
MISRA C:2012
Technical Corrigendum 2
Technical clarification of MISRA C:2012
March 2022

First published March 2022 by The MISRA Consortium Limited
1 St James Court
Whitefriars
Norwich
Norfolk
NR3 1RU
UK

www.misra.org.uk

Copyright © 2022 The MISRA Consortium Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical or photocopying, recording or
otherwise without the prior written permission of the Publisher.

“MISRA”, “MISRA C” and the triangle logo are registered trademarks owned by The MISRA Consortium
Limited. Other product or brand names are trademarks or registered trademarks of their respective
holders and no endorsement or recommendation of these products by MISRA is implied.

ISBN 978-1-911700-00-5 PDF

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library.

MISRA C:2012
Technical Corrigendum 2
Technical clarification of MISRA C:2012
March 2022

MISRA internal use only i

i

MISRA Mission Statement

We provide world-leading, best practice guidelines for the safe and secure application of both
embedded control systems and standalone software.

MISRA is a collaboration between manufacturers, component suppliers and engineering
consultancies which seeks to promote best practice in developing safety- and security-related
electronic systems and other software-intensive applications. To this end, MISRA publishes
documents that provide accessible information for engineers and management, and holds events to
permit the exchange of experiences between practitioners.

Disclaimer

Adherence to the requirements of this document does not in itself ensure error-free robust software or
guarantee portability and re-use.

Compliance with the requirements of this document, or any other standard, does not of itself confer
immunity from legal obligations.

ii

Foreword

Subsequent to the publication of MISRA C:2012 [1], its enhancement by Amendment 1 [3] and
Amendment 2 [4], and its adoption by industry and the wider C community, a number of issues have
arisen, both from discussions within the MISRA C Working Group and in response to feedback via the
MISRA discussion forum [6].

This document provides clarification on these issues, and should be read in conjunction with:

● MISRA C:2012 (Third Edition, First Revision) Guidelines for the use of the C language in critical
systems [2], as revised by:

▬ MISRA C:2012 Amendment 2, Updates for ISO/IEC 9899:2011 Core functionality [4]

or

● MISRA C:2012 (Third Edition) Guidelines for the use of the C language in critical systems [1], as
revised by:

▬ MISRA C:2012 Amendment 1, Additional security guidelines for MISRA C:2012 [3]

▬ MISRA C:2012 Amendment 2, Updates for ISO/IEC 9899:2011 Core functionality [4]

▬ MISRA C:2012 Technical Corrigendum 1 [5]

Andrew Banks FBCS CITP
Chairman, MISRA C Working Group

iii

Contents

1 Clarification of introduction to guidelines 1
1.1 Section 6.9 1

2 Clarification of directives 2
2.1 Dir 4.10 2

3 Clarification of rules 3
3.1 Rule 2.2 3
3.2 Rule 2.5 3
3.3 Rule 7.4 4
3.4 Rule 8.2 5
3.5 Rule 8.3 5
3.6 Rule 8.7 6
3.7 Section 8.10.1 6
3.8 Rule 10.1 7
3.9 Rule 10.2 7
3.10 Rule 10.3 8
3.11 Rule 11.3 8
3.12 Rule 11.6 8
3.13 Rule 13.2 9
3.14 Rule 13.6 9
3.15 Rule 14.3 10
3.16 Rule 15.7 10
3.17 Rule 17.4 11
3.18 Rule 17.5 11
3.19 Rule 18.1 11
3.20 Rule 20.14 12
3.21 Rule 21.19 12
3.22 Rule 21.20 12
3.23 Rule 22.9 13

4 Clarification of appendices 14
4.1 Appendix A 14
4.2 Appendix B 14
4.3 Appendix C 14
4.4 Appendix D 15

5 References 17

iv

1 Clarification of introduction to guidelines

1.1 Section 6.9

Issue

The meaning of the phrase “Applies to” was unclear.

Correction

TC 2.1 : Insert new Note 1 before the existing notes, which should be renumbered accordingly

1. Where a guideline does not apply to the chosen version of the C Standard, it is treated as “not
applicable” for the purposes of MISRA Compliance [42].

1

2 Clarification of directives

2.1 Dir 4.10

Issue

It was unclear whether the examples given in the document were the only permitted methods of
protecting the inclusion of header files.

Correction

TC 2.2 : In the “Example” section, replace:

In order to facilitate checking, the contents of the header should be protected from being included
more than once using one of the following two forms:

with:

The following examples show two ways by which the contents of a header file could be protected
from being included more than once in a translation unit, but this is not an exclusive list.

2

3 Clarification of rules

3.1 Rule 2.2

Issue

It is unclear whether a cast operator whose result is used is ever dead code.

Correction

TC 2.3 : In the “Exception” section, number existing exception as 1.

TC 2.4 : In the “Exception” section, add second exception:

2. A cast operator whose result is used is not dead code.

3.2 Rule 2.5

Issue

Incorrect terminology was used to describe macro definitions.

Correction

TC 2.5 : Replace the “Headline”

A project should not contain unused macro declarations

with:

A project should not contain unused macro definitions

TC 2.6 : In the “Rationale” section, replace:

If a macro is declared …

with:

If a macro is defined …

3

3.3 Rule 7.4

Issue

It is unclear whether Rule 7.4 applies to variadic functions.

Correction

TC 2.7 : Add a new “Exception” section:

Exception

This rule does not apply to a string literal passed as an argument to the variable argument list of a
variadic function.

TC 2.8 : Add to the “Example” section:

This example shows the permitted exemption for variadic functions.

extern void f3(uint16_t x, ...); /* Note: non-compliant with Rule 17.1 */
extern void f4(char *text, ...); /* Note: non-compliant with Rule 17.1 */

void variadic(void)
{
 f3(42u, "MISRA"); /* Compliant by exception */
 f4("MISRA", 42u); /* Non-compliant - exception only applies to
 variable argument lists */
}

TC 2.9 : Add to the “See also” list:

Rule 17.1

Section 3: Clarification of rules

4

3.4 Rule 8.2

Issue

Add new cross-reference to Rule 8.3.

Correction

TC 2.10 : Add to the “See also” list:

Rule 8.3

3.5 Rule 8.3

Issue

It is unclear whether Rule 8.3 applies if a parameter is not named in a declaration, but is named in
the definition.

Correction

TC 2.11 : In the “Exception” section, number existing exception as 1.

TC 2.12 : In the “Exception” section, add second exception:

2. The naming requirements of this rule do not apply to unnamed function parameters. This is
covered by Rule 8.2.

TC 2.13 : In the “Example” section, replace the first example with:

extern void f (signed int a);
 void f (int a); /* Compliant - Exception 1 */

extern void g (signed int b);
extern void g (signed int); /* Compliant - Exception 2 */

extern void h (int * const c);
extern void h (int * c); /* Non-compliant - mis-matched type qualifiers */

extern void j (int d);
extern void j (int e); /* Non-compliant - mis-matched parameter names */

Note: all the above are not compliant with Dir 4.6; example g() is also not compliant with Rule 8.2.

TC 2.14 : Add to the “See also” list:

Rule 8.2

Se
ct

io
n

3:
 C

la
rifi

ca
tio

n
of

 r
ul

es

5

3.6 Rule 8.7

Issue

An example is required in the documentation.

Correction

TC 2.15 : Add a new “Example” section:

Example

/* file.h */
extern void ext_fn1 (void); /* Compliant */
extern void ext_fn2 (void); /* Non-compliant */

/* file1.c */
#include "file.h"
void ext_fn1 (void) /* Compliant - defined in this translation unit,
 but used externally */
{
 /* Function definition */
}

void ext_fn2 (void) /* Non-compliant - defined and used only
 in this translation unit */
{
 /* Function definition */
}

void fn_file1 (void)
{
 ext_fn2();
}

/* file2.c */
#include "file.h"
void fn_file2 (void)
{
 ext_fn1();
}

3.7 Section 8.10.1

Issue

It is unclear whether the rules in Section 8.10 apply to expressions with a pointer type.

Correction

TC 2.16 : Add a paragraph to the end of Section 8.10.1:

The rules in this section do not apply to expressions with a pointer type, unless otherwise specified.

Section 3: Clarification of rules

6

3.8 Rule 10.1

Issue

Rationale 6 should make reference to undefined behaviour.

Correction

TC 2.17 : In the “Rationale” section, replace the second sentence of rationale 6:

The numeric value resulting from their use on essentially signed types is implementation-defined.

with:

The numeric value resulting from their use on essentially signed types may be undefined or
implementation-defined.

TC 2.18 : In the “Source ref” list, replace:

C99 [Undefined 13, 49; Implementation J.3.4(2, 5), J.3.5(5), J.3.9(6)]

with:

C99 [Undefined 13, 48, 49; Implementation J.3.4(2, 5), J.3.5(5), J.3.9(6)]

3.9 Rule 10.2

Issue

It is unclear whether the amplification applies to all essentially signed and unsigned types. The intention
was that it should only apply to operands whose type had a rank equal or lower than the rank of int.

Correction

TC 2.19 : Replace the “Amplification” section with:

The appropriate uses are:

1. For the + operator, one operand shall have essentially character type and the other shall have
essentially signed type or essentially unsigned type having a rank lower than or equal to that of int. The
result of the operation has essentially character type.

2. For the - operator, the first operand shall have essentially character type and the second shall have:

● essentially signed type or essentially unsigned type or essentially character type; and

● a rank lower than or equal to that of int

If both operands have essentially character type then the result has the standard type (usually int in this
case) else the result has essentially character type.

Se
ct

io
n

3:
 C

la
rifi

ca
tio

n
of

 r
ul

es

7

3.10 Rule 10.3

Issue

It is unclear whether Amplification 2 refers to the essential type or the C promoted type of the
controlling expression.

Correction

TC 2.20 : In the “Amplification” section, replace amplification 2:

2. The conversion of the constant expression in a switch statement's case label to the promoted type of
the controlling expression.

with:

2. The conversion of the constant expression in a switch statement's case label to the essential type of
the controlling expression.

3.11 Rule 11.3

Issue

The Rule is missing a cross-reference to Rule 18.1.

Correction

TC 2.21 : Add to the “See also” section:

Rule 18.1

3.12 Rule 11.6

Issue

The conversion of an integer into a pointer to void was incorrectly described as resulting in undefined
behaviour.

Correction

TC 2.22 : In the “Amplification” section, replace the second paragraph:

Conversion of an integer into a pointer to void may result in a pointer that is not correctly aligned,
resulting in undefined behaviour.

with:

Conversion of an integer into a pointer to void results in behaviour that is implementation-defined.

Section 3: Clarification of rules

8

3.13 Rule 13.2

Issue

It is unclear whether this rule takes into account the value of an object. For example:

 int a = 0;
 if ((x = a) && (x = b))

The second assignment to x will never take place if a is known to be 0. The intention was that the
value of the object should not be considered and the above example would be non-compliant with
this rule.

Correction

TC 2.23 : In the “Amplification” section, number the existing two notes as 1 and 3 respectively.

TC 2.24 : In the “Amplification” section, insert a new note 2 between the existing two notes:

2. All parts of the expression are considered when determining whether an object is read or
modified, irrespective of any known values.

TC 2.25 : In the “Rationale” section, replace the final paragraph:

Many of the common instances of the unpredictable behaviour associated with expression
evaluation can be avoided by following the advice given by Rule 13.3 and Rule 13.4.

with:

Many of the common instances of the unpredictable behaviour, associated with expression
evaluation, can be avoided by following the advice given by this rule, by Rule 13.3, and by Rule 13.4.
However, in order to simplify this rule, it does restrict some forms which are well-defined.

3.14 Rule 13.6

Issue

There are use cases for violating sizeof(expressions), which the current mandatory category
prevents.

Correction

TC 2.26 : Revise the “Category” from Mandatory to Required.

Se
ct

io
n

3:
 C

la
rifi

ca
tio

n
of

 r
ul

es

9

3.15 Rule 14.3

Issue

Exception 2 was intended to permit only a constant expression, but the current wording permits
expressions that evaluate to 0 at run-time.

Correction

TC 2.27 : In the “Exception” section, replace exception 2:

A do … while loop with an essentially Boolean controlling expression that evaluates to 0 is permitted.

with:

A do … while loop with an essentially Boolean controlling expression that evaluates to false and
satisfies the constraints and semantics for an integer constant expression is permitted.

TC 2.28 : In the “Example” section, add a new example:

do
{
 /* Non-compliant - not covered by exception 2 */
} while ((s8a < 10) && (s8a > 20));

3.16 Rule 15.7

Issue

The cross-reference to Rule 16.5 should read Rule 16.4.

Correction

TC 2.29 : In the “See also” section, replace:

See also: Rule 16.5

with:

See also: Rule 16.4
Section 3: Clarification of rules

10

3.17 Rule 17.4

Issue

Enforcing this rule for the main function may conflict with Rule 2.1.

Correction

TC 2.30 : Add a new “Exception” section:

Exception

For C99 and later, The Standard specifies that if control reaches the end of main without
encountering a return statement, the effect is that of executing return 0. Therefore, for C99 and
later, the return statement may be omitted for function main.

3.18 Rule 17.5

Issue

There is an inconsistency between the headline and the category, in that the headline uses shall
(denoting Required) but the guideline is incorrectly categorized as Advisory.

Correction

TC 2.31 : Revise the “Category” from Advisory to Required.

Correction

TC 2.32 : In the “Amplification” section, replace should with shall.

3.19 Rule 18.1

Issue

It is unclear whether the following code violates Rule 18.1:

uint32_t variable = ;
uint8_t *ptr = (uint8_t *) &variable;
uint8_t u8 = ptr[3]; // Treat ptr as array of 4 8-bit objects

Correction

TC 2.33 : In the “Amplification” section, add a note:

Note: A pointer to an object of type T which has been converted to a pointer to an object of type
char, signed char or unsigned char (see exception to Rule 11.3) is treated as an array of that
type with bound equal to sizeof(T).

TC 2.34 : Add to the “See also” list:

Rule 11.3

Se
ct

io
n

3:
 C

la
rifi

ca
tio

n
of

 r
ul

es

11

3.20 Rule 20.14

Issue

Incorrect filename in example.

Correction

TC 2.35 : In the “Example” section, replace the final line:

/* End of file1.h */

with:

/* End of file2.h */

3.21 Rule 21.19

Issue

A cross-reference intended for use only within MISRA C:2012 Amendment 1 [3] has been
incorporated into the consolidated document.

Correction

TC 2.36 : In the “See also” section, delete the reference to Rule 21.8.

3.22 Rule 21.20

Issue

The current wording is imprecise with respect to the sets of related library functions.

Correction

TC 2.37 : Replace the “Amplification” section with:

For the purposes of this rule:

● a call to setlocale function following a call to localeconv function shall be treated as if
they are calls to the same function.

● the asctime and ctime functions shall be treated as if they are the same function.

● the gmtime and localtime functions shall be treated as if they are the same function.

Section 3: Clarification of rules

12

3.23 Rule 22.9

Issue

An incorrect headline was printed in the hard copy version of the First Revision of the Third Edition of
the MISRA C:2012 guidelines. The correct headline appears in the PDF version and in Appendix A of
the hard copy.

Correction

TC 2.38 : Replace the “Headline”:

The value of errno shall be set to zero after calling an errno-setting-function

with:

The value of errno shall be tested against zero after calling an errno-setting-function

Se
ct

io
n

3:
 C

la
rifi

ca
tio

n
of

 r
ul

es

13

4 Clarification of appendices

4.1 Appendix A

Consequential amendments

TC 2.39 : For Rule 2.5 update the “Headline” replacing declarations with definitions.

TC 2.40 : For Rule 13.6, revise the “Category” from Mandatory to Required.

TC 2.41 : For Rule 17.5, revise the “Category” from Advisory to Required.

4.2 Appendix B

Consequential amendments

TC 2.42 : For Rule 13.6, update the “Category” from Mandatory to Required.

TC 2.43 : For Rule 17.5, update the “Category” from Advisory to Required.

4.3 Appendix C

Issue

It is unclear if the unqualified term conversion means implicit or explicit conversions, or both.

Correction

TC 2.44 : Insert a Note immediately before the paragraph starting An explanation….

Note: Conversions may be implicit or explicit (i.e. by means of a cast) – where the term conversion is
used without qualification it means either or both forms as the situation requires.

14

4.4 Appendix D

4.4.1 Appendix D.1

Issue

It is unclear what is the essential type of ptrdiff_t, size_t, intptr_t and other types defined in
the C Standard Library header files.

Correction

TC 2.45 : Replace

The essential type of an expression only differs from the standard C type (standard type) in expressions
where the standard type is either signed int or unsigned int.

with

The essential type of an expression only differs from the standard C type (standard type) in expressions
where the standard type is either signed int or unsigned int.

The essential type of an expression with a C type defined in a C Standard Library header is that in
which it is implemented. For example, int_least8_t may be implemented as signed int and will
have an essential type of essentially signed int in that case.

Se
ct

io
n

4:
 C

la
rifi

ca
tio

n
of

 a
pp

en
di

ce
s

15

4.4.2 Appendix D.7

Issue

The operations listed in D.7.9 overlap with those in D.7.10 and D.7.11. For example, these changes
clarify that addition between operands with essentially character and essentially long types will result in
an expression with an essentially long type.

Correction

TC 2.46 : Replace Sections D.7.9, D.7.10 and D.7.11 with a single revised section D.7.9

D.7.9 Operations subject to the usual arithmetic conversions (* / % + - & | ^)

1. If the operator is + and one operand is essentially character and the other is essentially signed
or essentially unsigned having a rank lower than or equal to that of int then the essential type of
the result is char;

2. Else if the operator is - and the first operand is essentially character type and the second is
essentially signed or essentially unsigned having a rank lower than or equal to that of int then
the essential type of the result is char;

3. Else if the operands are both essentially signed then:

3.1 If the expression is an integer constant expression then the essential type of the result is the
STLR of the result;

3.2 Else the essential type of the result is the essential type of the operand with the highest
rank.

4. Else if the operands are both essentially unsigned then:

4.1 If the expression is an integer constant expression then the essential type of the result is the
UTLR of the result;

4.2 Else the essential type of the result is the essential type of the operand with the highest
rank.

5. Else the essential type is the standard type.
Section 4: Clarification of appendices

16

5 References
[1] MISRA C:2012 (Third Edition) Guidelines for the use of the C Language in critical systems,

ISBN 978-1-906400-10-1 (paperback) 978-1-906400-11-8 (PDF),
MIRA, March 2013

[2] MISRA C:2012 (Third Edition, First Revision) Guidelines for the use of the C Language in critical
systems,
ISBN 978-1-906400-21-7 (paperback) 978-1-906400-22-4 (PDF),
HORIBA MIRA Limited, February 2019

[3] MISRA C:2012 Amendment 1, Additional security guidelines for MISRA C:2012,
ISBN 978-1-906400-16-3 PDF,
HORIBA MIRA Limited, April 2016

[4] MISRA C:2012 Amendment 2, Updates for ISO/IEC 9899:2011 core functionality,
ISBN 978-1-906400-25-5 PDF,
HORIBA MIRA Limited, February 2020

[5] MISRA C:2012 Technical Corrigendum 1,
ISBN 978-1-906400-17-0 PDF,
HORIBA MIRA Limited, June 2017

[6] MISRA discussion forum at https://forum.misra.org.uk/

17

https://forum.misra.org.uk/

	1 Clarification of introduction to guidelines
	1.1 Section 6.9

	2 Clarification of directives
	2.1 Dir 4.10

	3 Clarification of rules
	3.1 Rule 2.2
	3.2 Rule 2.5
	3.3 Rule 7.4
	3.4 Rule 8.2
	3.5 Rule 8.3
	3.6 Rule 8.7
	3.7 Section 8.10.1
	3.8 Rule 10.1
	3.9 Rule 10.2
	3.10 Rule 10.3
	3.11 Rule 11.3
	3.12 Rule 11.6
	3.13 Rule 13.2
	3.14 Rule 13.6
	3.15 Rule 14.3
	3.16 Rule 15.7
	3.17 Rule 17.4
	3.18 Rule 17.5
	3.19 Rule 18.1
	3.20 Rule 20.14
	3.21 Rule 21.19
	3.22 Rule 21.20
	3.23 Rule 22.9

	4 Clarification of appendices
	4.1 Appendix A
	4.2 Appendix B
	4.3 Appendix C
	4.4 Appendix D
	4.4.1 Appendix D.1
	4.4.2 Appendix D.7

	5 References

