Compiling machine learning programs via high-level tracing

Roy Frostig* Matthew James Johnson™ Chris Leary
Google Brain Google Brain Google
frostig@google.com mattjj@google.com leary@google.com
ABSTRACT import autograd.numpy as np

We describe JAX, a domain-specific tracing JIT compiler for gen-
erating high-performance accelerator code from pure Python and
Numpy machine learning programs. JAX uses the XLA compiler
infrastructure to generate optimized code for the program subrou-
tines that are most favorable for acceleration, and these optimized
subroutines can be called and orchestrated by arbitrary Python.
Because the system is fully compatible with Autograd, it allows
forward- and reverse-mode automatic differentiation of Python
functions to arbitrary order. Because JAX supports structured con-
trol flow, it can generate code for sophisticated machine learning
algorithms while maintaining high performance. We show that by
combining JAX with Autograd and Numpy we get an easily pro-
grammable and highly performant ML system that targets CPUs,
GPUs, and TPUs, capable of scaling to multi-core Cloud TPUs.

1 INTRODUCTION

Unlocking machine FLOPs has powered the explosion of progress
in machine learning. Since the landmark work of AlexNet on dual-
GPUs [5], the field has come a long way both in the number of
FLOPs available to researchers and the ease with which these FLOPs
can be harnessed. The JAX compiler aims to push further in this di-
rection, enabling researchers to write Python programs—leaning on
familiar and convenient libraries like Numpy [12] for numerics and
Autograd [6] for automatic differentiation—that are automatically
compiled and scaled to leverage accelerators and supercomputers.

The two goals of maximizing access to machine FLOPs and of
facilitating research-friendly programmability are often in tension.
Dynamic languages like Python offer convenient programming (1,
8] but are too unconstrained to enable optimized code generation.
Meanwhile, effective hardware acceleration requires much more
static information [13, 14]. Emerging supercomputer platforms
like the NVIDIA DGX-1 and the Google Cloud TPU present new
hardware capabilities that magnify the programmability challenge.

We can start to address this tension with an empirical observa-
tion: ML workloads often consist of large, accelerable, pure-and-
statically-composed (PSC) subroutines orchestrated by dynamic
logic. Roughly speaking, a function is pure when it does not have
side effects. It is statically-composed, relative to a set of primitive
functions, when it can be represented as a static data dependency
graph on those primitives. Provided the primitive functions are
themselves accelerable, e.g. when they comprise array-level nu-
merical kernels and restricted control flow, PSC routines are prime
candidates for acceleration: they delineate chunks of the original
Python program from which all unused dynamism can be stripped
out.

The JAX system is a just-in-time (JIT) compiler that generates
code for PSC subroutines via high-level tracing together with the

*Equal contributions

from autograd import grad
from jax import jit_ps

def predict(params, inputs):
for W, b in params
outputs = np.dot(inputs, W) + b
inputs = np.tanh(outputs)
return outputs

def loss(params, inputs, targets):
preds = predict(params, inputs)
return np.sum((preds - targets)**2)

grad_fun = jit_ps(grad(loss)) # Compiled gradient-of-loss function

Listing 1: A basic fully-connected neural network with JAX.

XLA compiler infrastructure. Tracing in JAX is high-level both in
the sense (i) that it is implemented as user-level code within the
source language, rather than as part of the source language’s im-
plementation, and (ii) that the trace primitives are not VM-level op-
erations on basic data, but rather library-level numerical functions
on array-level data, like matrix multiplies, convolutions, reductions
along axes, elementwise operations, and multidimensional indexing
and slicing [2, 9, 11].

JAX is built atop the same tracing library used within Autograd,
which, being designed for self-closure, recognizes its own oper-
ations as primitives. JAX also has Numpy’s numerical functions
among its primitives. As a result, it generates code for Python func-
tions written in familiar Numpy and that involve arbitrary-order
forward- and reverse-mode automatic differentiation. On the back
end, JAX uses XLA for array-level program optimization and code
generation. Whereas other systems focus on providing easy access
to a fixed set of hand-written, target-specific numerical kernels, JAX
provides a means of composition for all of XLA’s supported target
architectures: by trace-compiling PSC routines, JAX automatically
stages out new kernels from existing ones.

The acronym JAX stands for “just after execution”, since to com-
pile a function we first monitor its execution once in Python.

2 SYSTEM DESIGN

The design of JAX is informed by the observation that ML work-
loads are typically dominated by PSC subroutines. In light of this
observation, JAX trace formation simply requires users to anno-
tate the PSC entry point; that is, a Python function for which the
PSC assumption holds. This design exploits the property that these
functions are often straightforward to identify in machine learning
code, making them simple for the machine learning researcher to
annotate with JAX’s jit_ps decorator. While manual annotation
presents a challenge for non-expert users and for “zero workload
knowledge” optimization, it provides immediate benefits to experts
and, as a systems research project, demonstrates the power of the
PSC assumption. JAX trace caching creates a monomorphic sig-
nature for the parameters to the traced computation, such that

SYSML’18, February 2018, Stanford, CA USA

newly encountered array element types, array dimensions, or tuple
members trigger a re-compilation.

On a trace cache miss, JAX executes the corresponding Python
function and traces its execution into a graph of primitive func-
tions with static data dependencies. Existing primitives comprise
not only array-level numerical kernels, including Numpy functions
and additional functions like convolutions and windowed reduc-
tions, but also restricted control flow functions, like a functional
while_loop and cond (if-then-else). These control flow primitives are
less familiar than syntactic Python control flow constructs, but they
allow users to stage control flow into the compiled computation by
preserving the PSC property. Finally, JAX includes some primitives
for functional distributed programming, like iterated_map_reduce.
The set of primitives is defined in Python and is extensible; new
primitives must simply be annotated with a translation rule that
builds corresponding XLA computations.

To generate code, JAX translates the trace into XLA HLO, an
intermediate language that models highly accelerable array-level
numerical programs. Broadly speaking, JAX can be seen as a system
that lifts the XLA programming model into Python and enables
its use for accelerable subroutines while still allowing dynamic
orchestration. See Listing 2 for some example translation rules.

def xla_add(xla_builder, xla_args, np_x, np_y):
return xla_builder.Add(xla_args[0], xla_args[1])

def xla_sinh(xla_builder, xla_args, np_x):
b, xla_x = xla_builder, xla_args[0]
return b.Div(b.Sub(b.Exp(xla_x), b.Exp(b.Neg(xla_x))), b.Const(2))

def xla_while(xla_builder, xla_args, cond_fun, body_fun, init_val):
xla_cond = trace_computation(cond_fun, args=(init_val,))
xla_body = trace_computation(body_fun, args=(init_val,))
return xla_builder.While(xla_cond, xla_body, xla_args[-11)

jax.register_translation_rule(numpy.add, xla_add)
jax.register_translation_rule(numpy.sinh, xla_sinh)
jax.register_translation_rule(while_loop, xla_while)

Listing 2: JAX translation rules from primitives to XLA HLO.

Finally, JAX is fully compatible with Autograd. See Listing 1,
which compiles a gradient function for neural network training.

3 EXAMPLES AND EXPERIMENTS

Array-level fusion. To demonstrate the array-level code optimiza-
tion and operation fusion that JAX and XLA provide, we compiled
a single fully-connected neural network layer with SeLU nonlinear-
ity [4] and show the JAX trace and XLA HLO graphs in Figure 1.
Truncated Newton-CG optimization on CPU. As a CPU bench-
mark, we implemented a truncated Newton-CG optimization al-
gorithm, which performs approximate Newton-Raphson updates
using a conjugate gradient (CG) algorithm in its inner loop. The in-
ner CG algorithm is truncated when the residual norm is decreased
below some threshold or a maximum number of inner iterations
is reached. We compared the Python execution time with the JAX-
compiled runtime on CPU using a single thread and several small
example optimization problems, including a convex quadratic, a
hidden Markov model (HMM) marginal likelihood, and a logistic
regression. The XLA compile times were slow for some CPU exam-
ples but are likely to improve significantly in the future, and the
speedups for the warmed-up code (Table 1) are substantial.

Roy Frostig, Matthew James Johnson, and Chris Leary

AR

alpha expml | greater

N |/

/
muiply |/

multiply

:

output

(a) JAX trace. (b) HLO before fusion. (c) HLO after fusion.
Figure 1: XLA HLO fusion for a layer with SeLU nonlinearity.
The gray box indicates all ops are fused into the GEMM.
Python JAX speedup

convex quadratic | 4.12sec 0.036 sec 114x
hidden Markov model fit | 7.79 sec 0.057 sec 153x
logistic regression fit | 3.62 sec 1.19 sec 3x
Table 1: Timing (sec) for Truncated Newton-CG on CPU.

Speedup v Replicas
global batch=1024, slope=0.97

Execution Time v Replicas
global batch=R*128

2201 2
m
E
: 3
Fos54 2
=
.9
£
3
X
& 9104
12 4 8 12 4 8

Replica Count (R) Replica Count (R)

Figure 2: Scaling on a Cloud TPU for ConvNet training step.

Training a convolutional network on GPU. We implemented an
all-conv CIFAR-10 network [10], involving only convolutions and
ReLU activations. We JAX-compiled a single stochastic gradient
descent (SGD) update step and called it from a pure Python loop,
reporting the minimum average wall-clock step time across 100
trials in Table 2. As a reference, we implemented the same algorithm
in TensorFlow and invoked it within a similar Python loop. The
benchmarking environment was CUDA 8 driver 384.111 on an HP

7420 workstation.
TF:GPU JAX:GPU

texec | 40.2 msec 41.8 msec

relative 1x 1.04x

Table 2: Timing (msec) for a JAX convnet step on GPU.

Cloud TPU scalability. JAX parallelization of global batch on
Cloud TPU cores exhibits linear speedup (Figure 2, left). At fixed
minibatch / replica, texec is minimally impacted by replica count
(within 2ms, right). We used a Cloud TPU configuration with four
chips and two cores per chip [3], so R = 2 is more efficient than
R = 8, as on-chip communication is faster than between chips.
The anomaly at R = 4 is due to an implementation detail of XLA’s
all-reduce.

Compiling machine learning programs via high-level tracing

REFERENCES

[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

[9
[10

[11

[12

[13

[14

]
]

]

]

Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, and others.
2016. Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467 (2016).

Todd A Anderson, Hai Liu, Lindsey Kuper, Ehsan Totoni, Jan Vitek, and Tatiana
Shpeisman. 2017. Parallelizing Julia with a Non-Invasive DSL. In LIPIcs-Leibniz In-
ternational Proceedings in Informatics, Vol. 74. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik.

Jeff Dean. 2017. Machine Learning for Systems and Systems for Machine Learning.
http://learningsys.org/nips17/assets/slides/dean-nips17.pdf. (2017).

Giinter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter.
2017. Self-Normalizing Neural Networks. arXiv preprint arXiv:1706.02515 (2017).
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems (NIPS). 1097-1105.

Dougal Maclaurin. 2016. Modeling, Inference and Optimization with Composable
Differentiable Procedures. Ph.D. Dissertation. Harvard University.

Dougal Maclaurin, David Duvenaud, Matthew Johnson, and Ryan P. Adams.
2015. Autograd: Reverse-mode differentiation of native Python. (2015). https:
//github.com/HIPS/autograd

Adam Paszke, Sam Gross, Soumith Chintala, and Gregory Chanan. 2017. PyTorch.
https://github.com/pytorch/pytorch. (2017).

Jarrett Revels. 2017. Casette.jl. https://github.com/jrevels/Cassette.jl. (2017).
Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Ried-
miller. 2014. Striving for simplicity: The all convolutional net. arXiv preprint
arXiv:1412.6806 (2014).

Ehsan Totoni, Todd A Anderson, and Tatiana Shpeisman. 2016. HPAT: high
performance analytics with scripting ease-of-use. arXiv preprint arXiv:1611.04934
(2016).

Stéfan van der Walt, S Chris Colbert, and Gael Varoquaux. 2011. The NumPy
array: a structure for efficient numerical computation. Computing in Science &
Engineering 13, 2 (2011), 22-30.

Richard Wei, Lane Schwartz, and Vikram Adve. 2017. DLVM: A modern compiler
framework for neural network DSLs. In NIPS 2017 Autodiff Workshop.

XLA and TensorFlow teams. 2017. XLA — TensorFlow, compiled. https:
//developers.googleblog.com/2017/03/xla- tensorflow-compiled. html. (2017).

SYSML’18, February 2018, Stanford, CA USA

http://learningsys.org/nips17/assets/slides/dean-nips17.pdf
https://github.com/HIPS/autograd
https://github.com/HIPS/autograd
https://github.com/pytorch/pytorch
https://github.com/jrevels/Cassette.jl
https://developers.googleblog.com/2017/03/xla-tensorflow-compiled.html
https://developers.googleblog.com/2017/03/xla-tensorflow-compiled.html

	Abstract
	1 Introduction
	2 system design
	3 Examples and experiments
	References

