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Abstract

Radar sensors are crucial for environment perception of driver assistance systems as
well as autonomous cars. Key performance factors are a fine range resolution and
the possibility to directly measure velocity. With a rising number of radar sensors
and the so far unregulated automotive radar frequency band, mutual interference is
inevitable and must be dealt with. Sensors must be capable of detecting, or even
mitigating the harmful effects of interference, which include a decreased detection
sensitivity. In this paper, we evaluate a Convolutional Neural Network (CNN)-
based approach for interference mitigation on real-world radar measurements. We
combine real measurements with simulated interference in order to create input-
output data suitable for training the model. A finite sample size performance
comparison shows the effectiveness of the model trained on either simulated or
real data as well as for transfer learning. A comparative performance analysis with
the state of the art emphasizes the potential of CNN-based models for interference
mitigation and denoising of real-world measurements, also considering resource
constraints of the hardware.

1 Introduction

Automotive radar sensors are key elements of current driver assistance systems and autonomous
driving applications. In the automotive context, frequency modulated continuous wave (FMCW)/chirp
sequence (CS) radars are prevalent. They transmit sequences of linear chirp signals in a shared and
non-regulated spectrum. Ever larger radio frequency (RF) transmit bandwidths are required to fulfill
the demand on fine range resolution. Because of these larger bandwidths and because of a rising
number of deployed radar sensors, mutual interference is becoming increasingly likely. Non-coherent
interference, in which radar sensors with non-identical transmit signal parameters interfere, is the
most common form of mutual interference [1]. This leads to a reduced object detection sensitivity [2].
Therefore, interference mitigation is a crucial part of current and future radar sensors used in a safety
context. Several conventional signal processing algorithms have been proposed in order to mitigate
mutual interference. The most basic method is to zero out the interference-affected signal samples.
More advanced methods use nonlinear filtering in slow-time [3], iterative reconstruction using Fourier
transforms and thresholding [4], estimation and subtraction of the interference component [5], or
beamforming [6]. Some machine learning techniques were discussed in the context of interference
detection and classification in [7]. Convolutional Neural Networks (CNNs) have been successfully
used for image denoising, e.g. in [8]. CNN-based interference mitigation and denoising methods
presented in [9] can be applied to range-Doppler (RD) maps. A two-channel representation of the
complex spectrogram data (i.e. real and imaginary data) is used as network input. Experimental
results show a strong denoising and interference mitigation capability in comparison to state-of-the-art
signal processing algorithms, though evaluated only on simulated data. The applicability of these
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Figure 1: Block diagram of a basic FMCW/CS radar processing chain. Dashed boxes indicate the
locations of optional interference mitigation steps, including the CNN-based approach (red) and
classical methods (blue).

models for robust interference mitigation on real-world data has not been investigated so far. In this
paper, we analyze the suitability of CNN-based models from [9] to perform interference mitigation
and denoising on real-world radar measurements. Therefore an extensive measurement campaign
in a typical inner-city road traffic scenario has been carried out. The interference is simulated for
both, simulated object scenarios and real-world measurements. Due to the absence of labeled object
positions in the target RD maps, we use the cell averaging constant false alarm rate (CA-CFAR)
algorithm [10] to identify the most likely object positions. These positions are the basis for our
performance comparison using the signal-to-interference-plus-noise ratio (SINR) [11].

Main contributions of this paper are:

• We consider real-world radar measurements combined with simulated interference for
CNN-based interference mitigation and denoising of RD maps.

• We analyze the effect of finite sample sizes on model performance and robustness.

• We present numerical results using application-related performance metrics in a comparison
with the state of the art, i.e. Zeroing, IMAT and Ramp filtering.

• We show that an excellent level of noise reduction and hence an improvement of detection
sensitivity can be achieved on real-world measurements.

2 Signal model

The range-Doppler (RD) processing chain of a common FMCW/CS radar is depicted in Fig. 1. A
measurement is performed by transmitting a succession of M linearly modulated RF chirp sequences.
By mixing each chirp, also termed ramp, with the received object reflections, the intermediate
frequency (IF) signal is obtained. It consists of sinusoidal components corresponding to objects. The
objects’ distances and velocities are contained in the sinusoidals’ frequencies and their linear phase
change over successive ramps [12, 13], respectively. We obtain N samples per ramp; from a data
processing point of view the IF signal can be interpreted as a N ×M data matrix sIF[n,m]. Note
that the indices n and m are commonly referred to as fast- and slow-time, respectively. Subsequently
in the processing chain, discrete Fourier transforms (DFTs) are computed over both dimensions,
yielding a two-dimensional spectrum on which peaks can ideally be found at positions corresponding
to the objects’ distances and velocities. After peak detection, further processing can include angular
estimation, tracking, and classification. Besides object reflections, real radar measurements may also
include receiver noise and interference. In order to model these disturbances, we define the IF signal
as

sIF[n,m] =

NO∑
o=1

sO,o[n,m] +

NI∑
i=1

sI,i[n,m] + υ[n,m] , (1)
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Figure 2: CNN architecture for radar signal denoising. It uses ReLu, Batch Normalization (BN) and
the convolution operation Conv(i, o, (s1 × s2)), for i input channels, o output channels and a kernel
size of s1 × s2.

where sO,o[n,m] is the oth object reflection, sI,i[n,m] corresponds to interference from the ith
interferer assuming NI interferers, and υ[n,m] models the noise. In the simulated radar signal we
use additive white Gaussian noise (AWGN) to model the receiver noise and point objects with random
distances and velocities to model the object reflections. Real measurements already contain object
reflections mixed with receiver noise. In both cases, the interference is simulated and included in
the time domain IF signals. Noncoherent mutual interference essentially generates time-limited
broadband disturbances, see [1, 14] for details. State-of-the-art (“classical") interference mitigation
methods are mostly signal processing algorithms that are applied either on the time domain signal
sIF[n,m] or on the frequency domain signal SR[n,m] after the first DFT. The CNN-based method
used in this paper, also denoted Range-Doppler Denoising (RDD), is applied on the RD map after the
second DFT.

3 CNN model architecture

The interference mitigation and denoising CNN architecture is based on the models from [9]. Range
Doppler Denoising (RDD, as labeled in Figure 1) is used for evaluation and comparison, because of
its superior performance on past experiments with simulated data. Figure 2 illustrates the CNN-based
architecture, which consists entirely of convolutional composite layers. The first layer performs
convolution operations and ReLu [15] activation functions; subsequent layers additionally include
Batch Normalization (BN) [16]. An exception is the last layer, which uses a linear activation
function and two kernels in order to map to the real and imaginary data. The amount of kernels in
a layer is chosen to be a power-of-two and decreasing for subsequent layers, e.g. [26, 25, 24, 22]
or [26, 25, 25, 24, 22], as inspired by [17]. RDD is applied to radar snapshots after the second DFT,
hence the input samples are complex valued patches of size N ×M . Square kernels are used in
combination with zero-padding, such that the inputs and outputs for each layer have the same spatial
dimension. We use two input channels in order to represent the real- and imaginary parts of the
complex valued input. For training the network we use the mean squared error (MSE) loss function
and the Adam [18] algorithm.

4 Experimental setup

4.1 Data sets

In our experiments we evaluate two data sets. The first one is purely simulated including object
reflections, noise and interference. The second data set consists of real-world measurements, that
are combined with simulated interferences. This way we have access to training inputs and their
corresponding targets with a limited measurement expenditure. Nevertheless, realistic scenarios are
the basis of training and evaluation, and thus give an insight of interference mitigation performance on
real-world data. Both data sets are split into three partitions for training (2500 snapshots), validation
(250 snapshots) and testing (250 snapshots) the models. Data from a single measurement, consisting
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of 32 snapshots and sixteen antennas, are exclusively contained either in the training, validation, or
test set.

Simulation: The basic receive IF signal is generated according to (1) and processed as described
in Section 2. The signals are generated based on several parameters, that are sampled from uniform
distributions U(min,max) in the respective domains. Among them are the number of objects
U(1, 20) and for each object the relative distance U(0m, 100m) and velocity U(−20m/s, 20m/s).
The interferer parameters are uniformly sampled within the ranges listed in Table 1, while the ego
radar parameters (see Table 2) are constant for all simulations. The signal-to-noise ratio (SNR) and
the signal-plus-noise-to-interference ratio (SNIR) are used to scale the noise and interference powers
relative to the object-signal power and object-signal-plus-noise power respectively, when generating
the interfered and noisy time domain signal sIF [n,m]. Figure 3 shows a RD map processed from
a simulated signal with five objects, where Figure 3(a) shows an interfered signal and Figure 3(b)
shows the corresponding clean data with AWGN.

Table 1: Ranges of interference and noise parameters.
Parameter Value
f0,I Sweep start frequency 78.9GHz 79.1GHz
BI Sweep bandwidth 0.15GHz 0.25GHz
TI Sweep duration 12µs 24µs
SNR Signal-to-noise-ratio −15.5dB −0.5dB
SNIR Signal-plus-noise- 15dB 35dB

to-interference-ratio

Table 2: Victim radar and signal processing parameters for simulation and measurements.
Parameter Value
f0,I Sweep start frequency 79GHz
BI Sweep bandwidth 0.27GHz
TI Sweep duration 12.8µs
BIF,V IF bandwidth 10MHz
N Number of fast-time samples 512
M Number of slow-time samples/ ramps 128
A Number of antennas 16
w Window type Hann

Real-world measurements: The measurements were recorded in typical inner-city traffic scenarios.
We used a cargo bicycle with a radar apparatus mounted on the front and additional measurement
equipment in the cargo container. The device was configured according to the parameters in Table
2. One measurement denotes 32 consecutive snapshots recorded with sixteen antennas, where each
snapshot is associated with a wide-angle camera picture for reference. An input sample for the CNN,
i.e. a RD map, is processed from one snapshot of a single antenna. The measurement signal consists
of object reflections (static and moving) as well as receiver noise. The interference is simulated as
described in Section 4.1. The SNIR is used for scaling the interference relative to the object signal
plus receiver noise power. Figure 4 shows a RD map processed from a real-world measurement,
where Figure 4(a) shows an interfered signal, Figure 4(b) shows the corresponding clean signal and
Figures 4(c) shows the respective camera snapshot for reference.

Experimental analysis of simulation and measurements: The simulated signal is modeled ac-
cording to reflections from point objects, which results in single, clear and well-shaped object peaks
in the RD map. All distances, velocities and angles are randomly sampled, i.e. there is no observable
bias towards object peak positions in the RD map. In the real-world measurements on the other hand,
we observe more complex objects, which consist of object peak clusters that are often distributed
along the distance as well as the velocity axis of the RD map. Furthermore, a strong bias of object
velocities towards the negative velocity of the measurement vehicle is present. This bias results from
static objects; they are contained in velocity bins close to the negative ego velocity. Also, there exist
strong reflections within the first few meters at a relative velocity of zero, i.e. the reflections of the
radar and the measurement vehicle themselves. Another bias, though less severe, can be observed
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Figure 3: Exemplary RD magnitude spectra of a simulated scenario with five objects in dB.
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Figure 4: Exemplary RD magnitude spectra of a real-world measurement in dB and a reference
camera snapshot.

regarding the physical positions of moving objects, caused by the relative position of bicycle lanes to
car lanes in the measurement environment.

4.2 Performance measures

Quantitative measures: The signal-to-interference-plus-noise ratio (SINR) directly relates to the
object detection sensitivity [11], i.e. it significantly influences the chance that an object is detected on
the RD map . It is the ratio of signal power at the object peaks to the noise floor. For multi-object
scenarios in the RD domain the SINR is defined as:

SINR = 10 log

( 1
NO

∑
{n,m}∈O | S̃RD[n,m] |2

1
NN

∑
{n,m}∈N | S̃RD[n,m] |2

)
, (2)

where n and m are row and column indices of the RD matrix, O is the set of object peaks and N is
the set of NN noise cells. Cells are considered as noise, when they have a minimum distance to each
object peak. The CA-CFAR detector [10] is used to find the RD map positions of the most prominent
object peaks in both, the simulated and the measurement data. We apply the detection algorithm with
a window of 5 × 10 and two guard cells in each dimension. For peaks close to borders, we only
consider cells lying within the RD map as reference window cells.

Qualitative measures: During visual inspection of the RD map, we consider criteria such as object
peak and noise floor magnitude, object peak location, resolution and distortion as well as artifact
appearances.
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4.3 Mitigation methods selected for comparison

A small representative subset of state-of-the-art signal processing algorithms have been chosen for a
comparative analysis. This also allows for a discussion of the properties of the CNN-based approaches
in a broader context of interference mitigation. A short summary of these methods is presented below.

Zeroing: Simple method in which samples of the IF signal affected by interference are set to a
value of zero, see e.g. [19].

Iterative method with adaptive thresholding (IMAT): After an inital application of zeroing, the
zeroed samples may be interpolated. IMAT [20] is a promising interpolation method based on an
iterative compressed sensing algorithm.

Ramp filtering: Ramp filtering processes the signal after the first DFT, using a non-linear filter
in slow-time to strongly suppress interference as well as noise. Several choices for the filter can be
considered [3].

Note that both, zeroing and IMAT, require the detection of interfered IF signal samples. In this paper,
it will be assumed that this operation works perfectly. However, in general, errors in interference
detection may have a strong impact on the performance of mitigation algorithms [11]. Ramp filtering,
as well as the proposed CNN-based approaches, are not directly based on an interference detection
step.

5 Experimental results

All models are based on the architecture described in Section 3. In order to find suitable hyper
parameters for real-world data, we run simulations using a different number of layers (2, 3, ..., 10)
and maximal number of kernels (2n, n = 3, 4, ..., 8). A kernel size of 3×3 is used for all simulations,
because of its clear superiority on past experiments. An architecture with 4 layers and [512, 32, 16, 2]
kernels in these layers reaches the highest SINR performance and is selected for further evaluations.
In order to analyze the effect of training set sample sizes, we perform a finite sample size performance
comparison. For these evaluations we use the same test set, namely with real measurements, and vary
the training set consisting either of the simulated data, real measurements, or both in the context of
transfer learning. Finally, we provide a performance comparison with classical interference mitigation
methods.

5.1 Finite sample size performance comparison on real-world data

We investigate the interference mitigation and denoising capabilities on real measurements dependent
on the amount of training samples. Therefore the same test set, namely with measurement data, is
used for all evaluations. For training we consider three different data sets consisting of: simulated data
(Sim), measurement data (Real), and both, simulated data to pre-train the model and measurement
data for fine-tuning, in the context of transfer learning (Transfer). In the case of simulated training
data, we run simulations using also simulated data for validation (Sim), and using measurement data
for validation (Sim+VReal). For each data set we train the model using 50, 100, ..., 600 samples.
In the case of transfer learning, we pre-train the model with 500 simulated samples and fine-tune
with the respective amount of measurements. Figure 5 shows the relation of SINR performance
to the number of samples in the training set. The top and bottom figures show the mean and
variance of the SINR, based on twenty simulations per configuration using a randomly selected
training subset. The interfered and clean signal SINRs are indicated by a dashed horizontal line for
reference. According to our evaluations, also the training with simulated data results in a very high
interference mitigation and denoising performance. This indicates, that our model indeed learns to
remove the interference and noise instead of learning the object scenarios. Naturally, the outstanding
performance is possible, because we use simulated interference also for testing. Nonetheless, the
evaluation shows, that interference mitigation can be generalized to unseen object scenarios, such
as real-world measurements, as long as realistic interference is used during training. Training on
simulated data seems to be very stable according to the small variance over all training set sizes. This
may result from the simpler nature of simulated data, which is beneficial for the learning process. For
training with measurement data and transfer learning, the SINR is reduced for fewer training samples;
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it increases with a rising number of samples until it reaches the clean SINR with around 400 samples
and surpasses the performance of models trained on simulated data with 450 (Real) or 500 (Transfer)
samples. During this rise, the variance increases as the model’s training progress highly depends on
the significance of the randomly sampled training subset. With more than 300 samples, the variance
drops again and stabilizes at a low level with more than 500 samples.
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Figure 5: Relation of SINR to the number of samples in the training set.

5.2 Performance comparison with classical interference mitigation methods

Three classical interference mitigation methods, as described in Section 4.3, were implemented and
evaluated using SINR. The results are statistically compared to the CNN-based model, that was trained
and validated on 2500 and 250 snapshots from real measurements, respectively. For the evaluation
we used a Monte-Carlo-Simulation with 250 measurement snapshots. Figure 6 shows the empirical
cumulative density function (CDF) of their evaluated SINR values. The ’clean’ measurement and
interfered signals are included as reference. One of the snapshot RD maps with interference, without
interference and with mitigation using the CNN-based model is displayed in Figure 7. The three
classical methods, i.e. zeroing, IMAT and Ramp filtering, all improve the SINR slightly in snapshots
with strong interference. For moderate to weak interference on the other hand, they are not capable of
removing interference effects and even decrease the SINR of the interfered signal, i.e. perform worse
than without mitigation. The CNN-based model outperforms the classical methods for all tested
interference levels and even surpasses the SINR of the ’clean’ signal without interference, thus it
performs additional denoising of the noisy real-world measurements. The shape of the CDF indicates,
that this outstanding interference mitigation and denoising performance is also robust over all test set
samples.

6 Conclusion

In this paper, we use CNN-based mutual interference mitigation and denoising models on real-world
data. The training and evaluation framework was extended to handle real measurement data and
simulated interference was used to obtain input- and output-pairs for training and evaluating the
CNN models. Our experiments show, that the CNN-based interference mitigation approach is also
applicable to real-world measurements and results in an outstanding and robust performance. We
illustrate the impact of training set coverage to the performance and robustness of the models. The use
of simulated data for training can reduce the amount of required real measurements. In a performance
comparison with classical interference mitigation methods, the CNN-based model outperforms the
state of the art and shows robust behavior in our Monte-Carlo-Simulation. The most important task in
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Figure 7: Exemplary RD magnitude spectra from the measurements test set.

the future is to collect real interference measurements and to evaluate the generalization capabilities
of the CNN-based models on these data.
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