
Practicability of Blockchain Technology and Scalable Blockchain Network: Sharding

by

Abdoul-Nourou Yigo

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science

Computer Science

At

The University of Wisconsin-Whitewater

December, 2019

Graduate Studies

The members of the Committee approve the thesis of

Abdoul-Nourou Yigo presented on December 6, 2019

Dr. Athula Gunawardena, Chair

Dr. Jiazhen Zhou

Dr. Sungchul Lee

Practicability of Blockchain Technology and Scalable Blockchain Network: Sharding

By

Abdoul-Nourou Yigo

The University of Wisconsin-Whitewater, 2019 Under the Supervision of

Dr. Athula Gunawardena

ABSTRACT

Currently, some research has been done in the Blockchain domain on how to improve the ef-

ficiency of transmissions in Blockchain ecosystem. The effectiveness of the transmissions within

a Blockchain network depends on the execution of appropriate consensus algorithms to ensure the

security and fairness of the validation and transmission of transactions. The first consensus algo-

rithm that has been used within a Blockchain ecosystem such as Bitcoin is Proof of Work (PoW).

The second generation of consensus algorithm is Proof of Stake (PoS) that has been put into prac-

tice in the PeerCoin Blockchain ecosystem. One major issue is that those consensus algorithms are

inefficient because they require a significant amount of energy consumption to enable the valida-

tion of transactions in a complete Blockchain platform. Therefore, the amount of transactions that

can be processed and validated is limited and expensive in terms of time complexity. As a result,

scalable approaches need to be designed to sharpen the efficiency (i.e., with low latency and high

throughput) of the Blockchain system. The introduction of the sharding concept has given us the

possibility to divide the network into small portions, and to enable the validation of transactions in

parallel using the Byzantine-Fault Tolerant (BFT) consensus on those subset of nodes. Sharding

the network can significantly improve the Communication Cost per Transaction (CCPT) because

each transaction is validated in its specific shard using validator nodes with appropriate proof size.

In our implementation, the transaction would follow the shortest path, traversing nodes with small

proof sizes minimizing the CCPT . Structuring our Blockchain network, proof sizes are randomly

iii

assigned to the nodes to ensure unbiased network structure to stimulate and evaluate our approach

to perform a global optimization within a sharded Blockchain network.

iv

ACKNOWLEDGEMENTS

I still remember my first day in University of Wisconsin-Whitewater Computer Science De-

partment during the Fall 2015. I needed to meet my academic advisor for the first time. Since then,

I had the privilege to meet Dr. Athula Gunawardena. I greatly appreciate your advice and support

for all these years. Most importantly, I appreciate the consideration of allowing me to work with

you on various research projects. Your guidance on this thesis project is another privilege that I am

grateful for.

Also, I would like to thank Dr. Sobitha Samaranayake to be one of my mentors during my

graduate studies. I have learned valuable technical skills from your practical expertise.

I would like to thank Dr. Jiazhen Zhou for allowing me to be his undergraduate research

assistant. This undergraduate research project had shaped my path to pursue my graduate studies

in computer science. It has been a great pleasure to work under your guidance.

I would like to thank Dr. Sungchul Lee for accepting to be part of this research project. It is a

great honor to get some guidance and advice from you in this research about this new technology.

Most importantly, I would like to thank all of the faculty members in the Computer Science

Department for their great comprehension, and collaboration.

v

I dedicate this thesis to my family.

Thanks for giving me the opportunity to study in the U.S.

TABLE OF CONTENTS

Acknowledgments . iv

List of Tables . vi

List of Figures . vii

Chapter 1: Introduction and Background . 1

1.1 Phases of Blockchain Ecosystem Evolution . 1

1.1.1 Phase 1: The birth of Blockchain through Digital currency: Bitcoin Blockchain 1

1.1.2 Phase 2: The advancement of the Bitcoin Blockchain to a state machine
completeness: Ethereum . 2

1.1.3 Phase 3: The recognition of the Blockchain impact with the creation of Libra 3

1.1.4 Futuristic Phase: The world monetary system would be digitalized to en-
able transactions to a virtual level between humans and machines to machines 4

1.2 Phases of Consensus Evolution . 6

1.2.1 Phase 1: Satoshi Nakamoto Consensus: Proof of Work (PoW) 6

1.2.2 Phase 2: Proof of Stake (PoS) Algorithm 8

1.2.3 Phase 3: Casper Protocol . 8

1.2.4 Phase 4: BFT based Consensus . 9

1.3 Graphical Representation of The Blockchain Scheme 12

1.3.1 Off-Chain . 13

i

1.3.2 DAG . 13

1.3.3 Sharded Network . 13

1.4 Consideration of Scalability within a Blockchain Ecosystem at different architec-
tural Levels . 14

1.4.1 Network Level . 14

1.4.2 Consensus Level . 15

1.4.3 Storage Level . 16

1.5 The age of Sharding arrives for the efficiency of the Blockchain Ecosystem 17

1.5.1 Different Structure of Sharded Blockchain Platform 17

1.6 Related Work . 18

1.6.1 Elastico . 18

1.6.2 OmniLedger . 20

1.6.3 RapidChain . 21

1.6.4 Spontaneous Sharding . 23

1.7 Research Motivation . 24

1.7.1 New Conceptional Representation of Sharding 24

1.7.2 Research Questions . 25

1.7.3 Our Contributions . 26

1.8 Definitions . 26

Chapter 2: Practical Blockchain Applications . 28

2.1 Bitcoin . 28

2.1.1 Practical Functionality of the Bitcoin Network 28

2.1.2 Bitcoin Wallet . 29

ii

2.1.3 Transaction Representation . 31

2.2 Ethereum . 33

2.2.1 Ethereum Wallets . 34

2.2.2 Ethereum Transactions . 34

2.2.3 Different Between BTC and ETH . 37

2.3 Hyperledger . 38

2.3.1 Hyperledger Fabric . 38

2.3.2 Hyperledger Burrow . 39

2.3.3 Hyperledger Indy . 40

2.3.4 Hyperledger Iroha . 40

2.3.5 Hyperledger Sawtooth . 40

2.4 Filecoin . 41

2.4.1 The Interplanetary File System: IPFS 41

2.4.2 Enhancement of IPFS to Filecoin . 42

Chapter 3: Scalability Within a Blockchain Ecosystem 47

3.1 Previous Approach of Scalable Blockchain Platforms 47

3.1.1 OffChain Technique . 47

3.1.2 Side-chain Technique . 48

3.2 Why those approaches are still not performing well 49

3.3 The age of Sharding . 49

3.3.1 Sharding Security Maintainability . 50

3.3.2 Maintainability of Decentralization within a Sharded Blockchain Network . 51

iii

3.3.3 Maintainability of Fairness within a sharded Blockchain Ecosystem 51

3.3.4 Scalability and Accuracy Within a Shard 52

3.4 Conceptual Understanding of Sharding . 52

3.4.1 Computation . 52

3.4.2 Storage . 53

3.4.3 Communication . 53

3.5 Sharding Consensus Algorithms and Functionalities 54

3.5.1 BFT . 54

3.5.2 PBFT . 54

3.5.3 HotStuff . 55

3.5.4 LibraBFT . 55

Chapter 4: NETWORK OPTIMIZATION MODEL . 56

4.1 Notations . 57

4.2 Mixed Integer Programming Model . 58

4.3 Network Model Extension with Multiple Transactions 60

4.3.1 Dummy Arcs . 60

4.3.2 Dummy Nodes . 61

4.4 Shortest Path Consideration . 62

4.5 Sharded Network Within the Network . 63

Chapter 5: Implementation and Result . 64

5.1 Implementation . 64

5.1.1 Model Components . 64

iv

5.1.2 Constraints . 65

5.1.3 Sharding Implementation . 66

5.2 Result . 66

5.2.1 Result in the Complete Network . 66

5.2.2 Results within the Shards . 67

Chapter 6: Conclusion and Future Work . 69

6.1 Conclusion . 69

6.2 Future Work . 69

References . 75

Appendix A: Implementation of Network Model in IBM CPLEX 77

Appendix B: Implementation of Network Model in GAMS 90

v

LIST OF TABLES

4.1 Network Flow Shortest Path . 63

5.1 Flow Stimulation in the Main Network . 67

5.2 Flow Stimulation: Shard . 67

5.3 Flow Stimulation: Shard1 . 67

5.4 Flow Stimulation: Shard2 . 68

5.5 Flow Stimulation: Shard3 . 68

vi

vii

LIST OF FIGURES

1.1 Chain of Blocks . 2

1.2 Proof of Work Concept . 8

2.1 Hierarchical Deterministic Wallets [45][43] . 29

2.2 Transaction Outputs and Inputs . 31

2.3 Transaction Data Structures . 33

2.4 Ethereum Transaction Structure . 36

2.5 Gas Utilization for a Transaction . 36

2.6 External Accounts Plugin to the Ethereum Ecosystem 37

2.7 BTC vs ETH issuance models [48] . 37

2.8 Illustration of Underlying mechanism of PoSt [54] 44

4.1 Network Structure with Proof Sizing Representation: pzi would be randomly as-
signed to the nodes during stimulation of the CCPT . V1 and V15 are the supply(source)
and demand(destination) nodes respectively. 58

4.2 Network Extension with Multiple Transactions 60

4.3 The Concept of Dummy Node . 61

4.4 Shortest Path Illustration from s to t . 62

4.5 Computation of Transaction Costs at Nodes . 62

1

CHAPTER 1

INTRODUCTION AND BACKGROUND

The revolution of Blockchain technology is undeniable because its potentialities to improve human

interactions in different aspects could open a new era of digital communication. For instance, the

way organizations handle business transactions and privacy could take another lift with the use

of the Blockchain platform. Therefore, it is crucial to make sure that this kind of system can

effectively process information. As a result, the need of a Blockchain structure that could reduce

the overhead of consensus agreement when it come to the validation of transactions could have

a profound impact on the efficiency of the Blockchain system. This consideration of Blockchain

system scalability would not be possible without its creation in the first instance. From its adoption,

the Blockchain continuous evolution has taken different phases. In this thesis, we would explore

these phases in detail.

1.1 Phases of Blockchain Ecosystem Evolution

1.1.1 Phase 1: The birth of Blockchain through Digital currency: Bitcoin Blockchain

The creation of a digital monetary system had been emphasis for years without sufficiently solving

a major problem known as double spending problem. in 2008, Satoshi Nakamoto came out with a

new cryptographic payment system to enable different entities to transact with each other without

the need of a central authority [1]. In other words, the communication between the entities is

cryptographically encrypted and does not require the entities to reveal their identities. For instance,

such a system was able to eliminate the third party structure by structuring a peer-to-peer network

structure where each entity within the network is represented as a node. When a specific node

has executed some tasks, the information about these specific tasks would be broadcast across the

network such that the other nodes would be tracking occurrences within the network. The system

2

also introduced a time stamping mechanism to ensure the chronology of the data processing within

the network that ensures the unicity of the information.

The processing of this information is represented in a form of transaction. The transaction

could be transferring digital coins from one node to another node. A digital coin is constructed

with a set of digital signatures that would clarify the provenance of the coins. When a transaction

is validated, it would be saved in a block. The blocks in the network would be structured in a

specific order such that the successor block would point to the predecessor block creating a chain

of blocks that would be piled on top of each to create a Blockchain as shown in Figure 1.1.

This type of structure has opened a new era on how people could use a distributed network to

create a payment system that would not depend on a central authority. From that initiative, some

innovation could be done to use this logic to the next level to establish smart contract [2]. This

allows the advancement of the Bitcoin Blockchain to a state machine completeness [2].

Figure 1.1: Chain of Blocks

1.1.2 Phase 2: The advancement of the Bitcoin Blockchain to a state machine completeness:

Ethereum

As discuss above, the Bitcoin Blockchain network has presented some valuable features for a

cryptocurrency system, but as a first version of a decentralized network structure, it has some

limitations that could be exploited to create an innovative Blockchain system. The limitations

could be cited as the following [2]:

• The lack of Turing-Completeness

3

• Value-Blindness

• Lock of state: the Unspent Transaction Output (UTXO) can either can be spent and Unspent

• Blockchain-blindness

These limitations had caused the birth of Ethereum, a programmable Blockchain platform for

smart contracts. In Ethereum Blockchain, messages and transactions can have different interpreta-

tions. For instance, messages within the Ethereum Blockchain can be generated from a particular

contract or an external resource whereas in the Bitcoin messages (transactions) could be created

externally [2]. Most importantly transaction in Ethereum are represented in a form of signature

that stores the message to be transmitted [2]. For instance, a transaction would contain the specific

information about the sender and the receiver for its authentication. With these functionalities the

Ethereum Blockchain network has pushed the Bitcoin Blockchain Network to another level out-

side of cryptocurrency platform. This advancement has shown the path to revolutionize Blockchain

platform that could improve the use of cryptocurrency around the world.

1.1.3 Phase 3: The recognition of the Blockchain impact with the creation of Libra

The evolution of Blockchain platform has reached a sufficient stage in which cryptocurrency could

be used at a global scale without the use a central authority. The creation of Libra [3] is going in

this sense to give the possibility to million of people the ability to perform transactions without

the need of banks. Libra has based its Blockchain network specification to aim for some specifics

functionalities [3]:

• As the the previous Blockchain platforms, Libra is aiming security, reliability. Most impor-

tantly, Libra is projecting to ensure scalability within its Blockchain ecosystem.

• Libra introduces the notion of reserve within its Blockchain ecosystem that would ensure the

maintainability of Libra’s value.

• The main validators of the Libra Blockchain would be members of its association.

4

With these functionalities, Libra targets the implementation of Blockchain platform that could

be scalable when it comes to the execution of millions of transactions at global scale. Therefore,

the scalability issues within the Blockchain ecosystem should be taken with serious considerations.

One of main consideration that could impact the Blockchain platform scalability is the overhead

transmission within the network. More details would be given about the scalability issue in Section

1.4.

1.1.4 Futuristic Phase: The world monetary system would be digitalized to enable transactions

to a virtual level between humans and machines to machines

The idea of using the Blockchain technology in different aspects of our society can be represented

in many forms. For instance, this technology could have multiple use cases opening a new rep-

resentations of existing societal structures. The advancement of technologies in different domain

such as Cloud Computing, Internet of Things (IoT), Artificial intelligence (AI) is shaping the way

we use technology nowadays. The integration of these technologies with the Blockchain technol-

ogy could open a futuristic spectrum of new innovations.

Current Use Cases of the Blockchain Technology

We are going to enumerate some practical use cases that have been developed using the Blockchain

technology.

1. Adoption of the Blockchain Technology within the Supply Chain Ecosystem

The Blockchain technology could be used in the supply chain sector to enable more trans-

parency by storing the information about the flow of products from suppliers to stores such

that the provenance of the products could be traceable. In [24], they have mentioned that

the Blockchain platform could be used to track the source of products information so that

customers can make sure the products that they consume have been well conserved.

With this functionality, some corporations have already combined Blockchain technology

with their supply chain ecosystem to ensure more clarity. For instance, Walmart has used

5

Hyperledger Fabric to track the origin of their products [25]. For instance, Hyperledger

Fabric blockchain-based for tracking food has reduced the tracking procedure from 7 days

to 2.2 seconds [25]. With that result, Walmart is planning to track 25 more different products

using Hyperledger Fabric [25].

2. Decentralization of the Music Industry’s with the Blockchain Technology

The variety of domain that could use the Blockchain technology could expand to the music

industry. For instance, creating a ”Music Blockchain” could give the possibility to artists to

manage their own creations removing the aspects of central authorities [26]. Doing so, there

is no need of intermediaries, but rather having smart contracts that would be used to manage

the artistic creation usages.

There could be multiple use cases of the Blockchain technology because of its potentialities. These

potentialities could lead to some futuristic projects that would enable the combination of the

Blockchain technology with other improving technologies to satisfy the technological evolution

trend.

Futuristic Usability of the Blockchain Technology

With the significant evolution of technology in different domain such as artificial intelligence that

gives the possibility to have self-driving cars. The implementation and the configuration of smart

devices that enable the executions of specific tasks. Furthermore, the tremendous evolution of

Blockchain technology could enable the implementation of special technologies. For instance,

the combination of those technological instances could enable a payment system in which smart

devices would communicate and execute transactions with each other without the need for human

interaction. Most importantly, when cryptocurrency systems would be used at large scale, smart

devices could authenticate themselves as being bought as long as their payment contract is correct.

For instance, a self-driving car could drive itself to the owner after its payment.

With this dramatic technological evolution, centralized big technology organizations gather

sufficient information about their users to influence their thinking and decision patterns. The

6

rethinking of the technological ecosystem to avoid the monopoly of any sort of organizations

could be crucial. Therefore, the need of a decentralized system that could eliminate the sense

of monopoly could be essential in this era. As a result, the Blockchain has arrived to the right

century to enable a more robust decentralization ecosystems. This type of ecosystem has been in

need of efficient consensus algorithms to enable its efficiency, fairness, security, and reliability. On

top of all that, the possibility to scale by maintaining those core properties.

1.2 Phases of Consensus Evolution

Since the Blockchain ecosystem is in a form of network structure that would have a set of nodes

connected by a set of edges. Some consensus algorithm need to be put in place to maintain agree-

ment within those nodes that would try to communicate using some particular edges. The major

role of a consensus algorithm is the maintenance of fairness within the network. Therefore, con-

sensus algorithms are the guardians of the Blockchain ecosystem; as a result, their executions can

considerably impact the scalability of the Blockchain network.

1.2.1 Phase 1: Satoshi Nakamoto Consensus: Proof of Work (PoW)

The first algorithm that was adopted in the early version of the Blockchain platform was Proof of

Work (PoW) [1]. This algorithm is structured such that the validator nodes (miners) would have

to use their computation power to solve a cryptographic puzzle. For instance, the system would

introduce a unique composition called ”nonce” within the transaction that needs to be validated

by the validator nodes figuring out the sequence of the nonce with the transaction hash. When

a specific miner is able to solve the puzzle, the miner has the possibility to create a new block.

The problem with this type of validation is that it requires enormous use of computing power. For

instance, the main issue with PoW is that it does not scale, this could be related to many reasons.

The first reason could be related to the structural representation of transactions being saved within

a block. The second reason is the constraints of the network structure. We are going to give some

explanations about these concerns.

7

1. Structural Representation of Transactions within a Block

One of the reasons that could negatively influence the scalability within the PoW based

Blockchain network is the size of the information (transactions) that is being saved and the

size of the block in which the transactions are gathered [27]. Most importantly, during the

PoW execution, some executions need to be performed such that the consensus level would

determine the winning validator node. For instance, in the Bitcoin Blockchain network, the

size of transaction could be impacted by its inputs and outputs. When the transaction is

validated, it would be added to a newly created block. Then, this block would be broadcast

to the network so that every node in the network could keep track of what is happening

within the network.

With a logical analysis, we could notice that PoW creates a sense of competition, in which

there is a winner node (miner). The issue with this logic is that the validator nodes that lost

the PoW consensus effort would create unused partial blocks (stale blocks). For instance, in

the Bitcoin Blockchain network, the stale blocks would not be added to the main chain, so

they would be discarded. The computing power used to create these blocks is lost because

rewards are only given to winning validator nodes [28]. Consequently, the uncle blocks could

create an increase of bandwidth usages that could affect the performance of propagating the

message within the network [28].

2. Network constraint Within PoW Based Blockchain Network

One of the challenges that could arise when it comes the Blockchain network scalability

could be related to the structure of the network itself. For instance, the PoW consensus

needs to operate across all the nodes in the whole network such that the validator node that

solved the puzzle could be found [27]. Therefore, the PoW is not designed to operate on

subsets of nodes to enable a sufficient scalability.

8

Figure 1.2: Proof of Work Concept

1.2.2 Phase 2: Proof of Stake (PoS) Algorithm

The Proof of Stake (PoS) algorithm is a modified version of PoW . it was designed to eliminate

the burden of energy consumption from PoW [4]. The PoS algorithm was first used in Peercoin

Blockchain platform [23]. It uses a different approach when it comes to processing the information.

The PoS algorithm operates in the following way, the agreement on the creation of a new block

is a competition in which participators hold a certain amount of coin (”stake”) [5]. Therefore,

the participators that would have significant stakes could have an influence on the competition

outcome.

1.2.3 Phase 3: Casper Protocol

The Casper protocol is a combination of two different protocols such as PoS and the Byzantine

Fault Tolerant consensus theory [5]. The association of two different consensus algorithms is

showing that some particular functionalities are being targeted. For instance, the PoS and BFT

portions of the Casper Protocol play the following roles [5]:

9

• The PoS has the possibility to take a randomized approach to give a certain permission to

stakeholders to generate new blocks.

• The BFT protocol has a property that as long as > 2
3

of the nodes within the Blockchain

network behave honestly, the algorithm won’t be able to finalize the conflicting nodes within

the network.

Those properties give the Casper protocol the ability to introduce new methods that could be put

into practice in a Blockchain ecosystem. Those methods are the following [5]:

• Accountability: This method is to ensure that any validators would be responsible for their

violation.

• Dynamic Validators: Since the protocol would be performing within a enormous network,

the exchange of validator nodes at each consensus iteration could ensure the unbiasedness

of the network.

• Defense: The protocol has incorporated a mechanism to be attack resistant to the ”long

range revision attack”.

• Modular overlay: The protocol offers the possibility to build its functionalities on top of

other consensus protocol such as PoW .

As we could observe, considerable advancements have being made for the consensus algo-

rithms that are in use in the Blockchain ecosystem for its scalability. The next consensus algo-

rithm we would observe is the BFT based protocols that are more considerable when it comes to

Blockchain network scalabilty.

1.2.4 Phase 4: BFT based Consensus

The Byzantine Fault Tolerant concept has been researched for three decades. The principle of the

Byzantine Fault Tolerant protocol is tight to ”Byzantine Generals Problem” [6]. For instance, the

abstract explanation of the problems can be expressed as the following: A Byzantine army forms

10

subsets of troops in different location around an enemy army. The troops need to communicate to

come to consensus for a common strategy to attack the enemy army. They have to send messengers

in their respective locations such that each party would be informed about the attack strategy that

would be used. The major problem is that one or more messenger(s) sent could be compromised

by a traitor. Most importantly, one the generals from the different locations could be a traitor

by sending the messenger with falsify information to the other troops. Therefore, the problem

is to define an algorithm that would guarantee that the ”loyal” generals would find a consensual

common ground that would enable a successful attack. The message could be solved from two

perspectives [6]:

• If the messages are orally sent, the problem could be solved if and only if 2
3

of the generals

are loyal

• If the message in a form of unhackable written message, the problem could be solved for

any number of traitors.

These Byzantine generals problem had been translated to a computer science problem. For in-

stance, its implication could be more effective within a distributed ecosystem in which each entity

could be treated as a node in the network. Since in this type of system, some nodes in the net-

work may have some unpredicted behaviors, the BFT based consensus permits to eliminate the

assumption of adversarial behavior patterns within a distributed ecosystem. From these principles,

different Blockchain protocols have been build to improve the scalability issues that a Blockchain

network is facing. We are going to explain different varieties of the BFT based consensus that

have been improving year by year.

PBFT

The improved version of the BFT based protocol is the Practical Byzantine Fault Tolerant PBFT .

The PBFT was designed to work within an asynchronous network platform such as the Internet

[7]. In such type of networks, malicious nodes or software errors could be a treat to the system

11

[7]. In other words, they could exhibit a Byzantine behavior. The ”Practical” BFT algorithm for

state machine replication [7] that could prevent the misbehavior of faulty nodes at most n−1
3

where

n could be the number of faulty nodes in the network. In [7], they proved that if 2m + 1 of nodes

in the networks are correctly processing information within the network that would imply that the

2/3 of the nodes in the network should be honest. PBFT has been used in different Blockchain

ecosystem. For instance, in [4], they mentioned when it comes to permissioned Blockchain ecosys-

tem, the use of PBFT is advisable because it enables consensus among subset of authenticated

nodes (e.g, HyperLedger Fabric v0.5 [8]).

Tendermint

Tendermint is another BFT based protocol. Tendermint is an application based protocol that could

be used to reinforce the security and stability of nodes within its distributed ecosystem [9]. It has

two key technical components that consist of Blockchain consensus engine and generic application

interface [9]. It could used as third party for organizations that do not wish to implement their own

Blockchain protocol.

HotStuff

HotSuff is another improved version of the BFT protocol. HotStuff is leader-based Byzan-

tine fault-tolerant replication within a synchronous network setting [10]. HotStuff enables the

possibility to elect a leader node that would drive the protocol to consensus[10]. In [10], they argue

that HotStuff is a more advanced protocol that combines BFT functionalities and Blockchain

principles. The scaling approach of HotStuff is based on two phases [10]:

• The first phase ensures that there is a unique proposal for the formation of quorum certificate

(QC). A QC is a certificate proof that a minimum number of nodes has been correctly

regrouped.

• The second step is to give the responsibility to the next leader to convince the nodes for

secure proposal.

12

These specifications have pushed BFT principle to another level that could be in use in a more

sophisticated Blockchain platform.

LibraBFT

The LibraBFT has built its core foundation based on the HotStuff protocol. The modifications

that were done are to enable some particular characteristic within the Libra Blockchain system.

The major modification that were done are the following [11]:

• the LibraBFT is more resistant to non-deterministic bugs because the validators directly

sign the state of block instead of the transaction within them.

• They incorporate a ”pacemaker” mechanism that would act as heartbit to enable the forma-

tion of a new quorum without relying on system clocks

• Most importantly, the leader election is based on the decision of the last quorum committee

using randomization.

These modifications and advancements are aimed to ameliorate the concept of the BFT proto-

col that could operate on subset of nodes in a Blockchain ecosystem. When consensus algorithms

are scalable, the Blockchain platform can also considerably scale. Within the Libra Blockchain

they conjecture to execute 1000 transactions per second. This conjecture could be possible not

only by strong and efficient consensus. It would require the network to be splitted accordingly due

the notion of Sharding the network.

1.3 Graphical Representation of The Blockchain Scheme

Multiple Blockchain schemes have been used to enhance the efficiency of the Blockchain ecosys-

tem. Those graphical representation have shown some advantages and some drawbacks.

13

1.3.1 Off-Chain

In this type of structure, the Blockchain system is formatted such that nodes in the system could

have local representation of their transaction patterns such that the the global chain call the ”main

chain” in the system would be solicited when new occurrences are encountered by sending the

information about that specific task to update the global chain state [12]. The validity of the

transactions in the isolated chains depends on the verification of the global chain. The issue is that

this is creating a centralized Blockchain ecosystem.

1.3.2 DAG

Another approach that was taken to design and implement a Blockchain network was the use of a

Directed Acyclic Graph. In this type of design the transaction is not structured in a form of chain

but in a form DAG structure. The transactions would take paths according to the direction of the

edges within the graph [13]. In other words, the validation of transactions from particular nodes

would be influenced by their adjacent edges. In [12], they argue that the network could scale if all

the nodes in the graph are not obligated to meet the complete graph property.

1.3.3 Sharded Network

The sharding approach is the possibility to artificially divide the network in appropriate portions

such that transactions that land within those specifics shards could be validated using the specific

shard validators. Different proposals have been evaluated to design a sharded Blockchain net-

work [12][14][15][16]. This technique could be the most important approach when it comes to

Blockchain scalability. The scheme it provides could be described in the following way: Since the

nodes in the network are divided in small subsets they could be subject to some adversaries and

vulnerabilities. Therefore, as we have previously mentioned robust consensus algorithm such as

BFT should be run to eliminate those security constraint to ensure the shards fairness and cor-

rectness. Doing so would considerably reduce the Communication Cost Per Transaction (CCPT)

enabling the global Blockchain network to considerably scale. in [13], they argue that running

14

the BFT consensus, the CCPT in specific shard could be O(g) where g is the size of the shard.

They also observe that none of the sharding schemes proposed, were able to get o(g) which they

described as the condition to considerably scale out the sharded platform.

1.4 Consideration of Scalability within a Blockchain Ecosystem at different architectural

Levels

The Blockchain ecosystem has multiple layers. These layers should be well structured to enable a

correct functionality of the Blockchain platform.

1.4.1 Network Level

We could say that the network layer of the Blockchain could be the most important because it has

the responsibility to connect components within the Blockchain platform by enabling communica-

tion among them. In the Bitcoin Blockchain, the network enables the propagation the transaction

across the network [17]. In other words, nodes in the networks accept to broadcast transactions to

other nodes if and only they were correctly validated. The information that is propagated across the

network would be gathered at each transshipment nodes to create an immutable consistent record

call ledger.

In Bitcoin Blockchain network, there two major inefficiencies that have been observed in [17].

For instance, to ensure the security properties of the system, a node that receives a transaction must

check its validity before propagating it [17]. For instance, this validation procedure is necessary

because it allows the validating nodes to prevent a denial of service attack by propagating incorrect

transactions ingested by malicious nodes [29]. Most importantly, adopting this strategy is to ensure

that a specific transaction meets the following validity requirements: the transaction must differ

from previous transactions and its output must be correct. The second drawback is that when

transactions are validated, the nodes that have validated the transactions are allowed to generate

new blocks in which they need to save the transactions. The new block that was generated is

also propagated across the network creating a double propagation. Therefore, this is negatively

15

impacting the efficiency of the network which should be solved.

Different network protocols are in use in the Blockchain network layer. For instance, we have

the Overlay P2P Protocol such as Whisper [18], Telehash [19]. Another variant network protocol

used the Blockchain ecosystem is Cryptographic Transport Protocols such us Ethereum Wire Pro-

tocol [20], and Kademia which is a peer discovery protocol [21]. All these protocols operate on

top of the ISO protocol model.

1.4.2 Consensus Level

The Consensus level play the role of central authority to provide security and fairness across the

Blockchain ecosystem. As we have explained there has been a tremendous evolution of consensus

algorithms. The fundamental role of these algorithms is to maintain the consistency records across

the Blockchain network [4]. Since the Blockchain network is a distributed network system, the

nodes in the network need to be able to agree on a common state using the consensus parameters

[4].

As we could observe, the effectiveness of the Blockchain network could be impacted by its

consensus algorithm. For instance, this level could be described as an intermediary procedure that

makes sure when an agreement is made between the nodes in the network such that the information

they have agreed on would be recorded in the nodes’ storage. The efficiency of this level could be

significant because fast executions of the consensus could allow the network to efficiently scale.

As we have described in Section 1.2.1, PoW could not scale because it requires validator nodes to

use their computer power to participate to the consensus effort creating a burden on the network.

Because of such issue, some of the Blockchain network such us Litecoin has sped up its PoW

algorithm for more block generations than Bitcoin by sacrificing some security features [17][30].

Additionally, some amelioration of the PoW consensus algorithm have been proposed to im-

prove its effectiveness. For instance, the GHOST protocol was proposed to reorganize the struc-

tural representation of nodes within the Bitcoin Blockchain ecosystem [31]. For instance, by doing

this modification, GHOST allows the Blockchain network the improvement of its ”mining power”

16

within a fair ecosystem [17].

With an analytical observation, the issue of scalability within the Blockchain ecosystem could

be related to the consensus level because agreement between different entities within the network

could be crucial. Without this consensual procedures, the Blockchain properties could be mean-

ingless at some extent. We know that PoW needs to be executed within the whole network so that

all the nodes in the network could participate on the consensus effort. Therefore, this is putting the

burden on the network creating some scalability issues. Therefore, the use of consortium consensus

such that the algorithm could operate on subsets of nodes in the network could significantly im-

prove the performance of the network with high throughput reducing the latency [17]. For instance,

most of consortium consensus algorithms are BFT based consensus which we have illustrated in

Section 1.2.4.

1.4.3 Storage Level

As we can see, we are sequentially examining different parameters of the Blockchain network.

The identification of nodes in the network is possible because the network system is able to use the

right information at each node. Therefore, each node should have the storage capacity such that

communication could be done in a sufficient manner.

Additionally, the Storage level could be define as the ”global memory” that ensure the avail-

ability of the information that was generated by the Network and Consensus Levels. In [17], they

define the Storage level as an abstraction with two interfaces:

• The storage level ingest and process and memory-modification. That operation could be

defined as a write operation. Most importantly, there could be a delete operation from the

Consensus Level.

• The Storage level is structured such that any node in the network can make a read request.

Since the Blockchain network is a distributed system, the Storage Level also stores distributed

records that are propagated across the network.

17

Problem statement:

We have realized that the scalability concern within the Blockchain network could be interrelated

at multiple levels. The agreement about a specific transaction would require the consensus level

to perform some validations and executions. The validation of the transaction would require some

computation at the validator nodes. The validator nodes would need to perform some verification

using the previous information they have acquired. When the verification is done, the transaction

could follow its path to the destination. How can we measure the interrelation within a sharded

network? We have exposed some questions in Section 1.7.2.

1.5 The age of Sharding arrives for the efficiency of the Blockchain Ecosystem

The concept of Sharding is widely used in distributed database platforms. For example, the ma-

nipulation of huge volume of data could be computationally expensive; therefore, distributed

databases such as Dynamo, MongoDB, MySQL, and BigTable have incorporated the sharding

technique within their ecosystems.

Since the conjecture of using Blockchain technology at global scale is coming to a reality, the

amount of data that would be processed could be considerable. The use of sharding technique in

the Blockchain platforms has caught the attention of researchers and industries.

In [17], they introduce the sharding concept to address the Blockchain scalability issue. They

argue that Sharding could be done at Consensus Level. They offer a scheme that consist of running

consensus processing on subset of nodes to enhance the throughput at each node at the same time

reducing each node processing storage. However, the scheme they have proposed could be limited.

Why it does not have the possibility to shard the main components of the Blockchain system?

1.5.1 Different Structure of Sharded Blockchain Platform

Different Sharding concepts have been proposed to structure the network in certain ways that allow

the network to efficiently scale out. The followings are different sort of schemes that have been

18

proposed:

• Sharding of Computation and Storage

• Sharding of Computation, Storage, and Communication

1.6 Related Work

In this section, we are going to explore the most relevant works that have been done in the context

of sharding. Multiple Blockchain network structures have been proposed to try to improve this

lack of efficiency and at the same time to ensure that the Blockchain network maintains its core

properties such as security and decentralization. This profound need of scalable schemes is due

to the fact that the consensus algorithms created by Satoshi Nakamoto [1] in the Bitcoin network

ecosystem are inefficient and costly in terms of energy consumption. Researchers have tried to

come up with different optimal schemes to enable the implementation of sharding. As we have

explained, the concept of sharding is the ability to split the Blockchain network into small portions

that would gather subset of nodes.

1.6.1 Elastico

In [14], they have designed a sharded Blockchain network concept called ”Elastico”. According to

their analysis, Elastico could scale linearly on the computation power of the validator nodes in the

Blockchain ecosystem. For instance, the execution of transactions is proportional to the computing

power available in the network [14].

From a technical perspective, Elastico is using a rigorous sharing principle in which the Blockchain

network is partitioned in shards making sure that subset of nodes are disjoint. This approach is to

guarantee the sharded network would have disjoint ledgers. In order to achieve a great partition-

ing, the shards in the network should be in a appropriate shape such that variant of the BFT

consensus protocol could efficiently operate on them assuming that the nodes in the network have

proportionally the same computation power.

19

Since the network is disjointly sharded the processing on each shard will be done in parallel.

This processing characteristics permit the network to locally minimize the cost of communication

and execution in each sharded committee [14]. From the cryptographic perspectives, when the

network has come to consensus on a set of transactions X , it will formulate a cryptographic digest

of X to form a ”hash-chain” with previous transactional agreement [14].

The network is structured in particular way such that the graphical connection between val-

idator nodes is synchronous [14]. For instance, the transaction of the information between those

nodes should be within a specific interval of time.

Even though, Elastico has presented some good features it faces some challenges that should be

mentioned and examined appropriately. Most of the sharding properties are more beneficial within

a permissioned Blockchain settings. Bringing those properties within a permissionless Blockchain

setting could lead to the following challenges [14]:

• First, in a sharded network, honest nodes do not have the opportunity to use a trustful PKI .

Therefore, malicious nodes can just create unreal processing to enable a large scale of sybil

attack on the network. To limit this threat the consensus level could prescribe identities to

”processors” at each consensus round. When the identities are establish, a variant of BFT

algorithm could be run.

• The most challenging aspects is to randomly select ”committee” knowing that randomization

could be extremely challenging within a distributed network system.

• Another issue that should be put into consideration, is setting the right parameters that would

limit the boundaries of the consensus protocol such that its operation would be restricted to

any sort of corruptive activities. These limitations should be put in place because Byzantine

failure and network failure could be unpredictable

These technical challenges could be solved using particular sharding design patterns. It is

in this sense that Elastico was able to create some procedure to automatically split the available

20

computation power across multiple shards making sure that both states are growing proportionally.

The running process of Elastico could take different epoch steps [14]:

• Identity Establishment and Committee Formation

• Overlay Setup for Committees

• Intra-Committee Consensus

• Final Consensus Broadcast

• Epoch Randomness Generation

Elastico has shown a model to implement sharding; however, sharding could be done in a more

efficient way.

1.6.2 OmniLedger

In [15], they developed new sharding concept called ”OmniLedger” build on top of Elastico. They

argue that OmniLedger could operate within permissionless Blockchain such as Bitcoin [1]. Om-

niLedger could provide a secure sharded platform using a randomized protocol approach when it

comes transaction validations [15]. The innovative feature that OmniLedger was able to create

is the possibility to execute cross-shard transactions by ensuring the atomicity of the transactions

across the sharded ecosystem [15].

Additionally, in [15], they argue that the throughput of OmniLedger could linearly scale the

percentage of its validators to handle tremendous volume of transactions reaching the performance

of centralized transaction system such as Visa.

Some clear procedures have been taken to structure its core functionalities [15]:

• Primarily, OmniLedger should have a strong security feature to group validators in each

shard. The robustness of its security parameters a Sybil-attack, OmniLedger has partially

incorporated PoW or PoS within its ecosystem.

21

• Secondly, OmniLedger must reduce the likelihood of corrupted shard formations. Most

importantly ensure that they are bias-resistant.

• Thirdly, as being said, OmniLedger must ensure the atomicity of transactions within disjoint

shards.

Since its core functionalities and boundaries have been established, OmniLedger introduces its

foundational scalability and protocol route map for its transaction model [15]:

• OmniLedger introduces decentralized ledgers from sequence of ordered blocks within which

there would be sequence of transactions

• OmniLedger has adopted the Unspent transaction output (UTXO) scheme to structure its

ledger ”state”

• Each node in the network is supposed to crawl the global ledger of approved UTXO and

their local storage level such that the evolving of the creation of a new block could be vali-

dated.

For its validators network model, OmniLedger has adopted the same principle as Elastico [14].

1.6.3 RapidChain

The previous sharding concepts we have described have only considered sharding at Computation,

and Storage level. Therefore, these sharding concepts could be seen as limited. This limitation

had giving birth to a new sharding concept ”RapidChain” [16] that was able to elaborate a full

sharding. This approach is very innovative because it has the ability to process intra-shard con-

sensus agreement using the appropriate consensus algorithm. That allows the Blockchain network

to considerably scale with high throughput via block ”pipelining” [16]. Most importantly, they

have incorporated a new broadcasting technique for considerably large blocks. One of their main

achievement is a provable reconfiguration system to enable the Blockchain network to reset its

functionalities accordingly. These innovative representations should be structured in particular

manners that could outperform previous concepts. These evaluations are the following [16]:

22

• Sublinear Communication: RapidChain is proven to be the first sharding technique that

requires sublinear exchange of bits during each transaction.

• High Resiliency: From a BFT based protocol perspective RapidChain is the first sharding

techniques that pushes the boundaries to tolerate less 1
3

corrupted nodes within its ecosystem.

• Rapid Committee Consensus: RapidChain transactions propagation mechanism over a

P2P network structure is faster in the interval of 3−10 than the previous sharding techniques

we have explained.

• Secure Reconfiguration: RapidChain has included the notion of reconfiguration in which

the sharded network would reshuffle such that some nodes could be assigned to another shard

during the reconfiguration. Reshuffling the sharded network could be very costly, so Rapid-

Chain used the Cuckoo rule [22] to protect its system against any Byzantine adversaries.

Also, the reconfiguration of the parameters could be done in such a way that nodes could

join and leave without the interruption of the protocol execution within the network.

• Fast Cross-Shard Verification: RapidChain incorporated an innovative technique such

that nodes in the sharded network would only acquire a small portion of the information

within the global Blockchain for Cross-Shard validation.

• Decentralized Boostrapping: RapidChain allows open membership in permissionless

Blockchain ecosystem without randomizing the membership feature.

RapidChain has defined its transactional procedures following the principle of Bitcoin Blockchain

[1]. In other words, the transactions are sent to RapidChain protocol by an external user account to

the protocol [16]. For instance, sets of transaction would be divided into disjoint blocks, let say k.

Let assume that Xij represent the j− th transaction the i− th block [16]. Let a protocol PI output

a set X containing k disjoint subsets of nodes such that shards Xi = xij , for every j ∈ {1..|Xi|}

such that the following properties could stand [16]:

• Agreement : For every i ∈ {1..k}, Ω(log(n)) validators nodes agree on Xi

23

• V alidity : For every i ∈ {1..k} and j ∈ {1..|Xi|}, g(xi,j) = 1.

• Scalability : k grows linearly with n, the number of nodes.

• Efficiency : at each node the computation and communication complexity is o(n). Also,

the storage complexity at each node is o(s), where s is the number of transactions.

With this conceptual structure RapidChain was able to improve in terms of performance. Their

performances strategies is via pipelining as follows [16]:

• RapidChain creates a principle such that leader in each shard can create a new block at the

time of re-proposing the headers of pending blocks. Using this strategy increases the network

throughput.

• The protection of honest nodes is done through a strategy in which when a node accepts of a

header it would not propagate it because there is a high probability that the header is correct.

With all these conceptual representations RapidChain has pushed the sharding concept to an

appropriate level that could be exploited to create new sharding concept.

1.6.4 Spontaneous Sharding

As we could observe, there is a sequential evolution of the sharding concept within the Blockchain

ecosystem. However, these concepts of sharding we have previously defined could have some

limitation that could affect the efficiency of the Blockchain network. For instance, they could

suffer from the deterioration of the decentralization and the effectiveness of the Byzantine fault

tolerance [12]. As a result of that, they have come out with another structural representation of

sharding call ”spontaneous sharding”.

Giving the thoughts of this structural realization, some fundamental concerns could arise be-

cause the goal here is to enable a sufficient ”scale out” of the Blockchain network [12]. A scale-out

could be permissible if g = o(N) where g is the size of a specific shard and N the number of nodes

in the shard [12]. The questions they have tried to answer are the following:

24

• The major aspect of transactions of values in Blockchain platform

• The possibility to enable the sharded Blockchain network to scale-out during transactional

activities without deteriorating its reliability or its distributed representation.

Since answering these questions triggers their curiosity, they have pushed the boundaries to

come out with a new design for their ”Value-Transfer Ledger” model as follows [12]:

• Honest participants in the network would try to prove the authenticity of their activities

within the Blockchain platform

• ”Rational” recipients would only consider transactional movements that only impact their

received transactions

Putting all the above constraints in one set, during a communication a transactions is passed

from one node to another node. A proof is associated to that specific transaction such that the size

of the proof increases with the number of node it traverses [12]. According this principle, the trans-

action would cycling in a small shard instead of the entire network to minimize the transmission

cost. As a result of that, the network is naturally sharded by maintaining its distributed aspect and

security.

1.7 Research Motivation

We realize that the most important factor that is impacting the scalability within a Blockchain

network is the processing at each node. Enabling a fast transactional approach at each node could

positively impact the performance of the network.

1.7.1 New Conceptional Representation of Sharding

We have decided to conceptually design a Blockchain in which we are going to combine the com-

ponents of the Blockchain network. The structural components that we would take into account at

each validator node are the following:

25

• Computation

• Storage

• Communication

Since the Blockchain network requires a node to gather information at each node creating a

storage, those components are tightly related in many senses. For instance, when a transaction is

performed from a node to another node within a sharded network, the transshipment’s nodes would

play the roles of transaction validators by doing some processing. The processing is the possibility

to verify the validity and the provenance of the transaction. Therefore, the validator node would

need to check its records by fetching the record from its storage. Assuming that the storage is a

list of records that need to be scanned. We could see that the complexity of the computation would

depend on the size of the records that need to be scanned. As a result, the amount of computation

would depend on the size of the storage. We could observe that the time it takes to perform the

computation at the validator nodes would negatively impact the latency in network. The size of the

delay would be dependant of the computation and at each validator node. An increase on the delay

in the network would be an increase on the time it takes to perform the communication within the

network; therefore, it raises of the communication cost.

Speaking of sizes, we have decided to design an innovative way to design sharded Blockchain

network, in which, we would conceptualize the the computation, the storage and the communica-

tion as proof size pz at each validator node.

1.7.2 Research Questions

In this research, we have been asking ourselves some fundamental questions on the structural

representation of Blockchain network. Those questions could be related to the flow of information

in the network:

• What is the main factor that could considerably impact the trajectory of the transaction within

the sharded Blockchain network?

26

• Is it possible to design a system such that the transaction trajectory could avoid any network

congestions at validator nodes? Such that the sharded network could significantly scale.

We are going to formulate these concerns into a mathematical model that would allow us to per-

form an implementation such that some manipulations could be done within the network helping

us to give answers to those questions.

1.7.3 Our Contributions

The main contribution in this research project is the ability to come up with new conceptual rep-

resentation of a sharded Blockchain network to perform some simulations to understand our as-

sumptions. The main contributions would be:

• The creation of an optimization network model to analyse the flow of transactions within our

network structure that is defined in Chapter 4.

• The assignment of random proof sizes to nodes in the network to evaluate their influence on

the flow of the transactions within the network.

• Partitioning the network into shards to evaluate the effectiveness of the concept of sharding

the network.

1.8 Definitions

Definition 1. Transaction from one node to another node.

The notion of transaction is the value that is sent from a sender node to a receiver node traversing

a set of nodes to create a transaction path. In the network structure, the sender node would be

represented as supply node and the receiving node would represented as demand node.

Definition 2. Proof size at each node

The proof size pz is the amount of computation that would perform at each validator node to

validate a specific transaction. In [12], validator nodes in the network would try to minimize the

27

cost of the transmission for the transaction by trying to minimize the amount of the cost of proving

the validity of the transaction. For instance, let node1 and node2 be two nodes in the network.

node1 would try to initiate a transaction with node2. To minimize the communication cost, the

transaction would use the validator nodes that already have proof about node1 such that the cost of

the validation could be reduced.

28

CHAPTER 2

PRACTICAL BLOCKCHAIN APPLICATIONS

In this chapter, we are going to explore some practical applications of the Blockchain ecosys-

tems. These applications could be in various domain such us cryptocurrency, smart contracts,

private Blockchain, distributed storage system. Those applications are showing the usability of the

Blockchain system in the real world. These applications could have a tremendous impact in our

societal environment.

2.1 Bitcoin

Bitcoin is the first Blockchain network that has initiated the concept of cryptocurrency. The re-

alization of Bitcoin Blockchain network is a combination of cryptographic techniques within a

distributed ecosystem [41]. For instance, the mixture of the following functionalities has enabled

them the functioning of the Bitcoin ecosystem [41]:

• An overlay peer-peer network

• A public record ledger which refers to the Blockchain

• The establishment of some consensus rules for transaction validations

• Some algorithmic procedures that enable agreement within a decentralized platform (PoW

algorithm)

2.1.1 Practical Functionality of the Bitcoin Network

Since the Bitcoin is a distributed ecosystem without the central authority property that enables the

executions of transactions. The network needs to relay on some particular techniques. For example,

as we have profoundly discussed in Chapter1, the execution of transactions is done by validator

29

nodes. In other words, the validators nodes in the network needs to guarantee the validity of

transactions by discarding invalid and malformed transactions [41]. When the consensus iteration

is performed, a newly block should be created such that transactions could be inserted in the new

created block. Since the Bitcoin network is a permissionless Blockchain network, any nodes can

join and leave the network at any moment. For instance, Bitcoin Blockchain validator nodes are

spread out across the globe. In here, Bitnodes is a platform that is showing the operations of

Bitcoin network validator nodes from different continents in real time. Those validators are the

core foundation of the Bitcoin network. In the next steps, we are trying to illustrate some practical

usability of the Bitcoin Blockchain platform.

2.1.2 Bitcoin Wallet

Figure 2.1 [45] would illustrate a structural representation of the Bitcoin Wallet. For sake of

simplicity, we are giving an overview of the representation of the Bitcoin wallet.

Figure 2.1: Hierarchical Deterministic Wallets [45][43]

In the physical world, one could use a wallet to gather their assets such us some Dollars, Euros,

etc. The same logic could be also applied in the logical world, in which Bitcoin users would have

https://bitnodes.earn.com/nodes/live-map/

30

digital wallets to save their digital tokens. for instance, a Bitcoin Wallet is the association of the

Bitcoin address with the private key associated to the wallet [42]. There are multiple methods of

wallet generations in [42], they have given a client side application to generate a desired wallet.

With the evolution of technological devices, different types of Bitcoin wallets have been created to

adapt to the use of these devices [41]: Globally, a wallet is structured to store cryptographic private

keys.

• Desktop full client

This type of wallet was the first of type of wallet that was introduced for desktop operating

system(OS) such as Windows, and Mac OS. For instance, Desktop wallets provide some

autonomy in terms of usages. In [43], they had shown some advantages of using desktop

wallets. Since the keys are stored within in local storage, the wallet desktop application can

directly access the keys without require some additional authentication. Additionally, suf-

ficient numbers of keys could be stored in the local hard disk because the size of the keys

could be negligible at some extent. Lastly, the Bitcoin application can automate the key gen-

eration without the need of additional inputs from the user. However, Desktop wallet could

present some security issues if they are not well configured [41]. For example, applications

that would have access to the keys folder could be a threat if they could perform a read of

the folder. Most importantly, a malware attack on the OS could be damaging for the keys

[43]. In 2011, Symantec had reported a malware that could steal Bitcoin tokens [44].

• Mobile wallet

With the tremendous evolution of smart phones, another mostly used wallet is a mobile

wallet. For instance, this type of wallet could be found in different types of smart phones

OS such as Android and Apple iOS. The security issues with the Desktop wallet could be

also applied here.

• Web third party wallets

With ubiquitousness of web applications has influenced the immersion of web wallets. Some

https://www.bitaddress.org/bitaddress.org-v3.3.0-SHA256-dec17c07685e1870960903d8f58090475b25af946fe95a734f88408cef4aa194.html

31

organizations have online web wallets such that users could use them as software service.

The user could open an account in which the Bitcoin keys could stored. As we could observe,

this type of structural representation of wallets could be assimilated to online banking [43].

The dangerous aspect of type of service is that it is creating a sens of centralized ecosystems

in which when the hosting platforms are vulnerable from malicious attacks, their customers

may lose their keys. Consequently, some thoughts should be made before using these types

of applications.

2.1.3 Transaction Representation

In the Bitcoin Blockchain network, a transaction is a transfer of Bitcoin value that would be broad-

casted across the P2P overlay network. In other words, a specific transaction input could be the

outputs of precedent transaction outputs [55]. As we could observe, a transaction is composed of

inputs and outputs. Figure 2.2 would illustrate the graphical representation of how transactions

are structured in the Bitcoin Blockchain network [55]:

Figure 2.2: Transaction Outputs and Inputs

32

Transaction Input

As we could observe in Figure 2.2, a transaction could be represented by an input. The input of the

transaction could be the output of previous transaction outputs. For instance, all transaction outputs

that would reference a specific transaction input would sum up their transaction values. Most

importantly, previous transactions would be referenced by their hash such that each transaction

input would have an index [55]. Each transaction would be signed using some scripting procedures.

The script of each transaction would have a signature and a hash of the public key of the interested

output transactions.

Transaction Output

The output of a transaction is the second part of a transaction that is related to the input of the

transaction. For instance, an individual transaction output would ensure the unicity of transactions

inputs that would reference it. Transaction outputs and inputs are interrelated. On a practical

settings, if the transaction input is worth 100 Bitcoins (BTC) and only 50 BTC could be spent, the

system would create two outputs of 50 BTC such that one half would be spent and the other half

would be in possession of the sender [55].

Transaction serialization

The main purpose of the Bitcoin Blockchain ecosystem is the ability to order transactional proce-

dures such that they could be in the perfect order. The serialization of the transactions is a subset of

this principle. For instance, when transactions are broadcasted across the network, they need to be

structured using customized data structures such the transactional information could be transmitted

one byte at the time [41]. In [46], they have given a regular transaction structure such that every

transaction has a version (nV ersion), an input vector (vin), and an output vector (vout), and a

date that would indicates the occurrence of a specific transaction. Figure 2.3 illustrates the data

structure in which transactions are structured [46]:

33

Figure 2.3: Transaction Data Structures

Transaction Fees

In the Bitcoin Blockchain network, the validation of transactions is done by validator nodes called

miners. Transaction fees is the process of incentivation of the mining processes to motivate miners

to participate on the consensus effort (i.e, PoW : Section 1.2.1). For instance, a miner who mines

a block would be rewarded with some coin (Bitcoin). In [41], they mentioned that transaction fees

are calculated based on the size of the transaction in Kilobytes rather than the value of Bitcoin. As

a result of that, transaction is based of market force of the network.

We have given a brief description of some Bitcoin Blockchain network components. The Bit-

coin Blockchain network itself could be subject of an intensive research.

2.2 Ethereum

Ethereum is the second generation of the Blockchain ecosystem that has introduced the notion

of smart contract. For instance, Ethereum is programmable Blockchain ecosystem that enables

Blockchain developers to deploy various Blockchain applications.

34

2.2.1 Ethereum Wallets

The concept of wallets in the Ethereum Blockchain network could be assimilated to the Bitcoin

Blockchain network wallets structure. For instance, wallets could be in multiple forms in different

platforms. In the Ethereum Blockchain network, we could also have the following wallets [49]:

• Paper Wallets

This type of wallet could identify as the safest type of wallet for Ether tokens. For instance,

since this type of wallet is not stored within an electronic devices, it could be could safe

from some malicious attacks. A paper wallet could be generated on MyEtherWallet. During

the creation of the key, a private and public keys would be associated as QR − codes to

guarantee its uniqueness and secrecy. The problem with this type of wallet is that there could

be some security issue because how the wallet could be downloaded without a computer and

an Internet connection.

• Mobile Wallets

This type of wallet could be assimilated to the Bitcoin mobile from the application perspec-

tive. More information about this type of wallet is given in Section 2.1.2.

• Desktop Wallets We have given more information about this type of wallet in Section 2.1.2

• Hardware Wallets

These type of wallets could be defined as portable storage of cryptocurrency. For instance,

they could be in form of specialized hard disks for cryptocurrencies that can be easily plugin

to a computer to perform some transactional procedures. From that perspective, hardware

wallets could be secured from some cyber-attacks.

2.2.2 Ethereum Transactions

As we have briefly given description in Section 1.1, the structure of transactions in the Ethereum

Blockchain could have different representations. For instance, a transaction could be defined as

https://www.myetherwallet.com/

35

a set of cryptographic signatures owned by external account and structured in the correct data

structure such that it could be submitted to the Ethereum Blockchain network [47].

There two types of transactions within the Ethereum Blockchain network: message calls, and

contract creations. As the Bitcoin Blockchain network, a transaction in Ethereum Blockchain

network has some specific specifications as the following [47]:

• Nonce: a unique set of numbers that identify a specific transaction.

• gasPrice: The amount of token that the sender of the transaction is willing to invest for the

validation of the transaction.

• gasLimit: The maxmum amount of token that the sender of the transaction agrees to pay

before the transaction is sent.

• to: This field would indicate the destination of the transaction.

• value: The value that is sent during the transactional procedure

• v,r,s: This is a special signature that identifies the sender of the transaction.

• init: It is a specific piece of code used to initialize the Ethereum Virtual Machine (EVM)

to initiate a new contract.

• data: The data could reference the IP address and domain name of a specific account.

Figure 2.4 shows the representation of a transaction within the Ethereum Blockchain ecosystem

[47]:

Ethereum Transaction Executions

Ethereum transaction execution is done differently from Bitcoin Blockchain perspective. The

amount of computation a validator node could perform is determined by the number of Gas the

validator is willing to use. For instance, a Gas could be defined as a fuel for to engage on some

validation procedures. Additionally, like in the Bitcoin network the GAS could be defined as

36

Figure 2.4: Ethereum Transaction Structure

method of incentivation in the Ethereum Blockchain network. The currency used in the Ethereum

Blockchain network is called ”ETH”. As as a result, the Gas fee would be paid in ETH . Figure

2.5 shows how the Gas is utilize for a specific transaction [47]:

Figure 2.5: Gas Utilization for a Transaction

For instance, the miner who executed the transaction would be rewarded for the computation

power used such that the transaction could be validated. Most importantly, Gas fees are not only

limited to the execution of transactions. For instance, when transactions are executed, they need to

be stored. As a result of that, Gas fees could be also used as storage fees [47].

We could observe that computation and storage at each validator nodes are the main method of

incentivation of the Ethereum Blockchain network.

Since Ethereum is programmable Blockchain platform, different types of account could be

plugin to its ecosystem as the following [47]:

Of course, there could be some internal mechanisms that would enable the exchange of infor-

mation between account.

37

Figure 2.6: External Accounts Plugin to the Ethereum Ecosystem

2.2.3 Different Between BTC and ETH

The major differences between both cryptocurrencies is more conceptual. For instance, the gen-

eration of BTC is approximately halves each four years; however, there is not a variation on the

generation of ETH . In other words, the generation of ETH follows a constant evolution [48].

Figure 2.7 is showing the generations of both currencies.

Figure 2.7: BTC vs ETH issuance models [48]

38

2.3 Hyperledger

The creation of Ethereum has opened new spectrum of Blockchain applications because it has

pushed the Blockchain technology to another level as we have introduced in Section 1.1.2. From

that perspective, an organization like IBM has seen a huge opportunity to exploit this design ini-

tiative to create a private Blockchain network in which businesses and industries could cooperate

using smart contracts. The core functionalities of Hyperledger are the following [50]:

• Smart Contracts

• Digital Assets

• Record repositories

• A decentralized consensus-based network

• Cryptographic security

Most Hyperledger applications are based on smart contracts. For instance, a smart contract

could be defined as a set of rules incorporated into a Blockchain network such that businesses can

perform some business processes following those rules. In other words, a smart contract gives

the ability to automate transactional processes between different entities removing any kind of

intermediaries [50]. Most importantly, Hyperledger products could operate within permissioned

ecosystem, they have customized their consensus procedures. For instance, they have integrated

modular consensus platform such that their customers could decide the consensus algorithm they

want to run to perform their transactional activities [50].

IBM has built multiple Hyperledger products to adapt to any aspect of the private Blockchain

market.

2.3.1 Hyperledger Fabric

Hyperledger Fabric is the commonest Hyperledger product in use in most industries and busi-

nesses. This is due to the fact that Hyperledger Fabric incorporates some essential properties such

39

as confidentiality, flexibility, resiliency, and scalability [51]. For instance, Hyperledger Fabric

permits the hosting of special smart contracts called ”chaincode” that businesses use to elaborate

smart contract rules using customized consensus algorithms.

Additionally, Hyperledger Fabric could enable parallel executions of various applications built

using different technology stacks. For instance, those applications could use different cryptocur-

rencies. This variousness flexibility is due to the fact that Hyperledger Fabric operates on non-

deterministic smart contracts. From architectural perspective, Hyperledger Fabric would have two

fundamental portions [52]:

• A smart contract: the chaincode is core part of the Hyperledger Fabric ecosystem because

it enables the execution of distributed application.

• An endorsement policy: An endorsement policy acts could be defined as library for trans-

actions’ validation within the Fabric ecosystem. For instance, the endorsement policy could

give some instructions to the chaincode to perform some transactional procedures on the

endorsers of a specific transaction.

We could observe that, Hyperledger Fabric incorporates broad functionalities that could trigger

some interest of various business applications.

2.3.2 Hyperledger Burrow

As we have previously explained Hyperledger products offer a modular consensus framework such

that the consensus process could be customized. For instance, Hyperledger Burrow was designed

to enable some particular consensus processes. Hyperledger Burrow provides deterministic smart

contract based the Ethereum Virtual Machine (EVM). As a result of that, Hyperledger Burrow

could perform the following functionalities [51]:

• Consensus Engine: This consensus engine permits the ordering of transaction across mul-

tiples nodes in the Blockchain network.

40

• Application Blockchain Interface (ABCI): This platform enables applications connected

Hyperledger Burrow to trigger the right consensus.

• Smart Contract Application Engine: With the deterministic smart contract functionality

of Hyperledger Burrow, developers could integrate challenging industrial applications to its

ecosystem.

• Gateway: The gateway is an interface that enables the integration of numerous type of

systems.

In global, Hyperledger Burrow offers deterministic smart contracts.

2.3.3 Hyperledger Indy

Hyperledger Indy is another product of Hyperledger that aims for some particular functionalities.

For instance, Hyperledger Indy is distributed ledger that enables the creation of digital identities

within a Blockchain network ecosystem. Therefore, Hyperledger Indy enables a clear identification

of interacting peers across the network by using their digital identities [51]. As a result, we could

enumerate the following functionalities of Hyperledger Indy: Self-sovereignty, privacy, verifiable

claims [51].

2.3.4 Hyperledger Iroha

Hyperledger Iroha is also distributed ledger that enables the incorporation of various projects. For

instance, Hyperledger Iroha main feature is the creations of portable applications for end users. Its

main features are the following [51]: A simple structure, domain-driven C++ design, a chain-based

BFT consensus algorithm named ”Sumeragi”.

2.3.5 Hyperledger Sawtooth

Hyperledger Sawtooth is also one of the commonly used Hyperledger product. One of its essential

features is that it enables organizations regrouped in consortiums to make selfishness decision

41

about the type of Blockchain applications they would want to run within the Hyperledger Sawtooth

ecosystem [51]. Therefore, Sawtooth has incorporated the following properties in its ecosystem

[51]:

• Dynamic Consensus: This gives the possibility to exchange consensus algorithm at any

given moment.

• Proof of elapsed time (PoET): This a modified version of PoW that requires less compu-

tation power.

• Transactions Families: This property gives the possibility to programmers to write smart

contracts using their prefer programming languages.

• Compatibility with Ethereum Contracts: The combination of Ethereum application with

Hyperledger Sawtooth could be possible.

• Parallel Transaction execution: Hyperledger Sawtooth enables parallel execution of trans-

action for better performance.

• Private transactions: Sawtooth could be configured to permit a high privacy level of

transactional procedures.

The rise of Hyperledger has opened the applicability of the Blockchain Technology to a broad

range of applications to facilitate the elaboration of trust between businesses and industries.

2.4 Filecoin

Filecoin is a distributed storage system using the Blockchain ecosystem principles.

2.4.1 The Interplanetary File System: IPFS

IPFS is distributed file system that operates within peer-to-peer network setup [53]. IPFS has built

its ecosystem functionalities around previous peer-to-peer file system such as Distributed Hash

42

Table (DHTs), BitTorrent, Git, and Smart File System (SFS) [53]. IPFS is designed to take an

innovative approach such that decentralized ecosystem could handle a large volume of data. Most

importantly, IPFS was designed to give a decentralized approach to the web. Nodes within the IPFS

ecosystem would be setup in a way that each node in the network would have a local storage for

internal processing. Nodes are supposed to have the same privileges to avoid unbiased distributed

network structure. These kind of design principles are technically similar to how the Blockchain

ecosystem is setup.

Most importantly, IPFS uses some fundamental properties to enable its functionalities. Since

it is a peer to peer ecosystem, each node in the network should be identified by identity. IPFS

has introduced the notion of identities, in which nodes in the network would have a ”Nodeid”[53].

That identification is the cryptographic hash of the node public key. Each node is responsible for

storing their private and public key [53]. To maintain their integrity the IPFS system has put an

incentivation mechanism to reward nodes within the system.

The network structure of IPFS uses particular protocol to permit the communication between

nodes within the system. For instance, most of the communication within the IPFS ecosystem

is done over the internet. Therefore, nodes in the network could communicate with million of

other nodes by maintaining integrity using the ICE NAT traversal technique. Moreover, message

authentication is dong using HMAC with the sender’s public keys [53]. To find other peers within

the network, IPFS uses a routing method that would map other peers within the network from

DHT references.

Putting all these together, they enhance IPFS to a distributed file storage creating a virtual

currency at the same time.

2.4.2 Enhancement of IPFS to Filecoin

Filecoin is a distributed file system built on top of IPFS. In other words, Filecoin is decentral-

ized storage ecosystem using some algorithmic procedures to monetize cloud storage [54]. From

this perspective, the Filecoin ecosystem could be defined as a Blockchain platform such that

43

some consensus algorithm could be deployed to manage the network functionalities. The Filecoin

Blockchain has used a modified version of the mining principle of the Bitcoin Blockchain network.

For instance, Filecoin validator nodes (miners) would participate in competition to mine storage

blocks that are computationally proportional to the capacity of the storage [54]. This operation

could be lucrative to the miners because they could gather enough storage capacity that was rented

to possible clients.

Therefore, the Filecoin ecosystem elaborates interactions between different parties such as

clients, storage miners, retrieval Miners. For instance, the clients pay to store and retrieve their

data from the Filecoin Blockchain network. The storage miners get some incentives for providing

their storage. Finally, the retrieval miners get rewarded by making the data available to clients [54].

Those interactions are made possible by running the right consensus algorithms, and networking

protocols.

Proof-of-Spacetime

The main protocol that operates within the Filecoin Blockchain ecosystem is Proof-of-Spacetime

(PoSt). For instance, PoSt is used to check the proof of validity that of a specific data within a

specific interval of time [54]. The principle behind the PoSt is the following [54]: a prover P must

convince a verifier V that P is storing data D within a time slot t. The following figure illustrates

the execution of PoSt.

More specification about this protocol is given in [54]. This protocol enables the coordination

of processes within the Filecoin Blockchain network.

The Network

The network aspect of the Filecoin Blockchain is structured in specific manner. For instance,

the network is the skeleton of protocol executions, and management. Participants nodes within the

Filecoin Blockchain network would keep track of available storage, validate pledges, and audit the

storage proofs. These processes would be saved within an immutable ledger [54]. This Blockchain

44

Figure 2.8: Illustration of Underlying mechanism of PoSt [54]

network structure has stimulated a lot interests creating an interesting Blockchain storage market.

Filecoin Market

The Filecoin Blockchain platform has created two important markets:

1. Storage Market

With the dramatic production of data created by the increasing trend of technological evo-

lution. The storage market is in need of innovative approach such that the huge volume of

data could be efficiently saved. As a result of that, the Filecoin Blockchain platform offers

the opportunity to potential clients, the management of their data in different aspects. The

Filecoin storage market has been designed by taking some particular approaches to meet

certain requirements [54]:

• In-chain oderbook: This requirement makes sure that available storage capacity and

cost information is made public such that clients could make beneficial decisions for

their own interests. Most importantly, occurrences in the network should be gathered

in the oderbook such that accurate information could be presented to the network.

• Participants committing their resources: This procedure is to make sure that storage

miners and clients could prove the availability of their resources before proceeding to

45

any operations.

• Self-organization to handle faults: This procedure is to make sure that the network

proof correctness for every action that happen within the ecosystem.

2. Retrieval market

The Filecoin Blockchain network enables the storage of information at the same time the

retrieval of information is monetized. For instance, any nodes in the Filecoin ecosystem

could be a retrieval miners for some Filecoin tokens. The retrieval within the Filecoin

Blockchain ecosystem do not have to store any data. Also, some requirements should be met

to permit those functionalities:

• Off-chain oderbook: Clients would request a retrieval process from retrieval miners

without going through the Blockchain network. This is done to boost the network

efficiency.

• Retrieval without trusted parties: This procedure ensures that, all the retrieval min-

ers are honest. For instance, the processes between the clients and retrieval miners is

done in a way that miners could get paid for the piece of information they able to re-

trieve. At the same time, the clients would receive the data according to the amount of

tokens they have invested.

• Payments channels: The payment channel is making sure that interactions clients and

retrieval miners are preprocessed before any retrieval actions. The Filecoin Blockchain

network enables off-chain payment to enables efficient transactional processes. As

such, the Filecoin Blockchain ecosystem optimizes its efficiency for the satisfactory

of its users.

The main goal of chapter is to illustrate the practicability of the Blockchain ecosystem. We

have shown that the creation of a specific Blockchain platform could inspire the creation of other

Blockchain platforms. For instance, from the creation of the Bitcoin Blockchain network has stim-

ulated the creation the Ethereum Blockchain network. The creation of the Ethereum Blockchain

46

platform has stimulated the creation of private Blockchain networks such as various Hyperledger

products. Most importantly, Filecoin has taken another approach to use the Blockchain ecosystem

in an innovative way.

47

CHAPTER 3

SCALABILITY WITHIN A BLOCKCHAIN ECOSYSTEM

The notion of scalability within the Blockchain ecosystem has attracted the interest of researchers.

As we have explained, the use of the Blockchain platform at large scale requires scalable Blockchain

platforms. We are going to examine various Blockchain network designs that aim for the improve-

ment of scalability within the Blockchain ecosystem.

3.1 Previous Approach of Scalable Blockchain Platforms

Some structural Blockchain networks have been designed to enable scalable Blockchain platforms.

3.1.1 OffChain Technique

The off-chain technique was introduced to address the scalability issues with the Bitcoin Blockchain

platform. For instance, in the Bitcoin Blockchain, transactions need to be broadcast to all the nodes

in the network, so if the Bitcoin Blockchain network needs to be used to replace all the financial

services such us VISA, and Master Card. This propagation of transactions across the network

would create a huge volume of data that could not be managed [33]. In [33], They argue that to ad-

dress the scalability issue within the Bitcoin Blockchain ecosystem, the system needs to limit some

specific procedures. For instance, nodes in the network may only be interested on information that

impacts their state such that the broadcasting of information could be reduced.

In addition, in response to the scalability issue in Bitcoin, another approach was taken to en-

able the creation micropayment channels such that a particular entity in the network could send a

significant amount of information without affecting the network efficiency [33]. For instance, the

micropayment channels could be structured in a way that put different parties to initiate transac-

tional procedures such that only a single information about this transaction is recorded within the

Blockchain network [33]. Using this off-chain technique could enable the network significantly

48

scale because nodes in a specific channel would only interact with nodes in its entity creating less

overhead in the network. Although this technique could present some sufficient scalability fea-

tures, it could introduce some weaknesses that could be exploited because of the isolation from the

global network state.

3.1.2 Side-chain Technique

Due to some limitations of the off-chain technique, another technique was elaborated namely ”side-

chain”. The side-chain technique performs in a particular way. For instance, a side-chain could

work on a subset of transactions by only tracking values associated to those transactions [4]. By

doing so, the network throughput could significantly increase because multiples of side-chains

could be created through network. Since only portions of transactions are processed within a side-

chain in the network, the nodes in the side-chain only track information about transaction they are

interested in. Most importantly, the side-chain approach guarantees that the value that is carried

by a particular transaction would not be double spent across the network. For example, special

proofs are associated to each transaction during cross-chain transactions so that each side-chain

could verify the provenance and validity of the transaction [4].

This type of representation enables the reconfiguration of the Blockchain ecosystem. This

reorganization ensures that the independence of each side-chain within the Blockchain network

[34]. In other words, side-chains in the network could be illustrated as a subset of blockchains

within the Blockchain. From this understanding, when a value is transferred from one side-chain

to another one, a transaction is created from the initial side-chain such that the value associated

the transaction would be locked enabling the receiving side-chain to cryptographically prove that

the cryptographic signature was correctly signed by the initial the side-chain [34]. This verifica-

tion permits the side-chains to introduce a trusted communication channel without the altering the

Blockchain efficiency.

The side-chain presents some interesting features that could improve the throughput within

the Blockchain network. This technique could have some limitations that could damage some

49

properties of the Blockchain ecosystem.

3.2 Why those approaches are still not performing well

The Blockchain network models we have illustrated have some drawbacks that could significantly

affect some fundamental parameters within the Blockchain network. For instance, the off-chain

technique works by isolating the execution of a specific transaction across network to increase

the network throughput. This kind of procedure could introduce some fundamental issues [4].

For instance, since a transaction is not broadcast across the network, there is a relaxation of the

consensus level. By doing this relaxation, transaction values could be double spent [4]. Most

importantly, the off-chain technique is creating a sense of centralized Blockchain network.

The side-chain technique could create some security issues. For instance, since each side-

chain independently executes transaction without the need of agreement of the whole Blockchain

network, an attack of a side-chain would not be detected by the other part of the network [35]. For

instance, this security parameter could create a sense of isolation of the side-chain from the global

network; therefore, the side-chain could be defined as a centralization of subset of chains in the

Blockchain network. Moreover, the expectations of designing a side-chain Blockchain ecosystem

could present some structural challenges. For instance, in the side-chain ecosystem, the consensus

protocol in the receiving side-chain does not have the possibility to observe the ”state” changes in

the sender side-chain. This situation creates a ”non-interactive” consensus proof of occurrences of

the side-chains [4].

3.3 The age of Sharding

Since the previous scalability schemes have shown some limitations. Different approaches need

to be taken to encounter these limitations enabling the network to effectively scale without com-

promising the core properties of the Blockchain ecosystem such as decentralization, and security.

Therefore, the need of a scalable structure within the Blockchain ecosystem is crucial because the

usability of the Blockchain platform at a large scale won’t be possible without it. Adopting the

50

sharding concept in the Blockchain ecosystem could considerably improve the network through-

put. For instance, the sharding concepts gives the ability to divide network into different sectors

so that processing of transactions could be done in parallel. However, some fundamental question

may arise. In [36], we have come with some essential questions:

1. How can security be maintained within a shard?

2. How can the fundamental property of a Blockchain, which is decentralization, be maintained

within a collection of nodes?

3. How can fairness be maintained within the whole Blockchain ecosystem after the network

has been sectored into small portions?

4. How can scalability and accuracy be assured during inter-shard communication?

These questions should be seriously taken into account due to the fact they are essential and funda-

mental to the core concept the Blockchain technology. For instance, the usability of the Blockchain

networks could produce some technical concerns if those questions are not taken into consideration

to ensure the robustness of the Blockchain platform.

3.3.1 Sharding Security Maintainability

As we have seen with the off-chain and side-chain techniques, isolating the part the network could

be risky. For instance, some security parameters could be violated putting the whole Blockchain

system in danger. Therefore, maintaining security withing a sharded Blockchain network requires

some careful analysis. For instance, in [37], they illustrated a security issue called ”shard takeover

attacks”. In this type of attack, some malicious nodes may try to attack some validator nodes such

that they could get the control of a specific shard to prevent the executions of valid transactions

[37]. To prevent this type of attacks, some specific measures need to be taken. For instance, in the

Ethereum Blockchain network, they use a method called ”random sampling”. In this randomized

method, validator nodes are chosen within a specific interval of time such that malicious nodes

51

would not have the possibility to be part of this randomized set of validator nodes [37]. Therefore,

a random creation of shards could be a way for sharding security. Most importantly, to fight

against any adversaries within a specific shard variant, the BFT consensus would be run to protect

the network.

3.3.2 Maintainability of Decentralization within a Sharded Blockchain Network

The decentralization is one of the core property of the Blockchain ecosystem and any kind of dis-

tributed system. For instance, the Blockchain network eliminates the sense of centralized system.

Therefore, making sure that the sharded Blockchain follows the same properties could be crucial.

For instance, since each shard in the network needs to maintain the same properties, the network

should be evenly partitioned. In [14], they have enabled a sharding procedure that is making sure

the computing power proportionally distributed across each shard. In addition, the maintainability

of decentralization by ensuring that each shard within the sharded network would have appropriate

connections to other shards in the network. This aspect is to maintain inter-shard communication

by preventing shards isolation. For instance, in [15], they introduced the notion ”cross-shard”

transactions in which a specific transaction input could have different outputs in other shards cre-

ating shard ”interoperability”. From that perspective, the decentralization aspect of the sharded

Blockchain could be maintained because the shards are interrelated at some extend.

3.3.3 Maintainability of Fairness within a sharded Blockchain Ecosystem

The consensus level is the central authority to ensure fairness within a decentralized platform such

us the Blockchain network.The main goal of sharding the Blockchain network is the possibility to

reduce the overhead of the consensus level. The most appropriate consensus algorithm that should

be used within a sharded Blockchain is BFT based consensus algorithm because they could be run

within a small subsets of nodes. BFT based consensus because it could be used to eliminate any

kind of Byzantine behaviors. More description is given about this type of consensus in Section

1.2.4.

52

3.3.4 Scalability and Accuracy Within a Shard

The combination of scalability and accuracy could create a dilemma within the sharded Blockchain

network. In other words, scalability without accuracy would be meaningless. As a result, the

atomicity of transactions in a sharded platform could be very essential for the consistency of the

information across the network. In a traditional Blockchain network, the execution of a specific

transaction uses validators across the whole network. This type of execution is putting the bur-

den at the consensus level by negatively impacting the network efficiency in terms of throughput.

As we have explained sharding the Blockchain network is a possibility to randomly partition the

Blockchain network such that multiple transactions could be run in parallel within each specific

shard that enables the network to considerably scale. One may ask how accuracy could be main-

tained? Since multiple transactions have been executed simultaneously. For instance, the shards in

the network must be disjoint because a set of nodes in specific shard must differ from other shards.

This property enables the shards to have a disjoint ledgers for the executions of their transactions

[15]. These disjoint ledgers would sequentially recorded in the global state such that the network

could keep track of occurrences within the sharded platform.

3.4 Conceptual Understanding of Sharding

Sharding could be done at different levels. The partitioning of levels should appropriately done so

that the network could efficiency scale. The sharding conceptualization needs to make sure that

those main components are structured maintaining the Blockchain network properties.

3.4.1 Computation

The computation at each validator node depends to the storage at that node. For instance, the vali-

dation of a specific transaction at a validator node requires the evaluation of previous transactions.

This process is required because the validity of the transaction depends on it. Therefore, sharding

the computation power within a sharded ecosystem could be very crucial for the scalability in the

53

network. in [14], they have used a sharding concept to ensure proportional distribution of compu-

tation across the sharded network. Doing so, Elastico could scale up its transactional throughput

in accordance with its computational capacity [15]. We have given more details about Elastico

protocol in Section 1.6.1.

3.4.2 Storage

Within a Blockchain setting the ledger represents the storage at each node. Therefore partition-

ing the Blockchain corresponds to partitioning the global ledger. Each shard within the sharded

Blockchain network must have its individual ledger to keep track of transactional procedures within

its ecosystem. In [16], when a node joins a shard, the node needs to update its storage by down-

loading the ledger in this shard. This is to make sure that new transactional procedures could

be validated. In global, sharding at the storage level could be fundamental since the storage is

included at each node. For instance, to enable efficient storage procedures, in [16], RapidChain

adopts a strategy in which nodes only acquire a sufficient amount of information to guaranty the

integrity of the network.

3.4.3 Communication

The communication is the interaction of nodes within the Blockchain networks. As we have been

explaining sharding allows parallel execution of transactions. For instance, each transaction would

be executed within its specific shard reducing its propagation across the network. As a result of

that, the communication cost through the network could be sufficiently reduced permitting the

network to scale. In [16], they have used particular approach that is the following: a nodes gathers

information about its neighboring nodes which have the shortest path to other nodes within the

network. Therefore, when a node tries to communicate through the sharded network, it would try

to minimize the cost as much as possible using the shortest path. Our concept of shortest path

could be fairly related to this principle at some extent.

54

3.5 Sharding Consensus Algorithms and Functionalities

BFT based consensus algorithms are mainly used within a shared ecosystem. The evolution of the

Blockchain technology has triggered the evolution of its consensus algorithms. These evolution

efforts aim the scalability of the Blockchain ecosystem.

3.5.1 BFT

The BFT needs certain requirements to be met such at the sharded could satisfy the BFT prop-

erties. Those fundamental properties are the following [12]:

• Agreement (Consistent): Two validator nodes should not have a disagreement on the vali-

dations of transaction.

• Validity (Correctness): Validator nodes should not validate invalid transactions.

• Termination (Liveness): Validator nodes should be informed about eventual transactions

within the network.

These properties should be maintained such that BFT consensus could efficiently operates. Most

importantly, most of the BFT based consensus algorithm could function within asynchronous

systems using replicated state machine [38]. For instance, each entity (node) in the network would

have a copy of the state machine for the execution of each transaction in the sharded network. In

[39], they found that BFT protocol relies most likely on the authenticity of nodes in the network

rather than the number of processes that need to be executed at these nodes. Therefore, the main

objective of the BFT is to discard any malicious attempt in network. The core foundation of the

BFT protocol could be found in Section 1.2.4.

3.5.2 PBFT

The PBFT is built on top of the BFT . We could say that an amelioration of the BFT protocol.

In [7], the PBFT is an optimization of the BFT algorithm that could also operate within an

55

asynchronous network setting. This enhancement of the BFT protocol has introduced some of

the following phases [40]: a pre-prepared phase in which a designated ”leader” in the network

send transactional requests to other nodes within a sharded. The second phase is the prepared

phase in which nodes in the sharded network agree on set of transactions. The last phase is the

commit in which nodes within which nodes in the shard commit transactions to their storage. All

these interactions could take up O(N2) where N is the number of nodes in the network [40]. One

of the reason that PBFT protocol is used within a sharded ecosystem is that it allows pipelined

execution [40][16].

3.5.3 HotStuff

HotStuff is an improved version of PBFT because it has added some procedural phases to

PBFT consensus [10]. Therefore, it could have more advantages over the previous BFT pro-

tocol. The HotStuff consensus protocol enables the ability to simplify the BFT properties we

described in Section 3.5.1. HotStuff protocol decouples those parameters such that executions

of processes could be done in parallel increase the sharded network throughput by reducing the

latency [11].

3.5.4 LibraBFT

LibraBFT consensus is an extension of the HotStuff algorithm. They have incorporated the

following functionalities [11]: proofs of safety, liveness, and optimistic responsiveness. The

LibraBFT created an innovative way to execute transaction at the validator nodes. For in-

stance, the consensus can take some robust measures such that validator nodes can be resistant

to Byzantine errors by collectively approving blocks instead transaction stream [11] within a

sharded ecosystem. The most important factor is that the protocol could be resistant against some

critical security issues such as a denial-of-service and sybil attacks within a specific shard in the

network. Such a protocol could beneficial within sharded ecosystem because its robustness creat-

ing an efficient and secure Blockchain platform.

56

CHAPTER 4

NETWORK OPTIMIZATION MODEL

For the implementation of the network structure, we have modeled a directed Blockchain network

with n nodes and M edges to minimize the Communication Cost per Transaction (CCPT) within

a shard. The shard would have a collection of specific nodes that sartorially close to each other in

the Blockchain network. The nodes in the network would have a proof size such that the nodes in

the network are assumably honest because it is a permissioned Blockchain platform.

When a transaction moves through network, the nodes in the network would try to validate the

transaction. The network would have the origin (supply node) and destination node (demand node)

during the transaction. The other nodes in the network would play the role of transshipment nodes.

The transshipment nodes that would be traversed by the transaction flow are supposed to have small

proof sizes (pz). The edges (arcs) in the network would have the same communication cost. Since

the objective is to minimize the CCPT within the network, the transshipment nodes that would

be traversed would be included along with their proof sizes on validating the transactions and

would determine the trajectory of the transaction. The trajectory of the transaction would create

the transaction path. The optimization model would try to determine the minimum cost to transact

from one node to another node by applying some constraints that we would define accordingly.

We would assign random values as proof sizes to the transshipment nodes within the sharded

network. These proof sizes could be considered as the validation costs for the transshipment nodes.

By randomly assigning the proof sizes to the nodes, we are trying to simulate how a transaction

is transmitted across the network. With our network model, we are conceptually evaluating how

transactions are manipulated within a Blockchain ecosystem. The random property would permit

unbiased results which give estimates of the transaction cost calculations within the Blockchain

network. To accomplish this implementation, we formulate an optimization problem whose reso-

lution could permit the satisfaction of these properties.

57

4.1 Notations

We represent a Blockchain network as a directed graph G = (V,E) where V = {V1, V2, ..., Vn}

is the set of nodes in the network and E ⊆ V × V is the set of directed arcs. Let TX =

{tx1, tx2, . . . , txm} be an independent set of transactions (i.e., txi+1 is initiated after txi is com-

pleted.) performed in the network during a given time interval T . Let Vsi , Vdi ∈ V, si 6= di be the

source and destination nodes for the transaction txi, 1 ≤ i ≤ m. A given transaction txi elaborates

a communication between the two nodes, Vsi and Vdi in the network. We assume the proof size of

a node may dynamically change from a transaction to another transaction. For the transaction txi,

let pz(i, j) be the proof size of node Vj . We will have pz(i, si) = pz(i, di) = 0 because the source

and destination nodes would not validate themselves during transactional procedures. The proof

size assignment to the nodes except Vsi and Vdi in the network would be randomized so that we

could unbiasedly evaluate the propagation of the flow across the network from Vsi to Vdi . Figure

4.1 illustrates the proof size assignment to the network.

58

pz1 1 V1j

pz2 2

pz3 3

pz4 4

pz5 5

pz6 6

pz7 7

pz8 8

pz9 9

pz10 10

pz11 11

pz12 12

pz13 13

pz14 14

pz15 15 V15j

Figure 4.1: Network Structure with Proof Sizing Representation: pzi would be randomly as-
signed to the nodes during stimulation of the CCPT . V1 and V15 are the supply(source) and
demand(destination) nodes respectively.

4.2 Mixed Integer Programming Model

To realize our implementation, we would define a directed graph that would represent our Blockchain

network. As defined in the previous section, we have V as a set of vertices and E a set of arcs in

the network. Therefore, the graph notation could be illustrated as G = (V,E). We would have

59

a supply vector S = (Si) for V , and fixed cost and proof sizes of two connected nodes would

be represented as fij and pzi, pzj for (i, j) ∈ E respectively. Using these representations, we

need the model to find a set of nodes with small proof sizes within the network that minimizes the

communication cost per transaction (CCPT) at the same time ensuring the shortest path to the

destination.

We have defined the transaction trajectory variables as binary variables. Transshipment nodes

that would be used for the transactions would be represented by 1 and the other nodes that do not

participate in the transaction procedures would be represented by 0. Therefore, this model could

be defined as a mixed-integer programming model. The communication cost Cij for traversing

a specific arc could be calculated using the summation of half of the outbound and the inbound

nodes proof sizes making sure that the flow is perfectly conserved during the transaction adding

the fix cost at each arc. We have decided to use a fix cost at each arc because the purpose of this

evaluation is to test the influence of the proof size at each validator node. Therefore, we could have

the following constraints:

min
∑

(i,j)∈E

Cijxij (4.1)

s.t.

∑
(i,j)∈E

xij −
∑

(j,i)∈E

xji = Si (4.2)

Cij = (
1

2
) ∗ (pzi + pzj) + fij (4.3)

xij ∈ {0, 1} ∀ (i, j) ∈ E, fij = 1 ∀ (i, j) ∈ E (4.4)

In our implementation, the model would try to minimize the objective (1) using the flow con-

servation constraint (2) and the cost of traversing an arc constraint (3). As additional notation, we

60

use the following notion for the supply vector Si for a transaction txk.

Si =


1 if i = sk

−1 if i = dk

0 otherwise

(4.5)

The supply and demand nodes would be randomly chosen to minimize the transaction cost

within the network.

4.3 Network Model Extension with Multiple Transactions

4.3.1 Dummy Arcs

The network model we have created for transactional processes is the first phase of our modeling.

The extension of our work is the possibility to extend the model to handle multiple transactions

at same time within the sharded network. Let us define the following network to illustrate our

conception.

2 pz2

1 (s1 = 1)

3 (s2 = 1)

4 pz4

5 (d2 = −1)

6 (d1 = −1)

7 pz7

x53 = 1

x61 = 1

Figure 4.2: Network Extension with Multiple Transactions

In order to handle multiple transactions some particular procedures need to be taken. We could

observe from Figure 4.2 we have the following set of transactions tx1 (s1, d1), and tx2(s2, d2)

61

with their respective sources, and destinations. Therefore, to ensure that those transactions could

be performed, we must introduce dummy arcs. For instance, we have x16, and x35 such that

xij ≤ capij where capij is the capacity at each arc. For the dummy arcs, we have capij = 1.

Adding these dummy arcs would ensure that the transactions could be sent to the right destinations

ensuring that the flow is conserved at each arc.

4.3.2 Dummy Nodes

The executions of multiple transactions could correctly performed by using dummy nodes. Since

the nodes that the flow would go through would play the role of transshipment nodes, some re-

strictions need to be introduced such that a certain number of transactions could traverse a specific

transshipment node. In order to enable this principle, we could use dummy nodes to integrate these

restrictions. For instance, when the number of transactions exceed what is required for a specific

transshipment node, the surplus transactions would be broadcast to the defined dummy nodes. The

following illustration is showing how this could be handled.

Figure 4.3: The Concept of Dummy Node

With this representation, let us suppose that the capacity of the arc coming from node 1 is

capij = 2. This will limit the maximum number of transactions that can be processed at a given

time to 2.

62

4.4 Shortest Path Consideration

The main objective of the network model is to minimize the cost of sending a flow from a source

node to a destination node. Most importantly, since the arc cost in the whole graph is the same,

if a specific flow utilizes nodes in the network that have appropriate proof sizes, the calculation

of the communication cost would be the association of fij and pz(i, j) at the nodes. Therefore,

minimizing the CCPT , the optimization model is minimizing the number of nodes and arcs that

need to be processed from the source node to the destination node. As a result of this modeling, the

CCPT could be minimized such that set of participating nodes could be found from those nodes.

Figure 4.4 and 4.5 would illustrate the shortest path concept.

s pzs = 0

v2 pzv2 = 9 v4 pzv4 = 8

v1 pzv1 = 10 v3 pzv3 = 11

t pzvt = 0

1

1

1

1

1

1

1 11

Figure 4.4: Shortest Path Illustration from s to t

After the computations of the cost each arc using equation 4.3, we could obtain the following

graph.

s

v2 v4

v1 v3

t

5.5

6

9.5

5

11.5
6.5

11

11
.5

10
.5

Figure 4.5: Computation of Transaction Costs at Nodes

Applying the network model we have the following shortest path.

63

Source Dest path CCPT
s t s→ v2→ v4→ t 20

Table 4.1: Network Flow Shortest Path

4.5 Sharded Network Within the Network

Since the network would be sharded, the model needs to maintain the same properties within each

shard to ensure the model effectiveness. Therefore, subsets of the network would be evaluated

according to their structures. We have modeled our Blockchain network to make sure that all of

the nodes within a shard are connected. Also, the shards in the network need to be connected

because transactions could be done from shard to shard maintaining the network properties.

64

CHAPTER 5

IMPLEMENTATION AND RESULT

5.1 Implementation

For the implementation, we have used our optimization model to evaluate the sharding concept.

We evaluate the model using the ILOG CPLEX Optimization Studio software. We use the Cplex

solver to perform the stimulation.

5.1.1 Model Components

Using Cplex Optimization Studio, we developed a complex, yet elegant optimization model to test

the sharding concept to simulate the concept of the propagation transactions across the Blockchain

network. The model consists of two different files. For instance, one of the file is the data file

incorporates the network nodes. Since it is a network structure, the nodes in the network would

have some connections to other nodes. The nodes in the network are not considered to be part

of a complete graph data structure. Rather, they are part of an incomplete graph. The nodes and

their respective connections have been randomly generated by a script written by us in the Python

programming language. Implementing the model using a complete graph will be left to future

research. The other file that we have is the implementation file of our optimization model. Most

importantly, Within this file we have written the logic to shard the network with proportional sizes.

Each shard have a subsets of nodes connected by a subsets of arcs. The constraints that would

be applied to the main network structure would be the same for each shard. We have defined the

constraints in Section 4.2. We have used a range of nodes to be able to partition our network

into shards. The partition is making sure that each shard would have a disjoint set of nodes. This

property is very important because it could be the fundamental principle behind the concept of

sharding. Most importantly, since the sharding principle is the possibility to partition the network

65

such that nodes could sectorially close to each other. We have decided to use a partition method that

ensures this property. This concept could be fundamental to the minimization of the CCPT . Along

with the shortest path and lowest cost, we have implemented sharding to further limit the total

distance travelled by a transaction within a specific shard. By doing this, the network will expend

the lowest energy possible when traversing the nodes for a transaction, further strengthening the

argument behind the sharding concept.

5.1.2 Constraints

As if with every model, we have set a specific set of rules for the simulation of the Blockchain

network. For this specific model, we have only implemented three constraints required for a trans-

action to traverse the sharded blockchain to reach its destination node. The first constraint is the

objective constraint and the cost and the path constraint. This constraint calculates the total cost of

traversing a sharded network from the source node to the destination node, all the while taking into

account the proof size of each validator node traversed and the cost of the arc traversed, which are

all the same in our model because we want to evaluate the impact of the proof size at each validator

node. This is also called the objective constraint due to the fact that this constraint is the constraint

being minimized to find the optimal solution for each shard, and the whole network. The second

constraint is called the flow conservation constraint. This ensures the conservation of a specific

from th source to the destination during a specific transactional procedure. It is implemented using

the difference of sums of the constrained transaction path to find the truly minimized solution to

the path taken by the model. The third constraint is the calculation of the proof size used during a

transaction. This calculation is done in a specific manner because it considers half of the inbound

and outbound proof sizes of the validator nodes. The combination those three constraints would

ensure the optimization model to find an optimal solution. Most importantly, the model would find

the shortest path from the source to the destination within the sharded network structure.

66

5.1.3 Sharding Implementation

The tricky part for the model was not figuring out the correct constraints, but figuring out how to

split an already randomly generated Blockchain network into smaller parts or shards. We had to

perform sharding all the while maintaining connectivity between the nodes in a respective shard.

Using simple probability, we were able to deduce that a shard will most likely maintain connectiv-

ity if each node in the total network had at least seven connections to other nodes. When randomly

generating our network, we made sure that the algorithm maintained at least seven different con-

nections from each node to other nodes. By satisfying this rule, we were able to generate many

different shards with different respective nodes within those shards and still maintain connectivity

between the nodes. While performing the sharding, we created two different sets of nodes us-

ing different ranges such that we could have disjoint subsets of nodes. This helped us ensure the

uniqueness of a shard and that no shard shared a duplicate node between them. Once sharding

was complete, we perform some stimulation of the main network, and each specific shard to obtain

some experimental results.

5.2 Result

5.2.1 Result in the Complete Network

To ensure an illustrative experiment result, we performed some stimulation on the whole set of

nodes such that we could do a comparison on the minimization of the CCPT . During the evalua-

tion on the main network, we have observed some satisfactory results. For instance, with random

proof size assignment at validator nodes, the model was able to find the shortest path from the

source to the destination minimizing the CCPT . As reminder, the purpose of the proof sizes

at each validator is the stimulation of the amount of computation that needs to be done in real

Blockchain network setup. We have explained the logic behind this principle in Section 1.7.1. For

the evaluation of our network, we have decided to use 203 nodes. Performing some tests on these

nodes, we have randomly chosen the supply(source) and demand (destination) nodes according to

67

the network model we have defined in Section 4.2. We obtain the following result in the main

network:

Sender
Node

Receiver
Node

Transaction Trajectory CCPT

26 166 26→ 32→ 37→ 43→ 48→ 52→ 58→ 61→ 67→ 77
→ 83 → 83 → 86 → 93 → 97 → 102 → 106 → 112 →
116→ 122→ 127→ 132→ 137→ 143→ 143→ 147→
152→ 157→ 161→ 166

991

Table 5.1: Flow Stimulation in the Main Network

With some observation, we release that is the shortest path from the source to the destination

with the lowest CCPT .

5.2.2 Results within the Shards

After doing the test in the main network with all the nodes, we have done some tests within each

shard to make some observation. To test the sharding concept, we divided the network into four

shards of approximate number of nodes such that we could unbiasedly perform our experimen-

tation. Most importantly, we needed to make sure that the nodes within each specific shard are

connected. Therefore, with the appropriate connection within each individual we could perform

some stimulation to get some results on the transaction flow.

Sender
Node

Receiver
Node

Transaction Trajectory CCPT

41 6 6→ 12→ 17→ 23→ 28→ 32→ 37→ 41 391

Table 5.2: Flow Stimulation: Shard

Sender
Node

Receiver
Node

Transaction Trajectory CCPT

80 96 80→ 83→ 86→ 93→ 96 138

Table 5.3: Flow Stimulation: Shard1

We could observe that the above stimulation that the CCPT could be minimized within a

specific shard. Now, let’s perform the stimulation for shard2 and shard3 using the same approach.

68

Sender
Node

Receiver
Node

Transaction Trajectory CCPT

107 134 107→ 112→ 118→ 122→ 127→ 132→ 134 210.5

Table 5.4: Flow Stimulation: Shard2

Sender
Node

Receiver
Node

Transaction Trajectory CCPT

192 153 192→ 186→ 182→ 177→ 172→ 167→ 161→ 157→
153

191

Table 5.5: Flow Stimulation: Shard3

Given that all the nodes in each shard are disjoint, the optimization model ensures that a path

could not be found from one shard to another shard. Allowing that would imply a cross-shard

communication which could introduce another level of complexity. This research is heavily fo-

cused on the impact of sharding the network to get some optimal results. We have observed the

calculation of the CCPT within the four shards. In a real Blockchain setup this process could

be run in parallel, ensuring the executions of multiple transactions at the same time such that the

network could scale in terms of throughout.

69

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

The purpose of this research was to understand the fundamental principle behind the concept of

sharding within the Blockchain network ecosystem. With a good understanding this concept, we

were able to design a mathematical optimization network model to perform some simulations on

the structure of network. These simulations have given some results on how the transactions follow

shortest paths to get to the destinations minimizing the CCPT . Most importantly, during our tests,

the transactions would traverse validator nodes with minimal proof sizes to get to their destinations.

This experimental results illustrate our assumption that about the proof sizing concept at validator

nodes. Within a practical Blockchain setup, the assumption is that the transactions flow would try

to use validator nodes that would require less amount of computing power such that the network

could scale.

Another perspective of this research is to illustrate the current usability of the Blockchain tech-

nology in different societal domain. In Chapter 2, we have exposed some practical applications

such as in cryptocurrencies, smart contracts, and distributed storage systems. These applications

are showing how the Blockchain ecosystem could be used to enable the interaction of different

businesses.

6.2 Future Work

We have created mathematical optimization network model to perform our experimentation. We

have implemented this network model using some optimization software such as ILOG CPLEX

Optimization Studio, and GAMS. The results we have obtained could be considered as conceptual

results. For future implementations, we are going to perform our experiment on a real network

70

ecosystem. For instance, we are going to configure a network of virtual instances in which virtual

instance would be considered as nodes within a Blockchain network. The network would be par-

titioned into shards such that we could perform some parallel processing on each shard. For the

proof sizing stimulation, the nodes that would be used as validator nodes would have some amount

of computation such that we could evaluate the propagation of the information across a specific

shard. The configuration of this setup would be done using Mininet.

71

BIBLIOGRAPHY

[1] S. Nakamoto, ”Bitcoin: A peer-to-peer electronic cash system”, 2008. [Online].

Available: https://bitcoin.org/bitcoin.pdf

[2] Buterin, V, ” A next generation smart contract decentralized application plat-

form”, 2014. [Online]. Available: https://cryptorating.eu/whitepapers/

Ethereum/Ethereum_white_paper.pdf

[3] Libra, ”An Introduction to Libra”, 2019. [Online]. Available: https://libra.

org/en-US/wp-content/uploads/sites/23/2019/06/LibraWhitePaper_

en_US.pdf

[4]] W. Wang, D. T. Hoang, P. Hu, Z. Xiong, D. Niyato, P. Wang, Y. Wen, and D. I.

Kim, ”A survey on consensus mechanisms and mining strategy management in blockchain

networks,” IEEE Access, vol. 7, pp. 22328–22370, 2018.

[5] Buterin, V., and V. Griffith. 2017. Casper the Friendly Finality Gadget. CoRR

abs/1710.09437. https://arxiv.org/abs/1710.09437

[6] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM

Transactions on Programming Languages and Systems, 4(3):382-401, July 1982.

[7] M. Castro, B. Liskov, ”Practical Byzantine Fault Tolerance”, 3rd OSDI, 1999.

[8] C. Cachin. Architecture of the Hyperledger blockchain fabric. In Workshop on Dis-

tributed Cryptocurrencies and Consensus Ledgers, 2016.

[9] https://tendermint.com/

[10] M. Yin, D. Malkhi, M. K. Reiterand, G. G. Gueta, and I. Abraham, “HotStuff: BFT

consensus in the lens of blockchain,” 2019. http://arxiv.org/abs/1803.05069v4

[11] Mathieu Baudet, Avery Ching, Andrey Chursin, George Danezis, François Garil-

lot, Zekun Li, Dahlia Malkhi, Oded Naor, Dmitri Perelman, and Alberto Sonnino. 2019.

State Machine Replication in the Libra Blockchain. Technical Report. Calibra. https:

https://bitcoin.org/bitcoin.pdf
https://cryptorating.eu/whitepapers/Ethereum/Ethereum_white_paper.pdf
https://cryptorating.eu/whitepapers/Ethereum/Ethereum_white_paper.pdf
https://libra.org/en-US/wp-content/uploads/sites/23/2019/06/LibraWhitePaper_en_US.pdf
https://libra.org/en-US/wp-content/uploads/sites/23/2019/06/LibraWhitePaper_en_US.pdf
https://libra.org/en-US/wp-content/uploads/sites/23/2019/06/LibraWhitePaper_en_US.pdf
https://arxiv.org/abs/1710.09437
https://tendermint.com/
http://arxiv.org/abs/1803.05069v4
https://developers.libra.org/docs/state-machine-replication-paper
https://developers.libra.org/docs/state-machine-replication-paper

72

//developers.libra.org/docs/state-machine-replication-paper

[12] Z. Ren and Z. Erkin, ”A scale-out blockchain for value transfer with

sponteneous shardin g,” CoRR, vol. abs/1801.02531, 2018. [Online]. Available:

http://arxiv.org/abs/1801.02531

[13] Popov, S. The Tangle. [Online]. Available: https://assets.

ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/

45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf

[14] L. Luu, V. Narayanan, C. Zhang, K. Baweija, S. Gilbert, and P. Saxena. A secure

sharding protocol for open blockchains. In CCS, 2016.

[15] E. Kokoris Kogias, P. S. Jovanovic, L. Gasser, N. Gailly, E. Syta, and B. A. Ford,

”Omniledger: A secure, scale-out, decentralized ledger via sharding,” in iEEE Symposium on

Security a nd Privacy (SP), San Francisco, CA, May 2018, pp. 583-593.

[16] M. Zamani, M. Movahedi, and M. Raykova, “RapidChain: Scaling blockchain via

full sharding,” IACR Cryptol. ePrint Arch., Tech. Rep. 2018/460, 2018. [Online]. Available:

https://eprint.iacr.org/2018/460

[17] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed

Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, and Emin Gün. On scaling decentralized

blockchains.

[18] ”Whisper protocol v.5,” https://github.com/ethereum/go-ethereum/

wiki/Whisper-Overview, accessed: 08/24/2019.

[19] https://github.com/telehash/telehash.github.io. access:

08/24/2019.

[20] Ethereum Foundation, “Ethereum wire protocol v.5,” https://github.com/

ethereum/wiki/wiki/Ethereum-Wire-Protocol, accessed: 08/24/2019.

[21] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer information system

based on the xor metric,” in Peer-to-Peer Systems: First International Workshop, Cambridge,

MA, Mar. 2002, pp. 53–65.

https://developers.libra.org/docs/state-machine-replication-paper
https://developers.libra.org/docs/state-machine-replication-paper
http://arxiv.org/abs/1801.02531
https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf
https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf
https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf
https://eprint.iacr.org/2018/460
https://github.com/ethereum/go-ethereum/wiki/Whisper-Overview
https://github.com/ethereum/go-ethereum/wiki/Whisper-Overview
https://github.com/telehash/telehash.github.io
https://github.com/ethereum/wiki/wiki/Ethereum-Wire-Protocol,
https://github.com/ethereum/wiki/wiki/Ethereum-Wire-Protocol,

73

[22] Siddhartha Sen and Michael J. Freedman. Commensal cuckoo: secure group partition-

ing for large-scale services. ACM SIGOPS Operating Systems Review, 46(1):33–39, 2012.

[23] King, S., Nadal, S.: Ppcoin: Peer-to-peer crypto-currency with proof-of-stake (2012).

[24] Jabbari, A., Kaminsky, P., 2018. Blockchain and Supply Chain Man-

agement. http://www.mhi.org/downloads/learning/cicmhe/

blockchain-and-supply-chain-management.pdf

[25] https://www.hyperledger.org/wp-content/uploads/2019/02/

Hyperledger_CaseStudy_Walmart_Printable_V4.pdf

[26] https://cointelegraph.com/news/does-crypto-always-mean-decentralization

[27] https://medium.com/coinmonks/blockchain-scaling-30c9e1b7db1b

[28] Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.: On the

security and performance of proof of work blockchains. In: ACM CCS, pp. 3–16 (2016)

[29] M. Conti, C. Lal, S. Ruj et al., “A survey on security and privacy issues of bitcoin,”

arXiv preprint arXiv:1706.00916, 2017

[30] https://litecoin.org/

[31] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in

Bitcoin. In Financial Cryptography and Data Security - 19th International Conference, FC

2015, pages 507–527, 2015.

[32] I. Eyal, A. E. Gencer, E. G. Sirer, and R. van Renesse. (Oct. 7, 2015). ”Bitcoin-NG:

A scalable blockchain protocol.” [Online]. Available: http://arxiv.org/abs/1510.

02037

[33] POON, J., AND DRYJA, T. The Bitcoin Lightning Network: Scalable Off-Chain

Instant Payments, Jan. 2016.

[34] A. Back et al. (2014, Oct.). “Enabling blockchain innovations with pegged sidechains,”

Tech. Rep. [Online]. Available: http://www.blockstream.com/sidechains.pdf

[35] https://en.bitcoinwiki.org/wiki/Sidechain

[36] Yigo, A., AND Dehari, H. Scalable Sharded Blockchain Network, Apr. 2019. Avail-

http://www.mhi.org/downloads/learning/cicmhe/blockchain-and-supply-chain-management.pdf
http://www.mhi.org/downloads/learning/cicmhe/blockchain-and-supply-chain-management.pdf
https://www.hyperledger.org/wp-content/uploads/2019/02/Hyperledger_CaseStudy_Walmart_Printable_V4.pdf
https://www.hyperledger.org/wp-content/uploads/2019/02/Hyperledger_CaseStudy_Walmart_Printable_V4.pdf
https://cointelegraph.com/news/does-crypto-always-mean-decentralization
https://medium.com/coinmonks/blockchain-scaling-30c9e1b7db1b
 https://litecoin.org/
http://arxiv.org/abs/1510.02037
http://arxiv.org/abs/1510.02037
http://www.blockstream.com/sidechains.pdf
https://en.bitcoinwiki.org/wiki/Sidechain

74

ble: https://github.com/Nouldine/ShardedBlockchainNetwork/blob/

master/Paper/ScalableShardedBlockchainNetwork.pdf

[37] https://github.com/ethereum/wiki/wiki/Sharding-FAQ

[38] F. Sun and P. Duan. (Sep. 2014). Solving Byzantine Problems in Synchronized Systems

Using Bitcoin. [Online]. Available: https://allquantor.at/blockchainbib/

pdf/sun2014solving.pdf

[39] A. Miller and J. J. LaViola Jr. Anonymous Byzantine Consensus from Moderately-Hard

Puzzles: A Model for Bitcoin, 2014.

[40] Towards Scaling Blockchain Systems via Sharding, Proceedings of International

Conference on Management of Data, pages 123–140, 2019.

[41] M Antonopoulos. 2017. Mastering Bitcoin - Programming the Open Blockchain.

OReilly Media (2017). [Online]. Available: https://github.com/bitcoinbook/

bitcoinbook

[42] ”Bitcoin Wallet Generator”. https://www.bitaddress.org/bitaddress.

org-v3.3.0-SHA256-dec17c07685e1870960903d8f58090475b25af946fe95a734f88408cef4aa194.

html

[43] Eskandari, Shayan (2015) Real-world Deployability and Usability of Bitcoin. Masters

thesis, Concordia University.

[44] Infostealer.Cointbit https://www.symantec.com/security-center/

writeup/2011-061615-3651-99

[45] https://github.com/bitcoin/bips/blob/master/bip-0032.

mediawiki

[46] https://github.com/minium/Bitcoin-Spec/blob/master/

Bitcoin.pdf [47] Peethi K.(2017, September 2017). How does Ethereum work,

anyway? [Blog post]. Retrieved from https://medium.com/@preethikasireddy/

how-does-ethereum-work-anyway-22d1df506369

[49] ”Guide on Ethereum Wallets: Mobile, Web, Desktop, Hardware”. COINTELEGRAPH.

https://github.com/Nouldine/ShardedBlockchainNetwork/blob/master/Paper/ScalableShardedBlockchainNetwork.pdf
https://github.com/Nouldine/ShardedBlockchainNetwork/blob/master/Paper/ScalableShardedBlockchainNetwork.pdf
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://allquantor.at/blockchainbib/pdf/sun2014solving.pdf
https://allquantor.at/blockchainbib/pdf/sun2014solving.pdf
https://github.com/bitcoinbook/bitcoinbook
https://github.com/bitcoinbook/bitcoinbook
https://www.bitaddress.org/bitaddress.org-v3.3.0-SHA256-dec17c07685e1870960903d8f58090475b25af946fe95a734f88408cef4aa194.html
https://www.bitaddress.org/bitaddress.org-v3.3.0-SHA256-dec17c07685e1870960903d8f58090475b25af946fe95a734f88408cef4aa194.html
https://www.bitaddress.org/bitaddress.org-v3.3.0-SHA256-dec17c07685e1870960903d8f58090475b25af946fe95a734f88408cef4aa194.html
https://www.symantec.com/security-center/writeup/2011-061615-3651-99
https://www.symantec.com/security-center/writeup/2011-061615-3651-99
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/minium/Bitcoin-Spec/blob/master/Bitcoin.pdf
https://github.com/minium/Bitcoin-Spec/blob/master/Bitcoin.pdf
https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369
https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

75

Available: https://cointelegraph.com/ethereum-for-beginners/

ethereum-wallets

[50] Hyperledger Whitepaper

[51] An Introduction to Hyperledger

[52] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos

Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov

Manevich, et al. Hyperledger fabric: A distributed operating system for permissioned

blockchains. arXivpreprint arXiv:1801.10228, 2018.

[53] Benet, J.: IPFS - content addressed, versioned, P2P file system. CoRRabs/1407.3561

(2014), http://arxiv.org/abs/1407.3561.

[54] Protocol Labs (2017). Filecion: A Decentralized Storage Network.[Online]. Available:

https://filecoin.io/filecoin.pdf

[55] https://en.bitcoin.it/wiki/Transaction

https://cointelegraph.com/ethereum-for-beginners/ethereum-wallets
https://cointelegraph.com/ethereum-for-beginners/ethereum-wallets
http://blockchainlab.com/pdf/Hyperledger%20Whitepaper.pdf
https://www.hyperledger.org/wp-content/uploads/2018/07/HL_Whitepaper_IntroductiontoHyperledger.pdf
http://arxiv.org/abs/1407.3561
https://filecoin.io/filecoin.pdf
https://en.bitcoin.it/wiki/Transaction

76

Appendices

77

APPENDIX A

IMPLEMENTATION OF NETWORK MODEL IN IBM CPLEX

This is the implementation of the network model in IBM CPLEX.

1

2

3 // Number of nodes in the main network

4 int NumNodes = ...;

5 range Nodes = 1..NumNodes;

6

7 // Get the supply (positive) and demand (negative)

8 // at each node

9 int SupDem[Nodes] = ...;

10

11 // Create a record to hold information about each arc

12 tuple arc {

13

14 key int fromnode;

15 key int tonode;

16 float cost;

17 }

18

19 // create a tuple for the proof size of object

20 tuple proof_size {

21 int p_1;

22 }

23

24 // Get the set of arcs

25 {arc} Arcs = ...;

78

26 //SupDem = [Node];

27 float ArcsCost[Nodes][Nodes];

28 proof_size proof[Nodes];

29

30 range shard = 1..50;

31 range shard_1 = 51..100;

32 range shard_2 = 101..151;

33 range shard_3 = 152..203;

34 {arc} shard_arcs;

35 {arc} shard_arcs_1;

36 {arc} shard_arcs_2;

37 {arc} shard_arcs_3;

38

39 int SupDem_shard[shard] = ...;

40 int SupDem_shard_1[shard_1] = ...;

41 int SupDem_shard_2[shard_2] = ...;

42 int SupDem_shard_3[shard_3] = ...;

43

44 execute {

45

46 // Compute the cost to traverse

47 // a specific validator node

48 function ComputeCost(proof_1, proof_2) {

49 return (0.5) * (proof_1.p_1 + proof_2.p_1 + 1);

50 }

51

52 // Randomly assign proof size

53 // to nodes

54 for(var i in Nodes) {

55 proof[i].p_1 = Opl.rand(100);

56 }

57

58 // Store the processing cost

79

59 // at the inbound and outbound costs in a 2D array.

60 // The cost would be calculated at each connected

61 // node in the network. If there is not

62 // a connection between the nodes, the cost would be zero

63 for(var n in Arcs) {

64 ArcsCost[n.fromnode][n.tonode] = ComputeCost(proof[n.fromnode],

proof[n.tonode]);

65 }

66

67 // Creation of the first

68 // shard arcs from its

69 // disjoint set of nodes

70 for(var i in shard) {

71 for(n in Arcs) {

72 if(i == n.fromnode) {

73 shard_arcs.add(i, n.tonode, n.cost);

74

75 if(i == n.tonode) {

76 shard_arcs.add(fromnode, i, n.cost);

77 }

78 }

79 }

80 }

81

82 // Create of the second

83 // shard from its disjoint

84 // set of nodes

85 for(var i in shard_1) {

86

87 for(n in Arcs) {

88 if(i == n.fromnode) {

89 shard_arcs_1.add(i, n.tonode, n.cost);

90

80

91 if(i == n.tonode) {

92 shard_arcs_1.add(fromnode, i, n.cost);

93 }

94 }

95 }

96 }

97

98 // Create of the third

99 // shard shard from its

100 // disjoint set of nodes

101 for(var i in shard_2) {

102

103 for(n in Arcs) {

104 if(i == n.fromnode) {

105 shard_arcs_2.add(i, n.tonode, n.cost);

106

107 if(i == n.tonode) {

108 shard_arcs_2.add(fromnode, i, n.cost);

109 }

110 }

111 }

112 }

113

114 // Creation of the Fourth shard

115 // from its disjoint set of nodes

116 for(var i in shard_3) {

117 for(n in Arcs) {

118 if(i == n.fromnode) {

119 shard_arcs_3.add(i, n.tonode, n.cost);

120 if(i == n.tonode) {

121 shard_arcs_3.add(fromnode, i, n.cost);

122 }

123 }

81

124 }

125

126 }

127

128 // Since source and destination would randomly

129 // chosen, this function is making there

130 // within the right interval

131 function CheckBoundaries(low_bound, upper_bound) {

132

133 var rand_value = Opl.rand(upper_bound);

134

135 while(rand_value < low_bound || rand_value > upper_bound){

136

137 rand_value = Opl.rand(upper_bound);

138 }

139 return rand_value;

140 }

141

142 // Check the supply and demand are not the same

143 // Otherwise, do re-computation of one of them

144 function CheckSupplyDemand(supply_node, demand_node, low_bound,

upper_bound) {

145

146 var require_node = supply_node;

147 while(supply_node == demand_node) {

148

149 require_node = CheckBoundaries(low_bound, upper_bound);

150 }

151 return require_node;

152 }

153

154 // Main Network

155 var supply_node = Opl.rand(NumNodes);

82

156

157 // Shard_ 0

158 var supply_node_shard= Opl.rand(50);

159

160 // Supply for Shard_1

161 var supply_node_shard_1 = CheckBoundaries(51, 100);

162

163

164 // Supply for Shard_2

165 var supply_node_shard_2 = CheckBoundaries(101, 151);

166

167

168 // Supply for Shard_3

169 var supply_node_shard_3 = CheckBoundaries(152, 203);

170

171

172 // Demand for the main network

173 var demand_node = Opl.rand(NumNodes);

174

175 while(supply_node == demand_node) {

176 demand_node_shard = Opl.rand(NumNodes);

177 }

178

179 // Demand for Shard_0

180 var demand_node_shard = Opl.rand(50);

181

182 while(demand_node_shard == supply_node_shard) {

183 demand_node_shard = Opl.rand(50);

184 }

185

186 // Demand for Shard_1

187 var demand_node_shard_1 = CheckBoundaries(51, 100);

188 if(demand_node_shard_1 == supply_node_shard_1) {

83

189 demand_node_shard_1 = CheckSupplyDemand(demand_node_shard_1,

supply_node_shard_1, 51, 100);

190 }

191

192 // Demand for Shard_2

193 var demand_node_shard_2 = CheckBoundaries(101, 151) ;

194

195 while(demand_node_shard_2 == supply_node_shard_2 || Opl.abs(

supply_node_shard_2 - demand_node_shard_2) < 7) {

196 demand_node_shard_2 = CheckSupplyDemand(demand_node_shard_2,

supply_node_shard_2, 101, 151);

197 }

198

199 // Demand for Shard_3

200 var demand_node_shard_3 = CheckBoundaries(152, 203) ;

201 if(demand_node_shard_3 == supply_node_shard_3) {

202 demand_node_shard_3 = CheckSupplyDemand(demand_node_shard_1,

supply_node_shard_1, 152, 203);

203 }

204

205 // Main network

206 SupDem[supply_node] = 1;

207 SupDem[demand_node] = -1;

208

209 ArcsCost[supply_node][supply_node] == 0;

210 ArcsCost[demand_node][demand_node] == 0;

211

212 // shard_0

213 SupDem_shard[supply_node_shard] = 1;

214 SupDem_shard[demand_node_shard] = -1;

215

216 ArcsCost[supply_node][supply_node_shard] == 0;

217 ArcsCost[demand_node][demand_node_shard] == 0;

84

218

219 // shard_1

220 SupDem_shard_1[supply_node_shard_1] = 1;

221 SupDem_shard_1[demand_node_shard_1] = -1;

222

223 ArcsCost[supply_node_shard_1][supply_node_shard_1] == 0;

224 ArcsCost[demand_node_shard_1][demand_node_shard_1] == 0;

225

226 // shard_2

227 SupDem_shard_2[supply_node_shard_2] = 1;

228 SupDem_shard_2[demand_node_shard_2] = -1;

229

230 ArcsCost[supply_node_shard_2][supply_node_shard_2] == 0;

231 ArcsCost[demand_node_shard_2][demand_node_shard_2] == 0;

232

233 // shard_3

234 SupDem_shard_3[supply_node_shard_3] = 1;

235 SupDem_shard_3[demand_node_shard_3] = -1;

236

237 ArcsCost[supply_node_shard_3][supply_node_shard_3] == 0;

238 ArcsCost[demand_node_shard_3][demand_node_shard_3] == 0;

239 }

240

241

242 /*

243 dvar boolean path[Arcs];

244 dexpr float CCPT = sum(< i, j, fcost > in Arcs) ArcsCost[i][j] * path[<

i, j, fcost >] * fcost;

245

246 minimize CCPT;

247

248 subject to {

249

85

250 // Preserve flows at each node.

251 forall(i in Nodes)

252 ctNodeFlow:

253 sum(< i, j, fcost > in Arcs) path[< i, j, fcost >]

254 - sum(< j, i, fcost > in Arcs) path[< j, i, fcost >] == SupDem[i

];

255 };

256 */

257

258 /*

259 dvar boolean path[shard_arcs];

260 dexpr float CCPT_1 = sum(< i, j, fcost > in shard_arcs) ArcsCost[i][j] *

path[< i, j, fcost >] * fcost;

261

262 minimize CCPT_1;

263

264 subject to {

265

266 // Preserve flows at each node.

267 forall(i in shard)

268 ctNodeFlow:

269 sum(< i, j, fcost > in shard_arcs) path[< i, j, fcost >]

270 - sum(< j, i, fcost > in shard_arcs) path[< j, i, fcost >] ==

SupDem_shard[i];

271

272 };

273 */

274

275 /*

276 dvar boolean path[shard_arcs_1];

277 dexpr float CCPT_1 = sum(< i, j, fcost > in shard_arcs_1) ArcsCost[i][j]

* path[< i, j, fcost >] * fcost;

278

86

279 minimize CCPT_1;

280

281 subject to {

282

283 // Preserve flows at each node.

284 forall(i in shard_1)

285 ctNodeFlow:

286 sum(< i, j, fcost > in shard_arcs_1) path[< i, j, fcost >]

287 - sum(< j, i, fcost > in shard_arcs_1) path[< j, i, fcost >] ==

SupDem_shard_1[i];

288

289 };

290 */

291

292 /*

293 dvar boolean path[shard_arcs_2];

294 dexpr float CCPT_2 = sum(< i, j, fcost > in shard_arcs_2) ArcsCost[i][j]

* path[< i, j, fcost >] * fcost;

295

296 minimize CCPT_2;

297

298 subject to {

299

300 // Preserve flows at each node.

301 forall(i in shard_2)

302 ctNodeFlow:

303 sum(< i, j, fcost > in shard_arcs_2) path[< i, j, fcost >]

304 - sum(< j, i, fcost > in shard_arcs_2) path[< j, i, fcost >] ==

SupDem_shard_2[i];

305

306 };

307 */

308

87

309

310 dvar boolean path[shard_arcs_3];

311 dexpr float CCPT_3 = sum(< i, j, fcost > in shard_arcs_3) ArcsCost[i][j]

* path[< i, j, fcost >] * fcost;

312

313 minimize CCPT_3;

314

315 subject to {

316

317 // Preserve flows at each node.

318 forall(i in shard_3)

319 ctNodeFlow:

320 sum(< i, j, fcost > in shard_arcs_3) path[< i, j, fcost >]

321 - sum(< j, i, fcost > in shard_arcs_3) path[< j, i, fcost >] ==

SupDem_shard_3[i];

322

323 };

324

325

326 main {

327

328 var source = new IloOplModelSource("Sharding.mod");

329 var cplex = new IloCplex;

330 var def = new IloOplModelDefinition(source);

331 var opl = new IloOplModel(def, cplex);

332 var data = new IloOplDataSource("ShardingImplementationFiles/Sharding.dat"

);

333

334 opl.addDataSource(data);

335 opl.generate();

336

337 if(cplex.solve()) {

338

88

339 writeln("OBJ = " + cplex.getObjValue());

340 }

341 else {

342

343 writeln("No Solution");

344 }

345

346 var opl_0 = new IloOplModel(def, cplex);

347 var data_0 = new IloOplDataSource("shard_0.dat");

348 opl_0.addDataSource(data_0);

349 opl_0.generate();

350

351 if(cplex.solve()) {

352

353 writeln("OBJ = " + cplex.getObjValue());

354 }

355 else {

356

357 writeln("No Solution");

358 }

359

360 var opl_1 = new IloOplModel(def, cplex);

361 var data_1 = new IloOplDataSource("shard_1.dat");

362 opl_1.addDataSource(data_1);

363 opl_1.generate();

364

365 if(cplex.solve()) {

366

367 writeln("OBJ = " + cplex.getObjValue());

368 }

369 else {

370

371 writeln("No Solution");

89

372 }

373

374 var opl_2 = new IloOplModel(def, cplex);

375 var data_2 = new IloOplDataSource("shard_2.dat");

376 opl_2.addDataSource(data_2);

377 opl_2.generate();

378

379 if(cplex.solve()) {

380

381 writeln("OBJ = " + cplex.getObjValue());

382 }

383 else {

384

385 writeln("No Solution");

386 }

387

388 var opl_3 = new IloOplModel(def, cplex);

389 var data_3 = new IloOplDataSource("shard_3.dat");

390 opl_3.addDataSource(data_3);

391 opl_3.generate();

392

393 if(cplex.solve()) {

394

395 writeln("OBJ = " + cplex.getObjValue());

396 }

397 else {

398

399 writeln("No Solution");

400 }

401

402 }

90

APPENDIX B

IMPLEMENTATION OF NETWORK MODEL IN GAMS

This is the implementation of the network model in GAMS.

1 Set

2 n ’nodes’,

3 Arcs(n, n) ’Set of arcs in the network’

4 ;

5 Alias

6 (n, i, j, k);

7 Parameter

8 proof_size(n),

9 supply(n),

10 ArcCost(n, n)

11 ;

12 *$Include parameters_1.inc

13 *$Include test_node11.inc

14

15 $Include parameters_1.inc

16 Arcs(i, j) = no;

17 Arcs(i, j) = yes$(fcost(i, j) Gt 0);

18 proof_size(n) = Uniformint(1, 100);

19 *$(Supply(n) ne 1 and Supply(n) ne -1);

20

21 Binary Variable

22 path(n, n);

23 Free Variable

24 CCPT

25 ;

91

26 Equations

27 Objective,

28 Balance(i)

29 ;

30 Objective.. CCPT =E= sum((i, j)$(Arcs(i, j) and fcost(i, j) gt 0),

ArcCost(i, j) * path(i, j)) + sum((i, j)$Arcs(i, j), fcost(i, j) *

path(i, j));

31 Balance(i).. sum(j$(Arcs(i, j)), path(i, j)) - sum(k$(Arcs(k, i)),

path(k,i)) =E= supply(i);

32 Model

33 Shard /all/;

34 Supply(i) = 0;

35 Display

36 proof_size;

37 Display

38 fcost;

39 Display

40 Arcs;

41 $Ontext

42 Display

43 ArcCost

44 ;

45 $Offtext

46 Set

47 iter /1*10/,

48 used_nodes(n),

49 unused_nodes(n) /n1*n10/,

50 shard1(n),

51 shard2(n),

52 shard3(n)

53 ;

54 scalar rando, count, s_index, d_index, shardLength, shardLength2, shardLength3

;

92

55 *Try the optimization for different supply and demand nodes

56 Loop(iter,

57 s_index = uniformint(1, 15);

58 rando = uniformint(1, 15);

59 d_index = rando$(s_index ne rando);

60 supply(i)$(ord(i) = s_index) = 1;

61 supply(i)$(ord(i) = d_index) = -1;

62 * ArcCost(i, i)$(ord(i) = s_index) = 0;

63 * ArcCost(i, i)$(ord(i) = d_index) = 0;

64 proof_size(i)$(ord(i) = s_index) = 0;

65 proof_size(i)$(ord(i) = d_index) = 0;

66 ArcCost(i, j) = (1 / 2) * (proof_size(i) + proof_size(j));

67 Solve Shard using mip minimizing CCPT;

68 Display ArcCost;

69 display s_index, d_index;

70 display supply;

71 proof_size(n) = Uniformint(1, 100);

72 supply(i) = 0;

73);

PRACTICABILITY OF BLOCKCHAIN TECHNOLOGY AND SCALABLE
BLOCKCHAIN NETWORK: SHARDING

Approved by:

Date Approved: ,

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction and Background
	Phases of Blockchain Ecosystem Evolution
	Phase 1: The birth of Blockchain through Digital currency: Bitcoin Blockchain
	Phase 2: The advancement of the Bitcoin Blockchain to a state machine completeness: Ethereum
	Phase 3: The recognition of the Blockchain impact with the creation of Libra
	Futuristic Phase: The world monetary system would be digitalized to enable transactions to a virtual level between humans and machines to machines

	Phases of Consensus Evolution
	Phase 1: Satoshi Nakamoto Consensus: Proof of Work (PoW)
	Phase 2: Proof of Stake (PoS) Algorithm
	Phase 3: Casper Protocol
	Phase 4: BFT based Consensus

	Graphical Representation of The Blockchain Scheme
	Off-Chain
	DAG
	Sharded Network

	Consideration of Scalability within a Blockchain Ecosystem at different architectural Levels
	Network Level
	Consensus Level
	Storage Level

	The age of Sharding arrives for the efficiency of the Blockchain Ecosystem
	Different Structure of Sharded Blockchain Platform

	Related Work
	Elastico
	OmniLedger
	RapidChain
	Spontaneous Sharding

	Research Motivation
	New Conceptional Representation of Sharding
	Research Questions
	Our Contributions

	Definitions

	Practical Blockchain Applications
	Bitcoin
	Practical Functionality of the Bitcoin Network
	Bitcoin Wallet
	Transaction Representation

	Ethereum
	 Ethereum Wallets
	 Ethereum Transactions
	Different Between BTC and ETH

	Hyperledger
	Hyperledger Fabric
	Hyperledger Burrow
	Hyperledger Indy
	Hyperledger Iroha
	Hyperledger Sawtooth

	Filecoin
	The Interplanetary File System: IPFS
	Enhancement of IPFS to Filecoin

	Scalability Within a Blockchain Ecosystem
	Previous Approach of Scalable Blockchain Platforms
	 OffChain Technique
	 Side-chain Technique

	Why those approaches are still not performing well
	 The age of Sharding
	Sharding Security Maintainability
	Maintainability of Decentralization within a Sharded Blockchain Network
	Maintainability of Fairness within a sharded Blockchain Ecosystem
	Scalability and Accuracy Within a Shard

	Conceptual Understanding of Sharding
	Computation
	Storage
	Communication

	Sharding Consensus Algorithms and Functionalities
	BFT
	PBFT
	HotStuff
	LibraBFT

	NETWORK OPTIMIZATION MODEL
	Notations
	Mixed Integer Programming Model
	Network Model Extension with Multiple Transactions
	Dummy Arcs
	Dummy Nodes

	Shortest Path Consideration
	Sharded Network Within the Network

	Implementation and Result
	Implementation
	Model Components
	Constraints
	Sharding Implementation

	Result
	Result in the Complete Network
	Results within the Shards

	Conclusion and Future Work
	Conclusion
	Future Work

	References
	Implementation of Network Model in IBM CPLEX
	Implementation of Network Model in GAMS

