
VRandme commented 4 days ago 

I regret not being able to participate in the discussion laid out in #121 as it happened. 

As it stands, the original author of TResnet @mrT23 was present. 

Since this post is after the fact, with a TResnet(from the original author at that!) was pulled into 

here, 

I just would like to lay my opinions on it and ask some questions that hopefully @mrT23 would 

be able to answer. 

As summarized in the paper, I view that the fundamental contributions of TResnet boils down to 

the following 

1. Stem : SpaceToDepth 

2. Blocks selection 

3. Inplace-ABN 

4. Dedicated SE 

5. Antialiasing. 

I will address these in increasing complexity. 

5. Antialiasing (https://github.com/adobe/antialiased-cnns), is a well known and tested method 

of increasing accuracy and consistency. It was also used in assembled cnns 

4. Dedicated SE : @mrT23 made great efforts to streamline and optimize Squeeze and 

Excite. I would like to find out how it fares against Efficient Channel Attention. In theory, 

ECA or (my own cECA) would be able to be optimized similarly to show better parameter 

and computational efficiency and accuracy. 

As it is, Tresnet is not amenable to drop in replacements of attention, but it could be 

rendered as such easily. 

5. Inplace-ABN. 

I wonder if such a method could be applied to 

EvoNorm(https://arxiv.org/pdf/2004.02967.pdf). 

considering EvoNorm is itself an attempt to gather activation layers and Normalization 

layers and search for them in an end to end manner, its possible that it is not necessary 

for EvoNorm. 

I havent seen or conducted for myself enough testing on EvoNorm to tell for myself, 

6. block selection. 

The recent RegNet paper(https://arxiv.org/abs/2003.13678) showed that even for 

bottleneck layers a bottleneck of 1 (no bottleneck channel expansion) could be effective 

and uses such layers extensively to construct what is ostensibly a more simple resnet that 

is more effective. 

However, it has only been tested (as per the original paper) in limited capacity without all 

the bells and whistles of modern CNNs so it remains to be seen what kind of 

performance it would show WITH all the bells and whistles. 

Furthermore, while the RegNet paper compares the bottleneck block (1x1, 3x3 with or without 

expansion followed by another 1x1 with residual connections.) with the vanilla block(one 3x3 with 

https://github.com/VRandme
https://github.com/rwightman/pytorch-image-models/issues/124#issue-598870148
https://github.com/rwightman/pytorch-image-models/issues/121
https://github.com/mrT23
https://github.com/mrT23
https://github.com/adobe/antialiased-cnns
https://github.com/mrT23
https://arxiv.org/pdf/2004.02967.pdf
https://arxiv.org/abs/2003.13678


or without residual connection), it is not a proper comparison. 

The real Vanilla resnet block would have to have TWO 3x3 layers with a residual layer. Like 

TResnet. 

It might be valuable to see what TResnets could do with all stages with basic blocks or 

bottlenecks without channel expansions. Such a comparison would require concomitant 

hyperparameter tuning to adjust channel widths and layer counts but maybe RegNet scaling 

might show valuable pointers. 

1. SpaceToDepth Stem 

The Space to Depth stem is valuable tool to increase GPU throughput. The fact that it maintains 

or even increases accuracy is cherry on top. 

My concern is that SpaceToDepth is hard to visual conceptually. I fear that this might lead to it 

being difficult to visualize functionally. For example, visualizing intermediate layer activations is 

an important tool to understand why a model functions the way they do. I'm not sure how the 

initial non visually intuitive stem would affect following layers from an interpretability standpoint. 

In a similar vein, I'm concerned that SpaceToDepth might hinder TResnet's ability to be 

integrated to image segmentation or detection pipelines for the above reason. 

One of the reasons that EfficientNets have took so long to be utilized in many image detection 

frameworks to displace ResNets was that a meaningful feature extractor was difficult to code. 

There have been some attempts (like the version that exists in this very repo) but the difficulty of 

such endeavor, alongside difficulties in GPU throughput and fragile training, made it hard to 

vanquish ResNets. 

I would love if @mrT23 could provide insights to these issues. 

To be frank, my interests faded in (T)ResNets after seeing the RegNet paper. I hope that the 

eventual code and model releases will rekindle it. 

In the end, TResnets are insightful, powerful, effective and efficient models in their own right. My 

points come more from curiosity than criticism and I hope @mrT23 understand my appreciation 

for their work and efforts (especially wrt incorporating their contributions to this beneficial code 

base). 

 

mrT23 commented 4 days ago 

Hi @VRandme 

you raised a lot of issues, so i have lots of answers :-) 

part1: 

Antialiasing - i learned about the idea from Assembled-cnn paper (although they did not invent it 

themselves). tried several hyper-parameters and basically went with their design, while 

introducing code optimizations. its contribution to imagenet is medium - some improvement, but 

it has non-negligible GPU cost. However, it does wonders for transfer learning to fine-grain 

datasets, and that's the main reason i used it. 

https://github.com/mrT23
https://github.com/mrT23
https://github.com/mrT23
https://github.com/rwightman/pytorch-image-models/issues/124#issuecomment-612901013
https://github.com/VRandme
https://arxiv.org/pdf/2001.06268.pdf


Dedicated SE - again, didn't invent the wheel here or something here. but i do think i have some 

important optimizations to get better speed-accuracy tradeoff. In general, SE layers are in my 

opinion the biggest advancement in deep learning architecture in recent years. they give an 

excellent speed-accuracy tradeoff. i tried to replace SE by plain ECA and in Tresnet, and it 

lowered the scores a bit. might revisit it in the future 

Inplace-ABN - inplace ABN is a marvelous thing. if PyTorch had some sense, they would set it as 

their default option. with in place ABN you can use batch size twice as large. twice! 

for higher resolutions, the increased batch size is a major major strength. 

i didn't read EvoNorm yet, thanks for the reference. 

block selection - i read RegNet but hadn't tried their models yet. i recommend to be very very 

cautious about it. it seems a lot less practical than the explosive headers. EfficientNet models also 

claimed to reinvent the wheel, and they turned out to be terrible models. 

i have more to say about it, but my post is getting longer and longer. always remember to 

compare inference and train times, not just inference times. 

but if RegNet is indeed a good design (i am more skeptical than you), than most of TResNet 

enhancements will still be relevant to it. 

SpaceToDepth - 

SpaceToDepth design is in my opinion the future. 

it has two major advantages: 

(1) the stem design of ResNet model is terrible. it is quite expensive and ineffective, since you can 

loose "information" during the quick downscaling it does. once an information is lost in the stem 

cell, it can never be regained. 

my intuition for using SpaceToDepth was that no information can be lost in it. 

it lets the blocks (with the residual connection, that also prevents information loss) to do the 

actual processing, and keep us protected from information loss 

(2) you get an image, do SpaceToDepth, and then just do a bunch of repeated blocks. repeated 

(simple) blocks is an efficient and ultra-fast GPU design. 

for a future design, i am thinking about an even more extreme version of SpaceToDepth, with 

less or even no further resolution reductions. just SpaceToDepth and one repeated block. 

regarding performances: 

We were able to get SOTA results with SpaceToDepth on fine-grain datasets, where the 

resolution is very important. i didn't mention it in the article, but we are also winning kaggle 

competitions with TResNet (and SpaceToDepth ), where resolution is also ultra-important. 

hence i (strongly) don't see why SpaceToDepth would damage scores of image segmentation or 

detection pipelines. we are currently testing TResNet on detection. 

regarding interpretability, you might be right, i can see why the activation maps of SpaceToDepth 

can be harder to interprete. is interpretability really that important ? i have never used it 

 

 

 

 



VRandme commented 3 days ago 

@mrT23 First of all, thank you for the reply. I hope you realize that I know that developing, 

training, and deploying ImageNet scale models is not easy task and I respect and thank you for 

that. 

Put in that context, my criticisms border on nitpicking but i appreciate that you put the effort to 

respond. 

Antialiasing : I was unaware of its benefits in Transfer learning and Fine graining. I was more 

interested in Consistency/robustness. The fact that such benefits exist fit very nicely with your 

model (good for Transfer learning or fine graining on GPUs). 

Dedicated SE : thank you for sharing your anecdotal evidence on ECA. Although ECA is very 

efficient, It might be less versatile than SE since they have different mechanisms. ECA might have 

to increase channel widths and parameters to effectively compare with SE in many other yet to be 

tested scenarios, and then its back down the hyperparameter rabbit hole. There's nothing wrong 

with sticking with well accepted best practices, which you not only adopted but improved upon. 

inplace ABN is a marvelous thing. very very true. 

block selection - you might very well be right, and the delayed release of actual models of 

regnets is making me nervous. Reminds me of the delay between the EfficientDet paper and 

model release. 

SpaceToDepth : .... "SpaceToDepth design is the future." I actually agree! 

to contextualize my opinions : 

I don't see why SpaceToDepth would damage scores of image segmentation or detection 

pipelines, either. What I DO think is that the stem might make it harder to develop and maintain 

code for TResNet on detection. However, since you are currently working on it, you are the best 

person to answer that question and it seems you are not anticipating any problems. which is 

good. 

In the end, even if the activation maps for SpaceToDepth is hard to interpret, if it proves to be 

effective (which I think it will), then visualization tools and approaches will grow to work with such 

a stem. 

I only hope it won't be too difficult to do. 

Again thank you for your code and your discussion. 

 

mrT23 commented 2 days ago 

Hi Chris 

i enjoyed reading your insights and suggestions, and in current corona days i have ample time to 

answer them thoroughly :-) 

As you can see, i can be critical toward other deep learning models, but it also means i have to be 

able to accept criticism and suggestions to my work. That's the only way to get better. 

One last insight regarding SE and ECA - 

In general, the bigger a deep learning model gets, the better it performs. The magic of SE layers 

https://github.com/VRandme
https://github.com/rwightman/pytorch-image-models/issues/124#issuecomment-613472573
https://github.com/mrT23
https://github.com/mrT23
https://github.com/rwightman/pytorch-image-models/issues/124#issuecomment-613616833


is that they are able to increase significantly the number of parameters of a model, without 

increasing significantly the runtime. 

that's why i was suspicious towards ECA - it adds much fewer parameters than SE, so i would 

expect it won't give the same score boost. I can say ECA outperformed my initial expectations. 

However, there is an inner "lie" in ECA - the throughput improvement compared to SE is very 

small. why - the major runtime consumption in a SE layer is the global average pooling, not the 

fully connected. ECA also has global average pooling, so its runtime cost is very similar to SE. 

anyway, i gave a talk last week about "The dark magic behind deep learning" that contains 

further insights regarding TResNet models, as well as other issues. 

you are welcome to take a look 

https://drive.google.com/file/d/1xPfa3XpqTZTeCrpuJtosqEGNDbmD5M9Q/view 

all the best 

Tal 

 

VRandme commented 2 days ago 

@mrT23 

Thank you very much for your insights! 

I have a few questions tho. 

1. Is the "soft-triplet loss" you recommend the same as the "SoftTriple Loss" laid out in this 

paper? 

https://arxiv.org/pdf/1909.05235.pdf 

2. May I share your presentation with other researchers?(I was thinking on sharing it on the 

PyTorch KR community which is a pytorch facebook group in korea) 

3. You mention AutoAugment. Many agree that it is a powerful tool but learning the 

policies are the difficult part. For well researched datasets such as ImageNet there are 

predetermined (by other researchers) policies. However for datasets where such 

appropriate settings are not known, or in cases the models used deviate so much from 

the original networks used on ImageNet to learn the policies this becomes an issue. 

Recently I've found many papers using a later method called RandAugment to vastly 

simplify or outright automate the policy learning process. 

Although AutoAugment comes out on top in the best case optimized scenario, 

RandAugment shows competitive or better performance in many E2E tasks especially in 

the forementioned scenarios. 

Do you have any opinion on this? 

4. Also, this discussion is going deep into TResNets rather than how it relates to this repo in 

particular. I would be happy to open an issue on https://github.com/mrT23/TResNet or 

any other forum that you seem fit. 

I didn't expect you to respond at all at first but now I'm getting awesome insights. 

 

https://drive.google.com/file/d/1xPfa3XpqTZTeCrpuJtosqEGNDbmD5M9Q/view
https://github.com/VRandme
https://github.com/rwightman/pytorch-image-models/issues/124#issuecomment-613735907
https://github.com/mrT23
https://arxiv.org/pdf/1909.05235.pdf
https://github.com/mrT23/TResNet


mrT23 commented 2 days ago  
 

 Triplet loss was designed and implemented by a co-author of the article - Hussam lawn 

he brought it from the world of person Reid: 

https://arxiv.org/pdf/1910.07038.pdf 

At first i was skeptical if it is applicable also to plain classification, but in the end, without 

it we wouldn't reach SOTA score on fine-grain datasets (Stanford-cars and Oxford 

Flowers) 

 you may share the presentation, it is from a public talk i gave 

 regarding 'AutoAugment' Vs 'RandAugment' - the "search" part in 'AutoAugment' is in 

my opinion not true (i am trying hard to be polite :-) ). 

google just run thousands of tests on ImageNet, with different policies, and chose the 

best one. they wrapped it under an "auto-searching" header so it could be an academic 

article. 

for ImageNet, i personally train with AutoAugment, its a good ImageNet policy. 

for other datasets, lately i switched to costume GPU augmentations that i developed, 

which give more control and adaptability. the are similar in spirit to what FastAI suggest, 

but more diverse. i haven't worked with 'RandAugment'. 

is it possible to transfer an issue from one repo to another ? if so, i would be happy to bring it 

to https://github.com/mrT23/TResNet . 

Tal 

 

rwightman commented 17 hours ago 

GitHub did eventually implement issues transfer but I believe it's still limited to repo in same org. 

Cut and paste of comments could be done but tedious. Often best to close issue in one repo and 

then create new one in another and paste link to old in comments for reference. 

Some interesting discussion here. A comment on ECA, for the overhead, it works quite well with 

ResNet like network architecture as you both know. I thought it might be a great fit for a lighter 

MBConv/InvertedResidual net like EfficientNet but it decreased the performance over a baseline 

with no SE. I tried all reasonable locations in the block too. 

 

mrT23 commented 16 hours ago 

thanks @rwightman 

i will cut and paste to TResNet repo. 

please close the issue 

 

https://github.com/mrT23
https://github.com/rwightman/pytorch-image-models/issues/124#issuecomment-613844182
https://arxiv.org/pdf/1910.07038.pdf
https://github.com/mrT23/TResNet
https://github.com/rwightman
https://github.com/rwightman/pytorch-image-models/issues/124#issuecomment-614641718
https://github.com/mrT23
https://github.com/rwightman/pytorch-image-models/issues/124#issuecomment-614691704
https://github.com/rwightman

