strategies, and robustness evaluation methods. However, it is
important to note that adversarial robustness is an ongoing research
area, and no single technique provides complete protection against
all types of adversarial attacks. A comprehensive approach that com-
bines multiple defense mechanisms and regular testing is essential
to maintain the security and reliability of ML systems in the face of
evolving adversarial threats.

17.4.4.2 Data Poisoning

Recall that data poisoning is an attack that targets the integrity of the
training data used to build ML models. By manipulating or corrupt-
ing the training data, attackers can influence the model’s behavior and
cause it to make incorrect predictions or perform unintended actions.
Detecting and mitigating data poisoning attacks is crucial to ensure
the trustworthiness and reliability of ML systems, as shown in Fig-
ure 17.31.

17.4.4.2.1 Anomaly Detection Techniques for Identifying Poisoned
Data. Statistical outlier detection methods identify data points that
deviate significantly from most data. These methods assume that poi-
soned data instances are likely to be statistical outliers. Techniques
such as the Z-score method, Tukey’s method, or the [Mahalanobis] dis-
tance can be used to measure the deviation of each data point from the
central tendency of the dataset. Data points that exceed a predefined
threshold are flagged as potential outliers and considered suspicious
for data poisoning.

Clustering-based methods group similar data points together based
on their features or attributes. The assumption is that poisoned data in-
stances may form distinct clusters or lie far away from the normal data
clusters. By applying clustering algorithms like K-means, DBSCAN, or

https://github.com/google-research/mnist-c
https://paperswithcode.com/dataset/cifar-10c
https://ubalt.pressbooks.pub/mathstatsguides/chapter/z-score-basics/
https://www.itl.nist.gov/div898/handbook/prc/section4/prc471.htm
https://www.statisticshowto.com/mahalanobis-distance/
https://www.statisticshowto.com/mahalanobis-distance/
https://www.oreilly.com/library/view/data-algorithms/9781491906170/ch12.html
https://www.oreilly.com/library/view/machine-learning-algorithms/9781789347999/50efb27d-abbe-4855-ad81-a5357050161f.xhtml

CHAPTER 17. ROBUST AI 769

Figure 17.31.: Malicious data
injection. Source: Li

hierarchical clustering, anomalous clusters or data points that do not
belong to any cluster can be identified. These anomalous instances are
then treated as potentially poisoned data.

Figure 17.32.: Autoencoder.
Source: Dertat

Autoencoders are neural networks trained to reconstruct the input
data from a compressed representation, as shown in Figure 17.32. They
can be used for anomaly detection by learning the normal patterns
in the data and identifying instances that deviate from them. During
training, the autoencoder is trained on clean, unpoisoned data. At in-
ference time, the reconstruction error for each data point is computed.
Data points with high reconstruction errors are considered abnormal
and potentially poisoned, as they do not conform to the learned normal

https://www.mdpi.com/2227-7390/12/2/247
https://www.oreilly.com/library/view/cluster-analysis-5th/9780470978443/chapter04.html
https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798

17.4. ML Model Robustness 770

patterns.

17.4.4.2.2 Data Sanitization and Preprocessing Techniques. Data
poisoning can be avoided by cleaning data, which involves identify-
ing and removing or correcting noisy, incomplete, or inconsistent data
points. Techniques such as data deduplication, missing value imputa-
tion, and outlier removal can be applied to improve the quality of the
training data. By eliminating or filtering out suspicious or anomalous
data points, the impact of poisoned instances can be reduced.

Data validation involves verifying the integrity and consistency of
the training data. This can include checking for data type consistency,
range validation, and cross-field dependencies. By defining and en-
forcing data validation rules, anomalous or inconsistent data points
indicative of data poisoning can be identified and flagged for further
investigation.

Data provenance and lineage tracking involve maintaining a record
of data’s origin, transformations, and movements throughout the ML
pipeline. By documenting the data sources, preprocessing steps, and
any modifications made to the data, practitioners can trace anomalies
or suspicious patterns back to their origin. This helps identify poten-
tial points of data poisoning and facilitates the investigation and miti-
gation process.

17.4.4.2.3 Robust Training Techniques. Robust optimization tech-
niques can be used to modify the training objective to minimize the
impact of outliers or poisoned instances. This can be achieved by using
robust loss functions less sensitive to extreme values, such as the Hu-
ber loss or the modified Huber loss. Regularization techniques, such
as L1 or L2 regularization, can also help in reducing the model’s sen-
sitivity to poisoned data by constraining the model’s complexity and
preventing overfitting.

Robust loss functions are designed to be less sensitive to outliers
or noisy data points. Examples include the modified Huber loss, the
Tukey loss (Beaton and Tukey 1974), and the trimmed mean loss. These
loss functions down-weight or ignore the contribution of abnormal in-
stances during training, reducing their impact on the model’s learn-
ing process. Robust objective functions, such as the minimax or distri-
butionally robust objective, aim to optimize the model’s performance
under worst-case scenarios or in the presence of adversarial perturba-
tions.

Data augmentation techniques involve generating additional train-
ing examples by applying random transformations or perturbations
to the existing data Figure 17.33. This helps in increasing the diver-

https://towardsdatascience.com/l1-and-l2-regularization-methods-ce25e7fc831c
https://pytorch.org/docs/stable/generated/torch.nn.HuberLoss.html

CHAPTER 17. ROBUST AI 771

sity and robustness of the training dataset. By introducing controlled
variations in the data, the model becomes less sensitive to specific pat-
terns or artifacts that may be present in poisoned instances. Random-
ization techniques, such as random subsampling or bootstrap aggre-
gating, can also help reduce the impact of poisoned data by training
multiple models on different subsets of the data and combining their
predictions.

Figure 17.33.: An image of the
number “3” in original form
and with basic augmentations
applied.

17.4.4.2.4 Secure and Trusted Data Sourcing. Implementing the
best data collection and curation practices can help mitigate the risk
of data poisoning. This includes establishing clear data collection
protocols, verifying the authenticity and reliability of data sources,
and conducting regular data quality assessments. Sourcing data from
trusted and reputable providers and following secure data handling
practices can reduce the likelihood of introducing poisoned data into
the training pipeline.

Strong data governance and access control mechanisms are essential
to prevent unauthorized modifications or tampering with the training
data. This involves defining clear roles and responsibilities for data
access, implementing access control policies based on the principle of
least privilege, and monitoring and logging data access activities. By
restricting access to the training data and maintaining an audit trail,
potential data poisoning attempts can be detected and investigated.

Detecting and mitigating data poisoning attacks requires a multi-
faceted approach that combines anomaly detection, data sanitization,
robust training techniques, and secure data sourcing practices. By
implementing these measures, ML practitioners can improve the
resilience of their models against data poisoning and ensure the
integrity and trustworthiness of the training data. However, it is
important to note that data poisoning is an active area of research, and
new attack vectors and defense mechanisms continue to emerge. Stay-
ing informed about the latest developments and adopting a proactive
and adaptive approach to data security is crucial for maintaining the
robustness of ML systems.

17.4. ML Model Robustness 772

17.4.4.3 Distribution Shifts

17.4.4.3.1 Detecting and Mitigating Distribution Shifts. Recall
that distribution shifts occur when the data distribution encountered
by a machine learning (ML) model during deployment differs from
the distribution it was trained on. These shifts can significantly
impact the model’s performance and generalization ability, leading
to suboptimal or incorrect predictions. Detecting and mitigating
distribution shifts is crucial to ensure the robustness and reliability of
ML systems in real-world scenarios.

17.4.4.3.2 Detection Techniques for Distribution Shifts. Statistical
tests can be used to compare the distributions of the training and
test data to identify significant differences. Techniques such as the
Kolmogorov-Smirnov test or the Anderson-Darling test measure the
discrepancy between two distributions and provide a quantitative
assessment of the presence of distribution shift. By applying these
tests to the input features or the model’s predictions, practitioners
can detect if there is a statistically significant difference between the
training and test distributions.

Divergence metrics quantify the dissimilarity between two proba-
bility distributions. Commonly used divergence metrics include the
Kullback-Leibler (KL) divergence and the [Jensen-Shannon (JS)] diver-
gence. By calculating the divergence between the training and test
data distributions, practitioners can assess the extent of the distribu-
tion shift. High divergence values indicate a significant difference be-
tween the distributions, suggesting the presence of a distribution shift.

Uncertainty quantification techniques, such as Bayesian neural net-
works or ensemble methods, can estimate the uncertainty associated
with the model’s predictions. When a model is applied to data from a
different distribution, its predictions may have higher uncertainty. By
monitoring the uncertainty levels, practitioners can detect distribution
shifts. If the uncertainty consistently exceeds a predetermined thresh-
old for test samples, it suggests that the model is operating outside its
trained distribution.

In addition, domain classifiers are trained to distinguish between dif-
ferent domains or distributions. Practitioners can detect distribution
shifts by training a classifier to differentiate between the training and
test domains. If the domain classifier achieves high accuracy in distin-
guishing between the two domains, it indicates a significant difference
in the underlying distributions. The performance of the domain clas-
sifier serves as a measure of the distribution shift.

https://towardsdatascience.com/understanding-kl-divergence-f3ddc8dff254
https://towardsdatascience.com/how-to-understand-and-use-jensen-shannon-divergence-b10e11b03fd6
https://towardsdatascience.com/how-to-understand-and-use-jensen-shannon-divergence-b10e11b03fd6

CHAPTER 17. ROBUST AI 773

Figure 17.34.: Transfer learn-
ing. Source: Bhavsar

17.4.4.3.3 Mitigation Techniques for Distribution Shifts. Transfer
learning leverages knowledge gained from one domain to improve per-
formance in another, as shown in Figure 17.34. By using pre-trained
models or transferring learned features from a source domain to a tar-
get domain, transfer learning can help mitigate the impact of distribu-
tion shifts. The pre-trained model can be fine-tuned on a small amount
of labeled data from the target domain, allowing it to adapt to the new
distribution. Transfer learning is particularly effective when the source
and target domains share similar characteristics or when labeled data
in the target domain is scarce.

Continual learning, also known as lifelong learning, enables ML
models to learn continuously from new data distributions while
retaining knowledge from previous distributions. Techniques such
as elastic weight consolidation (EWC) (Kirkpatrick et al. 2017) or
gradient episodic memory (GEM) (Lopez-Paz and Ranzato 2017)
allow models to adapt to evolving data distributions over time. These
techniques aim to balance the plasticity of the model (ability to learn
from new data) with the stability of the model (retaining previously
learned knowledge). By incrementally updating the model with new
data and mitigating catastrophic forgetting, continual learning helps
models stay robust to distribution shifts.

Data augmentation techniques, such as those we have seen previ-
ously, involve applying transformations or perturbations to the exist-
ing training data to increase its diversity and improve the model’s ro-
bustness to distribution shifts. By introducing variations in the data,
such as rotations, translations, scaling, or adding noise, data augmen-
tation helps the model learn invariant features and generalize better

https://medium.com/modern-nlp/transfer-learning-in-nlp-f5035cc3f62f

17.5. Software Faults 774

to unseen distributions. Data augmentation can be performed during
training and inference to improve the model’s ability to handle distri-
bution shifts.

Ensemble methods combine multiple models to make predictions
more robust to distribution shifts. By training models on different sub-
sets of the data, using different algorithms, or with different hyper-
parameters, ensemble methods can capture diverse aspects of the data
distribution. When presented with a shifted distribution, the ensemble
can leverage the strengths of individual models to make more accurate
and stable predictions. Techniques like bagging, boosting, or stacking
can create effective ensembles.

Regularly updating models with new data from the target distribu-
tion is crucial to mitigate the impact of distribution shifts. As the data
distribution evolves, models should be retrained or fine-tuned on the
latest available data to adapt to the changing patterns. Monitoring
model performance and data characteristics can help detect when an
update is necessary. By keeping the models up to date, practitioners
can ensure they remain relevant and accurate in the face of distribution
shifts.

Evaluating models using robust metrics less sensitive to distribution
shifts can provide a more reliable assessment of model performance.
Metrics such as the area under the precision-recall curve (AUPRC) or
the F1 score are more robust to class imbalance and can better capture
the model’s performance across different distributions. Additionally,
using domain-specific evaluation metrics that align with the desired
outcomes in the target domain can provide a more meaningful mea-
sure of the model’s effectiveness.

Detecting and mitigating distribution shifts is an ongoing process
that requires continuous monitoring, adaptation, and improvement.
By employing a combination of detection techniques and mitigation
strategies, ML practitioners can proactively identify and address distri-
bution shifts, ensuring the robustness and reliability of their models in
real-world deployments. It is important to note that distribution shifts
can take various forms and may require domain-specific approaches
depending on the nature of the data and the application. Staying in-
formed about the latest research and best practices in handling distri-
bution shifts is essential for building resilient ML systems.

17.5 Software Faults

CHAPTER 17. ROBUST AI 775

17.5.0.1 Definition and Characteristics

Software faults refer to defects, errors, or bugs in the runtime software
frameworks and components that support the execution and deploy-
ment of ML models (Myllyaho et al. 2022). These faults can arise from
various sources, such as programming mistakes, design flaws, or com-
patibility issues (H. Zhang 2008), and can have significant implications
for ML systems’ performance, reliability, and security. Software faults
in ML frameworks exhibit several key characteristics:

• Diversity: Software faults can manifest in different forms, rang-
ing from simple logic and syntax mistakes to more complex is-
sues like memory leaks, race conditions, and integration prob-
lems. The variety of fault types adds to the challenge of detecting
and mitigating them effectively.

• Propagation: In ML systems, software faults can propagate
through the various layers and components of the framework. A
fault in one module can trigger a cascade of errors or unexpected
behavior in other parts of the system, making it difÏcult to
pinpoint the root cause and assess the full impact of the fault.

• Intermittency: Some software faults may exhibit intermittent
behavior, occurring sporadically or under specific conditions.
These faults can be particularly challenging to reproduce and
debug, as they may manifest inconsistently during testing or
normal operation.

• Interaction withMLmodels: Software faults in ML frameworks
can interact with the trained models in subtle ways. For example,
a fault in the data preprocessing pipeline may introduce noise or
bias into the model’s inputs, leading to degraded performance
or incorrect predictions. Similarly, faults in the model serving
component may cause inconsistencies between the training and
inference environments.

• Impact on system properties: Software faults can compromise
various desirable properties of ML systems, such as perfor-
mance, scalability, reliability, and security. Faults may lead to
slowdowns, crashes, incorrect outputs, or vulnerabilities that
attackers can exploit.

• Dependency on external factors: The occurrence and impact
of software faults in ML frameworks often depend on external
factors, such as the choice of hardware, operating system,
libraries, and configurations. Compatibility issues and version

17.5. Software Faults 776

mismatches can introduce faults that are difÏcult to anticipate
and mitigate.

Understanding the characteristics of software faults in ML frame-
works is crucial for developing effective fault prevention, detection,
and mitigation strategies. By recognizing the diversity, propagation,
intermittency, and impact of software faults, ML practitioners can de-
sign more robust and reliable systems resilient to these issues.

17.5.0.2 Mechanisms of Software Faults in ML Frameworks

Machine learning frameworks, such as TensorFlow, PyTorch, and sci-
kit-learn, provide powerful tools and abstractions for building and de-
ploying ML models. However, these frameworks are not immune to
software faults that can impact ML systems’ performance, reliability,
and correctness. Let’s explore some of the common software faults that
can occur in ML frameworks:

Memory Leaks and ResourceManagement Issues: Improper mem-
ory management, such as failing to release memory or close file han-
dles, can lead to memory leaks and resource exhaustion over time. This
issue is compounded by inefÏcient memory usage, where creating un-
necessary copies of large tensors or not leveraging memory-efÏcient
data structures can cause excessive memory consumption and degrade
system performance. Additionally, failing to manage GPU memory
properly can result in out-of-memory errors or suboptimal utilization
of GPU resources, further exacerbating the problem as shown in Fig-
ure 17.35.

Figure 17.35.: Example of GPU
out-of-the-memory and subop-
timal utilization issues

Synchronization and Concurrency Problems: Incorrect synchro-
nization between threads or processes can lead to race conditions,
deadlocks, or inconsistent behavior in multi-threaded or distributed
ML systems. This issue is often tied to improper handling of asyn-
chronous operations, such as non-blocking I/O or parallel data
loading, which can cause synchronization issues and impact the
correctness of the ML pipeline. Moreover, proper coordination and
communication between distributed nodes in a cluster can result in
consistency or stale data during training or inference, compromising
the reliability of the ML system.

https://odsc.medium.com/optimizing-ml-serving-with-asynchronous-architectures-1071fc1be8e2
https://odsc.medium.com/optimizing-ml-serving-with-asynchronous-architectures-1071fc1be8e2

CHAPTER 17. ROBUST AI 777

Compatibility Issues: Mismatches between the versions of ML
frameworks, libraries, or dependencies can introduce compatibility
problems and runtime errors. Upgrading or changing the versions of
underlying libraries without thoroughly testing the impact on the ML
system can lead to unexpected behavior or breakages. Furthermore,
inconsistencies between the training and deployment environments,
such as differences in hardware, operating systems, or package ver-
sions, can cause compatibility issues and affect the reproducibility of
ML models, making it challenging to ensure consistent performance
across different platforms.

Numerical Instability and Precision Errors: Inadequate handling
of numerical instabilities, such as division by zero, underflow, or
overflow, can lead to incorrect calculations or convergence issues dur-
ing training. This problem is compounded by insufÏcient precision
or rounding errors, which can accumulate over time and impact the
accuracy of the ML models, especially in deep learning architectures
with many layers. Moreover, improper scaling or normalization of
input data can cause numerical instabilities and affect the convergence
and performance of optimization algorithms, resulting in suboptimal
or unreliable model performance.

Inadequate Error Handling and Exception Management: Proper
error handling and exception management can prevent ML systems
from crashing or behaving unexpectedly when encountering excep-
tional conditions or invalid inputs. Failing to catch and handle spe-
cific exceptions or relying on generic exception handling can make it
difÏcult to diagnose and recover from errors gracefully, leading to sys-
tem instability and reduced reliability. Furthermore, incomplete or
misleading error messages can hinder the ability to effectively debug
and resolve software faults in ML frameworks, prolonging the time re-
quired to identify and fix issues.

17.5.0.3 Impact on ML Systems

Software faults in machine learning frameworks can have significant
and far-reaching impacts on ML systems’ performance, reliability, and
security. Let’s explore the various ways in which software faults can
affect ML systems:

Performance Degradation and System Slowdowns: Memory
leaks and inefÏcient resource management can lead to gradual per-
formance degradation over time as the system becomes increasingly
memory-constrained and spends more time on garbage collection or
memory swapping (Maas et al. 2024). This issue is compounded by
synchronization issues and concurrency bugs, which can cause delays,
reduced throughput, and suboptimal utilization of computational

https://pythonnumericalmethods.studentorg.berkeley.edu/notebooks/chapter22.04-Numerical-Error-and-Instability.html

17.5. Software Faults 778

resources, especially in multi-threaded or distributed ML systems.
Furthermore, compatibility problems or inefÏcient code paths can
introduce additional overhead and slowdowns, affecting the overall
performance of the ML system.

Incorrect Predictions or Outputs: Software faults in data prepro-
cessing, feature engineering, or model evaluation can introduce biases,
noise, or errors propagating through the ML pipeline and resulting
in incorrect predictions or outputs. Over time, numerical instabilities,
precision errors, or rounding issues can accumulate and lead to
degraded accuracy or convergence problems in the trained models.
Moreover, faults in the model serving or inference components
can cause inconsistencies between the expected and actual outputs,
leading to incorrect or unreliable predictions in production.

Reliability and Stability Issues: Software faults can cause Unpar-
alleled exceptions, crashes, or sudden terminations that can compro-
mise the reliability and stability of ML systems, especially in produc-
tion environments. Intermittent or sporadic faults can be difÏcult to re-
produce and diagnose, leading to unpredictable behavior and reduced
confidence in the ML system’s outputs. Additionally, faults in check-
pointing, model serialization, or state management can cause data loss
or inconsistencies, affecting the reliability and recoverability of the ML
system.

Security Vulnerabilities: Software faults, such as buffer overflows,
injection vulnerabilities, or improper access control, can introduce se-
curity risks and expose the ML system to potential attacks or unautho-
rized access. Adversaries may exploit faults in the preprocessing or
feature extraction stages to manipulate the input data and deceive the
ML models, leading to incorrect or malicious behavior. Furthermore,
inadequate protection of sensitive data, such as user information or
confidential model parameters, can lead to data breaches or privacy
violations (Q. Li et al. 2023).

DifÏculty in Reproducing and Debugging: Software faults can
make it challenging to reproduce and debug issues in ML systems,
especially when the faults are intermittent or dependent on specific
runtime conditions. Incomplete or ambiguous error messages, cou-
pled with the complexity of ML frameworks and models, can prolong
the debugging process and hinder the ability to identify and fix the
underlying faults. Moreover, inconsistencies between development,
testing, and production environments can make reproducing and
diagnosing faults in specific contexts difÏcult.

Increased Development and Maintenance Costs Software faults
can lead to increased development and maintenance costs, as teams
spend more time and resources debugging, fixing, and validating

https://www.cs.drexel.edu/~popyack/Courses/CSP/Fa17/extras/Rounding/index.html

CHAPTER 17. ROBUST AI 779

the ML system. The need for extensive testing, monitoring, and
fault-tolerant mechanisms to mitigate the impact of software faults
can add complexity and overhead to the ML development process.
Frequent patches, updates, and bug fixes to address software faults
can disrupt the development workflow and require additional effort
to ensure the stability and compatibility of the ML system.

Understanding the potential impact of software faults on ML
systems is crucial for prioritizing testing efforts, implementing
fault-tolerant designs, and establishing effective monitoring and
debugging practices. By proactively addressing software faults and
their consequences, ML practitioners can build more robust, reliable,
and secure ML systems that deliver accurate and trustworthy results.

17.5.0.4 Detection and Mitigation

Detecting and mitigating software faults in machine learning frame-
works is essential to ensure ML systems’ reliability, performance, and
security. Let’s explore various techniques and approaches that can be
employed to identify and address software faults effectively:

Thorough Testing and Validation: Comprehensive unit testing of
individual components and modules can verify their correctness and
identify potential faults early in development. Integration testing vali-
dates the interaction and compatibility between different components
of the ML framework, ensuring seamless integration. Systematic
testing of edge cases, boundary conditions, and exceptional scenar-
ios helps uncover hidden faults and vulnerabilities. Continuous
testing and regression testing as shown in Figure 17.36 detect faults
introduced by code changes or updates to the ML framework.

Static Code Analysis and Linting: Utilizing static code analysis
tools automatically identifies potential coding issues, such as syntax
errors, undefined variables, or security vulnerabilities. Enforcing cod-
ing standards and best practices through linting tools maintains code
quality and reduces the likelihood of common programming mistakes.
Conducting regular code reviews allows manual inspection of the
codebase, identification of potential faults, and ensures adherence to
coding guidelines and design principles.

Runtime Monitoring and Logging: Implementing comprehensive
logging mechanisms captures relevant information during runtime,
such as input data, model parameters, and system events. Monitoring
key performance metrics, resource utilization, and error rates helps
detect anomalies, performance bottlenecks, or unexpected behavior.
Employing runtime assertion checks and invariants validates assump-
tions and detects violations of expected conditions during program
execution. Utilizing profiling tools identifies performance bottlenecks,

https://u-tor.com/topic/regression-vs-integration
https://u-tor.com/topic/regression-vs-integration
https://microsoft.github.io/code-with-engineering-playbook/machine-learning/ml-profiling/

17.5. Software Faults 780

Figure 17.36.: Automated
regression testing. Source:
UTOR

memory leaks, or inefÏcient code paths that may indicate the presence
of software faults.

Fault-Tolerant Design Patterns: Implementing error handling and
exception management mechanisms enables graceful handling and
recovery from exceptional conditions or runtime errors. Employing
redundancy and failover mechanisms, such as backup systems or
redundant computations, ensures the availability and reliability of
the ML system in the presence of faults. Designing modular and
loosely coupled architectures minimizes the propagation and impact
of faults across different components of the ML system. Utilizing
checkpointing and recovery mechanisms (Eisenman et al. 2022) allows
the system to resume from a known stable state in case of failures or
interruptions.

Regular Updates and Patches: Staying up to date with the latest ver-
sions and patches of the ML frameworks, libraries, and dependencies
provides benefits from bug fixes, security updates, and performance
improvements. Monitoring release notes, security advisories, and com-
munity forums inform practitioners about known issues, vulnerabili-
ties, or compatibility problems in the ML framework. Establishing a
systematic process for testing and validating updates and patches be-
fore applying them to production systems ensures stability and com-
patibility.

Containerization and Isolation: Leveraging containerization tech-
nologies, such as Docker or Kubernetes, encapsulates ML components
and their dependencies in isolated environments. Utilizing container-

https://u-tor.com/topic/regression-vs-integration
https://www.docker.com
https://kubernetes.io

CHAPTER 17. ROBUST AI 781

ization ensures consistent and reproducible runtime environments
across development, testing, and production stages, reducing the
likelihood of compatibility issues or environment-specific faults.
Employing isolation techniques, such as virtual environments or
sandboxing, prevents faults or vulnerabilities in one component from
affecting other parts of the ML system.

Automated Testing and Continuous Integration/Continuous
Deployment (CI/CD): Implement automated testing frameworks and
scripts, execute comprehensive test suites, and catch faults early in
development. Integrating automated testing into the CI/CD pipeline,
as shown in Figure 17.37, ensures that code changes are thoroughly
tested before being merged or deployed to production. Utilizing
continuous monitoring and automated alerting systems detects and
notifies developers and operators about potential faults or anomalies
in real-time.

Figure 17.37.: Continuous
Integration/Continuous De-
ployment (CI/CD) procedure.
Source: geeksforgeeks

Adopting a proactive and systematic approach to fault detection and
mitigation can significantly improve ML systems’ robustness, reliabil-
ity, and maintainability. By investing in comprehensive testing, moni-
toring, and fault-tolerant design practices, organizations can minimize
the impact of software faults and ensure their ML systems’ smooth op-
eration in production environments.

Exercise 34: Fault Tolerance

Get ready to become an AI fault-fighting superhero! Software
glitches can derail machine learning systems, but in this Colab,
you’ll learn how to make them resilient. We’ll simulate software
faults to see how AI can break, then explore techniques to save
your ML model’s progress, like checkpoints in a game. You’ll
see how to train your AI to bounce back after a crash, ensuring
it stays on track. This is crucial for building reliable, trustworthy
AI, especially in critical applications. So gear up because this Co-
lab directly connects with the Robust AI chapter – you’ll move
from theory to hands-on troubleshooting and build AI systems

https://www.geeksforgeeks.org/ci-cd-continuous-integration-and-continuous-delivery/

17.6. Tools and Frameworks 782

that can handle the unexpected!

17.6 Tools and Frameworks
Given the significance or importance of developing robust AI systems,
in recent years, researchers and practitioners have developed a wide
range of tools and frameworks to understand how hardware faults
manifest and propagate to impact ML systems. These tools and frame-
works play a crucial role in evaluating the resilience of ML systems
to hardware faults by simulating various fault scenarios and analyz-
ing their impact on the system’s performance. This enables designers
to identify potential vulnerabilities and develop effective mitigation
strategies, ultimately creating more robust and reliable ML systems
that can operate safely despite hardware faults. This section provides
an overview of widely used fault models in the literature and the tools
and frameworks developed to evaluate the impact of such faults on ML
systems.

17.6.1 Fault Models and Error Models

As discussed previously, hardware faults can manifest in various ways,
including transient, permanent, and intermittent faults. In addition to
the type of fault under study, how the fault manifests is also important.
For example, does the fault happen in a memory cell or during the
computation of a functional unit? Is the impact on a single bit, or does
it impact multiple bits? Does the fault propagate all the way and im-
pact the application (causing an error), or does it get masked quickly
and is considered benign? All these details impact what is known as
the fault model, which plays a major role in simulating and measuring
what happens to a system when a fault occurs.

To effectively study and understand the impact of hardware faults
on ML systems, it is essential to understand the concepts of fault mod-
els and error models. A fault model describes how a hardware fault
manifests itself in the system, while an error model represents how
the fault propagates and affects the system’s behavior.

Fault models can be categorized based on various characteristics:

• Duration: Transient faults occur briefly and then disappear,
while permanent faults persist indefinitely. Intermittent faults
occur sporadically and may be difÏcult to diagnose.

https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/guide/migrate/fault_tolerance.ipynb#scrollTo=77z2OchJTk0l

CHAPTER 17. ROBUST AI 783

• Location: Faults can occur in hardware parts, such as memory
cells, functional units, or interconnects.

• Granularity: Faults can affect a single bit (e.g., bitflip) or multiple
bits (e.g., burst errors) within a hardware component.

On the other hand, error models describe how a fault propagates
through the system and manifests as an error. An error may cause the
system to deviate from its expected behavior, leading to incorrect re-
sults or even system failures. Error models can be defined at different
levels of abstraction, from the hardware level (e.g., register-level bit-
flips) to the software level (e.g., corrupted weights or activations in an
ML model).

The fault model (or error model, typically the more applicable termi-
nology in understanding the robustness of an ML system) plays a ma-
jor role in simulating and measuring what happens to a system when
a fault occurs. The chosen model informs the assumptions made about
the system being studied. For example, a system focusing on single-bit
transient errors (Sangchoolie, Pattabiraman, and Karlsson 2017) would
not be well-suited to understand the impact of permanent, multi-bit
flip errors (Wilkening et al. 2014), as it is designed assuming a differ-
ent model altogether.

Furthermore, implementing an error model is also an important con-
sideration, particularly regarding where an error is said to occur in the
compute stack. For instance, a single-bit flip model at the architectural
register level differs from a single-bit flip in the weight of a model at
the PyTorch level. Although both target a similar error model, the for-
mer would usually be modeled in an architecturally accurate simulator
(like gem5 [binkert2011gem5]), which captures error propagation com-
pared to the latter, focusing on value propagation through a model.

Recent research has shown that certain characteristics of error mod-
els may exhibit similar behaviors across different levels of abstraction
(Sangchoolie, Pattabiraman, and Karlsson 2017) (Papadimitriou and
Gizopoulos 2021). For example, single-bit errors are generally more
problematic than multi-bit errors, regardless of whether they are mod-
eled at the hardware or software level. However, other characteris-
tics, such as error masking (Mohanram and Touba 2003) as shown in
Figure 17.38, may not always be accurately captured by software-level
models, as they can hide underlying system effects.

Some tools, such as Fidelity (Y. He, Balaprakash, and Li 2020), aim
to bridge the gap between hardware-level and software-level error
models by mapping patterns between the two levels of abstraction
(E. Cheng et al. 2016). This allows for more accurate modeling of
hardware faults in software-based tools, essential for developing

17.6. Tools and Frameworks 784

Figure 17.38.: Example of error
masking in microarchitectural
components (Ko 2021)

robust and reliable ML systems. Lower-level tools typically represent
more accurate error propagation characteristics but must be faster
in simulating many errors due to the complex nature of hardware
system designs. On the other hand, higher-level tools, such as those
implemented in ML frameworks like PyTorch or TensorFlow, which
we will discuss soon in the later sections, are often faster and more
efÏcient for evaluating the robustness of ML systems.

In the following subsections, we will discuss various hardware-
based and software-based fault injection methods and tools, highlight-
ing their capabilities, limitations, and the fault and error models they
support.

17.6.2 Hardware-based Fault Injection

An error injection tool is a tool that allows the user to implement a
particular error model, such as a transient single-bit flip during infer-
ence Figure 17.39. Most error injection tools are software-based, as
software-level tools are faster for ML robustness studies. However,
hardware-based fault injection methods are still important for ground-
ing the higher-level error models, as they are considered the most ac-
curate way to study the impact of faults on ML systems by directly
manipulating the hardware to introduce faults. These methods allow
researchers to observe the system’s behavior under real-world fault
conditions. Both software-based and hardware-based error injection
tools are described in this section in more detail.

17.6.2.1 Methods

Two of the most common hardware-based fault injection methods are
FPGA-based fault injection and radiation or beam testing.

FPGA-based Fault Injection: Field-Programmable Gate Arrays (FP-
GAs) are reconfigurable integrated circuits that can be programmed to
implement various hardware designs. In the context of fault injection,
FPGAs offer high precision and accuracy, as researchers can target spe-
cific bits or sets of bits within the hardware. By modifying the FPGA
configuration, faults can be introduced at specific locations and times

CHAPTER 17. ROBUST AI 785

Figure 17.39.: Hardware er-
rors can occur due to a vari-
ety of reasons and at differ-
ent times and/or locations in
a system, which can be ex-
plored when studying the im-
pact of hardware-based errors
on systems (Ahmadilivani et al.
2024)

during the execution of an ML model. FPGA-based fault injection al-
lows for fine-grained control over the fault model, enabling researchers
to study the impact of different types of faults, such as single-bit flips
or multi-bit errors. This level of control makes FPGA-based fault injec-
tion a valuable tool for understanding the resilience of ML systems to
hardware faults.

Radiation or Beam Testing: Radiation or beam testing (Velazco,
Foucard, and Peronnard 2010) involves exposing the hardware
running an ML model to high-energy particles, such as protons or
neutrons as illustrated in Figure 17.40. These particles can cause bit-
flips or other types of faults in the hardware, mimicking the effects of
real-world radiation-induced faults. Beam testing is widely regarded
as a highly accurate method for measuring the error rate induced
by particle strikes on a running application. It provides a realistic
representation of the faults in real-world environments, particularly
in applications exposed to high radiation levels, such as space systems
or particle physics experiments. However, unlike FPGA-based fault
injection, beam testing could be more precise in targeting specific
bits or components within the hardware, as it might be difÏcult to
aim the beam of particles to a particular bit in the hardware. Despite
being quite expensive from a research standpoint, beam testing is a
well-regarded industry practice for reliability.

17.6. Tools and Frameworks 786

Figure 17.40.: Radiation test
setup for semiconductor com-
ponents (Lee et al. 2022)
Source: JD Instrument

17.6.2.2 Limitations

Despite their high accuracy, hardware-based fault injection methods
have several limitations that can hinder their widespread adoption:

Cost: FPGA-based fault injection and beam testing require special-
ized hardware and facilities, which can be expensive to set up and
maintain. The cost of these methods can be a significant barrier for
researchers and organizations with limited resources.

Scalability: Hardware-based methods are generally slower and less
scalable than software-based methods. Injecting faults and collecting
data on hardware can take time, limiting the number of experiments

https://jdinstruments.net/tester-capabilities-radiation-test/

CHAPTER 17. ROBUST AI 787

performed within a given timeframe. This can be particularly challeng-
ing when studying the resilience of large-scale ML systems or conduct-
ing statistical analyses that require many fault injection experiments.

Flexibility: Hardware-based methods may not be as flexible as
software-based methods in terms of the range of fault models and
error models they can support. Modifying the hardware configuration
or the experimental setup to accommodate different fault models
can be more challenging and time-consuming than software-based
methods.

Despite these limitations, hardware-based fault injection methods
remain essential tools for validating the accuracy of software-based
methods and for studying the impact of faults on ML systems in realis-
tic settings. By combining hardware-based and software-based meth-
ods, researchers can gain a more comprehensive understanding of ML
systems’ resilience to hardware faults and develop effective mitigation
strategies.

17.6.3 Software-based Fault Injection Tools

With the rapid development of ML frameworks in recent years,
software-based fault injection tools have gained popularity in study-
ing the resilience of ML systems to hardware faults. These tools
simulate the effects of hardware faults by modifying the software
representation of the ML model or the underlying computational
graph. The rise of ML frameworks such as TensorFlow, PyTorch,
and Keras has facilitated the development of fault injection tools that
are tightly integrated with these frameworks, making it easier for
researchers to conduct fault injection experiments and analyze the
results.

17.6.3.0.1 Advantages and Trade-offs. Software-based fault injec-
tion tools offer several advantages over hardware-based methods:

Speed: Software-based tools are generally faster than hardware-
based methods, as they do not require the modification of physical
hardware or the setup of specialized equipment. This allows re-
searchers to conduct more fault injection experiments in a shorter
time, enabling more comprehensive analyses of the resilience of ML
systems.

Flexibility: Software-based tools are more flexible than hardware-
based methods in terms of the range of fault and error models they
can support. Researchers can easily modify the fault injection tool’s
software implementation to accommodate different fault models or to
target specific components of the ML system.

17.6. Tools and Frameworks 788

Accessibility: Software-based tools are more accessible than
hardware-based methods, as they do not require specialized hard-
ware or facilities. This makes it easier for researchers and practitioners
to conduct fault injection experiments and study the resilience of ML
systems, even with limited resources.

17.6.3.0.2 Limitations. Software-based fault injection tools also
have some limitations compared to hardware-based methods:

Accuracy: Software-based tools may not always capture the full
range of effects that hardware faults can have on the system. As these
tools operate at a higher level of abstraction, they may need to catch up
on some of the low-level hardware interactions and error propagation
mechanisms that can impact the behavior of the ML system.

Fidelity: Software-based tools may provide a different level of
Fidelity than hardware-based methods in terms of representing
real-world fault conditions. The accuracy of the results obtained
from software-based fault injection experiments may depend on
how closely the software model approximates the actual hardware
behavior.

Figure 17.41.: Comparison of
techniques at layers of abstrac-
tion. Source: MAVFI

17.6.3.0.3 Types of Fault InjectionTools. Software-based fault injec-
tion tools can be categorized based on their target frameworks or use
cases. Here, we will discuss some of the most popular tools in each
category:

Ares (Reagen et al. 2018), a fault injection tool initially developed for
the Keras framework in 2018, emerged as one of the first tools to study

https://ieeexplore.ieee.org/abstract/document/10315202

CHAPTER 17. ROBUST AI 789

the impact of hardware faults on deep neural networks (DNNs) in the
context of the rising popularity of ML frameworks in the mid-to-late
2010s. The tool was validated against a DNN accelerator implemented
in silicon, demonstrating its effectiveness in modeling hardware faults.
Ares provides a comprehensive study on the impact of hardware
faults in both weights and activation values, characterizing the effects
of single-bit flips and bit-error rates (BER) on hardware structures.
Later, the Ares framework was extended to support the PyTorch
ecosystem, enabling researchers to investigate hardware faults in a
more modern setting and further extending its utility in the field.

Figure 17.42.: Hardware
bitflips in ML workloads can
cause phantom objects and
misclassifications, which can
erroneously be used down-
stream by larger systems, such
as in autonomous driving.
Shown above is a correct and
faulty version of the same
image using the PyTorchFI
injection framework.

PyTorchFI (Mahmoud et al. 2020), a fault injection tool specifically
designed for the PyTorch framework, was developed in 2020 in collab-
oration with Nvidia Research. It enables the injection of faults into
the weights, activations, and gradients of PyTorch models, support-
ing a wide range of fault models. By leveraging the GPU accelera-
tion capabilities of PyTorch, PyTorchFI provides a fast and efÏcient
implementation for conducting fault injection experiments on large-
scale ML systems, as shown in Figure 17.42. The tool’s speed and ease
of use have led to widespread adoption in the community, resulting
in multiple developer-led projects, such as PyTorchALFI by Intel xCo-
labs, which focuses on safety in automotive environments. Follow-up
PyTorch-centric tools for fault injection include Dr. DNA by Meta (Ma
et al. 2024) (which further facilitates the Pythonic programming model
for ease of use), and the GoldenEye framework (Mahmoud et al. 2022),
which incorporates novel numerical datatypes (such as AdaptivFloat
(Tambe et al. 2020) and BlockFloat in the context of hardware bit flips.

TensorFI (Zitao Chen et al. 2020), or the TensorFlow Fault Injec-
tor, is a fault injection tool developed specifically for the TensorFlow
framework. Analogous to Ares and PyTorchFI, TensorFI is considered
the state-of-the-art tool for ML robustness studies in the TensorFlow
ecosystem. It allows researchers to inject faults into the computational
graph of TensorFlow models and study their impact on the model’s

https://en.wikipedia.org/wiki/Bfloat16_floating-point_format

17.6. Tools and Frameworks 790

performance, supporting a wide range of fault models. One of the key
benefits of TensorFI is its ability to evaluate the resilience of various
ML models, not just DNNs. Further advancements, such as BinFi (Zi-
tao Chen et al. 2019), provide a mechanism to speed up error injection
experiments by focusing on the “important” bits in the system, acceler-
ating the process of ML robustness analysis and prioritizing the critical
components of a model.

NVBitFI (T. Tsai et al. 2021), a general-purpose fault injection tool de-
veloped by Nvidia for their GPU platforms, operates at a lower level
compared to framework-specific tools like Ares, PyTorchFI, and Ten-
sorFlow. While these tools focus on various deep learning platforms
to implement and perform robustness analysis, NVBitFI targets the un-
derlying hardware assembly code for fault injection. This allows re-
searchers to inject faults into any application running on Nvidia GPUs,
making it a versatile tool for studying the resilience of ML systems and
other GPU-accelerated applications. By enabling users to inject errors
at the architectural level, NVBitFI provides a more general-purpose
fault model that is not restricted to just ML models. As Nvidia’s GPU
systems are commonly used in many ML-based systems, NVBitFI is a
valuable tool for comprehensive fault injection analysis across various
applications.

17.6.3.0.3.1 Domain-specific Examples. Domain-specific fault injec-
tion tools have been developed to address various ML application
domains’ unique challenges and requirements, such as autonomous
vehicles and robotics. This section highlights three domain-specific
fault injection tools: DriveFI and PyTorchALFI for autonomous
vehicles and MAVFI for uncrewed aerial vehicles (UAVs). These
tools enable researchers to inject hardware faults into these complex
systems’ perception, control, and other subsystems, allowing them
to study the impact of faults on system performance and safety. The
development of these software-based fault injection tools has greatly
expanded the capabilities of the ML community to develop more
robust and reliable systems that can operate safely and effectively in
the presence of hardware faults.

DriveFI (S. Jha et al. 2019) is a fault injection tool designed for au-
tonomous vehicles. It enables the injection of hardware faults into the
perception and control pipelines of autonomous vehicle systems, al-
lowing researchers to study the impact of these faults on the system’s
performance and safety. DriveFI has been integrated with industry-
standard autonomous driving platforms, such as Nvidia DriveAV and
Baidu Apollo, making it a valuable tool for evaluating the resilience of
autonomous vehicle systems.

CHAPTER 17. ROBUST AI 791

PyTorchALFI (Gräfe et al. 2023) is an extension of PyTorchFI devel-
oped by Intel xColabs for the autonomous vehicle domain. It builds
upon PyTorchFI’s fault injection capabilities. It adds features specifi-
cally tailored for evaluating the resilience of autonomous vehicle sys-
tems, such as the ability to inject faults into the camera and LiDAR
sensor data.

MAVFI (Hsiao et al. 2023) is a fault injection tool designed for
the robotics domain, specifically for uncrewed aerial vehicles (UAVs).
MAVFI is built on top of the Robot Operating System (ROS) framework
and allows researchers to inject faults into the various components
of a UAV system, such as sensors, actuators, and control algorithms.
By evaluating the impact of these faults on the UAV’s performance
and stability, researchers can develop more resilient and fault-tolerant
UAV systems.

The development of software-based fault injection tools has greatly
expanded the capabilities of researchers and practitioners to study the
resilience of ML systems to hardware faults. By leveraging the speed,
flexibility, and accessibility of these tools, the ML community can de-
velop more robust and reliable systems that can operate safely and ef-
fectively in the presence of hardware faults.

17.6.4 Bridging the Gap between Hardware and Soft-
ware Error Models

While software-based fault injection tools offer many advantages in
speed, flexibility, and accessibility, they may not always accurately cap-
ture the full range of effects that hardware faults can have on the sys-
tem. This is because software-based tools operate at a higher level of ab-
straction than hardware-based methods and may miss some of the low-
level hardware interactions and error propagation mechanisms that
can impact the behavior of the ML system.

As Bolchini et al. (2023) illustrates in their work, hardware errors can
manifest in complex spatial distribution patterns that are challenging
to fully replicate with software-based fault injection alone. They iden-
tify four distinct patterns: (a) single point, where the fault corrupts a
single value in a feature map; (b) same row, where the fault corrupts
a partial or entire row in a single feature map; (c) bullet wake, where
the fault corrupts the same location across multiple feature maps; and
(d) shatter glass, which combines the effects of same row and bullet
wake patterns, as shown in Figure 17.43. These intricate error propaga-
tion mechanisms highlight the need for hardware-aware fault injection
techniques to accurately assess the resilience of ML systems.

Researchers have developed tools to address this issue by bridging

17.6. Tools and Frameworks 792

Figure 17.43.: Hardware er-
rors may manifest themselves
in different ways at the soft-
ware level, as classified by Bol-
chini et al. (Bolchini et al. 2023)

the gap between low-level hardware error models and higher-level soft-
ware error models. One such tool is Fidelity, designed to map patterns
between hardware-level faults and their software-level manifestations.

17.6.4.1 Fidelity: Bridging the Gap

Fidelity (Y. He, Balaprakash, and Li 2020) is a tool for accurately mod-
eling hardware faults in software-based fault injection experiments. It
achieves this by carefully studying the relationship between hardware-
level faults and their impact on the software representation of the ML
system.

The key insights behind Fidelity are:

• Fault Propagation: Fidelity models how faults propagate
through the hardware and manifest as errors in the software-
visible state of the system. By understanding these propagation
patterns, Fidelity can more accurately simulate the effects of
hardware faults in software-based experiments.

• Fault Equivalence: Fidelity identifies equivalent classes of
hardware faults that produce similar software-level errors. This
allows researchers to design software-based fault models that
are representative of the underlying hardware faults without
the need to model every possible hardware fault individually.

• Layered Approach: Fidelity employs a layered approach to fault
modeling, where the effects of hardware faults are propagated
through multiple levels of abstraction, from the hardware to the
software level. This approach ensures that the software-based

CHAPTER 17. ROBUST AI 793

fault models are grounded in the actual behavior of the hard-
ware.

By incorporating these insights, Fidelity enables software-based
fault injection tools to capture the effects of hardware faults on ML
systems accurately. This is particularly important for safety-critical
applications, where the system’s resilience to hardware faults is
paramount.

17.6.4.2 Importance of Capturing True Hardware Behavior

Capturing true hardware behavior in software-based fault injection
tools is crucial for several reasons:

• Accuracy: By accurately modeling the effects of hardware faults,
software-based tools can provide more reliable insights into the
resilience of ML systems. This is essential for designing and val-
idating fault-tolerant systems that can operate safely and effec-
tively in the presence of hardware faults.

• Reproducibility: When software-based tools accurately capture
hardware behavior, fault injection experiments become more re-
producible across different platforms and environments. This is
important for the scientific study of ML system resilience, as it al-
lows researchers to compare and validate results across different
studies and implementations.

• EfÏciency: Software-based tools that capture true hardware be-
havior can be more efÏcient in their fault injection experiments
by focusing on the most representative and impactful fault mod-
els. This allows researchers to cover a wider range of fault sce-
narios and system configurations with limited computational re-
sources.

• MitigationStrategies: Understanding how hardware faults man-
ifest at the software level is crucial for developing effective mit-
igation strategies. By accurately capturing hardware behavior,
software-based fault injection tools can help researchers identify
the most vulnerable components of the ML system and design
targeted hardening techniques to improve resilience.

Tools like Fidelity are vital in advancing the state-of-the-art in ML
system resilience research. These tools enable researchers to conduct
more accurate, reproducible, and efÏcient fault injection experiments
by bridging the gap between hardware and software error models. As

17.7. Conclusion 794

the complexity and criticality of ML systems continue to grow, the im-
portance of capturing true hardware behavior in software-based fault
injection tools will only become more apparent.

Ongoing research in this area seeks to refine the mapping between
hardware and software error models and develop new techniques for
efÏciently simulating hardware faults in software-based experiments.
As these tools mature, they will provide the ML community with in-
creasingly powerful and accessible means to study and improve the
resilience of ML systems to hardware faults.

17.7 Conclusion
Developing robust and resilient AI is paramount as machine learn-
ing systems become increasingly integrated into safety-critical applica-
tions and real-world environments. This chapter has explored the key
challenges to AI robustness arising from hardware faults, malicious
attacks, distribution shifts, and software bugs.

Some of the key takeaways include the following:

• Hardware Faults: Transient, permanent, and intermittent faults
in hardware components can corrupt computations and degrade
the performance of machine learning models if not properly de-
tected and mitigated. Techniques such as redundancy, error cor-
rection, and fault-tolerant designs play a crucial role in building
resilient ML systems that can withstand hardware faults.

• Model Robustness: Malicious actors can exploit vulnerabilities
in ML models through adversarial attacks and data poisoning,
aiming to induce targeted misclassifications, skew the model’s
learned behavior, or compromise the system’s integrity and reli-
ability. Also, distribution shifts can occur when the data distribu-
tion encountered during deployment differs from those seen dur-
ing training, leading to performance degradation. Implement-
ing defensive measures, including adversarial training, anomaly
detection, robust model architectures, and techniques such as
domain adaptation, transfer learning, and continual learning, is
essential to safeguard against these challenges and ensure the
model’s reliability and generalization in dynamic environments.

• Software Faults: Faults in ML frameworks, libraries, and soft-
ware stacks can propagate errors, degrade performance, and in-
troduce security vulnerabilities. Rigorous testing, runtime mon-
itoring, and adopting fault-tolerant design patterns are essential

CHAPTER 17. ROBUST AI 795

for building robust software infrastructure supporting reliable
ML systems.

As ML systems take on increasingly complex tasks with real-world
consequences, prioritizing resilience becomes critical. The tools
and frameworks discussed in this chapter, including fault injec-
tion techniques, error analysis methods, and robustness evaluation
frameworks, provide practitioners with the means to thoroughly
test and harden their ML systems against various failure modes and
adversarial conditions.

Moving forward, resilience must be a central focus throughout the
entire AI development lifecycle, from data collection and model train-
ing to deployment and monitoring. By proactively addressing the mul-
tifaceted challenges to robustness, we can develop trustworthy, reli-
able ML systems that can navigate the complexities and uncertainties
of real-world environments.

Future research in robust ML should continue to advance techniques
for detecting and mitigating faults, attacks, and distributional shifts.
Additionally, exploring novel paradigms for developing inherently re-
silient AI architectures, such as self-healing systems or fail-safe mech-
anisms, will be crucial in pushing the boundaries of AI robustness. By
prioritizing resilience and investing in developing robust AI systems,
we can unlock the full potential of machine learning technologies while
ensuring their safe, reliable, and responsible deployment in real-world
applications. As AI continues to shape our future, building resilient
systems that can withstand the challenges of the real world will be a
defining factor in the success and societal impact of this transformative
technology.

17.8 Resources
Here is a curated list of resources to support students and instructors
in their learning and teaching journeys. We are continuously working
on expanding this collection and will add new exercises soon.

Slides

These slides are a valuable tool for instructors to deliver lectures
and for students to review the material at their own pace. We en-
courage both students and instructors to leverage these slides to
improve their understanding and facilitate effective knowledge
transfer.

17.8. Resources 796

• Coming soon.

Videos

• Coming soon.

Exercises

To reinforce the concepts covered in this chapter, we have curated
a set of exercises that challenge students to apply their knowl-
edge and deepen their understanding.

• Exercise 31

• Exercise 32

• Exercise 33

• Exercise 34

Labs

In addition to exercises, we offer a series of hands-on labs allow-
ing students to gain practical experience with embedded AI tech-
nologies. These labs provide step-by-step guidance, enabling stu-
dents to develop their skills in a structured and supportive envi-
ronment. We are excited to announce that new labs will be avail-
able soon, further enriching the learning experience.

• Coming soon.

797

Chapter 18

Generative AI

Coming soon!
Imagine a chapter that writes itself and adapts to your curiosity, gen-

erating new insights as you read. We’re working on something extraor-
dinary!

This chapter will transform how you read and learn, dynamically
generating content as you go. While we fine-tune this exciting new
feature, we hope users get ready for an educational experience that’s
as dynamic and unique as you are. Mark your calendars for the big
reveal and bookmark this page.
The future of generative learning is here! — Vĳay Janapa Reddi

799

Part VIII
Social Impact

801

Chapter 19

AI for Good

Figure 19.1.: DALL·E 3 Prompt:
Illustration of planet Earth
wrapped in shimmering neural
networks, with diverse humans
and AI robots working together
on various projects like planting
trees, cleaning the oceans, and
developing sustainable energy
solutions. The positive and
hopeful atmosphere represents
a united effort to create a better
future.

By aligning AI progress with human values, goals, and ethics, the ul-
timate goal of ML systems (at any scale) is to be a technology that
reflects human principles and aspirations. Initiatives under “AI for
Good” promote the development of AI to tackle the UN Sustainable
Development Goals (SDGs) using embedded AI technologies, expand-
ing access to AI education, amongst other things. While it is now clear
that AI will be an instrumental part of progress towards the SDGs, its
adoption and impact are limited by the immense power consumption,
strong connectivity requirements, and high costs of cloud-based de-
ployments. TinyML can circumvent many of these issues by allowing
ML models to run on low-cost and low-power microcontrollers.

https://www.undp.org/sustainable-development-goals
https://www.undp.org/sustainable-development-goals

19.1. Introduction 802

The “AI for Good” movement is critical in cultivating a fu-
ture where an AI-empowered society is more just, sustain-
able, and prosperous for all humanity.

Learning Objectives

• Understand how TinyML can help advance the UN Sustain-
able Development Goals in health, agriculture, education,
and the environment.

• Recognize the versatility of TinyML for enabling localized,
low-cost solutions tailored to community needs.

• Consider the challenges of adopting TinyML globally, such
as limited training, data constraints, accessibility, and cul-
tural barriers.

• Appreciate the importance of collaborative, ethical ap-
proaches to develop and deploy TinyML to serve local con-
texts best.

• Recognize the potential of TinyML, if responsibly imple-
mented, to promote equity and empower underserved pop-
ulations worldwide.

19.1 Introduction
To give ourselves a framework around which to think about AI for so-
cial good, we will be following the UN Sustainable Development Goals
(SDGs). The UN SDGs are a collection of 17 global goals, shown in Fig-
ure 19.2, adopted by the United Nations in 2015 as part of the 2030
Agenda for Sustainable Development. The SDGs address global chal-
lenges related to poverty, inequality, climate change, environmental
degradation, prosperity, and peace and justice.

What is special about the SDGs is that they are a collection of inter-
linked objectives designed to serve as a “shared blueprint for peace
and prosperity for people and the planet, now and into the future.”
The SDGs emphasize sustainable development’s interconnected envi-
ronmental, social, and economic aspects by putting sustainability at
their center.

A recent study (Vinuesa et al. 2020) highlights the influence of AI
on all aspects of sustainable development, particularly on the 17 Sus-
tainable Development Goals (SDGs) and 169 targets internationally de-
fined in the 2030 Agenda for Sustainable Development. The study

CHAPTER 19. AI FOR GOOD 803

shows that AI can act as an enabler for 134 targets through technolog-
ical improvements, but it also highlights the challenges of AI on some
targets. The study shows that AI can benefit 67 targets when consid-
ering AI and societal outcomes. Still, it also warns about the issues re-
lated to the implementation of AI in countries with different cultural
values and wealth.

Figure 19.2.: United Nations
Sustainable Development
Goals (SDG). Source: United
Nations.

In our book’s context, TinyML could help advance at least some of
these SDG goals.

• Goal 1 - No Poverty: TinyML could help provide low-cost solu-
tions for crop monitoring to improve agricultural yields in devel-
oping countries.

• Goal 2 - Zero Hunger: TinyML could enable localized and pre-
cise crop health monitoring and disease detection to reduce crop
losses.

• Goal 3 -GoodHealth andWellbeing: TinyML could help enable
low-cost medical diagnosis tools for early detection and preven-
tion of diseases in remote areas.

• Goal 6 - Clean Water and Sanitation: TinyML could monitor
water quality and detect contaminants to ensure Access to clean
drinking water.

• Goal 7 - Affordable and Clean Energy: TinyML could optimize
energy consumption and enable predictive maintenance for re-
newable energy infrastructure.

https://sdgs.un.org/goals
https://sdgs.un.org/goals

19.2. Agriculture 804

• Goal 11 - Sustainable Cities and Communities: TinyML could
enable intelligent trafÏc management, air quality monitoring,
and optimized resource management in smart cities.

• Goal 13 - Climate Action: TinyML could monitor deforestation
and track reforestation efforts. It could also help predict extreme
weather events.

The portability, lower power requirements, and real-time analytics
enabled by TinyML make it well-suited for addressing several sustain-
ability challenges developing regions face. The widespread deploy-
ment of power solutions has the potential to provide localized and
cost-effective monitoring to help achieve some of the UN’s SDGs. In
the rest of the sections, we will dive into how TinyML is useful across
many sectors that can address the UN SDGs.

19.2 Agriculture
Agriculture is essential to achieving many of the UN Sustainable
Development Goals, including eradicating Hunger and malnutrition,
promoting economic growth, and using natural resources sustainably.
TinyML can be a valuable tool to help advance sustainable agriculture,
especially for smallholder farmers in developing regions.

TinyML solutions can provide real-time monitoring and data ana-
lytics for crop health and growing conditions - all without reliance
on connectivity infrastructure. For example, low-cost camera modules
connected to microcontrollers can monitor for disease, pests, and nu-
tritional deficiencies. TinyML algorithms can analyze the images to
detect issues early before they spread and damage yields. Precision
monitoring can optimize inputs like water, fertilizer, and pesticides -
improving efÏciency and sustainability.

Other sensors, such as GPS units and accelerometers, can track mi-
croclimate conditions, soil humidity, and livestock wellbeing. Local
real-time data helps farmers respond and adapt better to changes in
the field. TinyML analytics at the edge avoids lag, network disruptions,
and the high data costs of cloud-based systems. Localized systems al-
low customization of specific crops, diseases, and regional issues.

Widespread TinyML applications can help digitize smallholder
farms to increase productivity, incomes, and resilience. The low cost
of hardware and minimal connectivity requirements make solutions
accessible. Projects across the developing world have shown the
benefits:

• Microsoft’s FarmBeats project is an end-to-end approach to
enable data-driven farming by using low-cost sensors, drones,

https://www.microsoft.com/en-us/research/project/farmbeats-iot-agriculture/

CHAPTER 19. AI FOR GOOD 805

and vision and machine learning algorithms. The project seeks
to solve the problem of limited adoption of technology in farm-
ing due to the need for more power and internet connectivity
in farms and the farmers’ limited technology savviness. The
project strives to increase farm productivity and reduce costs by
coupling data with farmers’ knowledge and intuition about their
farms. The project has successfully enabled actionable insights
from data by building artificial intelligence (AI) or machine
learning (ML) models based on fused data sets.

• In Sub-Saharan Africa, off-the-shelf cameras and edge AI have
cut cassava disease losses from 40% to 5%, protecting a staple
crop (Ramcharan et al. 2017).

• In Indonesia, sensors monitor microclimates across rice paddies,
optimizing water usage even with erratic rains (Tirtalistyani,
Murtiningrum, and Kanwar 2022).

With greater investment and integration into rural advisory services,
TinyML could transform small-scale agriculture and improve farmers’
livelihoods worldwide. The technology effectively brings the benefits
of precision agriculture to disconnected regions most in need.

Exercise 35: Crop Yield Modeling

This exercise teaches you how to predict crop yields in Nepal by
combining satellite data (Sentinel-2), climate data (WorldClim),
and on-the-ground measurements. You’ll use a machine learn-
ing algorithm called XGBoost Regressor to build a model, split
the data for training and testing, and fine-tune the model param-
eters for the best performance. This notebook lays the foundation
for implementing TinyML in the agriculture domain. Consider
how you could adapt this process for smaller datasets, fewer
features, and simplified models to make it compatible with the
power and memory constraints of TinyML devices.

19.3 Healthcare

19.3.1 Expanding Access

Universal health coverage and quality care remain out of reach for mil-
lions worldwide. In many regions, more medical professionals are re-

https://colab.research.google.com/github/developmentseed/sat-ml-training/blob/main/_notebooks/2020-07-29-Crop_yield_modeling_with_XGBoost.ipynb#scrollTo=GQd7ELsRWkBI

19.3. Healthcare 806

quired to Access basic diagnosis and treatment. Additionally, health-
care infrastructure like clinics, hospitals, and utilities to power com-
plex equipment needs to be improved. These gaps disproportionately
impact marginalized communities, exacerbating health disparities.

TinyML offers a promising technological solution to help expand Ac-
cess to quality healthcare globally. TinyML refers to the ability to de-
ploy machine learning algorithms on microcontrollers, tiny chips with
processing power, memory, and connectivity. TinyML enables real-
time data analysis and intelligence in low-powered, compact devices.

This creates opportunities for transformative medical tools that are
portable, affordable, and accessible. TinyML software and hardware
can be optimized to run even in resource-constrained environments.
For example, a TinyML system could analyze symptoms or make di-
agnostic predictions using minimal computing power, no continuous
internet connectivity, and a battery or solar power source. These capa-
bilities can bring medical-grade screening and monitoring directly to
underserved patients.

19.3.2 Early Diagnosis

Early detection of diseases is one major application. Small sensors
paired with TinyML software can identify symptoms before conditions
escalate or visible signs appear. For instance, cough monitors with em-
bedded machine learning can pick up on acoustic patterns indicative
of respiratory illness, malaria, or tuberculosis. Detecting diseases at
onset improves outcomes and reduces healthcare costs.

A detailed example could be given for TinyML monitoring pneumo-
nia in children. Pneumonia is a leading cause of death for children
under 5, and detecting it early is critical. A startup called Respira xCo-
labs has developed a low-cost wearable audio sensor that uses TinyML
algorithms to analyze coughs and identify symptoms of respiratory ill-
nesses like pneumonia. The device contains a microphone sensor and
microcontroller that runs a neural network model trained to classify
respiratory sounds. It can identify features like wheezing, crackling,
and stridor that may indicate pneumonia. The device is designed to be
highly accessible - it has a simple strap, requires no battery or charging,
and results are provided through LED lights and audio cues.

Another example involves researchers at UNIFEI in Brazil who have
developed a low-cost device that leverages TinyML to monitor heart
rhythms. Their innovative solution addresses a critical need - atrial fib-
rillation and other heart rhythm abnormalities often go undiagnosed
due to the prohibitive cost and limited availability of screening tools.
The device overcomes these barriers through its ingenious design. It

https://stradoslabs.com/cough-monitoring-and-respiratory-trial-data-collection-landing
https://www.samayhealth.com/
https://www.samayhealth.com/

CHAPTER 19. AI FOR GOOD 807

uses an off-the-shelf microcontroller that costs only a few dollars, along
with a basic pulse sensor. By minimizing complexity, the device be-
comes accessible to under-resourced populations. The TinyML algo-
rithm running locally on the microcontroller analyzes pulse data in
real-time to detect irregular heart rhythms. This life-saving heart mon-
itoring device demonstrates how TinyML enables powerful AI capabil-
ities to be deployed in cost-effective, user-friendly designs.

TinyML’s versatility also shows promise for tackling infectious
diseases. Researchers have proposed applying TinyML to identify
malaria-spreading mosquitoes by their wingbeat sounds. When
equipped with microphones, small microcontrollers can run ad-
vanced audio classification models to determine mosquito species.
This compact, low-power solution produces results in real time, suit-
able for remote field use. By making entomology analytics affordable
and accessible, TinyML could revolutionize monitoring insects that
endanger human health. TinyML is expanding healthcare access for
vulnerable communities from heart disease to malaria.

19.3.3 Infectious Disease Control

Mosquitoes remain the most deadly disease vector worldwide, trans-
mitting illnesses that infect over one billion people annually (“Vector-
Borne Diseases,” n.d.). Diseases like malaria, dengue, and Zika are
especially prevalent in resource-limited regions lacking robust infras-
tructure for mosquito control. Monitoring local mosquito populations
is essential to prevent outbreaks and properly target interventions.

Traditional monitoring methods are expensive, labor-intensive,
and difÏcult to deploy remotely. The proposed TinyML solution
overcomes these barriers. Small microphones coupled with machine
learning algorithms can classify mosquitoes by species based on
minute differences in wing oscillations. The TinyML software runs
efÏciently on low-cost microcontrollers, eliminating the need for
continuous connectivity.

A collaborative research team from the University of Khartoum and
the ICTP is exploring an innovative solution using TinyML. In a re-
cent paper, they presented a low-cost device that can identify disease-
spreading mosquito species through their wing beat sounds (Altayeb,
Zennaro, and Rovai 2022).

This portable, self-contained system shows great promise for ento-
mology. The researchers suggest it could revolutionize insect monitor-
ing and vector control strategies in remote areas. TinyML could signif-
icantly bolster malaria eradication efforts by providing cheaper, easier
mosquito analytics. Its versatility and minimal power needs make it

19.3. Healthcare 808

ideal for field use in isolated, off-grid regions with scarce resources
but high disease burden.

19.3.4 TinyML Design Contest in Healthcare

The first TinyML contest in healthcare, TDC’22 (Zhenge Jia et al. 2023),
was held in 2022 to motivate participating teams to design AI/ML algo-
rithms for detecting life-threatening ventricular arrhythmias (VAs) and
deploy them on Implantable Cardioverter Defibrillators (ICDs). VAs
are the main cause of sudden cardiac death (SCD). People at high risk
of SCD rely on the ICD to deliver proper and timely defibrillation treat-
ment (i.e., shocking the heart back into normal rhythm) when experi-
encing life-threatening VAs.

An on-device algorithm for early and timely life-threatening VA de-
tection will increase the chances of survival. The proposed AI/ML
algorithm needed to be deployed and executed on an extremely low-
power and resource-constrained microcontroller (MCU) (a $10 devel-
opment board with an ARM Cortex-M4 core at 80 MHz, 256 kB of flash
memory and 64 kB of SRAM). The submitted designs were evaluated
by metrics measured on the MCU for (1) detection performance, (2) in-
ference latency, and (3) memory occupation by the program of AI/ML
algorithms.

The champion, GaTech EIC Lab, obtained 0.972 in 𝐹𝛽 (F1 score with
a higher weight to recall), 1.747 ms in latency, and 26.39 kB in memory
footprint with a deep neural network. An ICD with an on-device VA
detection algorithm was implanted in a clinical trial.

Exercise 36: Clinical Data: Unlocking Insights with Named
Entity Recognition

In this exercise, you’ll learn about Named Entity Recognition
(NER), a powerful tool for extracting valuable information from
clinical text. Using Spark NLP, a specialized library for health-
care NLP, we’ll explore how NER models like BiLSTM-CNN-
Char and BERT can automatically identify important medical
entities such as diagnoses, medications, test results, and more.
You’ll get hands-on experience applying these techniques with
a special focus on oncology-related data extraction, helping you
unlock insights about cancer types and treatment details from
patient records.

https://youtu.be/vx2gWzAr85A?t=2359
https://colab.research.google.com/github/JohnSnowxColabs/spark-nlp-workshop/blob/master/tutorials/Certification_Trainings/Healthcare/1.Clinical_Named_Entity_Recognition_Model.ipynb#scrollTo=I08sFJYCxR0Z

CHAPTER 19. AI FOR GOOD 809

19.4 Science

In many scientific fields, researchers are limited by the quality and res-
olution of data they can collect. They often must indirectly infer the
true parameters of interest using approximate correlations and models
built on sparse data points. This constrains the accuracy of scientific
understanding and predictions.

The emergence of TinyML opens new possibilities for gathering
high-fidelity scientific measurements. With embedded machine
learning, tiny, low-cost sensors can automatically process and analyze
data locally in real-time. This creates intelligent sensor networks that
capture nuanced data at much greater scales and frequencies.

For example, monitoring environmental conditions to model climate
change remains challenging due to the need for widespread, continu-
ous data. The Ribbit Project from UC Berkeley is pioneering a crowd-
sourced TinyML solution (Rao 2021). They developed an open-source
CO2 sensor that uses an onboard microcontroller to process the gas
measurements. An extensive dataset can be aggregated by distributing
hundreds of these low-cost sensors. The TinyML devices compensate
for environmental factors and provide previously impossible, granu-
lar, accurate readings.

The potential to massively scale out intelligent sensing via TinyML
has profound scientific implications. Higher-resolution data can lead
to discoveries and predictive capabilities in fields ranging from ecol-
ogy to cosmology. Other applications could include seismic sensors
for earthquake early warning systems, distributed weather monitors
to track microclimate changes, and acoustic sensors to study animal
populations.

As sensors and algorithms continue improving, TinyML networks
may generate more detailed maps of natural systems than ever
before. Democratizing the collection of scientific data can accelerate
research and understanding across disciplines. However, it raises new
challenges around data quality, privacy, and modeling unknowns.
TinyML signifies a growing convergence of AI and the natural sciences
to answer fundamental questions.

19.5 Conservation and Environment

TinyML is emerging as a powerful tool for environmental conservation
and sustainability efforts. Recent research has highlighted numerous
applications of tiny machine learning in domains such as wildlife mon-
itoring, natural resource management, and tracking climate change.

19.6. Disaster Response 810

One example is using TinyML for real-time wildlife tracking and
protection. Researchers have developed Smart Wildlife Tracker
devices that leverage TinyML algorithms to detect poaching activities.
The collars contain sensors like cameras, microphones, and GPS to
monitor the surrounding environment continuously. Embedded
machine learning models analyze the audio and visual data to identify
threats like nearby humans or gunshots. Early poaching detection
gives wildlife rangers critical information to intervene and take action.

Other projects apply TinyML to study animal behavior through sen-
sors. The smart wildlife collar uses accelerometers and acoustic mon-
itoring to track elephant movements, communication, and moods (T.
D. S. Verma 2022). The low-power TinyML collar devices transmit
rich data on elephant activities while avoiding burdensome Battery
changes. This helps researchers unobtrusively observe elephant popu-
lations to inform conservation strategies.

On a broader scale, distributed TinyML devices are envisioned to
create dense sensor networks for environmental modeling. Hundreds
of low-cost air quality monitors could map pollution across cities. Un-
derwater sensors may detect toxins and give early warning of algal
blooms. Such applications underscore TinyML’s versatility in ecology,
climatology, and sustainability.

Researchers from Moulay Ismail University of Meknes in Morocco
(Bamoumen et al. 2022) have published a survey on how TinyML can
be used to solve environmental issues. However, thoughtfully assess-
ing benefits, risks, and equitable Access will be vital as TinyML ex-
pands environmental research and conservation. With ethical consid-
eration of impacts, TinyML offers data-driven solutions to protect bio-
diversity, natural resources, and our planet.

19.6 Disaster Response
In disaster response, speed and safety are paramount. But rubble and
wreckage create hazardous, confined environments that impede hu-
man search efforts. TinyML enables nimble drones to assist rescue
teams in these dangerous scenarios.

When buildings collapse after earthquakes, small drones can
prove invaluable. Equipped with TinyML navigation algorithms,
micro-sized drones like the CrazyFlie can traverse cramped voids
and map pathways beyond human reach (Bardienus P. Duisterhof
et al. 2019). Obstacle avoidance allows the drones to weave through
unstable debris. This autonomous mobility lets them rapidly sweep
areas humans cannot access. Video 27 presents the (Bardienus P.
Duisterhof et al. 2019) paper on deep reinforcement learning using

https://www.hackster.io/dhruvsheth_/eletect-tinyml-and-iot-based-smart-wildlife-tracker-c03e5a
https://www.bitcraze.io/

CHAPTER 19. AI FOR GOOD 811

drones for source-seeking.

Video 27: Learning to Seek

https://www.youtube.com/watch?v=wmVKbX7MOnU

Crucially, onboard sensors and TinyML processors analyze real-time
data to identify signs of survivors. Thermal cameras detect body heat,
microphones pick up calls for help, and gas sensors warn of leaks (Bar-
dienus P. Duisterhof et al. 2021). Processing data locally using TinyML
allows for quick interpretation to guide rescue efforts. As conditions
evolve, the drones can adapt by adjusting their search patterns and
priorities. Video 28 is an overview of autonomous drones for gas leak
detection.

Video 28: Important

https://www.youtube.com/watch?v=hj_SBSpK5qg

Additionally, coordinated swarms of drones unlock new capabilities.
By collaborating and sharing insights, drone teams comprehensively
view the situation. Blanketing disaster sites allows TinyML algorithms
to fuse and analyze data from multiple vantage points, amplifying situ-
ational awareness beyond individual drones (Bardienus P. Duisterhof
et al. 2021).

Most importantly, initial drone reconnaissance enhances safety for
human responders. Keeping rescue teams at a safe distance until drone
surveys assess hazards saves lives. Once secured, drones can guide
precise personnel placement.

By combining agile mobility, real-time data, and swarm coordina-
tion, TinyML-enabled drones promise to transform disaster response.
Their versatility, speed, and safety make them a vital asset for res-
cue efforts in dangerous, inaccessible environments. Integrating au-
tonomous drones with traditional methods can accelerate responses
when it matters most.

19.7 Education and Outreach
TinyML holds immense potential to help address challenges in devel-
oping regions, but realizing its benefits requires focused education and
capacity building. Recognizing this need, academic researchers have
spearheaded outreach initiatives to spread TinyML education globally.

https://www.youtube.com/watch?v=wmVKbX7MOnU
https://www.youtube.com/watch?v=hj_SBSpK5qg

19.8. Accessibility 812

In 2020, Harvard University, Columbia University, the International
Centre for Theoretical Physics (ICTP), and UNIFEI jointly founded the
TinyML for Developing Communities (TinyML4D) network (Zennaro,
Plancher, and Reddi 2022). This network empowers universities and
researchers in developing countries to harness TinyML for local im-
pact.

A core focus is expanding Access to applied machine learning educa-
tion. The TinyML4D network provides training, curricula, and lab re-
sources to members. Hands-on workshops and data collection projects
give students practical experience. Members can share best practices
and build a community through conferences and academic collabora-
tions.

The network prioritizes enabling locally relevant TinyML solutions.
Projects address challenges like agriculture, health, and environmen-
tal monitoring based on community needs. For example, a member
university in Rwanda developed a low-cost flood monitoring system
using TinyML and sensors.

TinyML4D includes over 50 member institutions across Africa, Asia,
and Latin America. However, greater investments and industry part-
nerships are needed to reach all underserved regions. The ultimate
vision is training new generations to ethically apply TinyML for sus-
tainable development. Outreach efforts today lay the foundation for
democratizing transformative technology for the future.

19.8 Accessibility
Technology has immense potential to break down barriers faced by
people with disabilities and bridge gaps in accessibility. TinyML
specifically opens new possibilities for developing intelligent, person-
alized assistive devices.

With machine learning algorithms running locally on microcon-
trollers, compact accessibility tools can operate in real time without
reliance on connectivity. The National Institute on Deafness and Other
Communication Disorders (NIDCD) states that 20% of the world’s
population has some form of hearing loss. Hearing aids leveraging
TinyML could recognize multiple speakers and amplify the voice of
a chosen target in crowded rooms. This allows people with hearing
impairments to focus on specific conversations.

Similarly, mobility devices could use on-device vision processing to
identify obstacles and terrain characteristics. This enables enhanced
navigation and safety for the visually impaired. Companies like Envi-
sion are developing smart glasses, converting visual information into
speech, with embedded TinyML to guide blind people by detecting

https://www.nidcd.nih.gov/health/statistics/quick-statistics-hearing
https://www.nidcd.nih.gov/health/statistics/quick-statistics-hearing
https://www.letsenvision.com/
https://www.letsenvision.com/

CHAPTER 19. AI FOR GOOD 813

objects, text, and trafÏc signals. Video 29 below shows the different
real-life use cases of the Envision visual aid glasses.

Video 29: Important

https://www.youtube.com/watch?v=oGWinIKDOdc

TinyML could even power responsive prosthetic limbs. By analyz-
ing nerve signals and sensory data like muscle tension, prosthetics
and exoskeletons with embedded ML can move and adjust grip dy-
namically, making control more natural and intuitive. Companies are
creating affordable, everyday bionic hands using TinyML. For those
with speech difÏculties, voice-enabled devices with TinyML can gen-
erate personalized vocal outputs from non-verbal inputs. Pairs by An-
thropic translates gestures into natural speech tailored for individual
users.

By enabling more customizable assistive tech, TinyML makes ser-
vices more accessible and tailored to individual needs. And through
translation and interpretation applications, TinyML can break down
communication barriers. Apps like Microsoft Translator offer real-time
translation powered by TinyML algorithms.

With its thoughtful and inclusive design, TinyML promises more
autonomy and dignity for people with disabilities. However, develop-
ers should engage communities directly, avoid compromising privacy,
and consider affordability to maximize the benefits. TinyML has huge
potential to contribute to a more just, equitable world.

19.9 Infrastructure and Urban Planning
As urban populations swell, cities face immense challenges in ef-
ficiently managing resources and infrastructure. TinyML presents
a powerful tool for developing intelligent systems to optimize city
operations and sustainability. It could revolutionize energy efÏciency
in smart buildings.

Machine learning models can learn to predict and regulate energy
usage based on occupancy patterns. Miniaturized sensors placed
throughout buildings can provide granular, real-time data on space
utilization, temperature, and more (Seyedzadeh et al. 2018). This
visibility allows TinyML systems to minimize waste by optimizing
heating, cooling, lighting, etc.

These examples demonstrate TinyML’s huge potential for efÏcient,
sustainable city infrastructure. However, urban planners must con-
sider privacy, security, and accessibility to ensure responsible adop-

https://www.youtube.com/watch?v=oGWinIKDOdc

19.10. Challenges and Considerations 814

tion. With careful implementation, TinyML could profoundly mod-
ernize urban life.

19.10 Challenges and Considerations
While TinyML presents immense opportunities, thoughtful considera-
tion of challenges and ethical implications will be critical as adoption
spreads globally. Researchers have highlighted key factors to address,
especially when deploying TinyML in developing regions.

A foremost challenge is limited Access to training and hardware
(Ooko et al. 2021). Only educational programs exist tailored to
TinyML, and emerging economies often need a robust electronics
supply chain. Thorough training and partnerships will be needed
to nurture expertise and make devices available to underserved
communities. Initiatives like the TinyML4D network help provide
structured learning pathways.

Data limitations also pose hurdles. TinyML models require quality
localized datasets, which are scarce in under-resourced environments.
Creating frameworks to crowdsource data ethically could address this.
However, data collection should benefit local communities directly, not
just extract value.

Optimizing power usage and connectivity will be vital for sustain-
ability. TinyML’s low power needs make it ideal for off-grid use cases.
Integrating battery or solar can enable continuous operation. Adapting
devices for low-bandwidth transmission where the internet is limited
also maximizes impact.

Cultural and language barriers further complicate adoption. User
interfaces and devices should account for all literacy levels and avoid
excluding subgroups. Voice-controllable solutions in local dialects can
improve accessibility.

Addressing these challenges requires holistic partnerships, fund-
ing, and policy support. However, inclusively and ethically scaling
TinyML has monumental potential to uplift disadvantaged popula-
tions worldwide. With thoughtful implementation, the technology
could profoundly democratize opportunity.

19.11 Conclusion
TinyML presents a tremendous opportunity to harness the power of ar-
tificial intelligence to advance the UN Sustainable Development Goals
and drive social impact globally, as highlighted by examples across
sectors like healthcare, agriculture, conservation, and more; embed-

CHAPTER 19. AI FOR GOOD 815

ded machine learning unlocks new capabilities for low-cost, accessible
solutions tailored to local contexts. TinyML circumvents barriers like
poor infrastructure, limited connectivity, and high costs that often ex-
clude developing communities from emerging technology.

However, realizing TinyML’s full potential requires holistic collabo-
ration. Researchers, policymakers, companies, and local stakeholders
must collaborate to provide training, establish ethical frameworks, co-
design solutions, and adapt them to community needs. Through inclu-
sive development and deployment, TinyML can deliver on its promise
to bridge inequities and uplift vulnerable populations without leaving
any behind.

If cultivated responsibly, TinyML could democratize opportunity
and accelerate progress on global priorities from poverty alleviation to
climate resilience. The technology represents a new wave of applied
AI to empower societies, promote sustainability, and propel human-
ity toward greater justice, prosperity, and peace. TinyML provides a
glimpse into an AI-enabled future that is accessible to all.

19.12 Resources

Here is a curated list of resources to support students and instructors
in their learning and teaching journeys. We are continuously working
on expanding this collection and will be adding new exercises soon.

Slides

These slides are a valuable tool for instructors to deliver lectures
and for students to review the material at their own pace. We
encourage students and instructors to leverage these slides to
improve their understanding and facilitate effective knowledge
transfer.

• TinyML for Social Impact.

Videos

• Video 27

• Video 28

• Video 29

https://docs.google.com/presentation/d/1gkA6pAPUjPWND9ODgnfhCVzbwVYXdrkTpXsJdZ7hJHY/edit#slide=id.ge94401e7d6_0_81

19.12. Resources 816

Exercises

• Exercise 35

• Exercise 36

Labs

In addition to exercises, we offer a series of hands-on labs allow-
ing students to gain practical experience with embedded AI tech-
nologies. These labs provide step-by-step guidance, enabling stu-
dents to develop their skills in a structured and supportive envi-
ronment. We are excited to announce that new labs will be avail-
able soon, further enriching the learning experience.

• Coming soon.

817

Part IX
Closing

819

Chapter 20

Conclusion

Figure 20.1.: DALL·E 3 Prompt:
An image depicting the last chap-
ter of an ML systems book, open
to a two-page spread. The pages
summarize key concepts such as
neural networks, model architec-
tures, hardware acceleration, and
MLOps. One page features a dia-
gram of a neural network and dif-
ferent model architectures, while
the other page shows illustrations
of hardware components for ac-
celeration and MLOps workflows.
The background includes subtle el-
ements like circuit patterns and
data points to reinforce the techno-
logical theme. The colors are pro-
fessional and clean, with an em-
phasis on clarity and understand-
ing..20.1 Introduction

This book examines the rapidly evolving field of ML systems (Chap-
ter 2). We focus on systems because while there are many resources on
ML models and algorithms, more needs to be understood about how
to build the systems that run them.

To draw an analogy, consider the process of building a car. While
many resources are available on the various components of a car, such
as the engine, transmission, and suspension, there is often a need for
more understanding about how to assemble these components into a
functional vehicle. Just as a car requires a well-designed and properly

20.2. Knowing the Importance of ML Datasets 820

integrated system to operate efÏciently and reliably, ML models also
require a robust and carefully constructed system to deliver their full
potential. Moreover, there is a lot of nuance in building ML systems,
given their specific use case. For example, a Formula 1 race car must
be assembled differently from an everyday Prius consumer car.

Our journey started by tracing ML’s historical trajectory, from its the-
oretical foundations to its current state as a transformative force across
industries (Chapter 3). This journey has highlighted the remarkable
progress in the field, challenges, and opportunities.

Throughout this book, we have looked into the intricacies of ML sys-
tems, examining the critical components and best practices necessary
to create a seamless and efÏcient pipeline. From data preprocessing
and model training to deployment and monitoring, we have provided
insights and guidance to help readers navigate the complex landscape
of ML system development.

ML systems involve complex workflows, spanning various topics
from data engineering to model deployment on diverse systems (Chap-
ter 4). By providing an overview of these ML system components,
we have aimed to showcase the tremendous depth and breadth of the
field and expertise that is needed. Understanding the intricacies of
ML workflows is crucial for practitioners and researchers alike, as it
enables them to navigate the landscape effectively and develop robust,
efÏcient, and impactful ML solutions.

By focusing on the systems aspect of ML, we aim to bridge the gap
between theoretical knowledge and practical implementation. Just as a
healthy human body system allows the organs to function optimally, a
well-designed ML system enables the models to consistently deliver ac-
curate and reliable results. This book’s goal is to empower readers with
the knowledge and tools necessary to build ML systems that showcase
the underlying models’ power and ensure smooth integration and op-
eration, much like a well-functioning human body.

20.2 Knowing the Importance of ML Datasets
One of the key things we have emphasized is that data is the foundation
upon which ML systems are built (Chapter 5). Data is the new code
that programs deep neural networks, making data engineering the first
and most critical stage of any ML pipeline. That is why we began our
exploration by diving into the basics of data engineering, recognizing
that quality, diversity, and ethical sourcing are key to building robust
and reliable machine learning models.

The importance of high-quality data must be balanced. Lapses in
data quality can lead to significant negative consequences, such as

CHAPTER 20. CONCLUSION 821

flawed predictions, project terminations, and even potential harm to
communities. These cascading effects, often called “Data Cascades,”
highlight the need for diligent data management and governance
practices. ML practitioners must prioritize data quality, ensure
diversity and representativeness, and adhere to ethical data collection
and usage standards. By doing so, we can mitigate the risks associated
with poor data quality and build ML systems that are trustworthy,
reliable, and beneficial to society.

20.3 Navigating the AI Framework Landscape
There are many different ML frameworks. Therefore, we dove into the
evolution of different ML frameworks, dissecting the inner workings of
popular ones like TensorFlow and PyTorch, and provided insights into
the core components and advanced features that define them (Chap-
ter 6). We also looked into the specialization of frameworks tailored
to specific needs, such as those designed for embedded AI. We dis-
cussed the criteria for selecting the most suitable framework for a given
project.

Our exploration also touched upon the future trends expected to
shape the landscape of ML frameworks in the coming years. As the
field continues to evolve, we can anticipate the emergence of more spe-
cialized and optimized frameworks that cater to the unique require-
ments of different domains and deployment scenarios, as we saw with
TensorFlow Lite for Microcontrollers. By staying abreast of these de-
velopments and understanding the tradeoffs involved in framework
selection, we can make informed decisions and leverage the most ap-
propriate tools to build efÏcient ML systems.

Moreover, we expect to see a growing emphasis on framework in-
teroperability and standardization efforts, such as the ONNX (Open
Neural Network Exchange) format. This format allows models to be
trained in one framework and deployed in another, facilitating greater
collaboration and portability across different platforms and environ-
ments.

20.4 Understanding ML Training Fundamen-
tals

As ML practitioners who build ML systems, it is crucial to deeply un-
derstand the AI training process and the system challenges in scaling
and optimizing it. By leveraging the capabilities of modern AI frame-
works and staying up-to-date with the latest advancements in training

20.5. Pursuing EfÏciency in AI Systems 822

techniques, we can build robust, efÏcient, and scalable ML systems
that can tackle real-world problems and drive innovation across vari-
ous domains.

We began by examining the fundamentals of AI training (Chapter 7),
which involves feeding data into ML models and adjusting their pa-
rameters to minimize the difference between predicted and actual out-
puts. This process is computationally intensive and requires careful
consideration of various factors, such as the choice of optimization al-
gorithms, learning rate, batch size, and regularization techniques. Un-
derstanding these concepts is crucial for developing effective and efÏ-
cient training pipelines.

However, training ML models at scale poses significant system
challenges. As datasets’ size and models’ complexity grow, the com-
putational resources required for training can become prohibitively
expensive. This has led to the development of distributed training
techniques, such as data and model parallelism, which allow multiple
devices to collaborate in the training process. Frameworks like Tensor-
Flow and PyTorch have evolved to support these distributed training
paradigms, enabling practitioners to scale their training workloads
across clusters of GPUs or TPUs.

In addition to distributed training, we discussed techniques for op-
timizing the training process, such as mixed-precision training and
gradient compression. It’s important to note that while these tech-
niques may seem algorithmic, they significantly impact system perfor-
mance. The choice of training algorithms, precision, and communi-
cation strategies directly affects the ML system’s resource utilization,
scalability, and efÏciency. Therefore, adopting an algorithm-hardware
or algorithm-system co-design approach is crucial, where the algorith-
mic choices are made in tandem with the system considerations. By un-
derstanding the interplay between algorithms and hardware, we can
make informed decisions that optimize the model performance and
the system efÏciency, ultimately leading to more effective and scalable
ML solutions.

20.5 Pursuing EfÏciency in AI Systems
Deploying trained ML models is more complex than simply running
the networks; efÏciency is critical (Chapter 8). In this chapter on AI
efÏciency, we emphasized that efÏciency is not merely a luxury but a
necessity in artificial intelligence systems. We dug into the key con-
cepts underpinning AI systems’ efÏciency, recognizing that the com-
putational demands on neural networks can be daunting, even for min-
imal systems. For AI to be seamlessly integrated into everyday devices

CHAPTER 20. CONCLUSION 823

and essential systems, it must perform optimally within the constraints
of limited resources while maintaining its efÏcacy.

Throughout the book, we have highlighted the importance of pur-
suing efÏciency to ensure that AI models are streamlined, rapid, and
sustainable. By optimizing models for efÏciency, we can widen their
applicability across various platforms and scenarios, enabling AI to
be deployed in resource-constrained environments such as embedded
systems and edge devices. This pursuit of efÏciency is crucial for the
widespread adoption and practical implementation of AI technologies
in real-world applications.

20.6 Optimizing ML Model Architectures

We then explored various model architectures, from the foundational
perceptron to the sophisticated transformer networks, each tailored to
specific tasks and data types. This exploration has showcased machine
learning models’ remarkable diversity and adaptability, enabling them
to tackle various problems across domains.

However, when deploying these models on systems, especially
resource-constrained embedded systems, model optimization be-
comes a necessity. The evolution of model architectures, from the
early MobileNets designed for mobile devices to the more recent
TinyML models optimized for microcontrollers, is a testament to the
continued innovation.

In the chapter on model optimization (Chapter 9), we looked into
the art and science of optimizing machine learning models to ensure
they are lightweight, efÏcient, and effective when deployed in TinyML
scenarios. We explored techniques such as model compression, quan-
tization, and architecture search, which allow us to reduce the compu-
tational footprint of models while maintaining their performance. By
applying these optimization techniques, we can create models tailored
to the specific constraints of embedded systems, enabling the deploy-
ment of powerful AI capabilities on edge devices. This opens many
possibilities for intelligent, real-time processing and decision-making
in IoT, robotics, and mobile computing applications. As we continue
pushing the boundaries of AI efÏciency, we expect to see even more in-
novative solutions for deploying machine learning models in resource-
constrained environments.

20.7. Advancing AI Processing Hardware 824

20.7 Advancing AI Processing Hardware

Over the years, we have witnessed remarkable strides in ML hardware,
driven by the insatiable demand for computational power and the need
to address the challenges of resource constraints in real-world deploy-
ments (Chapter 10). These advancements have been crucial in enabling
the deployment of powerful AI capabilities on devices with limited re-
sources, opening up new possibilities across various industries.

Specialized hardware acceleration is essential to overcome these
constraints and enable high-performance machine learning. Hard-
ware accelerators, such as GPUs, FPGAs, and ASICs, optimize
compute-intensive operations, particularly inference, by leveraging
custom silicon designed for efÏcient matrix multiplications. These ac-
celerators provide substantial speedups compared to general-purpose
CPUs, enabling real-time execution of advanced ML models on
devices with strict size, weight, and power limitations.

We have also explored the various techniques and approaches for
hardware acceleration in embedded machine-learning systems. We
discussed the tradeoffs in selecting the appropriate hardware for spe-
cific use cases and the importance of software optimizations to harness
these accelerators’ capabilities fully. By understanding these concepts,
ML practitioners can make informed decisions when designing and
deploying ML systems.

Given the plethora of ML hardware solutions available, bench-
marking has become essential to developing and deploying machine
learning systems (Chapter 11). Benchmarking allows developers
to measure and compare the performance of different hardware
platforms, model architectures, training procedures, and deployment
strategies. By utilizing well-established benchmarks like MLPerf,
practitioners gain valuable insights into the most effective approaches
for a given problem, considering the unique constraints of the target
deployment environment.

Advancements in ML hardware, combined with insights gained
from benchmarking and optimization techniques, have paved the
way for successfully deploying machine learning capabilities on
various devices, from powerful edge servers to resource-constrained
microcontrollers. As the field continues to evolve, we expect to
see even more innovative hardware solutions and benchmarking
approaches that will further push the boundaries of what is possible
with embedded machine learning systems.

CHAPTER 20. CONCLUSION 825

20.8 Embracing On-Device Learning
In addition to the advancements in ML hardware, we also explored on-
device learning, where models can adapt and learn directly on the de-
vice (Chapter 12). This approach has significant implications for data
privacy and security, as sensitive information can be processed locally
without the need for transmission to external servers.

On-device learning enhances privacy by keeping data within the
confines of the device, reducing the risk of unauthorized access or data
breaches. It also reduces reliance on cloud connectivity, enabling ML
models to function effectively even in scenarios with limited or inter-
mittent internet access. We have discussed techniques such as transfer
learning and federated learning, which have expanded the capabili-
ties of on-device learning. Transfer learning allows models to leverage
knowledge gained from one task or domain to improve performance
on another, enabling more efÏcient and effective learning on resource-
constrained devices. On the other hand, Federated learning enables
collaborative model updates across distributed devices without cen-
tralized data aggregation. This approach allows multiple devices to
contribute to learning while keeping their data locally, enhancing pri-
vacy and security.

These advancements in on-device learning have paved the way for
more secure, privacy-preserving, and decentralized machine learning
applications. As we prioritize data privacy and security in developing
ML systems, we expect to see more innovative solutions that enable
powerful AI capabilities while protecting sensitive information and en-
suring user privacy.

20.9 Streamlining ML Operations
Even if we got the above pieces right, challenges and considerations
must be addressed to ensure ML models’ successful integration and
operation in production environments. In the ML Ops chapter (Chap-
ter 13), we studied the practices and architectures necessary to develop,
deploy, and manage ML models throughout their entire lifecycle. We
looked at the phases of ML, from data collection and model training to
evaluation, deployment, and ongoing monitoring.

We learned about the importance of automation, collaboration, and
continuous improvement in ML Ops. By automating key processes,
teams can streamline their workflows, reduce manual errors, and ac-
celerate the deployment of ML models. Collaboration among diverse
teams, including data scientists, engineers, and domain experts, en-
sures ML systems’ successful development and deployment.

20.10. Ensuring Security and Privacy 826

The ultimate goal of this chapter was to provide readers with a com-
prehensive understanding of ML model management, equipping them
with the knowledge and tools necessary to build and run ML applica-
tions that deliver sustained value successfully. By adopting best prac-
tices in ML Ops, organizations can ensure their ML initiatives’ long-
term success and impact, driving innovation and delivering meaning-
ful results.

20.10 Ensuring Security and Privacy
No ML system is ever complete without thinking about security and
privacy. They are of major importance when developing real-world
ML systems. As machine learning finds increasing application in sensi-
tive domains such as healthcare, finance, and personal data, safeguard-
ing confidentiality and preventing the misuse of data and models be-
comes a critical imperative, and these were the concepts we discussed
previously (Chapter 14).

To build robust and responsible ML systems, practitioners must
thoroughly understand the potential security and privacy risks. These
risks include data leaks, which can expose sensitive information;
model theft, where malicious actors steal trained models; adversarial
attacks that can manipulate model behavior; bias in models that can
lead to unfair or discriminatory outcomes; and unintended access to
private information.

Mitigating these risks requires a deep understanding of best prac-
tices in security and privacy. Therefore, we have emphasized that se-
curity and privacy cannot be an afterthought—they must be proac-
tively addressed at every stage of the ML system development lifecy-
cle. From the initial stages of data collection and labeling, it is crucial
to ensure that data is handled securely and that privacy is protected.
During model training and evaluation, techniques such as differential
privacy and secure multi-party computation can be employed to safe-
guard sensitive information.

When deploying ML models, robust access controls, encryption,
and monitoring mechanisms must be implemented to prevent unau-
thorized access and detect potential security breaches. Ongoing
monitoring and auditing of ML systems as part of MLOps are
also essential to identify and address emerging security or privacy
vulnerabilities.

By embedding security and privacy considerations into each stage
of building, deploying, and managing ML systems, we can safely un-
lock the benefits of AI while protecting individuals’ rights and ensur-
ing the responsible use of these powerful technologies. Only through

CHAPTER 20. CONCLUSION 827

this proactive and comprehensive approach can we build ML systems
that are not only technologically advanced but also ethically sound and
worthy of public trust.

20.11 Upholding Ethical Considerations
As we embrace ML advancements in all facets of our lives, it is crucial to
remain mindful of the ethical considerations that will shape the future
of AI (Chapter 15). Fairness, transparency, accountability, and privacy
in AI systems will be paramount as they become more integrated into
our lives and decision-making processes.

As AI systems become more pervasive and influential, it is essen-
tial to ensure that they are designed and deployed in a manner that
upholds ethical principles. This means actively mitigating biases, pro-
moting fairness, and preventing discriminatory outcomes. It also en-
sures transparency in how AI systems make decisions, enabling users
to understand and trust their outputs.

Accountability is another critical ethical consideration. As AI sys-
tems take on more responsibilities and make decisions that impact
individuals and society, there must be clear mechanisms for holding
these systems and their creators accountable. This includes establish-
ing frameworks for auditing and monitoring AI systems and defining
liability and redress mechanisms in case of harm or unintended conse-
quences.

Ethical frameworks, regulations, and standards will be essential to
address these ethical challenges. These frameworks should guide the
responsible development and deployment of AI technologies, ensur-
ing that they align with societal values and promote the well-being of
individuals and communities.

Moreover, ongoing discussions and collaborations among re-
searchers, practitioners, policymakers, and society will be crucial in
navigating the ethical landscape of AI. These conversations should
be inclusive and diverse, bringing together different perspectives and
expertise to develop comprehensive and equitable solutions. As we
move forward, it is the collective responsibility of all stakeholders to
prioritize ethical considerations in the development and deployment
of AI systems.

20.12 Promoting Sustainability and Equity
The increasing computational demands of machine learning, par-
ticularly for training large models, have raised concerns about their

20.12. Promoting Sustainability and Equity 828

environmental impact due to high energy consumption and carbon
emissions (Chapter 16). As the scale and complexity of models
continue to grow, addressing the sustainability challenges associated
with AI development becomes imperative. To mitigate the environ-
mental footprint of AI, the development of energy-efÏcient algorithms
is crucial. This involves optimizing models and training procedures
to minimize computational requirements while maintaining per-
formance. Techniques such as model compression, quantization,
and efÏcient neural architecture search can help reduce the energy
consumption of AI systems.

Using renewable energy sources to power AI infrastructure is
another important step towards sustainability. By transitioning
to clean energy sources such as solar, wind, and hydropower, the
carbon emissions associated with AI development can be significantly
reduced. This requires a concerted effort from the AI community
and support from policymakers and industry leaders to invest in and
adopt renewable energy solutions. In addition, exploring alternative
computing paradigms, such as neuromorphic and photonic comput-
ing, holds promise for developing more energy-efÏcient AI systems.
By developing hardware and algorithms that emulate the brain’s
processing mechanisms, we can potentially create AI systems that are
both powerful and sustainable.

The AI community must prioritize sustainability as a key consider-
ation in research and development. This involves investing in green
computing initiatives, such as developing energy-efÏcient hardware
and optimizing data centers for reduced energy consumption. It also
requires collaboration across disciplines, bringing together AI, energy,
and sustainability experts to develop holistic solutions.

Moreover, it is important to acknowledge that access to AI and
machine learning compute resources may not be equally distributed
across organizations and regions. This disparity can lead to a widen-
ing gap between those who have the means to leverage advanced AI
technologies and those who do not. Organizations like the Organisa-
tion for Economic Cooperation and Development (OECD) are actively
exploring ways to address this issue and promote greater equity in AI
access and adoption. By fostering international cooperation, sharing
best practices, and supporting capacity-building initiatives, we can
ensure that AI’s benefits are more widely accessible and that no one is
left behind in the AI revolution.

CHAPTER 20. CONCLUSION 829

20.13 Enhancing Robustness and Resiliency

The chapter on Robust AI dives into the fundamental concepts, tech-
niques, and tools for building fault-tolerant and error-resilient ML sys-
tems (Chapter 17). In that chapter, we explored how robust AI tech-
niques can address the challenges posed by various types of hardware
faults, including transient, permanent, and intermittent faults, as well
as software issues such as bugs, design flaws, and implementation er-
rors.

By employing robust AI techniques, ML systems can maintain their
reliability, safety, and performance even in adverse conditions. These
techniques enable systems to detect and recover from faults, adapt to
changing environments, and make decisions under uncertainty.

The chapter empowers researchers and practitioners to develop AI
solutions that can withstand the complexities and uncertainties of real-
world environments. It provides insights into the design principles, ar-
chitectures, and algorithms underpinning robust AI systems and prac-
tical guidance on implementing and validating these systems.

20.14 Shaping the Future of ML Systems

As we look to the future, the trajectory of ML systems points towards
a paradigm shift from a model-centric approach to a more data-centric
one. This shift recognizes that the quality and diversity of data are
paramount to developing robust, reliable, and fair AI models.

We anticipate a growing emphasis on data curation, labeling, and
augmentation techniques in the coming years. These practices aim
to ensure that models are trained on high-quality, representative data
that accurately reflects the complexities and nuances of real-world sce-
narios. By focusing on data quality and diversity, we can mitigate the
risks of biased or skewed models that may perpetuate unfair or dis-
criminatory outcomes.

This data-centric approach will be crucial in addressing the chal-
lenges of bias, fairness, and generalizability in ML systems. By actively
seeking out and incorporating diverse and inclusive datasets, we can
develop more robust, equitable, and applicable models for various con-
texts and populations. Moreover, the emphasis on data will drive ad-
vancements in techniques such as data augmentation, where existing
datasets are expanded and diversified through data synthesis, trans-
lation, and generation. These techniques can help overcome the limi-
tations of small or imbalanced datasets, enabling the development of
more accurate and generalizable models.

20.15. Applying AI for Good 830

In recent years, generative AI has taken the field by storm, demon-
strating remarkable capabilities in creating realistic images, videos,
and text. However, the rise of generative AI also brings new chal-
lenges for ML systems (Chapter 18). Unlike traditional ML systems,
generative models often demand more computational resources and
pose challenges in terms of scalability and efÏciency. Furthermore,
evaluating and benchmarking generative models presents difÏculties,
as traditional metrics used for classification tasks may not be directly
applicable. Developing robust evaluation frameworks for generative
models is an active area of research.

Understanding and addressing these system challenges and ethical
considerations will be crucial in shaping the future of generative AI
and its impact on society. As ML practitioners and researchers, we are
responsible for advancing the technical capabilities of generative mod-
els and developing robust systems and frameworks that can mitigate
potential risks and ensure the beneficial application of this powerful
technology.

20.15 Applying AI for Good
The potential for AI to be used for social good is vast, provided that
responsible ML systems are developed and deployed at scale across
various use cases (Chapter 19). To realize this potential, it is essential
for researchers and practitioners to actively engage in the process of
learning, experimentation, and pushing the boundaries of what is pos-
sible.

Throughout the development of ML systems, it is crucial to remem-
ber the key themes and lessons explored in this book. These include
the importance of data quality and diversity, the pursuit of efÏciency
and robustness, the potential of TinyML and neuromorphic comput-
ing, and the imperative of security and privacy. These insights inform
the work and guide the decisions of those involved in developing AI
systems.

It is important to recognize that the development of AI is not solely
a technical endeavor but also a deeply human one. It requires collabo-
ration, empathy, and a commitment to understanding the societal im-
plications of the systems being created. Engaging with experts from
diverse fields, such as ethics, social sciences, and policy, is essential to
ensure that the AI systems developed are technically sound, socially
responsible, and beneficial. Embracing the opportunity to be part of
this transformative field and shaping its future is a privilege and a re-
sponsibility. By working together, we can create a world where ML
systems serve as tools for positive change and improving the human

CHAPTER 20. CONCLUSION 831

condition.

20.16 Congratulations
Congratulations on coming this far, and best of luck in your future en-
deavors! The future of AI is bright and filled with endless possibilities,
and I can’t wait to see the incredible contributions you will make.

Feel free to reach out to me anytime at vj at eecs dot harvard dot edu.
– Prof. Vĳay Janapa Reddi, Harvard University

833

Part X
LABS

835

Overview

Welcome to the hands-on labs section where you’ll explore deploying
ML models onto real embedded devices, which will offer a practical
introduction to ML systems. Unlike traditional approaches with large-
scale models, these labs focus on interacting directly with both hard-
ware and software. They help us show case various sensor modalities
across different application use cases. This approach provides valu-
able insights into the challenges and opportunities of deploying AI on
real physical systems.

Learning Objectives
By completing these labs, we hope learners will:

Tip

• Gain proficiency in setting up and deploying ML models
on supported devices, enabling you to tackle real-world
ML deployment scenarios with confidence.

• Understand the steps involved in adapting and experiment-
ing with ML models for different applications, allowing
you to optimize performance and efÏciency.

• Learn troubleshooting techniques specific to embedded
ML deployments equipping you with the skills to over-
come common pitfalls and challenges.

• Acquire practical experience in deploying TinyML models
on embedded devices bridging the gap between theory and
practice.

• Explore various sensor modalities and their applications

Target Audience 836

expanding your understanding of how ML can be lever-
aged in diverse domains.

• Foster an understanding of the real-world implications
and challenges associated with ML system deployments
preparing you for future projects.

Target Audience
These labs are designed for:

• Beginners in the field of machine learning who have a keen inter-
est in exploring the intersection of ML and embedded systems.

• Developers and engineers looking to apply ML models to
real-world applications using low-power, resource-constrained
devices.

• Enthusiasts and researchers who want to gain practical experi-
ence in deploying AI on edge devices and understand the unique
challenges involved.

Supported Devices

Exercise Nicla Vision XIAO ESP32S3 Raspberry Pi
Installation
& Setup
Keyword
Spot-
ting
(KWS)
Image
Classifi-
cation

Coming
soon.

Object
Detec-
tion

Coming
soon.

Motion
Detec-
tion

https://store.arduino.cc/products/nicla-vision
https://wiki.seeedstudio.com/xiao_esp32s3_getting_started/
https://www.raspberrypi.com/

OVERVIEW 837

Exercise Nicla Vision XIAO ESP32S3 Raspberry Pi
Small
Lan-
guage
Models
(SLM)

Coming
soon.

Lab Structure
Each lab follows a structured approach:

1. Introduction: Explore the application and its significance in real-
world scenarios.

2. Setup: Step-by-step instructions to configure the hardware and
software environment.

3. Deployment: Guidance on training and deploying the pre-
trained ML models on supported devices.

4. Exercises: Hands-on tasks to modify and experiment with model
parameters.

5. Discussion: Analysis of results, potential improvements, and
practical insights.

Troubleshooting and Support
If you encounter any issues during the labs, consult the troubleshoot-
ing comments or check the FAQs within each lab. For further assis-
tance, feel free to reach out to our support team or engage with the
community forums.

Credits
Special credit and thanks to Prof. Marcelo Rovai for his valuable contri-
butions to the development and continuous refinement of these labs.

https://store.arduino.cc/products/nicla-vision
https://wiki.seeedstudio.com/xiao_esp32s3_getting_started/
https://www.raspberrypi.com/
https://github.com/Mjrovai

839

Getting Started

Welcome to the exciting world of embedded machine learning and
TinyML! In this hands-on lab series, you’ll explore various projects
demonstrating the power of running machine learning models on
resource-constrained devices. Before diving into the projects, ensure
you have the necessary hardware and software.

Hardware Requirements
To follow along with the hands-on labs, you’ll need the following hard-
ware:

1. Arduino Nicla Vision board

• The Arduino Nicla Vision is a powerful, compact board de-
signed for professional-grade computer vision and audio
applications. It features a high-quality camera module, a
digital microphone, and an IMU, making it suitable for de-
manding projects in industries such as robotics, automation,
and surveillance.

• Arduino Nicla Vision specifications
• Arduino Nicla Vision pinout diagram

2. XIAO ESP32S3 Sense board

• The Seeed Studio XIAO ESP32S3 Sense is a tiny, feature-
packed board designed for makers, hobbyists, and students
interested in exploring edge AI applications. It comes with
a camera, microphone, and IMU, making it easy to get
started with projects like image classification, keyword
spotting, and motion detection.

• XIAO ESP32S3 Sense specifications
• XIAO ESP32S3 Sense pinout diagram

3. Raspberry Pi - Single Computer board

https://docs.arduino.cc/hardware/nicla-vision
https://docs.arduino.cc/resources/pinouts/ABX00051-full-pinout.pdf
https://wiki.seeedstudio.com/xiao_esp32s3_getting_started/#specification
https://wiki.seeedstudio.com/xiao_esp32s3_getting_started/#hardware-overview

Software Requirements 840

• The Raspberry Pi is a powerful and versatile single-board
computer that has become an essential tool for engineers across
various disciplines. Developed by the Raspberry Pi Foundation,
these compact devices offer a unique combination of affordabil-
ity, computational power, and extensive GPIO (General Purpose
Input/Output) capabilities, making them ideal for prototyping,
embedded systems development, and advanced engineering
projects.

• Raspberry Pi Hardware Documentation
• Camera Documentation

4. Additional accessories

• USB-C cable for programming and powering the XIAO
• Micro-USB cable for programming and powering the Nicla
• Power Supply for the Raspberries
• Breadboard and jumper wires (optional, for connecting ad-

ditional sensors)

The Arduino Nicla Vision is tailored for professional-grade ap-
plications, offering advanced features and performance suitable for
demanding industrial projects. On the other hand, the Seeed Studio
XIAO ESP32S3 Sense is geared toward makers, hobbyists, and students
who want to explore edge AI applications in a more accessible and
beginner-friendly format. Both boards have their strengths and target
audiences, allowing users to choose the best fit for their needs and
skill level. The Raspberry Pi is aimed at more advanced engineering
and machine learning projects.

Software Requirements
To program the boards and develop embedded machine learning
projects, you’ll need the following software:

1. Arduino IDE

• Download and install
– Install Arduino IDE
– Follow the installation guide for your specific OS.
– Arduino CLI
– Configure the Arduino IDE for the Arduino Nicla Vi-

sion and XIAO ESP32S3 Sense boards.

2. OpenMV IDE (optional)

https://www.raspberrypi.org/
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html
https://www.raspberrypi.com/documentation/accessories/camera.html
https://www.arduino.cc/en/software
https://docs.arduino.cc/software/ide-v1/tutorials/Windows
https://arduino.github.io/arduino-cli/1.0/
https://docs.arduino.cc/software/ide-v1/tutorials/getting-started/cores/arduino-mbed_nicla
https://docs.arduino.cc/software/ide-v1/tutorials/getting-started/cores/arduino-mbed_nicla
https://wiki.seeedstudio.com/xiao_esp32s3_getting_started/#software-setup

GETTING STARTED 841

• Download and install the OpenMV IDE for your operating
system.

• Configure the OpenMV IDE for the Arduino Nicla Vision.

3. Edge Impulse Studio

• Sign up for a free account on the Edge Impulse Studio.
• Install Edge Impulse CLI
• Follow the guides to connect your Arduino Nicla Vision and

XIAO ESP32S3 Sense boards to Edge Impulse Studio.

4. Raspberry Pi OS

• Download and install the Raspberry Pi Imager

Network Connectivity
Some projects may require internet connectivity for data collection or
model deployment. Ensure your development environment connec-
tion is stable through Wi-Fi or Ethernet. For the Raspberry Pi, having
a Wi-Fi or Ethernet connection is necessary for remote operation with-
out the necessity to plug in a monitor, keyboard, and mouse.

• For the Arduino Nicla Vision, you can use the onboard Wi-Fi
module to connect to a wireless network.

• For the XIAO ESP32S3 Sense, you can use the onboard Wi-Fi mod-
ule or connect an external Wi-Fi or Ethernet module using the
available pins.

• For the Raspberry Pi, you can use the onboard Wi-Fi module to
connect an external Wi-Fi or Ethernet module using the available
connector.

Conclusion
With your hardware and software set up, you’re ready to embark on
your embedded machine learning journey. The hands-on labs will
guide you through various projects, covering topics like image classifi-
cation, object detection, keyword spotting, and motion classification.

If you encounter any issues or have questions, don’t hesitate to con-
sult the troubleshooting guides or forums or seek support from the
community.

Let’s dive in and unlock the potential of ML on real (tiny) systems!

https://openmv.io/pages/download
https://docs.arduino.cc/tutorials/nicla-vision/getting-started/
https://studio.edgeimpulse.com/login
https://docs.edgeimpulse.com/docs/tools/edge-impulse-cli/cli-installation
https://docs.edgeimpulse.com/docs/edge-ai-hardware/mcu/arduino-nicla-vision
https://docs.edgeimpulse.com/docs/edge-ai-hardware/mcu/seeed-xiao-esp32s3-sense
https://www.raspberrypi.com/software/

843

Part XI
Nicla Vision

845

These labs provide a unique opportunity to gain practical experi-
ence with machine learning (ML) systems. Unlike working with large
models requiring data center-scale resources, these exercises allow you
to directly interact with hardware and software using TinyML. This
hands-on approach gives you a tangible understanding of the chal-
lenges and opportunities in deploying AI, albeit at a tiny scale. How-
ever, the principles are largely the same as what you would encounter
when working with larger systems.

Figure 20.2.: Nicla Vision.
Source: Arduino

Pre-requisites
• Nicla Vision Board: Ensure you have the Nicla Vision board.
• USB Cable: For connecting the board to your computer.
• Network: With internet access for downloading necessary soft-

ware.

Setup
• Setup Nicla Vision

Exercises

Modality Task Description Link
Vision Image

Classification
Learn to classify
images

Link

Vision Object
Detection

Implement object
detection

Link

./setup/setup.qmd
./image_classification/image_classification.qmd
./object_detection/object_detection.qmd

Exercises 846

Modality Task Description Link
Sound Keyword

Spotting
Explore voice
recognition
systems

Link

IMU Motion
Classification
and Anomaly
Detection

Classify motion
data and detect
anomalies

Link

./kws/kws.qmd
./motion_classification/motion_classification.qmd

847

Setup

Figure 20.3.: DALL·E 3 Prompt:
Illustration reminiscent of a
1950s cartoon where the Arduino
NICLA VISION board, equipped
with a variety of sensors including
a camera, is the focal point on
an old-fashioned desk. In the
background, a computer screen
with rounded edges displays the
Arduino IDE. The code seen is
related to LED configurations and
machine learning voice command
detection. Outputs on the Serial
Monitor explicitly display the
words ‘yes’ and ‘no’.

Introduction
The Arduino Nicla Vision (sometimes called NiclaV) is a development
board that includes two processors that can run tasks in parallel. It is

https://docs.arduino.cc/hardware/nicla-vision

Hardware 848

part of a family of development boards with the same form factor but
designed for specific tasks, such as the Nicla Sense ME and the Nicla
Voice. The Niclas can efÏciently run processes created with TensorFlow
Lite. For example, one of the cores of the NiclaV runs a computer vi-
sion algorithm on the fly (inference), while the other executes low-level
operations like controlling a motor and communicating or acting as a
user interface. The onboard wireless module allows the management
of WiFi and Bluetooth Low Energy (BLE) connectivity simultaneously.

Hardware

Two Parallel Cores

The central processor is the dual-core STM32H747, including a Cortex
M7 at 480 MHz and a Cortex M4 at 240 MHz. The two cores commu-
nicate via a Remote Procedure Call mechanism that seamlessly allows
calling functions on the other processor. Both processors share all the
on-chip peripherals and can run:

• Arduino sketches on top of the Arm Mbed OS

• Native Mbed applications

• MicroPython / JavaScript via an interpreter

• TensorFlow Lite

https://www.bosch-sensortec.com/software-tools/tools/arduino-nicla-sense-me/
https://store-usa.arduino.cc/products/nicla-voice?_gl=1*l3abc6*_ga*MTQ3NzE4Mjk4Mi4xNjQwMDIwOTk5*_ga_NEXN8H46L5*MTY5NjM0Mzk1My4xMDIuMS4xNjk2MzQ0MjQ1LjAuMC4w
https://store-usa.arduino.cc/products/nicla-voice?_gl=1*l3abc6*_ga*MTQ3NzE4Mjk4Mi4xNjQwMDIwOTk5*_ga_NEXN8H46L5*MTY5NjM0Mzk1My4xMDIuMS4xNjk2MzQ0MjQ1LjAuMC4w
https://content.arduino.cc/assets/Arduino-Portenta-H7_Datasheet_stm32h747xi.pdf?_gl=1*6quciu*_ga*MTQ3NzE4Mjk4Mi4xNjQwMDIwOTk5*_ga_NEXN8H46L5*MTY0NzQ0NTg1My4xMS4xLjE2NDc0NDYzMzkuMA..

SETUP 849

Memory

Memory is crucial for embedded machine learning projects. The
NiclaV board can host up to 16 MB of QSPI Flash for storage. How-
ever, it is essential to consider that the MCU SRAM is the one to be
used with machine learning inferences; the STM32H747 is only 1MB,
shared by both processors. This MCU also has incorporated 2MB of
FLASH, mainly for code storage.

Sensors

• Camera: A GC2145 2 MP Color CMOS Camera.

• Microphone: The MP34DT05 is an ultra-compact, low-power, om-
nidirectional, digital MEMS microphone built with a capacitive
sensing element and the IC interface.

Arduino IDE Installation 850

• 6-Axis IMU: 3D gyroscope and 3D accelerometer data from the
LSM6DSOX 6-axis IMU.

• Time of Flight Sensor: The VL53L1CBV0FY Time-of-Flight sensor
adds accurate and low power-ranging capabilities to the Nicla
Vision. The invisible near-infrared VCSEL laser (including the
analog driver) is encapsulated with receiving optics in an all-in-
one small module below the camera.

Arduino IDE Installation
Start connecting the board (microUSB) to your computer:

Install the Mbed OS core for Nicla boards in the Arduino IDE. Hav-
ing the IDE open, navigate to Tools > Board > Board Manager, look
for Arduino Nicla Vision on the search window, and install the board.

Next, go to Tools > Board > Arduino Mbed OS Nicla Boards
and select Arduino Nicla Vision. Having your board connected to
the USB, you should see the Nicla on Port and select it.

Open the Blink sketch on Examples/Basic and run it using
the IDE Upload button. You should see the Built-in LED

SETUP 851

(green RGB) blinking, which means the Nicla board is cor-
rectly installed and functional!

Testing the Microphone

On Arduino IDE, go to Examples > PDM > PDMSerialPlotter, open
and run the sketch. Open the Plotter and see the audio representation
from the microphone:

Vary the frequency of the sound you generate and confirm
that the mic is working correctly.

Testing the IMU

Before testing the IMU, it will be necessary to install the LSM6DSOX li-
brary. For that, go to Library Manager and look for LSM6DSOX. Install
the library provided by Arduino:

Arduino IDE Installation 852

Next, go to Examples > Arduino_LSM6DSOX > SimpleAccelerometer
and run the accelerometer test (you can also run Gyro and board
temperature):

Testing the ToF (Time of Flight) Sensor

As we did with IMU, it is necessary to install the VL53L1X ToF library.
For that, go to Library Manager and look for VL53L1X. Install the li-
brary provided by Pololu:

Next, run the sketch proximity_detection.ino:

https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/Arduino-IDE/proximity_detection/proximity_detection.ino

SETUP 853

On the Serial Monitor, you will see the distance from the camera to
an object in front of it (max of 4m).

Installing the OpenMV IDE 854

Testing the Camera

We can also test the camera using, for example, the code provided on
Examples > Camera > CameraCaptureRawBytes. We cannot see the
image directly, but it is possible to get the raw image data generated by
the camera.

Anyway, the best test with the camera is to see a live image. For that,
we will use another IDE, the OpenMV.

Installing the OpenMV IDE

OpenMV IDE is the premier integrated development environment
with OpenMV Cameras like the one on the Nicla Vision. It features a
powerful text editor, debug terminal, and frame buffer viewer with a
histogram display. We will use MicroPython to program the camera.

Go to the OpenMV IDE page, download the correct version for your
Operating System, and follow the instructions for its installation on
your computer.

https://openmv.io/pages/download

SETUP 855

The IDE should open, defaulting to the helloworld_1.py code on
its Code Area. If not, you can open it from Files > Examples >
HelloWord > helloword.py

Any messages sent through a serial connection (using print() or er-
ror messages) will be displayed on the Serial Terminal during run
time. The image captured by a camera will be displayed in the Camera
Viewer Area (or Frame Buffer) and in the Histogram area, immediately

Installing the OpenMV IDE 856

below the Camera Viewer.

Before connecting the Nicla to the OpenMV IDE, en-
sure you have the latest bootloader version. Go to
your Arduino IDE, select the Nicla board, and open the
sketch on Examples > STM_32H747_System STM32H747_-
manageBootloader. Upload the code to your board. The
Serial Monitor will guide you.

After updating the bootloader, put the Nicla Vision in bootloader
mode by double-pressing the reset button on the board. The built-in
green LED will start fading in and out. Now return to the OpenMV
IDE and click on the connect icon (Left ToolBar):

A pop-up will tell you that a board in DFU mode was detected
and ask how you would like to proceed. First, select Install the
latest release firmware (vX.Y.Z). This action will install the
latest OpenMV firmware on the Nicla Vision.

You can leave the option Erase internal file system unselected
and click [OK].

Nicla’s green LED will start flashing while the OpenMV firmware is
uploaded to the board, and a terminal window will then open, show-
ing the flashing progress.

SETUP 857

Wait until the green LED stops flashing and fading. When the pro-
cess ends, you will see a message saying, “DFU firmware update com-
plete!”. Press [OK].

Installing the OpenMV IDE 858

A green play button appears when the Nicla Vison connects to the
Tool Bar.

SETUP 859

Also, note that a drive named “NO NAME” will appear on your com-
puter.:

Every time you press the [RESET] button on the board, it automati-
cally executes the main.py script stored on it. You can load the main.py
code on the IDE (File > Open File...).

https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/Micropython/main.py

Installing the OpenMV IDE 860

This code is the “Blink” code, confirming that the HW is
OK.

For testing the camera, let’s run helloword_1.py. For that, select the
script on File > Examples > HelloWorld > helloword.py,

When clicking the green play button, the MicroPython script (hel-
lowolrd.py) on the Code Area will be uploaded and run on the Nicla
Vision. On-Camera Viewer, you will start to see the video streaming.
The Serial Monitor will show us the FPS (Frames per second), which
should be around 14fps.

SETUP 861

Here is the helloworld.py script:

Hello World Example 2
#
Welcome to the OpenMV IDE! Click on the green run arrow button below to run the script!

import sensor, image, time

sensor.reset() # Reset and initialize the sensor.
sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE)
sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240)
sensor.skip_frames(time = 2000) # Wait for settings take effect.
clock = time.clock() # Create a clock object to track the FPS.

while(True):
clock.tick() # Update the FPS clock.
img = sensor.snapshot() # Take a picture and return the image.
print(clock.fps())

In GitHub, you can find the Python scripts used here.
The code can be split into two parts:

• Setup: Where the libraries are imported, initialized and the vari-
ables are defined and initiated.

• Loop: (while loop) part of the code that runs continually. The im-
age (img variable) is captured (one frame). Each of those frames
can be used for inference in Machine Learning Applications.

http://helloworld.py/
https://github.com/Mjrovai/Arduino_Nicla_Vision

Connecting the Nicla Vision to Edge Impulse Studio 862

To interrupt the program execution, press the red [X] button.

Note: OpenMV Cam runs about half as fast when
connected to the IDE. The FPS should increase once
disconnected.

In the GitHub, You can find other Python scripts. Try to test the
onboard sensors.

Connecting the Nicla Vision to Edge Impulse
Studio
We will need the Edge Impulse Studio later in other exercises. Edge
Impulse is a leading development platform for machine learning on
edge devices.

Edge Impulse ofÏcially supports the Nicla Vision. So, for starting,
please create a new project on the Studio and connect the Nicla to it.
For that, follow the steps:

• Download the most updated EI Firmware and unzip it.

• Open the zip file on your computer and select the uploader cor-
responding to your OS:

• Put the Nicla-Vision on Boot Mode, pressing the reset button
twice.

• Execute the specific batch code for your OS for uploading the
binary arduino-nicla-vision.bin to your board.

Go to your project on the Studio, and on the Data Acquisition tab,
select WebUSB (1). A window will pop up; choose the option that shows
that the Nicla is paired (2) and press [Connect] (3).

https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/Micropython
https://www.edgeimpulse.com/
https://www.edgeimpulse.com/
https://cdn.edgeimpulse.com/firmware/arduino-nicla-vision.zip

SETUP 863

In the Collect Data section on the Data Acquisition tab, you can
choose which sensor data to pick.

For example. IMU data:

Connecting the Nicla Vision to Edge Impulse Studio 864

Or Image (Camera):

And so on. You can also test an external sensor connected to the ADC
(Nicla pin 0) and the other onboard sensors, such as the microphone
and the ToF.

SETUP 865

Expanding the Nicla Vision Board (optional)

A last item to be explored is that sometimes, during prototyping, it
is essential to experiment with external sensors and devices, and an
excellent expansion to the Nicla is the Arduino MKR Connector Carrier
(Grove compatible).

The shield has 14 Grove connectors: five single analog inputs (A0-
A5), one double analog input (A5/A6), five single digital I/Os (D0-D4),
one double digital I/O (D5/D6), one I2C (TWI), and one UART (Serial).
All connectors are 5V compatible.

Note that all 17 Nicla Vision pins will be connected to the
Shield Groves, but some Grove connections remain discon-
nected.

This shield is MKR compatible and can be used with the Nicla Vision
and Portenta.

https://store-usa.arduino.cc/products/arduino-mkr-connector-carrier-grove-compatible
https://store-usa.arduino.cc/products/arduino-mkr-connector-carrier-grove-compatible

Expanding the Nicla Vision Board (optional) 866

For example, suppose that on a TinyML project, you want to send
inference results using a LoRaWAN device and add information about
local luminosity. Often, with ofÒine operations, a local low-power dis-
play such as an OLED is advised. This setup can be seen here:

SETUP 867

The Grove Light Sensor would be connected to one of the single Ana-
log pins (A0/PC4), the LoRaWAN device to the UART, and the OLED
to the I2C connector.

The Nicla Pins 3 (Tx) and 4 (Rx) are connected with the Serial Shield
connector. The UART communication is used with the LoRaWan de-
vice. Here is a simple code to use the UART:

UART Test - By: marcelo_rovai - Sat Sep 23 2023

import time
from pyb import UART
from pyb import LED

redLED = LED(1) # built-in red LED

Init UART object.
Nicla Vision's UART (TX/RX pins) is on "LP1"
uart = UART("LP1", 9600)

while(True):
uart.write("Hello World!\r\n")
redLED.toggle()
time.sleep_ms(1000)

To verify that the UART is working, you should, for example, connect

https://wiki.seeedstudio.com/Grove-Light_Sensor/
https://wiki.seeedstudio.com/Grove_LoRa_E5_New_Version/
https://arduino.cl/producto/display-oled-grove/

Expanding the Nicla Vision Board (optional) 868

another device as the Arduino UNO, displaying “Hello Word” on the
Serial Monitor. Here is the code.

Below is the Hello World code to be used with the I2C OLED. The
MicroPython SSD1306 OLED driver (ssd1306.py), created by Adafruit,
should also be uploaded to the Nicla (the ssd1306.py script can be
found in GitHub).

Nicla_OLED_Hello_World - By: marcelo_rovai - Sat Sep 30 2023

#Save on device: MicroPython SSD1306 OLED driver, I2C and SPI interfaces created by Adafruit
import ssd1306

from machine import I2C

https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/Arduino-IDE/teste_uart_UNO/teste_uart_UNO.ino
https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/Micropython/ssd1306.py

SETUP 869

i2c = I2C(1)

oled_width = 128
oled_height = 64
oled = ssd1306.SSD1306_I2C(oled_width, oled_height, i2c)

oled.text('Hello, World', 10, 10)
oled.show()

Finally, here is a simple script to read the ADC value on pin “PC4”
(Nicla pin A0):

Light Sensor (A0) - By: marcelo_rovai - Wed Oct 4 2023

import pyb
from time import sleep

adc = pyb.ADC(pyb.Pin("PC4")) # create an analog object from a pin
val = adc.read() # read an analog value

while (True):

val = adc.read()
print ("Light={}".format (val))
sleep (1)

The ADC can be used for other sensor variables, such as Tempera-
ture.

Note that the above scripts (downloaded from Github)
introduce only how to connect external devices with the
Nicla Vision board using MicroPython.

Conclusion
The Arduino Nicla Vision is an excellent tiny device for industrial and
professional uses! However, it is powerful, trustworthy, low power,
and has suitable sensors for the most common embedded machine
learning applications such as vision, movement, sensor fusion, and
sound.

On the GitHub repository, you will find the last version of
all the codeused or commented on in this hands-on exer-
cise.

https://wiki.seeedstudio.com/Grove-Temperature_Sensor_V1.2/
https://wiki.seeedstudio.com/Grove-Temperature_Sensor_V1.2/
https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/Micropython
https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main

Resources 870

Resources
• Micropython codes

• Arduino Codes

https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/Micropython
https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/Arduino-IDE

871

Image Classification

Figure 20.4.: DALL·E 3 Prompt:
Cartoon in a 1950s style featur-
ing a compact electronic device
with a camera module placed on a
wooden table. The screen displays
blue robots on one side and green
periquitos on the other. LED
lights on the device indicate classi-
fications, while characters in retro
clothing observe with interest.

Introduction
As we initiate our studies into embedded machine learning or TinyML,
it’s impossible to overlook the transformative impact of Computer

Introduction 872

Vision (CV) and Artificial Intelligence (AI) in our lives. These two
intertwined disciplines redefine what machines can perceive and
accomplish, from autonomous vehicles and robotics to healthcare and
surveillance.

More and more, we are facing an artificial intelligence (AI) revolu-
tion where, as stated by Gartner, Edge AI has a very high impact po-
tential, and it is for now!

In the “bullseye” of the Radar is the Edge Computer Vision, and when
we talk about Machine Learning (ML) applied to vision, the first thing
that comes to mind is Image Classification, a kind of ML “Hello
World”!

This exercise will explore a computer vision project utilizing
Convolutional Neural Networks (CNNs) for real-time image classifi-
cation. Leveraging TensorFlow’s robust ecosystem, we’ll implement
a pre-trained MobileNet model and adapt it for edge deployment.
The focus will be on optimizing the model to run efÏciently on
resource-constrained hardware without sacrificing accuracy.

IMAGE CLASSIFICATION 873

We’ll employ techniques like quantization and pruning to reduce
the computational load. By the end of this tutorial, you’ll have a work-
ing prototype capable of classifying images in real-time, all running
on a low-power embedded system based on the Arduino Nicla Vision
board.

Computer Vision

At its core, computer vision enables machines to interpret and make
decisions based on visual data from the world, essentially mimicking
the capability of the human optical system. Conversely, AI is a
broader field encompassing machine learning, natural language
processing, and robotics, among other technologies. When you bring
AI algorithms into computer vision projects, you supercharge the
system’s ability to understand, interpret, and react to visual stimuli.

When discussing Computer Vision projects applied to embedded
devices, the most common applications that come to mind are Image
Classification and Object Detection.

Both models can be implemented on tiny devices like the Arduino
Nicla Vision and used on real projects. In this chapter, we will cover
Image Classification.

Image Classification Project Goal

The first step in any ML project is to define the goal. In this case, it is to
detect and classify two specific objects present in one image. For this
project, we will use two small toys: a robot and a small Brazilian parrot
(named Periquito). Also, we will collect images of a background where
those two objects are absent.

Data Collection 874

Data Collection

Once you have defined your Machine Learning project goal, the next
and most crucial step is the dataset collection. You can use the Edge
Impulse Studio, the OpenMV IDE we installed, or even your phone for
the image capture. Here, we will use the OpenMV IDE for that.

Collecting Dataset with OpenMV IDE

First, create in your computer a folder where your data will be
saved, for example, “data.” Next, on the OpenMV IDE, go to Tools >
Dataset Editor and select New Dataset to start the dataset collection:

IMAGE CLASSIFICATION 875

The IDE will ask you to open the file where your data will be saved
and choose the “data” folder that was created. Note that new icons
will appear on the Left panel.

Using the upper icon (1), enter with the first class name, for example,
“periquito”:

Data Collection 876

Running the dataset_capture_script.py and clicking on the cam-
era icon (2), will start capturing images:

Repeat the same procedure with the other classes

IMAGE CLASSIFICATION 877

We suggest around 60 images from each category. Try
to capture different angles, backgrounds, and light
conditions.

The stored images use a QVGA frame size of 320x240 and the
RGB565 (color pixel format).

After capturing your dataset, close the Dataset Editor Tool on the
Tools > Dataset Editor.

On your computer, you will end with a dataset that contains three
classes: periquito, robot, and background.

You should return to Edge Impulse Studio and upload the dataset to
your project.

Training the model with Edge Impulse Studio

We will use the Edge Impulse Studio for training our model. Enter
your account credentials and create a new project:

Dataset 878

Here, you can clone a similar project: NICLA-Vision_Im-
age_Classification.

Dataset
Using the EI Studio (or Studio), we will go over four main steps to have
our model ready for use on the Nicla Vision board: Dataset, Impulse,
Tests, and Deploy (on the Edge Device, in this case, the NiclaV).

https://studio.edgeimpulse.com/public/273858/latest
https://studio.edgeimpulse.com/public/273858/latest

IMAGE CLASSIFICATION 879

Regarding the Dataset, it is essential to point out that our Original
Dataset, captured with the OpenMV IDE, will be split into Training,
Validation, and Test. The Test Set will be divided from the beginning,
and a part will reserved to be used only in the Test phase after training.
The Validation Set will be used during training.

On Studio, go to the Data acquisition tab, and on the UPLOAD DATA
section, upload the chosen categories files from your computer:

Dataset 880

Leave to the Studio the splitting of the original dataset into train and
test and choose the label about that specific data:

Repeat the procedure for all three classes. At the end, you should
see your “raw data” in the Studio:

The Studio allows you to explore your data, showing a complete
view of all the data in your project. You can clear, inspect, or change
labels by clicking on individual data items. In our case, a very simple
project, the data seems OK.

IMAGE CLASSIFICATION 881

The Impulse Design

In this phase, we should define how to:

• Pre-process our data, which consists of resizing the individual
images and determining the color depth to use (be it RGB or
Grayscale) and

• Specify a Model, in this case, it will be the Transfer Learning
(Images) to fine-tune a pre-trained MobileNet V2 image classifi-
cation model on our data. This method performs well even with
relatively small image datasets (around 150 images in our case).

The Impulse Design 882

Transfer Learning with MobileNet offers a streamlined approach to
model training, which is especially beneficial for resource-constrained
environments and projects with limited labeled data. MobileNet,
known for its lightweight architecture, is a pre-trained model that has
already learned valuable features from a large dataset (ImageNet).

By leveraging these learned features, you can train a new model for
your specific task with fewer data and computational resources and
yet achieve competitive accuracy.

This approach significantly reduces training time and computa-
tional cost, making it ideal for quick prototyping and deployment on

IMAGE CLASSIFICATION 883

embedded devices where efÏciency is paramount.
Go to the Impulse Design Tab and create the impulse, defining an

image size of 96x96 and squashing them (squared form, without crop-
ping). Select Image and Transfer Learning blocks. Save the Impulse.

Image Pre-Processing

All the input QVGA/RGB565 images will be converted to 27,640 fea-
tures (96x96x3).

The Impulse Design 884

Press [Save parameters] and Generate all features:

Model Design

In 2007, Google introduced MobileNetV1, a family of general-purpose
computer vision neural networks designed with mobile devices in
mind to support classification, detection, and more. MobileNets are
small, low-latency, low-power models parameterized to meet the
resource constraints of various use cases. in 2018, Google launched
MobileNetV2: Inverted Residuals and Linear Bottlenecks.

MobileNet V1 and MobileNet V2 aim at mobile efÏciency and em-
bedded vision applications but differ in architectural complexity and
performance. While both use depthwise separable convolutions to re-
duce the computational cost, MobileNet V2 introduces Inverted Resid-
ual Blocks and Linear Bottlenecks to improve performance. These new
features allow V2 to capture more complex features using fewer pa-
rameters, making it computationally more efÏcient and generally more
accurate than its predecessor. Additionally, V2 employs a non-linear
activation in the intermediate expansion layer. It still uses a linear ac-
tivation for the bottleneck layer, a design choice found to preserve im-
portant information through the network. MobileNet V2 offers an opti-
mized architecture for higher accuracy and efÏciency and will be used
in this project.

Although the base MobileNet architecture is already tiny and has
low latency, many times, a specific use case or application may re-
quire the model to be even smaller and faster. MobileNets introduces

https://research.googleblog.com/2017/06/mobilenets-open-source-models-for.html
https://arxiv.org/abs/1801.04381

IMAGE CLASSIFICATION 885

a straightforward parameter α (alpha) called width multiplier to con-
struct these smaller, less computationally expensive models. The role
of the width multiplier α is that of thinning a network uniformly at
each layer.

Edge Impulse Studio can use both MobileNetV1 (96x96 images) and
V2 (96x96 or 160x160 images), with several different α values (from
0.05 to 1.0). For example, you will get the highest accuracy with V2,
160x160 images, and α=1.0. Of course, there is a trade-off. The higher
the accuracy, the more memory (around 1.3MB RAM and 2.6MB ROM)
will be needed to run the model, implying more latency. The smaller
footprint will be obtained at the other extreme with MobileNetV1 and
α=0.10 (around 53.2K RAM and 101K ROM).

We will use MobileNetV2 96x96 0.1 for this project, with an esti-
mated memory cost of 265.3 KB in RAM. This model should be OK
for the Nicla Vision with 1MB of SRAM. On the Transfer Learning Tab,
select this model:

Model Training 886

Model Training
Another valuable technique to be used with Deep Learning is Data
Augmentation. Data augmentation is a method to improve the accu-
racy of machine learning models by creating additional artificial data.
A data augmentation system makes small, random changes to your
training data during the training process (such as flipping, cropping,
or rotating the images).

Looking under the hood, here you can see how Edge Impulse imple-
ments a data Augmentation policy on your data:

Implements the data augmentation policy
def augment_image(image, label):

Flips the image randomly
image = tf.image.random_flip_left_right(image)

Increase the image size, then randomly crop it down to
the original dimensions
resize_factor = random.uniform(1, 1.2)
new_height = math.floor(resize_factor * INPUT_SHAPE[0])
new_width = math.floor(resize_factor * INPUT_SHAPE[1])
image = tf.image.resize_with_crop_or_pad(image, new_height, new_width)
image = tf.image.random_crop(image, size=INPUT_SHAPE)

Vary the brightness of the image

IMAGE CLASSIFICATION 887

image = tf.image.random_brightness(image, max_delta=0.2)

return image, label

Exposure to these variations during training can help prevent your
model from taking shortcuts by “memorizing” superficial clues in your
training data, meaning it may better reflect the deep underlying pat-
terns in your dataset.

The final layer of our model will have 12 neurons with a 15% dropout
for overfitting prevention. Here is the Training result:

The result is excellent, with 77ms of latency, which should result in
13fps (frames per second) during inference.

Model Testing 888

Model Testing

Now, you should take the data set aside at the start of the project and
run the trained model using it as input:

The result is, again, excellent.

IMAGE CLASSIFICATION 889

Deploying the model
At this point, we can deploy the trained model as.tflite and use the
OpenMV IDE to run it using MicroPython, or we can deploy it as a
C/C++ or an Arduino library.

Arduino Library

First, Let’s deploy it as an Arduino Library:

Deploying the model 890

You should install the library as.zip on the Arduino IDE and run the
sketch nicla_vision_camera.ino available in Examples under your library
name.

Note that Arduino Nicla Vision has, by default, 512KB of
RAM allocated for the M7 core and an additional 244KB
on the M4 address space. In the code, this allocation was
changed to 288 kB to guarantee that the model will run on
the device (malloc_addblock((void*)0x30000000, 288
* 1024);).

The result is good, with 86ms of measured latency.

Here is a short video showing the inference results: https://youtu.
be/bZPZZJblU-o

https://youtu.be/bZPZZJblU-o
https://youtu.be/bZPZZJblU-o

IMAGE CLASSIFICATION 891

OpenMV

It is possible to deploy the trained model to be used with OpenMV in
two ways: as a library and as a firmware.

Three files are generated as a library: the trained.tflite model, a list
with labels, and a simple MicroPython script that can make inferences
using the model.

Running this model as a .tflite directly in the Nicla was impossible.
So, we can sacrifice the accuracy using a smaller model or deploy the
model as an OpenMV Firmware (FW). Choosing FW, the Edge Impulse
Studio generates optimized models, libraries, and frameworks needed
to make the inference. Let’s explore this option.

Select OpenMV Firmware on the Deploy Tab and press [Build].

On your computer, you will find a ZIP file. Open it:

Deploying the model 892

Use the Bootloader tool on the OpenMV IDE to load the FW on your
board:

Select the appropriate file (.bin for Nicla-Vision):

After the download is finished, press OK:

IMAGE CLASSIFICATION 893

If a message says that the FW is outdated, DO NOT UPGRADE. Se-
lect [NO].

Deploying the model 894

Now, open the script ei_image_classification.py that was down-
loaded from the Studio and the.bin file for the Nicla.

Run it. Pointing the camera to the objects we want to classify, the
inference result will be displayed on the Serial Terminal.

IMAGE CLASSIFICATION 895

Changing the Code to add labels

The code provided by Edge Impulse can be modified so that we can see,
for test reasons, the inference result directly on the image displayed on
the OpenMV IDE.

Upload the code from GitHub, or modify it as below:

Marcelo Rovai - NICLA Vision - Image Classification
Adapted from Edge Impulse - OpenMV Image Classification Example
@24Aug23

import sensor, image, time, os, tf, uos, gc

sensor.reset() # Reset and initialize the sensor.
sensor.set_pixformat(sensor.RGB565) # Set pxl fmt to RGB565 (or GRAYSCALE)
sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240)
sensor.set_windowing((240, 240)) # Set 240x240 window.
sensor.skip_frames(time=2000) # Let the camera adjust.

net = None
labels = None

try:
Load built in model
labels, net = tf.load_builtin_model('trained')

except Exception as e:
raise Exception(e)

https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/Micropython/nicla_image_classification.py

Deploying the model 896

clock = time.clock()
while(True):

clock.tick() # Starts tracking elapsed time.

img = sensor.snapshot()

default settings just do one detection
for obj in net.classify(img,

min_scale=1.0,
scale_mul=0.8,
x_overlap=0.5,
y_overlap=0.5):

fps = clock.fps()
lat = clock.avg()

print("**********\nPrediction:")
img.draw_rectangle(obj.rect())
This combines the labels and confidence values into a list of tuples
predictions_list = list(zip(labels, obj.output()))

max_val = predictions_list[0][1]
max_lbl = 'background'
for i in range(len(predictions_list)):

val = predictions_list[i][1]
lbl = predictions_list[i][0]

if val > max_val:
max_val = val
max_lbl = lbl

Print label with the highest probability
if max_val < 0.5:

max_lbl = 'uncertain'
print("{} with a prob of {:.2f}".format(max_lbl, max_val))
print("FPS: {:.2f} fps ==> latency: {:.0f} ms".format(fps, lat))

Draw label with highest probability to image viewer
img.draw_string(

10, 10,
max_lbl + "\n{:.2f}".format(max_val),
mono_space = False,
scale=2
)

IMAGE CLASSIFICATION 897

Here you can see the result:

Note that the latency (136 ms) is almost double of what we got di-
rectly with the Arduino IDE. This is because we are using the IDE as
an interface and also the time to wait for the camera to be ready. If we
start the clock just before the inference:

The latency will drop to only 71 ms.

The NiclaV runs about half as fast when connected to the
IDE. The FPS should increase once disconnected.

Deploying the model 898

Post-Processing with LEDs

When working with embedded machine learning, we are looking for
devices that can continually proceed with the inference and result, tak-
ing some action directly on the physical world and not displaying the
result on a connected computer. To simulate this, we will light up a
different LED for each possible inference result.

To accomplish that, we should upload the code from GitHub or
change the last code to include the LEDs:

Marcelo Rovai - NICLA Vision - Image Classification with LEDs
Adapted from Edge Impulse - OpenMV Image Classification Example
@24Aug23

import sensor, image, time, os, tf, uos, gc, pyb

ledRed = pyb.LED(1)
ledGre = pyb.LED(2)
ledBlu = pyb.LED(3)

sensor.reset() # Reset and initialize the sensor.
sensor.set_pixformat(sensor.RGB565) # Set pixl fmt to RGB565 (or GRAYSCALE)
sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240)
sensor.set_windowing((240, 240)) # Set 240x240 window.
sensor.skip_frames(time=2000) # Let the camera adjust.

net = None
labels = None

ledRed.off()
ledGre.off()

https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/Micropython/nicla_image_classification_LED.py

IMAGE CLASSIFICATION 899

ledBlu.off()

try:
Load built in model
labels, net = tf.load_builtin_model('trained')

except Exception as e:
raise Exception(e)

clock = time.clock()

def setLEDs(max_lbl):

if max_lbl == 'uncertain':
ledRed.on()
ledGre.off()
ledBlu.off()

if max_lbl == 'periquito':
ledRed.off()
ledGre.on()
ledBlu.off()

if max_lbl == 'robot':
ledRed.off()
ledGre.off()
ledBlu.on()

if max_lbl == 'background':
ledRed.off()
ledGre.off()
ledBlu.off()

while(True):
img = sensor.snapshot()
clock.tick() # Starts tracking elapsed time.

default settings just do one detection.
for obj in net.classify(img,

min_scale=1.0,
scale_mul=0.8,
x_overlap=0.5,

Deploying the model 900

y_overlap=0.5):
fps = clock.fps()
lat = clock.avg()

print("**********\nPrediction:")
img.draw_rectangle(obj.rect())
This combines the labels and confidence values into a list of tuples
predictions_list = list(zip(labels, obj.output()))

max_val = predictions_list[0][1]
max_lbl = 'background'
for i in range(len(predictions_list)):

val = predictions_list[i][1]
lbl = predictions_list[i][0]

if val > max_val:
max_val = val
max_lbl = lbl

Print label and turn on LED with the highest probability
if max_val < 0.8:

max_lbl = 'uncertain'

setLEDs(max_lbl)

print("{} with a prob of {:.2f}".format(max_lbl, max_val))
print("FPS: {:.2f} fps ==> latency: {:.0f} ms".format(fps, lat))

Draw label with highest probability to image viewer
img.draw_string(

10, 10,
max_lbl + "\n{:.2f}".format(max_val),
mono_space = False,
scale=2
)

Now, each time that a class scores a result greater than 0.8, the cor-
respondent LED will be lit:

• Led Red 0n: Uncertain (no class is over 0.8)

• Led Green 0n: Periquito > 0.8

• Led Blue 0n: Robot > 0.8

IMAGE CLASSIFICATION 901

• All LEDs Off: Background > 0.8

Here is the result:

In more detail

Image Classification (non-ofÏcial) Benchmark

Several development boards can be used for embedded machine learn-
ing (TinyML), and the most common ones for Computer Vision appli-
cations (consuming low energy), are the ESP32 CAM, the Seeed XIAO
ESP32S3 Sense, the Arduino Nicla Vison, and the Arduino Portenta.

Conclusion 902

Catching the opportunity, the same trained model was deployed on
the ESP-CAM, the XIAO, and the Portenta (in this one, the model was
trained again, using grayscaled images to be compatible with its cam-
era). Here is the result, deploying the models as Arduino’s Library:

Conclusion
Before we finish, consider that Computer Vision is more than just im-
age classification. For example, you can develop Edge Machine Learn-
ing projects around vision in several areas, such as:

• Autonomous Vehicles: Use sensor fusion, lidar data, and com-
puter vision algorithms to navigate and make decisions.

IMAGE CLASSIFICATION 903

• Healthcare: Automated diagnosis of diseases through MRI, X-
ray, and CT scan image analysis

• Retail: Automated checkout systems that identify products as
they pass through a scanner.

• Security and Surveillance: Facial recognition, anomaly detec-
tion, and object tracking in real-time video feeds.

• Augmented Reality: Object detection and classification to over-
lay digital information in the real world.

• Industrial Automation: Visual inspection of products, predic-
tive maintenance, and robot and drone guidance.

• Agriculture: Drone-based crop monitoring and automated har-
vesting.

• Natural Language Processing: Image captioning and visual
question answering.

• Gesture Recognition: For gaming, sign language translation,
and human-machine interaction.

• Content Recommendation: Image-based recommendation sys-
tems in e-commerce.

Resources
• Micropython codes

• Dataset

• Edge Impulse Project

https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/Micropython
https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/data
https://studio.edgeimpulse.com/public/273858/latest

905

Object Detection

Figure 20.5.: DALL·E 3 Prompt:
Cartoon in the style of the 1940s
or 1950s showcasing a spacious
industrial warehouse interior. A
conveyor belt is prominently fea-
tured, carrying a mixture of toy
wheels and boxes. The wheels are
distinguishable with their bright
yellow centers and black tires. The
boxes are white cubes painted with
alternating black and white pat-
terns. At the end of the mov-
ing conveyor stands a retro-styled
robot, equipped with tools and
sensors, diligently classifying and
counting the arriving wheels and
boxes. The overall aesthetic is
reminiscent of mid-century ani-
mation with bold lines and a clas-
sic color palette.

Introduction
This is a continuation of CV on Nicla Vision, now exploring Object
Detection on microcontrollers.

Introduction 906

Object Detection versus Image Classification

The main task with Image Classification models is to produce a list of
the most probable object categories present on an image, for example,
to identify a tabby cat just after his dinner:

OBJECT DETECTION 907

But what happens when the cat jumps near the wine glass? The
model still only recognizes the predominant category on the image,
the tabby cat:

And what happens if there is not a dominant category on the image?

Introduction 908

The model identifies the above image completely wrong as an “ash-
can,” possibly due to the color tonalities.

The model used in all previous examples is the MobileNet,
trained with a large dataset, the ImageNet.

To solve this issue, we need another type of model, where not only
multiple categories (or labels) can be found but also where the objects
are located on a given image.

As we can imagine, such models are much more complicated and
bigger, for example, the MobileNetV2 SSD FPN-Lite 320x320, trained
with the COCO dataset. This pre-trained object detection model is de-
signed to locate up to 10 objects within an image, outputting a bound-
ing box for each object detected. The below image is the result of such
a model running on a Raspberry Pi:

OBJECT DETECTION 909

Those models used for Object detection (such as the MobileNet SSD
or YOLO) usually have several MB in size, which is OK for use with
Raspberry Pi but unsuitable for use with embedded devices, where
the RAM usually is lower than 1M Bytes.

An innovative solution for Object Detection: FOMO

Edge Impulse launched in 2022, FOMO (Faster Objects, More Objects),
a novel solution to perform object detection on embedded devices, not
only on the Nicla Vision (Cortex M7) but also on Cortex M4F CPUs
(Arduino Nano33 and OpenMV M4 series) as well the Espressif ESP32
devices (ESP-CAM and XIAO ESP32S3 Sense).

In this Hands-On exercise, we will explore using FOMO with Ob-
ject Detection, not entering many details about the model itself. To
understand more about how the model works, you can go into the ofÏ-
cial FOMO announcement by Edge Impulse, where Louis Moreau and
Mat Kelcey explain in detail how it works.

The Object Detection Project Goal

All Machine Learning projects need to start with a detailed goal. Let’s
assume we are in an industrial facility and must sort and count wheels
and special boxes.

https://docs.edgeimpulse.com/docs/edge-impulse-studio/learning-blocks/object-detection/fomo-object-detection-for-constrained-devices
https://www.edgeimpulse.com/blog/announcing-fomo-faster-objects-more-objects
https://www.edgeimpulse.com/blog/announcing-fomo-faster-objects-more-objects

The Object Detection Project Goal 910

In other words, we should perform a multi-label classification,
where each image can have three classes:

• Background (No objects)

• Box

• Wheel

Here are some not labeled image samples that we should use to de-
tect the objects (wheels and boxes):

We are interested in which object is in the image, its location (cen-
troid), and how many we can find on it. The object’s size is not detected
with FOMO, as with MobileNet SSD or YOLO, where the Bounding
Box is one of the model outputs.

We will develop the project using the Nicla Vision for image capture
and model inference. The ML project will be developed using the Edge
Impulse Studio. But before starting the object detection project in the
Studio, let’s create a raw dataset (not labeled) with images that contain
the objects to be detected.

OBJECT DETECTION 911

Data Collection

We can use the Edge Impulse Studio, the OpenMV IDE, your phone,
or other devices for the image capture. Here, we will use again the
OpenMV IDE for our purpose.

Collecting Dataset with OpenMV IDE

First, create in your computer a folder where your data will be saved,
for example, “data.” Next, on the OpenMV IDE, go to Tools > Dataset
Editor and select New Dataset to start the dataset collection:

Edge impulse suggests that the objects should be of similar size and
not overlapping for better performance. This is OK in an industrial
facility, where the camera should be fixed, keeping the same distance
from the objects to be detected. Despite that, we will also try with
mixed sizes and positions to see the result.

We will not create separate folders for our images because
each contains multiple labels.

Connect the Nicla Vision to the OpenMV IDE and run the dataset_-
capture_script.py. Clicking on the Capture Image button will start
capturing images:

Edge Impulse Studio 912

We suggest around 50 images mixing the objects and varying the
number of each appearing on the scene. Try to capture different angles,
backgrounds, and light conditions.

The stored images use a QVGA frame size 320x240 and
RGB565 (color pixel format).

After capturing your dataset, close the Dataset Editor Tool on the
Tools > Dataset Editor.

Edge Impulse Studio

Setup the project

Go to Edge Impulse Studio, enter your credentials at Login (or create
an account), and start a new project.

https://www.edgeimpulse.com/

OBJECT DETECTION 913

Here, you can clone the project developed for this hands-
on: NICLA_Vision_Object_Detection.

On your Project Dashboard, go down and on Project info and select
Bounding boxes (object detection) and Nicla Vision as your Target
Device:

https://studio.edgeimpulse.com/public/292737/latest

Edge Impulse Studio 914

Uploading the unlabeled data

On Studio, go to the Data acquisition tab, and on the UPLOAD DATA
section, upload from your computer files captured.

You can leave for the Studio to split your data automatically
between Train and Test or do it manually.

OBJECT DETECTION 915

All the not labeled images (51) were uploaded but they still need to
be labeled appropriately before using them as a dataset in the project.
The Studio has a tool for that purpose, which you can find in the link
Labeling queue (51).

There are two ways you can use to perform AI-assisted labeling on
the Edge Impulse Studio (free version):

• Using yolov5
• Tracking objects between frames

Edge Impulse launched an auto-labeling feature for Enter-
prise customers, easing labeling tasks in object detection
projects.

Ordinary objects can quickly be identified and labeled using an
existing library of pre-trained object detection models from YOLOv5
(trained with the COCO dataset). But since, in our case, the objects are
not part of COCO datasets, we should select the option of tracking
objects. With this option, once you draw bounding boxes and label
the images in one frame, the objects will be tracked automatically from
frame to frame, partially labeling the new ones (not all are correctly
labeled).

You can use the EI uploader to import your data if you al-
ready have a labeled dataset containing bounding boxes.

Labeling the Dataset

Starting with the first image of your unlabeled data, use your mouse
to drag a box around an object to add a label. Then click Save labels
to advance to the next item.

Continue with this process until the queue is empty. At the end, all
images should have the objects labeled as those samples below:

https://docs.edgeimpulse.com/docs/edge-impulse-studio/data-acquisition/auto-labeler
https://docs.edgeimpulse.com/docs/tools/edge-impulse-cli/cli-uploader#bounding-boxes

Edge Impulse Studio 916

Next, review the labeled samples on the Data acquisition tab. If
one of the labels was wrong, you can edit it using the three dots menu
after the sample name:

You will be guided to replace the wrong label, correcting the dataset.

OBJECT DETECTION 917

The Impulse Design

In this phase, you should define how to:

• Pre-processing consists of resizing the individual images from
320 x 240 to 96 x 96 and squashing them (squared form, with-
out cropping). Afterwards, the images are converted from RGB
to Grayscale.

• Design a Model, in this case, “Object Detection.”

Preprocessing all dataset

In this section, select Color depth as Grayscale, which is suitable for
use with FOMO models and Save parameters.

The Impulse Design 918

The Studio moves automatically to the next section, Generate
features, where all samples will be pre-processed, resulting in a
dataset with individual 96x96x1 images or 9,216 features.

The feature explorer shows that all samples evidence a good separa-
tion after the feature generation.

One of the samples (46) apparently is in the wrong space,

OBJECT DETECTION 919

but clicking on it can confirm that the labeling is correct.

Model Design, Training, and Test

We will use FOMO, an object detection model based on MobileNetV2
(alpha 0.35) designed to coarsely segment an image into a grid of back-
ground vs objects of interest (here, boxes and wheels).

FOMO is an innovative machine learning model for object detection,
which can use up to 30 times less energy and memory than traditional
models like Mobilenet SSD and YOLOv5. FOMO can operate on micro-
controllers with less than 200 KB of RAM. The main reason this is pos-
sible is that while other models calculate the object’s size by drawing a
square around it (bounding box), FOMO ignores the size of the image,
providing only the information about where the object is located in the
image, by means of its centroid coordinates.

How FOMO works?

FOMO takes the image in grayscale and divides it into blocks of pix-
els using a factor of 8. For the input of 96x96, the grid would be 12x12
(96/8=12). Next, FOMO will run a classifier through each pixel block
to calculate the probability that there is a box or a wheel in each of
them and, subsequently, determine the regions which have the high-
est probability of containing the object (If a pixel block has no objects,
it will be classified as background). From the overlap of the final region,
the FOMO provides the coordinates (related to the image dimensions)
of the centroid of this region.

Model Design, Training, and Test 920

For training, we should select a pre-trained model. Let’s use the FOMO
(Faster Objects, More Objects) MobileNetV2 0.35‘. This model
uses around 250KB RAM and 80KB of ROM (Flash), which suits well
with our board since it has 1MB of RAM and ROM.

Regarding the training hyper-parameters, the model will be trained
with:

OBJECT DETECTION 921

• Epochs: 60,
• Batch size: 32
• Learning Rate: 0.001.

For validation during training, 20% of the dataset (validation_dataset)
will be spared. For the remaining 80% (train_dataset), we will apply
Data Augmentation, which will randomly flip, change the size and
brightness of the image, and crop them, artificially increasing the num-
ber of samples on the dataset for training.

As a result, the model ends with practically 1.00 in the F1 score, with
a similar result when using the Test data.

Note that FOMO automatically added a 3rd label back-
ground to the two previously defined (box and wheel).

In object detection tasks, accuracy is generally not the pri-
mary evaluation metric. Object detection involves classi-
fying objects and providing bounding boxes around them,
making it a more complex problem than simple classifica-
tion. The issue is that we do not have the bounding box,
only the centroids. In short, using accuracy as a metric
could be misleading and may not provide a complete un-
derstanding of how well the model is performing. Because
of that, we will use the F1 score.

Test model with “Live Classification”

Since Edge Impulse ofÏcially supports the Nicla Vision, let’s connect it
to the Studio. For that, follow the steps:

https://learnopencv.com/mean-average-precision-map-object-detection-model-evaluation-metric/

Model Design, Training, and Test 922

• Download the last EI Firmware and unzip it.

• Open the zip file on your computer and select the uploader re-
lated to your OS:

• Put the Nicla-Vision on Boot Mode, pressing the reset button
twice.

• Execute the specific batch code for your OS for uploading the
binary (arduino-nicla-vision.bin) to your board.

Go to Live classification section at EI Studio, and using webUSB,
connect your Nicla Vision:

Once connected, you can use the Nicla to capture actual images to
be tested by the trained model on Edge Impulse Studio.

https://cdn.edgeimpulse.com/firmware/arduino-nicla-vision.zip

OBJECT DETECTION 923

One thing to be noted is that the model can produce false posi-
tives and negatives. This can be minimized by defining a proper
Confidence Threshold (use the Three dots menu for the set-up).
Try with 0.8 or more.

Deploying the Model
Select OpenMV Firmware on the Deploy Tab and press [Build].

When you try to connect the Nicla with the OpenMV IDE again,
it will try to update its FW. Choose the option Load a specific

Deploying the Model 924

firmware instead.

You will find a ZIP file on your computer from the Studio. Open it:

Load the .bin file to your board:

After the download is finished, a pop-up message will be displayed.
Press OK, and open the script ei_object_detection.py downloaded
from the Studio.

Before running the script, let’s change a few lines. Note that you
can leave the window definition as 240 x 240 and the camera capturing
images as QVGA/RGB. The captured image will be pre-processed by
the FW deployed from Edge Impulse

Edge Impulse - OpenMV Object Detection Example

import sensor, image, time, os, tf, math, uos, gc

sensor.reset() # Reset and initialize the sensor.
sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE)
sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240)
sensor.set_windowing((240, 240)) # Set 240x240 window.

OBJECT DETECTION 925

sensor.skip_frames(time=2000) # Let the camera adjust.

net = None
labels = None

Redefine the minimum confidence, for example, to 0.8 to minimize
false positives and negatives.

min_confidence = 0.8

Change if necessary, the color of the circles that will be used to dis-
play the detected object’s centroid for a better contrast.

try:
Load built in model
labels, net = tf.load_builtin_model('trained')

except Exception as e:
raise Exception(e)

colors = [# Add more colors if you are detecting more than 7 types of classes at once.
(255, 255, 0), # background: yellow (not used)
(0, 255, 0), # cube: green
(255, 0, 0), # wheel: red
(0, 0, 255), # not used
(255, 0, 255), # not used
(0, 255, 255), # not used
(255, 255, 255), # not used

]

Keep the remaining code as it is and press the green Play button
to run the code:

Deploying the Model 926

On the camera view, we can see the objects with their centroids
marked with 12 pixel-fixed circles (each circle has a distinct color,
depending on its class). On the Serial Terminal, the model shows the
labels detected and their position on the image window (240X240).

Be ware that the coordinate origin is in the upper left cor-
ner.

Note that the frames per second rate is around 8 fps (similar to what
we got with the Image Classification project). This happens because
FOMO is cleverly built over a CNN model, not with an object detec-
tion model like the SSD MobileNet. For example, when running a
MobileNetV2 SSD FPN-Lite 320x320 model on a Raspberry Pi 4, the

OBJECT DETECTION 927

latency is around 5 times higher (around 1.5 fps)
Here is a short video showing the inference results: https://youtu.

be/JbpoqRp3BbM

Conclusion
FOMO is a significant leap in the image processing space, as Louis
Moreau and Mat Kelcey put it during its launch in 2022:

FOMO is a ground-breaking algorithm that brings
real-time object detection, tracking, and counting to
microcontrollers for the first time.

Multiple possibilities exist for exploring object detection (and, more
precisely, counting them) on embedded devices, for example, to ex-
plore the Nicla doing sensor fusion (camera + microphone) and object
detection. This can be very useful on projects involving bees, for exam-
ple.

Resources
• Edge Impulse Project

https://youtu.be/JbpoqRp3BbM
https://youtu.be/JbpoqRp3BbM
https://studio.edgeimpulse.com/public/292737/latest

929

Keyword Spotting (KWS)

Figure 20.6.: DALL·E 3 Prompt:
1950s style cartoon scene set in a
vintage audio research room. Two
Afro-American female scientists
are at the center. One holds a mag-
nifying glass, closely examining
ancient circuitry, while the other
takes notes. On their wooden ta-
ble, there are multiple boards with
sensors, notably featuring a micro-
phone. Behind these boards, a com-
puter with a large, rounded back
displays the Arduino IDE. The
IDE showcases code for LED pin
assignments and machine learn-
ing inference for voice command
detection. A distinct window in
the IDE, the Serial Monitor, re-
veals outputs indicating the spo-
ken commands ‘yes’ and ‘no’. The
room ambiance is nostalgic with
vintage lamps, classic audio analy-
sis tools, and charts depicting FFT
graphs and time-domain curves.

Introduction
Having already explored the Nicla Vision board in the Image Classi-
fication and Object Detection applications, we are now shifting our fo-

How does a voice assistant work? 930

cus to voice-activated applications with a project on Keyword Spotting
(KWS).

As introduced in the Feature Engineering for Audio Classification
Hands-On tutorial, Keyword Spotting (KWS) is integrated into many
voice recognition systems, enabling devices to respond to specific
words or phrases. While this technology underpins popular devices
like Google Assistant or Amazon Alexa, it’s equally applicable and
feasible on smaller, low-power devices. This tutorial will guide you
through implementing a KWS system using TinyML on the Nicla
Vision development board equipped with a digital microphone.

Our model will be designed to recognize keywords that can trigger
device wake-up or specific actions, bringing them to life with voice-
activated commands.

How does a voice assistant work?

As said, voice assistants on the market, like Google Home or Amazon
Echo-Dot, only react to humans when they are “waked up” by partic-
ular keywords such as ” Hey Google” on the first one and “Alexa” on
the second.

In other words, recognizing voice commands is based on a multi-
stage model or Cascade Detection.

KEYWORD SPOTTING (KWS) 931

Stage 1: A small microprocessor inside the Echo Dot or Google
Home continuously listens, waiting for the keyword to be spotted,
using a TinyML model at the edge (KWS application).

Stage 2: Only when triggered by the KWS application on Stage 1 is
the data sent to the cloud and processed on a larger model.

The video below shows an example of a Google Assistant being pro-
grammed on a Raspberry Pi (Stage 2), with an Arduino Nano 33 BLE
as the TinyML device (Stage 1).

https://youtu.be/e_OPgcnsyvM

To explore the above Google Assistant project, please see
the tutorial: Building an Intelligent Voice Assistant From
Scratch.

In this KWS project, we will focus on Stage 1 (KWS or Keyword Spot-
ting), where we will use the Nicla Vision, which has a digital micro-
phone that will be used to spot the keyword.

The KWS Hands-On Project

The diagram below gives an idea of how the final KWS application
should work (during inference):

https://youtu.be/e_OPgcnsyvM
https://www.hackster.io/mjrobot/building-an-intelligent-voice-assistant-from-scratch-2199c3
https://www.hackster.io/mjrobot/building-an-intelligent-voice-assistant-from-scratch-2199c3

Dataset 932

Our KWS application will recognize four classes of sound:

• YES (Keyword 1)
• NO (Keyword 2)
• NOISE (no words spoken; only background noise is present)
• UNKNOW (a mix of different words than YES and NO)

For real-world projects, it is always advisable to include
other sounds besides the keywords, such as “Noise” (or
Background) and “Unknown.”

The Machine Learning workflow

The main component of the KWS application is its model. So, we must
train such a model with our specific keywords, noise, and other words
(the “unknown”):

Dataset
The critical component of any Machine Learning Workflow is the
dataset. Once we have decided on specific keywords, in our case

KEYWORD SPOTTING (KWS) 933

(YES and NO), we can take advantage of the dataset developed by
Pete Warden, “Speech Commands: A Dataset for Limited-Vocabulary
Speech Recognition.” This dataset has 35 keywords (with +1,000
samples each), such as yes, no, stop, and go. In words such as yes and
no, we can get 1,500 samples.

You can download a small portion of the dataset from Edge Studio
(Keyword spotting pre-built dataset), which includes samples from the
four classes we will use in this project: yes, no, noise, and background.
For this, follow the steps below:

• Download the keywords dataset.
• Unzip the file to a location of your choice.

Uploading the dataset to the Edge Impulse Studio

Initiate a new project at Edge Impulse Studio (EIS) and select the
Upload Existing Data tool in the Data Acquisition section. Choose
the files to be uploaded:

Define the Label, select Automatically split between train and
test, and Upload data to the EIS. Repeat for all classes.

https://arxiv.org/pdf/1804.03209.pdf
https://arxiv.org/pdf/1804.03209.pdf
https://docs.edgeimpulse.com/docs/pre-built-datasets/keyword-spotting
https://cdn.edgeimpulse.com/datasets/keywords2.zip

Dataset 934

The dataset will now appear in the Data acquisition section. Note
that the approximately 6,000 samples (1,500 for each class) are split into
Train (4,800) and Test (1,200) sets.

KEYWORD SPOTTING (KWS) 935

Capturing additional Audio Data

Although we have a lot of data from Pete’s dataset, collecting some
words spoken by us is advised. When working with accelerometers,
creating a dataset with data captured by the same type of sensor is
essential. In the case of sound, this is optional because what we will
classify is, in reality, audio data.

The key difference between sound and audio is the type
of energy. Sound is mechanical perturbation (longitudinal
sound waves) that propagate through a medium, causing
variations of pressure in it. Audio is an electrical (analog or
digital) signal representing sound.

When we pronounce a keyword, the sound waves should be con-
verted to audio data. The conversion should be done by sampling the
signal generated by the microphone at a 16KHz frequency with 16-bit
per sample amplitude.

So, any device that can generate audio data with this basic specifica-
tion (16KHz/16bits) will work fine. As a device, we can use the NiclaV,
a computer, or even your mobile phone.

Dataset 936

Using the NiclaV and the Edge Impulse Studio

As we learned in the chapter Setup Nicla Vision, EIS ofÏcially supports
the Nicla Vision, which simplifies the capture of the data from its sen-
sors, including the microphone. So, please create a new project on EIS
and connect the Nicla to it, following these steps:

• Download the last updated EIS Firmware and unzip it.

• Open the zip file on your computer and select the uploader cor-
responding to your OS:

• Put the NiclaV in Boot Mode by pressing the reset button twice.

• Upload the binary arduino-nicla-vision.bin to your board by run-
ning the batch code corresponding to your OS.

Go to your project on EIS, and on the Data Acquisition tab, select
WebUSB. A window will pop up; choose the option that shows that the
Nicla is paired and press [Connect].

You can choose which sensor data to pick in the Collect Data sec-
tion on the Data Acquisition tab. Select: Built-in microphone, de-
fine your label (for example, yes), the sampling Frequency[16000Hz],
and the Sample length (in milliseconds), for example [10s].
Start sampling.

https://cdn.edgeimpulse.com/firmware/arduino-nicla-vision.zip

KEYWORD SPOTTING (KWS) 937

Data on Pete’s dataset have a length of 1s, but the recorded samples
are 10s long and must be split into 1s samples. Click on three dots
after the sample name and select Split sample.

A window will pop up with the Split tool.

Dataset 938

Once inside the tool, split the data into 1-second (1000 ms) records.
If necessary, add or remove segments. This procedure should be re-
peated for all new samples.

Using a smartphone and the EI Studio

You can also use your PC or smartphone to capture audio data, using
a sampling frequency of 16KHz and a bit depth of 16.

Go to Devices, scan the QR Code using your phone, and click on
the link. A data Collection app will appear in your browser. Select
Collecting Audio, and define your Label, data capture Length, and
Category.

KEYWORD SPOTTING (KWS) 939

Repeat the same procedure used with the NiclaV.

Note that any app, such as Audacity, can be used for audio
recording, provided you use 16KHz/16-bit depth samples.

Creating Impulse (Pre-Process / Model defini-
tion)

An impulse takes raw data, uses signal processing to extract features, and
then uses a learning block to classify new data.

https://www.audacityteam.org/

Creating Impulse (Pre-Process / Model definition) 940

Impulse Design

First, we will take the data points with a 1-second window, augment-
ing the data and sliding that window in 500ms intervals. Note that the
option zero-pad data is set. It is essential to fill with ‘zeros’ samples
smaller than 1 second (in some cases, some samples can result smaller
than the 1000 ms window on the split tool to avoid noise and spikes).

Each 1-second audio sample should be pre-processed and converted
to an image (for example, 13 x 49 x 1). As discussed in the Feature
Engineering for Audio Classification Hands-On tutorial, we will use
Audio (MFCC), which extracts features from audio signals using Mel
Frequency Cepstral CoefÏcients, which are well suited for the human
voice, our case here.

Next, we select the Classification block to build our model from
scratch using a Convolution Neural Network (CNN).

Alternatively, you can use the Transfer Learning
(Keyword Spotting) block, which fine-tunes a pre-
trained keyword spotting model on your data. This
approach has good performance with relatively small
keyword datasets.

Pre-Processing (MFCC)

The following step is to create the features to be trained in the next
phase:

https://en.wikipedia.org/wiki/Mel-frequency_cepstrum
https://en.wikipedia.org/wiki/Mel-frequency_cepstrum

KEYWORD SPOTTING (KWS) 941

We could keep the default parameter values, but we will use the DSP
Autotune parameters option.

We will take the Raw features (our 1-second, 16KHz sampled audio
data) and use the MFCC processing block to calculate the Processed
features. For every 16,000 raw features (16,000 x 1 second), we will
get 637 processed features (13 x 49).

The result shows that we only used a small amount of memory to
pre-process data (16KB) and a latency of 34ms, which is excellent. For
example, on an Arduino Nano (Cortex-M4f @ 64MHz), the same pre-

Model Design and Training 942

process will take around 480ms. The parameters chosen, such as the
FFT length [512], will significantly impact the latency.

Now, let’s Save parameters and move to the Generated features
tab, where the actual features will be generated. Using UMAP, a di-
mension reduction technique, the Feature explorer shows how the
features are distributed on a two-dimensional plot.

The result seems OK, with a visually clear separation between yes
features (in red) and no features (in blue). The unknown features seem
nearer to the no space than the yes. This suggests that the keyword no
has more propensity to false positives.

Going under the hood

To understand better how the raw sound is preprocessed, look at the
Feature Engineering for Audio Classification chapter. You can play with
the MFCC features generation by downloading this notebook from
GitHub or [Opening it In Colab]

Model Design and Training
We will use a simple Convolution Neural Network (CNN) model,
tested with 1D and 2D convolutions. The basic architecture has two

https://umap-learn.readthedocs.io/en/latest/
https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/KWS_MFCC_Analysis.ipynb
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/KWS_MFCC_Analysis.ipynb

KEYWORD SPOTTING (KWS) 943

blocks of Convolution + MaxPooling ([8] and [16] filters, respectively)
and a Dropout of [0.25] for the 1D and [0.5] for the 2D. For the last
layer, after Flattening, we have [4] neurons, one for each class:

As hyper-parameters, we will have a Learning Rate of [0.005] and
a model trained by [100] epochs. We will also include a data augmen-
tation method based on SpecAugment. We trained the 1D and the 2D
models with the same hyperparameters. The 1D architecture had a bet-
ter overall result (90.5% accuracy when compared with 88% of the 2D,
so we will use the 1D.

https://arxiv.org/abs/1904.08779

Model Design and Training 944

Using 1D convolutions is more efÏcient because it requires
fewer parameters than 2D convolutions, making them
more suitable for resource-constrained environments.

It is also interesting to pay attention to the 1D Confusion Matrix. The
F1 Score for yes is 95%, and for no, 91%. That was expected by what
we saw with the Feature Explorer (no and unknown at close distance).
In trying to improve the result, you can inspect closely the results of
the samples with an error.

KEYWORD SPOTTING (KWS) 945

Listen to the samples that went wrong. For example, for yes, most
of the mistakes were related to a yes pronounced as “yeh”. You can
acquire additional samples and then retrain your model.

Going under the hood

If you want to understand what is happening “under the hood,” you
can download the pre-processed dataset (MFCC training data) from
the Dashboard tab and run this Jupyter Notebook, playing with the
code or [Opening it In Colab]. For example, you can analyze the accu-
racy by each epoch:

Testing

Testing the model with the data reserved for training (Test Data), we
got an accuracy of approximately 76%.

https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/KWS_CNN_training.ipynb
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/KWS_CNN_training.ipynb

Deploy and Inference 946

Inspecting the F1 score, we can see that for YES, we got 0.90, an excel-
lent result since we expect to use this keyword as the primary “trigger”
for our KWS project. The worst result (0.70) is for UNKNOWN, which
is OK.

For NO, we got 0.72, which was expected, but to improve this result,
we can move the samples that were not correctly classified to the train-
ing dataset and then repeat the training process.

Live Classification

We can proceed to the project’s next step but also consider that it is
possible to perform Live Classificationusing the NiclaV or a smart-
phone to capture live samples, testing the trained model before deploy-
ment on our device.

Deploy and Inference

The EIS will package all the needed libraries, preprocessing functions,
and trained models, downloading them to your computer. Go to
the Deployment section, select Arduino Library, and at the bottom,
choose Quantized (Int8) and press Build.

KEYWORD SPOTTING (KWS) 947

When the Build button is selected, a zip file will be created and
downloaded to your computer. On your Arduino IDE, go to the
Sketch tab, select the option Add .ZIP Library, and Choose the .zip
file downloaded by EIS:

Post-processing 948

Now, it is time for a real test. We will make inferences while com-
pletely disconnected from the EIS. Let’s use the NiclaV code example
created when we deployed the Arduino Library.

In your Arduino IDE, go to the File/Examples tab, look for your
project, and select nicla-vision/nicla-vision_microphone (or
nicla-vision_microphone_continuous)

Press the reset button twice to put the NiclaV in boot mode, upload
the sketch to your board, and test some real inferences:

Post-processing
Now that we know the model is working since it detects our keywords,
let’s modify the code to see the result with the NiclaV completely of-
fline (disconnected from the PC and powered by a battery, a power

KEYWORD SPOTTING (KWS) 949

bank, or an independent 5V power supply).
The idea is that whenever the keyword YES is detected, the Green

LED will light; if a NO is heard, the Red LED will light, if it is a UN-
KNOW, the Blue LED will light; and in the presence of noise (No Key-
word), the LEDs will be OFF.

We should modify one of the code examples. Let’s do it now with
the nicla-vision_microphone_continuous.

Start with initializing the LEDs:
...
void setup()
{

// Once you finish debugging your code, you can comment or delete the Serial part of the code
Serial.begin(115200);
while (!Serial);
Serial.println("Inferencing - Nicla Vision KWS with LEDs");

// Pins for the built-in RGB LEDs on the Arduino NiclaV
pinMode(LEDR, OUTPUT);
pinMode(LEDG, OUTPUT);
pinMode(LEDB, OUTPUT);

// Ensure the LEDs are OFF by default.
// Note: The RGB LEDs on the Arduino Nicla Vision
// are ON when the pin is LOW, OFF when HIGH.
digitalWrite(LEDR, HIGH);
digitalWrite(LEDG, HIGH);
digitalWrite(LEDB, HIGH);

...
}

Create two functions, turn_off_leds() function , to turn off all RGB
LEDs

**
* @brief turn_off_leds function - turn-off all RGB LEDs
*/
void turn_off_leds(){

digitalWrite(LEDR, HIGH);
digitalWrite(LEDG, HIGH);
digitalWrite(LEDB, HIGH);

}

Another turn_on_led() function is used to turn on the RGB LEDs
according to the most probable result of the classifier.

Post-processing 950

/**
* @brief turn_on_leds function used to turn on the RGB LEDs
* @param[in] pred_index
* no: [0] ==> Red ON
* noise: [1] ==> ALL OFF
* unknown: [2] ==> Blue ON
* Yes: [3] ==> Green ON
*/
void turn_on_leds(int pred_index) {

switch (pred_index)
{

case 0:
turn_off_leds();
digitalWrite(LEDR, LOW);
break;

case 1:
turn_off_leds();
break;

case 2:
turn_off_leds();
digitalWrite(LEDB, LOW);
break;

case 3:
turn_off_leds();
digitalWrite(LEDG, LOW);
break;

}
}

And change the // print the predictions portion of the code on
loop():
...

if (++print_results >= (EI_CLASSIFIER_SLICES_PER_MODEL_WINDOW)) {
// print the predictions
ei_printf("Predictions ");
ei_printf("(DSP: %d ms., Classification: %d ms., Anomaly: %d ms.)",

result.timing.dsp, result.timing.classification, result.timing.anomaly);
ei_printf(": \n");

KEYWORD SPOTTING (KWS) 951

int pred_index = 0; // Initialize pred_index
float pred_value = 0; // Initialize pred_value

for (size_t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) {
if (result.classification[ix].value > pred_value){

pred_index = ix;
pred_value = result.classification[ix].value;

}
// ei_printf(" %s: ", result.classification[ix].label);
// ei_printf_float(result.classification[ix].value);
// ei_printf("\n");

}
ei_printf(" PREDICTION: ==> %s with probability %.2f\n",

result.classification[pred_index].label, pred_value);
turn_on_leds (pred_index);

#if EI_CLASSIFIER_HAS_ANOMALY == 1
ei_printf(" anomaly score: ");
ei_printf_float(result.anomaly);
ei_printf("\n");

#endif

print_results = 0;
}

}

...

You can find the complete code on the project’s GitHub.
Upload the sketch to your board and test some real inferences. The

idea is that the Green LED will be ON whenever the keyword YES is
detected, the Red will lit for a NO, and any other word will turn on the
Blue LED. All the LEDs should be off if silence or background noise is
present. Remember that the same procedure can “trigger” an external
device to perform a desired action instead of turning on an LED, as we
saw in the introduction.

https://youtu.be/25Rd76OTXLY

Conclusion
You will find the notebooks and codeused in this hands-on
tutorial on the GitHub repository.

https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/KWS/nicla_vision_microphone_continuous_LED
https://youtu.be/25Rd76OTXLY
https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/KWS

Resources 952

Before we finish, consider that Sound Classification is more than just
voice. For example, you can develop TinyML projects around sound in
several areas, such as:

• Security (Broken Glass detection, Gunshot)
• Industry (Anomaly Detection)
• Medical (Snore, Cough, Pulmonary diseases)
• Nature (Beehive control, insect sound, pouching mitigation)

Resources
• Subset of Google Speech Commands Dataset

• KWS MFCC Analysis Colab Notebook

• KWS_CNN_training Colab Notebook

• Arduino Post-processing Code

• Edge Impulse Project

https://cdn.edgeimpulse.com/datasets/keywords2.zip
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/KWS_MFCC_Analysis.ipynb
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/KWS_CNN_training.ipynb
https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/KWS/nicla_vision_microphone_continuous_LED
https://studio.edgeimpulse.com/public/292418/latest

953

Motion Classification and
Anomaly Detection

Figure 20.7.: DALL·E 3 Prompt:
1950s style cartoon illustration
depicting a movement research
room. In the center of the room,
there’s a simulated container used
for transporting goods on trucks,
boats, and forklifts. The container
is detailed with rivets and mark-
ings typical of industrial cargo
boxes. Around the container,
the room is filled with vintage
equipment, including an oscillo-
scope, various sensor arrays, and
large paper rolls of recorded data.
The walls are adorned with edu-
cational posters about transporta-
tion safety and logistics. The over-
all ambiance of the room is nostal-
gic and scientific, with a hint of in-
dustrial flair.

Introduction 954

Introduction

Transportation is the backbone of global commerce. Millions of con-
tainers are transported daily via various means, such as ships, trucks,
and trains, to destinations worldwide. Ensuring these containers’ safe
and efÏcient transit is a monumental task that requires leveraging mod-
ern technology, and TinyML is undoubtedly one of them.

In this hands-on tutorial, we will work to solve real-world problems
related to transportation. We will develop a Motion Classification and
Anomaly Detection system using the Arduino Nicla Vision board, the
Arduino IDE, and the Edge Impulse Studio. This project will help us
understand how containers experience different forces and motions
during various phases of transportation, such as terrestrial and mar-
itime transit, vertical movement via forklifts, and stationary periods in
warehouses.

Learning Objectives

• Setting up the Arduino Nicla Vision Board
• Data Collection and Preprocessing
• Building the Motion Classification Model
• Implementing Anomaly Detection
• Real-world Testing and Analysis

By the end of this tutorial, you’ll have a working prototype that
can classify different types of motion and detect anomalies during
the transportation of containers. This knowledge can be a stepping
stone to more advanced projects in the burgeoning field of TinyML
involving vibration.

IMU Installation and testing

For this project, we will use an accelerometer. As discussed in the
Hands-On Tutorial, Setup Nicla Vision, the Nicla Vision Board has
an onboard 6-axis IMU: 3D gyroscope and 3D accelerometer, the
LSM6DSOX. Let’s verify if the LSM6DSOX IMU library is installed. If
not, install it.

https://www.st.com/resource/en/datasheet/lsm6dsox.pdf
https://github.com/arduino-libraries/Arduino_LSM6DSOX

MOTION CLASSIFICATION AND ANOMALY DETECTION 955

Next, go to Examples > Arduino_LSM6DSOX > SimpleAccelerometer
and run the accelerometer test. You can check if it works by opening
the IDE Serial Monitor or Plotter. The values are in g (earth gravity),
with a default range of +/- 4g:

Defining the Sampling frequency:

Choosing an appropriate sampling frequency is crucial for capturing
the motion characteristics you’re interested in studying. The Nyquist-
Shannon sampling theorem states that the sampling rate should be
at least twice the highest frequency component in the signal to recon-

IMU Installation and testing 956

struct it properly. In the context of motion classification and anomaly
detection for transportation, the choice of sampling frequency would
depend on several factors:

1. Nature of the Motion: Different types of transportation (terres-
trial, maritime, etc.) may involve different ranges of motion fre-
quencies. Faster movements may require higher sampling fre-
quencies.

2. Hardware Limitations: The Arduino Nicla Vision board and any
associated sensors may have limitations on how fast they can
sample data.

3. Computational Resources: Higher sampling rates will generate
more data, which might be computationally intensive, especially
critical in a TinyML environment.

4. Battery Life: A higher sampling rate will consume more power.
If the system is battery-operated, this is an important considera-
tion.

5. Data Storage: More frequent sampling will require more storage
space, another crucial consideration for embedded systems with
limited memory.

In many human activity recognition tasks, sampling rates of
around 50 Hz to 100 Hz are commonly used. Given that we are
simulating transportation scenarios, which are generally not high-
frequency events, a sampling rate in that range (50-100 Hz) might be
a reasonable starting point.

Let’s define a sketch that will allow us to capture our data with a
defined sampling frequency (for example, 50Hz):

/*
* Based on Edge Impulse Data Forwarder Example (Arduino)
- https://docs.edgeimpulse.com/docs/cli-data-forwarder

* Developed by M.Rovai @11May23
*/

/* Include --- */
#include <Arduino_LSM6DSOX.h>

/* Constant defines -- */
#define CONVERT_G_TO_MS2 9.80665f
#define FREQUENCY_HZ 50

MOTION CLASSIFICATION AND ANOMALY DETECTION 957

#define INTERVAL_MS (1000 / (FREQUENCY_HZ + 1))

static unsigned long last_interval_ms = 0;
float x, y, z;

void setup() {
Serial.begin(9600);
while (!Serial);

if (!IMU.begin()) {
Serial.println("Failed to initialize IMU!");
while (1);

}
}

void loop() {
if (millis() > last_interval_ms + INTERVAL_MS) {
last_interval_ms = millis();

if (IMU.accelerationAvailable()) {
// Read raw acceleration measurements from the device
IMU.readAcceleration(x, y, z);

// converting to m/s2
float ax_m_s2 = x * CONVERT_G_TO_MS2;
float ay_m_s2 = y * CONVERT_G_TO_MS2;
float az_m_s2 = z * CONVERT_G_TO_MS2;

Serial.print(ax_m_s2);
Serial.print("\t");
Serial.print(ay_m_s2);
Serial.print("\t");
Serial.println(az_m_s2);

}
}

}

Uploading the sketch and inspecting the Serial Monitor, we can see
that we are capturing 50 samples per second.

The Case Study: Simulated Container Transportation 958

Note that with the Nicla board resting on a table (with the
camera facing down), the z-axis measures around 9.8m/s2,
the expected earth acceleration.

The Case Study: Simulated Container Trans-
portation

We will simulate container (or better package) transportation through
different scenarios to make this tutorial more relatable and practical.
Using the built-in accelerometer of the Arduino Nicla Vision board,
we’ll capture motion data by manually simulating the conditions of:

1. Terrestrial Transportation (by road or train)
2. Maritime-associated Transportation
3. Vertical Movement via Fork-Lift
4. Stationary (Idle) period in a Warehouse

MOTION CLASSIFICATION AND ANOMALY DETECTION 959

From the above images, we can define for our simulation that primar-
ily horizontal movements (x or y axis) should be associated with the
“Terrestrial class,” Vertical movements (z-axis) with the “Lift Class,”
no activity with the “Idle class,” and movement on all three axes to
Maritime class.

Data Collection

For data collection, we can have several options. In a real case, we can
have our device, for example, connected directly to one container, and
the data collected on a file (for example .CSV) and stored on an SD
card (Via SPI connection) or an ofÒine repo in your computer. Data can
also be sent remotely to a nearby repository, such as a mobile phone,
using Bluetooth (as done in this project: Sensor DataLogger). Once
your dataset is collected and stored as a .CSV file, it can be uploaded
to the Studio using the CSV Wizard tool.

In this video, you can learn alternative ways to send data
to the Edge Impulse Studio.

https://www.containerhandbuch.de/chb_e/stra/index.html?/chb_e/stra/stra_02_03_03.htm
https://www.hackster.io/mjrobot/sensor-datalogger-50e44d
https://docs.edgeimpulse.com/docs/edge-impulse-studio/data-acquisition/csv-wizard
https://youtu.be/2KBPq_826WM

Data Collection 960

Connecting the device to Edge Impulse

We will connect the Nicla directly to the Edge Impulse Studio, which
will also be used for data pre-processing, model training, testing, and
deployment. For that, you have two options:

1. Download the latest firmware and connect it directly to the Data
Collection section.

2. Use the CLI Data Forwarder tool to capture sensor data from the
sensor and send it to the Studio.

Option 1 is more straightforward, as we saw in the Setup Nicla Vision
hands-on, but option 2 will give you more flexibility regarding captur-
ing your data, such as sampling frequency definition. Let’s do it with
the last one.

Please create a new project on the Edge Impulse Studio (EIS) and
connect the Nicla to it, following these steps:

1. Install the Edge Impulse CLI and the Node.js into your computer.
2. Upload a sketch for data capture (the one discussed previously

in this tutorial).
3. Use the CLI Data Forwarder to capture data from the Nicla’s ac-

celerometer and send it to the Studio, as shown in this diagram:

https://docs.edgeimpulse.com/docs/edge-impulse-cli/cli-data-forwarder
https://docs.edgeimpulse.com/docs/edge-impulse-cli/cli-installation
https://nodejs.org/en/
https://docs.edgeimpulse.com/docs/edge-impulse-cli/cli-data-forwarder

MOTION CLASSIFICATION AND ANOMALY DETECTION 961

Start the CLI Data Forwarder on your terminal, entering (if it is the
first time) the following command:

$ edge-impulse-data-forwarder --clean

Next, enter your EI credentials and choose your project, variables
(for example, accX, accY, and accZ), and device name (for example,
NiclaV:

https://docs.edgeimpulse.com/docs/edge-impulse-cli/cli-data-forwarder

Data Collection 962

Go to the Devices section on your EI Project and verify if the device
is connected (the dot should be green):

You can clone the project developed for this hands-on:
NICLA Vision Movement Classification.

Data Collection

On the Data Acquisition section, you should see that your board
[NiclaV] is connected. The sensor is available: [sensor with 3 axes
(accX, accY, accZ)] with a sampling frequency of [50Hz]. The Stu-
dio suggests a sample length of [10000] ms (10s). The last thing left is

https://studio.edgeimpulse.com/public/302078/latest

MOTION CLASSIFICATION AND ANOMALY DETECTION 963

defining the sample label. Let’s start with[terrestrial]:

Terrestrial (palettes in a Truck or Train), moving horizontally. Press
[Start Sample]and move your device horizontally, keeping one di-
rection over your table. After 10 s, your data will be uploaded to the
studio. Here is how the sample was collected:

As expected, the movement was captured mainly in the Y-axis
(green). In the blue, we see the Z axis, around -10 m/s2 (the Nicla has
the camera facing up).

As discussed before, we should capture data from all four Trans-
portation Classes. So, imagine that you have a container with a built-in
accelerometer facing the following situations:

Maritime (pallets in boats into an angry ocean). The movement is
captured on all three axes:

Data Collection 964

Lift (Palettes being handled vertically by a Forklift). Movement cap-
tured only in the Z-axis:

Idle (Paletts in a warehouse). No movement detected by the
accelerometer:

You can capture, for example, 2 minutes (twelve samples of 10 sec-
onds) for each of the four classes (a total of 8 minutes of data). Using
the three dots menu after each one of the samples, select 2 of them,
reserving them for the Test set. Alternatively, you can use the auto-
matic Train/Test Split tool on the Danger Zone of Dashboard tab.
Below, you can see the resulting dataset:

MOTION CLASSIFICATION AND ANOMALY DETECTION 965

Once you have captured your dataset, you can explore it in more
detail using the Data Explorer, a visual tool to find outliers or misla-
beled data (helping to correct them). The data explorer first tries to
extract meaningful features from your data (by applying signal pro-
cessing and neural network embeddings) and then uses a dimension-
ality reduction algorithm such as PCA or t-SNE to map these features
to a 2D space. This gives you a one-look overview of your complete
dataset.

In our case, the dataset seems OK (good separation). But the PCA
shows we can have issues between maritime (green) and lift (orange).

https://docs.edgeimpulse.com/docs/edge-impulse-studio/data-acquisition/data-explorer
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding

Impulse Design 966

This is expected, once on a boat, sometimes the movement can be only
“vertical”.

Impulse Design

The next step is the definition of our Impulse, which takes the raw
data and uses signal processing to extract features, passing them as
the input tensor of a learning block to classify new data. Go to Impulse
Design and Create Impulse. The Studio will suggest the basic design.
Let’s also add a second Learning Block for Anomaly Detection.

This second model uses a K-means model. If we imagine that we
could have our known classes as clusters, any sample that could not fit
on that could be an outlier, an anomaly such as a container rolling out
of a ship on the ocean or falling from a Forklift.

MOTION CLASSIFICATION AND ANOMALY DETECTION 967

The sampling frequency should be automatically captured, if not, en-
ter it: [50]Hz. The Studio suggests a Window Size of 2 seconds ([2000]
ms) with a sliding window of [20]ms. What we are defining in this step
is that we will pre-process the captured data (Time-Seres data), creat-
ing a tabular dataset features) that will be the input for a Neural Net-
works Classifier (DNN) and an Anomaly Detection model (K-Means),
as shown below:

Let’s dig into those steps and parameters to understand better what
we are doing here.

Data Pre-Processing Overview

Data pre-processing is extracting features from the dataset captured
with the accelerometer, which involves processing and analyzing the
raw data. Accelerometers measure the acceleration of an object along

Impulse Design 968

one or more axes (typically three, denoted as X, Y, and Z). These mea-
surements can be used to understand various aspects of the object’s
motion, such as movement patterns and vibrations.

Raw accelerometer data can be noisy and contain errors or irrelevant
information. Preprocessing steps, such as filtering and normalization,
can clean and standardize the data, making it more suitable for feature
extraction. In our case, we should divide the data into smaller seg-
ments or windows. This can help focus on specific events or activities
within the dataset, making feature extraction more manageable and
meaningful. The window size and overlap (window increase) choice
depend on the application and the frequency of the events of interest.
As a thumb rule, we should try to capture a couple of “cycles of data”.

With a sampling rate (SR) of 50Hz and a window size of 2
seconds, we will get 100 samples per axis, or 300 in total (3
axis x 2 seconds x 50 samples). We will slide this window
every 200ms, creating a larger dataset where each instance
has 300 raw features.

Once the data is preprocessed and segmented, you can extract fea-
tures that describe the motion’s characteristics. Some typical features
extracted from accelerometer data include:

• Time-domain features describe the data’s statistical properties
within each segment, such as mean, median, standard deviation,
skewness, kurtosis, and zero-crossing rate.

• Frequency-domain features are obtained by transforming the
data into the frequency domain using techniques like the Fast
Fourier Transform (FFT). Some typical frequency-domain fea-
tures include the power spectrum, spectral energy, dominant
frequencies (amplitude and frequency), and spectral entropy.

MOTION CLASSIFICATION AND ANOMALY DETECTION 969

• Time-frequency domain features combine the time and fre-
quency domain information, such as the Short-Time Fourier
Transform (STFT) or the Discrete Wavelet Transform (DWT).
They can provide a more detailed understanding of how the
signal’s frequency content changes over time.

In many cases, the number of extracted features can be large,
which may lead to overfitting or increased computational complexity.
Feature selection techniques, such as mutual information, correlation-
based methods, or principal component analysis (PCA), can help
identify the most relevant features for a given application and reduce
the dimensionality of the dataset. The Studio can help with such
feature importance calculations.

EI Studio Spectral Features

Data preprocessing is a challenging area for embedded machine learn-
ing, still, Edge Impulse helps overcome this with its digital signal pro-
cessing (DSP) preprocessing step and, more specifically, the Spectral
Features Block.

On the Studio, the collected raw dataset will be the input of a Spectral
Analysis block, which is excellent for analyzing repetitive motion, such
as data from accelerometers. This block will perform a DSP (Digital
Signal Processing), extracting features such as FFT or Wavelets.

For our project, once the time signal is continuous, we should use
FFT with, for example, a length of [32].

The per axis/channel Time Domain Statistical features are:

• RMS: 1 feature
• Skewness: 1 feature
• Kurtosis: 1 feature

The per axis/channel Frequency Domain Spectral features are:

• Spectral Power: 16 features (FFT Length/2)
• Skewness: 1 feature
• Kurtosis: 1 feature

So, for an FFT length of 32 points, the resulting output of the Spectral
Analysis Block will be 21 features per axis (a total of 63 features).

You can learn more about how each feature is calculated
by downloading the notebook Edge Impulse - Spectral
Features Block Analysis TinyML under the hood: Spectral
Analysis or opening it directly on Google CoLab.

https://docs.edgeimpulse.com/docs/edge-impulse-studio/processing-blocks/spectral-features
https://docs.edgeimpulse.com/docs/edge-impulse-studio/processing-blocks/spectral-features
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Digital_signal_processing#Wavelet
https://en.wikipedia.org/wiki/Root_mean_square
https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSkewness
https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FKurtosis
https://en.wikipedia.org/wiki/Spectral_density
https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/Motion_Classification/Edge_Impulse_Spectral_Features_Block.ipynb
https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/Motion_Classification/Edge_Impulse_Spectral_Features_Block.ipynb
https://www.hackster.io/mjrobot/tinyml-under-the-hood-spectral-analysis-94676c
https://www.hackster.io/mjrobot/tinyml-under-the-hood-spectral-analysis-94676c
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/Motion_Classification/Edge_Impulse_Spectral_Features_Block.ipynb

Impulse Design 970

Generating features

Once we understand what the pre-processing does, it is time to finish
the job. So, let’s take the raw data (time-series type) and convert it to
tabular data. For that, go to the Spectral Features section on the
Parameters tab, define the main parameters as discussed in the previ-
ous section ([FFT] with [32] points), and select[Save Parameters]:

At the top menu, select the Generate Features option and the
Generate Features button. Each 2-second window data will be
converted into one data point of 63 features.

The Feature Explorer will show those data in 2D using
UMAP. Uniform Manifold Approximation and Projection
(UMAP) is a dimension reduction technique that can
be used for visualization similarly to t-SNE but is also
applicable for general non-linear dimension reduction.

The visualization makes it possible to verify that after the feature
generation, the classes present keep their excellent separation, which
indicates that the classifier should work well. Optionally, you can ana-
lyze how important each one of the features is for one class compared
with others.

https://umap-learn.readthedocs.io/en/latest/

MOTION CLASSIFICATION AND ANOMALY DETECTION 971

Models Training

Our classifier will be a Dense Neural Network (DNN) that will have 63
neurons on its input layer, two hidden layers with 20 and 10 neurons,
and an output layer with four neurons (one per each class), as shown
here:

As hyperparameters, we will use a Learning Rate of [0.005], a Batch
size of [32], and [20]% of data for validation for [30] epochs. After
training, we can see that the accuracy is 98.5%. The cost of memory
and latency is meager.

Testing 972

For Anomaly Detection, we will choose the suggested features that
are precisely the most important ones in the Feature Extraction, plus
the accZ RMS. The number of clusters will be [32], as suggested by
the Studio:

Testing
We can verify how our model will behave with unknown data using
20% of the data left behind during the data capture phase. The result
was almost 95%, which is good. You can always work to improve the
results, for example, to understand what went wrong with one of the
wrong results. If it is a unique situation, you can add it to the training
dataset and then repeat it.

The default minimum threshold for a considered uncertain result
is [0.6] for classification and [0.3] for anomaly. Once we have four

MOTION CLASSIFICATION AND ANOMALY DETECTION 973

classes (their output sum should be 1.0), you can also set up a lower
threshold for a class to be considered valid (for example, 0.4). You
can Set confidence thresholds on the three dots menu, besides
the Classy all button.

You can also perform Live Classification with your device (which
should still be connected to the Studio).

Be aware that here, you will capture real data with your
device and upload it to the Studio, where an inference will
be taken using the trained model (But the model is NOT
in your device).

Deploy

It is time to deploy the preprocessing block and the trained model to
the Nicla. The Studio will package all the needed libraries, preprocess-
ing functions, and trained models, downloading them to your com-
puter. You should select the option Arduino Library, and at the bot-
tom, you can choose Quantized (Int8) or Unoptimized (float32)
and [Build]. A Zip file will be created and downloaded to your com-
puter.

Deploy 974

On your Arduino IDE, go to the Sketch tab, select Add.ZIP Library,
and Choose the.zip file downloaded by the Studio. A message will
appear in the IDE Terminal: Library installed.

Inference

Now, it is time for a real test. We will make inferences wholly discon-
nected from the Studio. Let’s change one of the code examples created
when you deploy the Arduino Library.

In your Arduino IDE, go to the File/Examples tab and look for your
project, and on examples, select Nicla_vision_fusion:

Note that the code created by Edge Impulse considers a sensor fusion
approach where the IMU (Accelerometer and Gyroscope) and the ToF
are used. At the beginning of the code, you have the libraries related
to our project, IMU and ToF:

/* Includes -- */
#include <NICLA_Vision_Movement_Classification_inferencing.h>
#include <Arduino_LSM6DSOX.h> //IMU
#include "VL53L1X.h" // ToF

You can keep the code this way for testing because the

MOTION CLASSIFICATION AND ANOMALY DETECTION 975

trained model will use only features pre-processed from
the accelerometer. But consider that you will write your
code only with the needed libraries for a real project.

And that is it!
You can now upload the code to your device and proceed with the

inferences. Press the Nicla [RESET] button twice to put it on boot mode
(disconnect from the Studio if it is still connected), and upload the
sketch to your board.

Now you should try different movements with your board (similar
to those done during data capture), observing the inference result of
each class on the Serial Monitor:

• Idle and lift classes:

• maritime and terrestrial:

Conclusion 976

Note that in all situations above, the value of the anomaly scorewas
smaller than 0.0. Try a new movement that was not part of the origi-
nal dataset, for example, “rolling” the Nicla, facing the camera upside-
down, as a container falling from a boat or even a boat accident:

• anomaly detection:

In this case, the anomaly is much bigger, over 1.00

Post-processing

Now that we know the model is working since it detects the move-
ments, we suggest that you modify the code to see the result with the
NiclaV completely ofÒine (disconnected from the PC and powered by
a battery, a power bank, or an independent 5V power supply).

The idea is to do the same as with the KWS project: if one specific
movement is detected, a specific LED could be lit. For example, if ter-
restrial is detected, the Green LED will light; if maritime, the Red LED
will light, if it is a lift, the Blue LED will light; and if no movement is de-
tected (idle), the LEDs will be OFF. You can also add a condition when
an anomaly is detected, in this case, for example, a white color can be
used (all e LEDs light simultaneously).

Conclusion
The notebooks and codeused in this hands-on tutorial will
be found on the GitHub repository.

Before we finish, consider that Movement Classification and Object
Detection can be utilized in many applications across various domains.
Here are some of the potential applications:

Case Applications

https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/Motion_Classification

MOTION CLASSIFICATION AND ANOMALY DETECTION 977

Industrial and Manufacturing

• Predictive Maintenance: Detecting anomalies in machinery mo-
tion to predict failures before they occur.

• Quality Control: Monitoring the motion of assembly lines or
robotic arms for precision assessment and deviation detection
from the standard motion pattern.

• Warehouse Logistics: Managing and tracking the movement of
goods with automated systems that classify different types of mo-
tion and detect anomalies in handling.

Healthcare

• Patient Monitoring: Detecting falls or abnormal movements in
the elderly or those with mobility issues.

• Rehabilitation: Monitoring the progress of patients recovering
from injuries by classifying motion patterns during physical ther-
apy sessions.

• Activity Recognition: Classifying types of physical activity for
fitness applications or patient monitoring.

Consumer Electronics

• Gesture Control: Interpreting specific motions to control
devices, such as turning on lights with a hand wave.

• Gaming: Enhancing gaming experiences with motion-
controlled inputs.

Transportation and Logistics

• Vehicle Telematics: Monitoring vehicle motion for unusual be-
havior such as hard braking, sharp turns, or accidents.

• CargoMonitoring: Ensuring the integrity of goods during trans-
port by detecting unusual movements that could indicate tamper-
ing or mishandling.

Smart Cities and Infrastructure

• Structural Health Monitoring: Detecting vibrations or move-
ments within structures that could indicate potential failures or
maintenance needs.

• TrafÏc Management: Analyzing the flow of pedestrians or vehi-
cles to improve urban mobility and safety.

Conclusion 978

Security and Surveillance

• Intruder Detection: Detecting motion patterns typical of unau-
thorized access or other security breaches.

• Wildlife Monitoring: Detecting poachers or abnormal animal
movements in protected areas.

Agriculture

• EquipmentMonitoring: Tracking the performance and usage of
agricultural machinery.

• Animal Behavior Analysis: Monitoring livestock movements to
detect behaviors indicating health issues or stress.

Environmental Monitoring

• Seismic Activity: Detecting irregular motion patterns that pre-
cede earthquakes or other geologically relevant events.

• Oceanography: Studying wave patterns or marine movements
for research and safety purposes.

Nicla 3D case

For real applications, as some described before, we can add a case to
our device, and Eoin Jordan, from Edge Impulse, developed a great
wearable and machine health case for the Nicla range of boards. It
works with a 10mm magnet, 2M screws, and a 16mm strap for human
and machine health use case scenarios. Here is the link: Arduino Nicla
Voice and Vision Wearable Case.

https://www.thingiverse.com/thing:5923305
https://www.thingiverse.com/thing:5923305

MOTION CLASSIFICATION AND ANOMALY DETECTION 979

The applications for motion classification and anomaly detection are
extensive, and the Arduino Nicla Vision is well-suited for scenarios
where low power consumption and edge processing are advantageous.
Its small form factor and efÏciency in processing make it an ideal
choice for deploying portable and remote applications where real-time
processing is crucial and connectivity may be limited.

Resources
• Arduino Code

• Edge Impulse Spectral Features Block Colab Notebook

• Edge Impulse Project

https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/Motion_Classification/Niclav_Acc_Data_Capture
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/Motion_Classification/Edge_Impulse_Spectral_Features_Block.ipynb
https://studio.edgeimpulse.com/public/302078/latest

981

Part XII
XIAO ESP32S3

983

These labs provide a unique opportunity to gain practical experi-
ence with machine learning (ML) systems. Unlike working with large
models requiring data center-scale resources, these exercises allow you
to directly interact with hardware and software using TinyML. This
hands-on approach gives you a tangible understanding of the chal-
lenges and opportunities in deploying AI, albeit at a tiny scale. How-
ever, the principles are largely the same as what you would encounter
when working with larger systems.

Figure 20.8.: XIAO ESP32S3
Sense. Source: SEEED Studio

Pre-requisites
• XIAO ESP32S3 Sense Board: Ensure you have the XIAO

ESP32S3 Sense Board.
• USB-C Cable: This is for connecting the board to your computer.
• Network: With internet access for downloading necessary soft-

ware.

Setup 984

• SD Card and an SD card Adapter: This saves audio and images
(optional).

Setup
• Setup XIAO ESP32S3

Exercises

ModalityTask Description Link
Vision Image

Classification
Learn to classify
images

Link

Vision Object Detection Implement
object detection

Link

Sound Keyword
Spotting

Explore voice
recognition
systems

Link

IMU Motion
Classification
and Anomaly
Detection

Classify motion
data and detect
anomalies

Link

./setup/setup.qmd
./image_classification/image_classification.qmd
./object_detection/object_detection.qmd
./kws/kws.qmd
./motion_classification/motion_classification.qmd

985

Setup

Figure 20.9.: DALL·E prompt -
1950s cartoon-style drawing of a
XIAO ESP32S3 board with a dis-
tinctive camera module, as shown
in the image provided. The board
is placed on a classic lab table with
various sensors, including a mi-
crophone. Behind the board, a
vintage computer screen displays
the Arduino IDE in muted colors,
with code focusing on LED pin
setups and machine learning in-
ference for voice commands. The
Serial Monitor on the IDE show-
cases outputs detecting voice com-
mands like ‘yes’ and ‘no’. The
scene merges the retro charm of
mid-century labs with modern
electronics.

Introduction
The XIAO ESP32S3 Sense is Seeed Studio’s affordable development
board, which integrates a camera sensor, digital microphone, and SD

https://www.seeedstudio.com/XIAO-ESP32S3-Sense-p-5639.html

Introduction 986

card support. Combining embedded ML computing power and pho-
tography capability, this development board is a great tool to start with
TinyML (intelligent voice and vision AI).

XIAO ESP32S3 Sense Main Features

• Powerful MCU Board: Incorporate the ESP32S3 32-bit, dual-
core, Xtensa processor chip operating up to 240 MHz, mounted
multiple development ports, Arduino / MicroPython supported

• Advanced Functionality: Detachable OV2640 camera sensor for
1600 * 1200 resolution, compatible with OV5640 camera sensor,
integrating an additional digital microphone

• Elaborate Power Design: Lithium battery charge management
capability offers four power consumption models, which allows
for deep sleep mode with power consumption as low as 14μA

• Great Memory for more Possibilities: Offer 8MB PSRAM and
8MB FLASH, supporting SD card slot for external 32GB FAT
memory

• Outstanding RF performance: Support 2.4GHz Wi-Fi and BLE
dual wireless communication, support 100m+ remote communi-
cation when connected with U.FL antenna

• Thumb-sized Compact Design: 21 x 17.5mm, adopting the clas-
sic form factor of XIAO, suitable for space-limited projects like
wearable devices

SETUP 987

Below is the general board pinout:

For more details, please refer to the Seeed Studio WiKi
page: https://wiki.seeedstudio.com/xiao_esp32s3_
getting_started/

Installing the XIAOESP32S3 Sense onArduino
IDE

On Arduino IDE, navigate to File > Preferences, and fill in the URL:
https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_-

esp32_dev_index.json
on the field ==> Additional Boards Manager URLs

https://wiki.seeedstudio.com/xiao_esp32s3_getting_started/
https://wiki.seeedstudio.com/xiao_esp32s3_getting_started/
https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_dev_index.json
https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_dev_index.json

Installing the XIAO ESP32S3 Sense on Arduino IDE 988

Next, open boards manager. Go to Tools > Board > Boards Man-
ager… and enter with esp32. Select and install the most updated and
stable package (avoid alpha versions) :

� Attention

Alpha versions (for example, 3.x-alpha) do not work cor-
rectly with the XIAO and Edge Impulse. Use the last stable
version (for example, 2.0.11) instead.

On Tools, select the Board (XIAO ESP32S3):

SETUP 989

Last but not least, choose the Port where the ESP32S3 is connected.
That is it! The device should be OK. Let’s do some tests.

Testing the board with BLINK

The XIAO ESP32S3 Sense has a built-in LED that is connected
to GPIO21. So, you can run the blink sketch as it is (using the
LED_BUILTIN Arduino constant) or by changing the Blink sketch
accordingly:

#define LED_BUILT_IN 21

void setup() {
pinMode(LED_BUILT_IN, OUTPUT); // Set the pin as output

}

// Remember that the pin work with inverted logic
// LOW to Turn on and HIGH to turn off
void loop() {
digitalWrite(LED_BUILT_IN, LOW); //Turn on
delay (1000); //Wait 1 sec
digitalWrite(LED_BUILT_IN, HIGH); //Turn off
delay (1000); //Wait 1 sec

}

Note that the pins work with inverted logic: LOW to Turn
on and HIGH to turn off.

Connecting Sense module (Expansion Board) 990

Connecting Sense module (Expansion Board)
When purchased, the expansion board is separated from the main
board, but installing the expansion board is very simple. You need to
align the connector on the expansion board with the B2B connector
on the XIAO ESP32S3, press it hard, and when you hear a “click,” the
installation is complete.

As commented in the introduction, the expansion board, or the
“sense” part of the device, has a 1600x1200 OV2640 camera, an SD
card slot, and a digital microphone.

SETUP 991

Microphone Test

Let’s start with sound detection. Go to the GitHub project and down-
load the sketch: XIAOEsp2s3_Mic_Test and run it on the Arduino IDE:

When producing sound, you can verify it on the Serial Plotter.

Save recorded sound (.wav audio files) to a microSD card.

Now, the onboard SD Card reader can save .wav audio files. To do
that, we need to habilitate the XIAO PSRAM.

ESP32-S3 has only a few hundred kilobytes of internal
RAM on the MCU chip. This can be insufÏcient for some
purposes, so up to 16 MB of external PSRAM (pseudo-
static RAM) can be connected with the SPI flash chip. The
external memory is incorporated in the memory map
and, with certain restrictions, is usable in the same way as
internal data RAM.

For a start, Insert the SD Card on the XIAO as shown in the photo
below (the SD Card should be formatted to FAT32).

https://github.com/Mjrovai/XIAO-ESP32S3-Sense
https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/Mic_Test/XiaoEsp32s3_Mic_Test

Microphone Test 992

• Download the sketch Wav_Record, which you can find on
GitHub.

• To execute the code (Wav Record), it is necessary to use the
PSRAM function of the ESP-32 chip, so turn it on before
uploading.: Tools>PSRAM: “OPI PSRAM”>OPI PSRAM

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/Mic_Test/Wav_Record

SETUP 993

• Run the code Wav_Record.ino
• This program is executed only once after the user **turns on the

serial monitor. It records for 20 seconds and saves the recording
file to a microSD card as “arduino_rec.wav.”

• When the “.” is output every 1 second in the serial monitor, the
program execution is finished, and you can play the recorded
sound file with the help of a card reader.

Testing the Camera 994

The sound quality is excellent!

The explanation of how the code works is beyond the scope
of this tutorial, but you can find an excellent description on
the wiki page.

Testing the Camera

To test the camera, you should download the folder take_photos_com-
mand from GitHub. The folder contains the sketch (.ino) and two .h
files with camera details.

• Run the code: take_photos_command.ino. Open the Serial Mon-
itor and send the command capture to capture and save the im-
age on the SD Card:

Verify that [Both NL & CR] are selected on Serial Monitor.

https://wiki.seeedstudio.com/xiao_esp32s3_sense_mic#save-recorded-sound-to-microsd-card
https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/take_photos_command
https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/take_photos_command

SETUP 995

Here is an example of a taken photo:

Testing WiFi
One of the XIAO ESP32S3’s differentiators is its WiFi capability. So,
let’s test its radio by scanning the Wi-Fi networks around it. You can

Testing WiFi 996

do this by running one of the code examples on the board.

Go to Arduino IDE Examples and look for WiFI ==> WiFIScan

You should see the Wi-Fi networks (SSIDs and RSSIs) within your
device’s range on the serial monitor. Here is what I got in the lab:

Simple WiFi Server (Turning LED ON/OFF)

Let’s test the device’s capability to behave as a WiFi Server. We will
host a simple page on the device that sends commands to turn the
XIAO built-in LED ON and OFF.

Like before, go to GitHub to download the folder using the sketch
SimpleWiFiServer.

Before running the sketch, you should enter your network creden-
tials:

const char* ssid = "Your credentials here";
const char* password = "Your credentials here";

You can monitor how your server is working with the Serial Monitor.

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/SimpleWiFiServer

SETUP 997

Take the IP address and enter it on your browser:

You will see a page with links that can turn the built-in LED of your
XIAO ON and OFF.

Streaming video to Web
Now that you know that you can send commands from the webpage

to your device, let’s do the reverse. Let’s take the image captured by

Testing WiFi 998

the camera and stream it to a webpage:

Download from GitHub the folder that contains the code: XIAO-
ESP32S3-Streeming_Video.ino.

Remember that the folder contains the.ino file and a couple
of .h files necessary to handle the camera.

Enter your credentials and run the sketch. On the Serial monitor,
you can find the page address to enter in your browser:

Open the page on your browser (wait a few seconds to start the
streaming). That’s it.

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/Streeming_Video

SETUP 999

Streamlining what your camera is “seen” can be important when you
position it to capture a dataset for an ML project (for example, using
the code “take_phots_commands.ino”.

Of course, we can do both things simultaneously: show what the
camera sees on the page and send a command to capture and save the
image on the SD card. For that, you can use the code Camera_HTTP_-
Server_STA, which can be downloaded from GitHub.

Testing WiFi 1000

The program will do the following tasks:

• Set the camera to JPEG output mode.
• Create a web page (for example ==> http://192.168.4.119//).

The correct address will be displayed on the Serial Monitor.
• If server.on (“/capture”, HTTP_GET, serverCapture), the pro-

gram takes a photo and sends it to the Web.
• It is possible to rotate the image on webPage using the button

[ROTATE]
• The command [CAPTURE] only will preview the image on the

webpage, showing its size on the Serial Monitor
• The [SAVE] command will save an image on the SD Card and

show the image on the browser.
• Saved images will follow a sequential naming (image1.jpg, im-

age2.jpg.

http://192.168.4.119//

SETUP 1001

This program can capture an image dataset with an image
classification project.

Inspect the code; it will be easier to understand how the camera
works. This code was developed based on the great Rui Santos Tutorial
ESP32-CAM Take Photo and Display in Web Server, which I invite all
of you to visit.

Using the CameraWebServer

In the Arduino IDE, go to File > Examples > ESP32 > Camera,
and select CameraWebServer

You also should comment on all cameras’ models, except the XIAO
model pins:

#define CAMERA_MODEL_XIAO_ESP32S3 // Has PSRAM

Do not forget the Tools to enable the PSRAM.

Enter your wifi credentials and upload the code to the device:

https://randomnerdtutorials.com/esp32-cam-take-photo-display-web-server/

Testing WiFi 1002

If the code is executed correctly, you should see the address on the
Serial Monitor:

Copy the address on your browser and wait for the page to be up-
loaded. Select the camera resolution (for example, QVGA) and select
[START STREAM]. Wait for a few seconds/minutes, depending on your
connection. Using the [Save] button, you can save an image to your
computer download area.

SETUP 1003

That’s it! You can save the images directly on your computer for use
on projects.

Conclusion
The XIAO ESP32S3 Sense is flexible, inexpensive, and easy to program.
With 8 MB of RAM, memory is not an issue, and the device can handle
many post-processing tasks, including communication.

You will find the last version of the codeon the GitHub repository:
XIAO-ESP32S3-Sense.

Resources
• XIAO ESP32S3 Code

https://github.com/Mjrovai/XIAO-ESP32S3-Sense
https://github.com/Mjrovai/XIAO-ESP32S3-Sense

1005

Image Classification

Figure 20.10.: Image by Marcelo
Rovai

Introduction

More and more, we are facing an artificial intelligence (AI) revolution
where, as stated by Gartner, Edge AI has a very high impact potential,
and it is for now!

Introduction 1006

At the forefront of the Emerging Technologies Radar is the univer-
sal language of Edge Computer Vision. When we look into Machine
Learning (ML) applied to vision, the first concept that greets us is Im-
age Classification, a kind of ML’ Hello World ’ that is both simple and
profound!

The Seeed Studio XIAO ESP32S3 Sense is a powerful tool that com-
bines camera and SD card support. With its embedded ML computing
power and photography capability, it is an excellent starting point for
exploring TinyML vision AI.

IMAGE CLASSIFICATION 1007

A TinyML Image Classification Project - Fruits
versus Veggies

The whole idea of our project will be to train a model and proceed
with inference on the XIAO ESP32S3 Sense. For training, we should
find some data (in fact, tons of data!).

But first of all, we need a goal! What do we want to classify?
With TinyML, a set of techniques associated with machine learning

inference on embedded devices, we should limit the classification to
three or four categories due to limitations (mainly memory). We will
differentiate apples from bananas and potatoes (you can try other cat-
egories).

So, let’s find a specific dataset that includes images from those cate-
gories. Kaggle is a good start:

https://www.kaggle.com/kritikseth/fruit-and-vegetable-image-
recognition

This dataset contains images of the following food items:

• Fruits - banana, apple, pear, grapes, orange, kiwi, watermelon,
pomegranate, pineapple, mango.

• Vegetables - cucumber, carrot, capsicum, onion, potato, lemon,
tomato, radish, beetroot, cabbage, lettuce, spinach, soybean,
cauliflower, bell pepper, chili pepper, turnip, corn, sweetcorn,
sweet potato, paprika, jalepeño, ginger, garlic, peas, eggplant.

https://www.kaggle.com/kritikseth/fruit-and-vegetable-image-recognition
https://www.kaggle.com/kritikseth/fruit-and-vegetable-image-recognition

Training the model with Edge Impulse Studio 1008

Each category is split into the train (100 images), test (10 images),
and validation (10 images).

• Download the dataset from the Kaggle website and put it on your
computer.

Optionally, you can add some fresh photos of bananas, ap-
ples, and potatoes from your home kitchen, using, for ex-
ample, the codediscussed in the setup lab.

Training the model with Edge Impulse Studio
We will use the Edge Impulse Studio to train our model. As you may
know, Edge Impulse is a leading development platform for machine
learning on edge devices.

Enter your account credentials (or create a free account) at Edge Im-
pulse. Next, create a new project:

Data Acquisition

Next, on the UPLOAD DATA section, upload from your computer the files
from chosen categories:

https://www.edgeimpulse.com/

IMAGE CLASSIFICATION 1009

It would be best if you now had your training dataset split into three
classes of data:

You can upload extra data for further model testing or split
the training data. I will leave it as it is to use the most data
possible.

Impulse Design

An impulse takes raw data (in this case, images), extracts
features (resize pictures), and then uses a learning block to

Training the model with Edge Impulse Studio 1010

classify new data.

Classifying images is the most common use of deep learning, but a
lot of data should be used to accomplish this task. We have around
90 images for each category. Is this number enough? Not at all! We
will need thousands of images to “teach or model” to differentiate an
apple from a banana. But, we can solve this issue by re-training a previ-
ously trained model with thousands of images. We call this technique
“Transfer Learning” (TL).

With TL, we can fine-tune a pre-trained image classification model
on our data, performing well even with relatively small image datasets
(our case).

So, starting from the raw images, we will resize them (96x96) pixels
and feed them to our Transfer Learning block:

IMAGE CLASSIFICATION 1011

Pre-processing (Feature Generation)

Besides resizing the images, we can change them to Grayscale or keep
the actual RGB color depth. Let’s start selecting Grayscale. Doing
that, each one of our data samples will have dimension 9, 216 features
(96x96x1). Keeping RGB, this dimension would be three times bigger.
Working with Grayscale helps to reduce the amount of final memory
needed for inference.

Remember to [Save parameters]. This will generate the features to

Training the model with Edge Impulse Studio 1012

be used in training.

Model Design

Transfer Learning
In 2007, Google introduced MobileNetV1, a family of general-

purpose computer vision neural networks designed with mobile
devices in mind to support classification, detection, and more. Mo-
bileNets are small, low-latency, low-power models parameterized to
meet the resource constraints of various use cases.

Although the base MobileNet architecture is already tiny and has
low latency, many times, a specific use case or application may require
the model to be smaller and faster. MobileNet introduces a straight-
forward parameter α (alpha) called width multiplier to construct these
smaller, less computationally expensive models. The role of the width
multiplier α is to thin a network uniformly at each layer.

Edge Impulse Studio has MobileNet V1 (96x96 images) and V2
(96x96 and 160x160 images) available, with several different α values
(from 0.05 to 1.0). For example, you will get the highest accuracy with
V2, 160x160 images, and α=1.0. Of course, there is a trade-off. The
higher the accuracy, the more memory (around 1.3M RAM and 2.6M
ROM) will be needed to run the model, implying more latency.

The smaller footprint will be obtained at another extreme with Mo-
bileNet V1 and α=0.10 (around 53.2K RAM and 101K ROM).

For this first pass, we will use MobileNet V1 and α=0.10.

Training

Data Augmentation
Another necessary technique to use with deep learning is data aug-

mentation. Data augmentation is a method that can help improve
the accuracy of machine learning models, creating additional artificial
data. A data augmentation system makes small, random changes to
your training data during the training process (such as flipping, crop-
ping, or rotating the images).

Under the rood, here you can see how Edge Impulse implements a
data Augmentation policy on your data:

Implements the data augmentation policy
def augment_image(image, label):

Flips the image randomly
image = tf.image.random_flip_left_right(image)

https://research.googleblog.com/2017/06/mobilenets-open-source-models-for.html

IMAGE CLASSIFICATION 1013

Increase the image size, then randomly crop it down to
the original dimensions
resize_factor = random.uniform(1, 1.2)
new_height = math.floor(resize_factor * INPUT_SHAPE[0])
new_width = math.floor(resize_factor * INPUT_SHAPE[1])
image = tf.image.resize_with_crop_or_pad(image, new_height, new_width)
image = tf.image.random_crop(image, size=INPUT_SHAPE)

Vary the brightness of the image
image = tf.image.random_brightness(image, max_delta=0.2)

return image, label

Exposure to these variations during training can help prevent your
model from taking shortcuts by “memorizing” superficial clues in your
training data, meaning it may better reflect the deep underlying pat-
terns in your dataset.

The final layer of our model will have 16 neurons with a 10% dropout
for overfitting prevention. Here is the Training output:

The result could be better. The model reached around 77% accuracy,
but the amount of RAM expected to be used during the inference is
relatively tiny (about 60 KBytes), which is very good.

Deployment

The trained model will be deployed as a .zip Arduino library:

Training the model with Edge Impulse Studio 1014

Open your Arduino IDE, and under Sketch, go to Include Library
and add.ZIP Library. Please select the file you download from Edge
Impulse Studio, and that’s it!

Under the Examples tab on Arduino IDE, you should find a sketch
code under your project name.

IMAGE CLASSIFICATION 1015

Open the Static Buffer example:

Training the model with Edge Impulse Studio 1016

You can see that the first line of code is exactly the calling of a library
with all the necessary stuff for running inference on your device.

#include <XIAO-ESP32S3-CAM-Fruits-vs-Veggies_inferencing.h>

Of course, this is a generic code (a “template”) that only gets one
sample of raw data (stored on the variable: features = {} and runs the
classifier, doing the inference. The result is shown on the Serial Moni-
tor.

We should get the sample (image) from the camera and pre-process
it (resizing to 96x96, converting to grayscale, and flatting it). This will
be the input tensor of our model. The output tensor will be a vector
with three values (labels), showing the probabilities of each one of the
classes.

IMAGE CLASSIFICATION 1017

Returning to your project (Tab Image), copy one of the Raw Data
Sample:

9, 216 features will be copied to the clipboard. This is the input tensor
(a flattened image of 96x96x1), in this case, bananas. Past this Input ten-
sor onfeatures[] = {0xb2d77b, 0xb5d687, 0xd8e8c0, 0xeaecba,
0xc2cf67, ...}

Training the model with Edge Impulse Studio 1018

Edge Impulse included the library ESP NN in its SDK, which con-
tains optimized NN (Neural Network) functions for various Espressif
chips, including the ESP32S3 (running at Arduino IDE).

When running the inference, you should get the highest score for
“banana.”

Great news! Our device handles an inference, discovering that the
input image is a banana. Also, note that the inference time was around
317ms, resulting in a maximum of 3 fps if you tried to classify images
from a video.

Now, we should incorporate the camera and classify images in real
time.

Go to the Arduino IDE Examples and download from your project

https://github.com/espressif/esp-nn

IMAGE CLASSIFICATION 1019

the sketch esp32_camera:

You should change lines 32 to 75, which define the camera model and
pins, using the data related to our model. Copy and paste the below
lines, replacing the lines 32-75:

#define PWDN_GPIO_NUM -1
#define RESET_GPIO_NUM -1
#define XCLK_GPIO_NUM 10
#define SIOD_GPIO_NUM 40
#define SIOC_GPIO_NUM 39
#define Y9_GPIO_NUM 48
#define Y8_GPIO_NUM 11
#define Y7_GPIO_NUM 12
#define Y6_GPIO_NUM 14
#define Y5_GPIO_NUM 16
#define Y4_GPIO_NUM 18
#define Y3_GPIO_NUM 17
#define Y2_GPIO_NUM 15
#define VSYNC_GPIO_NUM 38
#define HREF_GPIO_NUM 47
#define PCLK_GPIO_NUM 13

Here you can see the resulting code:

Training the model with Edge Impulse Studio 1020

The modified sketch can be downloaded from GitHub: xiao_-
esp32s3_camera.

Note that you can optionally keep the pins as a .h file as we
did in the Setup Lab.

Upload the code to your XIAO ESP32S3 Sense, and you should be
OK to start classifying your fruits and vegetables! You can check the
result on Serial Monitor.

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/xiao_esp32s3_camera
https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/xiao_esp32s3_camera

IMAGE CLASSIFICATION 1021

Testing the Model (Inference)

Getting a photo with the camera, the classification result will appear
on the Serial Monitor:

Other tests:

Testing with a Bigger Model 1022

Testing with a Bigger Model

Now, let’s go to the other side of the model size. Let’s select a Mobi-
linetV2 96x96 0.35, having as input RGB images.

Even with a bigger model, the accuracy could be better, and the
amount of memory necessary to run the model increases five times,
with latency increasing seven times.

IMAGE CLASSIFICATION 1023

Note that the performance here is estimated with a smaller
device, the ESP-EYE. The actual inference with the ESP32S3
should be better.

To improve our model, we will need to train more images.

Even though our model did not improve accuracy, let’s test whether
the XIAO can handle such a bigger model. We will do a simple infer-
ence test with the Static Buffer sketch.

Let’s redeploy the model. If the EON Compiler is enabled when you
generate the library, the total memory needed for inference should be
reduced, but it does not influence accuracy.

� Attention - The Xiao ESP32S3 with PSRAM enable has
enought memory to run the inference, even in such bigger
model. Keep the EON Compiler NOT ENABLED.

Doing an inference with MobilinetV2 96x96 0.35, having as input
RGB images, the latency was 219ms, which is great for such a bigger
model.

Testing with a Bigger Model 1024

For the test, we can train the model again, using the smallest version
of MobileNet V2, with an alpha of 0.05. Interesting that the result in
accuracy was higher.

Note that the estimated latency for an Arduino Portenta (ou
Nicla), running with a clock of 480MHz is 45ms.

Deploying the model, we got an inference of only 135ms, re-
membering that the XIAO runs with half of the clock used by the
Portenta/Nicla (240MHz):

IMAGE CLASSIFICATION 1025

Running inference on the SenseCraft-Web-
Toolkit

One significant limitation of viewing inference on Arduino IDE is that
we can not see what the camera focuses on. A good alternative is the
SenseCraft-Web-Toolkit, a visual model deployment tool provided by
SSCMA(Seeed SenseCraft Model Assistant). This tool allows you to
deploy models to various platforms easily through simple operations.
The tool offers a user-friendly interface and does not require any cod-
ing.

Follow the following steps to start the SenseCraft-Web-Toolkit:

1. Open the SenseCraft-Web-Toolkit website.
2. Connect the XIAO to your computer:

• Having the XIAO connected, select it as below:

https://sensecraftma.seeed.cc/
https://seeed-studio.github.io/SenseCraft-Web-Toolkit/#/setup/process

Running inference on the SenseCraft-Web-Toolkit 1026

• Select the device/Port and press [Connect]:

You can try several Computer Vision models previously up-
loaded by Seeed Studio. Try them and have fun!

In our case, we will use the blue button at the bottom of the page:
[Upload Custom AI Model].

But first, we must download from Edge Impulse Studio our quan-
tized .tflite model.

3. Go to your project at Edge Impulse Studio, or clone this one:

• XIAO-ESP32S3-CAM-Fruits-vs-Veggies-v1-ESP-NN

https://studio.edgeimpulse.com/public/228516/live

IMAGE CLASSIFICATION 1027

4. On the Dashboard, download the model (“block output”):
Transfer learning model - TensorFlow Lite (int8
quantized).

5. On SenseCraft-Web-Toolkit, use the blue button at the bottom
of the page: [Upload Custom AI Model]. A window will pop
up. Enter the Model file that you downloaded to your computer
from Edge Impulse Studio, choose a Model Name, and enter with
labels (ID: Object):

Note that you should use the labels trained on EI Studio, en-
tering them in alphabetic order (in our case: apple, banana,
potato).

Running inference on the SenseCraft-Web-Toolkit 1028

After a few seconds (or minutes), the model will be uploaded to your
device, and the camera image will appear in real-time on the Preview
Sector:

The Classification result will be at the top of the image. You can also
select the Confidence of your inference cursor Confidence.

Clicking on the top button (Device Log), you can open a Serial Mon-
itor to follow the inference, the same that we have done with the Ar-
duino IDE:

IMAGE CLASSIFICATION 1029

On Device Log, you will get information as:

• Preprocess time (image capture and Crop): 4ms;
• Inference time (model latency): 106ms,
• Postprocess time (display of the image and inclusion of data):

0ms.
• Output tensor (classes), for example: [[89,0]]; where 0 is Apple

(and 1is banana and 2 is potato)

Here are other screenshots:

Conclusion
The XIAO ESP32S3 Sense is very flexible, inexpensive, and easy to pro-
gram. The project proves the potential of TinyML. Memory is not an is-
sue; the device can handle many post-processing tasks, including com-
munication.

You will find the last version of the codeon the GitHub repository:
XIAO-ESP32S3-Sense.

Resources
• XIAO ESP32S3 Codes

• Dataset

• Edge Impulse Project

https://github.com/Mjrovai/XIAO-ESP32S3-Sense
https://github.com/Mjrovai/XIAO-ESP32S3-Sense
https://www.kaggle.com/kritikseth/fruit-and-vegetable-image-recognition
https://studio.edgeimpulse.com/public/228516/live

1031

Object Detection

Figure 20.11.: DALL·E prompt
- Cartoon styled after 1950s ani-
mations, showing a detailed board
with sensors, particularly a cam-
era, on a table with patterned cloth.
Behind the board, a computer with
a large back showcases the Ar-
duino IDE. The IDE’s content
hints at LED pin assignments and
machine learning inference for de-
tecting spoken commands. The Se-
rial Monitor, in a distinct win-
dow, reveals outputs for the com-
mands ‘yes’ and ‘no’.

Introduction

In the last section regarding Computer Vision (CV) and the XIAO
ESP32S3, Image Classification, we learned how to set up and classify
images with this remarkable development board. Continuing our CV
journey, we will explore Object Detection on microcontrollers.

Introduction 1032

Object Detection versus Image Classification

The main task with Image Classification models is to identify the most
probable object category present on an image, for example, to classify
between a cat or a dog, dominant “objects” in an image:

But what happens if there is no dominant category in the image?

OBJECT DETECTION 1033

An image classification model identifies the above image utterly
wrong as an “ashcan,” possibly due to the color tonalities.

The model used in the previous images is MobileNet,
which is trained with a large dataset, ImageNet, running on
a Raspberry Pi.

To solve this issue, we need another type of model, where not only
multiple categories (or labels) can be found but also where the objects
are located on a given image.

As we can imagine, such models are much more complicated and
bigger, for example, the MobileNetV2 SSD FPN-Lite 320x320, trained
with the COCO dataset. This pre-trained object detection model is de-
signed to locate up to 10 objects within an image, outputting a bound-
ing box for each object detected. The below image is the result of such
a model running on a Raspberry Pi:

The Object Detection Project Goal 1034

Those models used for object detection (such as the MobileNet SSD
or YOLO) usually have several MB in size, which is OK for use with
Raspberry Pi but unsuitable for use with embedded devices, where
the RAM usually has, at most, a few MB as in the case of the XIAO
ESP32S3.

An Innovative Solution for Object Detection: FOMO

Edge Impulse launched in 2022, FOMO (Faster Objects, More Objects),
a novel solution to perform object detection on embedded devices,
such as the Nicla Vision and Portenta (Cortex M7), on Cortex M4F
CPUs (Arduino Nano33 and OpenMV M4 series) as well the Espressif
ESP32 devices (ESP-CAM, ESP-EYE and XIAO ESP32S3 Sense).

In this Hands-On project, we will explore Object Detection using
FOMO.

To understand more about FOMO, you can go into the ofÏ-
cial FOMO announcement by Edge Impulse, where Louis
Moreau and Mat Kelcey explain in detail how it works.

The Object Detection Project Goal

All Machine Learning projects need to start with a detailed goal. Let’s
assume we are in an industrial or rural facility and must sort and count
oranges (fruits) and particular frogs (bugs).

https://docs.edgeimpulse.com/docs/edge-impulse-studio/learning-blocks/object-detection/fomo-object-detection-for-constrained-devices
https://www.edgeimpulse.com/blog/announcing-fomo-faster-objects-more-objects
https://www.edgeimpulse.com/blog/announcing-fomo-faster-objects-more-objects

OBJECT DETECTION 1035

In other words, we should perform a multi-label classification,
where each image can have three classes:

• Background (No objects)
• Fruit
• Bug

Here are some not labeled image samples that we should use to de-
tect the objects (fruits and bugs):

We are interested in which object is in the image, its location (cen-
troid), and how many we can find on it. The object’s size is not detected

Data Collection 1036

with FOMO, as with MobileNet SSD or YOLO, where the Bounding
Box is one of the model outputs.

We will develop the project using the XIAO ESP32S3 for image cap-
ture and model inference. The ML project will be developed using the
Edge Impulse Studio. But before starting the object detection project
in the Studio, let’s create a raw dataset (not labeled) with images that
contain the objects to be detected.

Data Collection

You can capture images using the XIAO, your phone, or other devices.
Here, we will use the XIAO with code from the Arduino IDE ESP32
library.

Collecting Dataset with the XIAO ESP32S3

Open the Arduino IDE and select the XIAO_ESP32S3 board (and the
port where it is connected). On File > Examples > ESP32 > Camera,
select CameraWebServer.

On the BOARDS MANAGER panel, confirm that you have installed
the latest “stable” package.

� Attention

Alpha versions (for example, 3.x-alpha) do not work cor-
rectly with the XIAO and Edge Impulse. Use the last stable
version (for example, 2.0.11) instead.

You also should comment on all cameras’ models, except the XIAO
model pins:
#define CAMERA_MODEL_XIAO_ESP32S3 // Has PSRAM

And on Tools, enable the PSRAM. Enter your wifi credentials and
upload the code to the device:

OBJECT DETECTION 1037

If the code is executed correctly, you should see the address on the
Serial Monitor:

Copy the address on your browser and wait for the page to be up-
loaded. Select the camera resolution (for example, QVGA) and select
[START STREAM]. Wait for a few seconds/minutes, depending on your
connection. You can save an image on your computer download area
using the [Save] button.

Edge Impulse Studio 1038

Edge impulse suggests that the objects should be similar in size and
not overlapping for better performance. This is OK in an industrial
facility, where the camera should be fixed, keeping the same distance
from the objects to be detected. Despite that, we will also try using
mixed sizes and positions to see the result.

We do not need to create separate folders for our images
because each contains multiple labels.

We suggest using around 50 images to mix the objects and vary the
number of each appearing on the scene. Try to capture different angles,
backgrounds, and light conditions.

The stored images use a QVGA frame size of 320x240 and
RGB565 (color pixel format).

After capturing your dataset, [Stop Stream] and move your images
to a folder.

Edge Impulse Studio

Setup the project

Go to Edge Impulse Studio, enter your credentials at Login (or create
an account), and start a new project.

https://www.edgeimpulse.com/

OBJECT DETECTION 1039

Here, you can clone the project developed for this hands-
on: XIAO-ESP32S3-Sense-Object_Detection

On your Project Dashboard, go down and on Project info and se-
lect Bounding boxes (object detection) and Espressif ESP-EYE (most
similar to our board) as your Target Device:

https://studio.edgeimpulse.com/public/315759/latest

Edge Impulse Studio 1040

Uploading the unlabeled data

On Studio, go to the Data acquisition tab, and on the UPLOAD DATA
section, upload files captured as a folder from your computer.

You can leave for the Studio to split your data automatically
between Train and Test or do it manually. We will upload
all of them as training.

OBJECT DETECTION 1041

All the not-labeled images (47) were uploaded but must be labeled
appropriately before being used as a project dataset. The Studio has a
tool for that purpose, which you can find in the link Labeling queue
(47).

There are two ways you can use to perform AI-assisted labeling on
the Edge Impulse Studio (free version):

• Using yolov5
• Tracking objects between frames

Edge Impulse launched an auto-labeling feature for Enter-
prise customers, easing labeling tasks in object detection
projects.

Ordinary objects can quickly be identified and labeled using an
existing library of pre-trained object detection models from YOLOv5
(trained with the COCO dataset). But since, in our case, the objects
are not part of COCO datasets, we should select the option of tracking
objects. With this option, once you draw bounding boxes and label the
images in one frame, the objects will be tracked automatically from
frame to frame, partially labeling the new ones (not all are correctly
labeled).

You can use the EI uploader to import your data if you al-
ready have a labeled dataset containing bounding boxes.

Labeling the Dataset

Starting with the first image of your unlabeled data, use your mouse
to drag a box around an object to add a label. Then click Save labels
to advance to the next item.

Continue with this process until the queue is empty. At the end, all
images should have the objects labeled as those samples below:

https://docs.edgeimpulse.com/docs/edge-impulse-studio/data-acquisition/auto-labeler
https://docs.edgeimpulse.com/docs/tools/edge-impulse-cli/cli-uploader#bounding-boxes

Edge Impulse Studio 1042

Next, review the labeled samples on the Data acquisition tab. If
one of the labels is wrong, you can edit it using the three dots menu after
the sample name:

You will be guided to replace the wrong label and correct the dataset.

OBJECT DETECTION 1043

Balancing the dataset and split Train/Test

After labeling all data, it was realized that the class fruit had many
more samples than the bug. So, 11 new and additional bug images
were collected (ending with 58 images). After labeling them, it is time
to select some images and move them to the test dataset. You can do it
using the three-dot menu after the image name. I selected six images,
representing 13% of the total dataset.

The Impulse Design 1044

The Impulse Design

In this phase, you should define how to:

• Pre-processing consists of resizing the individual images from
320 x 240 to 96 x 96 and squashing them (squared form, with-
out cropping). Afterward, the images are converted from RGB
to Grayscale.

• Design a Model, in this case, “Object Detection.”

OBJECT DETECTION 1045

Preprocessing all dataset

In this section, select Color depth as Grayscale, suitable for use with
FOMO models and Save parameters.

The Studio moves automatically to the next section, Generate fea-
tures, where all samples will be pre-processed, resulting in a dataset

Model Design, Training, and Test 1046

with individual 96x96x1 images or 9,216 features.

The feature explorer shows that all samples evidence a good separa-
tion after the feature generation.

Some samples seem to be in the wrong space, but clicking
on them confirms the correct labeling.

Model Design, Training, and Test
We will use FOMO, an object detection model based on MobileNetV2
(alpha 0.35) designed to coarsely segment an image into a grid of back-
ground vs objects of interest (here, boxes and wheels).

FOMO is an innovative machine learning model for object detection,
which can use up to 30 times less energy and memory than traditional
models like Mobilenet SSD and YOLOv5. FOMO can operate on micro-
controllers with less than 200 KB of RAM. The main reason this is pos-
sible is that while other models calculate the object’s size by drawing a
square around it (bounding box), FOMO ignores the size of the image,
providing only the information about where the object is located in the
image through its centroid coordinates.

How FOMO works?
FOMO takes the image in grayscale and divides it into blocks of pix-

els using a factor of 8. For the input of 96x96, the grid would be 12x12
(96/8=12). Next, FOMO will run a classifier through each pixel block

OBJECT DETECTION 1047

to calculate the probability that there is a box or a wheel in each of
them and, subsequently, determine the regions that have the highest
probability of containing the object (If a pixel block has no objects, it
will be classified as background). From the overlap of the final region,
the FOMO provides the coordinates (related to the image dimensions)
of the centroid of this region.

For training, we should select a pre-trained model. Let’s use the
FOMO (Faster Objects, More Objects) MobileNetV2 0.35. This
model uses around 250KB of RAM and 80KB of ROM (Flash), which
suits well with our board.

Model Design, Training, and Test 1048

Regarding the training hyper-parameters, the model will be trained
with:

• Epochs: 60
• Batch size: 32
• Learning Rate: 0.001.

For validation during training, 20% of the dataset (validation_dataset)
will be spared. For the remaining 80% (train_dataset), we will apply
Data Augmentation, which will randomly flip, change the size and
brightness of the image, and crop them, artificially increasing the num-
ber of samples on the dataset for training.

As a result, the model ends with an overall F1 score of 85%, similar
to the result when using the test data (83%).

Note that FOMO automatically added a 3rd label back-
ground to the two previously defined (box and wheel).

OBJECT DETECTION 1049

In object detection tasks, accuracy is generally not the pri-
mary evaluation metric. Object detection involves classi-
fying objects and providing bounding boxes around them,
making it a more complex problem than simple classifica-
tion. The issue is that we do not have the bounding box,
only the centroids. In short, using accuracy as a metric
could be misleading and may not provide a complete un-
derstanding of how well the model is performing. Because
of that, we will use the F1 score.

Test model with “Live Classification”

Once our model is trained, we can test it using the Live Classification
tool. On the correspondent section, click on Connect a development
board icon (a small MCU) and scan the QR code with your phone.

https://learnopencv.com/mean-average-precision-map-object-detection-model-evaluation-metric/

Model Design, Training, and Test 1050

Once connected, you can use the smartphone to capture actual im-
ages to be tested by the trained model on Edge Impulse Studio.

One thing to be noted is that the model can produce false positives
and negatives. This can be minimized by defining a proper Confidence
Threshold (use the Three dots menu for the setup). Try with 0.8 or
more.

OBJECT DETECTION 1051

Deploying the Model (Arduino IDE)
Select the Arduino Library and Quantized (int8) model, enable the
EON Compiler on the Deploy Tab, and press [Build].

Open your Arduino IDE, and under Sketch, go to Include Library
and add.ZIP Library. Select the file you download from Edge Impulse
Studio, and that’s it!

Deploying the Model (Arduino IDE) 1052

Under the Examples tab on Arduino IDE, you should find a sketch
code (esp32 > esp32_camera) under your project name.

You should change lines 32 to 75, which define the camera model and
pins, using the data related to our model. Copy and paste the below
lines, replacing the lines 32-75:

#define PWDN_GPIO_NUM -1
#define RESET_GPIO_NUM -1
#define XCLK_GPIO_NUM 10
#define SIOD_GPIO_NUM 40
#define SIOC_GPIO_NUM 39
#define Y9_GPIO_NUM 48
#define Y8_GPIO_NUM 11
#define Y7_GPIO_NUM 12
#define Y6_GPIO_NUM 14
#define Y5_GPIO_NUM 16
#define Y4_GPIO_NUM 18
#define Y3_GPIO_NUM 17
#define Y2_GPIO_NUM 15
#define VSYNC_GPIO_NUM 38
#define HREF_GPIO_NUM 47
#define PCLK_GPIO_NUM 13

Here you can see the resulting code:

OBJECT DETECTION 1053

Upload the code to your XIAO ESP32S3 Sense, and you should be
OK to start detecting fruits and bugs. You can check the result on Serial
Monitor.

Background

Fruits

Deploying the Model (Arduino IDE) 1054

Bugs

Note that the model latency is 143ms, and the frame rate per second
is around 7 fps (similar to what we got with the Image Classification
project). This happens because FOMO is cleverly built over a CNN
model, not with an object detection model like the SSD MobileNet. For
example, when running a MobileNetV2 SSD FPN-Lite 320x320 model
on a Raspberry Pi 4, the latency is around five times higher (around
1.5 fps).

OBJECT DETECTION 1055

Deploying theModel (SenseCraft-Web-Toolkit)

As discussed in the Image Classification chapter, verifying inference
with Image models on Arduino IDE is very challenging because we can
not see what the camera focuses on. Again, let’s use the SenseCraft-
Web Toolkit.

Follow the following steps to start the SenseCraft-Web-Toolkit:

1. Open the SenseCraft-Web-Toolkit website.
2. Connect the XIAO to your computer:

• Having the XIAO connected, select it as below:

• Select the device/Port and press [Connect]:

https://seeed-studio.github.io/SenseCraft-Web-Toolkit/#/setup/process

Deploying the Model (SenseCraft-Web-Toolkit) 1056

You can try several Computer Vision models previously up-
loaded by Seeed Studio. Try them and have fun!

In our case, we will use the blue button at the bottom of the page:
[Upload Custom AI Model].

But first, we must download from Edge Impulse Studio our quan-
tized .tflite model.

3. Go to your project at Edge Impulse Studio, or clone this one:

• XIAO-ESP32S3-CAM-Fruits-vs-Veggies-v1-ESP-NN

4. On Dashboard, download the model (“block output”): Object
Detection model - TensorFlow Lite (int8 quantized)

https://studio.edgeimpulse.com/public/228516/live

OBJECT DETECTION 1057

5. On SenseCraft-Web-Toolkit, use the blue button at the bottom
of the page: [Upload Custom AI Model]. A window will pop
up. Enter the Model file that you downloaded to your computer
from Edge Impulse Studio, choose a Model Name, and enter with
labels (ID: Object):

Note that you should use the labels trained on EI Studio and
enter them in alphabetic order (in our case, background,
bug, fruit).

After a few seconds (or minutes), the model will be uploaded to your
device, and the camera image will appear in real-time on the Preview
Sector:

Conclusion 1058

The detected objects will be marked (the centroid). You can select
the Confidence of your inference cursor Confidence. and IoU, which
is used to assess the accuracy of predicted bounding boxes compared
to truth bounding boxes

Clicking on the top button (Device Log), you can open a Serial Mon-
itor to follow the inference, as we did with the Arduino IDE.

On Device Log, you will get information as:

• Preprocess time (image capture and Crop): 3 ms;
• Inference time (model latency): 115 ms,
• Postprocess time (display of the image and marking objects): 1

ms.
• Output tensor (boxes), for example, one of the boxes: [[30,150,

20, 20,97, 2]]; where 30,150, 20, 20 are the coordinates of the box
(around the centroid); 97 is the inference result, and 2 is the class
(in this case 2: fruit)

Note that in the above example, we got 5 boxes because
none of the fruits got 3 centroids. One solution will be post-
processing, where we can aggregate close centroids in one.

Here are other screenshots:

Conclusion
FOMO is a significant leap in the image processing space, as Louis
Moreau and Mat Kelcey put it during its launch in 2022:

FOMO is a ground-breaking algorithm that brings
real-time object detection, tracking, and counting to
microcontrollers for the first time.

Multiple possibilities exist for exploring object detection (and, more
precisely, counting them) on embedded devices.

OBJECT DETECTION 1059

Resources
• Edge Impulse Project

https://studio.edgeimpulse.com/public/315759/latest

1061

Keyword Spotting (KWS)

Figure 20.12.: Image by Marcelo
Rovai

Introduction
Keyword Spotting (KWS) is integral to many voice recognition sys-
tems, enabling devices to respond to specific words or phrases. While
this technology underpins popular devices like Google Assistant or
Amazon Alexa, it’s equally applicable and achievable on smaller, low-
power devices. This lab will guide you through implementing a KWS
system using TinyML on the XIAO ESP32S3 microcontroller board.

The XIAO ESP32S3, equipped with Espressif’s ESP32-S3 chip, is a
compact and potent microcontroller offering a dual-core Xtensa LX7
processor, integrated Wi-Fi, and Bluetooth. Its balance of computa-
tional power, energy efÏciency, and versatile connectivity make it a
fantastic platform for TinyML applications. Also, with its expansion
board, we will have access to the “sense” part of the device, which
has a 1600x1200 OV2640 camera, an SD card slot, and a digital micro-

Introduction 1062

phone. The integrated microphone and the SD card will be essential
in this project.

We will use the Edge Impulse Studio, a powerful, user-friendly plat-
form that simplifies creating and deploying machine learning models
onto edge devices. We’ll train a KWS model step-by-step, optimizing
and deploying it onto the XIAO ESP32S3 Sense.

Our model will be designed to recognize keywords that can trigger
device wake-up or specific actions (in the case of “YES”), bringing your
projects to life with voice-activated commands.

Leveraging our experience with TensorFlow Lite for Microcon-
trollers (the engine “under the hood” on the EI Studio), we’ll create a
KWS system capable of real-time machine learning on the device.

As we progress through the lab, we’ll break down each process stage
- from data collection and preparation to model training and deploy-
ment - to provide a comprehensive understanding of implementing a
KWS system on a microcontroller.

How does a voice assistant work?

Keyword Spotting (KWS) is critical to many voice assistants, enabling
devices to respond to specific words or phrases. To start, it is essential
to realize that Voice Assistants on the market, like Google Home or
Amazon Echo-Dot, only react to humans when they are “waked up”
by particular keywords such as “ Hey Google” on the first one and
“Alexa” on the second.

https://www.edgeimpulse.com/

KEYWORD SPOTTING (KWS) 1063

In other words, recognizing voice commands is based on a multi-
stage model or Cascade Detection.

Stage 1: A smaller microprocessor inside the Echo Dot or Google
Home continuously listens to the sound, waiting for the keyword to

Introduction 1064

be spotted. For such detection, a TinyML model at the edge is used
(KWS application).

Stage 2: Only when triggered by the KWS application on Stage 1 is
the data sent to the cloud and processed on a larger model.

The video below shows an example where I emulate a Google Assis-
tant on a Raspberry Pi (Stage 2), having an Arduino Nano 33 BLE as
the tinyML device (Stage 1).

If you want to go deeper on the full project, please see
my tutorial: Building an Intelligent Voice Assistant From
Scratch.

In this lab, we will focus on Stage 1 (KWS or Keyword Spotting),
where we will use the XIAO ESP2S3 Sense, which has a digital micro-
phone for spotting the keyword.

The KWS Project

The below diagram will give an idea of how the final KWS application
should work (during inference):

Our KWS application will recognize four classes of sound:

• YES (Keyword 1)
• NO (Keyword 2)
• NOISE (no keywords spoken, only background noise is present)
• UNKNOW (a mix of different words than YES and NO)

Optionally for real-world projects, it is always advised to
include different words than keywords, such as “Noise” (or
Background) and “Unknow.”

https://www.hackster.io/mjrobot/building-an-intelligent-voice-assistant-from-scratch-2199c3
https://www.hackster.io/mjrobot/building-an-intelligent-voice-assistant-from-scratch-2199c3

KEYWORD SPOTTING (KWS) 1065

The Machine Learning workflow

The main component of the KWS application is its model. So, we must
train such a model with our specific keywords, noise, and other words
(the “unknown”):

Dataset
The critical component of Machine Learning Workflow is the dataset.
Once we have decided on specific keywords (YES and NO), we can take
advantage of the dataset developed by Pete Warden, “Speech Com-
mands: A Dataset for Limited-Vocabulary Speech Recognition.” This
dataset has 35 keywords (with +1,000 samples each), such as yes, no,
stop, and go. In other words, we can get 1,500 samples of yes and no.

You can download a small portion of the dataset from Edge Studio
(Keyword spotting pre-built dataset), which includes samples from the
four classes we will use in this project: yes, no, noise, and background.
For this, follow the steps below:

• Download the keywords dataset.
• Unzip the file in a location of your choice.

Although we have a lot of data from Pete’s dataset, collecting some
words spoken by us is advised. When working with accelerometers,
creating a dataset with data captured by the same type of sensor was
essential. In the case of sound, it is different because what we will clas-
sify is, in reality, audio data.

The key difference between sound and audio is their form
of energy. Sound is mechanical wave energy (longitudinal
sound waves) that propagate through a medium causing
variations in pressure within the medium. Audio is made
of electrical energy (analog or digital signals) that represent
sound electrically.

https://arxiv.org/pdf/1804.03209.pdf
https://arxiv.org/pdf/1804.03209.pdf
https://docs.edgeimpulse.com/docs/pre-built-datasets/keyword-spotting
https://cdn.edgeimpulse.com/datasets/keywords2.zip

Dataset 1066

The sound waves should be converted to audio data when we speak
a keyword. The conversion should be done by sampling the signal
generated by the microphone in 16KHz with a 16-bit depth.

So, any device that can generate audio data with this basic specifica-
tion (16Khz/16bits) will work fine. As a device, we can use the proper
XIAO ESP32S3 Sense, a computer, or even your mobile phone.

Capturing online Audio Data with Edge Impulse and a smart-
phone

In the lab Motion Classification and Anomaly Detection, we connect
our device directly to Edge Impulse Studio for data capturing (hav-
ing a sampling frequency of 50Hz to 100Hz). For such low frequency,
we could use the EI CLI function Data Forwarder, but according to Jan
Jongboom, Edge Impulse CTO, audio (16KHz) goes too fast for the data
forwarder to be captured. So, once we have the digital data captured by
the microphone, we can turn it into a WAV file to be sent to the Studio
via Data Uploader (same as we will do with Pete’s dataset).

If we want to collect audio data directly on the Studio, we
can use any smartphone connected online with it. We will
not explore this option here, but you can easily follow EI
documentation.

Capturing (ofÒine) Audio Data with the XIAO ESP32S3
Sense

The built-in microphone is the MSM261D3526H1CPM, a PDM digi-
tal output MEMS microphone with Multi-modes. Internally, it is con-
nected to the ESP32S3 via an I2S bus using pins IO41 (Clock) and IO41
(Data).

https://docs.edgeimpulse.com/docs/development-platforms/using-your-mobile-phone
https://files.seeedstudio.com/wiki/XIAO-BLE/mic-MSM261D3526H1CPM-ENG.pdf

KEYWORD SPOTTING (KWS) 1067

What is I2S?
I2S, or Inter-IC Sound, is a standard protocol for transmitting digital

audio from one device to another. It was initially developed by Philips
Semiconductor (now NXP Semiconductors). It is commonly used in
audio devices such as digital signal processors, digital audio proces-
sors, and, more recently, microcontrollers with digital audio capabili-
ties (our case here).

The I2S protocol consists of at least three lines:

1. Bit (or Serial) clock line (BCLK or CLK): This line toggles to
indicate the start of a new bit of data (pin IO42).

2. Word select line (WS): This line toggles to indicate the start of a
new word (left channel or right channel). The Word select clock (WS)
frequency defines the sample rate. In our case, L/R on the microphone
is set to ground, meaning that we will use only the left channel (mono).

3. Data line (SD): This line carries the audio data (pin IO41)
In an I2S data stream, the data is sent as a sequence of frames, each

containing a left-channel word and a right-channel word. This makes
I2S particularly suited for transmitting stereo audio data. However, it
can also be used for mono or multichannel audio with additional data
lines.

Let’s start understanding how to capture raw data using the
microphone. Go to the GitHub projectand download the sketch:
XIAOEsp2s3_Mic_Test:

/*
XIAO ESP32S3 Simple Mic Test

https://github.com/Mjrovai/XIAO-ESP32S3-Sense
https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/Mic_Test/XiaoEsp32s3_Mic_Test

Dataset 1068

*/

#include <I2S.h>

void setup() {
Serial.begin(115200);
while (!Serial) {
}

// start I2S at 16 kHz with 16-bits per sample
I2S.setAllPins(-1, 42, 41, -1, -1);
if (!I2S.begin(PDM_MONO_MODE, 16000, 16)) {
Serial.println("Failed to initialize I2S!");
while (1); // do nothing

}
}

void loop() {
// read a sample
int sample = I2S.read();

if (sample && sample != -1 && sample != 1) {
Serial.println(sample);

}
}

This code is a simple microphone test for the XIAO ESP32S3 using
the I2S (Inter-IC Sound) interface. It sets up the I2S interface to capture
audio data at a sample rate of 16 kHz with 16 bits per sample and then
continuously reads samples from the microphone and prints them to
the serial monitor.

Let’s dig into the code’s main parts:

• Include the I2S library: This library provides functions to config-
ure and use the I2S interface, which is a standard for connecting
digital audio devices.

• I2S.setAllPins(-1, 42, 41, -1, -1): This sets up the I2S pins. The
parameters are (-1, 42, 41, -1, -1), where the second parameter
(42) is the PIN for the I2S clock (CLK), and the third parameter
(41) is the PIN for the I2S data (DATA) line. The other parameters
are set to -1, meaning those pins are not used.

• I2S.begin(PDM_MONO_MODE, 16000, 16): This initializes the
I2S interface in Pulse Density Modulation (PDM) mono mode,
with a sample rate of 16 kHz and 16 bits per sample. If the initial-

https://espressif-docs.readthedocs-hosted.com/projects/arduino-esp32/en/latest/api/i2s.html

KEYWORD SPOTTING (KWS) 1069

ization fails, an error message is printed, and the program halts.
• int sample = I2S.read(): This reads an audio sample from the I2S

interface.

If the sample is valid, it is printed on the Serial Monitor and Plotter.
Below is a test “whispering” in two different tones.

Save recorded sound samples (dataset) as .wav audio files
to a microSD card

Let’s use the onboard SD Card reader to save .wav audio files; we must
habilitate the XIAO PSRAM first.

ESP32-S3 has only a few hundred kilobytes of internal
RAM on the MCU chip. It can be insufÏcient for some
purposes so that ESP32-S3 can use up to 16 MB of external
PSRAM (Psuedostatic RAM) connected in parallel with
the SPI flash chip. The external memory is incorporated in
the memory map and, with certain restrictions, is usable
in the same way as internal data RAM.

For a start, Insert the SD Card on the XIAO as shown in the photo
below (the SD Card should be formatted to FAT32).

Dataset 1070

Turn the PSRAM function of the ESP-32 chip on (Arduino IDE):
Tools>PSRAM: “OPI PSRAM”>OPI PSRAM

KEYWORD SPOTTING (KWS) 1071

• Download the sketch Wav_Record_dataset,which you can find
on the project’s GitHub.

This code records audio using the I2S interface of the Seeed XIAO
ESP32S3 Sense board, saves the recording as a.wav file on an SD card,
and allows for control of the recording process through commands
sent from the serial monitor. The name of the audio file is customiz-
able (it should be the class labels to be used with the training), and
multiple recordings can be made, each saved in a new file. The code
also includes functionality to increase the volume of the recordings.

Let’s break down the most essential parts of it:

#include <I2S.h>
#include "FS.h"
#include "SD.h"
#include "SPI.h"

Those are the necessary libraries for the program. I2S.h allows for
audio input, FS.h provides file system handling capabilities, SD.h en-
ables the program to interact with an SD card, and SPI.h handles the
SPI communication with the SD card.

#define RECORD_TIME 10
#define SAMPLE_RATE 16000U
#define SAMPLE_BITS 16
#define WAV_HEADER_SIZE 44
#define VOLUME_GAIN 2

Here, various constants are defined for the program.

• RECORD_TIME specifies the length of the audio recording in
seconds.

• SAMPLE_RATE and SAMPLE_BITS define the audio quality of
the recording.

• WAV_HEADER_SIZE specifies the size of the .wav file header.
• VOLUME_GAIN is used to increase the volume of the recording.

int fileNumber = 1;
String baseFileName;
bool isRecording = false;

These variables keep track of the current file number (to create
unique file names), the base file name, and whether the system is
currently recording.

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/Wav_Record_dataset

Dataset 1072

void setup() {
Serial.begin(115200);
while (!Serial);

I2S.setAllPins(-1, 42, 41, -1, -1);
if (!I2S.begin(PDM_MONO_MODE, SAMPLE_RATE, SAMPLE_BITS)) {
Serial.println("Failed to initialize I2S!");
while (1);

}

if(!SD.begin(21)){
Serial.println("Failed to mount SD Card!");
while (1);

}
Serial.printf("Enter with the label name\n");

}

The setup function initializes the serial communication, I2S interface
for audio input, and SD card interface. If the I2S did not initialize or
the SD card fails to mount, it will print an error message and halt exe-
cution.

void loop() {
if (Serial.available() > 0) {
String command = Serial.readStringUntil('\n');
command.trim();
if (command == "rec") {
isRecording = true;

} else {
baseFileName = command;
fileNumber = 1; //reset file number each time a new basefile name is set
Serial.printf("Send rec for starting recording label \n");

}
}
if (isRecording && baseFileName != "") {
String fileName = "/" + baseFileName + "." + String(fileNumber) + ".wav";
fileNumber++;
record_wav(fileName);
delay(1000); // delay to avoid recording multiple files at once
isRecording = false;

}
}

In the main loop, the program waits for a command from the serial
monitor. If the command is rec, the program starts recording. Other-

KEYWORD SPOTTING (KWS) 1073

wise, the command is assumed to be the base name for the .wav files. If
it’s currently recording and a base file name is set, it records the audio
and saves it as a.wav file. The file names are generated by appending
the file number to the base file name.

void record_wav(String fileName)
{
...

File file = SD.open(fileName.c_str(), FILE_WRITE);
...
rec_buffer = (uint8_t *)ps_malloc(record_size);
...

esp_i2s::i2s_read(esp_i2s::I2S_NUM_0,
rec_buffer,
record_size,
&sample_size,
portMAX_DELAY);

...
}

This function records audio and saves it as a.wav file with the given
name. It starts by initializing the sample_size and record_size vari-
ables. record_size is calculated based on the sample rate, size, and
desired recording time. Let’s dig into the essential sections;

File file = SD.open(fileName.c_str(), FILE_WRITE);
// Write the header to the WAV file
uint8_t wav_header[WAV_HEADER_SIZE];
generate_wav_header(wav_header, record_size, SAMPLE_RATE);
file.write(wav_header, WAV_HEADER_SIZE);

This section of the code opens the file on the SD card for writing and
then generates the .wav file header using the generate_wav_header
function. It then writes the header to the file.

// PSRAM malloc for recording
rec_buffer = (uint8_t *)ps_malloc(record_size);
if (rec_buffer == NULL) {
Serial.printf("malloc failed!\n");
while(1) ;

}
Serial.printf("Buffer: %d bytes\n", ESP.getPsramSize() - ESP.getFreePsram());

Dataset 1074

The ps_malloc function allocates memory in the PSRAM for the
recording. If the allocation fails (i.e., rec_buffer is NULL), it prints an
error message and halts execution.

// Start recording
esp_i2s::i2s_read(esp_i2s::I2S_NUM_0,

rec_buffer,
record_size,
&sample_size,
portMAX_DELAY);

if (sample_size == 0) {
Serial.printf("Record Failed!\n");

} else {
Serial.printf("Record %d bytes\n", sample_size);

}

The i2s_read function reads audio data from the microphone into
rec_buffer. It prints an error message if no data is read (sample_size is
0).

// Increase volume
for (uint32_t i = 0; i < sample_size; i += SAMPLE_BITS/8) {
(*(uint16_t *)(rec_buffer+i)) <<= VOLUME_GAIN;

}

This section of the code increases the recording volume by shifting
the sample values by VOLUME_GAIN.

// Write data to the WAV file
Serial.printf("Writing to the file ...\n");
if (file.write(rec_buffer, record_size) != record_size)
Serial.printf("Write file Failed!\n");

free(rec_buffer);
file.close();
Serial.printf("Recording complete: \n");
Serial.printf("Send rec for a new sample or enter a new label\n\n");

Finally, the audio data is written to the .wav file. If the write op-
eration fails, it prints an error message. After writing, the memory
allocated for rec_buffer is freed, and the file is closed. The function
finishes by printing a completion message and prompting the user to
send a new command.

void generate_wav_header(uint8_t *wav_header,

KEYWORD SPOTTING (KWS) 1075

uint32_t wav_size,
uint32_t sample_rate)

{
...
memcpy(wav_header, set_wav_header, sizeof(set_wav_header));

}

The generate_wav_header function creates a.wav file header based
on the parameters (wav_size and sample_rate). It generates an array
of bytes according to the .wav file format, which includes fields for
the file size, audio format, number of channels, sample rate, byte rate,
block alignment, bits per sample, and data size. The generated header
is then copied into the wav_header array passed to the function.

Now, upload the code to the XIAO and get samples from the key-
words (yes and no). You can also capture noise and other words.

The Serial monitor will prompt you to receive the label to be
recorded.

Send the label (for example, yes). The program will wait for another
command: rec

Dataset 1076

And the program will start recording new samples every time a
command rec is sent. The files will be saved as yes.1.wav, yes.2.wav,
yes.3.wav, etc., until a new label (for example, no) is sent. In this case,
you should send the command rec for each new sample, which will be
saved as no.1.wav, no.2.wav, no.3.wav, etc.

Ultimately, we will get the saved files on the SD card.

KEYWORD SPOTTING (KWS) 1077

The files are ready to be uploaded to Edge Impulse Studio

Capturing (ofÒine) Audio Data Apps

Alternatively, you can also use your PC or smartphone to capture au-
dio data with a sampling frequency 16KHz and a bit depth of 16 Bits.
A good app for that is Voice Recorder Pro (IOS). You should save your
records as .wav files and send them to your computer.

Note that any app, such as Audacity, can be used for audio
recording or even your computer.

Training model with Edge Impulse Studio

https://www.bejbej.ca/app/voicerecordpro
https://www.bejbej.ca/app/voicerecordpro
https://www.audacityteam.org/
https://www.audacityteam.org/

Training model with Edge Impulse Studio 1078

Uploading the Data

When the raw dataset is defined and collected (Pete’s dataset +
recorded keywords), we should initiate a new project at Edge Impulse
Studio:

Once the project is created, select the Upload Existing Data tool in
the Data Acquisition section. Choose the files to be uploaded:

And upload them to the Studio (You can automatically split data in
train/test). Repete to all classes and all raw data.

KEYWORD SPOTTING (KWS) 1079

The samples will now appear in the Data acquisition section.

All data on Pete’s dataset have a 1s length, but the samples recorded
in the previous section have 10s and must be split into 1s samples to be
compatible.

Click on three dots after the sample name and select Split sample.

Training model with Edge Impulse Studio 1080

Once inside the tool, split the data into 1-second records. If neces-
sary, add or remove segments:

This procedure should be repeated for all samples.

Note: For longer audio files (minutes), first, split into 10-
second segments and after that, use the tool again to get
the final 1-second splits.

Suppose we do not split data automatically in train/test during up-
load. In that case, we can do it manually (using the three dots menu,
moving samples individually) or using Perform Train / Test Split on
Dashboard - Danger Zone.

KEYWORD SPOTTING (KWS) 1081

We can optionally check all datasets using the tab Data Ex-
plorer.

Creating Impulse (Pre-Process / Model definition)

An impulse takes raw data, uses signal processing to extract features, and
then uses a learning block to classify new data.

First, we will take the data points with a 1-second window, augment-
ing the data, sliding that window each 500ms. Note that the option
zero-pad data is set. It is essential to fill with zeros samples smaller
than 1 second (in some cases, I reduced the 1000 ms window on the
split tool to avoid noises and spikes).

Each 1-second audio sample should be pre-processed and converted
to an image (for example, 13 x 49 x 1). We will use MFCC, which ex-
tracts features from audio signals using Mel Frequency Cepstral Coef-
ficients, which are great for the human voice.

https://en.wikipedia.org/wiki/Mel-frequency_cepstrum
https://en.wikipedia.org/wiki/Mel-frequency_cepstrum

Training model with Edge Impulse Studio 1082

Next, we select KERAS for classification and build our model from
scratch by doing Image Classification using Convolution Neural Net-
work).

Pre-Processing (MFCC)

The next step is to create the images to be trained in the next phase:

We can keep the default parameter values or take advantage of the
DSP Autotuneparameters option, which we will do.

KEYWORD SPOTTING (KWS) 1083

The result will not spend much memory to pre-process data (only
16KB). Still, the estimated processing time is high, 675 ms for an
Espressif ESP-EYE (the closest reference available), with a 240KHz
clock (same as our device), but with a smaller CPU (XTensa LX6,
versus the LX7 on the ESP32S). The real inference time should be
smaller.

Suppose we need to reduce the inference time later. In that case,
we should return to the pre-processing stage and, for example, reduce
the FFT length to 256, change the Number of coefÏcients, or another
parameter.

For now, let’s keep the parameters defined by the Autotuning tool.
Save parameters and generate the features.

Training model with Edge Impulse Studio 1084

If you want to go further with converting temporal serial
data into images using FFT, Spectrogram, etc., you can play
with this CoLab: Audio Raw Data Analysis.

Model Design and Training

We will use a Convolution Neural Network (CNN) model. The basic
architecture is defined with two blocks of Conv1D + MaxPooling (with
8 and 16 neurons, respectively) and a 0.25 Dropout. And on the last
layer, after Flattening four neurons, one for each class:

As hyper-parameters, we will have a Learning Rate of 0.005 and a
model that will be trained by 100 epochs. We will also include data
augmentation, as some noise. The result seems OK:

https://colab.research.google.com/github/Mjrovai/UNIFEI-IESTI01-TinyML-2022.1/blob/main/00_Curse_Folder/2_Applications_Deploy/Class_24/IESTI01_Audio_Raw_Data_Analisys.ipynb

KEYWORD SPOTTING (KWS) 1085

If you want to understand what is happening “under the hood,” you
can download the dataset and run a Jupyter Notebook playing with the
code. For example, you can analyze the accuracy by each epoch:

This CoLab Notebook can explain how you can go further: KWS

https://colab.research.google.com/github/Mjrovai/XIAO-ESP32S3-Sense/blob/main/KWS

Testing 1086

Classifier Project - Looking “Under the hood Training/xiao_esp32s3_-
keyword_spotting_project_nn_classifier.ipynb).”

Testing

Testing the model with the data put apart before training (Test Data),
we got an accuracy of approximately 87%.

Inspecting the F1 score, we can see that for YES. We got 0.95, an excel-
lent result once we used this keyword to “trigger” our postprocessing
stage (turn on the built-in LED). Even for NO, we got 0.90. The worst
result is for unknown, what is OK.

We can proceed with the project, but it is possible to perform Live
Classification using a smartphone before deployment on our device.
Go to the Live Classification section and click on Connect a Develop-
ment board:

https://colab.research.google.com/github/Mjrovai/XIAO-ESP32S3-Sense/blob/main/KWS
https://colab.research.google.com/github/Mjrovai/XIAO-ESP32S3-Sense/blob/main/KWS

KEYWORD SPOTTING (KWS) 1087

Point your phone to the barcode and select the link.

Your phone will be connected to the Studio. Select the option Classi-
fication on the app, and when it is running, start testing your keywords,
confirming that the model is working with live and real data:

Deploy and Inference
The Studio will package all the needed libraries, preprocessing func-
tions, and trained models, downloading them to your computer. You
should select the option Arduino Library, and at the bottom, choose

Deploy and Inference 1088

Quantized (Int8) and press the button Build.

Now it is time for a real test. We will make inferences wholly discon-
nected from the Studio. Let’s change one of the ESP32 code examples
created when you deploy the Arduino Library.

In your Arduino IDE, go to the File/Examples tab look for your
project, and select esp32/esp32_microphone:

This code was created for the ESP-EYE built-in microphone, which

KEYWORD SPOTTING (KWS) 1089

should be adapted for our device.
Start changing the libraries to handle the I2S bus:

By:

#include <I2S.h>
#define SAMPLE_RATE 16000U
#define SAMPLE_BITS 16

Initialize the IS2 microphone at setup(), including the lines:

void setup()
{
...

I2S.setAllPins(-1, 42, 41, -1, -1);
if (!I2S.begin(PDM_MONO_MODE, SAMPLE_RATE, SAMPLE_BITS)) {
Serial.println("Failed to initialize I2S!");

while (1) ;
...
}

On the static void capture_samples(void* arg) function, replace the
line 153 that reads data from I2S mic:

By:

/* read data at once from i2s */
esp_i2s::i2s_read(esp_i2s::I2S_NUM_0,

(void*)sampleBuffer,
i2s_bytes_to_read,
&bytes_read, 100);

Deploy and Inference 1090

On function static bool microphone_inference_start(uint32_t n_sam-
ples), we should comment or delete lines 198 to 200, where the micro-
phone initialization function is called. This is unnecessary because the
I2S microphone was already initialized during the setup().

Finally, on static void microphone_inference_end(void) function, re-
place line 243:

By:

static void microphone_inference_end(void)
{

free(sampleBuffer);
ei_free(inference.buffer);

}

You can find the complete code on the project’s GitHub. Upload the
sketch to your board and test some real inferences:

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/xiao_esp32s3_microphone

KEYWORD SPOTTING (KWS) 1091

Postprocessing
Now that we know the model is working by detecting our keywords,
let’s modify the code to see the internal LED going on every time a YES
is detected.

You should initialize the LED:

#define LED_BUILT_IN 21
...
void setup()
{
...
pinMode(LED_BUILT_IN, OUTPUT); // Set the pin as output
digitalWrite(LED_BUILT_IN, HIGH); //Turn off

...
}

And change the // print the predictions portion of the previous code
(on loop():

int pred_index = 0; // Initialize pred_index
float pred_value = 0; // Initialize pred_value

// print the predictions
ei_printf("Predictions ");
ei_printf("(DSP: %d ms., Classification: %d ms., Anomaly: %d ms.)",

Postprocessing 1092

result.timing.dsp, result.timing.classification, result.timing.anomaly);
ei_printf(": \n");
for (size_t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) {

ei_printf(" %s: ", result.classification[ix].label);
ei_printf_float(result.classification[ix].value);
ei_printf("\n");

if (result.classification[ix].value > pred_value){
pred_index = ix;
pred_value = result.classification[ix].value;

}
}

// show the inference result on LED
if (pred_index == 3){

digitalWrite(LED_BUILT_IN, LOW); //Turn on
}
else{

digitalWrite(LED_BUILT_IN, HIGH); //Turn off
}

You can find the complete code on the project’s GitHub. Upload the
sketch to your board and test some real inferences:

The idea is that the LED will be ON whenever the keyword YES is

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/xiao_esp32s3_microphone_led

KEYWORD SPOTTING (KWS) 1093

detected. In the same way, instead of turning on an LED, this could be
a “trigger” for an external device, as we saw in the introduction.

Conclusion
The Seeed XIAO ESP32S3 Sense is a giant tiny device! However, it is
powerful, trustworthy, not expensive, low power, and has suitable sen-
sors to be used on the most common embedded machine learning ap-
plications such as vision and sound. Even though Edge Impulse does
not ofÏcially support XIAO ESP32S3 Sense (yet!), we realized that us-
ing the Studio for training and deployment is straightforward.

On my GitHub repository, you will find the last version all
the codeused on this project and the previous ones of the
XIAO ESP32S3 series.

Before we finish, consider that Sound Classification is more than just
voice. For example, you can develop TinyML projects around sound in
several areas, such as:

• Security (Broken Glass detection)
• Industry (Anomaly Detection)
• Medical (Snore, Toss, Pulmonary diseases)
• Nature (Beehive control, insect sound)

Resources
• XIAO ESP32S3 Codes

• Subset of Google Speech Commands Dataset

• KWS MFCC Analysis Colab Notebook

• KWS CNN training Colab Notebook

• XIAO ESP32S3 Post-processing Code

• Edge Impulse Project

https://github.com/Mjrovai/XIAO-ESP32S3-Sense
https://github.com/Mjrovai/XIAO-ESP32S3-Sense
https://cdn.edgeimpulse.com/datasets/keywords2.zip
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/KWS_MFCC_Analysis.ipynb
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/KWS_CNN_training.ipynb
https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/xiao_esp32s3_microphone_led
https://studio.edgeimpulse.com/public/230109/live

1095

Motion Classification and
Anomaly Detection

Figure 20.13.: DALL·E prompt
- 1950s style cartoon illustration
set in a vintage audio lab. Scien-
tists, dressed in classic attire with
white lab coats, are intently ana-
lyzing audio data on large chalk-
boards. The boards display intri-
cate FFT (Fast Fourier Transform)
graphs and time-domain curves.
Antique audio equipment is scat-
tered around, but the data repre-
sentations are clear and detailed,
indicating their focus on audio
analysis.

Introduction 1096

Introduction
The XIAO ESP32S3 Sense, with its built-in camera and mic, is a versatile
device. But what if you need to add another type of sensor, such as an
IMU? No problem! One of the standout features of the XIAO ESP32S3
is its multiple pins that can be used as an I2C bus (SDA/SCL pins),
making it a suitable platform for sensor integration.

Installing the IMU
When selecting your IMU, the market offers a wide range of devices,
each with unique features and capabilities. You could choose, for ex-
ample, the ADXL362 (3-axis), MAX21100 (6-axis), MPU6050 (6-axis),
LIS3DHTR (3-axis), or the LCM20600Seeed Grove— (6-axis), which is
part of the IMU 9DOF (lcm20600+AK09918). This variety allows you
to tailor your choice to your project’s specific needs.

For this project, we will use an IMU, the MPU6050 (or 6500), a low-
cost (less than 2.00 USD) 6-axis Accelerometer/Gyroscope unit.

At the end of the lab, we will also comment on using the
LCM20600.

The MPU-6500 is a 6-axis Motion Tracking device that combines a
3-axis gyroscope, 3-axis accelerometer, and a Digital Motion Proces-
sorTM (DMP) in a small 3x3x0.9mm package. It also features a 4096-
byte FIFO that can lower the trafÏc on the serial bus interface and re-
duce power consumption by allowing the system processor to burst
read sensor data and then go into a low-power mode.

With its dedicated I2C sensor bus, the MPU-6500 directly accepts
inputs from external I2C devices. MPU-6500, with its 6-axis integra-

https://invensense.tdk.com/download-pdf/mpu-6500-datasheet/

MOTION CLASSIFICATION AND ANOMALY DETECTION 1097

tion, on-chip DMP, and run-time calibration firmware, enables manu-
facturers to eliminate the costly and complex selection, qualification,
and system-level integration of discrete devices, guaranteeing optimal
motion performance for consumers. MPU-6500 is also designed to in-
terface with multiple non-inertial digital sensors, such as pressure sen-
sors, on its auxiliary I2C port.

Usually, the libraries available are for MPU6050, but they
work for both devices.

Connecting the HW

Connect the IMU to the XIAO according to the below diagram:

• MPU6050 SCL –> XIAO D5
• MPU6050 SDA –> XIAO D4
• MPU6050 VCC –> XIAO 3.3V
• MPU6050 GND –> XIAO GND

Installing the IMU 1098

Install the Library

Go to Arduino Library Manager and type MPU6050. Install the latest
version.

MOTION CLASSIFICATION AND ANOMALY DETECTION 1099

Download the sketch MPU6050_Acc_Data_Acquisition.in:

/*
* Based on I2C device class (I2Cdev) Arduino sketch for MPU6050 class
by Jeff Rowberg <jeff@rowberg.net>

* and Edge Impulse Data Forwarder Exampe (Arduino)
- https://docs.edgeimpulse.com/docs/cli-data-forwarder

*
* Developed by M.Rovai @11May23
*/

#include "I2Cdev.h"
#include "MPU6050.h"
#include "Wire.h"

#define FREQUENCY_HZ 50
#define INTERVAL_MS (1000 / (FREQUENCY_HZ + 1))
#define ACC_RANGE 1 // 0: -/+2G; 1: +/-4G

// convert factor g to m/s2 ==> [-32768, +32767] ==> [-2g, +2g]
#define CONVERT_G_TO_MS2 (9.81/(16384.0/(1.+ACC_RANGE)))

static unsigned long last_interval_ms = 0;

MPU6050 imu;
int16_t ax, ay, az;

void setup() {

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/IMU/MPU6050_Acc_Data_Acquisition

Installing the IMU 1100

Serial.begin(115200);

// initialize device
Serial.println("Initializing I2C devices...");
Wire.begin();
imu.initialize();
delay(10);

// // verify connection
// if (imu.testConnection()) {
// Serial.println("IMU connected");
// }
// else {
// Serial.println("IMU Error");
// }

delay(300);

//Set MCU 6050 OffSet Calibration
imu.setXAccelOffset(-4732);
imu.setYAccelOffset(4703);
imu.setZAccelOffset(8867);
imu.setXGyroOffset(61);
imu.setYGyroOffset(-73);
imu.setZGyroOffset(35);

/* Set full-scale accelerometer range.
* 0 = +/- 2g
* 1 = +/- 4g
* 2 = +/- 8g
* 3 = +/- 16g
*/
imu.setFullScaleAccelRange(ACC_RANGE);

}

void loop() {

if (millis() > last_interval_ms + INTERVAL_MS) {
last_interval_ms = millis();

// read raw accel/gyro measurements from device
imu.getAcceleration(&ax, &ay, &az);

MOTION CLASSIFICATION AND ANOMALY DETECTION 1101

// converting to m/s2
float ax_m_s2 = ax * CONVERT_G_TO_MS2;
float ay_m_s2 = ay * CONVERT_G_TO_MS2;
float az_m_s2 = az * CONVERT_G_TO_MS2;

Serial.print(ax_m_s2);
Serial.print("\t");
Serial.print(ay_m_s2);
Serial.print("\t");
Serial.println(az_m_s2);

}
}

Some comments about the code:

Note that the values generated by the accelerometer and gyroscope
have a range: [-32768, +32767], so for example, if the default accelerom-
eter range is used, the range in Gs should be: [-2g, +2g]. So, “1G”
means 16384.

For conversion to m/s2, for example, you can define the following:

#define CONVERT_G_TO_MS2 (9.81/16384.0)

In the code, I left an option (ACC_RANGE) to be set to 0 (+/-2G) or
1 (+/- 4G). We will use +/-4G; that should be enough for us. In this
case.

We will capture the accelerometer data on a frequency of 50Hz,
and the acceleration data will be sent to the Serial Port as meters per
squared second (m/s2).

When you ran the code with the IMU resting over your table, the
accelerometer data shown on the Serial Monitor should be around 0.00,
0.00, and 9.81. If the values are a lot different, you should calibrate the
IMU.

The MCU6050 can be calibrated using the sketch: mcu6050-
calibration.ino.

Run the code. The following will be displayed on the Serial Monitor:

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/IMU/mcu6050-calibration
https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/IMU/mcu6050-calibration

Installing the IMU 1102

Send any character (in the above example, “x”), and the calibration
should start.

Note that A message MPU6050 connection failed. Ignore
this message. For some reason, imu.testConnection() is not
returning a correct result.

In the end, you will receive the offset values to be used on all your
sketches:

Take the values and use them on the setup:

//Set MCU 6050 OffSet Calibration
imu.setXAccelOffset(-4732);
imu.setYAccelOffset(4703);
imu.setZAccelOffset(8867);
imu.setXGyroOffset(61);
imu.setYGyroOffset(-73);
imu.setZGyroOffset(35);

Now, run the sketch MPU6050_Acc_Data_Acquisition.in:
Once you run the above sketch, open the Serial Monitor:

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/IMU/MPU6050_Acc_Data_Acquisition

MOTION CLASSIFICATION AND ANOMALY DETECTION 1103

Or check the Plotter:

Move your device in the three axes. You should see the variation on
Plotter:

The TinyML Motion Classification Project 1104

The TinyML Motion Classification Project
For our lab, we will simulate mechanical stresses in transport. Our
problem will be to classify four classes of movement:

• Maritime (pallets in boats)
• Terrestrial (palettes in a Truck or Train)
• Lift (Palettes being handled by Fork-Lift)
• Idle (Palettes in Storage houses)

So, to start, we should collect data. Then, accelerometers will pro-
vide the data on the palette (or container).

MOTION CLASSIFICATION AND ANOMALY DETECTION 1105

From the above images, we can see that primarily horizontal move-
ments should be associated with the “Terrestrial class,” Vertical move-
ments with the “Lift Class,” no activity with the “Idle class,” and move-
ment on all three axes to Maritime class.

Connecting the device to Edge Impulse
For data collection, we should first connect our device to the Edge Im-
pulse Studio, which will also be used for data pre-processing, model
training, testing, and deployment.

Follow the instructions hereto install the Node.jsand Edge
Impulse CLI on your computer.

Once the XIAO ESP32S3 is not a fully supported development board
by Edge Impulse, we should, for example, use the CLI Data Forwarder
to capture data from our sensor and send it to the Studio, as shown in
this diagram:

https://www.containerhandbuch.de/chb_e/stra/index.html?/chb_e/stra/stra_02_03_03.htm
https://docs.edgeimpulse.com/docs/edge-impulse-cli/cli-installation
https://nodejs.org/en/
https://docs.edgeimpulse.com/docs/edge-impulse-cli/cli-data-forwarder
https://docs.edgeimpulse.com/docs/edge-impulse-cli/cli-data-forwarder

Connecting the device to Edge Impulse 1106

You can alternately capture your data “ofÒine,” store them
on an SD card or send them to your computer via Bluetooth
or Wi-Fi. In this video, you can learn alternative ways to
send data to the Edge Impulse Studio.

Connect your device to the serial port and run the previous code to
capture IMU (Accelerometer) data, “printing them” on the serial. This
will allow the Edge Impulse Studio to “capture” them.

Go to the Edge Impulse page and create a project.

The maximum length for an Arduino library name is 63
characters. Note that the Studio will name the final library
using your project name and include “_inference” to it. The
name I chose initially did not work when I tried to deploy
the Arduino library because it resulted in 64 characters. So,
I need to change it by taking out the “anomaly detection”
part.

Start the CLI Data Forwarderon your terminal, entering (if it is the
first time) the following command:

edge-impulse-data-forwarder --clean

Next, enter your EI credentials and choose your project, variables,
and device names:

https://youtu.be/2KBPq_826WM
https://docs.edgeimpulse.com/docs/edge-impulse-cli/cli-data-forwarder

MOTION CLASSIFICATION AND ANOMALY DETECTION 1107

Go to your EI Project and verify if the device is connected (the dot
should be green):

Data Collection

As discussed before, we should capture data from all four Transporta-
tion Classes. Imagine that you have a container with a built-in ac-
celerometer:

Data Collection 1108

Now imagine your container is on a boat, facing an angry ocean, on
a truck, etc.:

• Maritime (pallets in boats)

– Move the XIAO in all directions, simulating an undulatory
boat movement.

• Terrestrial (palettes in a Truck or Train)

– Move the XIAO over a horizontal line.

• Lift (Palettes being handled by

– Move the XIAO over a vertical line.

• Idle (Palettes in Storage houses)

– Leave the XIAO over the table.

MOTION CLASSIFICATION AND ANOMALY DETECTION 1109

Below is one sample (raw data) of 10 seconds:

Data Collection 1110

You can capture, for example, 2 minutes (twelve samples of 10 sec-
onds each) for the four classes. Using the “3 dots” after each one of the
samples, select 2, moving them for the Test set (or use the automatic
Train/Test Split tool on the Danger Zone of Dashboard tab). Below,
you can see the result datasets:

MOTION CLASSIFICATION AND ANOMALY DETECTION 1111

Data Pre-Processing
The raw data type captured by the accelerometer is a “time series” and
should be converted to “tabular data”. We can do this conversion using
a sliding window over the sample data. For example, in the below
figure,

We can see 10 seconds of accelerometer data captured with a sample
rate (SR) of 50Hz. A 2-second window will capture 300 data points (3
axis x 2 seconds x 50 samples). We will slide this window each 200ms,
creating a larger dataset where each instance has 300 raw features.

You should use the best SR for your case, considering
Nyquist’s theorem, which states that a periodic signal
must be sampled at more than twice the signal’s highest
frequency component.

Data preprocessing is a challenging area for embedded machine
learning. Still, Edge Impulse helps overcome this with its digital
signal processing (DSP) preprocessing step and, more specifically, the
Spectral Features.

On the Studio, this dataset will be the input of a Spectral Analysis
block, which is excellent for analyzing repetitive motion, such as data
from accelerometers. This block will perform a DSP (Digital Signal
Processing), extracting features such as “FFT” or “Wavelets”. In the
most common case, FFT, the Time Domain Statistical features per
axis/channel are:

• RMS
• Skewness
• Kurtosis

And the Frequency Domain Spectral features per axis/channel are:

Model Design 1112

• Spectral Power
• Skewness
• Kurtosis

For example, for an FFT length of 32 points, the Spectral Analysis
Block’s resulting output will be 21 features per axis (a total of 63 fea-
tures).

Those 63 features will be the Input Tensor of a Neural Network Clas-
sifier and the Anomaly Detection model (K-Means).

You can learn more by digging into the lab DSP Spectral
Features

Model Design

Our classifier will be a Dense Neural Network (DNN) that will have 63
neurons on its input layer, two hidden layers with 20 and 10 neurons,
and an output layer with four neurons (one per each class), as shown
here:

Impulse Design

An impulse takes raw data, uses signal processing to extract features,
and then uses a learning block to classify new data.

We also take advantage of a second model, the K-means, that can
be used for Anomaly Detection. If we imagine that we could have our
known classes as clusters, any sample that could not fit on that could
be an outlier, an anomaly (for example, a container rolling out of a ship
on the ocean).

../../../shared/dsp_spectral_features_block/dsp_spectral_features_block.qmd
../../../shared/dsp_spectral_features_block/dsp_spectral_features_block.qmd

MOTION CLASSIFICATION AND ANOMALY DETECTION 1113

Imagine our XIAO rolling or moving upside-down, on a
movement complement different from the one trained

Below is our final Impulse design:

Generating features 1114

Generating features
At this point in our project, we have defined the pre-processing method
and the model designed. Now, it is time to have the job done. First, let’s
take the raw data (time-series type) and convert it to tabular data. Go
to the Spectral Features tab and select Save Parameters:

At the top menu, select the Generate Features option and the Gen-
erate Features button. Each 2-second window data will be converted
into one data point of 63 features.

The Feature Explorer will show those data in 2D using

MOTION CLASSIFICATION AND ANOMALY DETECTION 1115

UMAP. Uniform Manifold Approximation and Projection
(UMAP) is a dimension reduction technique that can
be used for visualization similarly to t-SNE but also for
general non-linear dimension reduction.

The visualization allows one to verify that the classes present an ex-
cellent separation, which indicates that the classifier should work well.

Optionally, you can analyze the relative importance of each feature
for one class compared with other classes.

Training

Our model has four layers, as shown below:

As hyperparameters, we will use a Learning Rate of 0.005 and 20%
of data for validation for 30 epochs. After training, we can see that the
accuracy is 97%.

https://umap-learn.readthedocs.io/en/latest/

Testing 1116

For anomaly detection, we should choose the suggested features that
are precisely the most important in feature extraction. The number of
clusters will be 32, as suggested by the Studio:

Testing

Using 20% of the data left behind during the data capture phase, we
can verify how our model will behave with unknown data; if not 100%
(what is expected), the result was not that good (8%), mainly due to
the terrestrial class. Once we have four classes (which output should
add 1.0), we can set up a lower threshold for a class to be considered
valid (for example, 0.4):

MOTION CLASSIFICATION AND ANOMALY DETECTION 1117

Now, the Test accuracy will go up to 97%.

You should also use your device (which is still connected to the Stu-
dio) and perform some Live Classification.

Be aware that here you will capture real data with your de-
vice and upload it to the Studio, where an inference will
be taken using the trained model (But the model is NOT in
your device).

Deploy
Now it is time for magic˜! The Studio will package all the needed
libraries, preprocessing functions, and trained models, downloading
them to your computer. You should select the option Arduino Library,

Inference 1118

and at the bottom, choose Quantized (Int8) and Build. A Zip file will
be created and downloaded to your computer.

On your Arduino IDE, go to the Sketch tab, select the option Add.ZIP
Library, and Choose the.zip file downloaded by the Studio:

Inference

Now, it is time for a real test. We will make inferences that are wholly
disconnected from the Studio. Let’s change one of the code examples
created when you deploy the Arduino Library.

In your Arduino IDE, go to the File/Examples tab and look for your
project, and on examples, select nano_ble_sense_accelerometer:

MOTION CLASSIFICATION AND ANOMALY DETECTION 1119

Of course, this is not your board, but we can have the code working
with only a few changes.

For example, at the beginning of the code, you have the library re-
lated to Arduino Sense IMU:

/* Includes --- */
#include <XIAO-ESP32S3-Motion-Classification_inferencing.h>
#include <Arduino_LSM9DS1.h>

Change the “includes” portion with the code related to the IMU:

#include <XIAO-ESP32S3-Motion-Classification_inferencing.h>
#include "I2Cdev.h"
#include "MPU6050.h"
#include "Wire.h"

Change the Constant Defines

/* Constant defines --- */
MPU6050 imu;
int16_t ax, ay, az;

#define ACC_RANGE 1 // 0: -/+2G; 1: +/-4G
#define CONVERT_G_TO_MS2 (9.81/(16384/(1.+ACC_RANGE)))
#define MAX_ACCEPTED_RANGE (2*9.81)+(2*9.81)*ACC_RANGE

On the setup function, initiate the IMU set the off-set values and
range:

// initialize device
Serial.println("Initializing I2C devices...");
Wire.begin();
imu.initialize();
delay(10);

//Set MCU 6050 OffSet Calibration
imu.setXAccelOffset(-4732);
imu.setYAccelOffset(4703);
imu.setZAccelOffset(8867);
imu.setXGyroOffset(61);

Inference 1120

imu.setYGyroOffset(-73);
imu.setZGyroOffset(35);

imu.setFullScaleAccelRange(ACC_RANGE);

At the loop function, the buffers buffer[ix], buffer[ix + 1], and
buffer[ix + 2] will receive the 3-axis data captured by the accelerome-
ter. On the original code, you have the line:

IMU.readAcceleration(buffer[ix], buffer[ix + 1], buffer[ix + 2]);

Change it with this block of code:

imu.getAcceleration(&ax, &ay, &az);
buffer[ix + 0] = ax;
buffer[ix + 1] = ay;
buffer[ix + 2] = az;

You should change the order of the following two blocks of code.
First, you make the conversion to raw data to “Meters per squared sec-
ond (ms2)”, followed by the test regarding the maximum acceptance
range (that here is in ms2, but on Arduino, was in Gs):

buffer[ix + 0] *= CONVERT_G_TO_MS2;
buffer[ix + 1] *= CONVERT_G_TO_MS2;
buffer[ix + 2] *= CONVERT_G_TO_MS2;

for (int i = 0; i < 3; i++) {
if (fabs(buffer[ix + i]) > MAX_ACCEPTED_RANGE) {

buffer[ix + i] = ei_get_sign(buffer[ix + i]) * MAX_ACCEPTED_RANGE;
}

}

And that is it! You can now upload the code to your device and
proceed with the inferences. The complete code is available on the
project’s GitHub.

Now you should try your movements, seeing the result of the infer-
ence of each class on the images:

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/IMU

MOTION CLASSIFICATION AND ANOMALY DETECTION 1121

Conclusion 1122

And, of course, some “anomaly”, for example, putting the XIAO
upside-down. The anomaly score will be over 1:

Conclusion

Regarding the IMU, this project used the low-cost MPU6050 but could
also use other IMUs, for example, the LCM20600 (6-axis), which is part
of the Seeed Grove - IMU 9DOF (lcm20600+AK09918). You can take ad-
vantage of this sensor, which has integrated a Grove connector, which
can be helpful in the case you use the XIAO with an extension board,
as shown below:

https://wiki.seeedstudio.com/Grove-IMU_9DOF-lcm20600+AK09918/
https://wiki.seeedstudio.com/Seeeduino-XIAO-Expansion-Board/

MOTION CLASSIFICATION AND ANOMALY DETECTION 1123

You can follow the instructions here to connect the IMU with the
MCU. Only note that for using the Grove ICM20600 Accelerometer, it
is essential to update the files I2Cdev.cpp and I2Cdev.h that you will
download from the library provided by Seeed Studio. For that, replace
both files from this link. You can find a sketch for testing the IMU on
the GitHub project: accelerometer_test.ino.

On the projet’s GitHub repository, you will find the last ver-
sion of all codeand other docs: XIAO-ESP32S3 - IMU.

Resources
• XIAO ESP32S3 Codes

• Edge Impulse Spectral Features Block Colab Notebook

• Edge Impulse Project

https://wiki.seeedstudio.com/Grove-IMU_9DOF-lcm20600+AK09918/#specification
https://github.com/Seeed-Studio/Seeed_ICM20600_AK09918
https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/I2Cdev
https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/IMU/accelerometer_test
https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/IMU
https://github.com/Mjrovai/XIAO-ESP32S3-Sense
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/Motion_Classification/Edge_Impulse_Spectral_Features_Block.ipynb
https://studio.edgeimpulse.com/public/226398/live

1125

Part XIII
Raspberry Pi

1127

These labs offer invaluable hands-on experience with machine learn-
ing systems, leveraging the versatility and accessibility of the Rasp-
berry Pi platform. Unlike working with large-scale models that de-
mand extensive cloud resources, these exercises allow you to directly
interact with hardware and software in a compact yet powerful edge
computing environment. You’ll gain practical insights into deploying
AI at the edge by utilizing Raspberry Pi’s capabilities, from the efÏcient
Pi Zero to the more robust Pi 4 or Pi 5 models. This approach provides
a tangible understanding of the challenges and opportunities in imple-
menting machine learning solutions in resource-constrained settings.
While we’re working at a smaller scale, the principles and techniques
you’ll learn are fundamentally similar to those used in larger systems.
The Raspberry Pi’s ability to run a whole operating system and its
extensive GPIO capabilities allow for a rich learning experience that
bridges the gap between theoretical knowledge and real-world appli-
cation. Through these labs, you’ll grasp the intricacies of EdgeML and
develop skills applicable to a wide range of AI deployment scenarios.

Figure 20.14.: Raspberry Pi
Zero 2-W and Raspberry Pi 5
with Camera

Pre-requisites
• Raspberry Pi : Ensure you have at least one of the boards: the

Raspberry Pi Zero 2W, Raspberry Pi 4 or 5.
• Power Adapter: To Power on the boards.

– Raspberry Pi Zero 2-W: 2.5W with a Micro-USB adapter
– Raspberry Pi 4 or 5: 3.5W with a USB-C adapter

• Network: With internet access for downloading the necessary
software and controlling the boards remotely.

• SD Card (32GB minimum) and an SD card Adapter: For the
Raspberry Pi OS.

Setup 1128

Setup
• Setup Raspberry Pi

Exercises

ModalityTask Description Link
Vision Image

Classifica-
tion

Learn to
classify
images

Link

Vision Object
Detection

Implement
object
detection

Link

LLM Large
Language
Models

Deploy LLMs
at the Edge

Link

./setup/setup.qmd
./image_classification/image_classification.qmd
./object_detection/object_detection.qmd
./llm/llm.qmd

1129

Setup

Figure 20.15.: DALL·E prompt
- An electronics laboratory envi-
ronment inspired by the 1950s,
with a cartoon style. The lab
should have vintage equipment,
large oscilloscopes, old-fashioned
tube radios, and large, boxy com-
puters. The Raspberry Pi 5 board
is prominently displayed, accu-
rately shown in its real size, simi-
lar to a credit card, on aworkbench.
The Pi board is surrounded by clas-
sic lab tools like a soldering iron,
resistors, and wires. The overall
scene should be vibrant, with exag-
gerated colors and playful details
characteristic of a cartoon. No lo-
gos or text should be included.

This chapter will guide you through setting up Raspberry Pi Zero 2 W
(Raspi-Zero) and Raspberry Pi 5 (Raspi-5) models. We’ll cover hardware
setup, operating system installation, initial configuration, and tests.

The general instructions for the Rasp-5 also apply to the

Introduction 1130

older Raspberry Pi versions, such as the Rasp-3 and Raspi-
4.

Introduction
The Raspberry Pi is a powerful and versatile single-board computer
that has become an essential tool for engineers across various disci-
plines. Developed by the Raspberry Pi Foundation, these compact
devices offer a unique combination of affordability, computational
power, and extensive GPIO (General Purpose Input/Output) ca-
pabilities, making them ideal for prototyping, embedded systems
development, and advanced engineering projects.

Key Features

1. Computational Power: Despite their small size, Raspberry Pis
offers significant processing capabilities, with the latest models
featuring multi-core ARM processors and up to 8GB of RAM.

2. GPIO Interface: The 40-pin GPIO header allows direct interac-
tion with sensors, actuators, and other electronic components,
facilitating hardware-software integration projects.

3. Extensive Connectivity: Built-in Wi-Fi, Bluetooth, Ethernet, and
multiple USB ports enable diverse communication and network-
ing projects.

4. Low-Level Hardware Access: Raspberry Pis provides access to
interfaces like I2C, SPI, and UART, allowing for detailed control
and communication with external devices.

5. Real-Time Capabilities: With proper configuration, Raspberry
Pis can be used for soft real-time applications, making them suit-
able for control systems and signal processing tasks.

6. Power EfÏciency: Low power consumption enables battery-
powered and energy-efÏcient designs, especially in models like
the Pi Zero.

Raspberry Pi Models (covered in this book)

1. Raspberry Pi Zero 2 W (Raspi-Zero):

• Ideal for: Compact embedded systems

https://www.raspberrypi.org/

SETUP 1131

• Key specs: 1GHz single-core CPU (ARM Cortex-A53),
512MB RAM, minimal power consumption

2. Raspberry Pi 5 (Raspi-5):

• Ideal for: More demanding applications such as edge com-
puting, computer vision, and edgeAI applications, includ-
ing LLMs.

• Key specs: 2.4GHz quad-core CPU (ARM Cortex A-76), up
to 8GB RAM, PCIe interface for expansions

Engineering Applications

1. Embedded Systems Design: Develop and prototype embedded
systems for real-world applications.

2. IoT andNetworkedDevices: Create interconnected devices and
explore protocols like MQTT, CoAP, and HTTP/HTTPS.

3. Control Systems: Implement feedback control loops, PID con-
trollers, and interface with actuators.

4. Computer Vision and AI: Utilize libraries like OpenCV and Ten-
sorFlow Lite for image processing and machine learning at the
edge.

5. Data Acquisition and Analysis: Collect sensor data, perform
real-time analysis, and create data logging systems.

6. Robotics: Build robot controllers, implement motion planning
algorithms, and interface with motor drivers.

7. Signal Processing: Perform real-time signal analysis, filtering,
and DSP applications.

8. Network Security: Set up VPNs, firewalls, and explore network
penetration testing.

This tutorial will guide you through setting up the most common
Raspberry Pi models, enabling you to start on your machine learning
project quickly. We’ll cover hardware setup, operating system instal-
lation, and initial configuration, focusing on preparing your Pi for Ma-
chine Learning applications.

Hardware Overview 1132

Hardware Overview

Raspberry Pi Zero 2W

• Processor: 1GHz quad-core 64-bit Arm Cortex-A53 CPU
• RAM: 512MB SDRAM
• Wireless: 2.4GHz 802.11 b/g/n wireless LAN, Bluetooth 4.2,

BLE
• Ports: Mini HDMI, micro USB OTG, CSI-2 camera connector
• Power: 5V via micro USB port

Raspberry Pi 5

SETUP 1133

• Processor:

– Pi 5: Quad-core 64-bit Arm Cortex-A76 CPU @ 2.4GHz
– Pi 4: Quad-core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz

• RAM: 2GB, 4GB, or 8GB options (8GB recommended for AI
tasks)

• Wireless: Dual-band 802.11ac wireless, Bluetooth 5.0
• Ports: 2 × micro HDMI ports, 2 × USB 3.0 ports, 2 × USB 2.0 ports,

CSI camera port, DSI display port
• Power: 5V DC via USB-C connector (3A)

Installing the Operating System

The Operating System (OS)

An operating system (OS) is fundamental software that manages com-
puter hardware and software resources, providing standard services
for computer programs. It is the core software that runs on a computer,
acting as an intermediary between hardware and application software.
The OS manages the computer’s memory, processes, device drivers,
files, and security protocols.

1. Key functions:

• Process management: Allocating CPU time to different pro-
grams

• Memory management: Allocating and freeing up memory
as needed

• File system management: Organizing and keeping track of
files and directories

• Device management: Communicating with connected hard-
ware devices

• User interface: Providing a way for users to interact with
the computer

2. Components:

• Kernel: The core of the OS that manages hardware
resources

• Shell: The user interface for interacting with the OS
• File system: Organizes and manages data storage
• Device drivers: Software that allows the OS to communicate

with hardware

Installing the Operating System 1134

The Raspberry Pi runs a specialized version of Linux designed for
embedded systems. This operating system, typically a variant of De-
bian called Raspberry Pi OS (formerly Raspbian), is optimized for the
Pi’s ARM-based architecture and limited resources.

The latest version of Raspberry Pi OS is based on Debian
Bookworm.

Key features:

1. Lightweight: Tailored to run efÏciently on the Pi’s hardware.
2. Versatile: Supports a wide range of applications and program-

ming languages.
3. Open-source: Allows for customization and community-driven

improvements.
4. GPIO support: Enables interaction with sensors and other hard-

ware through the Pi’s pins.
5. Regular updates: Continuously improved for performance and

security.

Embedded Linux on the Raspberry Pi provides a full-featured oper-
ating system in a compact package, making it ideal for projects rang-
ing from simple IoT devices to more complex edge machine-learning
applications. Its compatibility with standard Linux tools and libraries
makes it a powerful platform for development and experimentation.

Installation

To use the Raspberry Pi, we will need an operating system. By default,
Raspberry Pis checks for an operating system on any SD card inserted
in the slot, so we should install an operating system using Raspberry
Pi Imager.
Raspberry Pi Imager is a tool for downloading and writing images

on macOS, Windows, and Linux. It includes many popular operating
system images for Raspberry Pi. We will also use the Imager to pre-
configure credentials and remote access settings.

Follow the steps to install the OS in your Raspi.

1. Download and install the Raspberry Pi Imager on your computer.
2. Insert a microSD card into your computer (a 32GB SD card is rec-

ommended) .
3. Open Raspberry Pi Imager and select your Raspberry Pi model.
4. Choose the appropriate operating system:

• For Raspi-Zero: For example, you can select: Raspberry Pi
OS Lite (64-bit).

https://www.raspberrypi.com/news/bookworm-the-new-version-of-raspberry-pi-os/
https://www.raspberrypi.com/news/bookworm-the-new-version-of-raspberry-pi-os/
https://www.raspberrypi.com/software/
https://www.raspberrypi.com/software/
https://www.raspberrypi.com/software/

SETUP 1135

Figure 20.16.: img

Due to its reduced SDRAM (512MB), the recom-
mended OS for the Rasp Zero is the 32-bit version.
However, to run some machine learning models,
such as the YOLOv8 from Ultralitics, we should use
the 64-bit version. Although Raspi-Zero can run a
desktop, we will choose the LITE version (no Desktop)
to reduce the RAM needed for regular operation.

• For Raspi-5: We can select the full 64-bit version, which in-
cludes a desktop: Raspberry Pi OS (64-bit)

Installing the Operating System 1136

5. Select your microSD card as the storage device.
6. Click on Next and then the gear icon to access advanced options.
7. Set the hostname, the Raspi username and password, configure WiFi

and enable SSH (Very important!)

8. Write the image to the microSD card.

In the examples here, we will use different hostnames:
raspi, raspi-5, raspi-Zero, etc. You should replace by the
one that you are using.

SETUP 1137

Initial Configuration

1. Insert the microSD card into your Raspberry Pi.
2. Connect power to boot up the Raspberry Pi.
3. Please wait for the initial boot process to complete (it may take a

few minutes).

You can find the most common Linux commands to be used
with the Raspi here or here.

Remote Access

SSH Access

The easiest way to interact with the Rasp-Zero is via SSH (“Headless”).
You can use a Terminal (MAC/Linux), PuTTy (Windows), or any other.

1. Find your Raspberry Pi’s IP address (for example, check your
router).

2. On your computer, open a terminal and connect via SSH:

ssh username@[raspberry_pi_ip_address]

Alternatively, if you do not have the IP address, you can try the
following: bash ssh username@hostname.local for example,
ssh mjrovai@rpi-5.local , ssh mjrovai@raspi.local , etc.

Figure 20.17.: img

When you see the prompt:

https://www.jwdittrich.people.ysu.edu/raspberrypi/UsefulRaspberryPiCommands.pdf
https://www.codecademy.com/learn/learn-raspberry-pi/modules/raspberry-pi-command-line-module/cheatsheet
https://www.putty.org/

Remote Access 1138

mjrovai@rpi-5:~ $

It means that you are interacting remotely with your Raspi. It is a
good practice to update/upgrade the system regularly. For that,
you should run:

sudo apt-get update
sudo apt upgrade

You should confirm the Raspi IP address. On the terminal, you
can use:

hostname -I

To shut down the Raspi via terminal:

When you want to turn off your Raspberry Pi, there are better ideas
than just pulling the power cord. This is because the Raspi may still be
writing data to the SD card, in which case merely powering down may
result in data loss or, even worse, a corrupted SD card.

For safety shut down, use the command line:

sudo shutdown -h now

To avoid possible data loss and SD card corruption, before
removing the power, you should wait a few seconds after
shutdown for the Raspberry Pi’s LED to stop blinking and
go dark. Once the LED goes out, it’s safe to power down.

Transfer Files between the Raspi and a computer

Transferring files between the Raspi and our main computer can be
done using a pen drive, directly on the terminal (with scp), or an FTP
program over the network.

SETUP 1139

Using Secure Copy Protocol (scp):

Copy files to your Raspberry Pi. Let’s create a text file on our com-
puter, for example, test.txt.

You can use any text editor. In the same terminal, an option
is the nano.

To copy the file named test.txt from your personal computer to a
user’s home folder on your Raspberry Pi, run the following command
from the directory containing test.txt, replacing the <username>
placeholder with the username you use to log in to your Raspberry
Pi and the <pi_ip_address> placeholder with your Raspberry Pi’s IP
address:

$ scp test.txt <username>@<pi_ip_address>:~/

Note that ~/ means that we will move the file to the ROOT
of our Raspi. You can choose any folder in your Raspi. But
you should create the folder before you run scp, since scp
won’t create folders automatically.

For example, let’s transfer the file test.txt to the ROOT of my Raspi-
zero, which has an IP of 192.168.4.210:

Remote Access 1140

scp test.txt mjrovai@192.168.4.210:~/

I use a different profile to differentiate the terminals. The above ac-
tion happens on your computer. Now, let’s go to our Raspi (using the
SSH) and check if the file is there:

Copy files from your Raspberry Pi. To copy a file named test.txt
from a user’s home directory on a Raspberry Pi to the current direc-
tory on another computer, run the following command on your Host
Computer:

$ scp <username>@<pi_ip_address>:myfile.txt .

For example:
On the Raspi, let’s create a copy of the file with another name:

cp test.txt test_2.txt

And on the Host Computer (in my case, a Mac)

scp mjrovai@192.168.4.210:test_2.txt .

SETUP 1141

Transferring files using FTP

Transferring files using FTP, such as FileZilla FTP Client, is also possi-
ble. Follow the instructions, install the program for your Desktop OS,
and use the Raspi IP address as the Host. For example:

sftp://192.168.4.210

and enter your Raspi username and password. Pressing
Quickconnect will open two windows, one for your host computer
desktop (right) and another for the Raspi (left).

https://filezilla-project.org/download.php?type=client

Increasing SWAP Memory 1142

Increasing SWAP Memory
Using htop, a cross-platform interactive process viewer, you can easily
monitor the resources running on your Raspi, such as the list of pro-
cesses, the running CPUs, and the memory used in real-time. To lunch
hop, enter with the command on the terminal:

htop

Regarding memory, among the devices in the Raspberry Pi family,
the Raspi-Zero has the smallest amount of SRAM (500MB), compared
to a selection of 2GB to 8GB on the Raspis 4 or 5. For any Raspi, it is
possible to increase the memory available to the system with “Swap.”
Swap memory, also known as swap space, is a technique used in com-
puter operating systems to temporarily store data from RAM (Random
Access Memory) on the SD card when the physical RAM is fully uti-
lized. This allows the operating system (OS) to continue running even
when RAM is full, which can prevent system crashes or slowdowns.

Swap memory benefits devices with limited RAM, such as the Raspi-
Zero. Increasing swap can help run more demanding applications or
processes, but it’s essential to balance this with the potential perfor-
mance impact of frequent disk access.

By default, the Rapi-Zero’s SWAP (Swp) memory is only 100MB,
which is very small for running some more complex and demanding
Machine Learning applications (for example, YOLO). Let’s increase it
to 2MB:

First, turn off swap-file:

SETUP 1143

sudo dphys-swapfile swapoff

Next, you should open and change the file /etc/dphys-swapfile.
For that, we will use the nano:

sudo nano /etc/dphys-swapfile

Search for the CONF_SWAPSIZE variable (default is 200) and up-
date it to 2000:

CONF_SWAPSIZE=2000

And save the file.
Next, turn on the swapfile again and reboot the Rasp-zero:

sudo dphys-swapfile setup
sudo dphys-swapfile swapon
sudo reboot

When your device is rebooted (you should enter with the SSH again),
you will realize that the maximum swap memory value shown on top
is now something near 2GB (in my case, 1.95GB).

To keep the htop running, you should open another termi-
nal window to interact continuously with your Raspi.

Installing a Camera
The Raspi is an excellent device for computer vision applications; a
camera is needed for it. We can install a standard USB webcam on the
micro-USB port using a USB OTG adapter (Raspi-Zero and Rasp-5) or
a camera module connected to the Raspi CSI (Camera Serial Interface)
port.

USB Webcams generally have inferior quality to the cam-
era modules that connect to the CSI port. They can also
not be controlled using the raspistill and rasivid com-
mands in the terminal or the picamera recording package
in Python. Nevertheless, there may be reasons why you
want to connect a USB camera to your Raspberry Pi, such
as because of the benefit that it is much easier to set up mul-
tiple cameras with a single Raspberry Pi, long cables, or
simply because you have such a camera on hand.

Installing a Camera 1144

Installing a USB WebCam

1. Power off the Raspi:

sudo shutdown -h no

2. Connect the USB Webcam (USB Camera Module 30fps,1280x720)
to your Raspi (In this example, I am using the Raspi-Zero, but the
instructions work for all Raspis).

3. Power on again and run the SSH
4. To check if your USB camera is recognized, run:

lsusb

You should see your camera listed in the output.

SETUP 1145

5. To take a test picture with your USB camera, use:

fswebcam test_image.jpg

This will save an image named “test_image.jpg” in your current di-
rectory.

6. Since we are using SSH to connect to our Rapsi, we must transfer
the image to our main computer so we can view it. We can use
FileZilla or SCP for this:

Open a terminal on your host computer and run:

scp mjrovai@raspi-zero.local:~/test_image.jpg .

Replace “mjrovai” with your username and “raspi-zero”
with Pi’s hostname.

7. If the image quality isn’t satisfactory, you can adjust various set-
tings; for example, define a resolution that is suitable for YOLO
(640x640):

Installing a Camera 1146

fswebcam -r 640x640 --no-banner test_image_yolo.jpg

This captures a higher-resolution image without the default banner.

An ordinary USB Webcam can also be used:

And verified using lsusb

SETUP 1147

Video Streaming

For stream video (which is more resource-intensive), we can install and
use mjpg-streamer:

First, install Git:

sudo apt install git

Now, we should install the necessary dependencies for mjpg-
streamer, clone the repository, and proceed with the installation:

sudo apt install cmake libjpeg62-turbo-dev
git clone https://github.com/jacksonliam/mjpg-streamer.git
cd mjpg-streamer/mjpg-streamer-experimental
make
sudo make install

Then start the stream with:

mjpg_streamer -i "input_uvc.so" -o "output_http.so -w ./www"

We can then access the stream by opening a web browser and navi-
gating to:
http://<your_pi_ip_address>:8080. In my case: http://192.168.4.210:8080
We should see a webpage with options to view the stream. Click on

the link that says “Stream” or try accessing:

http://<raspberry_pi_ip_address>:8080/?action=stream

Installing a Camera 1148

Installing a Camera Module on the CSI port

There are now several Raspberry Pi camera modules. The original
5-megapixel model was releasedin 2013, followed by an 8-megapixel
Camera Module 2, released in 2016. The latest camera model is the
12-megapixel Camera Module 3, released in 2023.

The original 5MP camera (Arducam OV5647) is no longer available
from Raspberry Pi but can be found from several alternative suppliers.
Below is an example of such a camera on a Raspi-Zero.

https://www.raspberrypi.com/news/camera-board-available-for-sale/
https://www.raspberrypi.com/products/camera-module-v2/
https://www.raspberrypi.com/products/camera-module-v2/
https://www.raspberrypi.com/documentation/accessories/camera.html#:~:text=the%2012-megapixel-,Camera%20Module%203,-which%20was%20released

SETUP 1149

Here is another example of a v2 Camera Module, which has a Sony
IMX219 8-megapixel sensor:

Any camera module will work on the Raspis, but for that, the
onfiguration.txt file must be updated:

sudo nano /boot/firmware/config.txt

At the bottom of the file, for example, to use the 5MP Arducam
OV5647 camera, add the line:

dtoverlay=ov5647,cam0

Or for the v2 module, wich has the 8MP Sony IMX219 camera:

Installing a Camera 1150

dtoverlay=imx219,cam0

Save the file (CTRL+O [ENTER] CRTL+X) and reboot the Raspi:

Sudo reboot

After the boot, you can see if the camera is listed:

libcamera-hello --list-cameras

libcamerais an open-source software library that supports
camera systems directly from the Linux operating system
on Arm processors. It minimizes proprietary code running
on the Broadcom GPU.

Let’s capture a jpeg image with a resolution of 640 x 480 for testing
and save it to a file named test_cli_camera.jpg

rpicam-jpeg --output test_cli_camera.jpg --width 640 --height 480

https://www.raspberrypi.com/documentation/computers/camera_software.html#libcamera

SETUP 1151

if we want to see the file saved, we should use ls -f, which lists all
current directory content in long format. As before, we can use scp to
view the image:

Running the Raspi Desktop remotely

While we’ve primarily interacted with the Raspberry Pi using termi-
nal commands via SSH, we can access the whole graphical desktop
environment remotely if we have installed the complete Raspberry Pi
OS (for example, Raspberry Pi OS (64-bit). This can be particularly
useful for tasks that benefit from a visual interface. To enable this func-
tionality, we must set up a VNC (Virtual Network Computing) server
on the Raspberry Pi. Here’s how to do it:

1. Enable the VNC Server:

• Connect to your Raspberry Pi via SSH.

• Run the Raspberry Pi configuration tool by entering:
sudo raspi-config

• Navigate to Interface Options using the arrow keys.

Running the Raspi Desktop remotely 1152

• Select VNC and Yes to enable the VNC server.

• Exit the configuration tool, saving changes when prompted.

2. Install a VNC Viewer on Your Computer:

SETUP 1153

• Download and install a VNC viewer application on your
main computer. Popular options include RealVNC Viewer,
TightVNC, or VNC Viewer by RealVNC. We will install
VNC Viewer by RealVNC.

3. Once installed, you should confirm the Raspi IP address. For
example, on the terminal, you can use:

hostname -I

4. Connect to Your Raspberry Pi:

• Open your VNC viewer application.

• Enter your Raspberry Pi’s IP address and hostname.
• When prompted, enter your Raspberry Pi’s username and

password.

https://www.realvnc.com/en/connect/download/viewer

Running the Raspi Desktop remotely 1154

5. The Raspberry Pi 5 Desktop should appear on your computer
monitor.

6. Adjust Display Settings (if needed):

• Once connected, adjust the display resolution for optimal
viewing. This can be done through the Raspberry Pi’s desk-
top settings or by modifying the config.txt file.

• Let’s do it using the desktop settings. Reach the menu (the
Raspberry Icon at the left upper corner) and select the best
screen definition for your monitor:

SETUP 1155

Updating and Installing Software
1. Update your system:

sudo apt update && sudo apt upgrade -y

2. Install essential software:

sudo apt install python3-pip -y

3. Enable pip for Python projects:

sudo rm /usr/lib/python3.11/EXTERNALLY-MANAGED

Model-Specific Considerations

Raspberry Pi Zero

• Limited processing power, best for lightweight projects
• Use headless setup (SSH) to conserve resources.
• Consider increasing swap space for memory-intensive tasks.

Raspberry Pi 4 or 5

• Suitable for more demanding projects, including AI and machine
learning.

Model-Specific Considerations 1156

• Can run full desktop environment smoothly.
• For Pi 5, consider using an active cooler for temperature manage-

ment during intensive tasks.

Remember to adjust your project requirements based on the specific
Raspberry Pi model you’re using. The Pi Zero is great for low-power,
space-constrained projects, while the Pi 4/5 models are better suited
for more computationally intensive tasks.

1157

Image Classification

Figure 20.18.: DALL·E prompt
- A cover image for an ‘Image
Classification’ chapter in a Rasp-
berry Pi tutorial, designed in the
same vintage 1950s electronics lab
style as previous covers. The
scene should feature a Raspberry
Pi connected to a camera mod-
ule, with the camera capturing
a photo of the small blue robot
provided by the user. The robot
should be placed on a workbench,
surrounded by classic lab tools
like soldering irons, resistors, and
wires. The lab background should
include vintage equipment like os-
cilloscopes and tube radios, main-
taining the detailed and nostalgic
feel of the era. No text or logos
should be included.

Introduction
Image classification is a fundamental task in computer vision that in-
volves categorizing an image into one of several predefined classes. It’s

Introduction 1158

a cornerstone of artificial intelligence, enabling machines to interpret
and understand visual information in a way that mimics human per-
ception.

Image classification refers to assigning a label or category to an entire
image based on its visual content. This task is crucial in computer vi-
sion and has numerous applications across various industries. Image
classification’s importance lies in its ability to automate visual under-
standing tasks that would otherwise require human intervention.

Applications in Real-World Scenarios

Image classification has found its way into numerous real-world appli-
cations, revolutionizing various sectors:

• Healthcare: Assisting in medical image analysis, such as identi-
fying abnormalities in X-rays or MRIs.

• Agriculture: Monitoring crop health and detecting plant diseases
through aerial imagery.

• Automotive: Enabling advanced driver assistance systems and
autonomous vehicles to recognize road signs, pedestrians, and
other vehicles.

• Retail: Powering visual search capabilities and automated inven-
tory management systems.

• Security and Surveillance: Enhancing threat detection and facial
recognition systems.

• Environmental Monitoring: Analyzing satellite imagery for de-
forestation, urban planning, and climate change studies.

Advantages of Running Classification on Edge Devices
like Raspberry Pi

Implementing image classification on edge devices such as the Rasp-
berry Pi offers several compelling advantages:

1. Low Latency: Processing images locally eliminates the need to
send data to cloud servers, significantly reducing response times.

2. OfÒine Functionality: Classification can be performed with-
out an internet connection, making it suitable for remote or
connectivity-challenged environments.

3. Privacy and Security: Sensitive image data remains on the lo-
cal device, addressing data privacy concerns and compliance re-
quirements.

IMAGE CLASSIFICATION 1159

4. Cost-Effectiveness: Eliminates the need for expensive cloud com-
puting resources, especially for continuous or high-volume clas-
sification tasks.

5. Scalability: Enables distributed computing architectures where
multiple devices can work independently or in a network.

6. Energy EfÏciency: Optimized models on dedicated hardware
can be more energy-efÏcient than cloud-based solutions, which
is crucial for battery-powered or remote applications.

7. Customization: Deploying specialized or frequently updated
models tailored to specific use cases is more manageable.

We can create more responsive, secure, and efÏcient computer vision
solutions by leveraging the power of edge devices like Raspberry Pi
for image classification. This approach opens up new possibilities for
integrating intelligent visual processing into various applications and
environments.

In the following sections, we’ll explore how to implement and opti-
mize image classification on the Raspberry Pi, harnessing these advan-
tages to create powerful and efÏcient computer vision systems.

Setting Up the Environment

Updating the Raspberry Pi

First, ensure your Raspberry Pi is up to date:

sudo apt update
sudo apt upgrade -y

Installing Required Libraries

Install the necessary libraries for image processing and machine learn-
ing:

sudo apt install python3-pip
sudo rm /usr/lib/python3.11/EXTERNALLY-MANAGED
pip3 install --upgrade pip

Setting Up the Environment 1160

Setting up a Virtual Environment (Optional but Recom-
mended)

Create a virtual environment to manage dependencies:

python3 -m venv ~/tflite
source ~/tflite/bin/activate

Installing TensorFlow Lite

We are interested in performing inference, which refers to executing
a TensorFlow Lite model on a device to make predictions based on in-
put data. To perform an inference with a TensorFlow Lite model, we
must run it through an interpreter. The TensorFlow Lite interpreter is
designed to be lean and fast. The interpreter uses a static graph order-
ing and a custom (less-dynamic) memory allocator to ensure minimal
load, initialization, and execution latency.

We’ll use the TensorFlow Lite runtime for Raspberry Pi, a simplified
library for running machine learning models on mobile and embedded
devices, without including all TensorFlow packages.

pip install tflite_runtime --no-deps

The wheel installed: tflite_runtime-2.14.0-cp311-cp311-manylinux_-
2_34_aarch64.whl

Installing Additional Python Libraries

Install required Python libraries for use with Image Classification:
If you have another version of Numpy installed, first uninstall it.

pip3 uninstall numpy

Install version 1.23.2, which is compatible with the tflite_runtime.

pip3 install numpy==1.23.2

pip3 install Pillow matplotlib

Creating a working directory:

If you are working on the Raspi-Zero with the minimum OS (No Desk-
top), you may not have a user-pre-defined directory tree (you can check
it with ls. So, let’s create one:

https://pypi.org/project/tflite-runtime/

IMAGE CLASSIFICATION 1161

mkdir Documents
cd Documents/
mkdir TFLITE
cd TFLITE/
mkdir IMG_CLASS
cd IMG_CLASS
mkdir models
cd models

On the Raspi-5, the /Documents should be there.

Get a pre-trained Image Classification model:
An appropriate pre-trained model is crucial for successful image

classification on resource-constrained devices like the Raspberry Pi.
MobileNet is designed for mobile and embedded vision applica-
tions with a good balance between accuracy and speed. Versions:
MobileNetV1, MobileNetV2, MobileNetV3. Let’s download the V2:

wget https://storage.googleapis.com/download.tensorflow.org/models/
tflite_11_05_08/mobilenet_v2_1.0_224_quant.tgz

tar xzf mobilenet_v2_1.0_224_quant.tgz

Get its labels:

wget https://raw.githubusercontent.com/tensorflow/tensorflow/master/tensorflow/
lite/java/demo/app/src/main/assets/labels_mobilenet_quant_v1_224.txt -O labels.txt

In the end, you should have the models in its directory:

We will only need the mobilenet_v2_1.0_224_-
quant.tflite model and the labels.txt. You can
delete the other files.

Setting Up the Environment 1162

Setting up Jupyter Notebook (Optional)

If you prefer using Jupyter Notebook for development:

pip3 install jupyter
jupyter notebook --generate-config

To run Jupyter Notebook, run the command (change the IP address
for yours):

jupyter notebook --ip=192.168.4.210 --no-browser

On the terminal, you can see the local URL address to open the note-
book:

You can access it from another device by entering the Raspberry Pi’s
IP address and the provided token in a web browser (you can copy the
token from the terminal).

Define your working directory in the Raspi and create a new Python
3 notebook.

IMAGE CLASSIFICATION 1163

Verifying the Setup

Test your setup by running a simple Python script:

import tflite_runtime.interpreter as tflite
import numpy as np
from PIL import Image

print("NumPy:", np.__version__)
print("Pillow:", Image.__version__)

Try to create a TFLite Interpreter
model_path = "./models/mobilenet_v2_1.0_224_quant.tflite"
interpreter = tflite.Interpreter(model_path=model_path)
interpreter.allocate_tensors()
print("TFLite Interpreter created successfully!")

You can create the Python script using nano on the terminal, saving
it with CTRL+0 + ENTER + CTRL+X

And run it with the command:

Making inferences with Mobilenet V2 1164

Or you can run it directly on the Notebook:

Making inferences with Mobilenet V2
In the last section, we set up the environment, including download-
ing a popular pre-trained model, Mobilenet V2, trained on ImageNet’s
224x224 images (1.2 million) for 1,001 classes (1,000 object categories
plus 1 background). The model was converted to a compact 3.5MB
TensorFlow Lite format, making it suitable for the limited storage and
memory of a Raspberry Pi.

Let’s start a new notebook to follow all the steps to classify one im-
age:

Import the needed libraries:

import time
import numpy as np

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/IMG_CLASS/notebooks/setup_test.ipynb
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/IMG_CLASS/notebooks/10_Image_Classification.ipynb

IMAGE CLASSIFICATION 1165

import matplotlib.pyplot as plt
from PIL import Image
import tflite_runtime.interpreter as tflite

Load the TFLite model and allocate tensors:

model_path = "./models/mobilenet_v2_1.0_224_quant.tflite"
interpreter = tflite.Interpreter(model_path=model_path)
interpreter.allocate_tensors()

Get input and output tensors.

input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

Input details will give us information about how the model should
be fed with an image. The shape of (1, 224, 224, 3) informs us that an
image with dimensions (224x224x3) should be input one by one (Batch
Dimension: 1).

The output details show that the inference will result in an array of
1,001 integer values. Those values result from the image classification,
where each value is the probability of that specific label being related
to the image.

Let’s also inspect the dtype of input details of the model

Making inferences with Mobilenet V2 1166

input_dtype = input_details[0]['dtype']
input_dtype

dtype('uint8')

This shows that the input image should be raw pixels (0 - 255).

Let’s get a test image. You can transfer it from your computer or
download one for testing. Let’s first create a folder under our working
directory:

mkdir images
cd images
wget https://upload.wikimedia.org/wikipedia/commons/3/3a/Cat03.jpg

Let’s load and display the image:

Load he image
img_path = "./images/Cat03.jpg"
img = Image.open(img_path)

Display the image
plt.figure(figsize=(8, 8))
plt.imshow(img)
plt.title("Original Image")
plt.show()

IMAGE CLASSIFICATION 1167

We can see the image size running the command:

width, height = img.size

That shows us that the image is an RGB image with a width of 1600
and a height of 1600 pixels. So, to use our model, we should reshape
it to (224, 224, 3) and add a batch dimension of 1, as defined in input
details: (1, 224, 224, 3). The inference result, as shown in output details,
will be an array with a 1001 size, as shown below:

Making inferences with Mobilenet V2 1168

So, let’s reshape the image, add the batch dimension, and see the
result:

img = img.resize((input_details[0]['shape'][1], input_details[0]['shape'][2]))
input_data = np.expand_dims(img, axis=0
input_data.shape

The input_data shape is as expected: (1, 224, 224, 3)
Let’s confirm the dtype of the input data:

input_data.dtype

dtype('uint8')

The input data dtype is ‘uint8’, which is compatible with the dtype
expected for the model.

Using the input_data, let’s run the interpreter and get the predic-
tions (output):

interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
predictions = interpreter.get_tensor(output_details[0]['index'])[0]

The prediction is an array with 1001 elements. Let’s get the Top-5
indices where their elements have high values:

top_k_results = 5
top_k_indices = np.argsort(predictions)[::-1][:top_k_results]
top_k_indices

The top_k_indices is an array with 5 elements: array([283, 286,
282])

So, 283, 286, 282, 288, and 479 are the image’s most probable classes.
Having the index, we must find to what class it appoints (such as car,
cat, or dog). The text file downloaded with the model has a label asso-
ciated with each index from 0 to 1,000. Let’s use a function to load the
.txt file as a list:

def load_labels(filename):
with open(filename, 'r') as f:

return [line.strip() for line in f.readlines()]

And get the list, printing the labels associated with the indexes:

IMAGE CLASSIFICATION 1169

labels_path = "./models/labels.txt"
labels = load_labels(labels_path)

print(labels[286])
print(labels[283])
print(labels[282])
print(labels[288])
print(labels[479])

As a result, we have:

Egyptian cat
tiger cat
tabby
lynx
carton

At least the four top indices are related to felines. The prediction
content is the probability associated with each one of the labels. As
we saw on output details, those values are quantized and should be
dequantized and apply softmax.

scale, zero_point = output_details[0]['quantization']
dequantized_output = (predictions.astype(np.float32) - zero_point) * scale
exp_output = np.exp(dequantized_output - np.max(dequantized_output))
probabilities = exp_output / np.sum(exp_output)

Let’s print the top-5 probabilities:

print (probabilities[286])
print (probabilities[283])
print (probabilities[282])
print (probabilities[288])
print (probabilities[479])

0.27741462
0.3732285
0.16919471
0.10319158
0.023410844

For clarity, let’s create a function to relate the labels with the proba-
bilities:

Making inferences with Mobilenet V2 1170

for i in range(top_k_results):
print("\t{:20}: {}%".format(

labels[top_k_indices[i]],
(int(probabilities[top_k_indices[i]]*100))))

tiger cat : 37%
Egyptian cat : 27%
tabby : 16%
lynx : 10%
carton : 2%

Define a general Image Classification function

Let’s create a general function to give an image as input, and we get
the Top-5 possible classes:

def image_classification(img_path, model_path, labels, top_k_results=5):
load the image
img = Image.open(img_path)
plt.figure(figsize=(4, 4))
plt.imshow(img)
plt.axis('off')

Load the TFLite model
interpreter = tflite.Interpreter(model_path=model_path)
interpreter.allocate_tensors()

Get input and output tensors
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

Preprocess
img = img.resize((input_details[0]['shape'][1],

input_details[0]['shape'][2]))
input_data = np.expand_dims(img, axis=0)

Inference on Raspi-Zero
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()

Obtain results and map them to the classes
predictions = interpreter.get_tensor(output_details[0]['index'])[0]

IMAGE CLASSIFICATION 1171

Get indices of the top k results
top_k_indices = np.argsort(predictions)[::-1][:top_k_results]

Get quantization parameters
scale, zero_point = output_details[0]['quantization']

Dequantize the output and apply softmax
dequantized_output = (predictions.astype(np.float32) - zero_point) * scale
exp_output = np.exp(dequantized_output - np.max(dequantized_output))
probabilities = exp_output / np.sum(exp_output)

print("\n\t[PREDICTION] [Prob]\n")
for i in range(top_k_results):

print("\t{:20}: {}%".format(
labels[top_k_indices[i]],
(int(probabilities[top_k_indices[i]]*100))))

And loading some images for testing, we have:

Testing with a model trained from scratch

Let’s get a TFLite model trained from scratch. For that, you can follow
the Notebook:

CNN to classify Cifar-10 dataset
In the notebook, we trained a model using the CIFAR10 dataset,

which contains 60,000 images from 10 classes of CIFAR (airplane, auto-
mobile, bird, cat, deer, dog, frog, horse, ship, and truck). CIFAR has 32x32
color images (3 color channels) where the objects are not centered and

https://colab.research.google.com/github/Mjrovai/UNIFEI-IESTI01-TinyML-2022.1/blob/main/00_Curse_Folder/2_Applications_Deploy/Class_16/cifar_10/CNN_Cifar_10_TFLite.ipynb#scrollTo=iiVBUpuHXEtw

Making inferences with Mobilenet V2 1172

can have the object with a background, such as airplanes that might
have a cloudy sky behind them! In short, small but real images.

The CNN trained model (cifar10_model.keras) had a size of 2.0MB. Us-
ing the TFLite Converter, the model cifar10.tflite became with 674MB
(around 1/3 of the original size).

On the notebook Cifar 10 - Image Classification on a Raspi with
TFLite (which can be run over the Raspi), we can follow the same steps
we did with the mobilenet_v2_1.0_224_quant.tflite. Below are ex-
amples of images using the General Function for Image Classification on
a Raspi-Zero, as shown in the last section.

Installing Picamera2

Picamera2, a Python library for interacting with Raspberry Pi’s camera,
is based on the libcamera camera stack, and the Raspberry Pi foundation
maintains it. The Picamera2 library is supported on all Raspberry Pi
models, from the Pi Zero to the RPi 5. It is already installed system-
wide on the Raspi, but we should make it accessible within the virtual
environment.

1. First, activate the virtual environment if it’s not already activated:

source ~/tflite/bin/activate

2. Now, let’s create a .pth file in your virtual environment to add the
system site-packages path:

echo "/usr/lib/python3/dist-packages" > $VIRTUAL_ENV/lib/python3.11/
site-packages/system_site_packages.pth

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/IMG_CLASS/notebooks/20_Cifar_10_Image_Classification.ipynb
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/IMG_CLASS/notebooks/20_Cifar_10_Image_Classification.ipynb
https://github.com/raspberrypi/picamera2

IMAGE CLASSIFICATION 1173

Note: If your Python version differs, replace
python3.11 with the appropriate version.

3. After creating this file, try importing picamera2 in Python:

python3
>>> import picamera2
>>> print(picamera2.__file__)

The above code will show the file location of the picamera2 module
itself, proving that the library can be accessed from the environment.

/home/mjrovai/tflite/lib/python3.11/site-packages/picamera2/__init__.py

You can also list the available cameras in the system:

>>> print(Picamera2.global_camera_info())

In my case, with a USB installed, I got:

Now that we’ve confirmed picamera2 is working in the environment
with an index 0, let’s try a simple Python script to capture an image
from your USB camera:

from picamera2 import Picamera2
import time

Initialize the camera
picam2 = Picamera2() # default is index 0

Configure the camera
config = picam2.create_still_configuration(main={"size": (640, 480)})
picam2.configure(config)

Start the camera
picam2.start()

Wait for the camera to warm up

Making inferences with Mobilenet V2 1174

time.sleep(2)

Capture an image
picam2.capture_file("usb_camera_image.jpg")
print("Image captured and saved as 'usb_camera_image.jpg'")

Stop the camera
picam2.stop()

Use the Nano text editor, the Jupyter Notebook, or any other editor.
Save this as a Python script (e.g., capture_image.py) and run it. This
should capture an image from your camera and save it as “usb_cam-
era_image.jpg” in the same directory as your script.

If the Jupyter is open, you can see the captured image on your com-
puter. Otherwise, transfer the file from the Raspi to your computer.

IMAGE CLASSIFICATION 1175

If you are working with a Raspi-5 with a whole desktop,
you can open the file directly on the device.

Image Classification Project

Now, we will develop a complete Image Classification project using the
Edge Impulse Studio. As we did with the Movilinet V2, the trained and
converted TFLite model will be used for inference.

The Goal

The first step in any ML project is to define its goal. In this case, it is to
detect and classify two specific objects present in one image. For this
project, we will use two small toys: a robot and a small Brazilian parrot
(named Periquito). We will also collect images of a background where
those two objects are absent.

Image Classification Project 1176

Data Collection

Once we have defined our Machine Learning project goal, the next and
most crucial step is collecting the dataset. We can use a phone for the
image capture, but we will use the Raspi here. Let’s set up a simple web
server on our Raspberry Pi to view the QVGA (320 x 240) captured
images in a browser.

1. First, let’s install Flask, a lightweight web framework for Python:

pip3 install flask

2. Let’s create a new Python script combining image capture with
a web server. We’ll call it get_img_data.py:

from flask import Flask, Response, render_template_string, request, redirect, url_for
from picamera2 import Picamera2
import io
import threading
import time
import os
import signal

app = Flask(__name__)

Global variables
base_dir = "dataset"
picam2 = None

IMAGE CLASSIFICATION 1177

frame = None
frame_lock = threading.Lock()
capture_counts = {}
current_label = None
shutdown_event = threading.Event()

def initialize_camera():
global picam2
picam2 = Picamera2()
config = picam2.create_preview_configuration(main={"size": (320, 240)})
picam2.configure(config)
picam2.start()
time.sleep(2) # Wait for camera to warm up

def get_frame():
global frame
while not shutdown_event.is_set():

stream = io.BytesIO()
picam2.capture_file(stream, format='jpeg')
with frame_lock:

frame = stream.getvalue()
time.sleep(0.1) # Adjust as needed for smooth preview

def generate_frames():
while not shutdown_event.is_set():

with frame_lock:
if frame is not None:

yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')

time.sleep(0.1) # Adjust as needed for smooth streaming

def shutdown_server():
shutdown_event.set()
if picam2:

picam2.stop()
Give some time for other threads to finish
time.sleep(2)
Send SIGINT to the main process
os.kill(os.getpid(), signal.SIGINT)

@app.route('/', methods=['GET', 'POST'])
def index():

global current_label

Image Classification Project 1178

if request.method == 'POST':
current_label = request.form['label']
if current_label not in capture_counts:

capture_counts[current_label] = 0
os.makedirs(os.path.join(base_dir, current_label), exist_ok=True)
return redirect(url_for('capture_page'))

return render_template_string('''
<!DOCTYPE html>
<html>
<head>

<title>Dataset Capture - Label Entry</title>
</head>
<body>

<h1>Enter Label for Dataset</h1>
<form method="post">

<input type="text" name="label" required>
<input type="submit" value="Start Capture">

</form>
</body>
</html>

''')

@app.route('/capture')
def capture_page():

return render_template_string('''
<!DOCTYPE html>
<html>
<head>

<title>Dataset Capture</title>
<script>

var shutdownInitiated = false;
function checkShutdown() {

if (!shutdownInitiated) {
fetch('/check_shutdown')

.then(response => response.json())

.then(data => {
if (data.shutdown) {

shutdownInitiated = true;
document.getElementById('video-feed').src = '';
document.getElementById('shutdown-message')
.style.display = 'block';

}
});

IMAGE CLASSIFICATION 1179

}
}
setInterval(checkShutdown, 1000); // Check every second

</script>
</head>
<body>

<h1>Dataset Capture</h1>
<p>Current Label: {{ label }}</p>
<p>Images captured for this label: {{ capture_count }}</p>
<img id="video-feed" src="{{ url_for('video_feed') }}" width="640"
height="480" />
<div id="shutdown-message" style="display: none; color: red;">

Capture process has been stopped. You can close this window.
</div>
<form action="/capture_image" method="post">

<input type="submit" value="Capture Image">
</form>
<form action="/stop" method="post">

<input type="submit" value="Stop Capture"
style="background-color: #ff6666;">

</form>
<form action="/" method="get">

<input type="submit" value="Change Label"
style="background-color: #ffff66;">

</form>
</body>
</html>

''', label=current_label, capture_count=capture_counts.get(current_label, 0))

@app.route('/video_feed')
def video_feed():

return Response(generate_frames(),
mimetype='multipart/x-mixed-replace; boundary=frame')

@app.route('/capture_image', methods=['POST'])
def capture_image():

global capture_counts
if current_label and not shutdown_event.is_set():

capture_counts[current_label] += 1
timestamp = time.strftime("%Y%m%d-%H%M%S")
filename = f"image_{timestamp}.jpg"
full_path = os.path.join(base_dir, current_label, filename)

Image Classification Project 1180

picam2.capture_file(full_path)

return redirect(url_for('capture_page'))

@app.route('/stop', methods=['POST'])
def stop():

summary = render_template_string('''
<!DOCTYPE html>
<html>
<head>

<title>Dataset Capture - Stopped</title>
</head>
<body>

<h1>Dataset Capture Stopped</h1>
<p>The capture process has been stopped. You can close this window.</p>
<p>Summary of captures:</p>

{% for label, count in capture_counts.items() %}

{{ label }}: {{ count }} images
{% endfor %}

</body>
</html>

''', capture_counts=capture_counts)

Start a new thread to shutdown the server
threading.Thread(target=shutdown_server).start()

return summary

@app.route('/check_shutdown')
def check_shutdown():

return {'shutdown': shutdown_event.is_set()}

if __name__ == '__main__':
initialize_camera()
threading.Thread(target=get_frame, daemon=True).start()
app.run(host='0.0.0.0', port=5000, threaded=True)

4. Run this script:

python3 get_img_data.py

5. Access the web interface:

IMAGE CLASSIFICATION 1181

• On the Raspberry Pi itself (if you have a GUI): Open a web
browser and go to http://localhost:5000

• From another device on the same network: Open a web
browser and go to http://<raspberry_pi_ip>:5000 (Re-
place <raspberry_pi_ip> with your Raspberry Pi’s IP ad-
dress). For example: http://192.168.4.210:5000/

This Python script creates a web-based interface for capturing and
organizing image datasets using a Raspberry Pi and its camera. It’s
handy for machine learning projects that require labeled image data.

Key Features:

1. Web Interface: Accessible from any device on the same network
as the Raspberry Pi.

2. Live Camera Preview: This shows a real-time feed from the cam-
era.

3. Labeling System: Allows users to input labels for different cate-
gories of images.

4. Organized Storage: Automatically saves images in label-specific
subdirectories.

5. Per-Label Counters: Keeps track of how many images are cap-
tured for each label.

6. Summary Statistics: Provides a summary of captured images
when stopping the capture process.

Main Components:

1. Flask Web Application: Handles routing and serves the web in-
terface.

2. Picamera2 Integration: Controls the Raspberry Pi camera.
3. Threaded Frame Capture: Ensures smooth live preview.
4. File Management: Organizes captured images into labeled di-

rectories.

Key Functions:

• initialize_camera(): Sets up the Picamera2 instance.
• get_frame(): Continuously captures frames for the live preview.
• generate_frames(): Yields frames for the live video feed.
• shutdown_server(): Sets the shutdown event, stops the camera,

and shuts down the Flask server
• index(): Handles the label input page.
• capture_page(): Displays the main capture interface.

Image Classification Project 1182

• video_feed(): Shows a live preview to position the camera
• capture_image(): Saves an image with the current label.
• stop(): Stops the capture process and displays a summary.

Usage Flow:

1. Start the script on your Raspberry Pi.
2. Access the web interface from a browser.
3. Enter a label for the images you want to capture and press Start

Capture.

4. Use the live preview to position the camera.
5. Click Capture Image to save images under the current label.

IMAGE CLASSIFICATION 1183

6. Change labels as needed for different categories, selecting Change
Label.

7. Click Stop Capture when finished to see a summary.

Image Classification Project 1184

Technical Notes:

• The script uses threading to handle concurrent frame capture and
web serving.

• Images are saved with timestamps in their filenames for unique-
ness.

• The web interface is responsive and can be accessed from mobile
devices.

Customization Possibilities:

• Adjust image resolution in the initialize_camera() function.
Here we used QVGA (320X240).

• Modify the HTML templates for a different look and feel.
• Add additional image processing or analysis steps in the

capture_image() function.

Number of samples on Dataset:

Get around 60 images from each category (periquito, robot and
background). Try to capture different angles, backgrounds, and light
conditions. On the Raspi, we will end with a folder named dataset,
witch contains 3 sub-folders periquito, robot, and background. one for
each class of images.

You can use Filezilla to transfer the created dataset to your main
computer.

IMAGE CLASSIFICATION 1185

Training the model with Edge Impulse Studio
We will use the Edge Impulse Studio to train our model. Go to the
Edge Impulse Page, enter your account credentials, and create a new
project:

Here, you can clone a similar project: Raspi - Img Class.

Dataset

We will walk through four main steps using the EI Studio (or Studio).
These steps are crucial in preparing our model for use on the Raspi:
Dataset, Impulse, Tests, and Deploy (on the Edge Device, in this case,
the Raspi).

Regarding the Dataset, it is essential to point out that our
Original Dataset, captured with the Raspi, will be split into
Training, Validation, and Test. The Test Set will be separated
from the beginning and reserved for use only in the Test
phase after training. The Validation Set will be used during
training.

On Studio, follow the steps to upload the captured data:

1. Go to the Data acquisition tab, and in the UPLOAD DATA section,
upload the files from your computer in the chosen categories.

https://edgeimpulse.com/
https://studio.edgeimpulse.com/public/510251/live

Training the model with Edge Impulse Studio 1186

2. Leave to the Studio the splitting of the original dataset into train
and test and choose the label about

3. Repeat the procedure for all three classes. At the end, you should
see your “raw data” in the Studio:

The Studio allows you to explore your data, showing a complete
view of all the data in your project. You can clear, inspect, or change
labels by clicking on individual data items. In our case, a straightfor-
ward project, the data seems OK.

IMAGE CLASSIFICATION 1187

The Impulse Design
In this phase, we should define how to:

• Pre-process our data, which consists of resizing the individual
images and determining the color depth to use (be it RGB or
Grayscale) and

• Specify a Model. In this case, it will be the Transfer Learning
(Images) to fine-tune a pre-trained MobileNet V2 image classifi-
cation model on our data. This method performs well even with
relatively small image datasets (around 180 images in our case).

Transfer Learning with MobileNet offers a streamlined approach to
model training, which is especially beneficial for resource-constrained
environments and projects with limited labeled data. MobileNet,
known for its lightweight architecture, is a pre-trained model that has
already learned valuable features from a large dataset (ImageNet).

By leveraging these learned features, we can train a new model for
your specific task with fewer data and computational resources and
achieve competitive accuracy.

This approach significantly reduces training time and computa-
tional cost, making it ideal for quick prototyping and deployment on
embedded devices where efÏciency is paramount.

Go to the Impulse Design Tab and create the impulse, defining an im-
age size of 160x160 and squashing them (squared form, without crop-
ping). Select Image and Transfer Learning blocks. Save the Impulse.

The Impulse Design 1188

Image Pre-Processing

All the input QVGA/RGB565 images will be converted to 76,800 fea-
tures (160x160x3).

IMAGE CLASSIFICATION 1189

Press Save parameters and select Generate features in the next
tab.

Model Design

MobileNet is a family of efÏcient convolutional neural networks de-
signed for mobile and embedded vision applications. The key features
of MobileNet are:

1. Lightweight: Optimized for mobile devices and embedded sys-
tems with limited computational resources.

2. Speed: Fast inference times, suitable for real-time applications.
3. Accuracy: Maintains good accuracy despite its compact size.

MobileNetV2, introduced in 2018, improves the original MobileNet
architecture. Key features include:

https://arxiv.org/abs/1801.04381

The Impulse Design 1190

1. Inverted Residuals: Inverted residual structures are used where
shortcut connections are made between thin bottleneck layers.

2. Linear Bottlenecks: Removes non-linearities in the narrow layers
to prevent the destruction of information.

3. Depth-wise Separable Convolutions: Continues to use this efÏ-
cient operation from MobileNetV1.

In our project, we will do a Transfer Learning with the
MobileNetV2 160x160 1.0, which means that the images used
for training (and future inference) should have an input Size of 160x160
pixels and a Width Multiplier of 1.0 (full width, not reduced). This
configuration balances between model size, speed, and accuracy.

Model Training

Another valuable deep learning technique is Data Augmentation.
Data augmentation improves the accuracy of machine learning mod-
els by creating additional artificial data. A data augmentation system
makes small, random changes to the training data during the training
process (such as flipping, cropping, or rotating the images).

Looking under the hood, here you can see how Edge Impulse imple-
ments a data Augmentation policy on your data:

Implements the data augmentation policy
def augment_image(image, label):

Flips the image randomly
image = tf.image.random_flip_left_right(image)

Increase the image size, then randomly crop it down to
the original dimensions
resize_factor = random.uniform(1, 1.2)
new_height = math.floor(resize_factor * INPUT_SHAPE[0])
new_width = math.floor(resize_factor * INPUT_SHAPE[1])
image = tf.image.resize_with_crop_or_pad(image, new_height, new_width)
image = tf.image.random_crop(image, size=INPUT_SHAPE)

Vary the brightness of the image
image = tf.image.random_brightness(image, max_delta=0.2)

return image, label

Exposure to these variations during training can help prevent your
model from taking shortcuts by “memorizing” superficial clues in your

IMAGE CLASSIFICATION 1191

training data, meaning it may better reflect the deep underlying pat-
terns in your dataset.

The final dense layer of our model will have 0 neurons with a 10%
dropout for overfitting prevention. Here is the Training result:

The result is excellent, with a reasonable 35ms of latency (for a Rasp-
4), which should result in around 30 fps (frames per second) during
inference. A Raspi-Zero should be slower, and the Rasp-5, faster.

Trading off: Accuracy versus speed

If faster inference is needed, we should train the model using smaller
alphas (0.35, 0.5, and 0.75) or even reduce the image input size, trading
with accuracy. However, reducing the input image size and decreasing
the alpha (width multiplier) can speed up inference for MobileNet V2,
but they have different trade-offs. Let’s compare:

1. Reducing Image Input Size:

Pros:

• Significantly reduces the computational cost across all layers.
• Decreases memory usage.
• It often provides a substantial speed boost.

Cons:

• It may reduce the model’s ability to detect small features or fine
details.

• It can significantly impact accuracy, especially for tasks requiring
fine-grained recognition.

The Impulse Design 1192

2. Reducing Alpha (Width Multiplier):

Pros:

• Reduces the number of parameters and computations in the
model.

• Maintains the original input resolution, potentially preserving
more detail.

• It can provide a good balance between speed and accuracy.

Cons:

• It may not speed up inference as dramatically as reducing input
size.

• It can reduce the model’s capacity to learn complex features.

Comparison:

1. Speed Impact:

• Reducing input size often provides a more substantial
speed boost because it reduces computations quadratically
(halving both width and height reduces computations by
about 75%).

• Reducing alpha provides a more linear reduction in compu-
tations.

2. Accuracy Impact:

• Reducing input size can severely impact accuracy, especially
when detecting small objects or fine details.

• Reducing alpha tends to have a more gradual impact on ac-
curacy.

3. Model Architecture:

• Changing input size doesn’t alter the model’s architecture.
• Changing alpha modifies the model’s structure by reducing

the number of channels in each layer.

Recommendation:

1. If our application doesn’t require detecting tiny details and can
tolerate some loss in accuracy, reducing the input size is often the
most effective way to speed up inference.

2. Reducing alpha might be preferable if maintaining the ability to
detect fine details is crucial or if you need a more balanced trade-
off between speed and accuracy.

IMAGE CLASSIFICATION 1193

3. For best results, you might want to experiment with both:

• Try MobileNet V2 with input sizes like 160x160 or 92x92
• Experiment with alpha values like 1.0, 0.75, 0.5 or 0.35.

4. Always benchmark the different configurations on your specific
hardware and with your particular dataset to find the optimal
balance for your use case.

Remember, the best choice depends on your specific
requirements for accuracy, speed, and the nature of the
images you’re working with. It’s often worth experiment-
ing with combinations to find the optimal configuration
for your particular use case.

Model Testing

Now, you should take the data set aside at the start of the project and
run the trained model using it as input. Again, the result is excellent
(92.22%).

Deploying the model

As we did in the previous section, we can deploy the trained model as
.tflite and use Raspi to run it using Python.

On the Dashboard tab, go to Transfer learning model (int8 quantized)
and click on the download icon:

The Impulse Design 1194

Let’s also download the float32 version for comparasion

Transfer the model from your computer to the Raspi (./models),
for example, using FileZilla. Also, capture some images for inference
(./images).

Import the needed libraries:

import time
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import tflite_runtime.interpreter as tflite

Define the paths and labels:

img_path = "./images/robot.jpg"
model_path = "./models/ei-raspi-img-class-int8-quantized-model.tflite"
labels = ['background', 'periquito', 'robot']

Note that the models trained on the Edge Impulse Studio
will output values with index 0, 1, 2, etc., where the actual
labels will follow an alphabetic order.

IMAGE CLASSIFICATION 1195

Load the model, allocate the tensors, and get the input and output
tensor details:

Load the TFLite model
interpreter = tflite.Interpreter(model_path=model_path)
interpreter.allocate_tensors()

Get input and output tensors
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

One important difference to note is that the dtype of the input details
of the model is now int8, which means that the input values go from
-128 to +127, while each pixel of our image goes from 0 to 256. This
means that we should pre-process the image to match it. We can check
here:

input_dtype = input_details[0]['dtype']
input_dtype

numpy.int8

So, let’s open the image and show it:

img = Image.open(img_path)
plt.figure(figsize=(4, 4))
plt.imshow(img)
plt.axis('off')
plt.show()

The Impulse Design 1196

And perform the pre-processing:

scale, zero_point = input_details[0]['quantization']
img = img.resize((input_details[0]['shape'][1],

input_details[0]['shape'][2]))
img_array = np.array(img, dtype=np.float32) / 255.0
img_array = (img_array / scale + zero_point).clip(-128, 127).astype(np.int8)
input_data = np.expand_dims(img_array, axis=0)

Checking the input data, we can verify that the input tensor is com-
patible with what is expected by the model:

input_data.shape, input_data.dtype

((1, 160, 160, 3), dtype('int8'))

Now, it is time to perform the inference. Let’s also calculate the la-
tency of the model:

Inference on Raspi-Zero
start_time = time.time()
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
end_time = time.time()

IMAGE CLASSIFICATION 1197

inference_time = (end_time - start_time) * 1000 # Convert to milliseconds
print ("Inference time: {:.1f}ms".format(inference_time))

The model will take around 125ms to perform the inference in the
Raspi-Zero, which is 3 to 4 times longer than a Raspi-5.

Now, we can get the output labels and probabilities. It is also impor-
tant to note that the model trained on the Edge Impulse Studio has a
softmax in its output (different from the original Movilenet V2), and
we should use the model’s raw output as the “probabilities.”

Obtain results and map them to the classes
predictions = interpreter.get_tensor(output_details[0]['index'])[0]

Get indices of the top k results
top_k_results=3
top_k_indices = np.argsort(predictions)[::-1][:top_k_results]

Get quantization parameters
scale, zero_point = output_details[0]['quantization']

Dequantize the output
dequantized_output = (predictions.astype(np.float32) - zero_point) * scale
probabilities = dequantized_output

print("\n\t[PREDICTION] [Prob]\n")
for i in range(top_k_results):

print("\t{:20}: {:.2f}%".format(
labels[top_k_indices[i]],
probabilities[top_k_indices[i]] * 100))

Let’s modify the function created before so that we can handle dif-
ferent type of models:

The Impulse Design 1198

def image_classification(img_path, model_path, labels, top_k_results=3,
apply_softmax=False):

Load the image
img = Image.open(img_path)
plt.figure(figsize=(4, 4))
plt.imshow(img)
plt.axis('off')

Load the TFLite model
interpreter = tflite.Interpreter(model_path=model_path)
interpreter.allocate_tensors()

Get input and output tensors
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

Preprocess
img = img.resize((input_details[0]['shape'][1],

input_details[0]['shape'][2]))

input_dtype = input_details[0]['dtype']

if input_dtype == np.uint8:
input_data = np.expand_dims(np.array(img), axis=0)

elif input_dtype == np.int8:
scale, zero_point = input_details[0]['quantization']
img_array = np.array(img, dtype=np.float32) / 255.0
img_array = (img_array / scale + zero_point).clip(-128, 127).astype(np.int8)
input_data = np.expand_dims(img_array, axis=0)

else: # float32
input_data = np.expand_dims(np.array(img, dtype=np.float32), axis=0) / 255.0

Inference on Raspi-Zero
start_time = time.time()
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
end_time = time.time()
inference_time = (end_time - start_time) * 1000 # Convert to milliseconds

Obtain results
predictions = interpreter.get_tensor(output_details[0]['index'])[0]

Get indices of the top k results

IMAGE CLASSIFICATION 1199

top_k_indices = np.argsort(predictions)[::-1][:top_k_results]

Handle output based on type
output_dtype = output_details[0]['dtype']
if output_dtype in [np.int8, np.uint8]:

Dequantize the output
scale, zero_point = output_details[0]['quantization']
predictions = (predictions.astype(np.float32) - zero_point) * scale

if apply_softmax:
Apply softmax
exp_preds = np.exp(predictions - np.max(predictions))
probabilities = exp_preds / np.sum(exp_preds)

else:
probabilities = predictions

print("\n\t[PREDICTION] [Prob]\n")
for i in range(top_k_results):

print("\t{:20}: {:.1f}%".format(
labels[top_k_indices[i]],
probabilities[top_k_indices[i]] * 100))

print ("\n\tInference time: {:.1f}ms".format(inference_time))

And test it with different images and the int8 quantized model
(160x160 alpha =1.0).

Let’s download a smaller model, such as the one trained for the Nicla
Vision Lab (int8 quantized model (96x96 alpha = 0.1), as a test. We can
use the same function:

https://studio.edgeimpulse.com/public/353482/live
https://studio.edgeimpulse.com/public/353482/live

Live Image Classification 1200

The model lost some accuracy, but it is still OK once our model does
not look for many details. Regarding latency, we are around ten times
faster on the Rasp-Zero.

Live Image Classification
Let’s develop an app to capture images with the USB camera in real
time, showing its classification.

Using the nano on the terminal, save the code below, such as img_-
class_live_infer.py.

from flask import Flask, Response, render_template_string, request, jsonify
from picamera2 import Picamera2
import io
import threading
import time
import numpy as np
from PIL import Image
import tflite_runtime.interpreter as tflite
from queue import Queue

app = Flask(__name__)

Global variables
picam2 = None
frame = None
frame_lock = threading.Lock()
is_classifying = False
confidence_threshold = 0.8
model_path = "./models/ei-raspi-img-class-int8-quantized-model.tflite"
labels = ['background', 'periquito', 'robot']
interpreter = None
classification_queue = Queue(maxsize=1)

IMAGE CLASSIFICATION 1201

def initialize_camera():
global picam2
picam2 = Picamera2()
config = picam2.create_preview_configuration(main={"size": (320, 240)})
picam2.configure(config)
picam2.start()
time.sleep(2) # Wait for camera to warm up

def get_frame():
global frame
while True:

stream = io.BytesIO()
picam2.capture_file(stream, format='jpeg')
with frame_lock:

frame = stream.getvalue()
time.sleep(0.1) # Capture frames more frequently

def generate_frames():
while True:

with frame_lock:
if frame is not None:

yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')

time.sleep(0.1)

def load_model():
global interpreter
if interpreter is None:

interpreter = tflite.Interpreter(model_path=model_path)
interpreter.allocate_tensors()

return interpreter

def classify_image(img, interpreter):
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

img = img.resize((input_details[0]['shape'][1],
input_details[0]['shape'][2]))

input_data = np.expand_dims(np.array(img), axis=0)\
.astype(input_details[0]['dtype'])

interpreter.set_tensor(input_details[0]['index'], input_data)

Live Image Classification 1202

interpreter.invoke()

predictions = interpreter.get_tensor(output_details[0]['index'])[0]
Handle output based on type
output_dtype = output_details[0]['dtype']
if output_dtype in [np.int8, np.uint8]:

Dequantize the output
scale, zero_point = output_details[0]['quantization']
predictions = (predictions.astype(np.float32) - zero_point) * scale

return predictions

def classification_worker():
interpreter = load_model()
while True:

if is_classifying:
with frame_lock:

if frame is not None:
img = Image.open(io.BytesIO(frame))

predictions = classify_image(img, interpreter)
max_prob = np.max(predictions)
if max_prob >= confidence_threshold:

label = labels[np.argmax(predictions)]
else:

label = 'Uncertain'
classification_queue.put({'label': label,

'probability': float(max_prob)})
time.sleep(0.1) # Adjust based on your needs

@app.route('/')
def index():

return render_template_string('''
<!DOCTYPE html>
<html>
<head>

<title>Image Classification</title>
<script

src="https://code.jquery.com/jquery-3.6.0.min.js">
</script>
<script>

function startClassification() {
$.post('/start');
$('#startBtn').prop('disabled', true);
$('#stopBtn').prop('disabled', false);

IMAGE CLASSIFICATION 1203

}
function stopClassification() {

$.post('/stop');
$('#startBtn').prop('disabled', false);
$('#stopBtn').prop('disabled', true);

}
function updateConfidence() {

var confidence = $('#confidence').val();
$.post('/update_confidence', {confidence: confidence});

}
function updateClassification() {

$.get('/get_classification', function(data) {
$('#classification').text(data.label + ': '
+ data.probability.toFixed(2));

});
}
$(document).ready(function() {

setInterval(updateClassification, 100);
// Update every 100ms

});
</script>

</head>
<body>

<h1>Image Classification</h1>

<button id="startBtn" onclick="startClassification()">
Start Classification</button>
<button id="stopBtn" onclick="stopClassification()" disabled>
Stop Classification</button>

<label for="confidence">Confidence Threshold:</label>
<input type="number" id="confidence" name="confidence" min="0"
max="1" step="0.1" value="0.8" onchange="updateConfidence()">

<div id="classification">Waiting for classification...</div>

</body>
</html>

''')

@app.route('/video_feed')
def video_feed():

return Response(generate_frames(),

Live Image Classification 1204

mimetype='multipart/x-mixed-replace; boundary=frame')

@app.route('/start', methods=['POST'])
def start_classification():

global is_classifying
is_classifying = True
return '', 204

@app.route('/stop', methods=['POST'])
def stop_classification():

global is_classifying
is_classifying = False
return '', 204

@app.route('/update_confidence', methods=['POST'])
def update_confidence():

global confidence_threshold
confidence_threshold = float(request.form['confidence'])
return '', 204

@app.route('/get_classification')
def get_classification():

if not is_classifying:
return jsonify({'label': 'Not classifying', 'probability': 0})

try:
result = classification_queue.get_nowait()

except Queue.Empty:
result = {'label': 'Processing', 'probability': 0}

return jsonify(result)

if __name__ == '__main__':
initialize_camera()
threading.Thread(target=get_frame, daemon=True).start()
threading.Thread(target=classification_worker, daemon=True).start()
app.run(host='0.0.0.0', port=5000, threaded=True)

On the terminal, run:

python3 img_class_live_infer.py

And access the web interface:

• On the Raspberry Pi itself (if you have a GUI): Open a web
browser and go to http://localhost:5000

IMAGE CLASSIFICATION 1205

• From another device on the same network: Open a web
browser and go to http://<raspberry_pi_ip>:5000 (Replace
<raspberry_pi_ip> with your Raspberry Pi’s IP address). For
example: http://192.168.4.210:5000/

Here are some screenshots of the app running on an external desk-
top

Here, you can see the app running on the YouTube:
https://www.youtube.com/watch?v=o1QsQrpCMw4
The code creates a web application for real-time image classification

using a Raspberry Pi, its camera module, and a TensorFlow Lite model.
The application uses Flask to serve a web interface where is possible to
view the camera feed and see live classification results.

Key Components:

1. Flask Web Application: Serves the user interface and handles
requests.

2. PiCamera2: Captures images from the Raspberry Pi camera
module.

3. TensorFlow Lite: Runs the image classification model.
4. Threading: Manages concurrent operations for smooth perfor-

mance.

Main Features:

• Live camera feed display
• Real-time image classification
• Adjustable confidence threshold
• Start/Stop classification on demand

Code Structure:

1. Imports and Setup:

https://www.youtube.com/watch?v=o1QsQrpCMw4

Live Image Classification 1206

• Flask for web application
• PiCamera2 for camera control
• TensorFlow Lite for inference
• Threading and Queue for concurrent operations

2. Global Variables:

• Camera and frame management
• Classification control
• Model and label information

3. Camera Functions:

• initialize_camera(): Sets up the PiCamera2
• get_frame(): Continuously captures frames
• generate_frames(): Yields frames for the web feed

4. Model Functions:

• load_model(): Loads the TFLite model
• classify_image(): Performs inference on a single image

5. Classification Worker:

• Runs in a separate thread
• Continuously classifies frames when active
• Updates a queue with the latest results

6. Flask Routes:

• /: Serves the main HTML page
• /video_feed: Streams the camera feed
• /start and /stop: Controls classification
• /update_confidence: Adjusts the confidence threshold
• /get_classification: Returns the latest classification re-

sult

7. HTML Template:

• Displays camera feed and classification results
• Provides controls for starting/stopping and adjusting set-

tings

8. Main Execution:

• Initializes camera and starts necessary threads
• Runs the Flask application

IMAGE CLASSIFICATION 1207

Key Concepts:

1. Concurrent Operations: Using threads to handle camera cap-
ture and classification separately from the web server.

2. Real-timeUpdates: Frequent updates to the classification results
without page reloads.

3. Model Reuse: Loading the TFLite model once and reusing it for
efÏciency.

4. Flexible Configuration: Allowing users to adjust the confidence
threshold on the fly.

Usage:

1. Ensure all dependencies are installed.
2. Run the script on a Raspberry Pi with a camera module.
3. Access the web interface from a browser using the Raspberry Pi’s

IP address.
4. Start classification and adjust settings as needed.

Conclusion:
Image classification has emerged as a powerful and versatile appli-
cation of machine learning, with significant implications for various
fields, from healthcare to environmental monitoring. This chapter has
demonstrated how to implement a robust image classification system
on edge devices like the Raspi-Zero and Rasp-5, showcasing the poten-
tial for real-time, on-device intelligence.

We’ve explored the entire pipeline of an image classification project,
from data collection and model training using Edge Impulse Studio to
deploying and running inferences on a Raspi. The process highlighted
several key points:

1. The importance of proper data collection and preprocessing for
training effective models.

2. The power of transfer learning, allowing us to leverage pre-
trained models like MobileNet V2 for efÏcient training with
limited data.

3. The trade-offs between model accuracy and inference speed, es-
pecially crucial for edge devices.

4. The implementation of real-time classification using a web-based
interface, demonstrating practical applications.

The ability to run these models on edge devices like the Raspi opens
up numerous possibilities for IoT applications, autonomous systems,

Resources 1208

and real-time monitoring solutions. It allows for reduced latency, im-
proved privacy, and operation in environments with limited connec-
tivity.

As we’ve seen, even with the computational constraints of edge de-
vices, it’s possible to achieve impressive results in terms of both accu-
racy and speed. The flexibility to adjust model parameters, such as in-
put size and alpha values, allows for fine-tuning to meet specific project
requirements.

Looking forward, the field of edge AI and image classification con-
tinues to evolve rapidly. Advances in model compression techniques,
hardware acceleration, and more efÏcient neural network architectures
promise to further expand the capabilities of edge devices in computer
vision tasks.

This project serves as a foundation for more complex computer vi-
sion applications and encourages further exploration into the exciting
world of edge AI and IoT. Whether it’s for industrial automation, smart
home applications, or environmental monitoring, the skills and con-
cepts covered here provide a solid starting point for a wide range of
innovative projects.

Resources
• Dataset Example

• Setup Test Notebook on a Raspi

• Image Classification Notebook on a Raspi

• CNN to classify Cifar-10 dataset at CoLab

• Cifar 10 - Image Classification on a Raspi

• Python Scripts

• Edge Impulse Project

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/tree/main/IMG_CLASS/dataset
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/IMG_CLASS/notebooks/setup_test.ipynb
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/IMG_CLASS/notebooks/10_Image_Classification.ipynb
https://colab.research.google.com/github/Mjrovai/UNIFEI-IESTI01-TinyML-2022.1/blob/main/00_Curse_Folder/2_Applications_Deploy/Class_16/cifar_10/CNN_Cifar_10_TFLite.ipynb#scrollTo=iiVBUpuHXEtw
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/IMG_CLASS/notebooks/20_Cifar_10_Image_Classification.ipynb
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/tree/main/IMG_CLASS/python_scripts
https://studio.edgeimpulse.com/public/510251/live

1209

Object Detection

Coming soon.

1211

Small Language Models
(SLM)

Coming soon.

1213

Part XIV
Shared Labs

1215

The labs in this section cover topics and techniques that are appli-
cable across different hardware platforms. These labs are designed to
be independent of specific boards, allowing you to focus on the funda-
mental concepts and algorithms used in (tiny) ML applications.

By exploring these shared labs, you’ll gain a deeper understanding
of the common challenges and solutions in embedded machine learn-
ing. The knowledge and skills acquired here will be valuable regard-
less of the specific hardware you work with in the future.

Exercise Nicla Vision XIAO ESP32S3
KWS
Feature
Engi-
neering

� Link � Link

DSP
Spec-
tral
Fea-
tures
Block

� Link � Link

./kws_feature_eng/kws_feature_eng.qmd
./kws_feature_eng/kws_feature_eng.qmd
./dsp_spectral_features_block/dsp_spectral_features_block.qmd
./dsp_spectral_features_block/dsp_spectral_features_block.qmd

1217

KWS Feature Engineering

Figure 20.19.: DALL·E 3 Prompt:
1950s style cartoon scene set in
an audio research room. Two sci-
entists, one holding a magnifying
glass and the other taking notes,
examine large charts pinned to the
wall. These charts depict FFT
graphs and time curves related to
audio data analysis. The room has
a retro ambiance, with wooden ta-
bles, vintage lamps, and classic au-
dio analysis tools.

Introduction
In this hands-on tutorial, the emphasis is on the critical role that
feature engineering plays in optimizing the performance of machine

The KWS 1218

learning models applied to audio classification tasks, such as speech
recognition. It is essential to be aware that the performance of any
machine learning model relies heavily on the quality of features
used, and we will deal with “under-the-hood” mechanics of feature
extraction, mainly focusing on Mel-frequency Cepstral CoefÏcients
(MFCCs), a cornerstone in the field of audio signal processing.

Machine learning models, especially traditional algorithms, don’t
understand audio waves. They understand numbers arranged in some
meaningful way, i.e., features. These features encapsulate the charac-
teristics of the audio signal, making it easier for models to distinguish
between different sounds.

This tutorial will deal with generating features specifically
for audio classification. This can be particularly interesting
for applying machine learning to a variety of audio data,
whether for speech recognition, music categorization,
insect classification based on wingbeat sounds, or other
sound analysis tasks

The KWS
The most common TinyML application is Keyword Spotting (KWS), a
subset of the broader field of speech recognition. While general speech
recognition transcribes all spoken words into text, Keyword Spotting
focuses on detecting specific “keywords” or “wake words” in a contin-
uous audio stream. The system is trained to recognize these keywords
as predefined phrases or words, such as yes or no. In short, KWS is a
specialized form of speech recognition with its own set of challenges
and requirements.

Here a typical KWS Process using MFCC Feature Converter:

KWS FEATURE ENGINEERING 1219

Applications of KWS

• Voice Assistants: In devices like Amazon’s Alexa or Google
Home, KWS is used to detect the wake word (“Alexa” or “Hey
Google”) to activate the device.

• Voice-Activated Controls: In automotive or industrial settings,
KWS can be used to initiate specific commands like “Start engine”
or “Turn off lights.”

• Security Systems: Voice-activated security systems may use
KWS to authenticate users based on a spoken passphrase.

• Telecommunication Services: Customer service lines may use
KWS to route calls based on spoken keywords.

Differences from General Speech Recognition

• Computational EfÏciency: KWS is usually designed to be less
computationally intensive than full speech recognition, as it only
needs to recognize a small set of phrases.

• Real-time Processing: KWS often operates in real-time and is
optimized for low-latency detection of keywords.

• Resource Constraints: KWS models are often designed to be
lightweight, so they can run on devices with limited computa-
tional resources, like microcontrollers or mobile phones.

• Focused Task: While general speech recognition models are
trained to handle a broad range of vocabulary and accents, KWS
models are fine-tuned to recognize specific keywords, often in
noisy environments accurately.

Introduction to Audio Signals
Understanding the basic properties of audio signals is crucial for effec-
tive feature extraction and, ultimately, for successfully applying ma-
chine learning algorithms in audio classification tasks. Audio signals
are complex waveforms that capture fluctuations in air pressure over
time. These signals can be characterized by several fundamental at-
tributes: sampling rate, frequency, and amplitude.

• Frequency and Amplitude: Frequency refers to the number of
oscillations a waveform undergoes per unit time and is also mea-
sured in Hz. In the context of audio signals, different frequencies
correspond to different pitches. Amplitude, on the other hand,
measures the magnitude of the oscillations and correlates with
the loudness of the sound. Both frequency and amplitude are

https://en.wikipedia.org/wiki/Audio_frequency
https://en.wikipedia.org/wiki/Amplitude

Introduction to Audio Signals 1220

essential features that capture audio signals’ tonal and rhythmic
qualities.

• Sampling Rate: The sampling rate, often denoted in Hertz (Hz),
defines the number of samples taken per second when digitizing
an analog signal. A higher sampling rate allows for a more accu-
rate digital representation of the signal but also demands more
computational resources for processing. Typical sampling rates
include 44.1 kHz for CD-quality audio and 16 kHz or 8 kHz for
speech recognition tasks. Understanding the trade-offs in select-
ing an appropriate sampling rate is essential for balancing ac-
curacy and computational efÏciency. In general, with TinyML
projects, we work with 16KHz. Altough music tones can be heard
at frequencies up to 20 kHz, voice maxes out at 8 kHz. Traditional
telephone systems use an 8 kHz sampling frequency.

For an accurate representation of the signal, the sampling
rate must be at least twice the highest frequency present in
the signal.

• TimeDomain vs. Frequency Domain: Audio signals can be ana-
lyzed in the time and frequency domains. In the time domain,
a signal is represented as a waveform where the amplitude is
plotted against time. This representation helps to observe tem-
poral features like onset and duration but the signal’s tonal char-
acteristics are not well evidenced. Conversely, a frequency do-
main representation provides a view of the signal’s constituent
frequencies and their respective amplitudes, typically obtained
via a Fourier Transform. This is invaluable for tasks that require
understanding the signal’s spectral content, such as identifying
musical notes or speech phonemes (our case).

The image below shows the words YES and NO with typical represen-
tations in the Time (Raw Audio) and Frequency domains:

https://en.wikipedia.org/wiki/Sampling_(signal_processing)

KWS FEATURE ENGINEERING 1221

Why Not Raw Audio?

While using raw audio data directly for machine learning tasks may
seem tempting, this approach presents several challenges that make it
less suitable for building robust and efÏcient models.

Using raw audio data for Keyword Spotting (KWS), for example, on
TinyML devices poses challenges due to its high dimensionality (using
a 16 kHz sampling rate), computational complexity for capturing tem-
poral features, susceptibility to noise, and lack of semantically mean-
ingful features, making feature extraction techniques like MFCCs a
more practical choice for resource-constrained applications.

Here are some additional details of the critical issues associated with
using raw audio:

• High Dimensionality: Audio signals, especially those sampled
at high rates, result in large amounts of data. For example, a 1-
second audio clip sampled at 16 kHz will have 16,000 individ-
ual data points. High-dimensional data increases computational
complexity, leading to longer training times and higher compu-
tational costs, making it impractical for resource-constrained en-
vironments. Furthermore, the wide dynamic range of audio sig-
nals requires a significant amount of bits per sample, while con-
veying little useful information.

• Temporal Dependencies: Raw audio signals have temporal
structures that simple machine learning models may find hard
to capture. While recurrent neural networks like LSTMs can
model such dependencies, they are computationally intensive
and tricky to train on tiny devices.

https://annals-csis.org/Volume_18/drp/pdf/185.pdf

Introduction to MFCCs 1222

• Noise and Variability: Raw audio signals often contain back-
ground noise and other non-essential elements affecting model
performance. Additionally, the same sound can have different
characteristics based on various factors such as distance from the
microphone, the orientation of the sound source, and acoustic
properties of the environment, adding to the complexity of the
data.

• Lack of Semantic Meaning: Raw audio doesn’t inherently
contain semantically meaningful features for classification tasks.
Features like pitch, tempo, and spectral characteristics, which
can be crucial for speech recognition, are not directly accessible
from raw waveform data.

• Signal Redundancy: Audio signals often contain redundant in-
formation, with certain portions of the signal contributing little
to no value to the task at hand. This redundancy can make learn-
ing inefÏcient and potentially lead to overfitting.

For these reasons, feature extraction techniques such as Mel-
frequency Cepstral CoefÏcients (MFCCs), Mel-Frequency Energies
(MFEs), and simple Spectograms are commonly used to transform
raw audio data into a more manageable and informative format.
These features capture the essential characteristics of the audio signal
while reducing dimensionality and noise, facilitating more effective
machine learning.

Introduction to MFCCs

What are MFCCs?

Mel-frequency Cepstral CoefÏcients (MFCCs) are a set of features de-
rived from the spectral content of an audio signal. They are based on
human auditory perceptions and are commonly used to capture the
phonetic characteristics of an audio signal. The MFCCs are computed
through a multi-step process that includes pre-emphasis, framing, win-
dowing, applying the Fast Fourier Transform (FFT) to convert the sig-
nal to the frequency domain, and finally, applying the Discrete Cosine
Transform (DCT). The result is a compact representation of the original
audio signal’s spectral characteristics.

The image below shows the words YES and NO in their MFCC repre-
sentation:

https://en.wikipedia.org/wiki/Mel-frequency_cepstrum

KWS FEATURE ENGINEERING 1223

This video explains the Mel Frequency Cepstral CoefÏ-
cients (MFCC) and how to compute them.

Why are MFCCs important?

MFCCs are crucial for several reasons, particularly in the context of
Keyword Spotting (KWS) and TinyML:

• Dimensionality Reduction: MFCCs capture essential spectral
characteristics of the audio signal while significantly reducing
the dimensionality of the data, making it ideal for resource-
constrained TinyML applications.

• Robustness: MFCCs are less susceptible to noise and variations
in pitch and amplitude, providing a more stable and robust fea-
ture set for audio classification tasks.

• Human Auditory System Modeling: The Mel scale in MFCCs
approximates the human ear’s response to different frequencies,
making them practical for speech recognition where human-like
perception is desired.

• Computational EfÏciency: The process of calculating MFCCs is
computationally efÏcient, making it well-suited for real-time ap-
plications on hardware with limited computational resources.

In summary, MFCCs offer a balance of information richness and
computational efÏciency, making them popular for audio classifica-
tion tasks, particularly in constrained environments like TinyML.

Computing MFCCs

The computation of Mel-frequency Cepstral CoefÏcients (MFCCs) in-
volves several key steps. Let’s walk through these, which are particu-
larly important for Keyword Spotting (KWS) tasks on TinyML devices.

https://youtu.be/SJo7vPgRlBQ?si=KSgzmDg8DtSVqzXp

Introduction to MFCCs 1224

• Pre-emphasis: The first step is pre-emphasis, which is applied
to accentuate the high-frequency components of the audio sig-
nal and balance the frequency spectrum. This is achieved by ap-
plying a filter that amplifies the difference between consecutive
samples. The formula for pre-emphasis is: y(t) = x(t) - 𝛼 x(t-1) ,
where 𝛼 is the pre-emphasis factor, typically around 0.97.

• Framing: Audio signals are divided into short frames (the frame
length), usually 20 to 40 milliseconds. This is based on the as-
sumption that frequencies in a signal are stationary over a short
period. Framing helps in analyzing the signal in such small time
slots. The frame stride (or step) will displace one frame and the
adjacent. Those steps could be sequential or overlapped.

• Windowing: Each frame is then windowed to minimize the dis-
continuities at the frame boundaries. A commonly used window
function is the Hamming window. Windowing prepares the sig-
nal for a Fourier transform by minimizing the edge effects. The
image below shows three frames (10, 20, and 30) and the time
samples after windowing (note that the frame length and frame
stride are 20 ms):

• Fast Fourier Transform (FFT) The Fast Fourier Transform (FFT)
is applied to each windowed frame to convert it from the time
domain to the frequency domain. The FFT gives us a complex-
valued representation that includes both magnitude and phase
information. However, for MFCCs, only the magnitude is used to
calculate the Power Spectrum. The power spectrum is the square
of the magnitude spectrum and measures the energy present at
each frequency component.

KWS FEATURE ENGINEERING 1225

The power spectrum 𝑃(𝑓) of a signal 𝑥(𝑡) is defined as𝑃(𝑓) = |𝑋(𝑓)|2, where 𝑋(𝑓) is the Fourier Transform of𝑥(𝑡). By squaring the magnitude of the Fourier Trans-
form, we emphasize stronger frequencies over weaker ones,
thereby capturing more relevant spectral characteristics
of the audio signal. This is important in applications like
audio classification, speech recognition, and Keyword
Spotting (KWS), where the focus is on identifying distinct
frequency patterns that characterize different classes of
audio or phonemes in speech.

• Mel Filter Banks: The frequency domain is then mapped to the
Mel scale, which approximates the human ear’s response to dif-
ferent frequencies. The idea is to extract more features (more
filter banks) in the lower frequencies and less in the high fre-
quencies. Thus, it performs well on sounds distinguished by the
human ear. Typically, 20 to 40 triangular filters extract the Mel-
frequency energies. These energies are then log-transformed to
convert multiplicative factors into additive ones, making them
more suitable for further processing.

https://en.wikipedia.org/wiki/Mel_scale

Hands-On using Python 1226

• Discrete Cosine Transform (DCT): The last step is to apply the
Discrete Cosine Transform (DCT) to the log Mel energies. The
DCT helps to decorrelate the energies, effectively compressing
the data and retaining only the most discriminative features.
Usually, the first 12-13 DCT coefÏcients are retained, forming
the final MFCC feature vector.

Hands-On using Python
Let’s apply what we discussed while working on an actual audio sam-
ple. Open the notebook on Google CoLab and extract the MLCC fea-
tures on your audio samples: [Open In Colab]

Conclusion
What Feature Extraction technique should we use?

Mel-frequency Cepstral CoefÏcients (MFCCs), Mel-Frequency En-
ergies (MFEs), or Spectrogram are techniques for representing audio
data, which are often helpful in different contexts.

In general, MFCCs are more focused on capturing the envelope of
the power spectrum, which makes them less sensitive to fine-grained
spectral details but more robust to noise. This is often desirable for
speech-related tasks. On the other hand, spectrograms or MFEs
preserve more detailed frequency information, which can be advan-
tageous in tasks that require discrimination based on fine-grained
spectral content.

https://en.wikipedia.org/wiki/Discrete_cosine_transform
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/Audio_Data_Analysis.ipynb

KWS FEATURE ENGINEERING 1227

MFCCs are particularly strong for

1. Speech Recognition: MFCCs are excellent for identifying pho-
netic content in speech signals.

2. Speaker Identification: They can be used to distinguish between
different speakers based on voice characteristics.

3. Emotion Recognition: MFCCs can capture the nuanced varia-
tions in speech indicative of emotional states.

4. Keyword Spotting: Especially in TinyML, where low computa-
tional complexity and small feature size are crucial.

Spectrograms or MFEs are often more suitable for

1. Music Analysis: Spectrograms can capture harmonic and tim-
bral structures in music, which is essential for tasks like genre
classification, instrument recognition, or music transcription.

2. Environmental Sound Classification: In recognizing non-
speech, environmental sounds (e.g., rain, wind, trafÏc), the full
spectrogram can provide more discriminative features.

3. Birdsong Identification: The intricate details of bird calls are of-
ten better captured using spectrograms.

4. Bioacoustic Signal Processing: In applications like dolphin or
bat call analysis, the fine-grained frequency information in a
spectrogram can be essential.

5. Audio Quality Assurance: Spectrograms are often used in pro-
fessional audio analysis to identify unwanted noises, clicks, or
other artifacts.

Resources
• Audio_Data_Analysis Colab Notebook

https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/Audio_Data_Analysis.ipynb

1229

DSP Spectral Features

Figure 20.20.: DALL·E 3 Prompt:
1950s style cartoon illustration of
a Latin male and female scientist
in a vibration research room. The
man is using a calculus ruler to
examine ancient circuitry. The
woman is at a computer with
complex vibration graphs. The
wooden table has boards with sen-
sors, prominently an accelerom-
eter. A classic, rounded-back
computer shows the Arduino IDE
with code for LED pin assign-
ments and machine learning al-
gorithms for movement detection.
The Serial Monitor displays FFT,
classification, wavelets, andDSPs.
Vintage lamps, tools, and charts
with FFT and Wavelets graphs
complete the scene.

Introduction
TinyML projects related to motion (or vibration) involve data from
IMUs (usually accelerometers and Gyroscopes). These time-series

Extracting Features Review 1230

type datasets should be preprocessed before inputting them into a
Machine Learning model training, which is a challenging area for
embedded machine learning. Still, Edge Impulse helps overcome this
complexity with its digital signal processing (DSP) preprocessing step
and, more specifically, the Spectral Features Block for Inertial sensors.

But how does it work under the hood? Let’s dig into it.

Extracting Features Review
Extracting features from a dataset captured with inertial sensors, such
as accelerometers, involves processing and analyzing the raw data. Ac-
celerometers measure the acceleration of an object along one or more
axes (typically three, denoted as X, Y, and Z). These measurements can
be used to understand various aspects of the object’s motion, such as
movement patterns and vibrations. Here’s a high-level overview of the
process:

Data collection: First, we need to gather data from the accelerom-
eters. Depending on the application, data may be collected at differ-
ent sampling rates. It’s essential to ensure that the sampling rate is
high enough to capture the relevant dynamics of the studied motion
(the sampling rate should be at least double the maximum relevant
frequency present in the signal).

Data preprocessing: Raw accelerometer data can be noisy and con-
tain errors or irrelevant information. Preprocessing steps, such as filter-
ing and normalization, can help clean and standardize the data, mak-
ing it more suitable for feature extraction.

The Studio does not perform normalization or standardiza-
tion, so sometimes, when working with Sensor Fusion, it
could be necessary to perform this step before uploading
data to the Studio. This is particularly crucial in sensor fu-
sion projects, as seen in this tutorial, Sensor Data Fusion
with Spresense and CommonSense.

Segmentation: Depending on the nature of the data and the appli-
cation, dividing the data into smaller segments or windows may be
necessary. This can help focus on specific events or activities within
the dataset, making feature extraction more manageable and meaning-
ful. The window size and overlap (window span) choice depend on
the application and the frequency of the events of interest. As a rule of
thumb, we should try to capture a couple of “data cycles.”

Feature extraction: Once the data is preprocessed and segmented,
you can extract features that describe the motion’s characteristics.
Some typical features extracted from accelerometer data include:

https://docs.edgeimpulse.com/docs/edge-impulse-studio/processing-blocks/spectral-features
https://docs.edgeimpulse.com/experts/air-quality-and-environmental-projects/environmental-sensor-fusion-commonsense
https://docs.edgeimpulse.com/experts/air-quality-and-environmental-projects/environmental-sensor-fusion-commonsense

DSP SPECTRAL FEATURES 1231

• Time-domain features describe the data’s statistical properties
within each segment, such as mean, median, standard deviation,
skewness, kurtosis, and zero-crossing rate.

• Frequency-domain features are obtained by transforming the
data into the frequency domain using techniques like the Fast
Fourier Transform (FFT). Some typical frequency-domain fea-
tures include the power spectrum, spectral energy, dominant
frequencies (amplitude and frequency), and spectral entropy.

• Time-frequency domain features combine the time and fre-
quency domain information, such as the Short-Time Fourier
Transform (STFT) or the Discrete Wavelet Transform (DWT).
They can provide a more detailed understanding of how the
signal’s frequency content changes over time.

In many cases, the number of extracted features can be large,
which may lead to overfitting or increased computational complexity.
Feature selection techniques, such as mutual information, correlation-
based methods, or principal component analysis (PCA), can help
identify the most relevant features for a given application and reduce
the dimensionality of the dataset. The Studio can help with such
feature-relevant calculations.

Let’s explore in more detail a typical TinyML Motion Classification
project covered in this series of Hands-Ons.

A TinyML Motion Classification project

In the hands-on project, Motion Classification and Anomaly Detection,
we simulated mechanical stresses in transport, where our problem was
to classify four classes of movement:

• Maritime (pallets in boats)
• Terrestrial (pallets in a Truck or Train)
• Lift (pallets being handled by Fork-Lift)
• Idle (pallets in Storage houses)

The accelerometers provided the data on the pallet (or container).

https://www.mdpi.com/1424-8220/22/5/2012
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Short-time_Fourier_transform
https://en.wikipedia.org/wiki/Short-time_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_wavelet_transform

Data Pre-Processing 1232

Below is one sample (raw data) of 10 seconds, captured with a sam-
pling frequency of 50Hz:

The result is similar when this analysis is done over another
dataset with the same principle, using a different sampling
frequency, 62.5Hz instead of 50Hz.

Data Pre-Processing
The raw data captured by the accelerometer (a “time series” data)
should be converted to “tabular data” using one of the typical Feature
Extraction methods described in the last section.

We should segment the data using a sliding window over the sam-
ple data for feature extraction. The project captured accelerometer data

DSP SPECTRAL FEATURES 1233

every 10 seconds with a sample rate of 62.5 Hz. A 2-second window
captures 375 data points (3 axis x 2 seconds x 62.5 samples). The win-
dow is slid every 80ms, creating a larger dataset where each instance
has 375 “raw features.”

On the Studio, the previous version (V1) of the Spectral Analysis
Block extracted as time-domain features only the RMS, and for the
frequency-domain, the peaks and frequency (using FFT) and the
power characteristics (PSD) of the signal over time resulting in a fixed
tabular dataset of 33 features (11 per each axis),

Those 33 features were the Input tensor of a Neural Network Classi-
fier.

In 2022, Edge Impulse released version 2 of the Spectral Analysis
block, which we will explore here.

Data Pre-Processing 1234

Edge Impulse - Spectral Analysis Block V.2 under the
hood

In Version 2, Time Domain Statistical features per axis/channel are:

• RMS
• Skewness
• Kurtosis

And the Frequency Domain Spectral features per axis/channel are:

• Spectral Power
• Skewness (in the next version)
• Kurtosis (in the next version)

In this link, we can have more details about the feature extraction.

Clone the public project. You can also follow the explana-
tion, playing with the code using my Google CoLab Note-
book: Edge Impulse Spectral Analysis Block Notebook.

Start importing the libraries:

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import math
from scipy.stats import skew, kurtosis
from scipy import signal
from scipy.signal import welch
from scipy.stats import entropy
from sklearn import preprocessing
import pywt

plt.rcParams['figure.figsize'] = (12, 6)
plt.rcParams['lines.linewidth'] = 3

From the studied project, let’s choose a data sample from accelerom-
eters as below:

• Window size of 2 seconds: [2,000] ms
• Sample frequency: [62.5] Hz
• We will choose the [None] filter (for simplicity) and a
• FFT length: [16].

https://docs.edgeimpulse.com/docs/edge-impulse-studio/processing-blocks/spectral-features
https://studio.edgeimpulse.com/public/198358/latest
https://colab.research.google.com/github/Mjrovai/TinyML4D/blob/main/SciTinyM-2023/Edge_Impulse-Spectral_Analysis_Block/Edge_Impulse_Spectral_Analysis_Block_V3.ipynb

DSP SPECTRAL FEATURES 1235

f = 62.5 # Hertz
wind_sec = 2 # seconds
FFT_Lenght = 16
axis = ['accX', 'accY', 'accZ']
n_sensors = len(axis)

Selecting the Raw Features on the Studio Spectral Analysis tab, we
can copy all 375 data points of a particular 2-second window to the
clipboard.

Data Pre-Processing 1236

Paste the data points to a new variable data:

data=[-5.6330, 0.2376, 9.8701, -5.9442, 0.4830, 9.8701, -5.4217, ...]
No_raw_features = len(data)
N = int(No_raw_features/n_sensors)

The total raw features are 375, but we will work with each axis indi-
vidually, where N= 125 (number of samples per axis).

We aim to understand how Edge Impulse gets the processed fea-
tures.

So, you should also past the processed features on a variable (to com-
pare the calculated features in Python with the ones provided by the
Studio) :

features = [2.7322, -0.0978, -0.3813, 2.3980, 3.8924, 24.6841, 9.6303, ...]
N_feat = len(features)
N_feat_axis = int(N_feat/n_sensors)

The total number of processed features is 39, which means 13 fea-
tures/axis.

Looking at those 13 features closely, we will find 3 for the time do-
main (RMS, Skewness, and Kurtosis):

DSP SPECTRAL FEATURES 1237

• [rms] [skew] [kurtosis]

and 10 for the frequency domain (we will return to this later).

• [spectral skew][spectral kurtosis][Spectral Power 1]
... [Spectral Power 8]

Splitting raw data per sensor
The data has samples from all axes; let’s split and plot them sepa-

rately:

def plot_data(sensors, axis, title):
[plt.plot(x, label=y) for x,y in zip(sensors, axis)]
plt.legend(loc='lower right')
plt.title(title)
plt.xlabel('#Sample')
plt.ylabel('Value')
plt.box(False)
plt.grid()
plt.show()

accX = data[0::3]
accY = data[1::3]
accZ = data[2::3]
sensors = [accX, accY, accZ]
plot_data(sensors, axis, 'Raw Features')

Subtracting the mean
Next, we should subtract the mean from the data. Subtracting the

mean from a data set is a common data pre-processing step in statistics
and machine learning. The purpose of subtracting the mean from the

Data Pre-Processing 1238

data is to center the data around zero. This is important because it can
reveal patterns and relationships that might be hidden if the data is not
centered.

Here are some specific reasons why subtracting the mean can be
helpful:

• It simplifies analysis: By centering the data, the mean becomes
zero, making some calculations simpler and easier to interpret.

• It removes bias: If the data is biased, subtracting the mean can
remove it and allow for a more accurate analysis.

• It can reveal patterns: Centering the data can help uncover pat-
terns that might be hidden if the data is not centered. For exam-
ple, centering the data can help you identify trends over time if
you analyze a time series dataset.

• It can improve performance: In some machine learning al-
gorithms, centering the data can improve performance by
reducing the influence of outliers and making the data more
easily comparable. Overall, subtracting the mean is a simple but
powerful technique that can be used to improve the analysis and
interpretation of data.

dtmean = [(sum(x)/len(x)) for x in sensors]
[print('mean_'+x+'= ', round(y, 4)) for x,y in zip(axis, dtmean)][0]

accX = [(x - dtmean[0]) for x in accX]
accY = [(x - dtmean[1]) for x in accY]
accZ = [(x - dtmean[2]) for x in accZ]
sensors = [accX, accY, accZ]

plot_data(sensors, axis, 'Raw Features - Subctract the Mean')

DSP SPECTRAL FEATURES 1239

Time Domain Statistical features
RMS Calculation

The RMS value of a set of values (or a continuous-time waveform)
is the square root of the arithmetic mean of the squares of the values
or the square of the function that defines the continuous waveform. In
physics, the RMS value of an electrical current is defined as the “value
of the direct current that dissipates the same power in a resistor.”

In the case of a set of n values {�1, �2, …, ��}, the RMS is:

NOTE that the RMS value is different for the original raw
data, and after subtracting the mean

Using numpy and standartized data (subtracting mean)
rms = [np.sqrt(np.mean(np.square(x))) for x in sensors]

We can compare the calculated RMS values here with the ones pre-
sented by Edge Impulse:

[print('rms_'+x+'= ', round(y, 4)) for x,y in zip(axis, rms)][0]
print("\nCompare with Edge Impulse result features")
print(features[0:N_feat:N_feat_axis])

rms_accX= 2.7322
rms_accY= 0.7833
rms_accZ= 0.1383
Compared with Edge Impulse result features:
[2.7322, 0.7833, 0.1383]
Skewness and kurtosis calculation
In statistics, skewness and kurtosis are two ways to measure the

shape of a distribution.
Here, we can see the sensor values distribution:

fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(13, 4))
sns.kdeplot(accX, fill=True, ax=axes[0])
sns.kdeplot(accY, fill=True, ax=axes[1])
sns.kdeplot(accZ, fill=True, ax=axes[2])

Time Domain Statistical features 1240

axes[0].set_title('accX')
axes[1].set_title('accY')
axes[2].set_title('accZ')
plt.suptitle('IMU Sensors distribution', fontsize=16, y=1.02)
plt.show()

Skewness is a measure of the asymmetry of a distribution. This
value can be positive or negative.

• A negative skew indicates that the tail is on the left side of the
distribution, which extends towards more negative values.

• A positive skew indicates that the tail is on the right side of the
distribution, which extends towards more positive values.

• A zero value indicates no skewness in the distribution at all,
meaning the distribution is perfectly symmetrical.

skew = [skew(x, bias=False) for x in sensors]
[print('skew_'+x+'= ', round(y, 4)) for x,y in zip(axis, skew)][0]
print("\nCompare with Edge Impulse result features")
features[1:N_feat:N_feat_axis]

skew_accX= -0.099
skew_accY= 0.1756
skew_accZ= 6.9463

https://en.wikipedia.org/wiki/Skewness

DSP SPECTRAL FEATURES 1241

Compared with Edge Impulse result features:
[-0.0978, 0.1735, 6.8629]
Kurtosis is a measure of whether or not a distribution is heavy-tailed

or light-tailed relative to a normal distribution.

• The kurtosis of a normal distribution is zero.
• If a given distribution has a negative kurtosis, it is said to be

playkurtic, which means it tends to produce fewer and less ex-
treme outliers than the normal distribution.

• If a given distribution has a positive kurtosis , it is said to be lep-
tokurtic, which means it tends to produce more outliers than the
normal distribution.

kurt = [kurtosis(x, bias=False) for x in sensors]
[print('kurt_'+x+'= ', round(y, 4)) for x,y in zip(axis, kurt)][0]
print("\nCompare with Edge Impulse result features")
features[2:N_feat:N_feat_axis]

kurt_accX= -0.3475
kurt_accY= 1.2673
kurt_accZ= 68.1123
Compared with Edge Impulse result features:
[-0.3813, 1.1696, 65.3726]

https://en.wikipedia.org/wiki/Kurtosis

Spectral features 1242

Spectral features
The filtered signal is passed to the Spectral power section, which com-
putes the FFT to generate the spectral features.

Since the sampled window is usually larger than the FFT size, the
window will be broken into frames (or “sub-windows”), and the FFT
is calculated over each frame.

FFT length - The FFT size. This determines the number of FFT bins
and the resolution of frequency peaks that can be separated. A low
number means more signals will average together in the same FFT bin,
but it also reduces the number of features and model size. A high num-
ber will separate more signals into separate bins, generating a larger
model.

• The total number of Spectral Power features will vary depending
on how you set the filter and FFT parameters. With No filtering,
the number of features is 1/2 of the FFT Length.

Spectral Power - Welch’s method
We should use Welch’s method to split the signal on the frequency

domain in bins and calculate the power spectrum for each bin. This
method divides the signal into overlapping segments, applies a win-
dow function to each segment, computes the periodogram of each seg-
ment using DFT, and averages them to obtain a smoother estimate of
the power spectrum.

Function used by Edge Impulse instead of scipy.signal.welch().
def welch_max_hold(fx, sampling_freq, nfft, n_overlap):

n_overlap = int(n_overlap)
spec_powers = [0 for _ in range(nfft//2+1)]
ix = 0
while ix <= len(fx):

Slicing truncates if end_idx > len, and rfft will auto-zero pad
fft_out = np.abs(np.fft.rfft(fx[ix:ix+nfft], nfft))
spec_powers = np.maximum(spec_powers, fft_out**2/nfft)
ix = ix + (nfft-n_overlap)

return np.fft.rfftfreq(nfft, 1/sampling_freq), spec_powers

Applying the above function to 3 signals:

fax,Pax = welch_max_hold(accX, fs, FFT_Lenght, 0)
fay,Pay = welch_max_hold(accY, fs, FFT_Lenght, 0)
faz,Paz = welch_max_hold(accZ, fs, FFT_Lenght, 0)
specs = [Pax, Pay, Paz]

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.signal.welch.html

DSP SPECTRAL FEATURES 1243

We can plot the Power Spectrum P(f):

plt.plot(fax,Pax, label='accX')
plt.plot(fay,Pay, label='accY')
plt.plot(faz,Paz, label='accZ')
plt.legend(loc='upper right')
plt.xlabel('Frequency (Hz)')
#plt.ylabel('PSD [V**2/Hz]')
plt.ylabel('Power')
plt.title('Power spectrum P(f) using Welch's method')
plt.grid()
plt.box(False)
plt.show()

Besides the Power Spectrum, we can also include the skewness and
kurtosis of the features in the frequency domain (should be available
on a new version):

spec_skew = [skew(x, bias=False) for x in specs]
spec_kurtosis = [kurtosis(x, bias=False) for x in specs]

Let’s now list all Spectral features per axis and compare them with
EI:

print("EI Processed Spectral features (accX): ")
print(features[3:N_feat_axis][0:])
print("\nCalculated features:")
print (round(spec_skew[0],4))
print (round(spec_kurtosis[0],4))
[print(round(x, 4)) for x in Pax[1:]][0]

Time-frequency domain 1244

EI Processed Spectral features (accX):
2.398, 3.8924, 24.6841, 9.6303, 8.4867, 7.7793, 2.9963, 5.6242, 3.4198,

4.2735
Calculated features:
2.9069 8.5569 24.6844 9.6304 8.4865 7.7794 2.9964 5.6242 3.4198 4.2736

print("EI Processed Spectral features (accY): ")
print(features[16:26][0:]) #13: 3+N_feat_axis; 26 = 2x N_feat_axis
print("\nCalculated features:")
print (round(spec_skew[1],4))
print (round(spec_kurtosis[1],4))
[print(round(x, 4)) for x in Pay[1:]][0]

EI Processed Spectral features (accY):
0.9426, -0.8039, 5.429, 0.999, 1.0315, 0.9459, 1.8117, 0.9088, 1.3302,

3.112
Calculated features:
1.1426 -0.3886 5.4289 0.999 1.0315 0.9458 1.8116 0.9088 1.3301 3.1121

print("EI Processed Spectral features (accZ): ")
print(features[29:][0:]) #29: 3+(2*N_feat_axis);
print("\nCalculated features:")
print (round(spec_skew[2],4))
print (round(spec_kurtosis[2],4))
[print(round(x, 4)) for x in Paz[1:]][0]

EI Processed Spectral features (accZ):
0.3117, -1.3812, 0.0606, 0.057, 0.0567, 0.0976, 0.194, 0.2574, 0.2083,

0.166
Calculated features:
0.3781 -1.4874 0.0606 0.057 0.0567 0.0976 0.194 0.2574 0.2083 0.166

Time-frequency domain

Wavelets

Wavelet is a powerful technique for analyzing signals with transient
features or abrupt changes, such as spikes or edges, which are difÏcult
to interpret with traditional Fourier-based methods.

Wavelet transforms work by breaking down a signal into different
frequency components and analyzing them individually. The transfor-
mation is achieved by convolving the signal with a wavelet function,

https://en.wikipedia.org/wiki/Wavelet

DSP SPECTRAL FEATURES 1245

a small waveform centered at a specific time and frequency. This pro-
cess effectively decomposes the signal into different frequency bands,
each of which can be analyzed separately.

One of the critical benefits of wavelet transforms is that they allow
for time-frequency analysis, which means that they can reveal the fre-
quency content of a signal as it changes over time. This makes them
particularly useful for analyzing non-stationary signals, which vary
over time.

Wavelets have many practical applications, including signal and im-
age compression, denoising, feature extraction, and image processing.

Let’s select Wavelet on the Spectral Features block in the same
project:

• Type: Wavelet
• Wavelet Decomposition Level: 1
• Wavelet: bior1.3

Time-frequency domain 1246

The Wavelet Function

wavelet_name='bior1.3'
num_layer = 1

wavelet = pywt.Wavelet(wavelet_name)
[phi_d,psi_d,phi_r,psi_r,x] = wavelet.wavefun(level=5)
plt.plot(x, psi_d, color='red')
plt.title('Wavelet Function')
plt.ylabel('Value')
plt.xlabel('Time')
plt.grid()
plt.box(False)

DSP SPECTRAL FEATURES 1247

plt.show()

As we did before, let’s copy and past the Processed Features:

features = [3.6251, 0.0615, 0.0615, -7.3517, -2.7641, 2.8462, 5.0924, ...]
N_feat = len(features)
N_feat_axis = int(N_feat/n_sensors)

Edge Impulse computes the Discrete Wavelet Transform (DWT) for
each one of the Wavelet Decomposition levels selected. After that, the
features will be extracted.

In the case of Wavelets, the extracted features are basic statistical val-
ues, crossing values, and entropy. There are, in total, 14 features per layer
as below:

• [11] Statiscal Features: n5, n25, n75, n95, mean, median, stan-
dard deviation (std), variance (var) root mean square (rms), kur-
tosis, and skewness (skew).

• [2] Crossing Features: Zero crossing rate (zcross) and mean cross-
ing rate (mcross) are the times that the signal passes through the
baseline (y = 0) and the average level (y = u) per unit of time,
respectively

• [1] Complexity Feature: Entropy is a characteristic measure of
the complexity of the signal

https://pywavelets.readthedocs.io/en/latest/ref/dwt-discrete-wavelet-transform.html

Time-frequency domain 1248

All the above 14 values are calculated for each Layer (including L0,
the original signal)

• The total number of features varies depending on how you set
the filter and the number of layers. For example, with [None]
filtering and Level[1], the number of features per axis will be 14
x 2 (L0 and L1) = 28. For the three axes, we will have a total of 84
features.

Wavelet Analysis

Wavelet analysis decomposes the signal (accX, accY, and accZ) into
different frequency components using a set of filters, which separate
these components into low-frequency (slowly varying parts of the sig-
nal containing long-term patterns), such as accX_l1, accY_l1, accZ_-
l1 and, high-frequency (rapidly varying parts of the signal containing
short-term patterns) components, such as accX_d1, accY_d1, accZ_d1,
permitting the extraction of features for further analysis or classifica-
tion.

Only the low-frequency components (approximation coefÏcients, or
cA) will be used. In this example, we assume only one level (Single-
level Discrete Wavelet Transform), where the function will return a
tuple. With a multilevel decomposition, the “Multilevel 1D Discrete
Wavelet Transform”, the result will be a list (for detail, please see: Dis-
crete Wavelet Transform (DWT))

(accX_l1, accX_d1) = pywt.dwt(accX, wavelet_name)
(accY_l1, accY_d1) = pywt.dwt(accY, wavelet_name)
(accZ_l1, accZ_d1) = pywt.dwt(accZ, wavelet_name)
sensors_l1 = [accX_l1, accY_l1, accZ_l1]

Plot power spectrum versus frequency
plt.plot(accX_l1, label='accX')
plt.plot(accY_l1, label='accY')
plt.plot(accZ_l1, label='accZ')
plt.legend(loc='lower right')
plt.xlabel('Time')
plt.ylabel('Value')
plt.title('Wavelet Approximation')
plt.grid()
plt.box(False)
plt.show()

https://pywavelets.readthedocs.io/en/latest/ref/dwt-discrete-wavelet-transform.html
https://pywavelets.readthedocs.io/en/latest/ref/dwt-discrete-wavelet-transform.html

DSP SPECTRAL FEATURES 1249

Feature Extraction

Let’s start with the basic statistical features. Note that we apply the
function for both the original signals and the resultant cAs from the
DWT:

def calculate_statistics(signal):
n5 = np.percentile(signal, 5)
n25 = np.percentile(signal, 25)
n75 = np.percentile(signal, 75)
n95 = np.percentile(signal, 95)
median = np.percentile(signal, 50)
mean = np.mean(signal)
std = np.std(signal)
var = np.var(signal)
rms = np.sqrt(np.mean(np.square(signal)))
return [n5, n25, n75, n95, median, mean, std, var, rms]

stat_feat_l0 = [calculate_statistics(x) for x in sensors]
stat_feat_l1 = [calculate_statistics(x) for x in sensors_l1]

The Skelness and Kurtosis:

skew_l0 = [skew(x, bias=False) for x in sensors]
skew_l1 = [skew(x, bias=False) for x in sensors_l1]
kurtosis_l0 = [kurtosis(x, bias=False) for x in sensors]
kurtosis_l1 = [kurtosis(x, bias=False) for x in sensors_l1]

Zero crossing (zcross) is the number of times the wavelet coefÏcient
crosses the zero axis. It can be used to measure the signal’s frequency

Time-frequency domain 1250

content since high-frequency signals tend to have more zero crossings
than low-frequency signals.

Mean crossing (mcross), on the other hand, is the number of times
the wavelet coefÏcient crosses the mean of the signal. It can be used
to measure the amplitude since high-amplitude signals tend to have
more mean crossings than low-amplitude signals.

def getZeroCrossingRate(arr):
my_array = np.array(arr)
zcross = float("{0:.2f}".format((((my_array[:-1] * my_array[1:]) < 0).su m())/len(arr)))
return zcross

def getMeanCrossingRate(arr):
mcross = getZeroCrossingRate(np.array(arr) - np.mean(arr))
return mcross

def calculate_crossings(list):
zcross=[]
mcross=[]
for i in range(len(list)):

zcross_i = getZeroCrossingRate(list[i])
zcross.append(zcross_i)
mcross_i = getMeanCrossingRate(list[i])
mcross.append(mcross_i)

return zcross, mcross

cross_l0 = calculate_crossings(sensors)
cross_l1 = calculate_crossings(sensors_l1)

In wavelet analysis, entropy refers to the degree of disorder or ran-
domness in the distribution of wavelet coefÏcients. Here, we used
Shannon entropy, which measures a signal’s uncertainty or random-
ness. It is calculated as the negative sum of the probabilities of the dif-
ferent possible outcomes of the signal multiplied by their base 2 loga-
rithm. In the context of wavelet analysis, Shannon entropy can be used
to measure the complexity of the signal, with higher values indicating
greater complexity.

def calculate_entropy(signal, base=None):
value, counts = np.unique(signal, return_counts=True)
return entropy(counts, base=base)

entropy_l0 = [calculate_entropy(x) for x in sensors]
entropy_l1 = [calculate_entropy(x) for x in sensors_l1]

DSP SPECTRAL FEATURES 1251

Let’s now list all the wavelet features and create a list by layers.

L1_features_names = ["L1-n5", "L1-n25", "L1-n75", "L1-n95", "L1-median", "L1-mean", "L1-std", "L1-var", "L1-rms", "L1-skew", "L1-Kurtosis", "L1-zcross", "L1-mcross", "L1-entropy"]

L0_features_names = ["L0-n5", "L0-n25", "L0-n75", "L0-n95", "L0-median", "L0-mean", "L0-std", "L0-var", "L0-rms", "L0-skew", "L0-Kurtosis", "L0-zcross", "L0-mcross", "L0-entropy"]

all_feat_l0 = []
for i in range(len(axis)):

feat_l0 = stat_feat_l0[i]+[skew_l0[i]]+[kurtosis_l0[i]]+[cross_l0[0][i]]+[cross_l0[1][i]]+[entropy_l0[i]]
[print(axis[i]+' '+x+'= ', round(y, 4)) for x,y in zip(L0_features_names, feat_l0)][0]
all_feat_l0.append(feat_l0)

all_feat_l0 = [item for sublist in all_feat_l0 for item in sublist]
print(f"\nAll L0 Features = {len(all_feat_l0)}")

all_feat_l1 = []
for i in range(len(axis)):
feat_l1 = stat_feat_l1[i]+[skew_l1[i]]+[kurtosis_l1[i]]+[cross_l1[0][i]]+[cross_l1[1][i]]+[entropy_l1[i]]
[print(axis[i]+' '+x+'= ', round(y, 4)) for x,y in zip(L1_features_names, feat_l1)][0]
all_feat_l1.append(feat_l1)
all_feat_l1 = [item for sublist in all_feat_l1 for item in sublist]
print(f"\nAll L1 Features = {len(all_feat_l1)}")

Time-frequency domain 1252

DSP SPECTRAL FEATURES 1253

Conclusion
Edge Impulse Studio is a powerful online platform that can handle the
pre-processing task for us. Still, given our engineering perspective, we
want to understand what is happening under the hood. This knowl-
edge will help us find the best options and hyper-parameters for tun-
ing our projects.

Daniel Situnayake wrote in his blog: “Raw sensor data is highly di-
mensional and noisy. Digital signal processing algorithms help us sift
the signal from the noise. DSP is an essential part of embedded en-
gineering, and many edge processors have on-board acceleration for
DSP. As an ML engineer, learning basic DSP gives you superpowers
for handling high-frequency time series data in your models.” I recom-
mend you read Dan’s excellent post in its totality: nn to cpp: What you
need to know about porting deep learning models to the edge.

https://situnayake.com/
https://situnayake.com/2023/03/21/nn-to-cpp.html
https://situnayake.com/2023/03/21/nn-to-cpp.html

1255

Part XV
REFERENCES

1257

References

Abadi, Martin, Andy Chu, Ian Goodfellow, H. Brendan McMa-
han, Ilya Mironov, Kunal Talwar, and Li Zhang. 2016. “Deep
Learning with Differential Privacy.” In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communica-
tions Security, 308–18. CCS ’16. New York, NY, USA: ACM.
https://doi.org/10.1145/2976749.2978318.

Abdelkader, Ahmed, Michael J. Curry, Liam Fowl, Tom Goldstein, Avi
Schwarzschild, Manli Shu, Christoph Studer, and Chen Zhu. 2020.
“Headless Horseman: Adversarial Attacks on Transfer Learning
Models.” In ICASSP 2020 - 2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 3087–91. IEEE.
https://doi.org/10.1109/icassp40776.2020.9053181.

Addepalli, Sravanti, B. S. Vivek, Arya Baburaj, Gaurang Sriramanan,
and R. Venkatesh Babu. 2020. “Towards Achieving Adversarial
Robustness by Enforcing Feature Consistency Across Bit Planes.”
In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), 1020–29. IEEE. https://doi.org/10.1109/cvpr42600.
2020.00110.

Adolf, Robert, Saketh Rama, Brandon Reagen, Gu-yeon Wei, and
David Brooks. 2016. “Fathom: Reference Workloads for Modern
Deep Learning Methods.” In 2016 IEEE International Sympo-
sium on Workload Characterization (IISWC), 1–10. IEEE; IEEE.
https://doi.org/10.1109/iiswc.2016.7581275.

Agarwal, Alekh, Alina Beygelzimer, Miroslav Dudı́k, John Langford,
and Hanna M. Wallach. 2018. “A Reductions Approach to Fair Clas-
sification.” In Proceedings of the 35th International Conference on Ma-
chine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July
10-15, 2018, edited by Jennifer G. Dy and Andreas Krause, 80:60–
69. Proceedings of Machine Learning Research. PMLR. http://
proceedings.mlr.press/v80/agarwal18a.html.

Agnesina, Anthony, Puranjay Rajvanshi, Tian Yang, Geraldo Pradipta,
Austin Jiao, Ben Keller, Brucek Khailany, and Haoxing Ren. 2023.

https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1109/icassp40776.2020.9053181
https://doi.org/10.1109/cvpr42600.2020.00110
https://doi.org/10.1109/cvpr42600.2020.00110
https://doi.org/10.1109/iiswc.2016.7581275
http://proceedings.mlr.press/v80/agarwal18a.html
http://proceedings.mlr.press/v80/agarwal18a.html

References 1258

“AutoDMP: Automated DREAMPlace-Based Macro Placement.” In
Proceedings of the 2023 International Symposium on Physical Design,
149–57. ACM. https://doi.org/10.1145/3569052.3578923.

Agrawal, Dakshi, Selcuk Baktir, Deniz Karakoyunlu, Pankaj Rohatgi,
and Berk Sunar. 2007. “Trojan Detection Using IC Fingerprint-
ing.” In 2007 IEEE Symposium on Security and Privacy (SP ’07), 29–45.
Springer; IEEE. https://doi.org/10.1109/sp.2007.36.

Ahmadilivani, Mohammad Hasan, Mahdi Taheri, Jaan Raik, Ma-
soud Daneshtalab, and Maksim Jenihhin. 2024. “A Systematic
Literature Review on Hardware Reliability Assessment Methods
for Deep Neural Networks.” ACM Comput. Surv. 56 (6): 1–39.
https://doi.org/10.1145/3638242.

Aledhari, Mohammed, Rehma Razzak, Reza M. Parizi, and Fahad
Saeed. 2020. “Federated Learning: A Survey on Enabling Technolo-
gies, Protocols, and Applications.” #IEEE_O_ACC# 8: 140699–725.
https://doi.org/10.1109/access.2020.3013541.

Alghamdi, Wael, Hsiang Hsu, Haewon Jeong, Hao Wang, Peter Micha-
lak, Shahab Asoodeh, and Flavio Calmon. 2022. “Beyond Adult
and COMPAS: Fair Multi-Class Prediction via Information Projec-
tion.” Adv. Neur. In. 35: 38747–60.

Altayeb, Moez, Marco Zennaro, and Marcelo Rovai. 2022. “Classify-
ing Mosquito Wingbeat Sound Using TinyML.” In Proceedings of the
2022 ACM Conference on Information Technology for Social Good, 132–
37. ACM. https://doi.org/10.1145/3524458.3547258.

Amiel, Frederic, Christophe Clavier, and Michael Tunstall. 2006.
“Fault Analysis of DPA-Resistant Algorithms.” In International
Workshop on Fault Diagnosis and Tolerance in Cryptography, 223–36.
Springer.

Ansel, Jason, Edward Yang, Horace He, Natalia Gimelshein, Animesh
Jain, Michael Voznesensky, Bin Bao, et al. 2024. “PyTorch 2: Faster
Machine Learning Through Dynamic Python Bytecode Transfor-
mation and Graph Compilation.” In Proceedings of the 29th ACM
International Conference on Architectural Support for Programming Lan-
guages andOperating Systems, Volume 2, edited by Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily
B. Fox, and Roman Garnett, 8024–35. ACM. https://doi.org/10.
1145/3620665.3640366.

Anthony, Lasse F. Wolff, Benjamin Kanding, and Raghavendra Selvan.
2020. ICML Workshop on Challenges in Deploying and monitoring
Machine Learning Systems.

Antol, Stanislaw, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell,
Dhruv Batra, C. Lawrence Zitnick, and Devi Parikh. 2015.
“VQA: Visual Question Answering.” In 2015 IEEE Interna-

https://doi.org/10.1145/3569052.3578923
https://doi.org/10.1109/sp.2007.36
https://doi.org/10.1145/3638242
https://doi.org/10.1109/access.2020.3013541
https://doi.org/10.1145/3524458.3547258
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3620665.3640366

REFERENCES 1259

tional Conference on Computer Vision (ICCV), 2425–33. IEEE.
https://doi.org/10.1109/iccv.2015.279.

Antonakakis, Manos, Tim April, Michael Bailey, Matt Bernhard, Elie
Bursztein, Jaime Cochran, Zakir Durumeric, et al. 2017. “Under-
standing the Mirai Botnet.” In 26th USENIX Security Symposium
(USENIX Security 17), 1093–1110.

Ardila, Rosana, Megan Branson, Kelly Davis, Michael Kohler, Josh
Meyer, Michael Henretty, Reuben Morais, Lindsay Saunders,
Francis Tyers, and Gregor Weber. 2020. “Common Voice: A
Massively-Multilingual Speech Corpus.” In Proceedings of the
Twelfth Language Resources and Evaluation Conference, 4218–22.
Marseille, France: European Language Resources Association.
https://aclanthology.org/2020.lrec-1.520.

Arifeen, Tooba, Abdus Sami Hassan, and Jeong-A Lee. 2020. “Approx-
imate Triple Modular Redundancy: A Survey.” #IEEE_O_ACC# 8:
139851–67. https://doi.org/10.1109/access.2020.3012673.

Asonov, D., and R. Agrawal. 2004. “Keyboard Acoustic Emanations.”
In IEEE Symposium on Security and Privacy, 2004. Proceedings. 2004,
3–11. IEEE; IEEE. https://doi.org/10.1109/secpri.2004.1301311.

Ateniese, Giuseppe, Luigi V. Mancini, Angelo Spognardi, Antonio Vil-
lani, Domenico Vitali, and Giovanni Felici. 2015. “Hacking Smart
Machines with Smarter Ones: How to Extract Meaningful Data
from Machine Learning Classifiers.” Int. J. Secur. Netw. 10 (3):
137. https://doi.org/10.1504/ijsn.2015.071829.

Attia, Zachi I., Alan Sugrue, Samuel J. Asirvatham, Michael J. Ack-
erman, Suraj Kapa, Paul A. Friedman, and Peter A. Noseworthy.
2018. “Noninvasive Assessment of Dofetilide Plasma Concentra-
tion Using a Deep Learning (Neural Network) Analysis of the Sur-
face Electrocardiogram: A Proof of Concept Study.” PLOS ONE 13
(8): e0201059. https://doi.org/10.1371/journal.pone.0201059.

Aygun, Sercan, Ece Olcay Gunes, and Christophe De Vleeschouwer.
2021. “EfÏcient and Robust Bitstream Processing in Binarised Neu-
ral Networks.” Electron. Lett. 57 (5): 219–22. https://doi.org/10.
1049/ell2.12045.

Bai, Tao, Jinqi Luo, Jun Zhao, Bihan Wen, and Qian Wang. 2021. “Re-
cent Advances in Adversarial Training for Adversarial Robustness.”
arXiv Preprint arXiv:2102.01356.

Bains, Sunny. 2020. “The Business of Building Brains.” Nature Electron-
ics 3 (7): 348–51. https://doi.org/10.1038/s41928-020-0449-1.

Bamoumen, Hatim, Anas Temouden, Nabil Benamar, and Yousra
Chtouki. 2022. “How TinyML Can Be Leveraged to Solve
Environmental Problems: A Survey.” In 2022 International
Conference on Innovation and Intelligence for Informatics, Com-

https://doi.org/10.1109/iccv.2015.279
https://aclanthology.org/2020.lrec-1.520
https://doi.org/10.1109/access.2020.3012673
https://doi.org/10.1109/secpri.2004.1301311
https://doi.org/10.1504/ijsn.2015.071829
https://doi.org/10.1371/journal.pone.0201059
https://doi.org/10.1049/ell2.12045
https://doi.org/10.1049/ell2.12045
https://doi.org/10.1038/s41928-020-0449-1

References 1260

puting, and Technologies (3ICT), 338–43. IEEE; IEEE. https:
//doi.org/10.1109/3ict56508.2022.9990661.

Bank, Dor, Noam Koenigstein, and Raja Giryes. 2023. “Autoencoders.”
Machine Learning for Data Science Handbook: Data Mining and Knowl-
edge Discovery Handbook, 353–74.

Bannon, Pete, Ganesh Venkataramanan, Debjit Das Sarma, and
Emil Talpes. 2019. “Computer and Redundancy Solution
for the Full Self-Driving Computer.” In 2019 IEEE Hot Chips
31 Symposium (HCS), 1–22. IEEE Computer Society; IEEE.
https://doi.org/10.1109/hotchips.2019.8875645.

Barenghi, Alessandro, Guido M. Bertoni, Luca Breveglieri, Mauro Pelli-
cioli, and Gerardo Pelosi. 2010. “Low Voltage Fault Attacks to AES.”
In 2010 IEEE International Symposium on Hardware-Oriented Security
and Trust (HOST), 7–12. IEEE; IEEE. https://doi.org/10.1109/hst.
2010.5513121.

Barroso, Luiz André, Urs Hölzle, and Parthasarathy Ranganathan.
2019. The Datacenter as a Computer: Designing Warehouse-
Scale Machines. Springer International Publishing. https:
//doi.org/10.1007/978-3-031-01761-2.

Bau, David, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Tor-
ralba. 2017. “Network Dissection: Quantifying Interpretability of
Deep Visual Representations.” In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 3319–27. IEEE. https://doi.
org/10.1109/cvpr.2017.354.

Beaton, Albert E., and John W. Tukey. 1974. “The Fitting of Power
Series, Meaning Polynomials, Illustrated on Band-Spectroscopic
Data.” Technometrics 16 (2): 147. https://doi.org/10.2307/1267936.

Beck, Nathaniel, and Simon Jackman. 1998. “Beyond Linearity by De-
fault: Generalized Additive Models.” Am. J. Polit. Sci. 42 (2): 596.
https://doi.org/10.2307/2991772.

Bender, Emily M., and Batya Friedman. 2018. “Data Statements for
Natural Language Processing: Toward Mitigating System Bias and
Enabling Better Science.” Transactions of the Association for Computa-
tional Linguistics 6 (December): 587–604. https://doi.org/10.1162/
tacl_a_00041.

Berger, Vance W, and YanYan Zhou. 2014. “Kolmogorov–smirnov Test:
Overview.” Wiley Statsref: Statistics Reference Online.

Beyer, Lucas, Olivier J Hénaff, Alexander Kolesnikov, Xiaohua Zhai,
and Aäron van den Oord. 2020. “Are We Done with Imagenet?”
ArXiv Preprint abs/2006.07159. https://arxiv.org/abs/2006.07159.

Bhagoji, Arjun Nitin, Warren He, Bo Li, and Dawn Song. 2018. “Prac-
tical Black-Box Attacks on Deep Neural Networks Using EfÏcient
Query Mechanisms.” In Proceedings of the European Conference on

https://doi.org/10.1109/3ict56508.2022.9990661
https://doi.org/10.1109/3ict56508.2022.9990661
https://doi.org/10.1109/hotchips.2019.8875645
https://doi.org/10.1109/hst.2010.5513121
https://doi.org/10.1109/hst.2010.5513121
https://doi.org/10.1007/978-3-031-01761-2
https://doi.org/10.1007/978-3-031-01761-2
https://doi.org/10.1109/cvpr.2017.354
https://doi.org/10.1109/cvpr.2017.354
https://doi.org/10.2307/1267936
https://doi.org/10.2307/2991772
https://doi.org/10.1162/tacl_a_00041
https://doi.org/10.1162/tacl_a_00041
https://arxiv.org/abs/2006.07159

REFERENCES 1261

Computer Vision (ECCV), 154–69.
Bhardwaj, Kshitĳ, Marton Havasi, Yuan Yao, David M. Brooks, José

Miguel Hernández-Lobato, and Gu-Yeon Wei. 2020. “A Compre-
hensive Methodology to Determine Optimal Coherence Interfaces
for Many-Accelerator SoCs.” In Proceedings of the ACM/IEEE Interna-
tional Symposium on Low Power Electronics and Design, 145–50. ACM.
https://doi.org/10.1145/3370748.3406564.

Bianco, Simone, Remi Cadene, Luigi Celona, and Paolo Napoletano.
2018. “Benchmark Analysis of Representative Deep Neural Net-
work Architectures.” IEEE Access 6: 64270–77.

Biega, Asia J., Peter Potash, Hal Daumé, Fernando Diaz, and Michèle
Finck. 2020. “Operationalizing the Legal Principle of Data Mini-
mization for Personalization.” In Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information
Retrieval, edited by Jimmy Huang, Yi Chang, Xueqi Cheng, Jaap
Kamps, Vanessa Murdock, Ji-Rong Wen, and Yiqun Liu, 399–408.
ACM. https://doi.org/10.1145/3397271.3401034.

Biggio, Battista, Blaine Nelson, and Pavel Laskov. 2012. “Poisoning
Attacks Against Support Vector Machines.” InProceedings of the 29th
International Conference on Machine Learning, ICML 2012, Edinburgh,
Scotland, UK, June 26 - July 1, 2012. icml.cc / Omnipress. http://
icml.cc/2012/papers/880.pdf.

Biggs, John, James Myers, Jedrzej Kufel, Emre Ozer, Simon Craske,
Antony Sou, Catherine Ramsdale, Ken Williamson, Richard Price,
and Scott White. 2021. “A Natively Flexible 32-Bit Arm Micro-
processor.” Nature 595 (7868): 532–36. https://doi.org/10.1038/
s41586-021-03625-w.

Binkert, Nathan, Bradford Beckmann, Gabriel Black, Steven K. Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, et al. 2011. “The
Gem5 Simulator.” ACM SIGARCH Computer Architecture News 39
(2): 1–7. https://doi.org/10.1145/2024716.2024718.

Bohr, Adam, and Kaveh Memarzadeh. 2020. “The Rise of Artificial
Intelligence in Healthcare Applications.” In Artificial Intelligence
in Healthcare, 25–60. Elsevier. https://doi.org/10.1016/b978-0-12-
818438-7.00002-2.

Bolchini, Cristiana, Luca Cassano, Antonio Miele, and Alessandro
Toschi. 2023. “Fast and Accurate Error Simulation for CNNs
Against Soft Errors.” IEEE Trans. Comput. 72 (4): 984–97.
https://doi.org/10.1109/tc.2022.3184274.

Bondi, Elizabeth, Ashish Kapoor, Debadeepta Dey, James Piavis, Shi-
tal Shah, Robert Hannaford, Arvind Iyer, Lucas Joppa, and Milind
Tambe. 2018. “Near Real-Time Detection of Poachers from Drones
in AirSim.” In Proceedings of the Twenty-Seventh International Joint

https://doi.org/10.1145/3370748.3406564
https://doi.org/10.1145/3397271.3401034
http://icml.cc/2012/papers/880.pdf
http://icml.cc/2012/papers/880.pdf
https://doi.org/10.1038/s41586-021-03625-w
https://doi.org/10.1038/s41586-021-03625-w
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1016/b978-0-12-818438-7.00002-2
https://doi.org/10.1016/b978-0-12-818438-7.00002-2
https://doi.org/10.1109/tc.2022.3184274

References 1262

Conference on Artificial Intelligence, edited by Jérôme Lang, 5814–16.
International Joint Conferences on Artificial Intelligence Organiza-
tion. https://doi.org/10.24963/ijcai.2018/847.

Bourtoule, Lucas, Varun Chandrasekaran, Christopher A. Choquette-
Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, and
Nicolas Papernot. 2021. “Machine Unlearning.” In 2021 IEEE Sym-
posium on Security and Privacy (SP), 141–59. IEEE; IEEE. https://doi.
org/10.1109/sp40001.2021.00019.

Breier, Jakub, Xiaolu Hou, Dirmanto Jap, Lei Ma, Shivam Bhasin, and
Yang Liu. 2018. “Deeplaser: Practical Fault Attack on Deep Neu-
ral Networks.” ArXiv Preprint abs/1806.05859. https://arxiv.org/
abs/1806.05859.

Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, et al.
2020. “Language Models Are Few-Shot Learners.” In Advances
in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, Virtual, edited by Hugo Larochelle, Marc’Aurelio
Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin. https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Buolamwini, Joy, and Timnit Gebru. 2018. “Gender Shades: Intersec-
tional Accuracy Disparities in Commercial Gender Classification.”
In Conference on Fairness, Accountability and Transparency, 77–91.
PMLR.

Burnet, David, and Richard Thomas. 1989. “Spycatcher: The Com-
modification of Truth.” J. Law Soc. 16 (2): 210. https://doi.org/10.
2307/1410360.

Burr, Geoffrey W., Matthew J. BrightSky, Abu Sebastian, Huai-Yu
Cheng, Jau-Yi Wu, Sangbum Kim, Norma E. Sosa, et al. 2016. “Re-
cent Progress in Phase-Change?Pub _Newline ?Memory Technol-
ogy.” IEEE Journal on Emerging and Selected Topics in Circuits and Sys-
tems 6 (2): 146–62. https://doi.org/10.1109/jetcas.2016.2547718.

Bushnell, Michael L, and Vishwani D Agrawal. 2002. “Built-in Self-
Test.” Essentials of Electronic Testing for Digital, Memory and Mixed-
Signal VLSI Circuits, 489–548.

Buyya, Rajkumar, Anton Beloglazov, and Jemal Abawajy. 2010.
“Energy-EfÏcient Management of Data Center Resources for
Cloud Computing: A Vision, Architectural Elements, and Open
Challenges.” https://arxiv.org/abs/1006.0308.

Cai, Carrie J., Emily Reif, Narayan Hegde, Jason Hipp, Been Kim,
Daniel Smilkov, Martin Wattenberg, et al. 2019. “Human-Centered
Tools for Coping with Imperfect Algorithms During Medical

https://doi.org/10.24963/ijcai.2018/847
https://doi.org/10.1109/sp40001.2021.00019
https://doi.org/10.1109/sp40001.2021.00019
https://arxiv.org/abs/1806.05859
https://arxiv.org/abs/1806.05859
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.2307/1410360
https://doi.org/10.2307/1410360
https://doi.org/10.1109/jetcas.2016.2547718
https://arxiv.org/abs/1006.0308

REFERENCES 1263

Decision-Making.” In Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems, edited by Jennifer G. Dy and
Andreas Krause, 80:2673–82. Proceedings of Machine Learning
Research. ACM. https://doi.org/10.1145/3290605.3300234.

Cai, Han, Chuang Gan, Ligeng Zhu, and Song Han. 2020. “TinyTL:
Reduce Memory, Not Parameters for EfÏcient on-Device Learning.”
In Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, Virtual, edited by Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin. https://proceedings.neurips.cc/paper/2020/
hash/81f7acabd411274fcf65ce2070ed568a-Abstract.html.

Cai, Han, Ligeng Zhu, and Song Han. 2019. “ProxylessNAS: Di-
rect Neural Architecture Search on Target Task and Hardware.”
In 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.
https://openreview.net/forum?id=HylVB3AqYm.

Calvo, Rafael A, Dorian Peters, Karina Vold, and Richard M Ryan. 2020.
“Supporting Human Autonomy in AI Systems: A Framework for
Ethical Enquiry.” Ethics of Digital Well-Being: A Multidisciplinary
Approach, 31–54.

Carlini, Nicholas, Pratyush Mishra, Tavish Vaidya, Yuankai Zhang,
Micah Sherr, Clay Shields, David Wagner, and Wenchao Zhou.
2016. “Hidden Voice Commands.” In 25th USENIX Security
Symposium (USENIX Security 16), 513–30.

Carlini, Nicolas, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash
Sehwag, Florian Tramer, Borja Balle, Daphne Ippolito, and Eric Wal-
lace. 2023. “Extracting Training Data from Diffusion Models.” In
32nd USENIX Security Symposium (USENIX Security 23), 5253–70.

Carta, Salvatore, Alessandro Sebastian Podda, Diego Reforgiato Recu-
pero, and Roberto Saia. 2020. “A Local Feature Engineering Strat-
egy to Improve Network Anomaly Detection.” Future Internet 12
(10): 177. https://doi.org/10.3390/fi12100177.

Cavoukian, Ann. 2009. “Privacy by Design.” OfÏce of the Information
and Privacy Commissioner.

Cenci, Marcelo Pilotto, Tatiana Scarazzato, Daniel Dotto Munchen,
Paula Cristina Dartora, Hugo Marcelo Veit, Andrea Moura
Bernardes, and Pablo R. Dias. 2021. “Eco-Friendly Electronics—A
Comprehensive Review.” Adv. Mater. Technol. 7 (2): 2001263.
https://doi.org/10.1002/admt.202001263.

Challenge, WEF Net-Zero. 2021. “The Supply Chain Opportunity.” In
World Economic Forum: Geneva, Switzerland.

Chandola, Varun, Arindam Banerjee, and Vipin Kumar. 2009.

https://doi.org/10.1145/3290605.3300234
https://proceedings.neurips.cc/paper/2020/hash/81f7acabd411274fcf65ce2070ed568a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/81f7acabd411274fcf65ce2070ed568a-Abstract.html
https://openreview.net/forum?id=HylVB3AqYm
https://doi.org/10.3390/fi12100177
https://doi.org/10.1002/admt.202001263

References 1264

“Anomaly Detection: A Survey.” ACM Comput. Surv. 41 (3): 1–58.
https://doi.org/10.1145/1541880.1541882.

Chapelle, O., B. Scholkopf, and A. Zien Eds. 2009. “Semi-Supervised
Learning (Chapelle, O. Et Al., Eds.; 2006) [Book Reviews].” IEEE
Trans. Neural Networks 20 (3): 542–42. https://doi.org/10.1109/tnn.
2009.2015974.

Chen, Chaofan, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin,
and Jonathan Su. 2019. “This Looks Like That: Deep Learning for
Interpretable Image Recognition.” In Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, edited by Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Gar-
nett, 8928–39. https://proceedings.neurips.cc/paper/2019/hash/
adf7ee2dcf142b0e11888e72b43fcb75-Abstract.html.

Chen, Emma, Shvetank Prakash, Vĳay Janapa Reddi, David Kim, and
Pranav Rajpurkar. 2023. “A Framework for Integrating Artificial In-
telligence for Clinical Care with Continuous Therapeutic Monitor-
ing.” Nature Biomedical Engineering, November. https://doi.org/
10.1038/s41551-023-01115-0.

Chen, H.-W. 2006. “Gallium, Indium, and Arsenic Pollution of Ground-
water from a Semiconductor Manufacturing Area of Taiwan.” B.
Environ. Contam. Tox. 77 (2): 289–96. https://doi.org/10.1007/
s00128-006-1062-3.

Chen, Tianqi, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Haichen Shen, Meghan Cowan, et al. 2018. “TVM: An Auto-
mated End-to-End Optimizing Compiler for Deep Learning.” In
13th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 18), 578–94.

Chen, Tianqi, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016.
“Training Deep Nets with Sublinear Memory Cost.” ArXiv Preprint
abs/1604.06174. https://arxiv.org/abs/1604.06174.

Chen, Zhiyong, and Shugong Xu. 2023. “Learning Domain-
Heterogeneous Speaker Recognition Systems with Personalized
Continual Federated Learning.” EURASIP Journal on Audio, Speech,
and Music Processing 2023 (1): 33. https://doi.org/10.1186/s13636-
023-00299-2.

Chen, Zitao, Guanpeng Li, Karthik Pattabiraman, and Nathan
DeBardeleben. 2019. “iBinFI/i: An EfÏcient Fault Injector for
Safety-Critical Machine Learning Systems.” In Proceedings of the
International Conference for High Performance Computing, Network-
ing, Storage and Analysis. SC ’19. New York, NY, USA: ACM.
https://doi.org/10.1145/3295500.3356177.

https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1109/tnn.2009.2015974
https://doi.org/10.1109/tnn.2009.2015974
https://proceedings.neurips.cc/paper/2019/hash/adf7ee2dcf142b0e11888e72b43fcb75-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/adf7ee2dcf142b0e11888e72b43fcb75-Abstract.html
https://doi.org/10.1038/s41551-023-01115-0
https://doi.org/10.1038/s41551-023-01115-0
https://doi.org/10.1007/s00128-006-1062-3
https://doi.org/10.1007/s00128-006-1062-3
https://arxiv.org/abs/1604.06174
https://doi.org/10.1186/s13636-023-00299-2
https://doi.org/10.1186/s13636-023-00299-2
https://doi.org/10.1145/3295500.3356177

REFERENCES 1265

Chen, Zitao, Niranjhana Narayanan, Bo Fang, Guanpeng Li, Karthik
Pattabiraman, and Nathan DeBardeleben. 2020. “TensorFI: A Flex-
ible Fault Injection Framework for TensorFlow Applications.” In
2020 IEEE 31st International Symposium on Software Reliability En-
gineering (ISSRE), 426–35. IEEE; IEEE. https://doi.org/10.1109/
issre5003.2020.00047.

Cheng, Eric, Shahrzad Mirkhani, Lukasz G. Szafaryn, Chen-Yong Cher,
Hyungmin Cho, Kevin Skadron, Mircea R. Stan, et al. 2016. “Clear:
uC/u Ross u-l/u Ayer uE/u Xploration for uA/u Rchitecting uR/u
Esilience - Combining Hardware and Software Techniques to Toler-
ate Soft Errors in Processor Cores.” In Proceedings of the 53rd Annual
Design Automation Conference, 1–6. ACM. https://doi.org/10.1145/
2897937.2897996.

Cheng, Yu, Duo Wang, Pan Zhou, and Tao Zhang. 2018. “Model Com-
pression and Acceleration for Deep Neural Networks: The Princi-
ples, Progress, and Challenges.” IEEE Signal Process Mag. 35 (1):
126–36. https://doi.org/10.1109/msp.2017.2765695.

Chi, Ping, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan
Liu, Yu Wang, and Yuan Xie. 2016. “Prime: A Novel Processing-in-
Memory Architecture for Neural Network Computation in ReRAM-
Based Main Memory.” ACM SIGARCH Computer Architecture News
44 (3): 27–39. https://doi.org/10.1145/3007787.3001140.

Chollet, François. 2018. “Introduction to Keras.” March 9th.
Christiano, Paul F., Jan Leike, Tom B. Brown, Miljan Martic, Shane

Legg, and Dario Amodei. 2017. “Deep Reinforcement Learning
from Human Preferences.” In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
edited by Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Ro-
man Garnett, 4299–4307. https://proceedings.neurips.cc/paper/
2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html.

Chu, Grace, Okan Arikan, Gabriel Bender, Weĳun Wang, Achille
Brighton, Pieter-Jan Kindermans, Hanxiao Liu, Berkin Akin, Suyog
Gupta, and Andrew Howard. 2021. “Discovering Multi-Hardware
Mobile Models via Architecture Search.” In 2021 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition Workshops (CVPRW),
3022–31. IEEE. https://doi.org/10.1109/cvprw53098.2021.00337.

Chua, L. 1971. “Memristor-the Missing Circuit Element.” #IEEE_J_-
CT# 18 (5): 507–19. https://doi.org/10.1109/tct.1971.1083337.

Chung, Jae-Won, Yile Gu, Insu Jang, Luoxi Meng, Nikhil Bansal, and
Mosharaf Chowdhury. 2023. “Perseus: Removing Energy Bloat
from Large Model Training.” ArXiv Preprint abs/2312.06902. https:

https://doi.org/10.1109/issre5003.2020.00047
https://doi.org/10.1109/issre5003.2020.00047
https://doi.org/10.1145/2897937.2897996
https://doi.org/10.1145/2897937.2897996
https://doi.org/10.1109/msp.2017.2765695
https://doi.org/10.1145/3007787.3001140
https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
https://doi.org/10.1109/cvprw53098.2021.00337
https://doi.org/10.1109/tct.1971.1083337
https://arxiv.org/abs/2312.06902

References 1266

//arxiv.org/abs/2312.06902.
Cohen, Maxime C., Ruben Lobel, and Georgia Perakis. 2016. “The

Impact of Demand Uncertainty on Consumer Subsidies for Green
Technology Adoption.” Manage. Sci. 62 (5): 1235–58. https://doi.
org/10.1287/mnsc.2015.2173.

Coleman, Cody, Edward Chou, Julian Katz-Samuels, Sean Cula-
tana, Peter Bailis, Alexander C. Berg, Robert D. Nowak, Roshan
Sumbaly, Matei Zaharia, and I. Zeki Yalniz. 2022. “Similarity
Search for EfÏcient Active Learning and Search of Rare Con-
cepts.” In Thirty-Sixth AAAI Conference on Artificial Intelligence,
AAAI 2022, Thirty-Fourth Conference on Innovative Applications
of Artificial Intelligence, IAAI 2022, the Twelveth Symposium on
Educational Advances in Artificial Intelligence, EAAI 2022 Vir-
tual Event, February 22 - March 1, 2022, 6402–10. AAAI Press.
https://ojs.aaai.org/index.php/AAAI/article/view/20591.

Coleman, Cody, Daniel Kang, Deepak Narayanan, Luigi Nardi, Tian
Zhao, Jian Zhang, Peter Bailis, Kunle Olukotun, Chris Ré, and Matei
Zaharia. 2019. “Analysis of DAWNBench, a Time-to-Accuracy Ma-
chine Learning Performance Benchmark.” ACM SIGOPS Operat-
ing Systems Review 53 (1): 14–25. https://doi.org/10.1145/3352020.
3352024.

Constantinescu, Cristian. 2008. “Intermittent Faults and Effects on
Reliability of Integrated Circuits.” In 2008 Annual Reliability and
Maintainability Symposium, 370–74. IEEE; IEEE. https://doi.org/10.
1109/rams.2008.4925824.

Cooper, Tom, Suzanne Fallender, Joyann Pafumi, Jon Dettling,
Sebastien Humbert, and Lindsay Lessard. 2011. “A Semi-
conductor Company’s Examination of Its Water Footprint
Approach.” In Proceedings of the 2011 IEEE International Sym-
posium on Sustainable Systems and Technology, 1–6. IEEE; IEEE.
https://doi.org/10.1109/issst.2011.5936865.

Cope, Gord. 2009. “Pure Water, Semiconductors and the Recession.”
Global Water Intelligence 10 (10).

Courbariaux, Matthieu, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. 2016. “Binarized Neural Networks: Training Deep
Neural Networks with Weights and Activations Constrained to+ 1
or-1.” arXiv Preprint arXiv:1602.02830.

Crankshaw, Daniel, Xin Wang, Guilio Zhou, Michael J Franklin, Joseph
E Gonzalez, and Ion Stoica. 2017. “Clipper: A {Low-Latency} On-
line Prediction Serving System.” In 14thUSENIX Symposium onNet-
worked Systems Design and Implementation (NSDI 17), 613–27.

D’ignazio, Catherine, and Lauren F Klein. 2023. Data Feminism. MIT
press.

https://arxiv.org/abs/2312.06902
https://arxiv.org/abs/2312.06902
https://doi.org/10.1287/mnsc.2015.2173
https://doi.org/10.1287/mnsc.2015.2173
https://ojs.aaai.org/index.php/AAAI/article/view/20591
https://doi.org/10.1145/3352020.3352024
https://doi.org/10.1145/3352020.3352024
https://doi.org/10.1109/rams.2008.4925824
https://doi.org/10.1109/rams.2008.4925824
https://doi.org/10.1109/issst.2011.5936865

REFERENCES 1267

Darvish Rouhani, Bita, Azalia Mirhoseini, and Farinaz Koushan-
far. 2017. “TinyDL: Just-in-time Deep Learning Solution
for Constrained Embedded Systems.” In 2017 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), 1–4. IEEE.
https://doi.org/10.1109/iscas.2017.8050343.

Davarzani, Samaneh, David Saucier, Purva Talegaonkar, Erin Parker,
Alana Turner, Carver Middleton, Will Carroll, et al. 2023. “Clos-
ing the Wearable Gap: Foot–ankle Kinematic Modeling via Deep
Learning Models Based on a Smart Sock Wearable.” Wearable Tech-
nologies 4. https://doi.org/10.1017/wtc.2023.3.

David, Robert, Jared Duke, Advait Jain, Vĳay Janapa Reddi, Nat Jef-
fries, Jian Li, Nick Kreeger, et al. 2021. “Tensorflow Lite Micro:
Embedded Machine Learning for Tinyml Systems.” Proceedings of
Machine Learning and Systems 3: 800–811.

Davies, Emma. 2011. “Endangered Elements: Critical Thinking.”
https://www.rsc.org/images/Endangered/%20Elements/%20-
/%20Critical/%20Thinking/_tcm18-196054.pdf.

Davies, Mike, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya,
Yongqiang Cao, Sri Harsha Choday, Georgios Dimou, et al. 2018.
“Loihi: A Neuromorphic Manycore Processor with on-Chip Learn-
ing.” IEEE Micro 38 (1): 82–99. https://doi.org/10.1109/mm.2018.
112130359.

Davies, Mike, Andreas Wild, Garrick Orchard, Yulia Sandamirskaya,
Gabriel A. Fonseca Guerra, Prasad Joshi, Philipp Plank, and
Sumedh R. Risbud. 2021. “Advancing Neuromorphic Computing
with Loihi: A Survey of Results and Outlook.” Proc. IEEE 109 (5):
911–34. https://doi.org/10.1109/jproc.2021.3067593.

Davis, Jacqueline, Daniel Bizo, Andy Lawrence, Owen Rogers, and
Max Smolaks. 2022. “Uptime Institute Global Data Center Survey
2022.” Uptime Institute.

Dayarathna, Miyuru, Yonggang Wen, and Rui Fan. 2016. “Data Center
Energy Consumption Modeling: A Survey.” IEEE Communications
Surveys &Amp; Tutorials 18 (1): 732–94. https://doi.org/10.1109/
comst.2015.2481183.

Dean, Jeffrey, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Quoc V. Le, Mark Z. Mao, et al. 2012. “Large Scale Distributed
Deep Networks.” In Advances in Neural Information Processing Sys-
tems 25: 26th Annual Conference on Neural Information Processing Sys-
tems 2012. Proceedings of a Meeting Held December 3-6, 2012, Lake
Tahoe, Nevada, United States, edited by Peter L. Bartlett, Fernando
C. N. Pereira, Christopher J. C. Burges, Léon Bottou, and Kilian
Q. Weinberger, 1232–40. https://proceedings.neurips.cc/paper/
2012/hash/6aca97005c68f1206823815f66102863-Abstract.html.

https://doi.org/10.1109/iscas.2017.8050343
https://doi.org/10.1017/wtc.2023.3
https://www.rsc.org/images/Endangered/%20Elements/%20-/%20Critical/%20Thinking/_tcm18-196054.pdf
https://www.rsc.org/images/Endangered/%20Elements/%20-/%20Critical/%20Thinking/_tcm18-196054.pdf
https://doi.org/10.1109/mm.2018.112130359
https://doi.org/10.1109/mm.2018.112130359
https://doi.org/10.1109/jproc.2021.3067593
https://doi.org/10.1109/comst.2015.2481183
https://doi.org/10.1109/comst.2015.2481183
https://proceedings.neurips.cc/paper/2012/hash/6aca97005c68f1206823815f66102863-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/6aca97005c68f1206823815f66102863-Abstract.html

References 1268

Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li.
2009. “ImageNet: A Large-Scale Hierarchical Image Database.” In
2009 IEEE Conference on Computer Vision and Pattern Recognition,
248–55. IEEE. https://doi.org/10.1109/cvpr.2009.5206848.

Desai, Tanvi, Felix Ritchie, Richard Welpton, et al. 2016. “Five Safes:
Designing Data Access for Research.” Economics Working Paper Se-
ries 1601: 28.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2019. “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding.” In Proceedings of the 2019 Conference of
the North, 4171–86. Minneapolis, Minnesota: Association for Com-
putational Linguistics. https://doi.org/10.18653/v1/n19-1423.

Dhar, Sauptik, Junyao Guo, Jiayi (Jason) Liu, Samarth Tripathi, Un-
mesh Kurup, and Mohak Shah. 2021. “A Survey of on-Device Ma-
chine Learning: An Algorithms and Learning Theory Perspective.”
ACM Transactions on Internet of Things 2 (3): 1–49. https://doi.org/
10.1145/3450494.

Dong, Xin, Barbara De Salvo, Meng Li, Chiao Liu, Zhongnan Qu, H.
T. Kung, and Ziyun Li. 2022. “SplitNets: Designing Neural Ar-
chitectures for EfÏcient Distributed Computing on Head-Mounted
Systems.” In 2022 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 12549–59. IEEE. https://doi.org/10.1109/
cvpr52688.2022.01223.

Dongarra, Jack J. 2009. “The Evolution of High Performance Comput-
ing on System z.” IBM J. Res. Dev. 53: 3–4.

Duarte, Javier, Nhan Tran, Ben Hawks, Christian Herwig, Jules Muhizi,
Shvetank Prakash, and Vĳay Janapa Reddi. 2022. “FastML Sci-
ence Benchmarks: Accelerating Real-Time Scientific Edge Machine
Learning.” ArXiv Preprint abs/2207.07958. https://arxiv.org/abs/
2207.07958.

Duchi, John C., Elad Hazan, and Yoram Singer. 2010. “Adaptive
Subgradient Methods for Online Learning and Stochastic Opti-
mization.” In COLT 2010 - the 23rd Conference on Learning Theory,
Haifa, Israel, June 27-29, 2010, edited by Adam Tauman Kalai and
Mehryar Mohri, 257–69. Omnipress. http://colt2010.haifa.il.ibm.
com/papers/COLT2010proceedings.pdf#page=265.

Duisterhof, Bardienus P, Srivatsan Krishnan, Jonathan J Cruz, Colby
R Banbury, William Fu, Aleksandra Faust, Guido CHE de Croon,
and Vĳay Janapa Reddi. 2019. “Learning to Seek: Autonomous
Source Seeking with Deep Reinforcement Learning Onboard a
Nano Drone Microcontroller.” ArXiv Preprint abs/1909.11236.
https://arxiv.org/abs/1909.11236.

Duisterhof, Bardienus P., Shushuai Li, Javier Burgues, Vĳay Janapa

https://doi.org/10.1109/cvpr.2009.5206848
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1145/3450494
https://doi.org/10.1145/3450494
https://doi.org/10.1109/cvpr52688.2022.01223
https://doi.org/10.1109/cvpr52688.2022.01223
https://arxiv.org/abs/2207.07958
https://arxiv.org/abs/2207.07958
http://colt2010.haifa.il.ibm.com/papers/COLT2010proceedings.pdf#page=265
http://colt2010.haifa.il.ibm.com/papers/COLT2010proceedings.pdf#page=265
https://arxiv.org/abs/1909.11236

REFERENCES 1269

Reddi, and Guido C. H. E. de Croon. 2021. “Sniffy Bug: A Fully Au-
tonomous Swarm of Gas-Seeking Nano Quadcopters in Cluttered
Environments.” In 2021 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 9099–9106. IEEE; IEEE. https://doi.
org/10.1109/iros51168.2021.9636217.

Dürr, Marc, Gunnar Nissen, Kurt-Wolfram Sühs, Philipp Schwenken-
becher, Christian Geis, Marius Ringelstein, Hans-Peter Hartung, et
al. 2021. “CSF Findings in Acute NMDAR and LGI1 Antibody–
Associated Autoimmune Encephalitis.” Neurology Neuroimmunol-
ogy &Amp; Neuroinflammation 8 (6). https://doi.org/10.1212/nxi.
0000000000001086.

Dwork, Cynthia, Frank McSherry, Kobbi Nissim, and Adam Smith.
2006. “Calibrating Noise to Sensitivity in Private Data Analysis.”
In Theory of Cryptography, edited by Shai Halevi and Tal Rabin, 265–
84. Berlin, Heidelberg: Springer Berlin Heidelberg.

Dwork, Cynthia, and Aaron Roth. 2013. “The Algorithmic Founda-
tions of Differential Privacy.” Foundations and Trends® in Theoret-
ical Computer Science 9 (3-4): 211–407. https://doi.org/10.1561/
0400000042.

Ebrahimi, Khosrow, Gerard F. Jones, and Amy S. Fleischer. 2014. “A
Review of Data Center Cooling Technology, Operating Conditions
and the Corresponding Low-Grade Waste Heat Recovery Oppor-
tunities.” Renewable Sustainable Energy Rev. 31 (March): 622–38.
https://doi.org/10.1016/j.rser.2013.12.007.

Egwutuoha, Ifeanyi P., David Levy, Bran Selic, and Shiping Chen. 2013.
“A Survey of Fault Tolerance Mechanisms and Checkpoint/Restart
Implementations for High Performance Computing Systems.” The
Journal of Supercomputing 65 (3): 1302–26. https://doi.org/10.1007/
s11227-013-0884-0.

Eisenman, Assaf, Kiran Kumar Matam, Steven Ingram, Dheevatsa
Mudigere, Raghuraman Krishnamoorthi, Krishnakumar Nair,
Misha Smelyanskiy, and Murali Annavaram. 2022. “Check-n-Run:
A Checkpointing System for Training Deep Learning Recommen-
dation Models.” In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22), 929–43.

Eldan, Ronen, and Mark Russinovich. 2023. “Who’s Harry Potter? Ap-
proximate Unlearning in LLMs.” ArXiv Preprint abs/2310.02238.
https://arxiv.org/abs/2310.02238.

El-Rayis, A. O. 2014. “Reconfigurable Architectures for the Next
Generation of Mobile Device Telecommunications Systems.” :
https://www.researchgate.net/publication/292608967.

Eshraghian, Jason K., Max Ward, Emre O. Neftci, Xinxin Wang, Gregor
Lenz, Girish Dwivedi, Mohammed Bennamoun, Doo Seok Jeong,

https://doi.org/10.1109/iros51168.2021.9636217
https://doi.org/10.1109/iros51168.2021.9636217
https://doi.org/10.1212/nxi.0000000000001086
https://doi.org/10.1212/nxi.0000000000001086
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
https://doi.org/10.1016/j.rser.2013.12.007
https://doi.org/10.1007/s11227-013-0884-0
https://doi.org/10.1007/s11227-013-0884-0
https://arxiv.org/abs/2310.02238

References 1270

and Wei D. Lu. 2023. “Training Spiking Neural Networks Using
Lessons from Deep Learning.” Proc. IEEE 111 (9): 1016–54. https:
//doi.org/10.1109/jproc.2023.3308088.

Esteva, Andre, Brett Kuprel, Roberto A. Novoa, Justin Ko, Su-
san M. Swetter, Helen M. Blau, and Sebastian Thrun. 2017.
“Dermatologist-Level Classification of Skin Cancer with Deep
Neural Networks.” Nature 542 (7639): 115–18. https://doi.org/10.
1038/nature21056.

“EuroSoil 2021 (O205).” 2021. In EuroSoil 2021 (O205). DS12902. STMi-
croelectronics; Frontiers Media SA. https://doi.org/10.3389/978-
2-88966-997-4.

Eykholt, Kevin, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rah-
mati, Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn
Song. 2017. “Robust Physical-World Attacks on Deep Learning
Models.” ArXiv Preprint abs/1707.08945. https://arxiv.org/abs/
1707.08945.

Fahim, Farah, Benjamin Hawks, Christian Herwig, James Hirschauer,
Sergo Jindariani, Nhan Tran, Luca P. Carloni, et al. 2021. “Hls4ml:
An Open-Source Codesign Workflow to Empower Scientific Low-
Power Machine Learning Devices.” https://arxiv.org/abs/2103.
05579.

Farah, Martha J. 2005. “Neuroethics: The Practical and the Philosoph-
ical.” Trends Cogn. Sci. 9 (1): 34–40. https://doi.org/10.1016/j.tics.
2004.12.001.

Farwell, James P., and Rafal Rohozinski. 2011. “Stuxnet and the Future
of Cyber War.” Survival 53 (1): 23–40. https://doi.org/10.1080/
00396338.2011.555586.

Fowers, Jeremy, Kalin Ovtcharov, Michael Papamichael, Todd
Massengill, Ming Liu, Daniel Lo, Shlomi Alkalay, et al. 2018.
“A Configurable Cloud-Scale DNN Processor for Real-Time
AI.” In 2018 ACM/IEEE 45th Annual International Symposium
on Computer Architecture (ISCA), 1–14. IEEE; IEEE. https:
//doi.org/10.1109/isca.2018.00012.

Francalanza, Adrian, Luca Aceto, Antonis Achilleos, Duncan Paul At-
tard, Ian Cassar, Dario Della Monica, and Anna Ingólfsdóttir. 2017.
“A Foundation for Runtime Monitoring.” In International Conference
on Runtime Verification, 8–29. Springer.

Frankle, Jonathan, and Michael Carbin. 2019. “The Lottery Ticket
Hypothesis: Finding Sparse, Trainable Neural Networks.” In
7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.
https://openreview.net/forum?id=rJl-b3RcF7.

Friedman, Batya. 1996. “Value-Sensitive Design.” Interactions 3 (6):

https://doi.org/10.1109/jproc.2023.3308088
https://doi.org/10.1109/jproc.2023.3308088
https://doi.org/10.1038/nature21056
https://doi.org/10.1038/nature21056
https://doi.org/10.3389/978-2-88966-997-4
https://doi.org/10.3389/978-2-88966-997-4
https://arxiv.org/abs/1707.08945
https://arxiv.org/abs/1707.08945
https://arxiv.org/abs/2103.05579
https://arxiv.org/abs/2103.05579
https://doi.org/10.1016/j.tics.2004.12.001
https://doi.org/10.1016/j.tics.2004.12.001
https://doi.org/10.1080/00396338.2011.555586
https://doi.org/10.1080/00396338.2011.555586
https://doi.org/10.1109/isca.2018.00012
https://doi.org/10.1109/isca.2018.00012
https://openreview.net/forum?id=rJl-b3RcF7

REFERENCES 1271

16–23. https://doi.org/10.1145/242485.242493.
Furber, Steve. 2016. “Large-Scale Neuromorphic Computing Systems.”

J. Neural Eng. 13 (5): 051001. https://doi.org/10.1088/1741-2560/
13/5/051001.

Fursov, Ivan, Matvey Morozov, Nina Kaploukhaya, Elizaveta Kov-
tun, Rodrigo Rivera-Castro, Gleb Gusev, Dmitry Babaev, Ivan
Kireev, Alexey Zaytsev, and Evgeny Burnaev. 2021. “Ad-
versarial Attacks on Deep Models for Financial Transaction
Records.” In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery &Amp; Data Mining, 2868–78. ACM.
https://doi.org/10.1145/3447548.3467145.

Gale, Trevor, Erich Elsen, and Sara Hooker. 2019. “The State of Sparsity
in Deep Neural Networks.” ArXiv Preprint abs/1902.09574. https:
//arxiv.org/abs/1902.09574.

Gandolfi, Karine, Christophe Mourtel, and Francis Olivier. 2001.
“Electromagnetic Analysis: Concrete Results.” In Cryptographic
Hardware and Embedded Systems—CHES 2001: Third International
Workshop Paris, France, May 14–16, 2001 Proceedings 3, 251–61.
Springer.

Gannot, G., and M. Ligthart. 1994. “Verilog HDL Based FPGA Design.”
In International Verilog HDL Conference, 86–92. IEEE. https://doi.
org/10.1109/ivc.1994.323743.

Gao, Yansong, Said F. Al-Sarawi, and Derek Abbott. 2020. “Physical
Unclonable Functions.” Nature Electronics 3 (2): 81–91. https://doi.
org/10.1038/s41928-020-0372-5.

Gates, Byron D. 2009. “Flexible Electronics.” Science 323 (5921): 1566–
67. https://doi.org/10.1126/science.1171230.

Gebru, Timnit, Jamie Morgenstern, Briana Vecchione, Jennifer Wort-
man Vaughan, Hanna Wallach, Hal Daumé III, and Kate Crawford.
2021. “Datasheets for Datasets.” Commun. ACM 64 (12): 86–92.
https://doi.org/10.1145/3458723.

Geiger, Atticus, Hanson Lu, Thomas Icard, and Christopher Potts.
2021. “Causal Abstractions of Neural Networks.” In Advances in
Neural Information Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021, December 6-14,
2021, Virtual, edited by Marc’Aurelio Ranzato, Alina Beygelzimer,
Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan,
9574–86. https://proceedings.neurips.cc/paper/2021/hash/
4f5c422f4d49a5a807eda27434231040-Abstract.html.

Gholami, Dong Kim, Mahoney Yao, and Keutzer. 2021. “A Survey
of Quantization Methods for EfÏcient Neural Network Inference).”
ArXiv Preprint. https://arxiv.org/abs/2103.13630.

Glorot, Xavier, and Yoshua Bengio. 2010. “Understanding the DifÏ-

https://doi.org/10.1145/242485.242493
https://doi.org/10.1088/1741-2560/13/5/051001
https://doi.org/10.1088/1741-2560/13/5/051001
https://doi.org/10.1145/3447548.3467145
https://arxiv.org/abs/1902.09574
https://arxiv.org/abs/1902.09574
https://doi.org/10.1109/ivc.1994.323743
https://doi.org/10.1109/ivc.1994.323743
https://doi.org/10.1038/s41928-020-0372-5
https://doi.org/10.1038/s41928-020-0372-5
https://doi.org/10.1126/science.1171230
https://doi.org/10.1145/3458723
https://proceedings.neurips.cc/paper/2021/hash/4f5c422f4d49a5a807eda27434231040-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/4f5c422f4d49a5a807eda27434231040-Abstract.html
https://arxiv.org/abs/2103.13630

References 1272

culty of Training Deep Feedforward Neural Networks.” In Proceed-
ings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, 249–56. http://proceedings.mlr.press/v9/glorot10a.
html.

Gnad, Dennis R. E., Fabian Oboril, and Mehdi B. Tahoori. 2017. “Volt-
age Drop-Based Fault Attacks on FPGAs Using Valid Bitstreams.”
In 2017 27th International Conference on Field Programmable Logic and
Applications (FPL), 1–7. IEEE; IEEE. https://doi.org/10.23919/fpl.
2017.8056840.

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
2020. “Generative Adversarial Networks.” Commun. ACM 63 (11):
139–44. https://doi.org/10.1145/3422622.

Goodyear, Victoria A. 2017. “Social Media, Apps and Wearable Tech-
nologies: Navigating Ethical Dilemmas and Procedures.” Quali-
tative Research in Sport, Exercise and Health 9 (3): 285–302. https:
//doi.org/10.1080/2159676x.2017.1303790.

Google. n.d. “Information Quality Content Moderation.” https://
blog.google/documents/83/.

Gordon, Ariel, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju
Yang, and Edward Choi. 2018. “MorphNet: Fast &Amp; Simple
Resource-Constrained Structure Learning of Deep Networks.” In
2018 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 1586–95. IEEE. https://doi.org/10.1109/cvpr.2018.00171.

Gräfe, Ralf, Qutub Syed Sha, Florian Geissler, and Michael Paulitsch.
2023. “Large-Scale Application of Fault Injection into PyTorch
Models -an Extension to PyTorchFI for Validation EfÏciency.” In
2023 53rd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks - Supplemental Volume (DSN-s), 56–62. IEEE;
IEEE. https://doi.org/10.1109/dsn-s58398.2023.00025.

Greengard, Samuel. 2015. The Internet of Things. The MIT Press. https:
//doi.org/10.7551/mitpress/10277.001.0001.

Grossman, Elizabeth. 2007. High Tech Trash: Digital Devices, Hidden
Toxics, and Human Health. Island press.

Gruslys, Audrunas, Rémi Munos, Ivo Danihelka, Marc Lanctot, and
Alex Graves. 2016. “Memory-EfÏcient Backpropagation Through
Time.” In Advances in Neural Information Processing Systems 29: An-
nual Conference on Neural Information Processing Systems 2016, Decem-
ber 5-10, 2016, Barcelona, Spain, edited by Daniel D. Lee, Masashi
Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Gar-
nett, 4125–33. https://proceedings.neurips.cc/paper/2016/hash/
a501bebf79d570651ff601788ea9d16d-Abstract.html.

Gu, Ivy. 2023. “Deep Learning Model Compression (Ii) by Ivy Gu

http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/10.23919/fpl.2017.8056840
https://doi.org/10.23919/fpl.2017.8056840
https://doi.org/10.1145/3422622
https://doi.org/10.1080/2159676x.2017.1303790
https://doi.org/10.1080/2159676x.2017.1303790
https://blog.google/documents/83/
https://blog.google/documents/83/
https://doi.org/10.1109/cvpr.2018.00171
https://doi.org/10.1109/dsn-s58398.2023.00025
https://doi.org/10.7551/mitpress/10277.001.0001
https://doi.org/10.7551/mitpress/10277.001.0001
https://proceedings.neurips.cc/paper/2016/hash/a501bebf79d570651ff601788ea9d16d-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/a501bebf79d570651ff601788ea9d16d-Abstract.html

REFERENCES 1273

Medium.” https://ivygdy.medium.com/deep-learning-model-
compression-ii-546352ea9453.

Gujarati, Arpan, Reza Karimi, Safya Alzayat, Wei Hao, Antoine
Kaufmann, Ymir Vigfusson, and Jonathan Mace. 2020. “Serv-
ing DNNs Like Clockwork: Performance Predictability from
the Bottom Up.” In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), 443–62. https:
//www.usenix.org/conference/osdi20/presentation/gujarati.

Guo, Chuan, Jacob Gardner, Yurong You, Andrew Gordon Wilson, and
Kilian Weinberger. 2019. “Simple Black-Box Adversarial Attacks.”
In International Conference on Machine Learning, 2484–93. PMLR.

Guo, Yutao, Hao Wang, Hui Zhang, Tong Liu, Zhaoguang Liang, Yun-
long Xia, Li Yan, et al. 2019. “Mobile Photoplethysmographic Tech-
nology to Detect Atrial Fibrillation.” Journal of the American College
of Cardiology 74 (19): 2365–75. https://doi.org/10.1016/j.jacc.2019.
08.019.

Gupta, Maanak, Charankumar Akiri, Kshitiz Aryal, Eli Parker, and
Lopamudra Praharaj. 2023. “From ChatGPT to ThreatGPT: Impact
of Generative AI in Cybersecurity and Privacy.” #IEEE_O_ACC#
11: 80218–45. https://doi.org/10.1109/access.2023.3300381.

Gupta, Maya, Andrew Cotter, Jan Pfeifer, Konstantin Voevodski,
Kevin Canini, Alexander Mangylov, Wojciech Moczydlowski, and
Alexander Van Esbroeck. 2016. “Monotonic Calibrated Interpo-
lated Look-up Tables.” The Journal of Machine Learning Research 17
(1): 3790–3836.

Gupta, Udit, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin
S. Lee, David Brooks, and Carole-Jean Wu. 2022. “Act: Designing
Sustainable Computer Systems with an Architectural Carbon Mod-
eling Tool.” InProceedings of the 49th Annual International Symposium
on Computer Architecture, 784–99. ACM. https://doi.org/10.1145/
3470496.3527408.

Gwennap, Linley. n.d. “Certus-NX Innovates General-Purpose FP-
GAs.”

Haensch, Wilfried, Tayfun Gokmen, and Ruchir Puri. 2019. “The Next
Generation of Deep Learning Hardware: Analog Computing.”
Proc. IEEE 107 (1): 108–22. https://doi.org/10.1109/jproc.2018.
2871057.

Hamming, R. W. 1950. “Error Detecting and Error Correcting Codes.”
Bell Syst. Tech. J. 29 (2): 147–60. https://doi.org/10.1002/j.1538-
7305.1950.tb00463.x.

Han, Song, Huizi Mao, and William J Dally. 2015. “Deep Compression:
Compressing Deep Neural Networks with Pruning, Trained Quan-
tization and Huffman Coding.” arXiv Preprint arXiv:1510.00149.

https://ivygdy.medium.com/deep-learning-model-compression-ii-546352ea9453
https://ivygdy.medium.com/deep-learning-model-compression-ii-546352ea9453
https://www.usenix.org/conference/osdi20/presentation/gujarati
https://www.usenix.org/conference/osdi20/presentation/gujarati
https://doi.org/10.1016/j.jacc.2019.08.019
https://doi.org/10.1016/j.jacc.2019.08.019
https://doi.org/10.1109/access.2023.3300381
https://doi.org/10.1145/3470496.3527408
https://doi.org/10.1145/3470496.3527408
https://doi.org/10.1109/jproc.2018.2871057
https://doi.org/10.1109/jproc.2018.2871057
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x

References 1274

Han, Song, Huizi Mao, and William J. Dally. 2016. “Deep Compres-
sion: Compressing Deep Neural Networks with Pruning, Trained
Quantization and Huffman Coding.” https://arxiv.org/abs/1510.
00149.

Handlin, Oscar. 1965. “Science and Technology in Popular Culture.”
Daedalus-Us., 156–70.

Hardt, Moritz, Eric Price, and Nati Srebro. 2016. “Equality of
Opportunity in Supervised Learning.” In Advances in Neural
Information Processing Systems 29: Annual Conference on Neu-
ral Information Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, edited by Daniel D. Lee, Masashi Sugiyama,
Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett,
3315–23. https://proceedings.neurips.cc/paper/2016/hash/
9d2682367c3935defcb1f9e247a97c0d-Abstract.html.

Hawks, Benjamin, Javier Duarte, Nicholas J. Fraser, Alessandro Pap-
palardo, Nhan Tran, and Yaman Umuroglu. 2021. “Ps and Qs:
Quantization-aware Pruning for EfÏcient Low Latency Neural Net-
work Inference.” Frontiers in Artificial Intelligence 4 (July). https:
//doi.org/10.3389/frai.2021.676564.

Hazan, Avi, and Elishai Ezra Tsur. 2021. “Neuromorphic Analog Im-
plementation of Neural Engineering Framework-Inspired Spiking
Neuron for High-Dimensional Representation.” Front. Neurosci. 15
(February): 627221. https://doi.org/10.3389/fnins.2021.627221.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015.
“Delving Deep into Rectifiers: Surpassing Human-Level Per-
formance on ImageNet Classification.” In 2015 IEEE Interna-
tional Conference on Computer Vision (ICCV), 1026–34. IEEE.
https://doi.org/10.1109/iccv.2015.123.

———. 2016. “Deep Residual Learning for Image Recognition.” In
2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 770–78. IEEE. https://doi.org/10.1109/cvpr.2016.90.

He, Yi, Prasanna Balaprakash, and Yanjing Li. 2020. “FIdelity: EfÏ-
cient Resilience Analysis Framework for Deep Learning Accelera-
tors.” In 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 270–81. IEEE; IEEE. https://doi.org/10.
1109/micro50266.2020.00033.

He, Yi, Mike Hutton, Steven Chan, Robert De Gruĳl, Rama Govin-
daraju, Nishant Patil, and Yanjing Li. 2023. “Understanding and
Mitigating Hardware Failures in Deep Learning Training Systems.”
InProceedings of the 50thAnnual International Symposium onComputer
Architecture, 1–16. IEEE; ACM. https://doi.org/10.1145/3579371.
3589105.

Hébert-Johnson, Úrsula, Michael P. Kim, Omer Reingold, and

https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1510.00149
https://proceedings.neurips.cc/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html
https://doi.org/10.3389/frai.2021.676564
https://doi.org/10.3389/frai.2021.676564
https://doi.org/10.3389/fnins.2021.627221
https://doi.org/10.1109/iccv.2015.123
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1109/micro50266.2020.00033
https://doi.org/10.1109/micro50266.2020.00033
https://doi.org/10.1145/3579371.3589105
https://doi.org/10.1145/3579371.3589105

REFERENCES 1275

Guy N. Rothblum. 2018. “Multicalibration: Calibration
for the (Computationally-Identifiable) Masses.” In Proceed-
ings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,
2018, edited by Jennifer G. Dy and Andreas Krause, 80:1944–
53. Proceedings of Machine Learning Research. PMLR.
http://proceedings.mlr.press/v80/hebert-johnson18a.html.

Hegde, Sumant. 2023. “An Introduction to Separable Convolutions
- Analytics Vidhya.” https://www.analyticsvidhya.com/blog/
2021/11/an-introduction-to-separable-convolutions/.

Henderson, Peter, Jieru Hu, Joshua Romoff, Emma Brunskill, Dan Ju-
rafsky, and Joelle Pineau. 2020. “Towards the Systematic Reporting
of the Energy and Carbon Footprints of Machine Learning.” The
Journal of Machine Learning Research 21 (1): 10039–81.

Hendrycks, Dan, and Thomas Dietterich. 2019. “Benchmarking
Neural Network Robustness to Common Corruptions and Pertur-
bations.” arXiv Preprint arXiv:1903.12261.

Hendrycks, Dan, Kevin Zhao, Steven Basart, Jacob Steinhardt, and
Dawn Song. 2021. “Natural Adversarial Examples.” In 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 15262–71. IEEE. https://doi.org/10.1109/cvpr46437.2021.
01501.

Hennessy, John L., and David A. Patterson. 2019. “A New Golden Age
for Computer Architecture.” Commun. ACM 62 (2): 48–60. https:
//doi.org/10.1145/3282307.

Himmelstein, Gracie, David Bates, and Li Zhou. 2022. “Examina-
tion of Stigmatizing Language in the Electronic Health Record.”
JAMA Network Open 5 (1): e2144967. https://doi.org/10.1001/
jamanetworkopen.2021.44967.

Hinton, Geoffrey. 2005. “Van Nostrand’s Scientific Encyclopedia.” Wi-
ley. https://doi.org/10.1002/0471743984.vse0673.

———. 2017. “Overview of Minibatch Gradient Descent.” University
of Toronto; University Lecture.

Ho Yoon, Jung, Hyung-Suk Jung, Min Hwan Lee, Gun Hwan
Kim, Seul Ji Song, Jun Yeong Seok, Kyung Jean Yoon, et
al. 2012. “Frontiers in Electronic Materials.” Wiley. https:
//doi.org/10.1002/9783527667703.ch67.

Hoefler, Torsten, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and
Alexandra Peste. 2021. “Sparsity in Deep Learning: Pruning and
Growth for EfÏcient Inference and Training in Neural Networks,”
January. http://arxiv.org/abs/2102.00554v1.

Holland, Sarah, Ahmed Hosny, Sarah Newman, Joshua Joseph,
and Kasia Chmielinski. 2020. “The Dataset Nutrition Label: A

http://proceedings.mlr.press/v80/hebert-johnson18a.html
https://www.analyticsvidhya.com/blog/2021/11/an-introduction-to-separable-convolutions/
https://www.analyticsvidhya.com/blog/2021/11/an-introduction-to-separable-convolutions/
https://doi.org/10.1109/cvpr46437.2021.01501
https://doi.org/10.1109/cvpr46437.2021.01501
https://doi.org/10.1145/3282307
https://doi.org/10.1145/3282307
https://doi.org/10.1001/jamanetworkopen.2021.44967
https://doi.org/10.1001/jamanetworkopen.2021.44967
https://doi.org/10.1002/0471743984.vse0673
https://doi.org/10.1002/9783527667703.ch67
https://doi.org/10.1002/9783527667703.ch67
http://arxiv.org/abs/2102.00554v1

References 1276

Framework to Drive Higher Data Quality Standards.” In Data
Protection and Privacy. Hart Publishing. https://doi.org/10.5040/
9781509932771.ch-001.

Hong, Sanghyun, Nicholas Carlini, and Alexey Kurakin. 2023. “Pub-
lishing EfÏcient on-Device Models Increases Adversarial Vulnera-
bility.” In 2023 IEEE Conference on Secure and Trustworthy Machine
Learning (SaTML), 271–90. IEEE; IEEE. https://doi.org/10.1109/
satml54575.2023.00026.

Hosseini, Hossein, Sreeram Kannan, Baosen Zhang, and Radha
Poovendran. 2017. “Deceiving Google’s Perspective Api Built
for Detecting Toxic Comments.” ArXiv Preprint abs/1702.08138.
https://arxiv.org/abs/1702.08138.

Howard, Andrew G., Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weĳun Wang, Tobias Weyand, Marco Andreetto, and Hartwig
Adam. 2017. “MobileNets: EfÏcient Convolutional Neural
Networks for Mobile Vision Applications.” ArXiv Preprint.
https://arxiv.org/abs/1704.04861.

Hsiao, Yu-Shun, Zishen Wan, Tianyu Jia, Radhika Ghosal, Abdulrah-
man Mahmoud, Arĳit Raychowdhury, David Brooks, Gu-Yeon
Wei, and Vĳay Janapa Reddi. 2023. “MAVFI: An End-to-End Fault
Analysis Framework with Anomaly Detection and Recovery for
Micro Aerial Vehicles.” In 2023 Design, Automation &Amp; Test
in Europe Conference &Amp; Exhibition (DATE), 1–6. IEEE; IEEE.
https://doi.org/10.23919/date56975.2023.10137246.

Hsu, Liang-Ching, Ching-Yi Huang, Yen-Hsun Chuang, Ho-Wen
Chen, Ya-Ting Chan, Heng Yi Teah, Tsan-Yao Chen, Chiung-Fen
Chang, Yu-Ting Liu, and Yu-Min Tzou. 2016. “Accumulation
of Heavy Metals and Trace Elements in Fluvial Sediments Re-
ceived EfÒuents from Traditional and Semiconductor Industries.”
Scientific Reports 6 (1): 34250. https://doi.org/10.1038/srep34250.

Hu, Jie, Li Shen, and Gang Sun. 2018. “Squeeze-and-Excitation
Networks.” In 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 7132–41. IEEE. https://doi.org/10.1109/cvpr.
2018.00745.

Hu, Yang, Jie Jiang, Lifu Zhang, Yunfeng Shi, and Jian Shi.
2023. “Halide Perovskite Semiconductors.” Wiley. https:
//doi.org/10.1002/9783527829026.ch13.

Huang, Tsung-Ching, Kenjiro Fukuda, Chun-Ming Lo, Yung-Hui Yeh,
Tsuyoshi Sekitani, Takao Someya, and Kwang-Ting Cheng. 2011.
“Pseudo-CMOS: A Design Style for Low-Cost and Robust Flexible
Electronics.” IEEE Trans. Electron Devices 58 (1): 141–50. https://
doi.org/10.1109/ted.2010.2088127.

Hutter, Michael, Jorn-Marc Schmidt, and Thomas Plos. 2009.

https://doi.org/10.5040/9781509932771.ch-001
https://doi.org/10.5040/9781509932771.ch-001
https://doi.org/10.1109/satml54575.2023.00026
https://doi.org/10.1109/satml54575.2023.00026
https://arxiv.org/abs/1702.08138
https://arxiv.org/abs/1704.04861
https://doi.org/10.23919/date56975.2023.10137246
https://doi.org/10.1038/srep34250
https://doi.org/10.1109/cvpr.2018.00745
https://doi.org/10.1109/cvpr.2018.00745
https://doi.org/10.1002/9783527829026.ch13
https://doi.org/10.1002/9783527829026.ch13
https://doi.org/10.1109/ted.2010.2088127
https://doi.org/10.1109/ted.2010.2088127

REFERENCES 1277

“Contact-Based Fault Injections and Power Analysis on RFID Tags.”
In 2009 European Conference on Circuit Theory and Design, 409–12.
IEEE; IEEE. https://doi.org/10.1109/ecctd.2009.5275012.

Iandola, Forrest N, Song Han, Matthew W Moskewicz, Khalid Ashraf,
William J Dally, and Kurt Keutzer. 2016. “SqueezeNet: Alexnet-
level Accuracy with 50x Fewer Parameters and 0.5 MB Model Size.”
ArXiv Preprint abs/1602.07360. https://arxiv.org/abs/1602.07360.

Ignatov, Andrey, Radu Timofte, William Chou, Ke Wang, Max Wu, Tim
Hartley, and Luc Van Gool. 2018. “AI Benchmark: Running Deep
Neural Networks on Android Smartphones,” 0–0.

Imani, Mohsen, Abbas Rahimi, and Tajana S. Rosing. 2016. “Resistive
Configurable Associative Memory for Approximate Computing.”
In Proceedings of the 2016 Design, Automation &Amp; Test in Europe
Conference &Amp; Exhibition (DATE), 1327–32. IEEE; Research Pub-
lishing Services. https://doi.org/10.3850/9783981537079_0454.

IntelLabs. 2023. “Knowledge Distillation - Neural Network Distiller.”
https://intellabs.github.io/distiller/knowledge_distillation.html.

Ippolito, Daphne, Florian Tramer, Milad Nasr, Chiyuan Zhang,
Matthew Jagielski, Katherine Lee, Christopher Choquette Choo,
and Nicholas Carlini. 2023. “Preventing Generation of Verbatim
Memorization in Language Models Gives a False Sense of Privacy.”
In Proceedings of the 16th International Natural Language Generation
Conference, 5253–70. Association for Computational Linguistics.
https://doi.org/10.18653/v1/2023.inlg-main.3.

Irimia-Vladu, Mihai. 2014. ““Green” Electronics: Biodegrad-
able and Biocompatible Materials and Devices for Sustain-
able Future.” Chem. Soc. Rev. 43 (2): 588–610. https:
//doi.org/10.1039/c3cs60235d.

Isscc. 2014. “Computing’s Energy Problem (and What We Can Do
about It).” https://ieeexplore.ieee.org/document/6757323.

Jacob, Benoit, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew
Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko.
2018. “Quantization and Training of Neural Networks for EfÏcient
Integer-Arithmetic-Only Inference.” In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2704–13.

Jaderberg, Max, Valentin Dalibard, Simon Osindero, Wojciech M.
Czarnecki, Jeff Donahue, Ali Razavi, Oriol Vinyals, et al. 2017.
“Population Based Training of Neural Networks.” arXiv Preprint
arXiv:1711.09846, November. http://arxiv.org/abs/1711.09846v2.

Janapa Reddi, Vĳay, Alexander Elium, Shawn Hymel, David Tischler,
Daniel Situnayake, Carl Ward, Louis Moreau, et al. 2023. “Edge
Impulse: An MLOps Platform for Tiny Machine Learning.” Pro-
ceedings of Machine Learning and Systems 5.

https://doi.org/10.1109/ecctd.2009.5275012
https://arxiv.org/abs/1602.07360
https://doi.org/10.3850/9783981537079_0454
https://intellabs.github.io/distiller/knowledge_distillation.html
https://doi.org/10.18653/v1/2023.inlg-main.3
https://doi.org/10.1039/c3cs60235d
https://doi.org/10.1039/c3cs60235d
https://ieeexplore.ieee.org/document/6757323
http://arxiv.org/abs/1711.09846v2

References 1278

Jha, A. R. 2014. Rare Earth Materials: Properties and Applications. CRC
Press. https://doi.org/10.1201/b17045.

Jha, Saurabh, Subho Banerjee, Timothy Tsai, Siva K. S. Hari, Michael B.
Sullivan, Zbigniew T. Kalbarczyk, Stephen W. Keckler, and Ravis-
hankar K. Iyer. 2019. “ML-Based Fault Injection for Autonomous
Vehicles: A Case for Bayesian Fault Injection.” In 2019 49th An-
nual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 112–24. IEEE; IEEE. https://doi.org/10.1109/dsn.
2019.00025.

Jia, Yangqing, Evan Shelhamer, Jeff Donahue, Sergey Karayev,
Jonathan Long, Ross Girshick, Sergio Guadarrama, and
Trevor Darrell. 2014. “Caffe: Convolutional Architecture
for Fast Feature Embedding.” In Proceedings of the 22nd
ACM International Conference on Multimedia, 675–78. ACM.
https://doi.org/10.1145/2647868.2654889.

Jia, Zhe, Marco Maggioni, Benjamin Staiger, and Daniele P.
Scarpazza. 2018. “Dissecting the NVIDIA Volta GPU Ar-
chitecture via Microbenchmarking.” ArXiv Preprint. https:
//arxiv.org/abs/1804.06826.

Jia, Zhenge, Dawei Li, Xiaowei Xu, Na Li, Feng Hong, Lichuan Ping,
and Yiyu Shi. 2023. “Life-Threatening Ventricular Arrhythmia De-
tection Challenge in Implantable Cardioverter–defibrillators.” Na-
ture Machine Intelligence 5 (5): 554–55. https://doi.org/10.1038/
s42256-023-00659-9.

Jia, Zhihao, Matei Zaharia, and Alex Aiken. 2019. “Beyond Data
and Model Parallelism for Deep Neural Networks.” In Pro-
ceedings of Machine Learning and Systems 2019, MLSys 2019,
Stanford, CA, USA, March 31 - April 2, 2019, edited by Ameet
Talwalkar, Virginia Smith, and Matei Zaharia. mlsys.org.
https://proceedings.mlsys.org/book/265.pdf.

Jin, Yilun, Xiguang Wei, Yang Liu, and Qiang Yang. 2020. “Towards
Utilizing Unlabeled Data in Federated Learning: A Survey and
Prospective.” arXiv Preprint arXiv:2002.11545.

Johnson-Roberson, Matthew, Charles Barto, Rounak Mehta, Sharath
Nittur Sridhar, Karl Rosaen, and Ram Vasudevan. 2017. “Driving
in the Matrix: Can Virtual Worlds Replace Human-Generated An-
notations for Real World Tasks?” In 2017 IEEE International Confer-
ence on Robotics and Automation (ICRA), 746–53. Singapore, Singa-
pore: IEEE. https://doi.org/10.1109/icra.2017.7989092.

Jouppi, Norman P., Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, et al. 2017a. “In-Datacenter
Performance Analysis of a Tensor Processing Unit.” In Proceedings
of the 44th Annual International Symposium on Computer Architecture,

https://doi.org/10.1201/b17045
https://doi.org/10.1109/dsn.2019.00025
https://doi.org/10.1109/dsn.2019.00025
https://doi.org/10.1145/2647868.2654889
https://arxiv.org/abs/1804.06826
https://arxiv.org/abs/1804.06826
https://doi.org/10.1038/s42256-023-00659-9
https://doi.org/10.1038/s42256-023-00659-9
https://proceedings.mlsys.org/book/265.pdf
https://doi.org/10.1109/icra.2017.7989092

REFERENCES 1279

1–12. ISCA ’17. New York, NY, USA: ACM. https://doi.org/10.
1145/3079856.3080246.

———, et al. 2017b. “In-Datacenter Performance Analysis of a Ten-
sor Processing Unit.” In Proceedings of the 44th Annual International
Symposium on Computer Architecture, 1–12. ISCA ’17. New York, NY,
USA: ACM. https://doi.org/10.1145/3079856.3080246.

Jouppi, Norm, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan,
Lifeng Nai, Nishant Patil, et al. 2023. “TPU V4: An Optically Re-
configurable Supercomputer for Machine Learning with Hardware
Support for Embeddings.” In Proceedings of the 50th Annual Interna-
tional Symposium on Computer Architecture. ISCA ’23. New York, NY,
USA: ACM. https://doi.org/10.1145/3579371.3589350.

Joye, Marc, and Michael Tunstall. 2012. Fault Analysis in Cryptogra-
phy. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-
642-29656-7.

Kairouz, Peter, Sewoong Oh, and Pramod Viswanath. 2015. “Se-
cure Multi-Party Differential Privacy.” In Advances in Neural
Information Processing Systems 28: Annual Conference on Neu-
ral Information Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada, edited by Corinna Cortes, Neil D.
Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett,
2008–16. https://proceedings.neurips.cc/paper/2015/hash/
a01610228fe998f515a72dd730294d87-Abstract.html.

Kalamkar, Dhiraj, Dheevatsa Mudigere, Naveen Mellempudi, Di-
pankar Das, Kunal Banerjee, Sasikanth Avancha, Dharma Teja
Vooturi, et al. 2019. “A Study of BFLOAT16 for Deep Learning
Training.” https://arxiv.org/abs/1905.12322.

Kao, Sheng-Chun, Geonhwa Jeong, and Tushar Krishna. 2020. “Con-
fuciuX: Autonomous Hardware Resource Assignment for DNN
Accelerators Using Reinforcement Learning.” In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
622–36. IEEE; IEEE. https://doi.org/10.1109/micro50266.2020.
00058.

Kao, Sheng-Chun, and Tushar Krishna. 2020. “Gamma: Au-
tomating the HW Mapping of DNN Models on Accelera-
tors via Genetic Algorithm.” In Proceedings of the 39th In-
ternational Conference on Computer-Aided Design, 1–9. ACM.
https://doi.org/10.1145/3400302.3415639.

Kaplan, Jared, Sam McCandlish, Tom Henighan, Tom B. Brown, Ben-
jamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu,
and Dario Amodei. 2020. “Scaling Laws for Neural Language Mod-
els.” ArXiv Preprint abs/2001.08361. https://arxiv.org/abs/2001.
08361.

https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3579371.3589350
https://doi.org/10.1007/978-3-642-29656-7
https://doi.org/10.1007/978-3-642-29656-7
https://proceedings.neurips.cc/paper/2015/hash/a01610228fe998f515a72dd730294d87-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/a01610228fe998f515a72dd730294d87-Abstract.html
https://arxiv.org/abs/1905.12322
https://doi.org/10.1109/micro50266.2020.00058
https://doi.org/10.1109/micro50266.2020.00058
https://doi.org/10.1145/3400302.3415639
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361

References 1280

Karargyris, Alexandros, Renato Umeton, Micah J Sheller, Alejan-
dro Aristizabal, Johnu George, Anna Wuest, Sarthak Pati, et
al. 2023. “Federated Benchmarking of Medical Artificial Intelli-
gence with MedPerf.” Nature Machine Intelligence 5 (7): 799–810.
https://doi.org/10.1038/s42256-023-00652-2.

Kaur, Harmanpreet, Harsha Nori, Samuel Jenkins, Rich Caruana,
Hanna Wallach, and Jennifer Wortman Vaughan. 2020. “Inter-
preting Interpretability: Understanding Data Scientists’ Use of
Interpretability Tools for Machine Learning.” In Proceedings of the
2020 CHI Conference on Human Factors in Computing Systems, edited
by Regina Bernhaupt, Florian ’Floyd’Mueller, David Verweĳ, Josh
Andres, Joanna McGrenere, Andy Cockburn, Ignacio Avellino, et
al., 1–14. ACM. https://doi.org/10.1145/3313831.3376219.

Kawazoe Aguilera, Marcos, Wei Chen, and Sam Toueg. 1997. “Heart-
beat: A Timeout-Free Failure Detector for Quiescent Reliable Com-
munication.” In Distributed Algorithms: 11th International Workshop,
WDAG’97 Saarbrücken, Germany, September 24–26, 1997 Proceedings
11, 126–40. Springer.

Khan, Mohammad Emtiyaz, and Siddharth Swaroop. 2021.
“Knowledge-Adaptation Priors.” In Advances in Neural In-
formation Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14,
2021, Virtual, edited by Marc’Aurelio Ranzato, Alina Beygelzimer,
Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan,
19757–70. https://proceedings.neurips.cc/paper/2021/hash/
a4380923dd651c195b1631af7c829187-Abstract.html.

Kiela, Douwe, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus
Geiger, Zhengxuan Wu, Bertie Vidgen, et al. 2021. “Dyn-
abench: Rethinking Benchmarking in NLP.” In Proceedings of
the 2021 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies,
4110–24. Online: Association for Computational Linguistics.
https://doi.org/10.18653/v1/2021.naacl-main.324.

Kim, Jungrae, Michael Sullivan, and Mattan Erez. 2015. “Bamboo
ECC: Strong, Safe, and Flexible Codes for Reliable Computer
Memory.” In 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA), 101–12. IEEE; IEEE.
https://doi.org/10.1109/hpca.2015.7056025.

Kim, Sunju, Chungsik Yoon, Seunghon Ham, Jihoon Park, Ohun Kwon,
Donguk Park, Sangjun Choi, Seungwon Kim, Kwonchul Ha, and
Won Kim. 2018. “Chemical Use in the Semiconductor Manufactur-
ing Industry.” Int. J. Occup. Env. Heal. 24 (3-4): 109–18. https:
//doi.org/10.1080/10773525.2018.1519957.

https://doi.org/10.1038/s42256-023-00652-2
https://doi.org/10.1145/3313831.3376219
https://proceedings.neurips.cc/paper/2021/hash/a4380923dd651c195b1631af7c829187-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/a4380923dd651c195b1631af7c829187-Abstract.html
https://doi.org/10.18653/v1/2021.naacl-main.324
https://doi.org/10.1109/hpca.2015.7056025
https://doi.org/10.1080/10773525.2018.1519957
https://doi.org/10.1080/10773525.2018.1519957

REFERENCES 1281

Kingma, Diederik P., and Jimmy Ba. 2014. “Adam: A Method for
Stochastic Optimization.” Edited by Yoshua Bengio and Yann Le-
Cun, December. http://arxiv.org/abs/1412.6980v9.

Kirkpatrick, James, Razvan Pascanu, Neil Rabinowitz, Joel Ve-
ness, Guillaume Desjardins, Andrei A. Rusu, Kieran Milan,
et al. 2017. “Overcoming Catastrophic Forgetting in Neu-
ral Networks.” Proc. Natl. Acad. Sci. 114 (13): 3521–26.
https://doi.org/10.1073/pnas.1611835114.

Ko, Yohan. 2021. “Characterizing System-Level Masking Ef-
fects Against Soft Errors.” Electronics 10 (18): 2286. https:
//doi.org/10.3390/electronics10182286.

Kocher, Paul, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, et al. 2019b. “Spectre Attacks: Ex-
ploiting Speculative Execution.” In 2019 IEEE Symposium on Secu-
rity and Privacy (SP). IEEE. https://doi.org/10.1109/sp.2019.00002.

———, et al. 2019a. “Spectre Attacks: Exploiting Speculative Execu-
tion.” In 2019 IEEE Symposium on Security and Privacy (SP). IEEE.
https://doi.org/10.1109/sp.2019.00002.

Kocher, Paul, Joshua Jaffe, and Benjamin Jun. 1999. “Differential Power
Analysis.” In Advances in Cryptology—CRYPTO’99: 19th Annual In-
ternational Cryptology Conference Santa Barbara, California, USA, Au-
gust 15–19, 1999 Proceedings 19, 388–97. Springer.

Kocher, Paul, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. 2011.
“Introduction to Differential Power Analysis.” Journal of Crypto-
graphic Engineering 1 (1): 5–27. https://doi.org/10.1007/s13389-
011-0006-y.

Koh, Pang Wei, Thao Nguyen, Yew Siang Tang, Stephen Mussmann,
Emma Pierson, Been Kim, and Percy Liang. 2020. “Concept Bot-
tleneck Models.” In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event,
119:5338–48. Proceedings of Machine Learning Research. PMLR.
http://proceedings.mlr.press/v119/koh20a.html.

Koh, Pang Wei, Shiori Sagawa, Henrik Marklund, Sang Michael
Xie, Marvin Zhang, Akshay Balsubramani, Weihua Hu, et
al. 2021. “WILDS: A Benchmark of in-the-Wild Distribu-
tion Shifts.” In Proceedings of the 38th International Confer-
ence on Machine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, edited by Marina Meila and Tong Zhang, 139:5637–
64. Proceedings of Machine Learning Research. PMLR.
http://proceedings.mlr.press/v139/koh21a.html.

Koren, Yehuda, Robert Bell, and Chris Volinsky. 2009. “Matrix Fac-
torization Techniques for Recommender Systems.” Computer 42 (8):
30–37. https://doi.org/10.1109/mc.2009.263.

http://arxiv.org/abs/1412.6980v9
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.3390/electronics10182286
https://doi.org/10.3390/electronics10182286
https://doi.org/10.1109/sp.2019.00002
https://doi.org/10.1109/sp.2019.00002
https://doi.org/10.1007/s13389-011-0006-y
https://doi.org/10.1007/s13389-011-0006-y
http://proceedings.mlr.press/v119/koh20a.html
http://proceedings.mlr.press/v139/koh21a.html
https://doi.org/10.1109/mc.2009.263

References 1282

Krishna, Adithya, Srikanth Rohit Nudurupati, Chandana D G, Pritesh
Dwivedi, André van Schaik, Mahesh Mehendale, and Chetan Singh
Thakur. 2023. “RAMAN: A Re-Configurable and Sparse TinyML
Accelerator for Inference on Edge.” https://arxiv.org/abs/2306.
06493.

Krishnamoorthi. 2018. “Quantizing Deep Convolutional Networks for
EfÏcient Inference: A Whitepaper.” ArXiv Preprint. https://arxiv.
org/abs/1806.08342.

Krishnan, Rayan, Pranav Rajpurkar, and Eric J. Topol. 2022. “Self-
Supervised Learning in Medicine and Healthcare.” Nat. Biomed.
Eng. 6 (12): 1346–52. https://doi.org/10.1038/s41551-022-00914-
1.

Krishnan, Srivatsan, Natasha Jaques, Shayegan Omidshafiei, Dan
Zhang, Izzeddin Gur, Vĳay Janapa Reddi, and Aleksandra Faust.
2022. “Multi-Agent Reinforcement Learning for Microprocessor
Design Space Exploration.” https://arxiv.org/abs/2211.16385.

Krishnan, Srivatsan, Amir Yazdanbakhsh, Shvetank Prakash, Jason
Jabbour, Ikechukwu Uchendu, Susobhan Ghosh, Behzad Borou-
jerdian, et al. 2023. “ArchGym: An Open-Source Gymnasium for
Machine Learning Assisted Architecture Design.” In Proceedings
of the 50th Annual International Symposium on Computer Architecture,
1–16. ACM. https://doi.org/10.1145/3579371.3589049.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 2012.
“ImageNet Classification with Deep Convolutional Neural Net-
works.” In Advances in Neural Information Processing Systems 25:
26th Annual Conference on Neural Information Processing Systems
2012. Proceedings of a Meeting Held December 3-6, 2012, Lake Tahoe,
Nevada, United States, edited by Peter L. Bartlett, Fernando C.
N. Pereira, Christopher J. C. Burges, Léon Bottou, and Kilian Q.
Weinberger, 1106–14. https://proceedings.neurips.cc/paper/
2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html.

———. 2017. “ImageNet Classification with Deep Convolutional Neu-
ral Networks.” Edited by F. Pereira, C. J. Burges, L. Bottou, and K.
Q. Weinberger. Commun. ACM 60 (6): 84–90. https://doi.org/10.
1145/3065386.

Kung, Hsiang Tsung, and Charles E Leiserson. 1979. “Systolic Arrays
(for VLSI).” In Sparse Matrix Proceedings 1978, 1:256–82. Society for
industrial; applied mathematics Philadelphia, PA, USA.

Kurth, Thorsten, Shashank Subramanian, Peter Harrington, Jaideep
Pathak, Morteza Mardani, David Hall, Andrea Miele, Karthik
Kashinath, and Anima Anandkumar. 2023. “FourCastNet: Ac-
celerating Global High-Resolution Weather Forecasting Using
Adaptive Fourier Neural Operators.” In Proceedings of the Plat-

https://arxiv.org/abs/2306.06493
https://arxiv.org/abs/2306.06493
https://arxiv.org/abs/1806.08342
https://arxiv.org/abs/1806.08342
https://doi.org/10.1038/s41551-022-00914-1
https://doi.org/10.1038/s41551-022-00914-1
https://arxiv.org/abs/2211.16385
https://doi.org/10.1145/3579371.3589049
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386

REFERENCES 1283

form for Advanced Scientific Computing Conference, 1–11. ACM.
https://doi.org/10.1145/3592979.3593412.

Kuzmin, Andrey, Mart Van Baalen, Yuwei Ren, Markus Nagel, Jorn Pe-
ters, and Tĳmen Blankevoort. 2022. “FP8 Quantization: The Power
of the Exponent.” https://arxiv.org/abs/2208.09225.

Kuznetsova, Alina, Hassan Rom, Neil Alldrin, Jasper Uĳlings, Ivan
Krasin, Jordi Pont-Tuset, Shahab Kamali, et al. 2020. “The Open
Images Dataset V4: Unified Image Classification, Object Detection,
and Visual Relationship Detection at Scale.” International Journal of
Computer Vision 128 (7): 1956–81.

Kwon, Jisu, and Daejin Park. 2021. “Hardware/Software Co-
Design for TinyML Voice-Recognition Application on Re-
source Frugal Edge Devices.” Applied Sciences 11 (22): 11073.
https://doi.org/10.3390/app112211073.

Kwon, Sun Hwa, and Lin Dong. 2022. “Flexible Sensors and Ma-
chine Learning for Heart Monitoring.” Nano Energy 102 (Novem-
ber): 107632. https://doi.org/10.1016/j.nanoen.2022.107632.

Kwon, Young D, Rui Li, Stylianos I Venieris, Jagmohan Chauhan,
Nicholas D Lane, and Cecilia Mascolo. 2023. “TinyTrain: Deep
Neural Network Training at the Extreme Edge.” ArXiv Preprint
abs/2307.09988. https://arxiv.org/abs/2307.09988.

Lai, Liangzhen, Naveen Suda, and Vikas Chandra. 2018a. “Cmsis-Nn:
EfÏcient Neural Network Kernels for Arm Cortex-m Cpus.” ArXiv
Preprint abs/1801.06601. https://arxiv.org/abs/1801.06601.

———. 2018b. “CMSIS-NN: EfÏcient Neural Network Kernels for Arm
Cortex-m CPUs.” https://arxiv.org/abs/1801.06601.

Lakkaraju, Himabindu, and Osbert Bastani. 2020. “”How Do i Fool
You?”: Manipulating User Trust via Misleading Black Box Explana-
tions.” In Proceedings of the AAAI/ACM Conference on AI, Ethics, and
Society, 79–85. ACM. https://doi.org/10.1145/3375627.3375833.

Lam, Remi, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirns-
berger, Meire Fortunato, Ferran Alet, Suman Ravuri, et al. 2023.
“Learning Skillful Medium-Range Global Weather Forecasting.”
Science 382 (6677): 1416–21. https://doi.org/10.1126/science.
adi2336.

Lannelongue, Loı̈c, Jason Grealey, and Michael Inouye. 2021. “Green
Algorithms: Quantifying the Carbon Footprint of Computa-
tion.” Adv. Sci. 8 (12): 2100707. https://doi.org/10.1002/advs.
202100707.

LeCun, Yann, John Denker, and Sara Solla. 1989. “Optimal Brain Dam-
age.” Adv Neural Inf Process Syst 2.

Lee, Minwoong, Namho Lee, Huĳeong Gwon, Jongyeol Kim, Young-
gwan Hwang, and Seongik Cho. 2022. “Design of Radiation-

https://doi.org/10.1145/3592979.3593412
https://arxiv.org/abs/2208.09225
https://doi.org/10.3390/app112211073
https://doi.org/10.1016/j.nanoen.2022.107632
https://arxiv.org/abs/2307.09988
https://arxiv.org/abs/1801.06601
https://arxiv.org/abs/1801.06601
https://doi.org/10.1145/3375627.3375833
https://doi.org/10.1126/science.adi2336
https://doi.org/10.1126/science.adi2336
https://doi.org/10.1002/advs.202100707
https://doi.org/10.1002/advs.202100707

References 1284

Tolerant High-Speed Signal Processing Circuit for Detecting
Prompt Gamma Rays by Nuclear Explosion.” Electronics 11 (18):
2970. https://doi.org/10.3390/electronics11182970.

LeRoy Poff, N, MM Brinson, and JW Day. 2002. “Aquatic Ecosystems
& Global Climate Change.” Pew Center on Global Climate Change.

Li, En, Liekang Zeng, Zhi Zhou, and Xu Chen. 2020. “Edge AI:
On-demand Accelerating Deep Neural Network Inference via
Edge Computing.” IEEE Trans. Wireless Commun. 19 (1): 447–57.
https://doi.org/10.1109/twc.2019.2946140.

Li, Guanpeng, Siva Kumar Sastry Hari, Michael Sullivan, Timothy Tsai,
Karthik Pattabiraman, Joel Emer, and Stephen W. Keckler. 2017.
“Understanding Error Propagation in Deep Learning Neural Net-
work (DNN) Accelerators and Applications.” In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 1–12. ACM. https://doi.org/10.1145/3126908.
3126964.

Li, Jingzhen, Igbe Tobore, Yuhang Liu, Abhishek Kandwal, Lei Wang,
and Zedong Nie. 2021. “Non-Invasive Monitoring of Three Glu-
cose Ranges Based on ECG by Using DBSCAN-CNN.” IEEE Jour-
nal of Biomedical and Health Informatics 25 (9): 3340–50. https://doi.
org/10.1109/jbhi.2021.3072628.

Li, Mu, David G. Andersen, Alexander J. Smola, and Kai Yu.
2014. “Communication EfÏcient Distributed Machine Learning
with the Parameter Server.” In Advances in Neural Information
Processing Systems 27: Annual Conference on Neural Informa-
tion Processing Systems 2014, December 8-13 2014, Montreal,
Quebec, Canada, edited by Zoubin Ghahramani, Max Welling,
Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger,
19–27. https://proceedings.neurips.cc/paper/2014/hash/
1ff1de774005f8da13f42943881c655f-Abstract.html.

Li, Qinbin, Zeyi Wen, Zhaomin Wu, Sixu Hu, Naibo Wang, Yuan Li,
Xu Liu, and Bingsheng He. 2023. “A Survey on Federated Learn-
ing Systems: Vision, Hype and Reality for Data Privacy and Pro-
tection.” IEEE Trans. Knowl. Data Eng. 35 (4): 3347–66. https:
//doi.org/10.1109/tkde.2021.3124599.

Li, Tian, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020.
“Federated Learning: Challenges, Methods, and Future Directions.”
IEEE Signal Process Mag. 37 (3): 50–60. https://doi.org/10.1109/
msp.2020.2975749.

Li, Xiang, Tao Qin, Jian Yang, and Tie-Yan Liu. 2016. “LightRNN:
Memory and Computation-EfÏcient Recurrent Neural Networks.”
In Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems 2016, December

https://doi.org/10.3390/electronics11182970
https://doi.org/10.1109/twc.2019.2946140
https://doi.org/10.1145/3126908.3126964
https://doi.org/10.1145/3126908.3126964
https://doi.org/10.1109/jbhi.2021.3072628
https://doi.org/10.1109/jbhi.2021.3072628
https://proceedings.neurips.cc/paper/2014/hash/1ff1de774005f8da13f42943881c655f-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/1ff1de774005f8da13f42943881c655f-Abstract.html
https://doi.org/10.1109/tkde.2021.3124599
https://doi.org/10.1109/tkde.2021.3124599
https://doi.org/10.1109/msp.2020.2975749
https://doi.org/10.1109/msp.2020.2975749

REFERENCES 1285

5-10, 2016, Barcelona, Spain, edited by Daniel D. Lee, Masashi
Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman
Garnett, 4385–93. https://proceedings.neurips.cc/paper/2016/
hash/c3e4035af2a1cde9f21e1ae1951ac80b-Abstract.html.

Li, Yuhang, Xin Dong, and Wei Wang. 2020. “Additive Powers-of-Two
Quantization: An EfÏcient Non-Uniform Discretization for Neural
Networks.” In 8th International Conference on Learning Representa-
tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net. https://openreview.net/forum?id=BkgXT24tDS.

Li, Zhizhong, and Derek Hoiem. 2018. “Learning Without Forgetting.”
IEEE Trans. Pattern Anal. Mach. Intell. 40 (12): 2935–47. https://doi.
org/10.1109/tpami.2017.2773081.

Li, Zhuohan, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng,
Xin Jin, Yanping Huang, et al. 2023. “{AlpaServe}: Statistical Mul-
tiplexing with Model Parallelism for Deep Learning Serving.” In
17th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 23), 663–79.

Lin, Ji, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and
Song Han. 2020. “MCUNet: Tiny Deep Learning on IoT Devices.”
In Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, Virtual, edited by Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin. https://proceedings.neurips.cc/paper/2020/
hash/86c51678350f656dcc7f490a43946ee5-Abstract.html.

Lin, Ji, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, Chuang Gan,
and Song Han. 2022. “On-Device Training Under 256kb Memory.”
Adv. Neur. In. 35: 22941–54.

Lin, Ji, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, and
Song Han. 2023. “Tiny Machine Learning: Progress and
Futures Feature.” IEEE Circuits Syst. Mag. 23 (3): 8–34.
https://doi.org/10.1109/mcas.2023.3302182.

Lin, Tsung-Yi, Michael Maire, Serge Belongie, James Hays, Pietro Per-
ona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014.
“Microsoft Coco: Common Objects in Context.” InComputer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September
6-12, 2014, Proceedings, Part v 13, 740–55. Springer.

Lindgren, Simon. 2023. Handbook of Critical Studies of Artificial Intelli-
gence. Edward Elgar Publishing.

Lindholm, Andreas, Dave Zachariah, Petre Stoica, and Thomas B.
Schon. 2019. “Data Consistency Approach to Model Validation.”
#IEEE_O_ACC# 7: 59788–96. https://doi.org/10.1109/access.2019.
2915109.

https://proceedings.neurips.cc/paper/2016/hash/c3e4035af2a1cde9f21e1ae1951ac80b-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/c3e4035af2a1cde9f21e1ae1951ac80b-Abstract.html
https://openreview.net/forum?id=BkgXT24tDS
https://doi.org/10.1109/tpami.2017.2773081
https://doi.org/10.1109/tpami.2017.2773081
https://proceedings.neurips.cc/paper/2020/hash/86c51678350f656dcc7f490a43946ee5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/86c51678350f656dcc7f490a43946ee5-Abstract.html
https://doi.org/10.1109/mcas.2023.3302182
https://doi.org/10.1109/access.2019.2915109
https://doi.org/10.1109/access.2019.2915109

References 1286

Lindholm, Erik, John Nickolls, Stuart Oberman, and John Montrym.
2008. “NVIDIA Tesla: A Unified Graphics and Computing Archi-
tecture.” IEEE Micro 28 (2): 39–55. https://doi.org/10.1109/mm.
2008.31.

Lin, Tang Tang, Dang Yang, and Han Gan. 2023. “AWQ: Activation-
aware Weight Quantization for LLM Compression and Accelera-
tion.” ArXiv Preprint. https://arxiv.org/abs/2306.00978.

Liu, Yanan, Xiaoxia Wei, Jinyu Xiao, Zhĳie Liu, Yang Xu, and Yun
Tian. 2020. “Energy Consumption and Emission Mitigation Pre-
diction Based on Data Center TrafÏc and PUE for Global Data Cen-
ters.” Global Energy Interconnection 3 (3): 272–82. https://doi.org/
10.1016/j.gloei.2020.07.008.

Liu, Yingcheng, Guo Zhang, Christopher G. Tarolli, Rumen Hristov,
Stella Jensen-Roberts, Emma M. Waddell, Taylor L. Myers, et al.
2022. “Monitoring Gait at Home with Radio Waves in Parkinson’s
Disease: A Marker of Severity, Progression, and Medication Re-
sponse.” Science Translational Medicine 14 (663): eadc9669. https:
//doi.org/10.1126/scitranslmed.adc9669.

Loh, Gabriel H. 2008. “3D-Stacked Memory Architectures for Multi-
Core Processors.” ACM SIGARCH Computer Architecture News 36
(3): 453–64. https://doi.org/10.1145/1394608.1382159.

Lopez-Paz, David, and Marc’Aurelio Ranzato. 2017. “Gradient
Episodic Memory for Continual Learning.” Adv Neural Inf Process
Syst 30.

Lou, Yin, Rich Caruana, Johannes Gehrke, and Giles Hooker. 2013.
“Accurate Intelligible Models with Pairwise Interactions.” In
Proceedings of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, edited by Inderjit S. Dhillon,
Yehuda Koren, Rayid Ghani, Ted E. Senator, Paul Bradley, Rajesh
Parekh, Jingrui He, Robert L. Grossman, and Ramasamy Uthu-
rusamy, 623–31. ACM. https://doi.org/10.1145/2487575.2487579.

Lowy, Andrew, Rakesh Pavan, Sina Baharlouei, Meisam Razaviyayn,
and Ahmad Beirami. 2021. “Fermi: Fair Empirical Risk Minimiza-
tion via Exponential Rényi Mutual Information.”

Lubana, Ekdeep Singh, and Robert P Dick. 2020. “A Gradient Flow
Framework for Analyzing Network Pruning.” arXiv Preprint
arXiv:2009.11839.

Luebke, David. 2008. “CUDA: Scalable Parallel Programming for
High-Performance Scientific Computing.” In 2008 5th IEEE Interna-
tional Symposium on Biomedical Imaging: From Nano to Macro, 836–38.
IEEE. https://doi.org/10.1109/isbi.2008.4541126.

Lundberg, Scott M., and Su-In Lee. 2017. “A Unified Approach to
Interpreting Model Predictions.” In Advances in Neural Information

https://doi.org/10.1109/mm.2008.31
https://doi.org/10.1109/mm.2008.31
https://arxiv.org/abs/2306.00978
https://doi.org/10.1016/j.gloei.2020.07.008
https://doi.org/10.1016/j.gloei.2020.07.008
https://doi.org/10.1126/scitranslmed.adc9669
https://doi.org/10.1126/scitranslmed.adc9669
https://doi.org/10.1145/1394608.1382159
https://doi.org/10.1145/2487575.2487579
https://doi.org/10.1109/isbi.2008.4541126

REFERENCES 1287

Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
edited by Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and
Roman Garnett, 4765–74. https://proceedings.neurips.cc/paper/
2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html.

Ma, Dongning, Fred Lin, Alban Desmaison, Joel Coburn, Daniel
Moore, Sriram Sankar, and Xun Jiao. 2024. “Dr. DNA: Com-
bating Silent Data Corruptions in Deep Learning Using Dis-
tribution of Neuron Activations.” In Proceedings of the 29th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 3, 239–52. ACM.
https://doi.org/10.1145/3620666.3651349.

Maas, Martin, David G. Andersen, Michael Isard, Mohammad Mahdi
Javanmard, Kathryn S. McKinley, and Colin Raffel. 2024. “Combin-
ing Machine Learning and Lifetime-Based Resource Management
for Memory Allocation and Beyond.” Commun. ACM 67 (4): 87–96.
https://doi.org/10.1145/3611018.

Maass, Wolfgang. 1997. “Networks of Spiking Neurons: The Third
Generation of Neural Network Models.” Neural Networks 10 (9):
1659–71. https://doi.org/10.1016/s0893-6080(97)00011-7.

Madry, Aleksander, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu. 2017. “Towards Deep Learning Models
Resistant to Adversarial Attacks.” arXiv Preprint arXiv:1706.06083.

Mahmoud, Abdulrahman, Neeraj Aggarwal, Alex Nobbe, Jose
Rodrigo Sanchez Vicarte, Sarita V. Adve, Christopher W.
Fletcher, Iuri Frosio, and Siva Kumar Sastry Hari. 2020. “Py-
TorchFI: A Runtime Perturbation Tool for DNNs.” In 2020
50th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops (DSN-w), 25–31. IEEE; IEEE.
https://doi.org/10.1109/dsn-w50199.2020.00014.

Mahmoud, Abdulrahman, Siva Kumar Sastry Hari, Christopher
W. Fletcher, Sarita V. Adve, Charbel Sakr, Naresh Shanbhag,
Pavlo Molchanov, Michael B. Sullivan, Timothy Tsai, and
Stephen W. Keckler. 2021. “Optimizing Selective Protection
for CNN Resilience.” In 2021 IEEE 32nd International Sympo-
sium on Software Reliability Engineering (ISSRE), 127–38. IEEE.
https://doi.org/10.1109/issre52982.2021.00025.

Mahmoud, Abdulrahman, Thierry Tambe, Tarek Aloui, David Brooks,
and Gu-Yeon Wei. 2022. “GoldenEye: A Platform for Evaluating
Emerging Numerical Data Formats in DNN Accelerators.” In 2022
52nd Annual IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN), 206–14. IEEE. https://doi.org/10.1109/

https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://doi.org/10.1145/3620666.3651349
https://doi.org/10.1145/3611018
https://doi.org/10.1016/s0893-6080(97)00011-7
https://doi.org/10.1109/dsn-w50199.2020.00014
https://doi.org/10.1109/issre52982.2021.00025
https://doi.org/10.1109/dsn53405.2022.00031

References 1288

dsn53405.2022.00031.
Marković, Danĳela, Alice Mizrahi, Damien Querlioz, and Julie Grol-

lier. 2020. “Physics for Neuromorphic Computing.” Nature Reviews
Physics 2 (9): 499–510. https://doi.org/10.1038/s42254-020-0208-
2.

Martin, C. Dianne. 1993. “The Myth of the Awesome Thinking Ma-
chine.” Commun. ACM 36 (4): 120–33. https://doi.org/10.1145/
255950.153587.

Marulli, Fiammetta, Stefano Marrone, and Laura Verde. 2022. “Sensi-
tivity of Machine Learning Approaches to Fake and Untrusted Data
in Healthcare Domain.” Journal of Sensor and Actuator Networks 11
(2): 21. https://doi.org/10.3390/jsan11020021.

Maslej, Nestor, Loredana Fattorini, Erik Brynjolfsson, John Etchemendy,
Katrina Ligett, Terah Lyons, James Manyika, et al. 2023. “Artificial
Intelligence Index Report 2023.” ArXiv Preprint abs/2310.03715.
https://arxiv.org/abs/2310.03715.

Mattson, Peter, Vĳay Janapa Reddi, Christine Cheng, Cody Cole-
man, Greg Diamos, David Kanter, Paulius Micikevicius, et
al. 2020b. “MLPerf: An Industry Standard Benchmark Suite
for Machine Learning Performance.” IEEE Micro 40 (2): 8–16.
https://doi.org/10.1109/mm.2020.2974843.

———, et al. 2020a. “MLPerf: An Industry Standard Benchmark Suite
for Machine Learning Performance.” IEEEMicro 40 (2): 8–16. https:
//doi.org/10.1109/mm.2020.2974843.

Mazumder, Mark, Sharad Chitlangia, Colby Banbury, Yiping Kang,
Juan Manuel Ciro, Keith Achorn, Daniel Galvez, et al. 2021. “Multi-
lingual Spoken Words Corpus.” In Thirty-Fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track (Round
2).

McCarthy, John. 1981. “Epistemological Problems of Artificial Intelli-
gence.” In Readings in Artificial Intelligence, 459–65. Elsevier. https:
//doi.org/10.1016/b978-0-934613-03-3.50035-0.

McMahan, Brendan, Eider Moore, Daniel Ramage, Seth Hampson,
and Blaise Agüera y Arcas. 2017. “Communication-EfÏcient
Learning of Deep Networks from Decentralized Data.” In
Proceedings of the 20th International Conference on Artificial In-
telligence and Statistics, AISTATS 2017, 20-22 April 2017, Fort
Lauderdale, FL, USA, edited by Aarti Singh and Xiaojin (Jerry) Zhu,
54:1273–82. Proceedings of Machine Learning Research. PMLR.
http://proceedings.mlr.press/v54/mcmahan17a.html.

Miller, Charlie. 2019. “Lessons Learned from Hacking a Car.” IEEE
Design &Amp; Test 36 (6): 7–9. https://doi.org/10.1109/mdat.2018.
2863106.

https://doi.org/10.1109/dsn53405.2022.00031
https://doi.org/10.1109/dsn53405.2022.00031
https://doi.org/10.1038/s42254-020-0208-2
https://doi.org/10.1038/s42254-020-0208-2
https://doi.org/10.1145/255950.153587
https://doi.org/10.1145/255950.153587
https://doi.org/10.3390/jsan11020021
https://arxiv.org/abs/2310.03715
https://doi.org/10.1109/mm.2020.2974843
https://doi.org/10.1109/mm.2020.2974843
https://doi.org/10.1109/mm.2020.2974843
https://doi.org/10.1016/b978-0-934613-03-3.50035-0
https://doi.org/10.1016/b978-0-934613-03-3.50035-0
http://proceedings.mlr.press/v54/mcmahan17a.html
https://doi.org/10.1109/mdat.2018.2863106
https://doi.org/10.1109/mdat.2018.2863106

REFERENCES 1289

Miller, Charlie, and Chris Valasek. 2015. “Remote Exploitation of an
Unaltered Passenger Vehicle.” Black Hat USA 2015 (S 91): 1–91.

Miller, D. A. B. 2000. “Optical Interconnects to Silicon.” #IEEE_J_-
JSTQE# 6 (6): 1312–17. https://doi.org/10.1109/2944.902184.

Mills, Andrew, and Stephen Le Hunte. 1997. “An Overview of Semi-
conductor Photocatalysis.” J. Photochem. Photobiol., A 108 (1): 1–35.
https://doi.org/10.1016/s1010-6030(97)00118-4.

Mirhoseini, Azalia, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang,
Ebrahim Songhori, Shen Wang, Young-Joon Lee, et al. 2021. “A
Graph Placement Methodology for Fast Chip Design.” Nature 594
(7862): 207–12. https://doi.org/10.1038/s41586-021-03544-w.

Mishra, Asit K., Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan
Stosic, Ganesh Venkatesh, Chong Yu, and Paulius Micikevicius.
2021. “Accelerating Sparse Deep Neural Networks.” CoRR
abs/2104.08378. https://arxiv.org/abs/2104.08378.

Mittal, Sparsh, Gaurav Verma, Brajesh Kaushik, and Farooq A. Khan-
day. 2021. “A Survey of SRAM-Based in-Memory Computing Tech-
niques and Applications.” J. Syst. Architect. 119 (October): 102276.
https://doi.org/10.1016/j.sysarc.2021.102276.

Modha, Dharmendra S., Filipp Akopyan, Alexander Andreopoulos,
Rathinakumar Appuswamy, John V. Arthur, Andrew S. Cassidy,
Pallab Datta, et al. 2023. “Neural Inference at the Frontier of En-
ergy, Space, and Time.” Science 382 (6668): 329–35. https://doi.
org/10.1126/science.adh1174.

Mohanram, K., and N. A. Touba. 2003. “Partial Error Masking to Re-
duce Soft Error Failure Rate in Logic Circuits.” In Proceedings. 16th
IEEE Symposium on Computer Arithmetic, 433–40. IEEE; IEEE Com-
put. Soc. https://doi.org/10.1109/dftvs.2003.1250141.

Monyei, Chukwuka G., and Kirsten E. H. Jenkins. 2018. “Electrons
Have No Identity: Setting Right Misrepresentations in Google and
Apple’s Clean Energy Purchasing.” Energy Research &Amp; Social
Science 46 (December): 48–51. https://doi.org/10.1016/j.erss.2018.
06.015.

Moshawrab, Mohammad, Mehdi Adda, Abdenour Bouzouane, Hus-
sein Ibrahim, and Ali Raad. 2023. “Reviewing Federated Learn-
ing Aggregation Algorithms; Strategies, Contributions, Limitations
and Future Perspectives.” Electronics 12 (10): 2287. https://doi.
org/10.3390/electronics12102287.

Mukherjee, S. S., J. Emer, and S. K. Reinhardt. 2005. “The Soft Error
Problem: An Architectural Perspective.” In 11th International
Symposium on High-Performance Computer Architecture, 243–47.
IEEE; IEEE. https://doi.org/10.1109/hpca.2005.37.

Munshi, Aaftab. 2009. “The OpenCL Specification.” In 2009 IEEE Hot

https://doi.org/10.1109/2944.902184
https://doi.org/10.1016/s1010-6030(97)00118-4
https://doi.org/10.1038/s41586-021-03544-w
https://arxiv.org/abs/2104.08378
https://doi.org/10.1016/j.sysarc.2021.102276
https://doi.org/10.1126/science.adh1174
https://doi.org/10.1126/science.adh1174
https://doi.org/10.1109/dftvs.2003.1250141
https://doi.org/10.1016/j.erss.2018.06.015
https://doi.org/10.1016/j.erss.2018.06.015
https://doi.org/10.3390/electronics12102287
https://doi.org/10.3390/electronics12102287
https://doi.org/10.1109/hpca.2005.37

References 1290

Chips 21 Symposium (HCS), 1–314. IEEE. https://doi.org/10.1109/
hotchips.2009.7478342.

Musk, Elon et al. 2019. “An Integrated Brain-Machine Interface Plat-
form with Thousands of Channels.” J. Med. Internet Res. 21 (10):
e16194. https://doi.org/10.2196/16194.

Myllyaho, Lalli, Mikko Raatikainen, Tomi Männistö, Jukka K. Nurmi-
nen, and Tommi Mikkonen. 2022. “On Misbehaviour and Fault
Tolerance in Machine Learning Systems.” J. Syst. Software 183 (Jan-
uary): 111096. https://doi.org/10.1016/j.jss.2021.111096.

Nakano, Jane. 2021. The Geopolitics of Critical Minerals Supply Chains.
JSTOR.

Narayanan, Arvind, and Vitaly Shmatikov. 2006. “How to Break
Anonymity of the Netflix Prize Dataset.” arXiv Preprint Cs/0610105.

Ng, Davy Tsz Kit, Jac Ka Lok Leung, Kai Wah Samuel Chu, and Mag-
gie Shen Qiao. 2021. “AI Literacy: Definition, Teaching, Evaluation
and Ethical Issues.” Proceedings of the Association for Information Sci-
ence and Technology 58 (1): 504–9.

Ngo, Richard, Lawrence Chan, and Sören Mindermann. 2022. “The
Alignment Problem from a Deep Learning Perspective.” ArXiv
Preprint abs/2209.00626. https://arxiv.org/abs/2209.00626.

Nguyen, Ngoc-Bao, Keshigeyan Chandrasegaran, Milad Abdol-
lahzadeh, and Ngai-Man Cheung. 2023. “Re-Thinking Model In-
version Attacks Against Deep Neural Networks.” In 2023 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR),
16384–93. IEEE. https://doi.org/10.1109/cvpr52729.2023.01572.

Norrie, Thomas, Nishant Patil, Doe Hyun Yoon, George Kurian, Sheng
Li, James Laudon, Cliff Young, Norman Jouppi, and David Patter-
son. 2021. “The Design Process for Google’s Training Chips: Tpuv2
and TPUv3.” IEEE Micro 41 (2): 56–63. https://doi.org/10.1109/
mm.2021.3058217.

Northcutt, Curtis G, Anish Athalye, and Jonas Mueller. 2021. “Perva-
sive Label Errors in Test Sets Destabilize Machine Learning Bench-
marks.” arXiv. https://doi.org/https://doi.org/10.48550/arXiv.2103.14749
arXiv-issued DOI via DataCite.

Obermeyer, Ziad, Brian Powers, Christine Vogeli, and Sendhil Mul-
lainathan. 2019. “Dissecting Racial Bias in an Algorithm Used
to Manage the Health of Populations.” Science 366 (6464): 447–53.
https://doi.org/10.1126/science.aax2342.

Oecd. 2023. “A Blueprint for Building National Compute Capac-
ity for Artificial Intelligence.” 350. Organisation for Economic
Co-Operation; Development (OECD). https://doi.org/10.1787/
876367e3-en.

Olah, Chris, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael

https://doi.org/10.1109/hotchips.2009.7478342
https://doi.org/10.1109/hotchips.2009.7478342
https://doi.org/10.2196/16194
https://doi.org/10.1016/j.jss.2021.111096
https://arxiv.org/abs/2209.00626
https://doi.org/10.1109/cvpr52729.2023.01572
https://doi.org/10.1109/mm.2021.3058217
https://doi.org/10.1109/mm.2021.3058217
https://doi.org/10.48550/arXiv.2103.14749%20arXiv-issued%20DOI%20via%20DataCite
https://doi.org/10.48550/arXiv.2103.14749%20arXiv-issued%20DOI%20via%20DataCite
https://doi.org/10.1126/science.aax2342
https://doi.org/10.1787/876367e3-en
https://doi.org/10.1787/876367e3-en

REFERENCES 1291

Petrov, and Shan Carter. 2020. “Zoom in: An Introduction to Cir-
cuits.” Distill 5 (3): e00024–001. https://doi.org/10.23915/distill.
00024.001.

Oliynyk, Daryna, Rudolf Mayer, and Andreas Rauber. 2023. “I Know
What You Trained Last Summer: A Survey on Stealing Machine
Learning Models and Defences.” ACM Comput. Surv. 55 (14s): 1–
41. https://doi.org/10.1145/3595292.

Ooko, Samson Otieno, Marvin Muyonga Ogore, Jimmy Nsenga, and
Marco Zennaro. 2021. “TinyML in Africa: Opportunities and Chal-
lenges.” In 2021 IEEE Globecom Workshops (GC Wkshps), 1–6. IEEE;
IEEE. https://doi.org/10.1109/gcwkshps52748.2021.9682107.

Oprea, Alina, Anoop Singhal, and Apostol Vassilev. 2022. “Poison-
ing Attacks Against Machine Learning: Can Machine Learning Be
Trustworthy?” Computer 55 (11): 94–99. https://doi.org/10.1109/
mc.2022.3190787.

Pan, Sinno Jialin, and Qiang Yang. 2010. “A Survey on Transfer Learn-
ing.” IEEE Trans. Knowl. Data Eng. 22 (10): 1345–59. https://doi.
org/10.1109/tkde.2009.191.

Panda, Priyadarshini, Indranil Chakraborty, and Kaushik Roy. 2019.
“Discretization Based Solutions for Secure Machine Learning
Against Adversarial Attacks.” #IEEE_O_ACC# 7: 70157–68.
https://doi.org/10.1109/access.2019.2919463.

Papadimitriou, George, and Dimitris Gizopoulos. 2021. “Demystify-
ing the System Vulnerability Stack: Transient Fault Effects Across
the Layers.” In 2021 ACM/IEEE 48th Annual International Sympo-
sium on Computer Architecture (ISCA), 902–15. IEEE; IEEE. https:
//doi.org/10.1109/isca52012.2021.00075.

Papernot, Nicolas, Patrick McDaniel, Xi Wu, Somesh Jha, and Anan-
thram Swami. 2016. “Distillation as a Defense to Adversarial Per-
turbations Against Deep Neural Networks.” In 2016 IEEE Sympo-
sium on Security and Privacy (SP), 582–97. IEEE; IEEE. https://doi.
org/10.1109/sp.2016.41.

Parrish, Alicia, Hannah Rose Kirk, Jessica Quaye, Charvi Rastogi, Max
Bartolo, Oana Inel, Juan Ciro, et al. 2023. “Adversarial Nibbler: A
Data-Centric Challenge for Improving the Safety of Text-to-Image
Models.” ArXiv Preprint abs/2305.14384. https://arxiv.org/abs/
2305.14384.

Patterson, David A, and John L Hennessy. 2016. Computer Organization
and Design ARM Edition: The Hardware Software Interface. Morgan
kaufmann.

Patterson, David, Joseph Gonzalez, Urs Holzle, Quoc Le, Chen Liang,
Lluis-Miquel Munguia, Daniel Rothchild, David R. So, Maud Tex-
ier, and Jeff Dean. 2022. “The Carbon Footprint of Machine Learn-

https://doi.org/10.23915/distill.00024.001
https://doi.org/10.23915/distill.00024.001
https://doi.org/10.1145/3595292
https://doi.org/10.1109/gcwkshps52748.2021.9682107
https://doi.org/10.1109/mc.2022.3190787
https://doi.org/10.1109/mc.2022.3190787
https://doi.org/10.1109/tkde.2009.191
https://doi.org/10.1109/tkde.2009.191
https://doi.org/10.1109/access.2019.2919463
https://doi.org/10.1109/isca52012.2021.00075
https://doi.org/10.1109/isca52012.2021.00075
https://doi.org/10.1109/sp.2016.41
https://doi.org/10.1109/sp.2016.41
https://arxiv.org/abs/2305.14384
https://arxiv.org/abs/2305.14384

References 1292

ing Training Will Plateau, Then Shrink.” Computer 55 (7): 18–28.
https://doi.org/10.1109/mc.2022.3148714.

Peters, Dorian, Rafael A. Calvo, and Richard M. Ryan. 2018. “De-
signing for Motivation, Engagement and Wellbeing in Digital Ex-
perience.” Front. Psychol. 9 (May): 797. https://doi.org/10.3389/
fpsyg.2018.00797.

Phillips, P Jonathon, Carina A Hahn, Peter C Fontana, David A Broni-
atowski, and Mark A Przybocki. 2020. “Four Principles of Explain-
able Artificial Intelligence.” Gaithersburg, Maryland 18.

Plank, James S. 1997. “A Tutorial on Reed–Solomon Coding for Fault-
Tolerance in RAID-Like Systems.” Software: Practice and Experience
27 (9): 995–1012.

Pont, Michael J, and Royan HL Ong. 2002. “Using Watchdog Timers
to Improve the Reliability of Single-Processor Embedded Systems:
Seven New Patterns and a Case Study.” In Proceedings of the First
Nordic Conference on Pattern Languages of Programs, 159–200. Cite-
seer.

Prakash, Shvetank, Tim Callahan, Joseph Bushagour, Colby Banbury,
Alan V. Green, Pete Warden, Tim Ansell, and Vĳay Janapa Reddi.
2023. “CFU Playground: Full-stack Open-Source Framework for
Tiny Machine Learning (TinyML) Acceleration on FPGAs.” In 2023
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). Vol. abs/2201.01863. IEEE. https://doi.org/10.
1109/ispass57527.2023.00024.

Prakash, Shvetank, Matthew Stewart, Colby Banbury, Mark
Mazumder, Pete Warden, Brian Plancher, and Vĳay Janapa
Reddi. 2023. “Is TinyML Sustainable? Assessing the Environ-
mental Impacts of Machine Learning on Microcontrollers.” ArXiv
Preprint. https://arxiv.org/abs/2301.11899.

Psoma, Sotiria D., and Chryso Kanthou. 2023. “Wearable Insulin
Biosensors for Diabetes Management: Advances and Challenges.”
Biosensors 13 (7): 719. https://doi.org/10.3390/bios13070719.

Pushkarna, Mahima, Andrew Zaldivar, and Oddur Kjartansson. 2022.
“Data Cards: Purposeful and Transparent Dataset Documentation
for Responsible AI.” In 2022 ACM Conference on Fairness, Account-
ability, and Transparency. ACM. https://doi.org/10.1145/3531146.
3533231.

Putnam, Andrew, Adrian M. Caulfield, Eric S. Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, et
al. 2014. “A Reconfigurable Fabric for Accelerating Large-Scale
Datacenter Services.” ACM SIGARCH Computer Architecture News
42 (3): 13–24. https://doi.org/10.1145/2678373.2665678.

Qi, Chen, Shibo Shen, Rongpeng Li, Zhifeng Zhao, Qing Liu, Jing

https://doi.org/10.1109/mc.2022.3148714
https://doi.org/10.3389/fpsyg.2018.00797
https://doi.org/10.3389/fpsyg.2018.00797
https://doi.org/10.1109/ispass57527.2023.00024
https://doi.org/10.1109/ispass57527.2023.00024
https://arxiv.org/abs/2301.11899
https://doi.org/10.3390/bios13070719
https://doi.org/10.1145/3531146.3533231
https://doi.org/10.1145/3531146.3533231
https://doi.org/10.1145/2678373.2665678

REFERENCES 1293

Liang, and Honggang Zhang. 2021. “An EfÏcient Pruning Scheme
of Deep Neural Networks for Internet of Things Applications.”
EURASIP Journal on Advances in Signal Processing 2021 (1): 31.
https://doi.org/10.1186/s13634-021-00744-4.

Qian, Yu, Xuegong Zhou, Hao Zhou, and Lingli Wang. 2024. “An
EfÏcient Reinforcement Learning Based Framework for Exploring
Logic Synthesis.” ACM Trans. Des. Autom. Electron. Syst. 29 (2):
1–33. https://doi.org/10.1145/3632174.

R. V., Rashmi, and Karthikeyan A. 2018. “Secure Boot of Embedded
Applications - a Review.” In 2018 Second International Conference on
Electronics, Communication and Aerospace Technology (ICECA), 291–
98. IEEE. https://doi.org/10.1109/iceca.2018.8474730.

Rachwan, John, Daniel Zügner, Bertrand Charpentier, Simon Geisler,
Morgane Ayle, and Stephan Günnemann. 2022. “Winning the Lot-
tery Ahead of Time: EfÏcient Early Network Pruning.” In Interna-
tional Conference on Machine Learning, 18293–309. PMLR.

Raina, Rajat, Anand Madhavan, and Andrew Y. Ng. 2009.
“Large-Scale Deep Unsupervised Learning Using Graphics
Processors.” In Proceedings of the 26th Annual International
Conference on Machine Learning, edited by Andrea Pohoreckyj
Danyluk, Léon Bottou, and Michael L. Littman, 382:873–
80. ACM International Conference Proceeding Series. ACM.
https://doi.org/10.1145/1553374.1553486.

Ramaswamy, Vikram V., Sunnie S. Y. Kim, Ruth Fong, and Olga Rus-
sakovsky. 2023a. “Overlooked Factors in Concept-Based Expla-
nations: Dataset Choice, Concept Learnability, and Human Capa-
bility.” In 2023 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 10932–41. IEEE. https://doi.org/10.1109/
cvpr52729.2023.01052.

Ramaswamy, Vikram V, Sunnie SY Kim, Ruth Fong, and Olga Rus-
sakovsky. 2023b. “UFO: A Unified Method for Controlling Under-
standability and Faithfulness Objectives in Concept-Based Expla-
nations for CNNs.” ArXiv Preprint abs/2303.15632. https://arxiv.
org/abs/2303.15632.

Ramcharan, Amanda, Kelsee Baranowski, Peter McCloskey, Babuali
Ahmed, James Legg, and David P. Hughes. 2017. “Deep Learning
for Image-Based Cassava Disease Detection.” Front. Plant Sci. 8
(October): 1852. https://doi.org/10.3389/fpls.2017.01852.

Ramesh, Aditya, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea
Voss, Alec Radford, Mark Chen, and Ilya Sutskever. 2021.
“Zero-Shot Text-to-Image Generation.” In Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, edited by Marina Meila and Tong Zhang,

https://doi.org/10.1186/s13634-021-00744-4
https://doi.org/10.1145/3632174
https://doi.org/10.1109/iceca.2018.8474730
https://doi.org/10.1145/1553374.1553486
https://doi.org/10.1109/cvpr52729.2023.01052
https://doi.org/10.1109/cvpr52729.2023.01052
https://arxiv.org/abs/2303.15632
https://arxiv.org/abs/2303.15632
https://doi.org/10.3389/fpls.2017.01852

References 1294

139:8821–31. Proceedings of Machine Learning Research. PMLR.
http://proceedings.mlr.press/v139/ramesh21a.html.

Ranganathan, Parthasarathy. 2011. “From Microprocessors to Nanos-
tores: Rethinking Data-Centric Systems.” Computer 44 (1): 39–48.
https://doi.org/10.1109/mc.2011.18.

Rao, Ravi. 2021. “TinyML Unlocks New Possibilities for Sus-
tainable Development Technologies.” Www.wevolver.com.
https://www.wevolver.com/article/tinyml-unlocks-new-
possibilities-for-sustainable-development-technologies.

Rashid, Layali, Karthik Pattabiraman, and Sathish Gopalakrish-
nan. 2012. “Intermittent Hardware Errors Recovery: Mod-
eling and Evaluation.” In 2012 Ninth International Conference
on Quantitative Evaluation of Systems, 220–29. IEEE; IEEE.
https://doi.org/10.1109/qest.2012.37.

———. 2015. “Characterizing the Impact of Intermittent Hardware
Faults on Programs.” IEEE Trans. Reliab. 64 (1): 297–310. https:
//doi.org/10.1109/tr.2014.2363152.

Ratner, Alex, Braden Hancock, Jared Dunnmon, Roger Goldman,
and Christopher Ré. 2018. “Snorkel MeTaL: Weak Supervision
for Multi-Task Learning.” In Proceedings of the Second Workshop
on Data Management for End-to-End Machine Learning. ACM.
https://doi.org/10.1145/3209889.3209898.

Reagen, Brandon, Udit Gupta, Lillian Pentecost, Paul What-
mough, Sae Kyu Lee, Niamh Mulholland, David Brooks,
and Gu-Yeon Wei. 2018. “Ares: A Framework for Quantify-
ing the Resilience of Deep Neural Networks.” In 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC), 1–6. IEEE.
https://doi.org/10.1109/dac.2018.8465834.

Reagen, Brandon, Jose Miguel Hernandez-Lobato, Robert Adolf,
Michael Gelbart, Paul Whatmough, Gu-Yeon Wei, and David
Brooks. 2017. “A Case for EfÏcient Accelerator Design Space
Exploration via Bayesian Optimization.” In 2017 IEEE/ACM Inter-
national Symposium on Low Power Electronics and Design (ISLPED),
1–6. IEEE; IEEE. https://doi.org/10.1109/islped.2017.8009208.

Reddi, Sashank J., Satyen Kale, and Sanjiv Kumar. 2019. “On the Con-
vergence of Adam and Beyond.” arXiv Preprint arXiv:1904.09237,
April. http://arxiv.org/abs/1904.09237v1.

Reddi, Vĳay Janapa, Christine Cheng, David Kanter, Peter Mattson,
Guenther Schmuelling, Carole-Jean Wu, Brian Anderson, et al.
2020. “MLPerf Inference Benchmark.” In 2020 ACM/IEEE 47th An-
nual International Symposium on Computer Architecture (ISCA), 446–
59. IEEE; IEEE. https://doi.org/10.1109/isca45697.2020.00045.

Reddi, Vĳay Janapa, and Meeta Sharma Gupta. 2013. Resilient Architec-

http://proceedings.mlr.press/v139/ramesh21a.html
https://doi.org/10.1109/mc.2011.18
https://www.wevolver.com/article/tinyml-unlocks-new-possibilities-for-sustainable-development-technologies
https://www.wevolver.com/article/tinyml-unlocks-new-possibilities-for-sustainable-development-technologies
https://doi.org/10.1109/qest.2012.37
https://doi.org/10.1109/tr.2014.2363152
https://doi.org/10.1109/tr.2014.2363152
https://doi.org/10.1145/3209889.3209898
https://doi.org/10.1109/dac.2018.8465834
https://doi.org/10.1109/islped.2017.8009208
http://arxiv.org/abs/1904.09237v1
https://doi.org/10.1109/isca45697.2020.00045

REFERENCES 1295

ture Design for Voltage Variation. Springer International Publishing.
https://doi.org/10.1007/978-3-031-01739-1.

Reis, G. A., J. Chang, N. Vachharajani, R. Rangan, and D. I. August.
2005. “SWIFT: Software Implemented Fault Tolerance.” In Interna-
tional Symposium on Code Generation and Optimization, 243–54. IEEE;
IEEE. https://doi.org/10.1109/cgo.2005.34.

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. 2016. “”
Why Should i Trust You?” Explaining the Predictions of Any Clas-
sifier.” In Proceedings of the 22nd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, 1135–44.

Robbins, Herbert, and Sutton Monro. 1951. “A Stochastic Approxima-
tion Method.” The Annals of Mathematical Statistics 22 (3): 400–407.
https://doi.org/10.1214/aoms/1177729586.

Rombach, Robin, Andreas Blattmann, Dominik Lorenz, Patrick Esser,
and Bjorn Ommer. 2022. “High-Resolution Image Synthesis with
Latent Diffusion Models.” In 2022 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). IEEE. https://doi.org/
10.1109/cvpr52688.2022.01042.

Romero, Francisco, Qian Li 0027, Neeraja J. Yadwadkar, and Christos
Kozyrakis. 2021. “INFaaS: Automated Model-Less Inference
Serving.” In 2021 USENIX Annual Technical Conference (USENIX
ATC 21), 397–411. https://www.usenix.org/conference/atc21/
presentation/romero.

Rosa, Gustavo H. de, and João P. Papa. 2021. “A Survey on Text Gen-
eration Using Generative Adversarial Networks.” Pattern Recogn.
119 (November): 108098. https://doi.org/10.1016/j.patcog.2021.
108098.

Rosenblatt, Frank. 1957. The Perceptron, a Perceiving and Recognizing
Automaton Project Para. Cornell Aeronautical Laboratory.

Roskies, Adina. 2002. “Neuroethics for the New Millenium.” Neuron
35 (1): 21–23. https://doi.org/10.1016/s0896-6273(02)00763-8.

Ruder, Sebastian. 2016. “An Overview of Gradient Descent Optimiza-
tion Algorithms.” ArXiv Preprint abs/1609.04747 (September).
http://arxiv.org/abs/1609.04747v2.

Rudin, Cynthia. 2019. “Stop Explaining Black Box Machine Learning
Models for High Stakes Decisions and Use Interpretable Models
Instead.” NatureMachine Intelligence 1 (5): 206–15. https://doi.org/
10.1038/s42256-019-0048-x.

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams.
1986. “Learning Representations by Back-Propagating Errors.”
Nature 323 (6088): 533–36. https://doi.org/10.1038/323533a0.

Russakovsky, Olga, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, et al. 2015. “ImageNet Large

https://doi.org/10.1007/978-3-031-01739-1
https://doi.org/10.1109/cgo.2005.34
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1109/cvpr52688.2022.01042
https://doi.org/10.1109/cvpr52688.2022.01042
https://www.usenix.org/conference/atc21/presentation/romero
https://www.usenix.org/conference/atc21/presentation/romero
https://doi.org/10.1016/j.patcog.2021.108098
https://doi.org/10.1016/j.patcog.2021.108098
https://doi.org/10.1016/s0896-6273(02)00763-8
http://arxiv.org/abs/1609.04747v2
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/323533a0

References 1296

Scale Visual Recognition Challenge.” Int. J. Comput. Vision 115 (3):
211–52. https://doi.org/10.1007/s11263-015-0816-y.

Russell, Stuart. 2021. “Human-Compatible Artificial Intelligence.”
Human-Like Machine Intelligence, 3–23.

Ryan, Richard M., and Edward L. Deci. 2000. “Self-Determination
Theory and the Facilitation of Intrinsic Motivation, Social Develop-
ment, and Well-Being.” Am. Psychol. 55 (1): 68–78. https://doi.
org/10.1037/0003-066x.55.1.68.

Samajdar, Ananda, Yuhao Zhu, Paul Whatmough, Matthew
Mattina, and Tushar Krishna. 2018. “Scale-Sim: Systolic
Cnn Accelerator Simulator.” ArXiv Preprint abs/1811.02883.
https://arxiv.org/abs/1811.02883.

Sambasivan, Nithya, Shivani Kapania, Hannah Highfill, Diana
Akrong, Praveen Paritosh, and Lora M Aroyo. 2021a. ““Everyone
Wants to Do the Model Work, Not the Data Work”: Data Cascades
in High-Stakes AI.” In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems, 1–15.

———. 2021b. “‘Everyone Wants to Do the Model Work, Not the Data
Work’: Data Cascades in High-Stakes AI.” In Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems. ACM. https:
//doi.org/10.1145/3411764.3445518.

Sangchoolie, Behrooz, Karthik Pattabiraman, and Johan Karls-
son. 2017. “One Bit Is (Not) Enough: An Empirical Study
of the Impact of Single and Multiple Bit-Flip Errors.” In
2017 47th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN), 97–108. IEEE; IEEE.
https://doi.org/10.1109/dsn.2017.30.

Schäfer, Mike S. 2023. “The Notorious GPT: Science Communication in
the Age of Artificial Intelligence.” Journal of Science Communication
22 (02): Y02. https://doi.org/10.22323/2.22020402.

Schizas, Nikolaos, Aristeidis Karras, Christos Karras, and Spyros
Sioutas. 2022. “TinyML for Ultra-Low Power AI and Large Scale
IoT Deployments: A Systematic Review.” Future Internet 14 (12):
363. https://doi.org/10.3390/fi14120363.

Schuman, Catherine D., Shruti R. Kulkarni, Maryam Parsa, J.
Parker Mitchell, Prasanna Date, and Bill Kay. 2022. “Op-
portunities for Neuromorphic Computing Algorithms and
Applications.” Nature Computational Science 2 (1): 10–19.
https://doi.org/10.1038/s43588-021-00184-y.

Schwartz, Daniel, Jonathan Michael Gomes Selman, Peter Wrege,
and Andreas Paepcke. 2021. “Deployment of Embedded
Edge-AI for Wildlife Monitoring in Remote Regions.” In
2021 20th IEEE International Conference on Machine Learn-

https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1037/0003-066x.55.1.68
https://doi.org/10.1037/0003-066x.55.1.68
https://arxiv.org/abs/1811.02883
https://doi.org/10.1145/3411764.3445518
https://doi.org/10.1145/3411764.3445518
https://doi.org/10.1109/dsn.2017.30
https://doi.org/10.22323/2.22020402
https://doi.org/10.3390/fi14120363
https://doi.org/10.1038/s43588-021-00184-y

REFERENCES 1297

ing and Applications (ICMLA), 1035–42. IEEE; IEEE. https:
//doi.org/10.1109/icmla52953.2021.00170.

Schwartz, Roy, Jesse Dodge, Noah A. Smith, and Oren Etzioni. 2020.
“Green AI.” Commun. ACM 63 (12): 54–63. https://doi.org/10.
1145/3381831.

Segal, Mark, and Kurt Akeley. 1999. “The OpenGL Graphics System:
A Specification (Version 1.1).”

Segura Anaya, L. H., Abeer Alsadoon, N. Costadopoulos, and P. W. C.
Prasad. 2017. “Ethical Implications of User Perceptions of Wear-
able Devices.” Sci. Eng. Ethics 24 (1): 1–28. https://doi.org/10.
1007/s11948-017-9872-8.

Seide, Frank, and Amit Agarwal. 2016. “Cntk: Microsoft’s Open-
Source Deep-Learning Toolkit.” In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2135–35. ACM. https://doi.org/10.1145/2939672.
2945397.

Selvaraju, Ramprasaath R., Michael Cogswell, Abhishek Das, Ramakr-
ishna Vedantam, Devi Parikh, and Dhruv Batra. 2017. “Grad-CAM:
Visual Explanations from Deep Networks via Gradient-Based Lo-
calization.” In 2017 IEEE International Conference on Computer Vision
(ICCV), 618–26. IEEE. https://doi.org/10.1109/iccv.2017.74.

Seong, Nak Hee, Dong Hyuk Woo, Vĳayalakshmi Srinivasan, Jude A.
Rivers, and Hsien-Hsin S. Lee. 2010. “SAFER: Stuck-at-fault Er-
ror Recovery for Memories.” In 2010 43rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, 115–24. IEEE; IEEE. https:
//doi.org/10.1109/micro.2010.46.

Seyedzadeh, Saleh, Farzad Pour Rahimian, Ivan Glesk, and Marc
Roper. 2018. “Machine Learning for Estimation of Building Energy
Consumption and Performance: A Review.” Visualization in Engi-
neering 6 (1): 1–20. https://doi.org/10.1186/s40327-018-0064-7.

Shalev-Shwartz, Shai, Shaked Shammah, and Amnon Shashua. 2017.
“On a Formal Model of Safe and Scalable Self-Driving Cars.” ArXiv
Preprint abs/1708.06374. https://arxiv.org/abs/1708.06374.

Shan, Shawn, Wenxin Ding, Josephine Passananti, Haitao Zheng, and
Ben Y Zhao. 2023. “Prompt-Specific Poisoning Attacks on Text-to-
Image Generative Models.” ArXiv Preprint abs/2310.13828. https:
//arxiv.org/abs/2310.13828.

Shastri, Bhavin J., Alexander N. Tait, T. Ferreira de Lima, Wolfram
H. P. Pernice, Harish Bhaskaran, C. D. Wright, and Paul R. Pruc-
nal. 2021. “Photonics for Artificial Intelligence and Neuromorphic
Computing.” Nat. Photonics 15 (2): 102–14. https://doi.org/10.
1038/s41566-020-00754-y.

Sheaffer, Jeremy W, David P Luebke, and Kevin Skadron. 2007. “A

https://doi.org/10.1109/icmla52953.2021.00170
https://doi.org/10.1109/icmla52953.2021.00170
https://doi.org/10.1145/3381831
https://doi.org/10.1145/3381831
https://doi.org/10.1007/s11948-017-9872-8
https://doi.org/10.1007/s11948-017-9872-8
https://doi.org/10.1145/2939672.2945397
https://doi.org/10.1145/2939672.2945397
https://doi.org/10.1109/iccv.2017.74
https://doi.org/10.1109/micro.2010.46
https://doi.org/10.1109/micro.2010.46
https://doi.org/10.1186/s40327-018-0064-7
https://arxiv.org/abs/1708.06374
https://arxiv.org/abs/2310.13828
https://arxiv.org/abs/2310.13828
https://doi.org/10.1038/s41566-020-00754-y
https://doi.org/10.1038/s41566-020-00754-y

References 1298

Hardware Redundancy and Recovery Mechanism for Reliable Sci-
entific Computation on Graphics Processors.” In Graphics Hardware,
2007:55–64. Citeseer.

Shehabi, Arman, Sarah Smith, Dale Sartor, Richard Brown, Magnus
Herrlin, Jonathan Koomey, Eric Masanet, Nathaniel Horner, Inês
Azevedo, and William Lintner. 2016. “United States Data Center
Energy Usage Report.”

Shen, Sheng, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gho-
lami, Michael W. Mahoney, and Kurt Keutzer. 2020. “Q-BERT:
Hessian Based Ultra Low Precision Quantization of BERT.” Proceed-
ings of the AAAI Conference on Artificial Intelligence 34 (05): 8815–21.
https://doi.org/10.1609/aaai.v34i05.6409.

Sheng, Victor S., and Jing Zhang. 2019. “Machine Learning with
Crowdsourcing: A Brief Summary of the Past Research and
Future Directions.” Proceedings of the AAAI Conference on Artificial
Intelligence 33 (01): 9837–43. https://doi.org/10.1609/aaai.v33i01.
33019837.

Shi, Hongrui, and Valentin Radu. 2022. “Data Selection for EfÏcient
Model Update in Federated Learning.” In Proceedings of the 2nd
European Workshop on Machine Learning and Systems, 72–78. ACM.
https://doi.org/10.1145/3517207.3526980.

Shneiderman, Ben. 2020. “Bridging the Gap Between Ethics and
Practice: Guidelines for Reliable, Safe, and Trustworthy Human-
Centered AI Systems.” ACM Trans. Interact. Intell. Syst. 10 (4):
1–31. https://doi.org/10.1145/3419764.

———. 2022. Human-Centered AI. Oxford University Press.
Shokri, Reza, Marco Stronati, Congzheng Song, and Vitaly Shmatikov.

2017. “Membership Inference Attacks Against Machine Learning
Models.” In 2017 IEEE Symposium on Security and Privacy (SP), 3–
18. IEEE; IEEE. https://doi.org/10.1109/sp.2017.41.

Siddik, Md Abu Bakar, Arman Shehabi, and Landon Marston. 2021.
“The Environmental Footprint of Data Centers in the United States.”
Environ. Res. Lett. 16 (6): 064017. https://doi.org/10.1088/1748-
9326/abfba1.

Silvestro, Daniele, Stefano Goria, Thomas Sterner, and Alexandre An-
tonelli. 2022. “Improving Biodiversity Protection Through Artifi-
cial Intelligence.” Nature Sustainability 5 (5): 415–24. https://doi.
org/10.1038/s41893-022-00851-6.

Singh, Narendra, and Oladele A. Ogunseitan. 2022. “Disentangling
the Worldwide Web of e-Waste and Climate Change Co-Benefits.”
Circular Economy 1 (2): 100011. https://doi.org/10.1016/j.cec.2022.
100011.

Skorobogatov, Sergei. 2009. “Local Heating Attacks on Flash Memory

https://doi.org/10.1609/aaai.v34i05.6409
https://doi.org/10.1609/aaai.v33i01.33019837
https://doi.org/10.1609/aaai.v33i01.33019837
https://doi.org/10.1145/3517207.3526980
https://doi.org/10.1145/3419764
https://doi.org/10.1109/sp.2017.41
https://doi.org/10.1088/1748-9326/abfba1
https://doi.org/10.1088/1748-9326/abfba1
https://doi.org/10.1038/s41893-022-00851-6
https://doi.org/10.1038/s41893-022-00851-6
https://doi.org/10.1016/j.cec.2022.100011
https://doi.org/10.1016/j.cec.2022.100011

REFERENCES 1299

Devices.” In 2009 IEEE International Workshop on Hardware-Oriented
Security and Trust, 1–6. IEEE; IEEE. https://doi.org/10.1109/hst.
2009.5225028.

Skorobogatov, Sergei P, and Ross J Anderson. 2003. “Optical Fault In-
duction Attacks.” In Cryptographic Hardware and Embedded Systems-
CHES 2002: 4th International Workshop Redwood Shores, CA, USA, Au-
gust 13–15, 2002 Revised Papers 4, 2–12. Springer.

Smilkov, Daniel, Nikhil Thorat, Been Kim, Fernanda Viégas,
and Martin Wattenberg. 2017. “Smoothgrad: Removing
Noise by Adding Noise.” ArXiv Preprint abs/1706.03825.
https://arxiv.org/abs/1706.03825.

Snoek, Jasper, Hugo Larochelle, and Ryan P. Adams. 2012. “Practical
Bayesian Optimization of Machine Learning Algorithms.” In
Advances in Neural Information Processing Systems 25: 26th Annual
Conference on Neural Information Processing Systems 2012. Pro-
ceedings of a Meeting Held December 3-6, 2012, Lake Tahoe, Nevada,
United States, edited by Peter L. Bartlett, Fernando C. N. Pereira,
Christopher J. C. Burges, Léon Bottou, and Kilian Q. Weinberger,
2960–68. https://proceedings.neurips.cc/paper/2012/hash/
05311655a15b75fab86956663e1819cd-Abstract.html.

Srivastava, Nitish, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. 2014. “Dropout: A Simple Way to Pre-
vent Neural Networks from Overfitting.” J. Mach. Learn. Res. 15 (1):
1929–58. https://doi.org/10.5555/2627435.2670313.

Strubell, Emma, Ananya Ganesh, and Andrew McCallum. 2019. “En-
ergy and Policy Considerations for Deep Learning in NLP.” In Pro-
ceedings of the 57th AnnualMeeting of the Association for Computational
Linguistics, 3645–50. Florence, Italy: Association for Computational
Linguistics. https://doi.org/10.18653/v1/p19-1355.

Suda, Naveen, Vikas Chandra, Ganesh Dasika, Abinash Mo-
hanty, Yufei Ma, Sarma Vrudhula, Jae-sun Seo, and Yu Cao.
2016. “Throughput-Optimized OpenCL-Based FPGA Ac-
celerator for Large-Scale Convolutional Neural Networks.”
In Proceedings of the 2016 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays, 16–25. ACM. https:
//doi.org/10.1145/2847263.2847276.

Sudhakar, Soumya, Vivienne Sze, and Sertac Karaman. 2023.
“Data Centers on Wheels: Emissions from Computing On-
board Autonomous Vehicles.” IEEE Micro 43 (1): 29–39.
https://doi.org/10.1109/mm.2022.3219803.

Sze, Vivienne, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. 2017.
“EfÏcient Processing of Deep Neural Networks: A Tutorial and Sur-
vey.” Proc. IEEE 105 (12): 2295–2329. https://doi.org/10.1109/

https://doi.org/10.1109/hst.2009.5225028
https://doi.org/10.1109/hst.2009.5225028
https://arxiv.org/abs/1706.03825
https://proceedings.neurips.cc/paper/2012/hash/05311655a15b75fab86956663e1819cd-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/05311655a15b75fab86956663e1819cd-Abstract.html
https://doi.org/10.5555/2627435.2670313
https://doi.org/10.18653/v1/p19-1355
https://doi.org/10.1145/2847263.2847276
https://doi.org/10.1145/2847263.2847276
https://doi.org/10.1109/mm.2022.3219803
https://doi.org/10.1109/jproc.2017.2761740

References 1300

jproc.2017.2761740.
Szegedy, Christian, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Du-

mitru Erhan, Ian J. Goodfellow, and Rob Fergus. 2014. “Intrigu-
ing Properties of Neural Networks.” In 2nd International Conference
on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-
16, 2014, Conference Track Proceedings, edited by Yoshua Bengio and
Yann LeCun. http://arxiv.org/abs/1312.6199.

Tambe, Thierry, En-Yu Yang, Zishen Wan, Yuntian Deng, Vĳay Janapa
Reddi, Alexander Rush, David Brooks, and Gu-Yeon Wei. 2020.
“Algorithm-Hardware Co-Design of Adaptive Floating-Point
Encodings for Resilient Deep Learning Inference.” In 2020 57th
ACM/IEEE Design Automation Conference (DAC), 1–6. IEEE; IEEE.
https://doi.org/10.1109/dac18072.2020.9218516.

Tan, Mingxing, Bo Chen, Ruoming Pang, Vĳay Vasudevan, Mark San-
dler, Andrew Howard, and Quoc V. Le. 2019. “MnasNet: Platform-
aware Neural Architecture Search for Mobile.” In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2820–
28. IEEE. https://doi.org/10.1109/cvpr.2019.00293.

Tan, Mingxing, and Quoc V. Le. 2023. “Demystifying Deep Learning.”
Wiley. https://doi.org/10.1002/9781394205639.ch6.

Tang, Xin, Yichun He, and Jia Liu. 2022. “Soft Bioelectronics for Car-
diac Interfaces.” Biophysics Reviews 3 (1). https://doi.org/10.1063/
5.0069516.

Tang, Xin, Hao Shen, Siyuan Zhao, Na Li, and Jia Liu. 2023. “Flexible
Brain–computer Interfaces.” Nature Electronics 6 (2): 109–18. https:
//doi.org/10.1038/s41928-022-00913-9.

Tarun, Ayush K, Vikram S Chundawat, Murari Mandal, and Mohan
Kankanhalli. 2022. “Deep Regression Unlearning.” ArXiv Preprint
abs/2210.08196. https://arxiv.org/abs/2210.08196.

Team, The Theano Development, Rami Al-Rfou, Guillaume Alain, Am-
jad Almahairi, Christof Angermueller, Dzmitry Bahdanau, Nicolas
Ballas, et al. 2016. “Theano: A Python Framework for Fast Compu-
tation of Mathematical Expressions.” https://arxiv.org/abs/1605.
02688.

“The Ultimate Guide to Deep Learning Model Quantization and
Quantization-Aware Training.” n.d. https://deci.ai/quantization-
and-quantization-aware-training/.

Thompson, Neil C., Kristjan Greenewald, Keeheon Lee, and Gabriel
F. Manso. 2021. “Deep Learning’s Diminishing Returns: The Cost
of Improvement Is Becoming Unsustainable.” IEEE Spectr. 58 (10):
50–55. https://doi.org/10.1109/mspec.2021.9563954.

Till, Aaron, Andrew L. Rypel, Andrew Bray, and Samuel B. Fey. 2019.
“Fish Die-Offs Are Concurrent with Thermal Extremes in North

https://doi.org/10.1109/jproc.2017.2761740
https://doi.org/10.1109/jproc.2017.2761740
http://arxiv.org/abs/1312.6199
https://doi.org/10.1109/dac18072.2020.9218516
https://doi.org/10.1109/cvpr.2019.00293
https://doi.org/10.1002/9781394205639.ch6
https://doi.org/10.1063/5.0069516
https://doi.org/10.1063/5.0069516
https://doi.org/10.1038/s41928-022-00913-9
https://doi.org/10.1038/s41928-022-00913-9
https://arxiv.org/abs/2210.08196
https://arxiv.org/abs/1605.02688
https://arxiv.org/abs/1605.02688
https://deci.ai/quantization-and-quantization-aware-training/
https://deci.ai/quantization-and-quantization-aware-training/
https://doi.org/10.1109/mspec.2021.9563954

REFERENCES 1301

Temperate Lakes.” Nat. Clim. Change 9 (8): 637–41. https://doi.
org/10.1038/s41558-019-0520-y.

Tirtalistyani, Rose, Murtiningrum Murtiningrum, and Rameshwar S.
Kanwar. 2022. “Indonesia Rice Irrigation System: Time for In-
novation.” Sustainability 14 (19): 12477. https://doi.org/10.3390/
su141912477.

Tokui, Seiya, Ryosuke Okuta, Takuya Akiba, Yusuke Niitani, Toru
Ogawa, Shunta Saito, Shuji Suzuki, Kota Uenishi, Brian Vogel,
and Hiroyuki Yamazaki Vincent. 2019. “Chainer: A Deep
Learning Framework for Accelerating the Research Cycle.”
In Proceedings of the 25th ACM SIGKDD International Confer-
ence on Knowledge Discovery &Amp; Data Mining, 5:1–6. ACM.
https://doi.org/10.1145/3292500.3330756.

Tramèr, Florian, Pascal Dupré, Gili Rusak, Giancarlo Pellegrino, and
Dan Boneh. 2019. “AdVersarial: Perceptual Ad Blocking Meets
Adversarial Machine Learning.” In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, 2005–
21. ACM. https://doi.org/10.1145/3319535.3354222.

Tran, Cuong, Ferdinando Fioretto, Jung-Eun Kim, and Rakshit Naidu.
2022. “Pruning Has a Disparate Impact on Model Accuracy.” Adv
Neural Inf Process Syst 35: 17652–64.

Tsai, Min-Jen, Ping-Yi Lin, and Ming-En Lee. 2023. “Adversarial At-
tacks on Medical Image Classification.” Cancers 15 (17): 4228. https:
//doi.org/10.3390/cancers15174228.

Tsai, Timothy, Siva Kumar Sastry Hari, Michael Sullivan, Oreste Villa,
and Stephen W. Keckler. 2021. “NVBitFI: Dynamic Fault Injection
for GPUs.” In 2021 51st Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 284–91. IEEE; IEEE. https:
//doi.org/10.1109/dsn48987.2021.00041.

Uddin, Mueen, and Azizah Abdul Rahman. 2012. “Energy EfÏciency
and Low Carbon Enabler Green IT Framework for Data Centers
Considering Green Metrics.” Renewable Sustainable Energy Rev. 16
(6): 4078–94. https://doi.org/10.1016/j.rser.2012.03.014.

Un, and World Economic Forum. 2019. A New Circular Vision for Elec-
tronics, Time for a Global Reboot. PACE - Platform for Accelerating
the Circular Economy. https://www3.weforum.org/docs/WEF/
_A/_New/_Circular/_Vision/_for/_Electronics.pdf.

Valenzuela, Christine L, and Pearl Y Wang. 2000. “A Genetic Algo-
rithm for VLSI Floorplanning.” In Parallel Problem Solving from Na-
ture PPSNVI: 6th International Conference Paris, France, September 18–
20, 2000 Proceedings 6, 671–80. Springer.

Van Noorden, Richard. 2016. “ArXiv Preprint Server Plans
Multimillion-Dollar Overhaul.” Nature 534 (7609): 602–2.

https://doi.org/10.1038/s41558-019-0520-y
https://doi.org/10.1038/s41558-019-0520-y
https://doi.org/10.3390/su141912477
https://doi.org/10.3390/su141912477
https://doi.org/10.1145/3292500.3330756
https://doi.org/10.1145/3319535.3354222
https://doi.org/10.3390/cancers15174228
https://doi.org/10.3390/cancers15174228
https://doi.org/10.1109/dsn48987.2021.00041
https://doi.org/10.1109/dsn48987.2021.00041
https://doi.org/10.1016/j.rser.2012.03.014
https://www3.weforum.org/docs/WEF/_A/_New/_Circular/_Vision/_for/_Electronics.pdf
https://www3.weforum.org/docs/WEF/_A/_New/_Circular/_Vision/_for/_Electronics.pdf

References 1302

https://doi.org/10.1038/534602a.
Vangal, Sriram, Somnath Paul, Steven Hsu, Amit Agarwal, Saurabh

Kumar, Ram Krishnamurthy, Harish Krishnamurthy, James
Tschanz, Vivek De, and Chris H. Kim. 2021. “Wide-Range Many-
Core SoC Design in Scaled CMOS: Challenges and Opportunities.”
IEEE Trans. Very Large Scale Integr. VLSI Syst. 29 (5): 843–56.
https://doi.org/10.1109/tvlsi.2021.3061649.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017.
“Attention Is All You Need.” Adv Neural Inf Process Syst 30.

“Vector-Borne Diseases.” n.d. https://www.who.int/news-
room/fact-sheets/detail/vector-borne-diseases.

Velazco, Raoul, Gilles Foucard, and Paul Peronnard. 2010. “Combin-
ing Results of Accelerated Radiation Tests and Fault Injections to
Predict the Error Rate of an Application Implemented in SRAM-
Based FPGAs.” IEEE Trans. Nucl. Sci. 57 (6): 3500–3505. https:
//doi.org/10.1109/tns.2010.2087355.

Verma, Naveen, Hongyang Jia, Hossein Valavi, Yinqi Tang,
Murat Ozatay, Lung-Yen Chen, Bonan Zhang, and Peter
Deaville. 2019. “In-Memory Computing: Advances and
Prospects.” IEEE Solid-State Circuits Mag. 11 (3): 43–55.
https://doi.org/10.1109/mssc.2019.2922889.

Verma, Team Dual_Boot: Swapnil. 2022. “Elephant AI.” Hackster.io.
https://www.hackster.io/dual/_boot/elephant-ai-ba71e9.

Vinuesa, Ricardo, Hossein Azizpour, Iolanda Leite, Madeline Balaam,
Virginia Dignum, Sami Domisch, Anna Felländer, Simone Daniela
Langhans, Max Tegmark, and Francesco Fuso Nerini. 2020. “The
Role of Artificial Intelligence in Achieving the Sustainable Develop-
ment Goals.” Nat. Commun. 11 (1): 1–10. https://doi.org/10.1038/
s41467-019-14108-y.

Vivet, Pascal, Eric Guthmuller, Yvain Thonnart, Gael Pillonnet, Cesar
Fuguet, Ivan Miro-Panades, Guillaume Moritz, et al. 2021. “IntAct:
A 96-Core Processor with Six Chiplets 3D-Stacked on an Active In-
terposer with Distributed Interconnects and Integrated Power Man-
agement.” IEEE J. Solid-State Circuits 56 (1): 79–97. https://doi.org/
10.1109/jssc.2020.3036341.

Wachter, Sandra, Brent Mittelstadt, and Chris Russell. 2017. “Counter-
factual Explanations Without Opening the Black Box: Automated
Decisions and the GDPR.” SSRN Electronic Journal 31: 841. https:
//doi.org/10.2139/ssrn.3063289.

Wald, Peter H., and Jeffrey R. Jones. 1987. “Semiconductor Manufac-
turing: An Introduction to Processes and Hazards.” Am. J. Ind.
Med. 11 (2): 203–21. https://doi.org/10.1002/ajim.4700110209.

https://doi.org/10.1038/534602a
https://doi.org/10.1109/tvlsi.2021.3061649
https://doi.org/10.1109/tns.2010.2087355
https://doi.org/10.1109/tns.2010.2087355
https://doi.org/10.1109/mssc.2019.2922889
https://www.hackster.io/dual/_boot/elephant-ai-ba71e9
https://doi.org/10.1038/s41467-019-14108-y
https://doi.org/10.1038/s41467-019-14108-y
https://doi.org/10.1109/jssc.2020.3036341
https://doi.org/10.1109/jssc.2020.3036341
https://doi.org/10.2139/ssrn.3063289
https://doi.org/10.2139/ssrn.3063289
https://doi.org/10.1002/ajim.4700110209

REFERENCES 1303

Wan, Zishen, Aqeel Anwar, Yu-Shun Hsiao, Tianyu Jia, Vĳay Janapa
Reddi, and Arĳit Raychowdhury. 2021. “Analyzing and Improving
Fault Tolerance of Learning-Based Navigation Systems.” In 2021
58th ACM/IEEE Design Automation Conference (DAC), 841–46. IEEE;
IEEE. https://doi.org/10.1109/dac18074.2021.9586116.

Wan, Zishen, Yiming Gan, Bo Yu, S Liu, A Raychowdhury, and Y Zhu.
2023. “Vpp: The Vulnerability-Proportional Protection Paradigm
Towards Reliable Autonomous Machines.” In Proceedings of the
5th International Workshop on Domain Specific System Architecture
(DOSSA), 1–6.

Wang, LingFeng, and YaQing Zhan. 2019a. “A Conceptual Peer Re-
view Model for arXiv and Other Preprint Databases.” Learn. Publ.
32 (3): 213–19. https://doi.org/10.1002/leap.1229.

———. 2019b. “A Conceptual Peer Review Model for arXiv and Other
Preprint Databases.” Learn. Publ. 32 (3): 213–19. https://doi.org/
10.1002/leap.1229.

Wang, Tianzhe, Kuan Wang, Han Cai, Ji Lin, Zhĳian Liu, Hanrui Wang,
Yujun Lin, and Song Han. 2020. “APQ: Joint Search for Network
Architecture, Pruning and Quantization Policy.” In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2075–
84. IEEE. https://doi.org/10.1109/cvpr42600.2020.00215.

Warden, Pete. 2018. “Speech Commands: A Dataset for Limited-
Vocabulary Speech Recognition.” arXiv Preprint arXiv:1804.03209.

Warden, Pete, and Daniel Situnayake. 2019. Tinyml: Machine Learning
with Tensorflow Lite on Arduino and Ultra-Low-Power Microcontrollers.
O’Reilly Media.

Weik, Martin H. 1955. A Survey of Domestic Electronic Digital Computing
Systems. Ballistic Research Laboratories.

Weiser, Mark. 1991. “The Computer for the 21st Century.” Sci. Am. 265
(3): 94–104. https://doi.org/10.1038/scientificamerican0991-94.

Wess, Matthias, Matvey Ivanov, Christoph Unger, and Anvesh
Nookala. 2020. “ANNETTE: Accurate Neural Network
Execution Time Estimation with Stacked Models.” IEEE.
https://doi.org/10.1109/ACCESS.2020.3047259.

Wiener, Norbert. 1960. “Some Moral and Technical Consequences of
Automation: As Machines Learn They May Develop Unforeseen
Strategies at Rates That BafÒe Their Programmers.” Science 131
(3410): 1355–58. https://doi.org/10.1126/science.131.3410.1355.

Wilkening, Mark, Vilas Sridharan, Si Li, Fritz Previlon, Sudhanva Gu-
rumurthi, and David R. Kaeli. 2014. “Calculating Architectural
Vulnerability Factors for Spatial Multi-Bit Transient Faults.” In 2014
47th Annual IEEE/ACM International Symposium onMicroarchitecture,
293–305. IEEE; IEEE. https://doi.org/10.1109/micro.2014.15.

https://doi.org/10.1109/dac18074.2021.9586116
https://doi.org/10.1002/leap.1229
https://doi.org/10.1002/leap.1229
https://doi.org/10.1002/leap.1229
https://doi.org/10.1109/cvpr42600.2020.00215
https://doi.org/10.1038/scientificamerican0991-94
https://doi.org/10.1109/ACCESS.2020.3047259
https://doi.org/10.1126/science.131.3410.1355
https://doi.org/10.1109/micro.2014.15

References 1304

Winkler, Harald, Franck Lecocq, Hans Lofgren, Maria Virginia Vilar-
iño, Sivan Kartha, and Joana Portugal-Pereira. 2022. “Examples
of Shifting Development Pathways: Lessons on How to Enable
Broader, Deeper, and Faster Climate Action.” Climate Action 1 (1).
https://doi.org/10.1007/s44168-022-00026-1.

Wong, H.-S. Philip, Heng-Yuan Lee, Shimeng Yu, Yu-Sheng Chen, Yi
Wu, Pang-Shiu Chen, Byoungil Lee, Frederick T. Chen, and Ming-
Jinn Tsai. 2012. “Metal–Oxide RRAM.” Proc. IEEE 100 (6): 1951–70.
https://doi.org/10.1109/jproc.2012.2190369.

Wu, Bichen, Kurt Keutzer, Xiaoliang Dai, Peizhao Zhang, Yang-
han Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter Va-
jda, and Yangqing Jia. 2019. “FBNet: Hardware-aware
EfÏcient ConvNet Design via Differentiable Neural Archi-
tecture Search.” In 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 10734–42. IEEE. https:
//doi.org/10.1109/cvpr.2019.01099.

Wu, Carole-Jean, David Brooks, Kevin Chen, Douglas Chen, Sy Choud-
hury, Marat Dukhan, Kim Hazelwood, et al. 2019. “Machine Learn-
ing at Facebook: Understanding Inference at the Edge.” In 2019
IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA), 331–44. IEEE; IEEE. https://doi.org/10.1109/hpca.
2019.00048.

Wu, Carole-Jean, Ramya Raghavendra, Udit Gupta, Bilge Acun, New-
sha Ardalani, Kiwan Maeng, Gloria Chang, et al. 2022. “Sustain-
able Ai: Environmental Implications, Challenges and Opportuni-
ties.” Proceedings of Machine Learning and Systems 4: 795–813.

Wu, Zhang Judd, and Micikevicius Isaev. 2020. “Integer Quantiza-
tion for Deep Learning Inference: Principles and Empirical Evalua-
tion).” ArXiv Preprint. https://arxiv.org/abs/2004.09602.

Xiao, Seznec Lin, Demouth Wu, and Han. 2022. “SmoothQuant: Accu-
rate and EfÏcient Post-Training Quantization for Large Language
Models.” ArXiv Preprint. https://arxiv.org/abs/2211.10438.

Xie, Cihang, Mingxing Tan, Boqing Gong, Jiang Wang, Alan L.
Yuille, and Quoc V. Le. 2020. “Adversarial Examples Im-
prove Image Recognition.” In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 816–25. IEEE.
https://doi.org/10.1109/cvpr42600.2020.00090.

Xie, Saining, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaim-
ing He. 2017. “Aggregated Residual Transformations for
Deep Neural Networks.” In 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 1492–1500. IEEE.
https://doi.org/10.1109/cvpr.2017.634.

Xinyu, Chen. n.d.

https://doi.org/10.1007/s44168-022-00026-1
https://doi.org/10.1109/jproc.2012.2190369
https://doi.org/10.1109/cvpr.2019.01099
https://doi.org/10.1109/cvpr.2019.01099
https://doi.org/10.1109/hpca.2019.00048
https://doi.org/10.1109/hpca.2019.00048
https://arxiv.org/abs/2004.09602
https://arxiv.org/abs/2211.10438
https://doi.org/10.1109/cvpr42600.2020.00090
https://doi.org/10.1109/cvpr.2017.634

REFERENCES 1305

Xiong, Siyu, Guoqing Wu, Xitian Fan, Xuan Feng, Zhongcheng Huang,
Wei Cao, Xuegong Zhou, et al. 2021. “MRI-Based Brain Tumor Seg-
mentation Using FPGA-Accelerated Neural Network.” BMC Bioinf.
22 (1): 421. https://doi.org/10.1186/s12859-021-04347-6.

Xiu, Liming. 2019. “Time Moore: Exploiting Moore’s Law from the
Perspective of Time.” IEEE Solid-State Circuits Mag. 11 (1): 39–55.
https://doi.org/10.1109/mssc.2018.2882285.

Xu, Chen, Jianqiang Yao, Zhouchen Lin, Wenwu Ou, Yuanbin Cao, Zhi-
rong Wang, and Hongbin Zha. 2018. “Alternating Multi-Bit Quan-
tization for Recurrent Neural Networks.” In 6th International Confer-
ence on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 -May 3, 2018, Conference Track Proceedings. OpenReview.net.
https://openreview.net/forum?id=S19dR9x0b.

Xu, Hu, Saining Xie, Xiaoqing Ellen Tan, Po-Yao Huang, Rus-
sell Howes, Vasu Sharma, Shang-Wen Li, Gargi Ghosh, Luke
Zettlemoyer, and Christoph Feichtenhofer. 2023. “Demys-
tifying CLIP Data.” ArXiv Preprint abs/2309.16671. https:
//arxiv.org/abs/2309.16671.

Xu, Ying, Xu Zhong, Antonio Jimeno Yepes, and Jey Han Lau. 2021.
“Grey-Box Adversarial Attack and Defence for Sentiment Classifi-
cation.” arXiv Preprint arXiv:2103.11576.

Xu, Zheng, Yanxiang Zhang, Galen Andrew, Christopher A Choquette-
Choo, Peter Kairouz, H Brendan McMahan, Jesse Rosenstock, and
Yuanbo Zhang. 2023. “Federated Learning of Gboard Language
Models with Differential Privacy.” ArXiv Preprint abs/2305.18465.
https://arxiv.org/abs/2305.18465.

Yang, Tien-Ju, Yonghui Xiao, Giovanni Motta, Françoise Beaufays,
Rajiv Mathews, and Mingqing Chen. 2023. “Online Model
Compression for Federated Learning with Large Models.” In
ICASSP 2023 - 2023 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 1–5. IEEE; IEEE.
https://doi.org/10.1109/icassp49357.2023.10097124.

Yao, Zhewei, Zhen Dong, Zhangcheng Zheng, Amir Gholami, Jiali Yu,
Eric Tan, Leyuan Wang, et al. 2021. “Hawq-V3: Dyadic Neural Net-
work Quantization.” In International Conference onMachine Learning,
11875–86. PMLR.

Ye, Linfeng, and Shayan Mohajer Hamidi. 2021. “Thundernna: A
White Box Adversarial Attack.” arXiv Preprint arXiv:2111.12305.

Yeh, Y. C. 1996. “Triple-Triple Redundant 777 Primary Flight Com-
puter.” In 1996 IEEE Aerospace Applications Conference. Proceedings,
1:293–307. IEEE; IEEE. https://doi.org/10.1109/aero.1996.495891.

Yik, Jason, Soikat Hasan Ahmed, Zergham Ahmed, Brian Anderson,
Andreas G. Andreou, Chiara Bartolozzi, Arindam Basu, et al. 2023.

https://doi.org/10.1186/s12859-021-04347-6
https://doi.org/10.1109/mssc.2018.2882285
https://openreview.net/forum?id=S19dR9x0b
https://arxiv.org/abs/2309.16671
https://arxiv.org/abs/2309.16671
https://arxiv.org/abs/2305.18465
https://doi.org/10.1109/icassp49357.2023.10097124
https://doi.org/10.1109/aero.1996.495891

References 1306

“NeuroBench: Advancing Neuromorphic Computing Through Col-
laborative, Fair and Representative Benchmarking.” https://arxiv.
org/abs/2304.04640.

You, Jie, Jae-Won Chung, and Mosharaf Chowdhury. 2023. “Zeus:
Understanding and Optimizing GPU Energy Consumption of
DNN Training.” In 20th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 23), 119–39. Boston, MA:
USENIX Association. https://www.usenix.org/conference/
nsdi23/presentation/you.

You, Yang, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt
Keutzer. 2017. “ImageNet Training in Minutes,” September.
http://arxiv.org/abs/1709.05011v10.

Young, Tom, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria.
2018. “Recent Trends in Deep Learning Based Natural Language
Processing [Review Article].” IEEE Comput. Intell. Mag. 13 (3): 55–
75. https://doi.org/10.1109/mci.2018.2840738.

Yu, Yuan, Martı́n Abadi, Paul Barham, Eugene Brevdo, Mike Burrows,
Andy Davis, Jeff Dean, et al. 2018. “Dynamic Control Flow in
Large-Scale Machine Learning.” In Proceedings of the Thirteenth Eu-
roSys Conference, 265–83. ACM. https://doi.org/10.1145/3190508.
3190551.

Zafrir, Ofir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. 2019.
“Q8BERT: Quantized 8Bit BERT.” In 2019 Fifth Workshop on Energy
EfÏcient Machine Learning and Cognitive Computing - NeurIPS Edition
(EMC2-NIPS), 36–39. IEEE; IEEE. https://doi.org/10.1109/emc2-
nips53020.2019.00016.

Zeiler, Matthew D. 2012. “ADADELTA: An Adaptive Learning
Rate Method,” December, 119–49. https://doi.org/10.1002/
9781118266502.ch6.

Zennaro, Marco, Brian Plancher, and V Janapa Reddi. 2022. “TinyML:
Applied AI for Development.” In The UN 7th Multi-Stakeholder Fo-
rum on Science, Technology and Innovation for the Sustainable Develop-
ment Goals, 2022–05.

Zhang, Chengliang, Minchen Yu, Wei Wang 0030, and Feng Yan 0001.
2019. “MArk: Exploiting Cloud Services for Cost-Effective, SLO-
Aware Machine Learning Inference Serving.” In 2019 USENIX An-
nual Technical Conference (USENIXATC 19), 1049–62. https://www.
usenix.org/conference/atc19/presentation/zhang-chengliang.

Zhang, Chen, Peng Li, Guangyu Sun, Yĳin Guan, Bingjun Xiao, and
Jason Optimizing Cong. 2015. “FPGA-Based Accelerator Design
for Deep Convolutional Neural Networks Proceedings of the 2015
ACM.” In SIGDA International Symposium on Field-Programmable
Gate Arrays-FPGA, 15:161–70.

https://arxiv.org/abs/2304.04640
https://arxiv.org/abs/2304.04640
https://www.usenix.org/conference/nsdi23/presentation/you
https://www.usenix.org/conference/nsdi23/presentation/you
http://arxiv.org/abs/1709.05011v10
https://doi.org/10.1109/mci.2018.2840738
https://doi.org/10.1145/3190508.3190551
https://doi.org/10.1145/3190508.3190551
https://doi.org/10.1109/emc2-nips53020.2019.00016
https://doi.org/10.1109/emc2-nips53020.2019.00016
https://doi.org/10.1002/9781118266502.ch6
https://doi.org/10.1002/9781118266502.ch6
https://www.usenix.org/conference/atc19/presentation/zhang-chengliang
https://www.usenix.org/conference/atc19/presentation/zhang-chengliang

REFERENCES 1307

Zhang, Dan, Safeen Huda, Ebrahim Songhori, Kartik Prabhu, Quoc
Le, Anna Goldie, and Azalia Mirhoseini. 2022. “A Full-Stack
Search Technique for Domain Optimized Deep Learning Accel-
erators.” In Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operat-
ing Systems, 27–42. ASPLOS ’22. New York, NY, USA: ACM.
https://doi.org/10.1145/3503222.3507767.

Zhang, Dongxia, Xiaoqing Han, and Chunyu Deng. 2018. “Review
on the Research and Practice of Deep Learning and Reinforcement
Learning in Smart Grids.” CSEE Journal of Power and Energy Systems
4 (3): 362–70. https://doi.org/10.17775/cseejpes.2018.00520.

Zhang, Hongyu. 2008. “On the Distribution of Software Faults.” IEEE
Trans. Software Eng. 34 (2): 301–2. https://doi.org/10.1109/tse.
2007.70771.

Zhang, Jeff Jun, Tianyu Gu, Kanad Basu, and Siddharth Garg. 2018.
“Analyzing and Mitigating the Impact of Permanent Faults on a
Systolic Array Based Neural Network Accelerator.” In 2018 IEEE
36th VLSI Test Symposium (VTS), 1–6. IEEE; IEEE. https://doi.org/
10.1109/vts.2018.8368656.

Zhang, Jeff, Kartheek Rangineni, Zahra Ghodsi, and Siddharth Garg.
2018. “ThUnderVolt: Enabling Aggressive Voltage Underscaling
and Timing Error Resilience for Energy EfÏcient Deep Learning
Accelerators.” In 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC), 1–6. IEEE. https://doi.org/10.1109/dac.2018.
8465918.

Zhang, Li Lyna, Yuqing Yang, Yuhang Jiang, Wenwu Zhu, and Yunxin
Liu. 2020. “Fast Hardware-Aware Neural Architecture Search.” In
2020 IEEE/CVFConference on Computer Vision and Pattern Recognition
Workshops (CVPRW). IEEE. https://doi.org/10.1109/cvprw50498.
2020.00354.

Zhang, Qingxue, Dian Zhou, and Xuan Zeng. 2017. “Highly
Wearable Cuff-Less Blood Pressure and Heart Rate Monitor-
ing with Single-Arm Electrocardiogram and Photoplethys-
mogram Signals.” BioMedical Engineering OnLine 16 (1): 23.
https://doi.org/10.1186/s12938-017-0317-z.

Zhang, Tunhou, Hsin-Pai Cheng, Zhenwen Li, Feng Yan, Chengyu
Huang, Hai Helen Li, and Yiran Chen. 2020. “AutoShrink:
A Topology-Aware NAS for Discovering EfÏcient Neural Ar-
chitecture.” In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, the Thirty-Second Innovative Applications of
Artificial Intelligence Conference, IAAI 2020, the Tenth AAAI Sympo-
sium on Educational Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020, 6829–36. AAAI Press.

https://doi.org/10.1145/3503222.3507767
https://doi.org/10.17775/cseejpes.2018.00520
https://doi.org/10.1109/tse.2007.70771
https://doi.org/10.1109/tse.2007.70771
https://doi.org/10.1109/vts.2018.8368656
https://doi.org/10.1109/vts.2018.8368656
https://doi.org/10.1109/dac.2018.8465918
https://doi.org/10.1109/dac.2018.8465918
https://doi.org/10.1109/cvprw50498.2020.00354
https://doi.org/10.1109/cvprw50498.2020.00354
https://doi.org/10.1186/s12938-017-0317-z

References 1308

https://aaai.org/ojs/index.php/AAAI/article/view/6163.
Zhao, Mark, and G. Edward Suh. 2018. “FPGA-Based Remote Power

Side-Channel Attacks.” In 2018 IEEE Symposium on Security and
Privacy (SP), 229–44. IEEE; IEEE. https://doi.org/10.1109/sp.2018.
00049.

Zhao, Yue, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and
Vikas Chandra. 2018. “Federated Learning with Non-Iid Data.”
ArXiv Preprint abs/1806.00582. https://arxiv.org/abs/1806.00582.

Zhou, Bolei, Yiyou Sun, David Bau, and Antonio Torralba. 2018. “Inter-
pretable Basis Decomposition for Visual Explanation.” In Proceed-
ings of the European Conference on Computer Vision (ECCV), 119–34.

Zhou, Chuteng, Fernando Garcia Redondo, Julian Büchel, Irem Boy-
bat, Xavier Timoneda Comas, S. R. Nandakumar, Shidhartha Das,
Abu Sebastian, Manuel Le Gallo, and Paul N. Whatmough. 2021.
“AnalogNets: Ml-hw Co-Design of Noise-Robust TinyML Models
and Always-on Analog Compute-in-Memory Accelerator.” https:
//arxiv.org/abs/2111.06503.

Zhou, Guanglei, and Jason H. Anderson. 2023. “Area-Driven FPGA
Logic Synthesis Using Reinforcement Learning.” In Proceedings of
the 28th Asia and South Pacific Design Automation Conference, 159–65.
ACM. https://doi.org/10.1145/3566097.3567894.

Zhou, Hailong, Jianji Dong, Junwei Cheng, Wenchan Dong, Chaoran
Huang, Yichen Shen, Qiming Zhang, et al. 2022. “Photonic Ma-
trix Multiplication Lights up Photonic Accelerator and Beyond.”
Light: Science &Amp; Applications 11 (1): 30. https://doi.org/10.
1038/s41377-022-00717-8.

Zhou, Peng, Xintong Han, Vlad I. Morariu, and Larry S. Davis. 2018.
“Learning Rich Features for Image Manipulation Detection.” In
2018 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 1053–61. IEEE. https://doi.org/10.1109/cvpr.2018.00116.

Zhu, Hongyu, Mohamed Akrout, Bojian Zheng, Andrew Pelegris,
Anand Jayarajan, Amar Phanishayee, Bianca Schroeder, and
Gennady Pekhimenko. 2018. “Benchmarking and Analyzing
Deep Neural Network Training.” In 2018 IEEE International Sym-
posium on Workload Characterization (IISWC), 88–100. IEEE; IEEE.
https://doi.org/10.1109/iiswc.2018.8573476.

Zhu, Ligeng, Lanxiang Hu, Ji Lin, Wei-Ming Chen, Wei-Chen Wang,
Chuang Gan, and Song Han. 2023. “PockEngine: Sparse and Ef-
ficient Fine-Tuning in a Pocket.” In 56th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture. ACM. https://doi.org/10.
1145/3613424.3614307.

Zhuang, Fuzhen, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu,
Hengshu Zhu, Hui Xiong, and Qing He. 2021. “A Comprehensive

https://aaai.org/ojs/index.php/AAAI/article/view/6163
https://doi.org/10.1109/sp.2018.00049
https://doi.org/10.1109/sp.2018.00049
https://arxiv.org/abs/1806.00582
https://arxiv.org/abs/2111.06503
https://arxiv.org/abs/2111.06503
https://doi.org/10.1145/3566097.3567894
https://doi.org/10.1038/s41377-022-00717-8
https://doi.org/10.1038/s41377-022-00717-8
https://doi.org/10.1109/cvpr.2018.00116
https://doi.org/10.1109/iiswc.2018.8573476
https://doi.org/10.1145/3613424.3614307
https://doi.org/10.1145/3613424.3614307

REFERENCES 1309

Survey on Transfer Learning.” Proc. IEEE 109 (1): 43–76. https:
//doi.org/10.1109/jproc.2020.3004555.

Zoph, Barret, and Quoc V. Le. 2016. “Neural Architecture Search with
Reinforcement Learning,” November, 367–92. https://doi.org/10.
1002/9781394217519.ch17.

https://doi.org/10.1109/jproc.2020.3004555
https://doi.org/10.1109/jproc.2020.3004555
https://doi.org/10.1002/9781394217519.ch17
https://doi.org/10.1002/9781394217519.ch17

1311

Chapter A

Tools

This is a non-exhaustive list of tools and frameworks that are available
for embedded AI development.

A.1 Hardware Kits

A.1.1 Microcontrollers and Development Boards

No Hardware Processor Features
TinyML
Compatibility

1 Arduino
Nano 33
BLE
Sense

ARM
Cortex-M4

Onboard sensors,
Bluetooth
connectivity

TensorFlow Lite
Micro

2 Raspberry
Pi Pico

Dual-core
Arm
Cortex-
M0+

Low-cost, large
community
support

TensorFlow Lite
Micro

3 SparkFun
Edge

Ambiq
Apollo3
Blue

Ultra-low power
consumption,
onboard
microphone

TensorFlow Lite
Micro

4 Adafruit
Edge-
Badge

ATSAMD51
32-bit
Cortex M4

Compact size,
integrated display
and microphone

TensorFlow Lite
Micro

A.2. Software Tools 1312

No Hardware Processor Features
TinyML
Compatibility

5 Google
Coral
Develop-
ment
Board

NXP i.MX
8M SOC
(quad
Cortex-
A53,
Cortex-
M4F)

Edge TPU, Wi-Fi,
Bluetooth

TensorFlow Lite
for Coral

6 STM32
Discovery
Kits

Various
(e.g.,
STM32F7,
STM32H7)

Different
configurations,
Cube.AI software
support

STM32Cube.AI

7 Arduino
Nicla
Vision

STM32H747AII6
Dual Arm
Cortex
M7/M4

Integrated camera,
low power,
compact design

TensorFlow Lite
Micro

8 Arduino
Nicla
Sense ME

64 MHz
Arm
Cortex M4
(nRF52832)

Multi-sensor
platform,
environment
sensing, BLE,
Wi-Fi

TensorFlow Lite
Micro

9 XIAO
ESP32S3
Sense

Xtensa
LX7
dual-core
(ESP32-
S3R8)

Integrated camera,
microphone, BLE,
Wi-Fi and the most
compact design

TensorFlow Lite
Micro

A.2 Software Tools

A.2.1 Machine Learning Frameworks

APPENDIX A. TOOLS 1313

No

Machine
Learning
Frame-
work Description Use Cases

1 TensorFlow
Lite

Lightweight library for running
machine learning models on
constrained devices

Image
recognition,
voice
commands,
anomaly
detection

2 Edge
Impulse

A platform providing tools for
creating machine learning
models optimized for edge
devices

Data collection,
model training,
deployment on
tiny devices

3 ONNX
Runtime

A performance-optimized
engine for running ONNX
models, fine-tuned for edge
devices

Cross-platform
deployment of
machine
learning models

A.2.2 Libraries and APIs

No Library/APIDescription Use Cases
1 CMSIS-

NN
A collection of efÏcient neural
network kernels optimized for
Cortex-M processors

Embedded
vision and AI
applications

2 ARM
NN

An inference engine for CPUs, GPUs,
and NPUs, enabling the translation of
neural network frameworks

Accelerating
machine
learning model
inference on
ARM-based
devices

A.3 IDEs and Development Environments

A.3. IDEs and Development Environments 1314

No

IDE/Development
Environ-
ment Description Features

1 PlatformIO An open-source ecosystem
for IoT development catering
to various boards & platforms

Cross-platform
build system,
continuous
testing, firmware
updates

2 Eclipse
Embed-
ded CDT

A plugin for Eclipse
facilitating embedded
systems development

Supports various
compilers and
debuggers,
integrates with
popular build
tools

3 Arduino
IDE

OfÏcial development
environment for Arduino
supporting various boards &
languages

User-friendly
interface, large
community
support, extensive
library collection

4 Mbed
Studio

ARM’s IDE for developing
robust embedded software
with Mbed OS

Integrated
debugger, Mbed
OS integration,
version control
support

5 Segger
Embed-
ded Studio

A powerful IDE for ARM
microcontrollers supporting a
wide range of development
boards

Advanced code
editor, project
management,
debugging
capabilities

1315

Chapter B

Datasets

1. Google Speech Commands Dataset

• Description: A set of one-second .wav audio files, each con-
taining a single spoken English word.

• Link to the Dataset

2. VisualWakeWords Dataset

• Description: A dataset tailored for TinyML vision appli-
cations, consisting of binary labeled images indicating
whether a person is in the image or not.

• Link to the Dataset

3. EMNIST Dataset

• Description: A dataset containing 28x28 pixel images of
handwritten characters and digits, which is an extension of
the MNIST dataset but includes letters.

• Link to the Dataset

4. UCI Machine Learning Repository: Human Activity Recogni-
tion Using Smartphones

• Description: A dataset with the recordings of 30 study par-
ticipants performing activities of daily living (ADL) while
carrying a waist-mounted smartphone with embedded in-
ertial sensors.

• Link to the Dataset

5. PlantVillage Dataset

• Description: A dataset comprising of images of healthy and
diseased crop leaves categorized based on the crop type and

https://ai.googleblog.com/2017/08/launching-speech-commands-dataset.html
https://github.com/tensorflow/models/tree/master/research/slim#preparing-the-visualwakewords-dataset
https://www.nist.gov/itl/products-and-services/emnist-dataset
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones

1316

disease type, which could be used in a TinyML agricultural
project.

• Link to the Dataset

6. Gesture Recognition using 3D Motion Sensing (3D Gesture
Database)

• Description: This dataset contains 3D gesture data recorded
using a Leap Motion Controller, which might be useful for
gesture recognition projects.

• Link to the Dataset

7. Multilingual Spoken Words Corpus

• Description: A dataset containing recordings of common
spoken words in various languages, useful for speech recog-
nition projects targeting multiple languages.

• Link to the Dataset

8. Wake Vision

• Description: A dataset containing over 6 million images for
binary person classification. In addition, it includes a fine-
grain benchmark suite for evaluating the fairness and ro-
bustness of models.

• Link to the Dataset

Remember to verify the dataset’s license or terms of use to ensure it
can be used for your intended purpose.

https://github.com/spMohanty/PlantVillage-Dataset
https://lttm.dei.unipd.it/downloads/gesture/
https://mlcommons.org/en/multilingual-spoken-words/
https://wakevision.ai/

1317

Chapter C

Model Zoo

1319

Chapter D

Resources

Embarking on your TinyML journey has never been easier with the cu-
rated resources to pave your path to expertise. There are coding plat-
forms and communities where you can immerse yourself in hands-on
TinyML projects, sharing or seeking advice on GitHub and Stack Over-
flow. Meanwhile, there are gateways to structured learning featuring
courses that provide a comprehensive education in the field.

While this page serves as a solid starting point, stay tuned as we con-
tinually expand our resource pool, with the aim to foster a rich learning
and collaborative environment for TinyML enthusiasts of all levels.

D.1 Books
Here is a list of recommended books for learning about TinyML or em-
bedded AI:

1. TinyML: Machine Learning with TensorFlow Lite on Arduino
and Ultra-Low-Power Microcontrollers by Pete Warden and
Daniel Situnayake

2. AI at the Edge: Solving Real-World Problems with Embedded
Machine Learning by Daniel Situnayake and Jenny Plunkett

3. TinyML Cookbook: Combine artificial intelligence and ultra-low-
power embedded devices to make the world smarter by Gian
Marco Iodice

4. Introduction to TinyML by Rohit Sharma

5. Integrated camera, microphone, BLE, Wi-Fi and the most com-
pact design by Lei Feng(Seeed Studio), Marcelo Rovai

https://www.amazon.com/TinyML-Learning-TensorFlow-Ultra-Low-Power-Microcontrollers/dp/1492052043
https://www.amazon.com/TinyML-Learning-TensorFlow-Ultra-Low-Power-Microcontrollers/dp/1492052043
https://www.oreilly.com/library/view/ai-at-the/9781098120191/
https://www.oreilly.com/library/view/ai-at-the/9781098120191/
https://www.amazon.com/TinyML-Cookbook-artificial-intelligence-ultra-low-power/dp/180181497X
https://www.amazon.com/TinyML-Cookbook-artificial-intelligence-ultra-low-power/dp/180181497X
https://www.amazon.com/Introduction-TinyML-Rohit-Sharma/dp/B0B5Q281L9
https://mjrovai.github.io/XIAO_Big_Power_Small_Board-ebook/
https://mjrovai.github.io/XIAO_Big_Power_Small_Board-ebook/

D.2. Tutorials 1320

These books cover a range of topics related to TinyML and embed-
ded AI, including:

• The fundamentals of machine learning and TinyML
• How to choose the right hardware and software for your project
• How to train and deploy TinyML models on embedded devices
• Real-world examples of TinyML applications

In addition to the above books, there are a number of other resources
available for learning about TinyML and embedded AI, including on-
line courses, tutorials, and blog posts. Some of these are listed below.
Another great way to learn is by joining the community of embedded
AI developers.

D.2 Tutorials

D.3 Frameworks
1. GitHub Description: There are various GitHub repositories ded-

icated to TinyML where you can contribute or learn from existing
projects. Some popular organizations/repos to check out are:

• TensorFlow Lite Micro: GitHub Repository
• TinyML4D: GitHub Repository
• Edge Impulse Expert Network: Repository

2. Stack Overflow Tags: tinyml Description: Use the “tinyml” tag
on Stack Overflow to ask technical questions and find answers
from the community.

D.4 Courses and Learning Platforms
1. Coursera Course: Introduction to Embedded Machine Learning

Description: A dedicated course on Coursera to learn the basics
and advances of TinyML.

2. EdX Course: Intro to TinyML Description: Learn about TinyML
with this HarvardX course.

./community.qmd
https://github.com/tensorflow/tflite-micro
https://tinyml.seas.harvard.edu/4D/
https://docs.edgeimpulse.com/experts/
https://stackoverflow.com/questions/tagged/tinyml
https://www.coursera.org/learn/introduction-to-embedded-machine-learning
https://www.edx.org/professional-certificate/harvardx-tiny-machine-learning

1321

Chapter E

Communities

Welcome to our dedicated hub for TinyML enthusiasts. Whether you
are a seasoned developer, a researcher, or a curious hobbyist looking
to dive into the world of TinyML, this page is a non-exhaustive list of
community resources and forums to help you get started and thrive in
this domain. From vibrant online communities and educational plat-
forms to blogs and social media groups, discover a world brimming
with knowledge, collaboration, and innovation. Begin your TinyML
journey here, where opportunities for learning and networking are just
a click away!

E.1 Online Forums
1. TinyML Forum Website: TinyML Forum Description: A dedi-

cated forum for discussions, news, and updates on TinyML.

2. Reddit Subreddits: r/TinyML Description: Reddit community
discussing various topics related to TinyML.

E.2 Blogs and Websites
1. TinyML Foundation Website: TinyML Foundation Description:

The ofÏcial website offers a wealth of information including re-
search, news, and events.

2. Edge Impulse Blog Website: Blog Description: Contains several
articles, tutorials, and resources on TinyML.

3. TinyMachineLearningOpenEducation Initiative (TinyMLedu)
Website: TinyML Open Education Initiative Description: The

https://forums.tinyml.org/
https://tinyml.org/
https://www.edgeimpulse.com/blog
https://tinymledu.org/

E.3. Social Media Groups 1322

website offers links to educational materials on TinyML, training
events and research papers.

E.3 Social Media Groups
1. LinkedInGroups Description: Join TinyML groups on LinkedIn

to connect with professionals and enthusiasts in the field.

2. Twitter Description: Follow TinyML enthusiasts, organizations,
and experts on Twitter for the latest news and updates. Example
handles to follow:

• Twitter
• EdgeImpulse

E.4 Conferences and Meetups
1. TinyMLSummit Website: TinyML Summit Description: Annual

event where professionals and enthusiasts gather to discuss the
latest developments in TinyML.

2. Meetup Website: Meetup Description: Search for TinyML
groups on Meetup to find local or virtual gatherings.

Remember to always check the credibility and activity level of the
platforms and groups before diving in to ensure a productive experi-
ence.

https://twitter.com/tinymlf
https://twitter.com/EdgeImpulse
https://www.tinyml.org/
https://www.meetup.com/pro/tinyml

1323

Chapter F

Case Studies

Learning Objectives

• Coming soon.

	Preface
	Why We Wrote This Book
	What You'll Need to Know
	Book Conventions
	Content Transparency Statement
	Want to Help Out?
	Get in Touch
	Contributors
	I FRONT MATTER
	Dedication
	Acknowledgements
	Individual Contributors
	Funding Agencies and Companies
	To Our Readers

	Contributors & Thanks
	Copyright
	About the Book
	Overview
	Topics Explored
	Who Should Read This
	Key Learning Outcomes
	Prerequisites for Readers

	II MAIN
	III Fundamentals
	Introduction
	Overview
	What's Inside the Book
	How to Navigate This Book
	Chapter Breakdown
	Fundamentals
	Workflow
	Training
	Deployment
	Advanced Topics
	Social Impact
	Closing

	Contribute Back

	ML Systems
	Introduction
	Cloud ML
	Characteristics
	Benefits
	Challenges
	Example Use Cases

	Edge ML
	Characteristics
	Benefits
	Challenges
	Example Use Cases

	Tiny ML
	Characteristics
	Benefits
	Challenges
	Example Use Cases

	Comparison
	Conclusion
	Resources

	DL Primer
	Introduction
	Definition and Importance
	Brief History of Deep Learning
	Applications of Deep Learning
	Relevance to Embedded AI

	Neural Networks
	Perceptrons
	Multilayer Perceptrons
	Training Process
	Model Architectures
	Traditional ML vs Deep Learning
	Choosing Traditional ML vs. DL
	Making an Informed Choice

	Conclusion
	Resources

	IV Workflow
	AI Workflow
	Overview
	Traditional vs. Embedded AI
	Resource Optimization
	Real-time Processing
	Data Management and Privacy
	Hardware-Software Integration

	Roles & Responsibilities
	Conclusion
	Resources

	Data Engineering
	Introduction
	Problem Definition
	Data Sourcing
	Pre-existing datasets
	Web Scraping
	Crowdsourcing
	Synthetic Data

	Data Storage
	Data Processing
	Data Labeling
	Label Types
	Annotation Methods
	Ensuring Label Quality
	AI-Assisted Annotation

	Data Version Control
	Optimizing Data for Embedded AI
	Data Transparency
	Licensing
	Conclusion
	Resources

	AI Frameworks
	Introduction
	Framework Evolution
	Deep Dive into TensorFlow
	TF Ecosystem
	Static Computation Graph
	Usability & Deployment
	Architecture Design
	Built-in Functionality & Keras
	Limitations and Challenges
	PyTorch vs. TensorFlow

	Basic Framework Components
	Tensor data structures
	PyTorch
	TensorFlow
	Computational graphs
	Data Pipeline Tools
	Data Augmentation
	Loss Functions and Optimization Algorithms
	Model Training Support
	Validation and Analysis
	Differentiable programming
	Hardware Acceleration

	Advanced Features
	Distributed training
	Model Conversion
	AutoML, No-Code/Low-Code ML
	Advanced Learning Methods

	Framework Specialization
	Cloud
	Edge
	Embedded

	Embedded AI Frameworks
	Resource Constraints
	Frameworks & Libraries
	Challenges

	Examples
	Interpreter
	Compiler-based
	Library

	Choosing the Right Framework
	Model
	Software
	Hardware
	Other Factors

	Future Trends in ML Frameworks
	Decomposition
	High-Performance Compilers & Libraries
	ML for ML Frameworks

	Conclusion
	Resources

	V Training
	AI Training
	Introduction
	Mathematics of Neural Networks
	Neural Network Notation
	Loss Function as a Measure of Goodness of Fit against Training Data
	Training Neural Networks with Gradient Descent
	Backpropagation

	Differentiable Computation Graphs
	Training Data
	Dataset Splits
	Common Pitfalls and Mistakes

	Optimization Algorithms
	Optimizations
	Tradeoffs
	Benchmarking Algorithms

	Hyperparameter Tuning
	Search Algorithms
	System Implications
	Auto Tuners

	Regularization
	L1 and L2
	Dropout
	Early Stopping

	Activation Functions
	Sigmoid
	Tanh
	ReLU
	Softmax
	Pros and Cons

	Weight Initialization
	Uniform and Normal Initialization
	Xavier Initialization
	He Initialization

	System Bottlenecks
	Runtime Complexity of Matrix Multiplication
	Compute vs. Memory Bottleneck

	Training Parallelization
	Data Parallel
	Model Parallelism
	Comparison

	Conclusion
	Resources

	Efficient AI
	Introduction
	The Need for Efficient AI
	Efficient Model Architectures
	Efficient Model Compression
	Efficient Inference Hardware
	Efficient Numerics
	Numerical Formats
	Efficiency Benefits

	Evaluating Models
	Efficiency Metrics
	Efficiency Comparisons

	Conclusion
	Resources

	Model Optimizations
	Introduction
	Efficient Model Representation
	Pruning
	Model Compression
	Edge-Aware Model Design

	Efficient Numerics Representation
	The Basics
	Efficiency Benefits
	Numeric Representation Nuances
	Quantization
	Types
	Calibration
	Techniques
	Weights vs. Activations
	Trade-offs
	Quantization and Pruning
	Edge-aware Quantization

	Efficient Hardware Implementation
	Hardware-Aware Neural Architecture Search
	Challenges of Hardware-Aware Neural Architecture Search
	Kernel Optimizations
	Compute-in-Memory (CiM)
	Memory Access Optimization

	Software and Framework Support
	Built-in Optimization APIs
	Automated Optimization Tools
	Hardware Optimization Libraries
	Visualizing Optimizations
	Model Conversion and Deployment

	Conclusion
	Resources

	AI Acceleration
	Introduction
	Background and Basics
	Historical Background
	The Need for Acceleration
	General Principles

	Accelerator Types
	Application-Specific Integrated Circuits (ASICs)
	Field-Programmable Gate Arrays (FPGAs)
	Digital Signal Processors (DSPs)
	Graphics Processing Units (GPUs)
	Central Processing Units (CPUs)
	Comparison

	Hardware-Software Co-Design
	The Need for Co-Design
	Principles of Hardware-Software Co-Design
	Challenges

	Software for AI Hardware
	Programming Models
	Libraries and Runtimes
	Optimizing Compilers
	Simulation and Modeling

	Benchmarking AI Hardware
	Challenges and Solutions
	Portability/Compatibility Issues
	Power Consumption Concerns
	Overcoming Resource Constraints

	Emerging Technologies
	Integration Methods
	Neuromorphic Computing
	Analog Computing
	Flexible Electronics
	Memory Technologies
	Optical Computing
	Quantum Computing

	Future Trends
	ML for Hardware Design Automation
	ML-Based Hardware Simulation and Verification
	ML for Efficient Hardware Architectures
	ML to Optimize Manufacturing and Reduce Defects
	Toward Foundation Models for Hardware Design

	Conclusion
	Resources

	VI Deployment
	Benchmarking AI
	Introduction
	Historical Context
	Standard Benchmarks
	Custom Benchmarks
	Community Consensus

	AI Benchmarks: System, Model, and Data
	System Benchmarks
	Model Benchmarks
	Data Benchmarks

	System Benchmarking
	Granularity
	Benchmark Components
	Training vs. Inference
	Training Benchmarks
	Inference Benchmarks
	Benchmark Example
	Challenges and Limitations

	Model Benchmarking
	Historical Context
	Model Metrics
	Lessons Learned
	Limitations and Challenges

	Data Benchmarking
	Limitations of Model-Centric AI
	The Shift Toward Data-centric AI
	Benchmarking Data
	Data Efficiency

	The Trifecta
	Benchmarks for Emerging Technologies
	Conclusion
	Resources

	On-Device Learning
	Introduction
	Advantages and Limitations
	Benefits
	Limitations

	On-device Adaptation
	Reducing Model Complexity
	Modifying Optimization Processes
	Developing New Data Representations

	Transfer Learning
	Pre-Deployment Specialization
	Post-Deployment Adaptation
	Benefits
	Core Concepts
	Types of Transfer Learning
	Constraints and Considerations

	Federated Machine Learning
	Communication Efficiency
	Model Compression
	Selective Update Sharing
	Optimized Aggregation
	Handling non-IID Data
	Client Selection
	An Example of Deployed Federated Learning: G board
	Benchmarking for Federated Learning: MedPerf

	Security Concerns
	Data Poisoning
	Adversarial Attacks
	Model Inversion
	On-Device Learning Security Concerns
	Mitigation of On-Device Learning Risks
	Securing Training Data

	On-Device Training Frameworks
	Tiny Training Engine
	Tiny Transfer Learning
	Tiny Train
	Comparison

	Conclusion
	Resources

	ML Operations
	Introduction
	Historical Context
	DevOps
	MLOps

	Key Components of MLOps
	Data Management
	CI/CD Pipelines
	Model Training
	Model Evaluation
	Model Deployment
	Model Serving
	Infrastructure Management
	Monitoring
	Governance
	Communication & Collaboration

	Hidden Technical Debt in ML Systems
	Model Boundary Erosion
	Entanglement
	Correction Cascades
	Undeclared Consumers
	Data Dependency Debt
	Analysis Debt from Feedback Loops
	Pipeline Jungles
	Configuration Debt
	The Changing World
	Navigating Technical Debt in Early Stages
	Summary

	Roles and Responsibilities
	Data Engineers
	Data Scientists
	ML Engineers
	DevOps Engineers
	Project Managers

	Embedded System Challenges
	Limited Compute Resources
	Constrained Memory
	Intermittent Connectivity
	Power Limitations
	Fleet Management
	On-Device Data Collection
	Device-Specific Personalization
	Safety Considerations
	Diverse Hardware Targets
	Testing Coverage
	Concept Drift Detection

	Traditional MLOps vs. Embedded MLOps
	Model Lifecycle Management
	Development and Operations Integration
	Operational Excellence
	Comparison
	Traditional MLOps
	Embedded MLOps

	Case Studies
	Oura Ring
	ClinAIOps

	Conclusion
	Resources

	VII Advanced Topics
	Security & Privacy
	Introduction
	Terminology
	Historical Precedents
	Stuxnet
	Jeep Cherokee Hack
	Mirai Botnet
	Implications

	Security Threats to ML Models
	Model Theft
	Data Poisoning
	Adversarial Attacks

	Security Threats to ML Hardware
	Hardware Bugs
	Physical Attacks
	Fault-injection Attacks
	Side-Channel Attacks
	Leaky Interfaces
	Counterfeit Hardware
	Supply Chain Risks
	Case Study

	Embedded ML Hardware Security
	Trusted Execution Environments
	Secure Boot
	Hardware Security Modules
	Physical Unclonable Functions (PUFs)

	Privacy Concerns in Data Handling
	Sensitive Data Types
	Applicable Regulations
	De-identification
	Data Minimization
	Consent and Transparency
	Privacy Concerns in Machine Learning

	Privacy-Preserving ML Techniques
	Differential Privacy
	Federated Learning
	Machine Unlearning
	Homomorphic Encryption
	Secure Multiparty Communication
	Synthetic Data Generation
	Summary

	Conclusion
	Resources

	Responsible AI
	Introduction
	Definition
	Principles and Concepts
	Transparency and Explainability
	Fairness, Bias, and Discrimination
	Privacy and Data Governance
	Safety and Robustness
	Accountability and Governance

	Cloud, Edge & Tiny ML
	Summary
	Explainability
	Fairness
	Safety
	Accountability
	Governance
	Privacy

	Technical Aspects
	Detecting and Mitigating Bias
	Preserving Privacy
	Machine Unlearning
	Adversarial Examples and Robustness
	Building Interpretable Models
	Monitoring Model Performance

	Implementation Challenges
	Organizational and Cultural Structures
	Obtaining Quality and Representative Data
	Balancing Accuracy and Other Objectives

	Ethical Considerations in AI Design
	AI Safety and Value Alignment
	Autonomous Systems and Control [and Trust]
	Economic Impacts on Jobs, Skills, Wages
	Scientific Communication and AI Literacy

	Conclusion
	Resources

	Sustainable AI
	Introduction
	Social and Ethical Responsibility
	Ethical Considerations
	Long-term Sustainability
	AI for Environmental Good
	Case Study

	Energy Consumption
	Understanding Energy Needs
	Data Centers and Their Impact
	Energy Optimization

	Carbon Footprint
	Definition and Significance
	The Need for Awareness and Action
	Estimating the AI Carbon Footprint

	Beyond Carbon Footprint
	Water Usage and Stress
	Hazardous Chemicals Usage
	Resource Depletion
	Hazardous Waste Generation
	Biodiversity Impacts

	Life Cycle Analysis
	Stages of an AI System's Life Cycle
	Environmental Impact at Each Stage

	Challenges in LCA
	Lack of Consistency and Standards
	Data Gaps
	Rapid Pace of Evolution
	Supply Chain Complexity

	Sustainable Design and Development
	Sustainability Principles

	Green AI Infrastructure
	Energy Efficient AI Systems
	Sustainable AI Infrastructure
	Frameworks and Tools
	Benchmarks and Leaderboards

	Case Study: Google's 4Ms
	Google's 4M Best Practices
	Significant Results
	Further Improvements

	Embedded AI - Internet of Trash
	Policy and Regulatory Considerations
	Measurement and Reporting Mandates
	Restriction Mechanisms
	Government Incentives
	Self-Regulation
	Global Considerations

	Public Perception and Engagement
	AI Awareness
	Messaging
	Equitable Participation
	Transparency

	Future Directions and Challenges
	Future Directions
	Challenges

	Conclusion
	Resources

	Robust AI
	Introduction
	Real-World Examples
	Cloud
	Edge
	Embedded

	Hardware Faults
	Transient Faults
	Permanent Faults
	Intermittent Faults
	Detection and Mitigation
	Summary

	ML Model Robustness
	Adversarial Attacks
	Data Poisoning
	Distribution Shifts
	Detection and Mitigation

	Software Faults
	Tools and Frameworks
	Fault Models and Error Models
	Hardware-based Fault Injection
	Software-based Fault Injection Tools
	Bridging the Gap between Hardware and Software Error Models

	Conclusion
	Resources

	Generative AI

	VIII Social Impact
	AI for Good
	Introduction
	Agriculture
	Healthcare
	Expanding Access
	Early Diagnosis
	Infectious Disease Control
	TinyML Design Contest in Healthcare

	Science
	Conservation and Environment
	Disaster Response
	Education and Outreach
	Accessibility
	Infrastructure and Urban Planning
	Challenges and Considerations
	Conclusion
	Resources

	IX Closing
	Conclusion
	Introduction
	Knowing the Importance of ML Datasets
	Navigating the AI Framework Landscape
	Understanding ML Training Fundamentals
	Pursuing Efficiency in AI Systems
	Optimizing ML Model Architectures
	Advancing AI Processing Hardware
	Embracing On-Device Learning
	Streamlining ML Operations
	Ensuring Security and Privacy
	Upholding Ethical Considerations
	Promoting Sustainability and Equity
	Enhancing Robustness and Resiliency
	Shaping the Future of ML Systems
	Applying AI for Good
	Congratulations

	X LABS
	Overview
	Learning Objectives
	Target Audience
	Supported Devices
	Lab Structure
	Troubleshooting and Support
	Credits

	Getting Started
	Hardware Requirements
	Software Requirements
	Network Connectivity
	Conclusion

	XI Nicla Vision
	Pre-requisites
	Setup
	Exercises
	Setup
	Introduction
	Hardware
	Two Parallel Cores
	Memory
	Sensors

	Arduino IDE Installation
	Testing the Microphone
	Testing the IMU
	Testing the ToF (Time of Flight) Sensor
	Testing the Camera

	Installing the OpenMV IDE
	Connecting the Nicla Vision to Edge Impulse Studio
	Expanding the Nicla Vision Board (optional)
	Conclusion
	Resources

	Image Classification
	Introduction
	Computer Vision
	Image Classification Project Goal
	Data Collection
	Collecting Dataset with OpenMV IDE

	Training the model with Edge Impulse Studio
	Dataset
	The Impulse Design
	Image Pre-Processing
	Model Design

	Model Training
	Model Testing
	Deploying the model
	Arduino Library
	OpenMV

	Image Classification (non-official) Benchmark
	Conclusion
	Resources

	Object Detection
	Introduction
	Object Detection versus Image Classification
	An innovative solution for Object Detection: FOMO

	The Object Detection Project Goal
	Data Collection
	Collecting Dataset with OpenMV IDE

	Edge Impulse Studio
	Setup the project
	Uploading the unlabeled data
	Labeling the Dataset

	The Impulse Design
	Preprocessing all dataset

	Model Design, Training, and Test
	Test model with ``Live Classification''

	Deploying the Model
	Conclusion
	Resources

	Keyword Spotting (KWS)
	Introduction
	How does a voice assistant work?
	The KWS Hands-On Project
	The Machine Learning workflow

	Dataset
	Uploading the dataset to the Edge Impulse Studio
	Capturing additional Audio Data

	Creating Impulse (Pre-Process / Model definition)
	Impulse Design
	Pre-Processing (MFCC)
	Going under the hood

	Model Design and Training
	Going under the hood

	Testing
	Live Classification

	Deploy and Inference
	Post-processing
	Conclusion
	Resources

	Motion Classification and Anomaly Detection
	Introduction
	IMU Installation and testing
	Defining the Sampling frequency:

	The Case Study: Simulated Container Transportation
	Data Collection
	Connecting the device to Edge Impulse
	Data Collection

	Impulse Design
	Data Pre-Processing Overview
	EI Studio Spectral Features
	Generating features

	Models Training
	Testing
	Deploy
	Inference
	Post-processing

	Conclusion
	Case Applications
	Nicla 3D case

	Resources

	XII XIAO ESP32S3
	Pre-requisites
	Setup
	Exercises
	Setup
	Introduction
	Installing the XIAO ESP32S3 Sense on Arduino IDE
	Testing the board with BLINK
	Connecting Sense module (Expansion Board)
	Microphone Test
	Testing the Camera
	Testing WiFi
	Conclusion
	Resources

	Image Classification
	Introduction
	A TinyML Image Classification Project - Fruits versus Veggies
	Training the model with Edge Impulse Studio
	Data Acquisition
	Impulse Design
	Training
	Deployment

	Testing the Model (Inference)
	Testing with a Bigger Model
	Running inference on the SenseCraft-Web-Toolkit
	Conclusion
	Resources

	Object Detection
	Introduction
	Object Detection versus Image Classification
	An Innovative Solution for Object Detection: FOMO

	The Object Detection Project Goal
	Data Collection
	Collecting Dataset with the XIAO ESP32S3

	Edge Impulse Studio
	Setup the project
	Uploading the unlabeled data
	Labeling the Dataset
	Balancing the dataset and split Train/Test

	The Impulse Design
	Preprocessing all dataset

	Model Design, Training, and Test
	Test model with ``Live Classification''

	Deploying the Model (Arduino IDE)
	Deploying the Model (SenseCraft-Web-Toolkit)
	Conclusion
	Resources

	Keyword Spotting (KWS)
	Introduction
	How does a voice assistant work?
	The KWS Project
	The Machine Learning workflow

	Dataset
	Capturing (offline) Audio Data with the XIAO ESP32S3 Sense
	Save recorded sound samples (dataset) as .wav audio files to a microSD card
	Capturing (offline) Audio Data Apps

	Training model with Edge Impulse Studio
	Uploading the Data
	Creating Impulse (Pre-Process / Model definition)
	Pre-Processing (MFCC)
	Model Design and Training

	Testing
	Deploy and Inference
	Postprocessing
	Conclusion
	Resources

	Motion Classification and Anomaly Detection
	Introduction
	Installing the IMU
	The TinyML Motion Classification Project
	Connecting the device to Edge Impulse
	Data Collection
	Data Pre-Processing
	Model Design
	Impulse Design
	Generating features
	Training
	Testing
	Deploy
	Inference
	Conclusion
	Resources

	XIII Raspberry Pi
	Pre-requisites
	Setup
	Exercises
	Setup
	Introduction
	Key Features
	Raspberry Pi Models (covered in this book)
	Engineering Applications

	Hardware Overview
	Raspberry Pi Zero 2W
	Raspberry Pi 5

	Installing the Operating System
	The Operating System (OS)
	Installation
	Initial Configuration

	Remote Access
	SSH Access
	To shut down the Raspi via terminal:
	Transfer Files between the Raspi and a computer

	Increasing SWAP Memory
	Installing a Camera
	Installing a USB WebCam
	Installing a Camera Module on the CSI port

	Running the Raspi Desktop remotely
	Updating and Installing Software
	Model-Specific Considerations
	Raspberry Pi Zero
	Raspberry Pi 4 or 5

	Image Classification
	Introduction
	Applications in Real-World Scenarios
	Advantages of Running Classification on Edge Devices like Raspberry Pi

	Setting Up the Environment
	Updating the Raspberry Pi
	Installing Required Libraries
	Setting up a Virtual Environment (Optional but Recommended)
	Installing TensorFlow Lite
	Installing Additional Python Libraries
	Creating a working directory:
	Setting up Jupyter Notebook (Optional)
	Verifying the Setup

	Making inferences with Mobilenet V2
	Define a general Image Classification function
	Testing with a model trained from scratch
	Installing Picamera2

	Image Classification Project
	The Goal
	Data Collection

	Training the model with Edge Impulse Studio
	Dataset

	The Impulse Design
	Image Pre-Processing
	Model Design
	Model Training
	Trading off: Accuracy versus speed
	Model Testing
	Deploying the model

	Live Image Classification
	Conclusion:
	Resources

	Object Detection
	Coming soon.

	Small Language Models (SLM)
	Coming soon.

	XIV Shared Labs
	KWS Feature Engineering
	Introduction
	The KWS
	Introduction to Audio Signals
	Why Not Raw Audio?

	Introduction to MFCCs
	What are MFCCs?
	Why are MFCCs important?
	Computing MFCCs

	Hands-On using Python
	Conclusion
	Resources

	DSP Spectral Features
	Introduction
	Extracting Features Review
	A TinyML Motion Classification project
	Data Pre-Processing
	Edge Impulse - Spectral Analysis Block V.2 under the hood

	Time Domain Statistical features
	Spectral features
	Time-frequency domain
	Wavelets
	Wavelet Analysis
	Feature Extraction

	Conclusion

	XV REFERENCES
	References

	Appendices
	Tools
	Hardware Kits
	Microcontrollers and Development Boards

	Software Tools
	Machine Learning Frameworks
	Libraries and APIs

	IDEs and Development Environments

	Datasets
	Model Zoo
	Resources
	Books
	Tutorials
	Frameworks
	Courses and Learning Platforms

	Communities
	Online Forums
	Blogs and Websites
	Social Media Groups
	Conferences and Meetups

	Case Studies

