
Efficient Execution of DG-FEM workloads on
GPUs via CUDA graphs

by Mit Kotak

UNDERGRADUATE THESIS

Submitted in partial fulfillment of the requirements

for a Senior Thesis in the Department of Computer Science

in the Grainger College of Engineering of the

University of Illinois Urbana-Champaign, 2023

Faculty Mentor: Professor Andreas Klöckner

Graduate Mentor: Kaushik Kulkarni

Bibliography 1

Abstract

Array programming paradigm offers routines to express the computation cleanly for a
wide variety of scientific computing applications (Finite Element Method, Stencil Codes,
Image Processing, Machine Learning, etc.). While there's ongoing work to provide efficient
data structures and fast library implementations for many common array operations, the
performance benefits are tied to optimized method calls and vectorized array operations,
both of which evaporate in larger scientific codes that do not adhere to these constraints.
There have been a lot of efforts in scaling up n-d array applications through kernel and loop
fusion, but little attention has been paid towards harnessing the concurrency across array
operations. The dependency pattern between these array operations allow multiple array
operations to be executed concurrently. This concurrency can be targeted to accelerate
the application's performance. NVIDIA's CUDA graphs offers a task programming model
that can help realize this concurrency by overcoming kernel launch latencies and exploiting
kernel overlap by scheduling multiple kernel executions in parallel. In this work we map
the array operations onto a precise data-flow graph and expose that to a GPU via CUDA
Graphs. To evaluate the soundness of this approach, we port a suite of DG-FEM operators
that represent real life workloads to our framework and observe a speedup of up to 32�
over a version where the array operations are executed one after the other.

3

For my brilliant and ceaselessly supportive Mom

4 Abstract

ACKNOWLEDGMENT

I would like to take this opportunity to thank all of the people without whom this
thesis would have never happened. First and foremost, I would like to thank my
advisor, Andreas Klöckner for his guidance and always being there to support me.
My graduate mentor, Kaushik Kulkarni also deserves a huge thank you for guiding
me through my research journey. I'm very grateful for the time and attention they
have invested in me. I consider myself lucky to have had them as my mentors.

I am grateful to the CEESD (Center for Exascale-Enabled Scramjet Design) team
for letting me be a part of their research endeavor and the broader NCSA (National
Center for Supercomputing Applications) community for the opportunity to engage
with undergraduate research. I would also like to thank the Office of Undegraduate
Research for travel support which helped publicize this work.

I would like to thank my parents and my family in the US for their unwavering
support.

Thank you, all of you.

Abstract 5

Table of contents

Abstract . 3

List of figures . 9

List of tables . 11

1. Introduction . 12
2. Related work . 13
3. Overview . 14

3.1. CUDA graphs . 14
3.2. Loopy . 15
3.3. Pytato . 16

4. Lowering Array Operations to CUDA graphs . 16
4.1. Stage 1: Build CUDA graph . 18
4.2. Stage 2: Execute CUDA graph . 19

5. Results . 20
5.1. Experimental Setup . 20
5.2. Performance Evaluation . 22
5.3. Discussion . 22

6. Conclusion . 23

Bibliography . 25

7

List of figures

Profiles for CUDAGraph (bottom) and PyCUDA (top) for where(condition, if, else) + 1 12
Pytato IR corresponding to doubling operation . 16
Performance of our framework (Pytato-PyCUDA graph) for DG-FEM operators over sequential stream execution (PyOpenCL).
. 21

9

List of tables

PyCUDA wrapper functions around CUDA graph driver API . 15
Experimental parameters for DG-FEM operators . 20

11

1. Introduction

Array programming is a programming paradigm that supports a wide variety of fea-
tures, including array slicing and arbitrary element-wise, reduction and broadcast operators
allowing the interface to correspond closely to the mathematical needs of the applications.
PyCUDA[16] and several other array-based frameworks (CuPy[22], Bohrium[17], Numba[19],
Legate[8]) serve as drop-in replacements for mapping Numpy operations onto GPU memory.
Incase of PyCUDA, this support is provided through the GPUArray interface. While abstrac-
tions like GPUArray's offer a very convenient interface for managing GPU memory backed
arrays, they are not yet able to automatically schedule and manage overlapping array
operations onto multiple streams. The concurrency available in the dependency pattern
for these array routines can be exploited to saturate all of the available execution units.

Currently the only way to tap into this concurrency is by manually scheduling array
operations onto multiple CUDA streams which typically requires a lot of experimentation
since information about demand resources of a kernel such as GPU threads, registers and
shared memory is only accessible at runtime. Scheduling even regular applications such as
dense linear algebra kernels becomes notoriously difficult since the performance of resources
is strongly heterogenous. For instance, it is common to have in the same application a
mixture of tasks that benefit a lot from the use of GPUs and tasks that perform poorly
on GPUs. In the literature, this context is denoted as unrelated resources and is known
to make scheduling problems harder (see [3] for a survey on the complexity of scheduling
problems and [20] for a specific simpler case of independent task scheduling). Moreover,
GPUs have many shared resources (caches, buses) and exhibit complex memory access
patterns (NUMA effects), that render the precise estimation of the duration of these array
operations extremely difficult.

Figure 1. Profiles for CUDAGraph (bottom) and PyCUDA (top) for where(condition, if, else) + 1

12 List of tables

Our framework realizes this concurrency across array operations through NVIDIA's CUDA
graphs[1]. CUDA graph is a task-based programming model that allows asynchronous
execution of a user-defined Directed Acyclic Graph (DAG) of computational tasks. For
example, Fig. 1 highlights the parallel stream scheduling in CUDA graphs which can
efficiently use more GPU resources compared to single stream scheduling.

When one places a kernel into a stream, the host driver performs a sequence of operations
in preparation for the execution of the kernel. These operations are what are typically called
�kernel overhead�. To reduce this cost, CUDA graphs hide the latency corresponding to
the overheads of multiple kernel launches into one graph launch. However, since computing
a graph is more expensive than running kernels directly[2], the performance gains only
become apparent for large computations that fill the GPU.

One such class of array-based PDE solvers that is able to scale up to modern GPU archi-
tectures is Discontinuous Galerkin Finite Element Method (DG-FEM)[14]. In DG-FEM
worklaods, computations corresponding to the surface terms and the volume impose no
memory dependency on each other. One of the questions we intend to answer in this work
is quantifying the profitability of realizing the concurrency between such tasks on GPU
systems. While our framework is generic, we evaluate the profitability of CUDA graphs by
targeting three end-to-end DG-FEM operators and observe a speedup of up to 32�.

We formulate our system by building a CUDA graph-based PyCUDA target for Pytato's
IR which captures the user-defined DAG. The process is transparent . The key technical
contributions of this thesis involve:

1. Extending PyCUDA to allow calls to the CUDA graph driver API.

2. A compilation strategy to execute Numpy-based array programs using CUDA graphs.

3. Providing an evaluation for profitability of CUDA graphs for DG-FEM workloads.

2. Related work

Castro et el [11] gives an overview of the current task-based Python computing landscape by
mentioning PyCOMPs[26], Pygion[25], PyKoKKos[6] and Legion [7] that rely on decorators.
A decorator is an instruction set before the definition of a function. The decorator function
transforms the user function (if applicable) into a parallelization-friendly. PyCOMPs and
Pygion both rely on @task decorator to dynamically add tasks to the data dependency
graph. The scheduling policy is locality-aware where the runtime system computes a score
for all of the available resources and chooses the one with the highest score. The score
is the number of task input parameters that are already present on that resource, thus
minimizing delays between task executions. The main program of the application is a
sequential Python script (or scripts) that contains calls to tasks. Legion uses a data-centric
programming model which relies on software out-of-order processor (SOOP), for scheduling
tasks which takes locality and independence properties captured by logical regions while
making scheduling decisions.

2 Related work 13

In Jug [12] arguments take values or outputs of another tasks and parallelization is achieved
by running more than one Jug processes for distributing the tasks. In Pydron[21], decorated
functions are first translated into an intermediate representation and then analyzed by a
scheduler which modifies the execution graph as each task is finished.

While all of these frameworks are able to leverage task-based parallelism, expressing array
codes continues to remain a challenge.

CuPy serves as a drop-in replacement to Numpy and targets to cuBLAS, cuDNN and cuSPARSE.
Julia[9] GPU programming models use CUDA.jl to provide high level mechanics to define
multidimensional arrays (CUArray). Both CuPy and Julia offer interfaces for implicit
graph construction which captures a CUDA graph by recording all the operations on
single or multiple streams. Although capturing all the operations on streams leads to
terse application code, staging computations within a user-code with interleaving in-graph
and out-of-graph operations cannot be expressed. The is can lead to repeated compu-
tations of the same sub-graphs.

JAX[10] optimizes GPU performance by translating high-level traces into XLA[24] HLO and
then performing vectorization/parallelization and JIT compilation. Deep learning (DL)
symbolic mathematical libraries such as TensorFlow[4] and PyTorch[23] allow neural net-
works to be specified as DAGs along which data is transformed. Both of them follow
a delayed execution model where the DAG is built at run time, not at compile-time or
eagerly. Each kernel's historical performance and scheduling is tracked to allow the creation
of heuristics that guide future scheduling of the same kernel. The operators are then
sequentially scheduled to a single computation stream in the GPU.

Both StarPU[5] and ParSEC[13] provide excellent support for heterogenous hardware on
distributed systems. Both of them share a number of common features: tasks appear
to execute in program order, dependencies between tasks are determined by the argu-
ments supplied to task calls along with the privileges requested by tasks, and tasks can
be offloaded to available GPUs (with data movement managed by the system). ParSEC in
particular uses a DSL compiler to read a program representation (a recursive, algebraic
description of a task graph) and generate code to execute the tasks described in the
program.

3. Overview

3.1. CUDA graphs

CUDA graphs provide a way to execute a partially ordered set of compute/memory oper-
ations on a GPU, compared to the fully ordered CUDA streams: a stream in CUDA is a
queue of copy and compute commands. Within a stream, enqueued operations are executed
on the GPU in the same order as they are placed into the stream by the programmer
with a single active task at a given instant. Thus, two kernels in the same stream cannot
execute in parallel, even without data dependencies. As shown in Fig. 1 this can be lead
to lower throughput as concurrency across instructions of independent kernels cannot be
parallelized in the single-stream mode of execution. The solution is to run different CUDA
streams in parallel through the use of CUDA events, which allow streams to synchronize
with each other without blocking the host execution. However, using CUDA events to
efficiently synchronize multiple complex streams by hand can be cumbersome.

14 List of tables

CUDA graphs offer a means to efficiently schedule kernel launches on multiple streams
through a user-defined DAG. A CUDA graph is a set of nodes representing memory/com-
pute operations, connected by edges representing run-after dependencies.

CUDA 10 introduced explicit APIs for creating graphs, e.g. cuGraphCreate, to
create a graph; cuGraphAddMemAllocNode/cuGraphAddKernelNode/cuGraphMem-
FreeNode, to add a new node to the graph with the corresponding run-after
dependencies with previous nodes to be executed on the GPU; cuGraphInstan-
tiate, to create an executable graph in a stream; and a cuGraphLaunch, to launch
an executable graph. We wrapped this API using PyCUDA which provided a high
level Python scripting interface for GPU programming. Table 1. summarizes some
of the operations offered by our PyCUDA graph interface.

Operations PPPPPPPPPyyyyyyyyyCCCCCCCCCUUUUUUUUUDDDDDDDDDAAAAAAAAA routines

Memory Allocation add_memalloc_node
Kernel Execution add_kernel_node
Host to Device Copy add_memcpy_htod_node
Device to Device Copy add_memcpy_dtod_node
Device to Host Copy add_memcpy_dtoh_node
Memory Free add_memfree_node
Graph Creation Graph
Graph Instantiation GraphExec
Update ExecGraph arguments batched_set_kernel_node_arguments
Graph Launch launch

Table 1. PyCUDA wrapper functions around CUDA graph driver API

3.2. Loopy

Loopy[15] is a loop transformation engine based on the Polyhedral model. A translation
unit is a key construct in the IR to model a computation within Loopy. The core elements
of a translation unit are:

1. Loop Domains: The upper and lower bounds of the result array's memory access pattern
in the OpenCL format sourced from the shape attribute within IndexLambda and expressed
using the isl library.

2. Statement: A set of instructions specified in conjunction with an iteration domain which
encodes an assignment to an entry of an array. The right-hand side of an assignment
consists of an expression that may consist of arithmetic operations and calls to functions.

3. Kernel Data: A sorted list of arguments capturing all of the array node's dependencies.

Algorithm 1: Loopy kernel for doubling operation

lp.make_kernel(
domains = "{[_0]:0<=_0<4}}",
instructions = "out[_0]=2*a[_0]",
kernel_data = [lp.GlobalArg("out", shape=lp.auto, dtype="float64"),

lp.GlobalArg("a", shape=lp.auto, dtype="float64")])

3 Overview 15

3.3. Pytato

Pytato[18] is a lazy-evaluation programming based Python package that offers a Numpy-
like frontend for recording array expressions.

Pytato offers an IR which encodes user defined array computations as a DAG where nodes
correspond to array operations and edges represent dependencies between inputs/outputs
of these operations. Refer to Fig. 3 for an example. In this work, we are interested in the
normalized form of Pytato IR, which is comprised of the following two node types:

1. Placeholder : A named abstract array whose shape and dtype is known with data supplied
during runtime. It is eligible for late bindings to array buffers during compilation.

2. IndexLambda: Represents an array comprehension recording a scalar expression con-
taining per index value of the array computation. This helps create a generalized expression
for expressing array computations.

Alg. 2 shows a simple example demonstrating Pytato usage.

Algorithm 2: Pytato expression building for doubling operation

Create Placeholder node for storing array description

x = pt.make_placeholder(name="x", shape=(4,4), dtype="float64")

Express array computation as a scalar expression using Indexlambda

result = 2*x

Figure 2. Pytato IR corresponding to doubling operation

4. Lowering Array Operations to CUDA graphs

CUDA graphs follow a delayed execution model where no operations to the GPU are
submitted during graph building. The scheduler is made aware of a defined dependency
graph ahead of execution. In order to create this data flow graph, we make use of lazy
evaluation where the definition and submission of work are decoupled. Since Pytato's
computation graph maps precisely onto CUDA graphs, we implement a Pytato-PyCUDA
graph visitor for rewriting Pytato IR expressions. Pytato code is lowered onto CUDA
graph driver calls through a two stage code generation process as shown in Alg. 3. The

16 List of tables

code generation gets triggered by passing the Pytato expression created in Alg. 2 to
pt.generate_cudagraph.

Algorithm 3: Pytato-PyCUDA graph generated code

import pycuda.driver as _pt_drv
import numpy as np
from pycuda.driver import KernelNodeParams as _pt_KernelNodeParams
from pycuda.compiler import SourceModule as _pt_SourceModule
from pycuda import gpuarray as _pt_gpuarray
from functools import cache

Create and load kernel module
_pt_mod_0 = _pt_SourceModule("

#define bIdx(N) ((int) blockIdx.N)\n#define tIdx(N) ((int)
threadIdx.N)\n\nextern "C" __global__ void __launch_bounds__(16)
knl_mult_x1_1_x2_16(double *__restrict__ out, double const *__restrict__
_in1)\n{\n {\n int const ibatch = 0;\n\n out[4 * (tIdx(x) / 4) +
tIdx(x) + -4 * (tIdx(x) / 4)] = 2l * _in1[4 * (tIdx(x) / 4) + tIdx(x) +
-4 * (tIdx(x) / 4)];\n }\n}
")

Stage 1: Build and cache CUDAGraph
@cache
def exec_graph_builder():

_pt_g = _pt_drv.Graph()
_pt_buffer_acc = {}
_pt_node_acc = {}
_pt_memalloc, _pt_array = _pt_g.add_memalloc_node(size=128,

dependencies=[])
_pt_kernel_0 = _pt_g.add_kernel_node(_pt_array, 139712027164672,

func=_pt_mod_0.get_function('knl_mult_x1_1_x2_16'), block=(16, 1, 1),
grid=(1, 1, 1), dependencies=[_pt_memalloc])

_pt_buffer_acc['_pt_array'] = _pt_array
_pt_node_acc['_pt_kernel_0'] = _pt_kernel_0
_pt_g.add_memfree_node(_pt_array, [_pt_kernel_0])
return (_pt_g.get_exec_graph(), _pt_g, _pt_node_acc, _pt_buffer_acc)

Stage 2: Invoker layer
def _pt_kernel(allocator=cuda_allocator, dev=cuda_dev, *, a):

_pt_result = _pt_gpuarray.GPUArray((4, 4), dtype='float64',
allocator=allocator, dev=dev)

_pt_exec_g, _pt_g, _pt_node_acc, _pt_buffer_acc =
exec_graph_builder()

_pt_exec_g.batched_set_kernel_node_arguments(
{_pt_node_acc['_pt_kernel_0']:

_pt_drv.KernelNodeParams(args=[_pt_result.gpudata, a.gpudata])})
_pt_exec_g.launch()
_pt_tmp = {'_pt_out': _pt_result}
return _pt_tmp['_pt_out'].get()

4 Lowering Array Operations to CUDA graphs 17

4.1. Stage 1: Build CUDA graph

Since the CUDA graph runtime scheduler takes in a fully defined dataflow graph, we use
Alg 4 to explore all of the array dependencies in the computation graph. We cache the
resultant executable graph since the topology stays constant throughout the computation.
This ensures that Alg 4 only gets executed only once during compilation with a �(V+E)
complexity for Alg 5.

Algorithm 4: DAG Discovery for building CUDA graph

Input: Pytato array computation graph
Output: pycuda.Graph object

Step 1: Initialize a pycuda.Graph object.

Step 2:
Output nodes in array computation graph with no successors.
Code ; // Variable holding onto the graph building code
ArrayToBuffer ; // Mapping from Pytato array to name of the buffer

corresponding to the array in PyCUDA graph code
for n 2 Output do

Code, ArrayToBuffer GraphTraverse(n, Code, ArrayToBuffer)
done

Step 3: Instantiate pycuda.Graph object and cache the resultant pycuda.GraphExec
object to avoid triggering graph traversals for subsequent launches.

The exec_graph_builder function in Alg. 3 describes the graph building phase followed
by the execution phase in _pt_kernel. Since arrays are being lazily evaluated during the
building phase, all placeholders are replaced with temporary array buffers which are then
updated during the execution phase. For every kernel node, the resulting array is allocated
using add_memalloc_node and array operation is expressed through add_kernel_node.
Instead of manually searching the parameter space, we generate the kernel string and the
launch configuration by passing the corresponding IndexLambda to Loopy.

18 List of tables

Algorithm 5: Array computation graph traversal

function PlaceholderMapper(n, ArrayToBuffer)
ArrayToBuffer [n] User provided buffer OR allocate new buffer using GPUArrays
return ArrayToBuffer

end function

function Loopykernel(n)
{Returns the kernel string and launch configuration}
. . .

end function

function IndexLambdaMapper(n, Code, ArrayToBuffer)
Insert CUDAGraph memalloc node code for result array
ArrayToBuffer [n] Buffer corresponding to allocated result array
kernelString, grid, block = LoopyKernel(n)
Insert CUDA graph kernel node code with temporary buffers for bindings into Code
return Code, ArrayToBuffer

end function

function GraphTraverse(n, Code, ArrayToBuffer)
if n � {Placeholder, DataWrapper} {

ArrayToBuffer PlaceholderMapper(n, ArrayToBuffer)
return fng, Code, ArrayToBuffer

}
else {
Code, ArrayToBuffer IndexLambdaMapper(n, Code, ArrayToBuffer)
n_deps ;
bindings IndexLambda bindings for n
for c � bindings do

c_deps, Code, ArrayToBuffer GraphTraverse(c,Code,ArrayToBuffer)
n_deps n_deps

S
c_deps

done
return n_deps, Code, ArrayToBuffer

}
end function

4.2. Stage 2: Execute CUDA graph

Since the input parameters of the computation graph change with every integration step,
the corresponding CUDAGraph also changes. To avoid triggering a graph compilation for
every iteration, we use PyCUDA wrappers around cuGraphExecSetKernelParams function-
ality.

Since the graph topology does not change over different iterations, we are able to update
the cached executable graph with new kernel parameters. This helps us avoid the expensive
instantiation of a new graph. Thus, instead of Alg. 4, Alg. 6 gets executed for every graph

4 Lowering Array Operations to CUDA graphs 19

launch with�(n) complexity where n is the number of kernel nodes with temporary buffers
which is a subset of all the nodes in the graph. In Alg. 3, this corresponds to the routine
enclosed in _pt_kernel.

Algorithm 6: Buffer update in CUDA graph execution

Nodes kernel nodes in pycuda.GraphExec with temporary buffers
for n 2 Nodes do

Replace temporary buffers with allocated/linked buffers from corresponding
PlaceHolder nodes

done

5. Results

5.1. Experimental Setup

Applications: We demonstrate the performance of our framework on three end-to-end
DG-FEM operators: Wave, Euler and Compressible Navier Stokes. We evaluated these
operators on 3D meshes with tetrahedral cells. Our experimental parameters have been
summarized in Table 2.

Tools: Two types of tools were used: (1) Compilers, NVCC V11 for CUDA graphs and
POCL-CUDA 3.1 for PyOpenCL, and (2) Analysis tools like nvprof and nvvp.

Platform: All of our experiments were performed on GPU NVIDIA TITAN V with 6144
GFLOPs/s peak double precision and 652.8 GB/s peak bandwidth.

Equation Polynomial degrees # of tetrahedrons in the mesh

Wave 1 1.25 � 105

2 5.0 � 104

3 2.5 � 104

4 1.4 � 104

Euler 1 3.2768 � 104

2 1.3284 � 104

3 6.859 � 103

4 4.913 � 103

Compressible 1 8.2944 � 104

Navier Stokes 2 4.8000 � 104

3 2.4576 � 104

4 1.0368 � 104

Table 2. Experimental parameters for DG-FEM operators

20 List of tables

P1 P2 P3 P4
0

20

40

60

80

100

120

GF
LO

Ps
/s

PyOpenCL
Pytato PyCUDA CUDAGraph

Wave

P1 P2 P3 P4
0

20

40

60

80

100

GF
LO

Ps
/s

PyOpenCL
Pytato PyCUDA CUDAGraph

Euler

P1 P2 P3 P4
0

20

40

60

80

100

120

GF
LO

Ps
/s

PyOpenCL
Pytato PyCUDA CUDAGraph

Compressible Navier Stokes

Figure 3. Performance of our framework (Pytato-PyCUDA graph) for DG-FEM operators over
sequential stream execution (PyOpenCL).

5 Results 21

5.2. Performance Evaluation

Methodology: We measure our speedup over PyOpenCL where the array operations are
executed one after the other in a single stream. We used wall clock times for our measure-
ment with 2 seconds being spent in the warmup loop and 5 seconds for the iteration loop.

We observe speedups of up to 8-32� for Wave, 2-4� for Euler and 2-24� for Compressible
Navier Stokes with the resulting performance being closely tied to the polynomial order
as reported in [14]. The large variation in performance can be attributed to the difference
in computation graph topologies for each operator. We also note that the performance
is largely limited by memory bandwidth. As observed in Fig. 2, the scheduler maximally
parallelizes the given CUDA graph without limiting the stream usage. Thus, in execution
graphs with high memory footprints, the GPU memory can explode which in this case
limits the scaling to higher mesh resolutions.

5.3. Future Work

The GPU subsystem interplay that leads to this performance gain might be explained in
future work by applying ideas from StarPU[5]. Here's are some ideas from their work that
might be applicable in this context:

Asynchronous data management and data requests (Sec. 4.2): Data transfers can
be very long due to the main bus typically being a bottleneck. CUDA graph's data man-
agement mightcompletely asynchronous by associating each memory node with a queue
of pending data requests, possibly queued by various parts of the graph, another memory
node requesting data for some task for instance. It might also makes dynamic prefetching
of data quite natural: as soon as a task is scheduled to be run by some processing unit, the
data transfer order can be queued so that the execution of the task can hopefully happen
as soon as the processing unit has finished previous tasks, thanks to data being transferred
in parallel.

Taking task duration/data transfers into account (Sec. 5.3.1/5.3.2): CUDA
graph's runtime scheduler might be a variation of the HEFT scheduling algorithm (Het-
erogeneous Earliest Finish Time[27]). It makes use of performance prediction to keep
track of the expected dates Avail (Pi) at which each processing unit will become avail-
able (after all the tasks already assigned to it complete). A new task T is then assigned
to the processing unit Pi that minimizes the new termination time with respect to the
expected duration Est (T)

Pi
of the task on the unit. In addition to the computation time,

the scheduler might compute a penalty based on the times Tj!i(d) required to move
each data d from Pj (where a valid copy of d resides) to Pj. Such penalty of course reduces
to 0 if the target unit already holds the data, i.e. j = i . The resulting minimization is:

min
Pi

�
Avail(Pi)+Est(T)

Pi

+
P
data

min
Pj
(Tj!i(data))

�
termination time data penalty

22 List of tables

Task performance models (Sec. 6.1): CUDA graphs might use history-based predic-
tion for kernels by assuming that for a given application they are mostly always called
with the same parameters, the typical task granularity for instance. Given task parameters
characteristics (the size of the data, typically), the scheduler might compute a hash char-
acterizing this task's complexity, and that might thus be used as an index in the history
tables from which an average of the previous execution times might be obtained. Future
modelling work can try to predict speedup over sequentual execution by breaking the
computation graph into separate I/O node layers and assigning weights to different layers
by factoring in memory footprint and kernel execution times.

6. Conclusion

In this work we realize the concurrency available across array operations through NVIDIA's
CUDA graph task programming model. CUDA graphs overcome the limitations of single
stream execution through a user defined DAG that can be executed on GPUs using multiple
streams and low kernel latencies.

1. Firstly, we extend the PyCUDA GPU scripting framework to wrap around the CUDA
graph driver API.

2. Next, we implement a pipeline for lowering array operations onto PyCUDA graph code
using Pytato which is a lazy evaluation-based array package.

3. And finally we assess the profitability of CUDA graphs for DG-FEM workloads by
evaluating our framework on three end-to-end DG-FEM operators. We record a
speedup of up to 32� for Navier Stokes operator over sequential stream execution.

For future work, we plan to come up with a performance model for the scheduling algo-
rithm through a series of microbenchmarks. Since execution graph overhead and memory
footprint play a critical role in deciding the feasibility of CUDA graph applications, they
could be made available as compilation parameters to arrive at a tradeoff based on available
GPU memory and direct kernel launch times.

6 Conclusion 23

Bibliography

[1] Effortless CUDA graphs in: Nvidia GPU Technology Conference (GTC) (2021).
[2] Getting started with CUDA graphs.
[3] http://www2.informatik.uniosnabrueck.de/knust/class/. Complexity results for scheduling

problems.
[4] Mart2� Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S

Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mane, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Van-
houcke, Vijay Vasudevan, Fernanda Viegas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: large-scale machine learning on heterogeneous
distributed systems. 5 2016.

[5] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier. Starpu: a
unified platform for task scheduling on heterogeneous multicore architectures. Concurrency and
Computation: Practice and Experience , 23:187�198, 2011.

[6] Nader Al Awar, Steven Zhu, George Biros, and Milos Gligoric. A performance portability framework
for python. ACM, 6 2021.

[7] Michael Bauer. Legion: programming distributed heterogeneous architectures with logical regions.
2014.

[8] Michael Bauer and Michael Garland. Legate numpy: accelerated and distributed array computing.
2019.

[9] Jeff Bezanson, Stefan Karpinski, Viral B Shah, and Alan Edelman. Julia: a fast dynamic language
for technical computing. 2012.

[10] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. Jax: composable transformations of python+numpy programs. 2018.

[11] Oscar Castro, Pierrick Bruneau, Jean-Sébastien Sottet, and Dario Torregrossa. Landscape of high-
performance python to develop data science and machine learning applications. 5 2023.

[12] Luis Pedro Coelho. Jug: software for parallel reproducible computation in python. Journal of Open
Research Software , 5:30, 10 2017.

[13] Reazul Hoque, Thomas Herault, George Bosilca, and Jack Dongarra. Dynamic task discovery in
parsec- a data-flow task-based runtime. 2017.

[14] A. Klöckner, T. Warburton, J. Bridge, and J. S. Hesthaven. Nodal discontinuous galerkin methods
on graphics processors. Journal of Computational Physics , 228, 2009.

[15] Andreas Klöckner. Loo.py: transformation-based code generation for gpus and cpus. Association
for Computing Machinery, 2014.

[16] Andreas Klöckner, Nicolas Pinto, Yunsup Lee, B Catanzaro, Paul Ivanov, and Ahmed Fasih. Pycuda
and pyopencl: a scripting-based approach to gpu run-time code generation. Parallel Computing ,
38:157�174, 2012.

[17] Mads R. B. Kristensen, Simon A. F. Lund, Troels Blum, Kenneth Skovhede, and Brian Vinter.
Bohrium: unmodified numpy code on cpu, gpu, and cluster. Proceedings of the Python for High
Performance and Scientific Computing Workshop (PyHPC 2013), 2013.

[18] Kaushik Kulkarni and Andreas Klöckner. Separating concerns in computational science without
domain specific languages. 2023.

[19] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: a llvm-based python jit compiler.
Volume 2015-January. 2015.

[20] Jan Karel Lenstra, David B. Shmoys, and Éva Tardos. Approximation algorithms for scheduling
unrelated parallel machines. Mathematical Programming , 46, 1990.

[21] Stefan C Müller, Gustavo Alonso, Adam Amara, and André Csillaghy. Pydron: semi-automatic
parallelization for multi-core and the cloud. Pages 645�659. USENIX Association, 10 2014.

[22] Ryosuke Okuta, Yuya Unno, Daisuke Nishino, Shohei Hido, and Crissman Loomis. Cupy: a numpy-
compatible library for nvidia gpu calculations. 2017.

25

http://www2.informatik.uniosnabrueck.de/knust/class/
http://www2.informatik.uniosnabrueck.de/knust/class/
http://www2.informatik.uniosnabrueck.de/knust/class/
http://www2.informatik.uniosnabrueck.de/knust/class/
http://www2.informatik.uniosnabrueck.de/knust/class/
http://www2.informatik.uniosnabrueck.de/knust/class/
http://www2.informatik.uniosnabrueck.de/knust/class/
http://www2.informatik.uniosnabrueck.de/knust/class/

[23] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: an imperative style, high-performance deep learning
library. 5 2019.

[24] Amit Sabne. Xla : compiling machine learning for peak performance. 2020.
[25] Elliott Slaughter and Alex Aiken. Pygion: flexible, scalable task-based parallelism with python.

IEEE, 11 2019.
[26] Enric Tejedor, Yolanda Becerra, Guillem Alomar, Anna Queralt, Rosa M Badia, Jordi Torres, Toni

Cortes, and Jesús Labarta. Pycompss: parallel computational workflows in python. The Interna-
tional Journal of High Performance Computing Applications , 31:66�82, 7 2016.

[27] Haluk Topcuoglu, Salim Hariri, and Min You Wu. Performance-effective and low-complexity task
scheduling for heterogeneous computing. IEEE Transactions on Parallel and Distributed Systems ,
13, 2002.

26 Bibliography

	Abstract
	List of figures
	List of tables
	1. Introduction
	2. Related work
	3. Overview
	3.1. CUDA graphs
	3.2. Loopy
	3.3. Pytato

	4. Lowering Array Operations to CUDA graphs
	4.1. Stage 1: Build CUDA graph
	4.2. Stage 2: Execute CUDA graph

	5. Results
	5.1. Experimental Setup
	5.2. Performance Evaluation
	5.3. Future Work

	6. Conclusion

	Bibliography

