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Abstract

Precise detection of 3D objects is a critical task in autonomous driving. Monocular
3D object detection problem is defined as predicting 3D bounding boxes in the
metric space with a single monocular image. Most 3D detectors follow the standard
pre-training strategy using the supervised ImageNet dataset, which is created for
a dissimilar classification task. In this paper, a simple and effective pre-training
strategy is proposed for monocular 3D object detection problem, without requiring
any human supervision and annotated data. A dense depth estimation pretext
task is incorporated into the pre-training pipeline by taking advantage of self-
supervised learning. Experiments show that transferring the pre-trained weights to
the detection network increases the performance in 3D object detection and bird’s
eye view evaluations up to 25% improvement rate with respect to the baseline
networks that are based on ImageNet pre-training. This strategy has the potential
of being applicable to other 3D object detection methods without any modifications
to the existing algorithm design.
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1 Introduction

Many important tasks in autonomous driving such as prediction and planning require a robust
perception pipeline in the metric 3D space. An important component of a perception stack is object
detection. Thanks to improvements in deep neural networks, the accuracy of state-of-the-art 2D
object detection methods almost reached to human level (Lin et al.| [2020], |[Zhou et al.| [2019])).
However, these methods only provide the location of the objects in 2D image plane, which is not
sufficient to represent objects in 3D world where they actually exist. Monocular 3D object detection
problem relies on predicting 3D bounding boxes in the metric space with a single monocular image.
Localizing the objects in 3D is an ill-posed problem, since the critical depth information cannot be
measured directly from the monocular images. Despite the difficulties in algorithm design, there is an
increasing trend on monocular 3D object detection research in the autonomous driving community.

Monocular 3D object detection methods mostly depend on supervised data. In recent years, there
is a growing number of publicly available autonomous driving datasets (e.g. KITTI (Geiger et al.
[2012]), NuScenes (Caesar et al.[[2020]]), A2D2 (Geyer et al.| [2020]), H3D (Patil et al.[[2019]]), Open
Waymo (Sun et al.| [2020]])) which contain thousands of images and annotated 3D bounding boxes.
The annotation process is extremely costly since it requires accurate depth sensors like LIDAR as
well as intense human supervision. In the autonomous driving context, 3D bounding boxes usually
have 7 degrees of freedom (DoF) that are center location (x, y, z), dimensions (w, h, ) and heading
angle (#). On the other hand, conventional 2D objects have 4 DoF, 2D location (z,y) and sizes
(w, h), which is easier to annotate. These difficulties in the data annotation process causes 3D object
detection process to be of high-cost and not scalable.

Pre-training is a very common practice in many computer vision tasks in order to reduce data size
as well as convergence time. In a generic pre-training process, models are first pre-trained on
large-scale datasets to learn visual features, and then fine-tuned on downstream tasks such as object
detection. In particular, the supervised ImageNet (Deng et al.|[2009]]) pre-trained model has become
de facto standard for years. One method to obtain a pre-trained model is to utilize self-supervised
learning (Jing and 'Tian| [2020]), which is basically a subset of unsupervised learning where the input
data provides the supervision. Self-supervised learning methods are proposed to learn visual features
from large-scale unlabeled data through a range of pretext tasks with no human supervision.

Inspired by the idea that problem related visual features learnt by a pretext task can actually benefit the
downstream task, we propose a strategy by engineering the pre-trained model with self-supervision in
the context of 3D object detection for autonomous driving. In order to evaluate the strategy, we first
train a dense depth network in self-supervised manner, and then use the pre-trained model to solve
a monocular 3D object detection problem. The experiments are conducted on well-known KITTI
dataset (Geiger et al|[2012]]). It is shown that initializing the detection network with the pre-trained
model obtained by the dense depth estimation network improves the performance in 3D detection
and bird’s eye view evaluations by a wide margin. This strategy can be applied to other 3D object
detection methods without any modification in the algorithm design.

Our contributions are summarized as follows:

* We propose a simple and effective pre-training strategy to improve 3D monocular detection
performance without requiring any human supervision and annotated data.

* Our strategy significantly outperforms the supervised ImageNet baseline up to 25% im-
provement rate when transferring the pre-trained weights to 3D object detection task.

2 Related Work

Monocular 3D object detection: Several works are based on lifting 2D detection to 3D, with
assuming that perspective projection of a 3D bounding box should fit tightly with its 2D detection
window (Mousavian et al.|[2017]], Liu et al. [2019]]). The main idea of these methods are to regress
the 3D bounding box parameters from the image patch enclosed by the 2D bounding box. However,
they require an additional 2D object detector in order to achieve end-to-end 3D object detection. One
notable approach for 3D object detection is based on detecting keypoints on the monocular images.
The key assumption in this category is that vehicles are rigid bodies with distinctive common parts
that can be used as keypoints for detection. Most studies (Liu et al. [2020], Tang et al.| [2020], L1 et al.



[2020], |Chen et al.|[2020a])) utilize various 2D object detection frameworks such as CenterNet (Zhou
et al. [2019]) and RetinaNet (Lin et al.| [2020]) to construct single-staged 3D detection pipelines in
contrast to the region proposal networks in lifting 2D to 3D approaches. Other works along this line
use 3D CAD models to increase the number of keypoints regarding the shape of the vehicles (Chabot;
et al.[[2017], Ansari et al.|[2018]]). Although they use a semi-automatic way to label 3D keypoints by
placing CAD models in the 3D bounding box ground truths, the annotation on a large scale is very
complex and time-consuming. All these methods probably follow the ImageNet pre-training strategy,
which is not specifically stated in their papers.

Depth estimation: In order to obtain depth straight from the images, a convolution based depth
estimation network has been used by |[Eigen et al.| [2014]], which is a primordial example of this type
networks. In order to enhance the information exchange between decoder and encoder parts of the
neural network, substantial developments have been made by dense pixel prediction networks in time
(Shelhamer et al.|[2017al]). To tackle with the spatial reduction which happens in down-sampling,
a concept called fractional pooling (Graham| [2015]) has been proposed. Increasing the learning
capabilities of the pooling in the network which resulted in better results has been introduced by |[Lee
et al.| [2015]]. Apart from that, self-supervised depth estimation techniques draw attention since direct
supervision is difficult and requires precise range sensors. Recently, the usage of ego-motion enables
self-supervised monocular depth estimation in image sequences (Pillai et al.| [2019]], |Guizilini et al.
[2020]).

Pre-training: Transfer learning (Torrey and Shavlik [2009]) increases the performance of a deep
learning model between different sample sets in the same domain or different domains. When the
model with trained feature extractors from a domain starts training on another domain, the desired
point in training is reached faster. In some deep learning tasks, the transfer learning method is used as
pre-training phase. The pre-training phase noticeably improves the performance of most segmentation
(Shelhamer et al.|[2017b]]) and 2D object detection (Lin et al.|[2020], Zhou et al.|[2019])) algorithms.
If there are no ground-truth labels of the data, pre-training can be done with self-supervised methods.
Reconstruction based loss functions are generally used (Doersch et al.|[2015], [Pathak et al.|[2016]],
Goodfellow et al.|[2014]]) for self-supervised training in visual tasks. Alternatively, contrastive-loss
can also be used. Contrastive learning is feeding the positive images to the model by pairing them
with augmented versions of themselves and negative images with different images. The contrastive
learning method is used in most studies with successful results (Chen et al.|[2020b], Wu et al.|[2018]],
Xie et al.| [2020]).

3 Self-supervised Pre-training Strategy

Our proposed strategy relies on engineering the pre-trained model that is used to initialize the 3D
object detection network. Most 3D detectors follow the standard pre-training strategy with the
supervised ImageNet (Deng et al. [2009]) (Fig.[Ih) which is actually trained to solve an image level
recognition task. Even though ImageNet pre-trained model provides better convergence than the
random initialization strategy, it might not be a proper initializer for dense prediction tasks such as
object detection (Wang et al.|[2020]). In other words, a model trained to solve a recognition task
might not learn the necessary features to localize the objects in the image. Similar to this idea, we use
a self-supervised dense depth estimation pretext task to force the model learn depth related features
that are critical for 3D object detection.

The high level pipeline of the proposed pre-training strategy is illustrated in Fig. [Ip. The dense depth
auto-encoder network is first trained on top of the standard ImageNet, and then the encoder part is
detached to obtain the pre-trained model which later serves the detection network. By training the
depth network, it is expected that the encoder part learns a compact representation of the visual depth
features. The encoded features in the latent spaces allow to make relationships between the objects
present in the image and their real world depth. It is important to note that the training of the depth
auto-encoder is performed by completely self-supervised manner. Neither annotated data nor human
supervision is required to train the model. This strategy is simple and effective in order to improve
the performance of a 3D object detection method which regresses the depth without any modification
in the algorithm design.



3.1 Detection Network

Most monocular 3D detection networks basically try to solve the inverse projection problem regressing
the depth of the target object classes. According to the assumption that the encoded features provide
better representation for the rigid objects and their actual depths, we select a simple and straight-
forward 3D detector. The SMOKE network [2020]) is engineered as an extension to
CenterNet [2019])) which is a keypoint-based and anchor-free object detection framework.
SMOKE is also single-staged and does not contain any hand-crafted features. There are two separate
prediction heads to perform the object classification and 3D bounding box regression. Estimated
keypoints are classified by point-wise focal loss (2020])) on the downsampled feature maps.
On the other hand, the regression loss is calculated as the /; distance of the predicted and ground-truth
3D bounding boxes.

Similar to CenterNet, SMOKE uses a hierarchical layer fusion backbone DLA-34 [2017])
to extract feature maps. Basically, DLLA-34 has an encoder part to downsample the input image to
different scales, and a decoder part to upsample with an iterative way to combine those layers. It
enables to learn a combination of low and high level features with long skip connections. The rough
detection network architecture as it is used in SMOKE is illustrated in Fig.[T} The colored shape on
the left-hand side indicates the encoder part which is initialized with the pre-trained models. The
weights other than the base part are initialized randomly. It is important to note that this strategy is
not suitable for the 3D detection networks (e.g. [Mousavian et al.| [2017], [Liu et al.| [2019]) which are
fed with the image patches cropped from their 2D detection proposals, because the depth pre-trained
model accepts a complete scene image.
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Figure 1: The high level pipeline to illustrate (a) the standard ImageNet and (b) the proposed pre-
training strategies. The trapezoids on the left hand-side of the networks indicate the feature extractor
backbones whereas the arrows between the backbones denote the initialization order. In the proposed
strategy, a dense depth estimation network is first trained with self-supervised manner, and then the
detection network is initialized with the pre-trained model obtained in order to learn critical depth
features to solve 3D object detection problem.
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3.2 Depth Network

The proposed pre-training strategy relies on obtaining a dense depth encoder as a pre-trained model.
However, estimating dense depth maps via direct supervision is difficult for a pretext task since it
requires precise range sensors and cross-calibration to collect ground-truth data. In order to obtain a
pre-trained model from a dense depth network, a self-supervised methodology is employed. PackNet



(Guizilini et al] [2020]]) uses geometrical constraints and camera motion on image sequences as the
source of supervision. In the training pipeline, there is a pose network that is trained along with the
depth network simultaneously. The self-supervision loss is constructed with the source and the target
image that is synthesized from the ego-motion information. It is assumed that sequence of images are
available during the training.

Instead of using packing and unpacking structures introduced in the original work, we engineer
the depth auto-encoder network such that it can be integrated with the DLA-34 base part. The
skip connections in the depth decoder are aligned to the ones in the detection network. In training,
ResNet-50 [20135]) is employed for ego-motion network. It is noted that the depth encoder
network (i.e. DLA-34 base part) is initialized with the standard ImageNet pre-trained model as
depicted in Fig.[Tp.

The training data that is used for dense depth estimation network is the KITTI Raw Dataset
[2012])). There are several sequences in various categories (e.g. city, residential, road, campus)
with a total number of 39810 images (Eigen image splits Eigen et al.| [2014], Guizilini et al.| [2020]).
The whole depth network is trained with self-supervised manner and no annotated data is used.
Qualitative examples of dense depth estimation results are shown in Fig.

Figure 2: Qualitative examples of dense depth estimation results obtained from the depth network
trained with self-supervised manner.

4 Experiments

In order to evaluate the proposed pre-training strategy, extensive experiments are conducted on
the detection network. In the experiments, we first train the dense depth estimation network to
obtain the pre-trained model, then the model is used to initialize the detection network. The training
and evaluation results are presented as the comparison of the baseline ImageNet and the proposed
pre-training strategies. For the sake of simplicity, our strategy is denoted as DepthNet for the rest of
the paper.

4.1 Dataset

The detection network is trained by using KITTI Object Dataset (Geiger et al| [2012]) which is a
well-accepted standard for evaluating 3D object detection performance. It contains 7481 images

3https://tri-ml-public.s3.amazonaws.com/github/packnet-sfm/splits/KITTI/eigen_zhou_files.txt



for training and 7518 images for testing. There are 4 types of evaluation categories which are 3D
detection, bird’s eye view, 2D detection and orientation. For each evaluation, they are divided into
easy, moderate and hard cases based on the height of the 2D bounding box of the objects, truncation
and occlusion levels. The ground truth of the test set is not released since the competition is still
going on. In order to make the results comparable to the other detection methods in the literature, the
actual training set is split into 3712 training and 3769 validation examples as suggested in|Chen et al.

2016

4.2 Training

SMOKE network (Liu et al|[2020]) is used to evaluate the proposed pre-training strategy. The
training parameters are listed in Table[I] We train (i.e. fine-tune) the network which backbone is
either frozen or non-frozen separately. All training parameters for both approaches are set as the
same except the learning rate decay steps and number of epochs which are 50 and 100 respectively.
The batch size is set to 16 with the learning rate of 1.25e—4 initially and drops two times with a
factor of 10. The original image resolution is used and padded to 1280 x 384. Flipping, shifting and
scaling augmentation techniques are applied to input images. Three training sessions are carried out
to provide consistent results. Due to the technical issue on the implementation platform, deformable
convolution (DCNv2) and group normalization (GN) layers are switched to standard convolution and
batch normalization layers.

Table 1: Detection network training parameters

Optimizer Adam
Initial learning rate 1.25e—4
Learning rate decay factor 0.1
Batch size 16
Confidence threshold 0.25
Input resolution 1280 x 384
Non-frozen backbone:
Training epoch 100
Learning rate decay steps 40, 70
Frozen backbone:
Training epoch 50
Learning rate decay steps 20, 35

Fig. 3] presents the moving averaged loss curves for the detection networks initialized with the
proposed DepthNet and the baseline ImageNet pre-trained models. Classification loss is a metric that
can be used to evaluate the success of the deep learning model in the classification task. Looking
at frozen and non-frozen models, it can be seen that both types have similar convergence structures.
However, for the frozen architecture, the model with the pre-trained DepthNet converges slightly
faster.

Regression loss is another metric to measure the success of bounding-box regression process. In
frozen and non-frozen combinations, the large gaps between the loss curves indicate the pre-trained
DepthNet converges significantly faster than the baseline ImageNet. This can be also interpreted
as the encoded depth features in the DepthNet improve the bounding box regression compared to
classification.

Total loss represents the combination of classification loss and regression loss in this context. The
characteristics of both losses can be seen in the total loss plots. The distinct performances of the
models in the regression loss change are also effective in the structure of the total loss. Based on
the interpretation made on the plots, the results show that the training session with the pre-trained
DepthNet backbone brings more successful results in a shorter time.

*https://xiaozhichen.github.io/files/mv3d/imagesets.tar.gz
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Figure 3: Classification, regression and total loss with respect to training iteration. Total loss refers
to the combination of classification and regression loss. Three training sessions are carried out to
draw the plots for consistency. The thick lines are the average of the three sessions. The shaded areas
represent the minimum and maximum value ranges. Plots are created using moving average to reduce
complexity. Note that * denotes the pre-trained models that are frozen during the training.

5 Results

Standard KITTI evaluation script is used to calculate the mAP scores for only car class over 40
recall points with intersection over union (IoU) threshold of 0.5. The final results are provided by
averaging the output of three training sessions for consistency. Table 2]lists the mAP scores obtained
for different evaluation methods which can be divided into two categories: (1) 3D object detection
and bird’s-eye view where depth estimation is essential, and (2) orientation where visual appearance
is significant. 2D detection can be ignored since it is calculated as projecting the 3D points onto the
images. There is an additional row showing the improvement rate indicates the percentage that mAP
scores are changed with respect to the baseline ImageNet.

Table 2: Validation split performance on AP|g,, @ T,y = 0.5 w.r.t. the car class. * denotes frozen
pre-trained models. Improvement rate indicates the percentage that the mAP scores are changed w.r.t.
the baseline ImageNet.

3D object detection Bird’s eye view 2D object detection Orientation
Easy Mode Hard | Easy Mode Hard | Easy Mode Hard | Easy Mode Hard

ImageNets 13.03 898 8.19 | 1591 11.41 10.18 | 68.46 67.26 59.58 | 53.87 5294 4741
DepthNetx 2149 1421 13.01 | 2640 17.57 16.60 | 77.94 76.37 69.63 | 60.16 59.64 54.97
Improvement Rate | +64% +58% +58% | +66% +54% +63% | +14% +13% +17% | +12% +13% +16%
ImageNet 3592 26.04 2356 | 4232 3094 27.12 | 92.67 87.56 80.15 | 73.85 69.50 63.84
DepthNet 45.00 3040 26.35 | 49.94 33.82 30.00 | 91.15 86.02 78.68 | 69.53 67.39 61.65

Improvement Rate | +25% +17% +12% | +18% +9% +11% | 2% 2% 2% -6% -3% -3%

The comparison of frozen backbones is important for showing how the encoded features in the pre-
trained models are able to improve the detection performance without any update. In this comparison,
it is obvious to see that the proposed DepthNet surpasses ImageNet in all evaluations. In 3D object
detection and bird’s eye view, an average improvement rate over 60% is achieved, whereas an average
improvement rate over 15% is achieved in 2D object detection and orientation. In both cases, the
encoded depth features in the pre-trained DepthNet dramatically enhance the performance of the
networks.

By the experiments conducted on non-frozen models, the aim is to get the highest score as possible.
As it can be seen in the Table 2] the improvement rates compared with frozen backbone scenarios are
lower. The actual mAP scores are nearly doubled in 3D object detection and bird’s eye view where



DepthNet outperforms the baseline ImageNet with up to 25% improvement rate. However, there are
minor drops in 2D object detection and orientation where the features representing visual appearance
is more important.

For each evaluation method, the scores with respect to training iterations are plotted in Fig.[d For
both frozen and non-frozen architectures, the biggest gap between the results is achieved in 3D object
detection and bird’s-eye view evaluations where depth estimation is critical. In Fig. f and Fig. [, it
can be clearly seen that DepthNet approach quickly take the lead in mAP scores from the beginning
of the training, and keep its score advantage over the whole training. In Fig. @ and Fig. [dd, which
are 2D object detection and orientation, DepthNet go head to head with ImageNet during the training.
Since these results are obtained from a single training settings, it might be tuned that DepthNet
outperforms the baseline ImageNet. To address this problem, additional experiments are performed
on the effect of hyper-parameters, which is described in Sec. [A]]
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Figure 4: mAP/iteration curves w.r.t. the car class for different evaluation methods. The scores are
obtained with non-frozen backbones on the validation split.

Several qualitative examples on the validation split are displayed in Fig.[5] For better visualization
and comparison, the bird’s-eye view representation with respect to pre-training strategies is drawn.
The green boxes drawn around the vehicles represent the ground-truth information whereas the red
ones are the detection results for the relevant strategy. When Fig. [5k and Fig.[5d are compared, it is
possible to see the difference between DepthNet and ImageNet on frozen backbones even more clear.
ImageNet fails to detect most of the vehicles in the scene and when it detects, there is a huge error
and the boxes do not match. However, in DepthNet the predicted boxes match nicely with the ground
truth.

(a) DepthNet (b) ImageNet (c) DepthNetx (d) ImageNetx

Figure 5: Qualitative examples on the validation split w.r.t. pre-training strategies. The green boxes
drawn around the vehicles represent the ground-truth information whereas the red ones are the
detection results for the relevant strategy. Note that * denotes frozen pre-trained models.



6 Conclusion

In this paper, a simple and effective pre-training strategy is proposed to solve monocular 3D object
detection tasks. First, a dense depth estimation network is trained with self-supervised manner in
order to encode compact depth features of the scene as well as the objects. The pre-trained depth
encoder is engineered to initialize the 3D object detection network. The experiments are conducted
as comparing the proposed strategy with the baseline ImageNet. The results show that this strategy
significantly reduces the convergence time, and it improves the detection performance by a wide
margin. Furthermore, the simplicity of the strategy allows it to be applied to other 3D object detection
methods without hassle in the algorithm design.
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A Appendix

A.1 Hyper-parameter Analysis

In this section, additional experiments are performed in order to analyze the effect of hyper-parameters
on different evaluation strategies. The same dataset and splits are used. There are 6 different parameter
sets including batch sizes (i.e. 8 and 16) and learning rates (i.e. le — 3, le — 4 and 1le — 5). The
maximum iteration size remains the same for each parameter set for a fair comparison. The evaluation
scores are taken at fixed intervals during the training. The trainings are repeated 3 times with different
seeds. Fig.[0]is created by processing the evaluation scores seen along the 3 training sessions as a
set for each parameter combination, and it illustrates the box plots constructed by these evaluation
scores.

It can be seen that the trainings that include the pre-train phase with DepthNet give similar or better
results when compared with ImageNet in most task types. The mentioned difference is particularly
evident in the 3D object detection and bird’s-eye view tasks where the depth information is crucial.
The minimum points are very close or equal in the two networks is due to the closeness of the scores
at the beginning of the training to 0. The fact that the median points of the box-plots of DepthNet are
mostly higher than ImageNet indicates that DepthNet gives higher scores during the trainings. In
other words, it experiences convergence faster. Furthermore, varying batch size has less effect to the
evaluation scores compared to the effect of learning rate. Despite the parameter changes, it is obvious
that the results obtained with different parameter sets present similar characteristics with each other,
and DepthNet outperforms the baseline ImageNet in most cases.
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Figure 6: mAP/hyper-parameters plots w.r.t. the car class for each evaluation method. The scores

are obtained with different parameter sets on the validation split (AP|gr,, @ T,y = 0.5). Only the
easy part of scores are plotted for simplicity. Each box is constructed with the evaluation scores
taken at fixed intervals. Three training sessions are carried out for consistency. While the median is
represented by the horizontal line inside the boxes, the upper edge of the boxes indicates the highest
score obtained. Note that * denotes frozen pre-trained models.
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