
1

A Highly Efficient Model to Study
the Semantics of Salient Object Detection

Ming-Ming Cheng, Shang-Hua Gao, Ali Borji, Yong-Qiang Tan, Zheng Lin, Meng Wang

Abstract—CNN-based salient object detection (SOD) methods achieve impressive performance. However, the way semantic informa-
tion is encoded in them and whether they are category-agnostic is less explored. One major obstacle in studying these questions is
the fact that SOD models are built on top of the ImageNet pre-trained backbones which may cause information leakage and feature
redundancy. To remedy this, here we first propose an extremely light-weight holistic model tied to the SOD task that can be freed from
classification backbones and trained from scratch, and then employ it to study the semantics of SOD models. With the holistic network
and representation redundancy reduction by a novel dynamic weight decay scheme, our model has only 100K parameters, ∼ 0.2%
of parameters of large models, and performs on par with SOTA on popular SOD benchmarks. Using CSNet, we find that a) SOD and
classification methods use different mechanisms, b) SOD models are category insensitive, c) ImageNet pre-training is not necessary for
SOD training, and d) SOD models require far fewer parameters than the classification models. The source code is publicly available at
https://mmcheng.net/sod100k/.

Index Terms—salient object detection, efficient saliency prediction, semantics.

F

1 INTRODUCTION

B ASED on the observed human reaction time and singnal
transmission time along biological pathway [11], [82], cog-

nitive psychology studies suggest that human visual system
(HVS) recruits pre-attentive, bottom-up attention mechanisms
before recognizing the semantics of the scene [72]. Computer
vision community has modeled these findings by using category-
independent hand-crafted contrast features [2], [9] to build tradi-
tional salient object detection (SOD) models [3]. Many computer
vision applications such as image retrieval [5], [8], [23], visual
tracking [29], photographic composition [7], [21], image quality
assessment [80], content-aware image processing [59], [92], and
unsupervised semantic segmentation [18], utilize SOD models
based on the hypothesis that salient objects are generic and
category-independent.

While SOD methods based on convolutional neural networks
(CNNs) have made significant progress, most of them focus on
improving the state-of-the-art (SOTA) performance by learning
fine local details and global features [75], [90], [95], [96], at-
tention cues [4] as well as edge cues [14], [79], [98]. Existing
CNN-based SOD models rely on ImageNet pre-trained backbone
architectures [15], [25] with a considerable amount of parameters
to extract features. However, ImageNet pre-training inevitably in-
troduces category semantics into SOD models, causing a potential
conflict with the conventional assumption that salient regions are
category-independent [3], [37], [87]. This potential conflict raises
new questions. How much of a role do category semantics play in

• *M.M. Cheng and S.H. Gao are joint first authors. M.M. Cheng is the
corresponding author (cmm@nankai.edu.cn).

• M.M. Cheng, S.H. Gao, Y.Q Tan, Z Lin are with the TKLNDST, College of
Computer Science, Nankai University, Tianjin 300350, China.

• A. Borji is with Primer Technologies Inc., San Francisco, USA (ali-
borji@gmail.com).

• M. Wang is with Hefei University of Technology.
• A preliminary version of this work has been presented in the ECCV

2020 [19].

the bottom-up SOD task? Is ImageNet pre-training inevitable and
necessary for SOD training?

There are two principles in designing a SOD model that
can be used to answer these questions. First and foremost, a
SOD model should be possible to train without relying on Im-
ageNet pre-training. Existing SOD models are built upon clas-
sification backbones that contain too many parameters, making
them difficult to be trained from scratch. In oder to distinguish
between thousand of different classification categories, even the
light-weight classification backbone models ResNet-18 [25] and
MobileNet v2 [34] contains 11M and 4.2M parameters (vs.100K
parameters of our entire model). An important motivation behind
this work is to verify if those category-oriented features and the
corresponding parameters are indispensable for the SOD task.
Second, the SOD task requires the model to have high feature
resolution and strong multi-scale ability, that are non-essential for
classification backbone [77], [95]. Existing works [14], [30], [78]
relieve these problems by adding the SOD task related saliency
heads to backbones, but inevitably introduce extra parameters.

To achieve the aforementioned requirements, we propose an
extremely light-weight model that holistically consider the feature
extractor and saliency head. We generalize the OctConv [6],
namely gOctConv, with more flexibility and additional the self-
adaptive property. A dynamic weight decay scheme is designed
to enables self-adaptive learnable number of feature channels
in gOctConv. This scheme not only helps analyze the semantic
information in SOD models, but also allows ∼ 80% parameter
reduction with a negligible performance drop. Utilizing gOctConv,
we propose a highly light-weight holistic Cross-Stage Cross-Scale
network, namely CSNet. Benefiting from the holistically design
and the dynamic weight decay, CSNet performs on par with
SOTA but has only 100k parameters (∼ 0.2% parameters of SOTA
models).

As a bonus to the extremely low number of parameters, our
CSNet can be directly trained from scratch without ImageNet pre-
training, providing a unique opportunity for answering questions

2

10 1 100 101 102

PARM. (M)

87

88

89

90

91

92

93

94
F-

m
ea

su
re

 (%
)

RFCN
NLDF
DSS

DHS

Amulet
UCF

DS

ELD

DGRL
PiCANet

PoolNetCSF+R

CSNet×1-L.

CSNet×2-L.

Existing methods

CSNet series

Fig. 1. Parameters vs. performance of SOD models.

regarding the semantics of CNN-based SOD models. We analyze
the category sensitivity by transferring a SOD model to the
classification task and test its performance on unseen categories.
The experimental results reveal that SOD models are category
insensitive and the detected salient objects are generic. Further, we
observe that SOD models require far fewer parameters than classi-
fication models since the feature representation for distinguishing
categories is not needed in SOD models. The category insensitive
mechanism of our SOD model not only provides an opportunity
to improve the efficiency of SOD models, but also mimic the
category independent bottom-up human attention mechanism.

In summary, we make two major contributions in this paper:

• We thoroughly analyze the semantic information in CNN-
based SOD models and experimentally verfiy that SOD
models require negligible category information (i.e. cate-
gory insensitive).

• By holistically redesigning feature extraction and SOD
prediction, we abandon the wildly used pre-trained CNN
backbones, which contains intensive parameters for unnec-
essary category information. Accompanying the sparsity
introduced by dynamic weight decay, we significantly
slim the model to ∼ 0.2% parameters of SOTA with
comparable performance.

Our focus in this work is on semantics of SOD whereas the
conference version [19] was concerned mostly with building a
light-wight SOD model. In Sec. 3, we introduce the dynamic
weight decay scheme and the learnable channels for generalized
OctConv. We then introduce the light-weight holistic CSNet de-
signed for the analysis of SOD model in Sec. 4. With the CSNet,
we analyze the semantics of the SOD model in Sec. 5. In Sec. 6,
we do performance evaluation and ablations to show the efficiency
of CSNet.

2 RELATED WORKS

2.1 Salient Object Detection

Traditional methods [9], [37], [73], [87], [102] mainly rely on
hand-crafted features to detect salient objects. Early deep learning
based methods [43], [50], [76] utilize CNNs to extract more
informative features from image patches for improving the quality

of saliency maps. Inspired by the fully convolutional networks
(FCNs) [55], recent methods [13], [41], [51], [78], [93], [95]
formulate salient object detection as a pixel-level prediction task
and solve it in an end-to-end manner using FCN based models.
These methods [30], [66], [77], [95], [96] capture both fine details
and global features from different stages of the backbone network.
Edge cues are introduced in [45], [57], [79], [98] to refine the
boundary of saliency maps further. Other methods [83], [95],
[99] also improve the saliency detection from the perspective
of network optimization. Recently, Wei et al. [81] decomposes
the original saliency map into a detail map to better learn edge
features, and a body map to avoid the distraction from pixels
near edges. Pan et al. [64] integrate the features from adjacent
levels to solve the multi-scale issue in the SOD task. Multi-level
gate units are used in [100] to balance the contribution from each
encoder block and to suppress the activation of the features from
non-salient regions. Despite the impressive performance, all of
these CNN-based methods require powerful pre-trained ImageNet
backbones as the feature extractor, which usually results in high
computational cost. Moreover, none of them have studied the
semantics behind the CNN-based SOTA SOD models and whether
pre-training is indeed necessary.

2.2 Light-weight Models
Currently, most light-weight models that are initially designed for
classification tasks utilize modules such as inverted block [33],
[34], channel shuffling [58], [97], and SE attention module [33],
[71] to improve network efficiency. Classification tasks [67] pre-
dict high-level semantic labels for an image, requiring more global
information but fewer details. Thus, light-weight models [33],
[34], [58], [97] designed for classification use aggressive down-
sampling strategies at earlier stages to save multiply-accumulate
operations (MACC). These strategies makes them less useful for
feature extraction since SOD task requires multi-scale information
at both coarse and fine levels. Also, the SOD task focuses on
determining the salient region while classification tasks predict
category information. To improve saliency prediction performance
under limited computing budget, the allocation of computational
resources (i.e. resolution, channels) should be reconsidered.

2.3 Network Pruning
Many network pruning methods have been proposed to prune less
important filters especially on the channel level [28], [44]. To
prune filters, redundant filters can be estimated by norm criterion
[26], [44], statistical information of the next layer [56], geometric
median of weights [27], and reusing the scaling factor of the
batch normalization layer [53]. Meta pruning et al. [54] utilizes
generated weights to estimate the performance of the remaining
filters. Most pruning approaches still rely on regularization tricks
such as weight decay to introduce sparsity in filters. Our proposed
dynamic weight decay stably introduces sparsity for assisting
pruning algorithms in removing redundant filters, resulting in
learnable channels for each scale in our proposed gOctConv.

3 GOCTCONV & LEARNABLE CHANNELS

To analyze the semantics of CNN-based SOD models without
disturbed by the ImageNet pre-training, we need to build a light-
weight SOD model that 1) can be trained from scratch without
reliance on ImageNet pre-training; 2) is simple enough to avoid

3

In
p
u

t
O

u
tp

u
t

C
o
n
v

 1
×

1

Stage 4

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

Stage 3

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

Stage 2

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

Stage 1

ILBlock

S
ta

n
d

.
O

ct
C

o
n

v

S
im

.
g
O

ct
C

o
n
v

S
im

.
g

O
ct

C
o

n
v

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

IL
B

lo
ck

CC. gOctConv

CC. gOctConv

Fig. 2. Illustration of our salient object detection pipeline, which uses gOctConv to extract both within-stage and cross-stage multi-scale features in
a highly efficient way. Sim. and CC. gOctConv denote the simplified and cross-stage instances of gOctConv, respectively.

Conv[Pool(XH)]

Conv(XH)

Up↑[Conv(XL)]

Conv(XL)XL

XH
YH

YL

W

H

W

W/2 W/2

H
/2

H
/2

H

OctConv

..
.

..
.

gOctConv

Conv(X2)

Conv[Pool(X1)]

Up↑[Conv(XS)]

X1

X2

XS YS

Y2

Y1

Fig. 3. While originally designed to be a replacement for the traditional
convolution unit, the OctConv [6] takes two high/low-resolution inputs
from the same stage with a fixed number of feature channels. Our
gOctConv allows an arbitrary number of input resolutions from both
within-stage and cross-stage conv features with a learnable number of
channels.

potential confusion from complex modules; 3) have strong multi-
scale representation ability for high SOD performance. Self-
adaptive property, i.e. the self-adaptive computation allocation, is
also required to better study the complexity and feature require-
ments of a SOD model. However, models constructed by native
convolutional layers can hardly meet all of these requirements.
Therefore, we need a new basic component to design the required
SOD model.

We therefore propose a flexible self-adaptive convolutional
layer, namely generalized Octave Convolution (gOctConv), to
construct a light-weight SOD model with a simple yet effective
structure. The proposed gOctConv is flexible enough to have
multiple instances to build different parts of the SOD model with
strong multi-scale representation abilities. Also, its self-adaptive
property assists the analysis of SOD models.

3.1 Generalized OctConv
Originally designed to be a replacement for the traditional con-
volution unit, the vanilla OctConv [6] shown in Fig. 3 conducts
the convolution operation across low and high scales within a
layer. However, only two-scales within a stage are not enough
to excavate multi-scale information required for the SOD task
(see also Tab. 6). The number of channels for each scale in
the vanilla OctConv is manually set, which requires a lot of
effort to re-adjust for a saliency model. Therefore, we propose
a generalized OctConv (gOctConv) that allows incorporating an
arbitrary number of input scales from both within-stage and cross-
stage conv features with self-adaptive learnable channels as shown
in Fig. 3.

As a generalized version of the vanilla OctConv, gOctConv
improves the vanilla OctConv for the SOD task in the following
aspects. Firstly, instead of being a module with a fixed structure,

the flexible gOctConv is a class that allows many instances under
different SOD design requirements. For instance, the cross-scales
feature interaction can be turned off to support large complex-
ity flexibility. Arbitrary numbers of input and output scales are
available to support a larger range of multi-scale representations.
Except for within-stage features, the gOctConv can also process
cross-stage features with arbitrary scales from the feature extrac-
tor. With the high flexible instances of gOctConv, we can design
a highly efficient but very simple SOD model. Secondly, the
gOctConv supports self-adaptive learnable channels for each scale.
This property allows analyzing some properties of a SOD model
such as model complexity and multi-scale feature requirements.
The implementation details and complexity analysis of gOctConv
is provided the in supplementary.

3.2 Learnable Channels
We propose to construct self-adaptive learnable channels for each
scale in the gOctConv, by utilizing our proposed dynamic weight
decay to assist channel pruning. Dynamic weight decay maintains
a stable output feature distribution among channels while intro-
ducing sparsity, helping pruning algorithms to eliminate redundant
channels at the expense of a negligible performance drop.

Introducing Sparsity with Dynamic Weight Decay: The com-
monly used regularization trick weight decay [39], [91] endows
CNNs with better generalization performance. Mehta et al. [60]
show that weight decay introduces sparsity into CNNs, which
helps prune unimportant weights. Training with weight decay
makes unimportant weights in CNN have values close to zero.
Thus, weight decay has been widely used in pruning algorithms to
introduce sparsity [27], [28], [44], [53], [54], [56]. The common
implementation of weight decay is by adding the L2 regularization
to the loss function, which can be written as follows:

L = L0 + λ
∑ 1

2w2
i , (1)

where L0 is the loss for the specific task, wi is the weight of
the ith layer, and λ is the weight for weight decay. During back
propagation, the weight wi is updated as:

wi ← wi −∇fi (wi)− λwi, (2)

where ∇fi (wi) is the gradient to be updated, and λwi is the
decay term, which is only associated with the weight itself.
Applying a large decay term enhances sparsity, and meanwhile
inevitably enlarges the diversity of weights among channels. Fig. 4
shows that diverse weights cause the unstable distribution of
outputs among channels. Ruan et al. [12] reveal that channels with

4

BatchNorm layer index
0 10 20 30 40 50

×0.001

25

20

155

10

5St
an

da
rd

 d
ev

ia
tio

n

dynamic weight decay
weight decay

Fig. 4. The average standard deviation of outputs among channels
after the BatchNorm and activation layer in models trained w/o dynamic
weight decay.

diverse outputs are more likely to contain noise, leading to biased
representation for subsequent filters. Attention mechanisms have
been widely used to re-calibrate the diverse outputs with extra
blocks and computational cost [12], [35]. We propose to relieve
diverse outputs among channels with no extra cost during the
inference. We argue that the diverse outputs are mainly caused
by the indiscriminate suppression of decay terms to weights.
Therefore, we propose to adjust the weight decay based on specific
features of certain channels. Specifically, during back propagation,
decay terms are dynamically changed according to features of
certain channels. The weight update of the proposed dynamic
weight decay is written as:

wi ← wi −∇fi (wi)− λd M (xi) wi, (3)

where λd is the weight of dynamic weight decay, xi denotes the
features calculated by wi, and M (xi) is the feature metric, which
can have multiple definitions depending on the task. In this paper,
our goal is to stabilize the weight distribution among channels
according to features. Thus, we simply use the global average
pooling (GAP) [48] as the metric for a certain channel:

M (xi) = 1
HW

H∑
h=0

W∑
w=0

xi(h,w), (4)

where H and W are the height and width of the feature map
xi. The dynamic weight decay with the GAP metric ensures that
the weights producing large value features are suppressed, giving
a compact and stable weight and output distribution as revealed
in Fig. 4 and Fig. 5. The metric can also be defined as other forms
to suit certain tasks, as we will study in our future work.

Self-adaptive Learnable channels: Now, we incorporate dy-
namic weight decay with pruning algorithms to remove redundant
weights, to construct the self-adaptive learnable channels at each
scale in gOctConvs. We follow [53] to use the weight of the
BatchNorm layer as the indicator of the channel importance. The
BatchNorm operation [36] is written as follows:

y = x− E(x)√
Var(x) + ε

γ + β, (5)

where x and y are input and output features, E(x) and Var(x)
are the mean and variance, respectively, and ε is a small factor in
avoiding zero variance. γ and β are learned factors.We apply the

Fr
eq

ue
nc

y

460

420

380

40

0
-0.005 0.000 0.005 0.010 0.015 0.020

dynamic weight decay
weight decay

γ

Fig. 5. Distribution of γ in Eqn. (5) for models trained w/o dynamic weight
decay.

Algorithm 1 Learning Channels for gOctConv with Dynamic
Weight Decay
Require: The initial CSNet in which channels for all scales in

gOctConvs are set. Input images X and corresponding label
Y .

1: for each iteration i ∈ [1,MaxIteration] do
2: Feed input X to the network to get the result Ŷ
3: Compute Loss = criterion(Ŷ , Y)
4: Compute metric for each channel using Eqn. (4)
5: Backward with dynamic weight decay using Eqn. (3).
6: end for
7: Eliminate redundant channels to get the learnable channels for

each scale in gOctConv.
8: Train for several iterations to finetune remaining weights.

dynamic weight decay to γ during training. The output features
after the BatchNorm layer and the activation layer are used as the
input to compute the metric in Eqn. (4). Fig. 5 reveals a clear
gap between important and redundant weights, and unimportant
weights are suppressed to nearly zero (wi < 1e − 20). Thus, we
can easily remove channels whose γ is less than a small threshold.
The learnable channels of each resolution features in gOctConv
are obtained. The algorithm of constructing learnable channels of
gOctConvs is illustrated in Alg. 1.

4 HOLISTIC LIGHT-WEIGHT MODEL FOR STUDY-
ING THE SEMANTICS OF SOD MODEL

4.1 Overview
While several CNN-based SOD models [30], [45], [57], [66], [77],
[79], [83], [95], [95], [96], [98], [99] with impressive performance
and efficiency have been proposed. However, the SOD community
usually builds models on top of the ImageNet pre-trained back-
bones, which limits the design space and inherits a large number
of parameters containing category-oriented representations. Even
the light-weight classification backbone itself, e.g., ResNet-18 and
MobileNet v2, contain 11M and 4.2M parameters respectively.
Thanks to the extremely low number of parameters (100K) and
the holistic design, our CSNet can be directly trained from scratch
without ImageNet pre-training. Such design frees the CSNet from
unnecessary category-oriented information contained in ImageNet
pre-trained models [62], [88].

To support the analysis of each component in the model, we
use different instances of the proposed gOctConv to construct

5

a simple yet effective SOD model. We holistically design the
feature extractor and a cross-stage fusion part following the
requirements of SOD task as shown in Fig. 2. It simultaneously
processes features within multiple scales. The feature extractor
is stacked with our proposed in-layer multi-scale block, namely
ILBlocks. The cross-stage fusion part processes features from
stages of the feature extractor to obtain a high-resolution out-
put. The ILBlock and cross-stage fusion part, both composed
of instances of gOctConv, enhance the within-stage and cross-
stage multi-scale representation ability required by the SOD task.
The straightforward structure of the CSNet avoids the potential
influence of complex modules. Also, benefiting from the self-
adaptive property of gOctConv, we can better study the complexity
and feature requirements of the SOD model. Therefore, CSNet is
a suitable tool for studying the semantics of SOD models.

4.2 In-layer Multi-scale Block
ILBlock enhances the multi-scale representation of features within
a stage. gOctConvs are utilized to introduce multi-scale capacity
within ILBlock. Borrowing the common definition from the clas-
sification models [33], [34], [68], [97], a highly light-weight SOD
model should be at least 10× smaller than existing SOD models.
The vanilla OctConv requires about 60% MACC [6] to achieve
similar performance as in the standard convolution, which is not
enough to design a highly light-weight model. To save computa-
tional cost, integrating features with different scales in every layer
is unnecessary. Therefore, we apply an instance of the gOctConv
that eliminates the cross-scale operations while keeps within-scale
operations, namely simplified gOctConv. In simplified gOctConv,
each input channel corresponds to an output channel with the
same resolution, and a depthwise operation within each scale is
utilized to further save computational cost. The simplified instance
of gOctConv only requires about 1/channel MACC compared to
the vanilla OctConv. ILBlock is composed of a vanilla OctConv
and two 3 × 3 simplified gOctConvs as shown in Fig. 2. The
vanilla OctConv integrates features with two scales and simpli-
fied gOctConvs extract features within each scale. Multi-scale
features within a block are separately processed and interacted
alternately. Each gOctConv is followed by the BatchNorm [36]
and PReLu [24].

4.3 Cross-stage Fusion
Common SOD methods retain a high output resolution by pre-
serving high feature resolution at the high-level of the feature ex-
tractor, which inevitably increases the computational redundancy.
Another solution is to construct complex multi-level aggregation
modules to fuse high-level features with semantics and low-
level features with details. The value of multi-level aggregation
is widely recognized on many tasks, e.g., edge detection [85],
object detection [22], classification [70], and the SOD task [30].
However, these works utilize large backbone models. How to
efficiently and concisely achieve cross-stage fusion for the SOD
task remains challenging. In this works, we aims at designing a
simple yet effective holistic model that strongly tied to the SOD
task. We also need a simple yet effective multi-level aggregation
strategy to analyze the semantics of SOD models. To this end, we
simply use the cross-stage instance of gOctConvs to fuse multi-
scale features from stages of the feature extractor and generate
the high-resolution output. A cross-stage gOctConv 1 × 1 takes
features with different scales from the last conv of each stage as

input and conducts a cross-stage convolution to output features
with different scales. To extract multi-scale features at a granular
level, each scale of features is processed by a group of parallel
convolutions with different dilation rates. Features are then sent to
another cross-stage gOctConv 1 × 1 to generate features with the
highest resolution. Another standard Conv 1 × 1 layer outputs the
prediction result of the saliency map.

4.4 Implementation details of CSNet
CSNet consists of a feature extractor and a cross-stage fusion
part. As shown in Tab. 2, the feature extractor is stacked with
ILBlocks, and is split into 4 stages according to the resolution
of feature maps, where each stage has 3, 4, 6, and 4 ILBlocks,
respectively. Initially, we set the number of channels of the first
stage to 20, and double the channels of ILBlocks as the resolution
decreases, except for the last two stages that have the same number
of channels. The channel for each gOctConv can be expanded to
enlarge the model capability. Models with channels expanded k
times are denoted by CSNet-×k. Learnable channels of OctConvs
are then obtained with the self-adaptive channel learning scheme.
Given an input image with the shape (H,W), the first gOctConv
in the first ILBlock takes in the image and outputs features with
two resolutions (H,W) and (H/2,W/2). The features with two
scales are processed in parallel by the feature extractor. We denote
the term “split-ratio” as the ratio of the number of channels among
different feature scales in gOctConv. The split-ratio in ILBlocks
can be adjusted to construct models with different MACC, denoted
by CH/CL. Unless otherwise stated, the channels for different
scales in ILBlocks are set evenly. For cross-stage fusion, only the
output feature of each stage is used. The last ILBlock of each
stage merges two streams of different scales to the high-resolution
stream. The cross-stage fusion part processes features from stages
of the feature extractor to obtain a high-resolution output. As a
trade-off between efficiency and performance, features from the
last three stages are used. Learnable channels of gOctConvs in this
part are also obtained. The detailed configurations of the cross-
stage fusion part are shown in Tab. 1.

5 ANALYSIS OF SOD MODELS

In this section, we are going to answer these questions about
the semantics of the CNN-based SOD model with our proposed
CSNet: 1) Are SOD models sensitive to category information? 2)
Which part of the SOD model is most responsible for locating
the salient regions? 3) Can the SOD model detect salient regions
over unseen categories? 4) Do SOD models have the same com-
plexity compared to classification models? 5) What are the feature
requirements of SOD task from the feature extractor? 6) What role
does ImageNet pre-training play in the SOD model training?

5.1 Category Sensitivity
Before the emergence of CNNs, SOD methods were regarded as
being category agnostic [3], [37], [87]. Researchers have used
these category agnostic saliency detection models to support
downstream tasks [5], [21], [23], [31], [59], [80], [92], for tasks
such as weakly supervised segmentation. With the widespread
popularity of CNNs, the community has proposed several new
SOD models utilizing powerful ImageNet pre-trained CNN back-
bones to extract features. Are these models still category in-
sensitive and can they be used as generic features? How much

6

TABLE 1
Architecture for the cross-stage fusion part using four stages in CSNet×1.

name output feature size config

gOctConv
[224×224×20, 112×112×40,

56×56×80, 28×28×80] gOctConv, kernel size 1×1, dilation 1

Parallel DilatedConvs
[224×224× (1+1+1+1+1), 112×112×(2+2+2+2+5),

56×56×(5+5+5+5+6),28×28×(5+5+5+5+6)] [DilatedConvs, kernel size 3×3
dilations [1, 2, 4, 8, 16]]× scales

gOctConv 224×224×70 gOctConv, kernel size 1×1, dilation 1

StandardConv 224×224×1 StandardConv, kernel size 1×1, dilation 1

TABLE 2
Architecture for the feature extractor in CSNet×1.

stage output feature size config [op, kernel size, stride]

stage1
[224×224×10,
112×112×10]

[OctConv 3×3, 1
gOctConv 3×3, 1
gOctConv 3×3, 1

]
×1[OctConv 1×1, 1

gOctConv 3×3, 1
gOctConv 3×3, 1

]
×2

stage2
[112×112×20,

56×56×20]

[OctConv 3×3, 2
gOctConv 3×3, 1
gOctConv 3×3, 1

]
×1[OctConv 1×1, 1

gOctConv 3×3, 1
gOctConv 3×3, 1

]
×3

stage3
[56×56×40,
28×28×40]

[OctConv 3×3, 2
gOctConv 3×3, 1
gOctConv 3×3, 1

]
×1[OctConv 1×1, 1

gOctConv 3×3, 1
gOctConv 3×3, 1

]
×5

stage4
[28×28×40,
14×14×40]

[OctConv 3×3, 2
gOctConv 3×3, 1
gOctConv 3×3, 1

]
×1[OctConv 1×1, 1

gOctConv 3×3, 1
gOctConv 3×3, 1

]
×3

role category information plays in CNN based saliency models?
Can we use saliency as general knowledge to reduce the domain-
specific data annotation in tasks like weakly supervised semantic
segmentation? These are very important questions but have been
less explored. To study the category sensitivity of the SOD model,
we analyze the CSNet trained with the same data but over the
SOD and classification tasks.

5.1.1 Data preparation
Data distribution plays a vital role in representation learning. To
remove the influence of different data distribution from different
datasets, we train the SOD model and the classification model
over the same set of images but use salient object mask labels
and category labels as supervision for each task. Since the image-
level category label is more accessible than pixel-level annotations
for SOD, we annotate the existing SOD dataset with category
labels. Specifically, we utilize the commonly used datasets DUTS-
TR [74], DUTS-TE [74] and ECSSD [86] as the source dataset,
and assign category labels of the ImageNet to images. These SOD

croquet ball snail
studio couch racer

hippopotamus
soccer ball

limousine fig
ladybug

unicycle

im
ag

e
nu

m
be

r

Training set
Testing set100

20

40

80

60

0

Fig. 6. Distribution of images in the classification dataset.

datasets have imbalanced category distribution. Thus, they can not
be directly used for the analysis of category sensitivity. Analyzing
models under the classification metric and SOD metric requires
different data distributions. We therefore choose two sub-datasets
for the evaluation of classification and SOD tasks, respectively.

Data for classification: The DUTS-TR dataset is used as the train-
ing dataset. As the DUTS-TE dataset has a highly similar category
distribution with the DUTS-TR dataset, we use the DUTS-TE
dataset to evaluate the classification task. A classifier trained on
imbalanced category data may overfit to some categories, making
the classification metric meaningless. To harness this, we choose
10 categories that have a balanced number of images in both
DUTS-TR and DUTS-TE datasets. The training set and testing
set contain 644 and 150 images, respectively. The distribution of
the classification dataset is illustrated in Fig. 6.

Data for SOD: Eliminating a certain small category among
many categories will have almost no impact on the original SOD
dataset. To reinforce the impact of the category on the SOD
dataset, we organize images into major categories according to the
WordTree of ImageNet [67], and select 12 merged categories with
a considerable number of images. Most SOD experimental results
presented in this paper are reported on the ECSSD dataset [86].
Thus, we use the ECSSD dataset for the evaluation of SOD tasks.
The distribution of images from the selected categories in the
SOD dataset is illustrated in Fig. 7. We show in Fig. 8 that even
with a biased category distribution, SOD models can still achieve
reasonable performance.

7

musical instrument
vertebrate

mechanism
street sign

domestic cat plant dog
instrument

wheeled vehicle
arthropod

geological formation
garment

Training set
Testing set

im
ag

e
nu

m
be

r
1700

150
200

16500

350

50
100

250
300

Fig. 7. Distribution of images of selected categories in the SOD dataset.

musical instrument
vertebrate

mechanism
street sign

domestic catplant dog
instrument

wheeled vehicle
arthropod

geological formation
garmentAll

music
al i

nstru
ment

vert
ebrat

e

mech
anism

stre
et s

ign

domest
ic c

at

plan
t

doginstru
ment

wheel
ed vehicle

art
hropod

geologica
l fo

rm
atio

n

garm
ent

Evaluate on class

Tr
ai

ne
d

w
ith

ou
t c

la
ss

Fig. 8. The relative performance changes of F-measure after removing
a certain category in training SOD models. Each row shows the perfor-
mance change on images with all categories of a model trained without a
certain category. Removing a category during training does not clearly
influence the test performance of that category, which proves that the
SOD model is not sensitive to the category information.

5.1.2 Transfer Learning from SOD to Classification

Settings: The basic idea of transfer learning is to pre-train the
model on the source task, and finetune the pre-trained model on
the target task to acquire performance gain or ease the conver-
gence [25].

Transfer learning from ImageNet pretraining to many down-
stream tasks, e.g., depth estimation, crowd counting, and bounding
box regression, has been proved very effective. And transfer
learning between the source and target tasks under similar se-
mantic requirements, e.g., both tasks are category-related, is more
effective than the transfer learning of two tasks under different
semantics. Classification task is a category sensitive task, and
the classification accuracy can be used to measure the category
sensitivity of models. We have verified this hypothesis by conduct-
ing experiments of transferring the semantic segmentation model
to the classification model. To study the category sensitivity of
SOD models, we first pre-train the model on the SOD task and
finetune it on the classification task. By fixing different parts of
the SOD pre-trained model and finetuning the remaining parts, we
can pinpoint which parts of the SOD model are more responsible
for the classification and which parts are more specific to SOD.

CSNet is specifically designed for the SOD task, we modify
the cross-stage fusion part to make it suitable for classification.
The cross-stage fusion part takes in features from different stages
and outputs features with the lowest resolution, as low-resolution
features are more suitable for classification [25]. The last Conv
1×1 layer in CSNet is replaced with a global average pooling layer
and a fully connected (FC) layer. By doing so, except for the last
prediction layer, the remaining parts of CSNet trained for SOD and
classification can share parameters. We use the top-1 classification
accuracy as the metric for analyzing the category sensitivity of
models. We conduct two groups of experiments as follows: (1)
Cls-scratch is denoted as the model trained with only category
labels from scratch for the classification task. (2) Finetune-SOD is
denoted as the model that is pre-trained with SOD annotations on
the SOD task and then finetuned on the classification task.

If Finetune-SOD model achieves significantly worse results
than the Cls-scratch model, we can conclude that the SOD model
is not sensitive to the category information. During finetuning,
parts of the Finetune-SOD model are finetuned for the classifica-
tion task and other parts are fixed with SOD pre-trained weights.
By doing so, we can find out which parts of the SOD model are
more related to the SOD task and which parts are more general
to both classification and SOD tasks. For example, if finetuning
stage 1 of the SOD model achieves very limited performance gain
than only finetuning the FC layer, it indicates that features in stage
1 are more general instead of very closely related to the SOD task.
Stages 1 to 4 and the cross-stage fusion parts are all studied as
shown in Tab. 3.

With the transfer learning from SOD to classification, we can
answer questions: 1) Whether SOD model is sensitive to category
information. 2) The parts of SOD model that are more task-specific
and parts that are more general to both classification and SOD
tasks.

Experimental results: Tab. 3 shows the top-1 classification accu-
racy of models transferred from the SOD task to the classification
task. The classification model trained from scratch achieves the
top-1 acc. of 61.1%, while the SOD model with only the FC
layer finetuned achieves the top-1 acc. of 18.1%. The result
means that the model trained for SOD requires almost no category
information to determine the salient region. To pinpoint which part
of the SOD model is more task-specific or general to classification
task, we finetune a part of the SOD model to check the relative
classification performance gain. Finetuning the cross-stage fusion
part achieves a considerable performance gain of 30.2%, indicat-
ing that the feature difference of this part between classification
and SOD task is much larger than the other parts. Finetuning from
stage1 to stage4 achieves increasingly higher performance gain,
showing that high-level features are more task-specific while low-
level features are general for both tasks.

To give a more direct evidence of the category sensitivity of
SOD models, we give the class activation maps [101] (CAM)
comparison between the SOD model finetuned on all stages
(model with 58.4 acc. on Tab. 3) and the FC layer (model with
18.1 acc. on Tab. 3) for the classification task as shown in Tab. 9.
CAM of the model finetuning on all stages focus on objects
required by the classification, while CAM of the model finetuning
on only the FC layer has no specific category-related focus. This
comparison directly proves that the SOD model abandons the
category-oriented features as its CAM cannot locate the category-
related regions.

8

TABLE 3
The top-1 acc. of classification task using models transferred from the
SOD task. s1 to s4 and fuse refer to stage1 to stage4 and the fusion
part as shown in Fig. 2, respectively. X indicates that parameters in a

stage are finetuned.

Setups s1 s2 s3 s4 fuse top1 acc. gain

Finetune-SOD

18.1 -
X 21.5 3.4

X 30.9 12.8
X 32.9 14.8

X 36.2 18.1
X 48.3 30.2

X X X X X 58.4 40.3

Cls-scratch X X X X X 61.1 43.0

A
L

L
FC

Fig. 9. Class activation maps comparison between the SOD model
finetuned on all stages (ALL) and the FC layer (FC) for the classifica-
tion task. CAM of the model finetuning on all stages focus on objects
required by the classification, while CAM of the model finetuning on only
the FC layer has no specific category-related focus.

5.1.3 SOD over Unseen Categories

Settings: We now study the category sensitivity of SOD models
from the perspective of SOD metric. Generalizing to unseen
objects or categories is one of the key features of SOD models,
because this feature provides the basis of many down-stream
vision tasks such as image retrieval [23], visual tracking [29], pho-
tographic composition [21], and image quality assessment [80].
We propose to test the performance of SOD models on images
with unseen categories to verify the category sensitivity of SOD
models. Given a SOD model trained without a certain category, if
the model can still detect the salient object on the image with that
category, it can be regarded as not sensitive to the category infor-
mation. Specifically, based on the data for SOD, we have a series
of models where each of them is trained by the data with images
of one category removed. Each model is evaluated on images from
all categories, respectively. We compare the relative performance
changes between those models and the baseline model trained with
images from all categories. Removing training images inevitably
causes a performance drop. If the largest performance drop does
not occur on the category that not exists on the training set, the
SOD model can be regarded as category insensitivity.

Experimental results: We now test SOD models on images from
unseen categories. Fig. 8 shows the relative performance changes
of F-measure after removing a certain category for training. All
results are the average of three runs. Removing a category during
training does not significantly affect the test performance on
that category, which indicates that SOD model is not sensitive
to category information. For instance, removing the category
‘vertebrate’ during training causes the largest test performance
drop of category ‘geological formation’, instead of that category
itself. As shown in Fig. 7, the number of images from each

TABLE 4
Complexity of different tasks based on the CSNet×1.5. SOD model is

less complex compared to the classification model.

Setups Full SOD model CLS model

Parms. 455K 167K 296K
MACC. 1.17G 0.70G 0.85G

category in the SOD dataset is not evenly distributed. Reducing
the number of available training images has a significant impact
on performance. For example, removing the category ‘vertebrate’
causes the largest performance drop in the ECSSD dataset, since
this category has the largest number of training images. In contrast,
removing categories such as ‘street sign’ and ‘plant’ have a very
limited impact on the performance, since they have a relatively
small number of training images. Therefore, we assume that
instead of requiring category information, the SOD model needs
to be trained with more images with various scenes to improve the
performance.

5.2 Model Complexity

Settings: The complexity of models for different tasks is not
necessarily the same. Current CNN-based SOD models are mostly
built on top of the classification backbone models such as VG-
GNet [69] and ResNet [25]. Effective as these backbone models
are on the classification, their large model complexity may not
be necessary for the SOD task. Unlike the classification task that
needs to learn category related features, the SOD task has almost
no requirement for category information. We propose to analyze
the complexity of models for the SOD task and the classification
task from the perspective of model compression. As our proposed
gOctConv is capable of eliminating redundant parameters with the
help of the effective dynamic weight decay scheme, we can have
a clear insight regarding the complexity of models for each task.

Experimental results: We use the dataset for classification metric
in Sec. 5.1.2 as the training set. Since the training set contains only
644 images, a standard configuration of 300 epochs training is not
enough for the convergence of a compact model. We therefore
increase the number of the training epochs to 3000. Tab. 4 shows
the model complexity for different tasks based on the CSNet×1.5.
The SOD model requires 36% parameters of the original model,
while the classification model requires 65% of parameters, indi-
cating that SOD models require fewer parameters as they need
almost no category information. With this observation, we believe
a more compact SOD model can be designed specifically for the
SOD task.

5.3 Feature Requirements from the Extractor

Using features from different stages of the extractor: As a
pixel-level prediction task, SOD should generate a high resolution
output map. Therefore, it is a common choice for existing SOD
models [49], [51], [94] to utilize features from different stages of
the feature extractor. Utilizing more features from earlier stages
results in higher resolution prediction maps, while introducing
more computational complexity. Here we study whether using
more features from earlier stages can improve the SOD perfor-
mance. As shown in Fig. 2, the cross-stage fusion part takes in

9

TABLE 5
Using features from different stages of the extractor in CSNet×2-L as

the input of the cross-stage fusion part.

Stages 4 3 to 4 2 to 4 1 to 4

MACC 0.58G 0.66G 0.72G 1.29G
Parms. 134k 139k 141k 177k

Fβ 90.0 91.0 91.6 91.8

original 15 15 15 15
LR-unpruned -15 -15 -15 -15
weight decay 12 11 14 15
wd-LR-pruned -8 -14 -12 -14
dynamic weight decay 15 14 14
dynamic-wd-LR-pruned -9 -13 -12

High resolution

Low resolution

ch
an

ne
ls

Fig. 10. Visualization of the number of channels of CSNet feature
extractor. Gray is CSNet with the fixed channel, Yellow and Green are
the CSNet-L trained with standard/dynamic weight decay, respectively.
The horizontal axis indicates ILBlocks of the feature extractor starting
from the early stage.

features from different stages of the extractor. We now perform
the ablation study using features from different numbers of stages.
To minimize the impact of the initial number of channels, we
use the CSNet×2-L model with learned channels in gOctConvs.
As shown in Tab. 5, using more stages from the feature extractor
results in better performance and causes larger model complexity.
CSNet×2-L using stages 1 to 4 achieves a 0.2% gain (91.8 vs
91.6) with 37k (177k vs 141k) more parameters than CSNet×2-L
using stages 2 to 4. Therefore, using more features from earlier
stages does benefit the quality of SOD. In our work, as a trade-
off between efficiency and performance, we choose to use the
last three stages as the input of the cross-stage fusion part if not
otherwise stated.

Visualization of feature scale requirement: Since the feature
extractor of our CSNet is composed of gOctConvs, we can study
the feature scale requirement of the feature extractor with the self-
adaptive channel learning property of gOctConvs. We visualize
the learned number of channels of gOctConvs in Fig. 10. It can be
seen that as the network goes deeper, the feature extractor shows
a trend of utilizing more low-resolution features. Within the same
stage, high-resolution features are urged in the middle of the stage.
Also, the model trained with dynamic weight decay has a more
stable number of channel variation among different layers. Deeper
layers contain more redundant channels compared with shallower
ones.

5.4 ImageNet Pre-training
ImageNet pretraining has been proved to be very effective for
many down-stream tasks, e.g., , depth estimation, crowd count-
ing, and bounding box regression. Utilizing ImageNet pretrained
feature extractor has been a default configuration in CNN-based
SOD models due to its effectiveness. We compare the SOD model
convergence speed with/without ImageNet pre-training on both
light-weight and large models, shown in Fig. 11. For large model
CSF+ResNet, the ImageNet pre-training helps the model converge
in few epochs. As shown in Sec. 5.1.2, the early stage of the model

0 50 100 150 200 250 300
Epoch

0.04

0.08

0.12

0.16

0.20

M
A

E

CSF+ResNet
CSF+ResNet+ImageNet
CSNet
CSNet+ImageNet

Fig. 11. The test MAE of models w/o ImageNet pre-training.

contains more general low-level features. Large SOTA SOD mod-
els need ImageNet pre-training because the universal low-level
features in the early stage of the pre-trained ImageNet models may
help the convergence of large models that contain a lot of trainable
parameters. For light-weight model CSNet, the convergence speed
between the model with ImageNet pre-training and model trained
from scratch shows almost no difference. Light-weight models
are too small to benefit from the convergence acceleration of
ImageNet pre-training. We pre-train the extractor of the CSNet on
ImageNet to see if ImageNet pre-training can further benefit the
performance of the SOD task. As shown in Tab. 7, the ImageNet
pre-trained CSNet×1.5-L has similar performance compared with
the model trained from scratch. Therefore, the effect of ImageNet
pre-training is limited for the light-weight SOD models. ImageNet
pre-training, however, still benefits large model convergence.

6 PERFORMANCE ANALYSIS AND ABLATION

6.1 Implementation
Training: Our method is implemented in PyTorch. We train the
light-weight models using the Adam optimizer [38] with a batch-
size of 24 for 300 epochs from scratch. Even with no ImageNet
pre-training, the proposed CSNet still performs on par with large
models based on pre-trained backbones [25], [69]. The learning
rate is initially set to 1e-4, and is divided by 10 at the epochs
of 200, and 250. We eliminate redundant weights and finetune
the model for the last 20 epochs to compress models and get
gOctConvs with the learnable channels of different resolutions.
We only utilize random flip and crop for data augmentation. The
weight decay of BatchNorms following gOctConvs is replaced
with our proposed dynamic weight decay with the default weight
of 3, while the weight decay for other weights is set to 5e-3 by
default. For large models based on the pre-trained backbones, we
train our models following the implementation of [49].
Datasets: While MSRA 10K [9], MSRA-B [52], DUT-O [87], and
HKU-IS [42] datasets are used by earlier methods [20], [43], [46]
for training salient object detectors, these datasets are either too
small or lack diversity. We follow common settings of recent meth-
ods [49], [51], [77], [78], [96], [98] to train our models using the
DUTS-TR [74] dataset, and evaluate the performance on several
commonly used datasets, including ECSSD [86], PASCAL-S [47],
DUT-O [87], HKU-IS [42], SOD [63], and DUTS-TE [74]. On
ablation studies, the performance on the ECSSD dataset is reported

10
Im

ag
e

G
T

D
G

R
L

[7
8]

Pi
C

A
N

et
[5

1]
Po

ol
N

et
[4

9]
C

SN
et

Fig. 12. Visual qualitative comparison between our proposed CSNet and existing SOTA models. The last column shows a failure case of CSNet,
which we assume is caused by the limited representation ability of the extremely small model parameters.

if not mentioned otherwise. For the analysis of the semantics
of SOD models, we use our two proposed datasets as described
in Sec. 5.1.1.
Evaluation metrics: The commonly used evaluation metrics
maximum F-measure (Fβ) [1] and MAE (M) [10] are used for
evaluation. MACC of light-weight models is computed with an
image size of 224 × 224.

6.2 Performance Analysis
In this section, we first evaluate the performance of our pro-
posed light-weight model CSNet with fixed channels. Then, the
performance of CSNet with learnable channels using dynamic
weight decay is measured. We show that ImageNet pre-training
is not inevitable for CNN-based SOD models. Fig. 12 shows the
qualitative results of salient object detection using our proposed
light-weight CSNet. Also, we transfer the proposed cross-stage
fusion part to commonly used large backbones [25] to verify the
cross-stage feature extraction ability.

Performance of CSNet with fixed channels in gOctConv: The
extractor model is only composed of ILBlocks. As shown in
Tab. 6, when replacing the gOctConvs in ILBlocks with Vanilla
OctConvs, the extractor has ×8 and ×7 of original size in terms
of parameters and MACC, while the performance gain is very
limited. The large model complexity gap shows the efficiency
of the simplified instance of gOctConv in the ILBlock. Tab. 6
shows feature extraction models with different split-ratios of
high/low-resolution features. Extractors achieve a low complexity
thanks to the simplified instance of gOctConvs. Benefiting from
the within-stage multi-scale representation and the low-resolution

features in ILBlock, the extractor-3/1 achieves a performance gain
of 0.4% in F-measure with 80% MACC over the extractor-1/0.
The gOctConvs in the cross-stage fusion part enhance the cross-
stage multi-scale ability of the network while maintaining the
high output resolution by utilizing features from different stages.
As shown in Tab. 6, the CSNet-5/5 surpasses the extractor-3/1
by 1.4% in F-measure with fewer MACC. Even in the extreme
case, the CSNet-0/1 with only low-resolution features in extractor
performs on par with the extractor-1/0 that has all high-resolution
features, while only requires 44% MACC of the extractor-1/0.
However, manually tuning the overall split-ratio of feature chan-
nels of different resolutions may achieve a sub-optimal balance
between performance and computational cost. To further verify the
effectiveness of the cross-stage fusion (CSF) part on large models,
we add this part into the commonly used backbone network
ResNet [25] and Res2Net [15]. Tab. 7 shows that the ResNet+CSF
achieves similar performance to the ResNet+PoolNet with 53%
parameters and 21% MACC. Unlike other models (e.g., PoolNet)
that eliminate downsampling operations to maintain a high feature
resolution at high-levels of the backbone, the gOctConvs obtain
both high and low resolution features across different stages of the
backbone, achieving a high-resolution output while saving a large
amount of computational cost.

Performance of CSNet with learnable channels in gOctConv:
We further train the model with our proposed dynamic weight
decay and obtain the learnable channels in gOctConv as described
in Alg. 1. The obtained models are named CSNet-L. Tab. 11 shows
that our proposed dynamic weight decay assisted pruning scheme
can compress the model up to 18% of the original model size

11

TABLE 6
Performance of CSNet with the fixed split-ratio of channels in

gOctConvs, and CSNet with learnable channels. CSNet: model with the
fixed split-ratio in gOctConvs. Extractor: the network composed of only

ILBlocks. Vanilla: the Extractor made of only vanilla OctConvs.
CSNet-L: the model with learnable channels using Alg. 1.

Method PARM. MACC Fβ ↑ M ↓

Vanilla 5/5 1457K 3.31G 88.4 0.088

Extractor

1/0 180K 0.80G 88.2 0.088
3/1 180K 0.64G 88.6 0.085
5/5 180K 0.45G 88.1 0.086
1/3 180K 0.30G 87.4 0.090
0/1 180K 0.20G 86.4 0.095

CSNet

1/0 211K 0.91G 90.0 0.076
3/1 211K 0.78G 89.9 0.077
5/5 211K 0.61G 90.1 0.077
1/3 211K 0.47G 89.2 0.082
0/1 211K 0.35G 88.2 0.089

CSNet-L ×2 141K 0.72G 91.6 0.066
×1 94K 0.43G 90.0 0.075

with a negligible performance drop. Compared with manually
tuned split-ratio of feature resolution, the learnable channels of
gOctConvs obtained by model compression achieves much better
efficiency. As shown in Tab. 6, the compressed CSNet×2-L out-
performs the CSNet-5/5 by 1.6% with fewer parameters and com-
parable MACC. The CSNet×1-L performs on par with CSNet-5/5
with about 45% parameters and about 70% MACC. Tab. 7 shows
that CSNet-L series achieves comparable performance compared
with some models with extensive parameters such as SRM [77],
and Amulet [95] with ∼ 0.2% parameters. Note that our light-
weight models are trained from scratch while those large models
are pre-trained with ImageNet. The performance gap between the
proposed light-weight model and the SOTA models with extensive
parameters and MACC is only ∼ 2%. Utilizing new techniques,
e.g., representative batch normalization [16] and receptive fields
searching [17], will further close the gap with large models.

Comparison with light-weight models: To the best of our
knowledge, we are the first to design an extremely light-weight
model for the SOD task. For a more exhaustive analysis, we
adopt several SOTA light-weight models, designed for other tasks
such as classification and semantic segmentation, for salient object
detection. All models share the same training configuration as in
our training strategy. When transferring classification models to
the SOD task, the FC layer is replaced with the Conv 1× 1 layer
to output saliency maps. For segmentation models, the number of
channel of the output layer is changed from the number of classes
to 1. Tab. 7 shows that our proposed models have considerable
improvements compared with the light-weight models.

Run-Time: CSNet is designed to be light-weight and highly effi-
cient on the SOD task. We compare the run-time of our proposed
CSNet with existing models from Tab. 7 as shown in Tab. 8. The
run-time is tested on a single core of i7-8700K CPU using 224
× 224 images. Our proposed CSNet is x10 faster compared with
large-weight models. With similar speed, CSNet achieves up to
6% gain in F-measure compared with the models designed for
other tasks. However, there is still a gap between MACC and run-
time, as current deep learning frameworks are not optimized for
vanilla and our proposed gOctConvs yet.

0.0 0.2 0.4 0.6 0.8 1.0
FLOPs (G) / PARM. (M)

92

91

90

89

88

F-
m

ea
su

re
 (%
）

Fig. 13. Performance and complexity of our compressed model using
dynamic/standard weight decay under different λ as shown in Eqn. (1).
Applying different degrees of weight decay results in a trade-off between
model performance and sparsity.

0 50 100 150 200 250
epoch

0.20

0.16

0.12

0.08

M
A

E

dynamic weight decay

weight decay

Fig. 14. The test MAE of models w/o dynamic weight decay.

6.3 Ablations

Dynamic weight decay: In this section, we assess the effective-
ness of our proposed dynamic weight decay. We apply different
degrees of weights to standard weight decay to balance model
performance and sparsity, while keeping the weights for dynamic
weight decay unchanged. We plug in our proposed dynamic
weight decay into the weights of the BatchNorm layers while
using the standard weight decay on remaining weights for a
fair comparison. Fig. 13 shows the performance and complexity
of the compressed model using dynamic/standard weight decay
under different λ in Eqn. (1). The λd in Eqn. (3) for dynamic
weight decay on BatchNorm is set to 3 by default. Models
trained with dynamic weight decay have better performance under
the same complexity. Also, the performance of dynamic weight
decay based models is less sensitive to the model complexity. We
eliminate redundant channels according to the absolute value of γ
in Eqn. (5) as described in Sec. 3.2. Fig. 5 shows the distribution
of γ for models trained with/without dynamic weight decay.
By suppressing weights according to features, dynamic weight
decay enforces the model with more sparsity. Fig. 4 reveals the
average standard deviation of outputs among channels after the
BatchNorm and activation layer of models trained with/without

12

TABLE 7
Performance and complexity comparison with state-of-the-art SOD methods. +R and +R2 denotes using the ImageNet pre-trained ResNet50 [25]

and Res2Net50 [15] backbone. Unlike previous methods that require the ImageNet pre-training, our light-weight CSNet is trained from scratch.

Model Complexity ECSSD PASCAL-S DUT-O HKU-IS SOD DUTS-TE
#PARM. MACC Fβ M Fβ M Fβ M Fβ M Fβ M Fβ M

ELD [20]CVPR′16 43.15M 17.63G .865 .981 .767 .121 .719 .091 .844 .071 .760 .154 - -
DS [46]TIP′16 134.27M 211.28G .882 .122 .765 .176 .745 .120 .865 .080 .784 .190 .777 .090
DCL [43]CVPR′16 - - .896 .080 .805 .115 .733 .094 .893 .063 .831 .131 .786 .081
RFCN [76]ECCV′16 19.08M 64.95G .898 .097 .827 .118 .747 .094 .895 .079 .805 .161 .786 .090
DHS [50]CVPR′16 93.76M 25.82G .905 .062 .825 .092 - - .892 .052 .823 .128 .815 .065
MSR [41]CVPR′17 - - .903 .059 .839 .083 .790 .073 .907 .043 .841 .111 .824 .062
DSS [30]PAMI′19 62.23M 276.37G .906 .064 .821 .101 .760 .074 .900 .050 .834 .125 .813 .065
NLDF [57]CVPR′17 35.48M 57.73G .903 .065 .822 .098 .753 .079 .902 .048 .837 .123 .816 .065
UCF [95]CVPR′17 29.47M 146.42G .908 .080 .820 .127 .735 .131 .888 .073 .798 .164 .771 .116
Amulet [94]ICCV′17 33.15M 40.22G .911 .062 .826 .092 .737 .083 .889 .052 .799 .146 .773 .075
GearNet [32]CoRR′17 - - .923 .055 - - .790 .068 .934 .034 .853 .117 - -
PAGR [96]CVPR′18 - - .924 .064 .847 .089 .771 .071 .919 .047 - - .854 .055
SRM [77]ICCV′17 53.14M 36.82G .916 .056 .838 .084 .769 .069 .906 .046 .840 .126 .826 .058
DGRL [78]CVPR′18 161.74M 191.28G .921 .043 .844 .072 .774 .062 .910 .036 .843 .103 .828 .049
PiCANet [51]CVPR′18 47.22M 54.05G .932 .048 .864 .075 .820 .064 .920 .044 .861 .103 .863 .050
PoolNet [49]CVPR′19 68.26M 88.89G .940 .042 .863 .075 .830 .055 .934 .032 .867 .100 .886 .040

Light-weight models designed for other tasks:

Eff.Net [71]ICML′19 8.64M 2.62G .828 .129 .739 .158 .696 .129 .807 .116 .712 .199 .687 .135
Sf.Netv2 [58]ECCV′18 9.54M 4.35G .870 .092 .781 .127 .720 .100 .853 .078 .779 .163 .743 .096
ENet [65]CoRR′16 0.36M 0.40G .857 .107 .770 .138 .730 .109 .839 .094 .741 .183 .730 .111
CGNet [84]CoRR′18 0.49M 0.69G .868 .099 .784 .130 .727 .108 .849 .088 .772 .168 .742 .106
DABNet [40]BMVC′19 0.75M 1.03G .877 .091 .790 .123 .747 .094 .862 .078 .778 .157 .759 .093
ESPNetv2 [61]CVPR′19 0.79M 0.31G .889 .081 .795 .119 .760 .088 .872 .069 .780 .157 .765 .089
BiseNet [89]ECCV′18 12.80M 2.50G .894 .078 .817 .115 .762 .087 .872 .071 .796 .148 .778 .084

Ours:

CSF+R 36.37M 18.40G .940 .041 .866 .073 .821 .055 .930 .033 .866 .106 .881 .039
CSF+R2 36.53M 18.96G .947 .036 .876 .068 .833 .055 .936 .030 .870 .098 .893 .037
CSNet×1-L 94K 0.43G .900 .075 .819 .110 .777 .087 .889 .065 .809 .149 .799 .082
CSNet×1.5-L 118K 0.63G .912 .070 .831 .105 .783 .082 .893 .062 .808 .139 .809 .076
CSNet×1.5-LImageNet 124K 0.63G .911 .070 .835 .103 .781 .084 .898 .060 .818 .141 .810 .077
CSNet×2-L 141K 0.72G .916 .066 .835 .102 .792 .080 .899 .059 .825 .137 .819 .074

TABLE 8
Run-time of models using 224 × 224 input on a single core i7-8700K

CPU.

Method MACC (G) Run-time (ms)

PiCANet [50] 54.06 2850.2
PoolNet [49] 88.89 997.3
ENet [65] 0.40 89.9
ESPNetv2 [61] 0.31 186.3
CSNet×1 0.61 135.9
CSNet×1-L 0.43 95.3

dynamic weight decay. Features of dynamic weight decay based
models are more stabilized due to the weights that form stable
output feature distribution. Fig. 14 shows the testing MAE of each
epoch with/without dynamic weight decay. Training with dynamic
weight decay leads to better performance in terms of MAE.

Fixed pruning ratio/threshold: We follow [53] to use the weight
of the BatchNorm layer as the indicator of the channel importance.
We modify the pruning method in [53] by using a fixed threshold
to eliminate channels instead of using a fixed pruning ratio.
Tab. 10 shows that pruning with a fixed threshold achieves better
performance with fewer parameters than using a fixed pruning
ratio. The reason behind this result is that different layers require a
different number of channels. Therefore, pruning with a threshold
can get a unique number of channel for each layer. As shown

TABLE 9
Incorporating dynamic weight decay into pruning methods.

Standard/Dynamic denotes standard/dynamic weight decay.

PARM. MACC Fβ M

Pruning Filters [44]
Standard 227K 0.69G 88.7 0.080
Dynamic 226K 0.69G 89.4 0.078

Geometric-Median [27]
Standard 227K 0.70G 88.7 0.083
Dynamic 226K 0.68G 89.6 0.082

in Fig. 5, there is a clear gap between the large weights and
the weights close to zero. Using arbitrary thresholds within this
gap would almost have no difference to the final performance of
models.

Integrating dynamic weight decay into pruning methods: By
default, we use the pruning method in [53] to eliminate the
redundant weights. Since our proposed dynamic weight decay
focuses on introducing sparsity while maintaining a stable and
compact distribution of weights among channels, it is orthogonal
to commonly used pruning methods that focus on identifying
unnecessary weights. Thus, we integrate the dynamic weight
decay into several pruning methods as shown in Tab. 9. All
configurations remain the same except for replacing the standard
weight decay with our proposed dynamic weight decay. Pruning

13

TABLE 10
Pruning with fixed threshold/ratio in the CSNet×2-L.

Fixed threshold Fixed ratio

threshold/ratio 1e-2 8e-3 6e-3 5e-2 3e-2 1e-3 1e-5 1e-10 1e-15 1e-20 38% 51%
Parms. (K) 55.7 79.4 105.0 118.5 135.9 136.2 139.9 140.5 140.8 140.8 300.0 400.0
Fβ 37.8 39.3 57.1 82.5 91.2 91.2 91.5 91.5 91.5 91.6 87.7 91.1

TABLE 11
The compression ratio of the CSNet with different initial channel widths.

The pruning rate is defined as the ratio of model complexity between
pruned parts and the complete CSNet.

Width Prune ×1 ×1.2 ×1.5 ×1.8 ×2.0

Parms N 211K 298K 455K 645K 788K
Y 94K 109K 118K 134K 141K

Ratio 55% 63% 74% 79% 82%

MACC N 0.61G 0.82G 1.17G 1.58G 1.87G
Y 0.43G 0.52G 0.63G 0.71G 0.72G

Ratio 30% 37% 46% 55% 61%

Fβ
N 90.0 90.7 91.1 91.2 91.5
Y 90.0 90.7 91.2 91.3 91.6

methods [27], [44] equipped with dynamic weight decay achieve
better performance using similar parameters.

Pruning rate & Channel width: An initial model with a large
channel width is required for learning more useful features. We
linearly expand the number of channel of gOctConvs to enlarge
the initial model capacity. A pruning rate is defined as the ratio of
model complexity between pruned parts and the complete CSNet.
Tab. 11 shows the pruning rate of CSNet with different initial
channel widths. The split-ratio of gOctConvs for the initial model
is set to 5/5. Larger initial width results in better performance as
expected. As the initial width increases, the complexity of pruned
models only has a small increment. The quality of the pruned
model is dependant on the initial model size. Also, benefiting
from the stable distribution introduced by dynamic weight decay,
compressed models have similar or even better performance than
the initial model.

7 CONCLUSION AND DISCUSSION

In this paper, we propose an extremely light-weight holistic model
strongly tied to the SOD task, by abandoning the classification
backbone and reducing the representation redundancy with a novel
dynamic weight decay scheme. The dynamic weight decay scheme
maintains a stable weights distribution among channels and stably
boosts the sparsity of parameters during training, allowing 80%
reduction in parameters with a negligible performance drop. Our
proposed CSNet achieves comparable performance with ∼ 0.2%
parameters (100k) of large models on popular salient object
detection benchmarks. Based on our proposed CSNet, we reveal
several properties of the CNN-based SOD model including 1)
SOD models are category insensitive and the detected salient
objects are generic and category-independent, 2) ImageNet pre-
training is not necessary for SOD training, and 3) SOD models
require fewer parameters compared with classification models.

Our two major contributions: analyzing the semantics of SOD
model and the extremely light-weight holistic SOD model are

interdependent of each other. The intentional design of our holistic
CSNet make it possible to analyze the semantics of the SOD
model. CSNet is trained from scratch, and therefore be free from
the potential influence of ImageNet pre-trained backbones, form-
ing the basis of analyzing the category dependency of SOD mod-
els. Also, the self-adaptive property and the simple yet effective
structure of CSNet benefit the analysis of SOD model complexity
and feature requirements. From another perspective, the analysis
of SOD model support the designing principle of CSNet. Our
analysis proves that category information is not needed by the
SOD model, therefore we can abandon the ImageNet pretrained
backbone to reduce a great deal of redundancy for the SOD task.
And we can design the holistic model specifically for the SOD
task instead of adding extra modules on classification backbones
to make up for the different between classification backbones and
the SOD task.

Future research should focus on analyzing SOD models from
other perspectives in particular with more diversity in SOD model
structures, and building even more efficient models in terms of
speed and accuracy. To facilitate follow-up works we share our
code at https://mmcheng.net/sod100k/.

Acknowledgement. This research was supported by the
Major Project for New Generation of AI un-
der Grant No. 2018AAA0100400, NSFC (61620106008), S&T
innovation project from Chinese Ministry of Education, the
Fundamental Research Funds for the Central Universities (Nankai
University, 63213090), and Tianjin Natural Science Founda-
tion (18ZXZNGX00110).

REFERENCES
[1] R. Achanta, S. Hemami, F. Estrada, and S. Süsstrunk. Frequency-tuned

salient region detection. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 1597–1604, 2009.

[2] A. Borji, M.-M. Cheng, Q. Hou, H. Jiang, and J. Li. Salient object
detection: A survey. Computational Visual Media, 5(2):117–150, 2019.

[3] A. Borji, M.-M. Cheng, H. Jiang, and J. Li. Salient object detection:
A benchmark. IEEE transactions on image processing, 24(12):5706–
5722, 2015.

[4] S. Chen, X. Tan, B. Wang, and X. Hu. Reverse attention for salient
object detection. In European Conference on Computer Vision, 2018.

[5] T. Chen, M.-M. Cheng, P. Tan, A. Shamir, and S.-M. Hu. Sketch2photo:
Internet image montage. ACM T. Graph., 28(5):124:1–10, 2009.

[6] Y. Chen, H. Fan, B. Xu, Z. Yan, Y. Kalantidis, M. Rohrbach, S. Yan, and
J. Feng. Drop an octave: Reducing spatial redundancy in convolutional
neural networks with octave convolution. In Int. Conf. Comput. Vis.,
2019.

[7] M.-M. Cheng, Q.-B. Hou, S.-H. Zhang, and P. L. Rosin. Intelligent
visual media processing: When graphics meets vision. Journal of
Computer Science and Technology, 32(1):110–121, 2017.

[8] M.-M. Cheng, N. Mitra, X. Huang, and S.-M. Hu. Salientshape: group
saliency in image collections. The Visual Computer, 30(4):443–453,
2014.

[9] M.-M. Cheng, N. J. Mitra, X. Huang, P. H. Torr, and S.-M. Hu. Global
contrast based salient region detection. IEEE T. Pattern Anal. Mach.
Intell., 37(3):569–582, 2015.

[10] M.-M. Cheng, J. Warrell, W.-Y. Lin, S. Zheng, V. Vineet, and N. Crook.
Efficient salient region detection with soft image abstraction. In Int.
Conf. Comput. Vis., pages 1529–1536, 2013.

14

[11] R. Desimone and J. Duncan. Neural mechanisms of selective visual
attention. Annual review of neuroscience, 18(1):193–222, 1995.

[12] R. Dongsheng, W. Jun, and Z. Nenggan. Linear context transform block.
arXiv preprint arXiv:1909.03834, 2019.

[13] D.-P. Fan, M.-M. Cheng, J.-J. Liu, S.-H. Gao, Q. Hou, and A. Borji.
Salient objects in clutter: Bringing salient object detection to the
foreground. In Eur. Conf. Comput. Vis., September 2018.

[14] M. Feng, H. Lu, and E. Ding. Attentive feedback network for boundary-
aware salient object detection. In IEEE Conf. Comput. Vis. Pattern
Recog., 2019.

[15] S.-H. Gao, M.-M. Cheng, K. Zhao, X.-Y. Zhang, M.-H. Yang, and
P. Torr. Res2net: A new multi-scale backbone architecture. IEEE T.
Pattern Anal. Mach. Intell., 2020.

[16] S.-H. Gao, Q. Han, D. Li, P. Peng, M.-M. Cheng, and P. Peng.
Representative batch normalization with feature calibration. In IEEE
Conf. Comput. Vis. Pattern Recog., 2021.

[17] S.-H. Gao, Q. Han, Z.-Y. Li, P. Peng, L. Wang, and M.-M. Cheng.
Global2local: Efficient structure search for video action segmentation.
In IEEE Conf. Comput. Vis. Pattern Recog., 2021.

[18] S.-H. Gao, Z.-Y. Li, M.-H. Yang, M.-M. Cheng, J. Han, and P. Torr.
Large-scale unsupervised semantic segmentation, 2021.

[19] S.-H. Gao, Y.-Q. Tan, M.-M. Cheng, C. Lu, Y. Chen, and S. Yan. Highly
efficient salient object detection with 100k parameters. In Eur. Conf.
Comput. Vis., 2020.

[20] L. Gayoung, T. Yu-Wing, and K. Junmo. Deep saliency with encoded
low level distance map and high level features. In IEEE Conf. Comput.
Vis. Pattern Recog., 2016.

[21] Q. Han, K. Zhao, J. Xu, and M.-M. Cheng. Deep hough transform for
semantic line detection. In Eur. Conf. Comput. Vis., 2020.

[22] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hypercolumns
for object segmentation and fine-grained localization. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
447–456, 2015.

[23] J. He, J. Feng, X. Liu, C. Tao, and S. F. Chang. Mobile product search
with bag of hash bits and boundary reranking. In IEEE Conf. Comput.
Vis. Pattern Recog., 2012.

[24] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Int.
Conf. Comput. Vis., pages 1026–1034, 2015.

[25] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In IEEE Conf. Comput. Vis. Pattern Recog., pages 770–
778, 2016.

[26] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang. Soft filter pruning for
accelerating deep convolutional neural networks. In Int. Jt. Conf. Artif.
Intell., 2018.

[27] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang. Filter pruning via geometric
median for deep convolutional neural networks acceleration. In IEEE
Conf. Comput. Vis. Pattern Recog., pages 4340–4349, 2019.

[28] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating very
deep neural networks. In Int. Conf. Comput. Vis., pages 1389–1397,
2017.

[29] S. Hong, T. You, S. Kwak, and B. Han. Online tracking by learning
discriminative saliency map with convolutional neural network. In
International Conference on Machine Learning (ICML), 2015.

[30] Q. Hou, M.-M. Cheng, X. Hu, A. Borji, Z. Tu, and P. Torr. Deeply
supervised salient object detection with short connections. IEEE T.
Pattern Anal. Mach. Intell., 41(4):815–828, 2019.

[31] Q. Hou, P.-T. Jiang, Y. Wei, and M.-M. Cheng. Self-erasing network
for integral object attention. In NeurIPS, 2018.

[32] Q. Hou, J. Liu, M.-M. Cheng, A. Borji, and P. H. Torr. Three birds
one stone: a unified framework for salient object segmentation, edge
detection and skeleton extraction. arXiv preprint arXiv:1803.09860,
2018.

[33] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan, et al. Searching for mobilenetv3. arXiv
preprint arXiv:1905.02244, 2019.

[34] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

[35] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation networks. In IEEE
Conf. Comput. Vis. Pattern Recog., 2018.

[36] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International
Conference on Machine Learning (ICML), 2015.

[37] L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual
attention for rapid scene analysis. IEEE T. Pattern Anal. Mach. Intell.,
20(11):1254–1259, 1998.

[38] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
In Int. Conf. Learn. Represent., 2014.

[39] A. Krogh and J. A. Hertz. A simple weight decay can improve

generalization. In Adv. Neural Inform. Process. Syst., pages 950–957,
1992.

[40] G. Li and J. Kim. Dabnet: Depth-wise asymmetric bottleneck for real-
time semantic segmentation. In Brit. Mach. Vis. Conf., 2019.

[41] G. Li, Y. Xie, L. Lin, and Y. Yu. Instance-level salient object segmen-
tation. In IEEE Conf. Comput. Vis. Pattern Recog., July 2017.

[42] G. Li and Y. Yu. Visual saliency based on multiscale deep features. In
IEEE Conf. Comput. Vis. Pattern Recog., June 2015.

[43] G. Li and Y. Yu. Deep contrast learning for salient object detection. In
IEEE Conf. Comput. Vis. Pattern Recog., June 2016.

[44] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning
filters for efficient convnets. In Int. Conf. Learn. Represent., 2016.

[45] X. Li, F. Yang, H. Cheng, W. Liu, and D. Shen. Contour knowledge
transfer for salient object detection. In Eur. Conf. Comput. Vis., pages
355–370, 2018.

[46] X. Li, L. Zhao, L. Wei, M.-H. Yang, F. Wu, Y. Zhuang, H. Ling,
and J. Wang. Deepsaliency: Multi-task deep neural network model for
salient object detection. IEEE T. Image Process., 25(8):3919 – 3930,
Aug 2016.

[47] Y. Li, X. Hou, C. Koch, J. M. Rehg, and A. L. Yuille. The secrets of
salient object segmentation. In IEEE Conf. Comput. Vis. Pattern Recog.,
June 2014.

[48] M. Lin, Q. Chen, and S. Yan. Network in network. In Int. Conf. Learn.
Represent., 2013.

[49] J.-J. Liu, Q. Hou, M.-M. Cheng, J. Feng, and J. Jiang. A simple
pooling-based design for real-time salient object detection. In IEEE
Conf. Comput. Vis. Pattern Recog., 2019.

[50] N. Liu and J. Han. Dhsnet: Deep hierarchical saliency network for
salient object detection. In IEEE Conf. Comput. Vis. Pattern Recog.,
June 2016.

[51] N. Liu, J. Han, and M.-H. Yang. Picanet: Learning pixel-wise contextual
attention for saliency detection. In IEEE Conf. Comput. Vis. Pattern
Recog., June 2018.

[52] T. Liu, Z. Yuan, J. Sun, J. Wang, N. Zheng, X. Tang, and H. Y. Shum.
Learning to detect a salient object. IEEE Trans Pattern Anal Mach
Intell, 33(2):353–367, 2011.

[53] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang. Learning
efficient convolutional networks through network slimming. In Int.
Conf. Comput. Vis., pages 2736–2744, 2017.

[54] Z. Liu, H. Mu, X. Zhang, Z. Guo, X. Yang, T. K.-T. Cheng, and
J. Sun. Metapruning: Meta learning for automatic neural network
channel pruning. In Int. Conf. Comput. Vis., 2019.

[55] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks
for semantic segmentation. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 3431–3440, 2015.

[56] J.-H. Luo, J. Wu, and W. Lin. Thinet: A filter level pruning method
for deep neural network compression. In Int. Conf. Comput. Vis., pages
5058–5066, 2017.

[57] Z. Luo, A. Mishra, A. Achkar, J. Eichel, S. Li, and P.-M. Jodoin. Non-
local deep features for salient object detection. In IEEE Conf. Comput.
Vis. Pattern Recog., July 2017.

[58] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun. Shufflenet v2: Practical
guidelines for efficient cnn architecture design. In Eur. Conf. Comput.
Vis., pages 116–131, 2018.

[59] R. Margolin, L. Zelnik-Manor, and A. Tal. Saliency for image manipu-
lation. The Visual Computer, 29(5):381–392, 2013.

[60] D. Mehta, K. I. Kim, and C. Theobalt. On implicit filter level sparsity
in convolutional neural networks. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 520–528, 2019.

[61] S. Mehta, M. Rastegari, L. Shapiro, and H. Hajishirzi. Espnetv2: A
light-weight, power efficient, and general purpose convolutional neural
network. In IEEE Conf. Comput. Vis. Pattern Recog., pages 9190–9200,
2019.

[62] A. Mordvintsev, C. Olah, and M. Tyka. Inceptionism: Going deeper
into neural networks, 2015.

[63] V. Movahedi and J. H. Elder. Design and perceptual validation of
performance measures for salient object segmentation. In IEEE Conf.
Comput. Vis. Pattern Recog. Worksh., pages 49–56, June 2010.

[64] Y. Pang, X. Zhao, L. Zhang, and H. Lu. Multi-scale interactive network
for salient object detection. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 9413–9422, 2020.

[65] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello. Enet: A deep
neural network architecture for real-time semantic segmentation. arXiv
preprint arXiv:1606.02147, 2016.

[66] Y. Piao, W. Ji, J. Li, M. Zhang, and H. Lu. Depth-induced multi-scale
recurrent attention network for saliency detection. In Int. Conf. Comput.
Vis., October 2019.

[67] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large
scale visual recognition challenge. Int. J. Comput. Vis., 115(3):211–252,
2015.

15

[68] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 4510–4520, 2018.

[69] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. In Int. Conf. Learn. Represent., 2014.

[70] K. Sun, B. Xiao, D. Liu, and J. Wang. Deep high-resolution represen-
tation learning for human pose estimation. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 5693–5703, 2019.

[71] M. Tan and Q. V. Le. Efficientnet: Rethinking model scaling for
convolutional neural networks. In International Conference on Machine
Learning (ICML), 2019.

[72] A. M. Treisman and G. Gelade. A feature-integration theory of
attention. Cognitive psychology, 12(1):97–136, 1980.

[73] J. Wang, H. Jiang, Z. Yuan, M.-M. Cheng, X. Hu, and N. Zheng. Salient
object detection: A discriminative regional feature integration approach.
Int. J. Comput. Vis., 123(2):251–268, 2017.

[74] L. Wang, H. Lu, Y. Wang, M. Feng, D. Wang, B. Yin, and X. Ruan.
Learning to detect salient objects with image-level supervision. In IEEE
Conf. Comput. Vis. Pattern Recog., 2017.

[75] L. Wang, H. Lu, R. Xiang, and M. H. Yang. Deep networks for
saliency detection via local estimation and global search. In 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

[76] L. Wang, L. Wang, H. Lu, P. Zhang, and X. Ruan. Saliency detection
with recurrent fully convolutional networks. In B. Leibe, J. Matas,
N. Sebe, and M. Welling, editors, Eur. Conf. Comput. Vis., pages 825–
841, 2016.

[77] T. Wang, A. Borji, L. Zhang, P. Zhang, and H. Lu. A stagewise
refinement model for detecting salient objects in images. In Int. Conf.
Comput. Vis., Oct 2017.

[78] T. Wang, L. Zhang, S. Wang, H. Lu, G. Yang, X. Ruan, and A. Borji.
Detect globally, refine locally: A novel approach to saliency detection.
In IEEE Conf. Comput. Vis. Pattern Recog., June 2018.

[79] W. Wang, S. Zhao, J. Shen, S. C. H. Hoi, and A. Borji. Salient
object detection with pyramid attention and salient edges. In The IEEE
Conference on Computer Vision and Pattern Recognition, 2019.

[80] X. Wang, X. Liang, B. Yang, and F. W. Li. No-reference synthetic
image quality assessment with convolutional neural network and local
image saliency. Computational Visual Media, 5(2):193–208, 2019.

[81] J. Wei, S. Wang, Z. Wu, C. Su, Q. Huang, and Q. Tian. Label decoupling
framework for salient object detection. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 13025–13034, 2020.

[82] J. M. Wolfe and T. S. Horowitz. What attributes guide the deployment
of visual attention and how do they do it? Nature reviews neuroscience,
5(6):495–501, 2004.

[83] R. Wu, M. Feng, W. Guan, D. Wang, H. Lu, and E. Ding. A mutual
learning method for salient object detection with intertwined multi-
supervision. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

[84] T. Wu, S. Tang, R. Zhang, and Y. Zhang. Cgnet: A light-weight
context guided network for semantic segmentation. arXiv preprint
arXiv:1811.08201, 2018.

[85] S. Xie and Z. Tu. Holistically-nested edge detection. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 1395–1403, 2015.

[86] Q. Yan, L. Xu, J. Shi, and J. Jia. Hierarchical saliency detection. In
IEEE Conf. Comput. Vis. Pattern Recog., June 2013.

[87] C. Yang, L. Zhang, H. Lu, X. Ruan, and M.-H. Yang. Saliency detection
via graph-based manifold ranking. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 3166–3173, 2013.

[88] H. Yin, P. Molchanov, J. M. Alvarez, Z. Li, A. Mallya, D. Hoiem, N. K.
Jha, and J. Kautz. Dreaming to distill: Data-free knowledge transfer
via deepinversion. In IEEE Conf. Comput. Vis. Pattern Recog., pages
8715–8724, 2020.

[89] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang. Bisenet: Bilateral
segmentation network for real-time semantic segmentation. In Eur.
Conf. Comput. Vis., pages 325–341, 2018.

[90] Y. Zeng, P. Zhang, J. Zhang, Z. Lin, and H. Lu. Towards high-resolution
salient object detection. In The IEEE International Conference on
Computer Vision (ICCV), October 2019.

[91] G. Zhang, C. Wang, B. Xu, and R. Grosse. Three mechanisms of weight
decay regularization. In Int. Conf. Learn. Represent., 2019.

[92] G.-X. Zhang, M.-M. Cheng, S.-M. Hu, and R. R. Martin. A shape-
preserving approach to image resizing. Computer Graphics Forum,
28(7):1897–1906, 2009.

[93] L. Zhang, J. Dai, H. Lu, Y. He, and G. Wang. A bi-directional message
passing model for salient object detection. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.

[94] P. Zhang, D. Wang, H. Lu, H. Wang, and X. Ruan. Amulet: Aggregating
multi-level convolutional features for salient object detection. In Int.
Conf. Comput. Vis., Oct 2017.

[95] P. Zhang, D. Wang, H. Lu, H. Wang, and B. Yin. Learning uncertain

convolutional features for accurate saliency detection. In Int. Conf.
Comput. Vis., pages 212–221. IEEE, 2017.

[96] X. Zhang, T. Wang, J. Qi, H. Lu, and G. Wang. Progressive attention
guided recurrent network for salient object detection. In IEEE Conf.
Comput. Vis. Pattern Recog., June 2018.

[97] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An extremely
efficient convolutional neural network for mobile devices. In IEEE
Conf. Comput. Vis. Pattern Recog., pages 6848–6856, 2018.

[98] J.-X. Zhao, J.-J. Liu, D.-P. Fan, Y. Cao, J. Yang, and M.-M. Cheng.
Egnet: Edge guidance network for salient object detection. In Int. Conf.
Comput. Vis., October 2019.

[99] K. Zhao, S.-H. Gao, W. Wang, and M.-M. Cheng. Optimizing the
f-measure for threshold-free salient object detection. In Int. Conf.
Comput. Vis., October 2019.

[100] X. Zhao, Y. Pang, L. Zhang, H. Lu, and L. Zhang. Suppress and balance:
A simple gated network for salient object detection. In Eur. Conf.
Comput. Vis., pages 35–51. Springer, 2020.

[101] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning
deep features for discriminative localization. In IEEE Conf. Comput.
Vis. Pattern Recog., pages 2921–2929, 2016.

[102] W. Zhu, S. Liang, Y. Wei, and J. Sun. Saliency optimization from robust
background detection. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 2814–2821, 2014.

	Introduction
	Related Works
	Salient Object Detection
	Light-weight Models
	Network Pruning

	gOctConv & Learnable Channels
	Generalized OctConv
	Learnable Channels

	Holistic Light-weight Model for Studying the Semantics of SOD model
	Overview
	In-layer Multi-scale Block
	Cross-stage Fusion
	Implementation details of CSNet

	Analysis of SOD Models
	Category Sensitivity
	Data preparation
	Transfer Learning from SOD to Classification
	SOD over Unseen Categories

	Model Complexity
	Feature Requirements from the Extractor
	ImageNet Pre-training

	Performance Analysis and Ablation
	Implementation
	Performance Analysis
	Ablations

	Conclusion and Discussion
	References
	Biographies
	Ming-Ming Cheng
	Shang-Hua Gao
	Ali Borji
	Yong-Qiang Tan
	Zheng Lin
	Meng Wang

