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Abstract

Perception module is at the heart of modern Advanced Driver Assistance Systems
(ADAS). To improve the quality and robustness of this module, especially in the
presence of environmental noises such as varying lighting and weather conditions,
fusion of sensors (mainly camera and LiDAR) has been the center of attention in
the recent studies. In this paper, we focus on a relatively unexplored area which
addresses the early fusion of camera and radar sensors. We feed a minimally
processed radar signal to our deep learning architecture along with its corresponding
camera frame to enhance the accuracy and robustness of our perception module.
Our evaluation, performed on real world data, suggests that the complementary
nature of radar and camera signals can be leveraged to reduce the lateral error by
15% when applied to object detection.

1 Introduction

ADAS and autonomous driving have become one of the main forces behind research in the area
of deep learning in the last few years. Object detection is a key challenge in the design of a robust
perception system for these systems. The camera has established itself as the main sensor for building
the perception module. In recent years, there is an increased emphasis on diversifying the set of sensors
in order to improve the robustness to a range of operating conditions. A variety of sensors such as
LiDAR, short-range radars, long-range radars, infrared cameras, and sonars have been used to enhance
the quality of the perception module output.

In our work, we focus on the fusion of camera and radar sensors. Radar presents a low-cost alternative
to LiDAR as a range determining sensor. A typical automotive radar is currently considerably
cheaper than a LiDAR due to the nature of its fundamental design. Besides costs, radar is robust to
different lighting and weather conditions (e.g., rain and fog) and is capable of providing instantaneous
measurement of velocity, providing the opportunity for improved system reaction times.
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With multiple sensors on a vehicle, sensor fusion is a natural next step for ADAS systems as it can
improve the accuracy and especially robustness of object detection in a relatively noisy environment.
Traditionally, approaches such as Extended Kalman Filter (EKF) [8] are used to combine the detections
of different perception modules. More recently, deep learning has also been employed for sensor
fusion across camera and LiDAR [3, 15, 5, 13, 17].

The fusion of data across different sensors can occur at a late stage, e.g.,the objects/vehicles are
detected by the camera and LiDAR/Radar independently, and the detected object properties (like
object bounding boxes) are combined at a later stage. Typically such a fusion technique is of lower
complexity than an early fusion method where the sensor measurements from multiple modalities are
jointly processed to generate object properties. Traditionally, early fusion allows low-level fusion of the
features, which results in better detection accuracy. For instance, in the case of early fusion, side mirrors
of a vehicle can be detected by one sensor while the front bumper might be detected by another sensor.
The trade-offs between early fusion and late fusion have been studied recently by researchers [12, 27].

Radar data, in the context of autonomous driving and ADAS, has been used to improve the accuracy
of sensor fusion and/or the perception module. However, radar data is typically processed using a
CFAR algorithm to convert the raw data into a point-cloud which separates the targets of interest
from the surrounding clutter. Converting raw 4D radar tensor (comprised of a dense 2D Euclidean
space, Doppler, and time) into a sparse 2D point cloud removes a significant amount of information
in the signal. In contrast, we rely on the raw radar data to minimize the artefacts that are introduced
by post-processing of the signal as well as minimizing the abstraction of radar output.

In this paper, we make the following contributions:

1. A new approach to consuming radar data, performing both detection and classification
2. A new deep learning architecture which allows fusing of radar signals and camera images

to produce object bounding boxes jointly.
3. An infrastructure and methodology to develop and evaluate the performance of our sensor

fusion system on real world data.

The rest of the paper is organized as follows. In Section 2, we discuss the related work. Section 3
describes our solution for the fusion of camera and radar sensors. Section 4 highlights the training setup
and dataset used for our evaluation. Section 5 discusses our experimental studies and corresponding
results. Finally, Section 6 presents our conclusions.

2 Related Work

Image Object Detection Image classification and object detection have been two challenging tasks
in the computer vision community for years. In the last few years, there has been a breakthrough in
the performance of image classification tasks. Deep learning-based neural networks have become the
de facto solution to tackle these challenges. Object detection builds on top of image classification by
addressing two more issues - the list of objects in a given image and the location of objects within this
image. There have been mainly two categories of solutions being developed in this domain: single-stage
and two-stage detectors. Single-stage detectors, such as Single-Shot Multibox Detector (SSD) [16] or
YOLO [20], mainly focus on the inference time per frame. Since speed is of top concern, these networks
internally rely on a single pass to identify the prior boxes. Two-stage detectors, on the other hand,
are usually slower and achieve better accuracy results. Networks such as RCNN[7], Fast-RCNN[6],
Faster-RCNN[22], R-FCN [4], and Mask-RCNN[9] are some of the examples. These networks rely
on a Region Proposal Network (RPN) to identify the Regions of Interest (RoI) which subsequently
get passed to the second stage which performs the final classification and box coordinate adjustments.

Radar Deep Learning for Autonomous Driving Due to the uniqueness of radars, there is an under-
standable lack of literature and datasets in this regard. Furthermore, traditional radar literature often
refer to ‘detection’ as the task of returning a spatial point, in contrast to the computer vision community
where detection refers to the task of returning a region an object ocupies. In the context of autonomous
driving, published approaches [24] [19] made use of sparse point clouds from commercial automotive
radar systems. In these commercial radar systems, these points are generated by processing the raw radar
signals with the Constant False Alarm Rate (CFAR) [23] algorithm. The down side of this approach is
that contextual information of radar returns are lost, and only the range, azimuth and doppler information
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Figure 1: Highlevel overview of the FusionNet architecture. FusionNet consists of independent
branches for each sensor. Each branch outputs spatially aligned feature maps. These feature maps
are concatenated and fed to additional layers, before being used as input feature maps for the SSD[16]
regression and classification heads.

are retained. This limits the ability of performing higher level classification of the radar signals. Outside
of autonomous driving, deep neural nets have been applied to perform activity classification using
micro-Doppler [25] [2], these approaches, however, do not tackle the problem of spatial localization.

Sensor Fusion using Deep Learning In recent work, a few authors have focused on the fusion of
camera and LiDAR, which is different from our objective. Furthermore, the sparsity of point clouds, typ-
ically≤64 points, returned by automotive radar systems limits the use of LiDAR approaches with radar
point clouds. Multi-View 3D (MV3D) [3] applies feature extraction to 3 frames separately: LiDAR
bird’s eye view, LiDAR front view, and camera front view. Then, LiDAR bird’s eye view feature map is
being used to generate 3D bounding box proposals to guide the final fusion across the other two frames.
In [15], authors rely on LiDAR and camera to improve the accuracy of object detection. LiDAR bird’s
eye view is used as the guide for fusing the camera features across multiple resolutions with the LiDAR
features. The continuous fusion layers take into account the occlusion happening in the camera frame
and enable fusion throughout the network. PointFusion [26] uses an earlier work (i.e., PointNet [18])
to process the LiDAR point cloud directly without the need to map it into 2D planes. Usage of 3D
anchor boxes for the fusion adds to the complexity while making the architecture more generalizable.

3 FusionNet

We present FusionNet (Figure 1), our proposed architecture that fuses feature maps from multiple
sensors for object detection. Our network design is inspired by SSD[16], whereby a feature extractor
network generates feature maps, potentially at multiple scales, followed by detection heads. However,
instead of using one feature extraction network for camera images, our network combines input from
different sources observing the same physical scene. The goal of FusionNet is to extract and combine fea-
tures extracted from different sensors observing the same space, from a potentially different perspective,
and with their relative positions known. Each feature extraction branch incorporates a spatial transfor-
mation such that the output feature maps from each branch are spatially aligned with the other branches.

High-Level Architecture We implemented two branches in FusionNet, namely the Radar branch,
that processes the range-azimuth image from the radar, and the Camera branch that processes the
images captured by a forward-facing camera. After the independent feature extractor branches,
these features are then passed through the fusion layer(s). In order to ensure that the network learns
meaningful representations from different signal sources, we employed a unique training strategy
of partially freezing the network and fine-tuning.
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Figure 2: Visualization of the Radar and Camera’s spatial transforms. The radar’s spatial transform
is the polar to cartesian transform. After the 3D-FFT processing of the raw radar signals, we obtain the
polar range-azimuth polar ‘image’. After this transform, the horizontal axis is now −23.4m to 23.4m,
the vertical axis remains unchanged (0 to 46.8m). The camera’s transform, the Inverse Projection
Mapping (IPM), is obtained from the known calibration between radar and the camera. We assume a
planar road scene and compute a homography transform to project the camera image to the radar plane.

Radar Branch In contrast with other literature that utilizes automotive radar, the input to our
network is not a point cloud. Instead, our radar branch takes a dense 2D range-azimuth “image”,
allowing us to employ feature pyramid network structures popular in image object detection networks.
Since the goal is to predict bounding boxes in Cartesian coordinates, a mapping layer (as illustrated
in Figure 2) is added to the intermediate feature maps. Empirically, we found that placing the
spatial transformation early in the intermediate feature layers gave the best performance. After this
transformation, more convolutional layers were added before concatenation with other branches.

Camera Branch In order to transform the camera image into the Cartesian space, we devised an
Inverse Projection Mapping, which is a homography transformation of the camera image. To compute
this projection mapping, we first assume that the camera is imaging a planar scene (i.e. the radar
plane, which is approximately parallel to the road plane). Next, we utilized the intrinsic and extrinsic
calibration information to project a set of points in the Cartesian radar plane to image coordinates.
A planar homography transformation can then be found by using the standard 4-point algorithm. In the
event that calibration is not available, it is also possible to manually assign multiple tie points, finally
solving for the best homography using a least squares method.

The structure of the camera branch is very similar to the radar branch. However, instead of performing
the coordinate transformation in the feature maps, we discovered empirically that the network
performed the best when this transformation is applied directly to the camera image instead of the
feature maps. After the homography transformation, the input image to the network is a 3-channel
256×256 color image. The image coordinates should now match the Cartesian radar image coordinates
if the planar assumption is correct and the camera does not move with respect to the radar.

Fusion Layers The output from the independent feature extractor branches is only dependent on
data from a single sensor. In order for the network to predict using input from multiple sensors, we
utilized additional fusion layers to combine features across both branches. We designed these two
branches such that the resolutions of their output feature maps match. Therefore, we can simply
concatenate these output features from the radar branch and the camera branch to form a unified feature
map with twice the number of channels. Next, we applied a dropout of p=0.5 during training to guide
the network to combine partial features from both branches. Finally, we applied a 1×1 convolution
to reduce the channel count back to original single sensor channel count.

Detection Outputs For object detection, we applied SSD heads on the fusion feature maps. We
chose anchor boxes to match the distribution of the ground truth boxes from our training set. We
use k-means clustering (similar to [20, 21]) to construct a set of anchor boxes that are more suitable
for our vehicle detection network. It should be clear that since we are mainly focusing on vehicles,
there are only a handful classes of vehicles that are usually on the road (e.g., mid-size sedan, truck).
In particular, there is a low variation on the width of these vehicles given the limits that are imposed
by the US Department of Transportation on the lane widths.

On the Strength of the Planar Assumption It may seem that a planar road is a very strong assump-
tion, but this is not the case. US interstate highways have a maximum grade of 6%[1]; considering
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Figure 3: Temporal synchronization between different sensors. Radar frames are used as time-stamp
reference, LiDAR boxes are interpolated and the nearest camera frame is selected.

an immediate transition from 0% to 6% grade results in an error of 0.08m at the maximum range of
our radar, which is lower than the range resolution of our radar system (Sec. 4.1). Moreover, road
grades change gradually and we should not see significant and sustained grade changes on most roads.

On the other hand, a greater source of error are unavoidable mechanical vibrations. We cannot expect the
any sensor’s mounting to be perfectly rigid on a moving platform. For the camera, this error manifests as
a wobbling transformed image, most visible at the top of the transformed image. For the radar, this will
translates to taking a tilted slice of the scene. No explicit handling or data cleaning was performed to
exclude these distortions, and we expect the network to learn how to deal with such errors during fusion.

4 Experimental Setup

To the best of our knowledge, no openly available dataset suits our needs. Thus, we collected a
novel dataset that consists of raw radar measurements, wide-FOV forward-facing camera and LiDAR
measurements. In this paper, we have used more than 150K synchronized pairs of radar and camera
frames, of these frames, 5000 were set aside as the test set. The dataset comprises of day time highway
driving scenes from the greater San Diego area in southern California. More challenging scenes from
suburban, city driving and adverse weather were not yet included in this work.

4.1 Dataset

While there might be datasets that have radar or LiDAR data, none of the publicly available datasets
has the low-level radar signals that we utilized for our application. As a result, we built a data collection
platform, performed cross-sensor calibration and finally utilized an automatic annotation set up to
generate the training data.

Radar Data: Our radar system is a 77Ghz FMCW radar with a lateral array of 2 transmitting antennas
and 16 uniformly spaced receive antennas at 1/2 wavelength apart, providing us with a virtual array of
32 antennas, allowing resolution of ≈5◦, ±90◦ on each side. Chirp, sampling and processing intervals
were selected to provide range resolution of 0.094m, max range of 46.8m and Doppler resolution of
0.25m/s for ±2.5m/s at a frame rate of 125Hz. In constrast with publicly available datasets, our radar
data is minimally processed. Only 3D-FFT was performed, resulting in a range-azimuth-Dopper data-
cube for each radar frame. Further details on FMCW radar signal processing can be found in [11, 14]

Camera Data: The camera is a 1 megapixel, 150◦FOV camera mounted on the windscreen inside
the car, tilted slightly downwards, capturing 1280×800 RGB frames at 30fps.

LiDAR: The LiDAR is a Velodyne 32 line LiDAR mounted on the roof of the car, running (i.e.
completes a full rotation) at 10Hz. While our network does not consume LiDAR as an input, we utilize
detections from the LiDAR as our annotation. It is important to note that when the vehicle is moving at
highway speeds, points from objects at the boundary of a ‘frame’ might have moved significantly. This
discontinuity is taken care of in our LiDAR processing pipeline and is beyond the scope of this paper.

Temporal Synchronization Between Sensors: Note that the sensors listed above run at different
sampling rates and no external synchronization mechanism is used during data collection. Instead,
individual timestamps were recorded for each frame of data. While the radar is capable of generating
frames at a very high rate, we extracted one frame of data every 100ms, so as to match the sampling
rate of the LiDAR. Figure 3 illustrates our approach to generate temporally synchronized pairs for the
dataset. The closest frame from the camera is selected, and an interpolated bounding box is obtained
from the LiDAR detections.
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Figure 4: Examples of scenes where the network performs well. White boxes are network outputs, black
boxes are automatic annotations from the LiDAR, the numbers beside the white boxes are the confidence
score assigned to the detection. The network performs very similarly to the LiDAR, showing that the
capabilities of the network to replicate the performance of a LiDAR using radar and camera inputs.

Figure 5: A sampling of missed detections. As the LiDAR has a higher vantage point than both the
radar and camera, we see that missed detections tend to be vehicles that are occluded in the camera
view, and also having obstructed radar returns.

Automatic Annotation and Dataset Limitations: We generated ground truth by applying object
detection routines on LiDAR input. While this is a quick way of generating training data for radar
and camera input, there are some obvious deficiencies with this approach.

In an effort to provide a cleaner dataset for training, we performed multiple passes of manual
inspections of the annotations and implemented improvements to the automatic annotation algorithms
that is not possible for online, fully automated methods. Parameters are tuned for different subsets,
and non-causal processing and temporal tracking is also utilized.

However, being automatically annotated, the training and test set contains some inherent errors. Distant
objects are often missed by the LiDAR detection algorithm. In addition, as the dataset consists only
of California highway driving, the majority of objects in the scene are cars and smaller objects (e.g.,
motorcycles, bicycles, and pedestrians) are limited at best.

4.2 Training Setup

Our models were trained on an NVidia GTX 1080 Ti, with mini-batches of size 16. While we used
a wide range of learning rates and optimizers in our experiments, our best model, with 2-stage training,
was trained using Stochastic Gradient Descent (SGD) with momentum 0.9 and learning rate 0.0005
for 30 epochs on the camera only network, followed by another 30 epochs on the fusion network. This
is comparable to a 30 epoch end to end training, as the camera branch is no longer updated during
the second stage.

5 Evaluation

To evaluate the performance of our network, we compared the mAP score, the x (across) and y (along)
position and size estimates of the bounding boxes and also the number of matched bounding boxes
(for relative comparison). Figures 4, 5 and 6 shows a sampling of good detections, missed detections,
and instances where the learnt detection network outperforms the annotations. We observe that the
camera sensor is capable of better position and size estimates, while the radar branch provides a higher
mAP. Our proposed FusionNet is able to succesfully combine the advantage of each individual sensor,
to achieve performance that exceeds both of the individual sensors (Table 1).

5.1 Accuracy and mAP

We compare the performance of our network trained using SGD and Adam optimizers in Table 1.
Similar to most published approaches to object detection, we used the IoU threshold of 0.5 for mAP

6



Figure 6: We also note that the annotations are not perfect, this panel shows some examples of such
cases. This tends to occur in highly cluttered scenes and also on distant objects. In these instances,
we see that the network is detecting vehicles clearly visible in the camera frame and also having visible
radar returns, but annotation boxes are missing.

computation and we only considered boxes that meet this IoU threshold when counting true positives,
false positives, etc. For the computation of distance and size metrics, we only considered true positives.
It can be seen that our network outperforms single branched networks in all performance metrics.
Specifically, in regards to Position metrics, we can see that the FusionNet makes a considerable
improvement over the Radar only network by taking into account the visual features of the scene.

5.2 Freezing Weights

Due to the significant differences in signal characteristics, we discovered that different branches train
differently, and the network has a tendency to learn to ignore one branch if the hyper-parameters
used for training is more suitable for other branches. In order to overcome this difficulty, trained
single branched network with the optimal training hyper-parameters, and load these weights into the
corresponding branches to train the fusion network. The weights of the pre-trained feature extractors
were frozen during the training of the fusion network. Table 2 shows a comparison of different
variations of this weights freezing strategy. As can be seen, training the camera branch in advance and
training the entire network with the gradient propagation disabled through the camera branch worked
the best. This is due to the fact that the training of the camera branch, given the variety and complexity
of the features, is naturally slower than the radar branch. As a result, the end-to-end training (without
the freezing of the weights) is more inclined toward getting the radar branch to its optimal state as
it can minimize the loss function faster.

Table 1: mAP scores, position and size L1 error, FusionNet combines the advantage of individual sensors
Fusion Fusion Camera Radar
(SGD) (ADAM) Only Only

mAP 73.5% 71.7% 64.65% 73.45%
Position x 0.145m 0.152m 0.156m 0.170m
Position y 0.331m 0.344m 0.386m 0.390m

Size x 0.268m 0.261m 0.254m 0.280m
Size y 0.597m 0.593m 0.627m 0.639m

Matches 8695 8597 7805 8549

Table 2: Comparison of different training strategies using freezing of the pre-trained weights for the
camera and/or radar branches.

End-to-end Freeze Freeze Freeze
Camera Radar Both

mAP 72.0% 73.5% 73.0% 72.5%
Position x 0.163m 0.145m 0.172m 0.150m
Position y 0.349m 0.331m 0.369m 0.337m

Size x 0.261m 0.268m 0.275m 0.259m
Size y 0.636m 0.597m 0.616m 0.604m

Matches 8680 8695 8512 8509
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Table 3: Sensitivity of fusion network to inputs from different sensors. Without retraining, the network
was evaluated with the camera image or the radar range-azimuth image was set to zero (Camera 0
and Radar 0 respectively), and adding Gaussian noise of mean 0 and σ=0.1 to the normalized input
camera image and radar frame.

Fusion Camera 0 Radar 0 Camera + Noise Radar + Noise

mAP 73.5% 55.0% 19.4% 61.2% 71.9%
Position x 0.1458m 0.1883m 0.1816m 0.1667m 0.1524m
Position y 0.3315m 0.4297m 0.3602m 0.3847m 0.3360m

Size x 0.2688m 0.3042m 0.3230m 0.4126m 0.2686m
Size y 0.5975m 0.7829m 0.5653m 0.7022m 0.5853m

Matches 8695 8259 3051 8004 8554

5.3 Contribution of Branches and Ablation Studies

To further determine the contribution of each of the branches and the value of early fusion, we
conducted a sensitivity study by adding noise to individual branches and also by zeroing out the inputs
on the branches. If the network does indeed utilizes evidence from individual branches, we should
expect to see significant accuracy drop when one channel has no input or has significant noise added.
The results, as seen in Table 3, aligns with our expectation as a significant drop in mAP is observed
when either branch is corrupted.

An interesting observation is that the mAP score drops much more significantly when the radar input
is removed as compared to removing the camera input. We hypothesize that this is due to the following
reasons:

• Visually occluded vehicles may still give a radar return. Thus the network might be able to
learn to detect some cases of vehicles without visual information.

• The highway scene is particularly easy for radar to work with, as there is limited clutter that
could provide strong returns (e.g. fire hydrants, mailboxes, etc.).

• Distant objects are no longer visible in the camera after inverse projection, thus prediction
at longer ranges are mostly reliant on radar returns (this, however, is constrained by our
automatic annotation pipeline).

5.4 Inference Time

As a component of an ADAS system, latency is a key design evaluation criteria for the perception
module. In our scenario, this latency is mainly impacted by the inference time per frame. For our best
performing network in terms of accuracy, inference (including non-maximum suppression) runs at
more than 40 fps (i.e., less than 25ms per frame) on the setup described in Section 4.2.

6 Conclusion

We introduced a novel network capable of ingesting and combining inputs from radar and camera
sensors with vastly different signal characteristics. In addition, we introduced training strategies to
overcome potential differences in convergence rates for feature extraction branches from different
sources. We have also demonstrated that our proposed network is able to combine signals effectively
from these complementary sources to produce better results than either of the sensors alone.

Even though our evaluation was done on an automatically annotated dataset, we were able to show
quantitative improvements in most error metrics. Higher quality annotation and calibration will
potentially improve these results even further. Lastly, the dataset can also be expanded by incorporating
a greater variety of frames and scenarios such as urban/city driving, pedestrians, road-side clutter and
adverse weather conditions.
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A Appendix

A.1 Details on FusionNet Branches

In this section, we provide a specific implementation of FusionNet, combining the range-azimuth
measurements of a scene from the radar and the camera image of the scene. Finally, we cover potential
pitfalls when training a network that uses signal sources with significantly different characteristics
and the training strategy we utilize to ensure that the network learns useful representations from both
signal sources. Our feature extraction network is a variant on ResNet [10] with a modified basic block,
including both dropout and batch normalization (Figure 7).

In the radar branch, Figure 8a, we used the output at the end of Block 2 and Block 3 as input feature
maps for the fusion layers. These feature maps are of sizes 64×64 and 32×32 respectively. We chose
these feature map sizes based on the expected sizes of target objects and our maximum radar range.
Performing a k-means clustering on the ground truth bounding boxes from our training set shows
that the variation in the size of the bounding boxes is more limited compared to the typical ImageNet
object detection. This small variation in sizes of target objects is because we are focused on detecting
objects in real-world metric space, in contrast to the arbitrary scaled image space of photographs in
ImageNet. This relative low variance in the shape and size of the bounding boxes enables us to reduce
the complexity of our object detection backend drastically.

In the camera branch, Figure 8b, we applied spatial transform, i.e. the Inverse Projection Mapping
introduced in Section 3, directly to the input camera image. We emperically determined that this
results in a network with the best performance. Similarly, we output 2 feature maps of the same size
and channel count at the radar branch.

+

Downsample k

Previous layer

Conv 3x3, cn, sk

BatchNorm
ReLU

Dropout, p=0.25

Conv 3x3, cn

BatchNorm

ReLU

Figure 7: Dropout Residual Block A repeated unit used in our network. This block is repeated b
times in each macro-block, denoted Block # in Figures 8a and 8b, with n number of channels in the
convolutional layers. In this figure, k denotes the downsampling factor which is equal to two in the
first instance and one in the subsequent repetitions within the macro-block.
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Input image:

Conv_0 5c8
Conv_1 5c16
Conv_2 5c32

Conv_3 5c64s(2,1)

Block 0, 8c64s2

Polar to Cartesian
Block 1, 4c128s2

Block 2, 2c256s2

Conv_D2, 1c128s1

+

Conv_D1, 1c128s1

+

Block 3, 1c256s1

Conv_4, 3c256s2

Feature Map 0
64x64

Feature Map 1
32x32

(a) Radar branch: The input to the radar branch
is a range-azimuth ‘image’ in polar coordinates.
The horizontal axis is the azimuth, from −90◦ to
90◦, the vertical axis is range from 0 to 46.8m.
The intensity of each pixel is the strength of radar
returns from the corresponding spatial location.
The network consists of convolutional layers,
a linear mapping layer (for polar to cartesian
transform), followed by additional convolutional
layers. Each block consists of n number of
Residual Dropout Blocks (Figure 7).

Input image:

Inverse Projection Mapping

Conv_0 5c8
Conv_1 5c16
Conv_2 5c32

Conv_3 5c64s2

Block 0, 8c64s2

Block 1, 4c128s2

Block 2, 2c256s2

Conv_D2, 1c128s1

+

Conv_D1, 1c128s1

+

Block 3, 1c256s1

Conv_4, 3c256s2

Feature Map 0
64x64

Feature Map 1
32x32

(b) Camera Branch: It was found emperically that
the camera branch performed the best when spatial
transform is performed before feeding into a deep
neural network.

Figure 8: The network structure is color coded to match component blocks in Figure 1. Each of these
branches outputs spatially aligned feature maps at 2 scales. Convolutional layers denoted Conv_D#
do not have BatchNorm and any activation function, furthermore, these layers were upsampled using
bilinear upsampling so that the size of the tensors matches that of the layer it is summing with. Other
convolutional layers are specified in the shorthand kcpsm, for k kernel size, p output channels, m
strides, and have BatchNorm and ReLU appended after them.
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