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PoolNet+: Exploring the Potential of Pooling
for Salient Object Detection
Jiang-Jiang Liu, Qibin Hou, Zhi-Ang Liu, Ming-Ming Cheng

Abstract—We explore the potential of pooling techniques on the task of salient object detection by expanding its role in convolutional
neural networks. In general, two pooling-based modules are proposed. A global guidance module (GGM) is first built based on the
bottom-up pathway of the U-shape architecture, which aims to guide the location information of the potential salient objects into layers at
different feature levels. A feature aggregation module (FAM) is further designed to seamlessly fuse the coarse-level semantic information
with the fine-level features in the top-down pathway. We can progressively refine the high-level semantic features with these two modules
and obtain detail enriched saliency maps. Experimental results show that our proposed approach can locate the salient objects more
accurately with sharpened details and substantially improve the performance compared with the existing state-of-the-art methods.
Besides, our approach is fast and can run at a speed of 53 FPS when processing a 300 × 400 image. To make our approach better
applied to mobile applications, we take MobileNetV2 as our backbone and re-tailor the structure of our pooling-based modules. Our
mobile version model achieves a running speed of 66 FPS yet still performs better than most existing state-of-the-art methods. To verify
the generalization ability of the proposed method, we apply it to the edge detection, RGB-D salient object detection, and camouflaged
object detection tasks, and our method achieves better results than the corresponding state-of-the-art methods of these three tasks.
Code can be found at http://mmcheng.net/poolnet/.

Index Terms—Salient object detection, feature aggregation, global guidance, pooling techniques, mobile application
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1 INTRODUCTION

S ALIENT object detection aims to detect the most visually
distinctive objects from a given image and has gained great

attention for its importance in many computer vision tasks, such as
visual tracking [2], content-aware image cropping and editing [3],
[4], image retrieval [5], video segmentation [6], robot navigation
[7], and weakly-supervised semantic segmentation [8], [9]. As a
basic vision task, salient object detection has gradually become an
indispensable part of computer vision and has great meaning in
the research of higher-level vision problems. In recent years, the
development of salient object detection has been greatly promoted
by convolutional neural networks (CNNs) for their capability
of extracting both high-level semantics and low-level details in
multiple scale-spaces than the traditional methods that relied on
hand-crafted features. A typical characteristic of modern CNNs
is their pyramidal structure, where the feature maps outputted by
shallower layers usually have larger spatial sizes and maintain
sophisticated and detailed low-level patterns. In comparison, the
ones from deeper layers encode high-level semantics and exact
locations of the salient objects. Various new architectures [10]–
[12] have been proposed based on the above observation. The
U-shape structures [13], [14] draw the most interest among these
approaches for their simplicity in building enriched feature maps
by augmenting the bottom-up classification networks with top-
down pathways.

Though the above type of approaches has achieved good
performance, we argue that there is still a large room to improve.
One typical shortcoming of the U-shape structure is that the global
semantic information collected by the top-most layer may be
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disturbed and gradually diluted by the massive local patterns in the
shallower layers when being progressively transmitted in the top-
down pathway, as shown in the top row of Fig. 1. This shortcoming
harms the capability of these approaches in accurately discovering
and segmenting out every part of the salient objects (see Fig. 3 for
more details). Another shortcoming is that the receptive field of a
CNN model does not grow proportionally with its layer depth [15].
It will make the output layer(s) lack sufficient high-level semantic
information to determine where the salient objects are. To make
up for these shortcomings, existing methods propose to introduce
attention mechanisms [16], [17] into the U-shape structures, refine
feature maps in a recurrent way [16], [18], [19], combine multi-
scale feature information [10], [20], [21], or add extra constraints
to the saliency maps [20].

Unlike the methods mentioned above, in this paper, we pro-
pose to remedy these shortcomings by exploring the potential of
the efficient pooling techniques in the U-shape-based architec-
tures. Taking into account the above analysis, we design the net-
work structure mainly basing on two principles. On the one hand,
features from deep layers that contain the location information of
the salient objects should be delivered to all pyramid levels of the
U-shape architecture so that the high-level semantics would not
be diluted. On the other hand, since the feature maps at different
pyramid levels of the U-shape architecture are often with different
resolutions, how to seamlessly merge feature maps from different
pyramid levels is also essential for retaining the original shapes of
the detected salient objects.

Regarding the above design criteria, our model consists of two
primary modules based on the feature pyramid networks1 (FPNs)
[14]: a global guidance module (GGM) and a feature aggregation

1. In what follows, the U-shape architecture we use in this paper by default
refers to the feature pyramid networks (FPNs) [14].
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Fig. 1: Feature maps captured at different pyramid levels of FPNs. (a) Source image and its annotation; (b-f) Feature maps captured
from high to low levels of FPNs; (g) Prediction results. The location information captured by deep layers is gradually diluted when
building the pyramid in the original FPNs (top row). However, when adding global guidance to each level of the pyramid (bottom row),
the locations of salient objects can be better rendered. This phenomenon is especially clear when the salient object is less salient (e.g.,
the right iceberg in the example).

module (FAM). As shown in Fig. 2, the GGM consists of a
modified pyramid pooling module (PPM) and a series of global
guiding flows (GGFs). The GGFs transmit high-level semantic
information collected by the PPM to feature maps at all pyramid
levels, remedying the drawback of FPNs that top-down signals are
gradually diluted. Considering the fusion problem of the coarse-
level feature maps from the GGFs with the feature maps at dif-
ferent scales of the pyramid, we further propose the FAM, which
takes the feature maps after fusion as input. FAM first converts
the fused feature maps into multiple feature spaces to capture
local context information at different scales. It then combines the
information to weigh the compositions of the fused input feature
maps better.

This paper is an extended version of our previous work [1].
In particular, (a) we remove the edge-related parts and now
depend on no extra training data. (b) We propose an advanced
version of FAM, called FAM+, which produces richer feature
representations and achieves better performance than our previous
method and other state-of-the-art algorithms. (c) We dissect the
computational complexity components of our approach and cut off
the redundancy for efficiency while maintaining its performance.
(d) We propose a light-weighted version of our approach to
satisfy the demands on mobile devices. (e) We include additional
detailed analysis, more quantitative and qualitative ablation re-
sults to help comprehensively analyze the design criteria of the
proposed approach and better understand why it can achieve good
performances and a fast speed. (f) We apply our approach to the
edge detection, RGB-D salient object detection, and camouflaged
object detection tasks to demonstrate its generalization ability.

It has been shown in our conference version that FAMs
help discover rich local details. In this paper, we show that this
ability can be further advanced. Unlike the original FAM that
the feature transformations in different scale-spaces are conducted
individually, inspired by [22], FAM+ explicitly builds internal
communications between the parallel branches so that the output
feature representations can be further enriched. Compared to
FAM, FAM+ does not introduce any learnable parameters but
largely improves the performance. We will give more analysis and
numerical results in our experiment section.

Our original network is called PoolNet in that the new modules
we design are mainly based on the pooling techniques. To distin-
guish with our conference version [1], we call our new network
with FAM+ as PoolNet+. Here, ‘+’ means an improved version. To
the best of our knowledge, we are the first to study how to design
effective pooling-based modules to improve the performance of

salient object detection models. To evaluate the performance of
PoolNet+, we report results on five popular salient object detection
benchmarks. Without bells and whistles, PoolNet+ outperforms
all previous state-of-the-art methods by a large margin. Also,
we conduct a series of ablation experiments to let readers better
understand the impact of each component in PoolNet+ on the
performance. Other than attractive model performance, PoolNet+
can also run fast. We achieve a speed of 53 FPS on a single
NVIDIA RTX-2080Ti GPU for an input image of size 300× 400.
Training PoolNet+ takes less than 7 hours on a training set of
10,533 images, which is much faster than most of the previous
methods [10], [17], [20], [21], [23], [24].

Regarding applications in mobile devices, we also present a
light-weighted version of PoolNet+, named PoolNet-M+, which
can run at 66 FPS without sacrificing too much on performance
(∼ 1% drop in F-measure) but with only a small number of
parameters (∼ 3 M) and MAdds (∼ 1.2 G). It is mainly due
to the effective utilization of pooling techniques that require a
small number of computational resources. PoolNet+ also shows
great generalization ability, which achieves state-of-the-art results
when applied to edge detection, RGB-D salient object detection,
and camouflaged object detection. PoolNet+, therefore, can be
viewed as a baseline to help ease future research in salient object
detection.

The rest of our paper is organized as follows. Sec. 2 briefly
reviews previous researches that are strongly related to this work.
Sec. 3 describes the proposed PoolNet and PoolNet+ and analyzes
the functions of the proposed pooling techniques. Sec. 4 extends
PoolNet+ to a light-weighted version, named PoolNet-M+. Sec. 5
gives the experimental results of our approach in both salient ob-
ject detection and edge detection. Sec. 6 discusses the redundancy,
efficiency, and failure cases. Sec. 7 applies our approach to the task
of edge detection. Finally, Sec. 8 concludes the whole paper.

2 RELATED WORK

2.1 Salient Object Detection
Traditional salient object methods are mostly based on hand-
crafted features [25]–[28]. Early deep learning-based methods
usually predicted the saliency scores regionally by using features
extracted from image patches or super-pixels [29]–[32] or object
proposals [33]–[35]. These methods were time-consuming for the
extracted regional features needed to be processed sequentially.
Inspired by the success of fully convolutional networks [36],
recent research mostly focuses on designing saliency models that
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make pixel-wise predictions. In this section, we will only review
representative approaches that are based on CNNs. Readers may
refer to recent review work [37]–[39] for more details about
traditional methods. The CNN-based approaches can be briefly
categorized into five categories [39] according to their network
architectures.

Single-stream network is the simplest structure. It consists of a
sequence of convolutional layers, non-linear layers, and several
pooling layers for spatially down-sampling. The prediction is
made directly at the end of the network. Because there are few
places where a single-stream network can be modified, most
methods focus on other aspects. For example, [24] proposed
to enhance its model’s robustness by utilizing a re-formulated
dropout mechanism and designed a hybrid up-sampling function
for more accurate prediction. In [19], the idea of recurrent learning
was utilized by taking the saliency prior maps generated from low-
level cues as guidance. [40] proposed to stage-wisely refine the
coarse prediction maps generated in the early stages with more
details.

Multi-stream network usually takes inputs with different reso-
lutions and utilizes multiple network streams to generate multi-
scale saliency features. For example, [41] designed a two-stream
network consisting of a pixel-level fully convolutional stream and
a segment-wise spatial pooling stream to directly produce a pixel-
level saliency map and efficiently extract segment-wise features,
respectively. The complementary features were then fused for final
prediction. [42] aimed to make high-resolution saliency prediction
by building a global semantic network and a local refinement
network to extract global and local information, respectively.

Side-fusion network takes advantage of the spatial pyramid struc-
ture of CNNs and utilizes the extracted multi-scale features for
prediction. A typical characteristic of the side-fusion network
is that the side-outputs will also be supervised by the ground-
truth. [10] added additional short-connections from deeper to
shallower side-outputs to better utilize the location information
in higher-level features. [20] built a multi-resolution 4 × 5 grid
structure to efficiently combine local and global information and
proposed a Bayesian loss that penalized errors on the boundary
to enforce spatial coherence. [43] proposed to discard low-level
features to reduce the computational complexity of aggregation
modules and utilize generated attention maps to refine high-level
features to improve performance. [44] enhanced high-level context
information with channel-wise attention and low-level structural
features with spatial attention.

U-shape network refines the coarse saliency features produced
by the top-most layer by gradually aggregating the finer features
from its lower layers with an extra top-down pathway. Prediction
is directly made at the end of the top-down pathway. Among
the well-known U-shape networks, [16], [17], [45], [46] designed
various attention-based modules or mechanisms for improvement.
Despite the attention, [12] employed a recurrent module to pro-
gressively refine the inner structure of its CNN over time and a
specialized network to learn the local pixel-wise contextual in-
formation for boundary recovering. [46], [47] introduced different
boundary-aware losses as an assistant to learn exquisite object
boundaries. [23] built a gated bi-directional network to effectively
exchange information among the multi-level features extracted by
the backbone network. [48] proposed to integrate both top-down
and bottom-up saliency inference iteratively and cooperatively for

more effective optimization.

Multi-branch network usually has multiple output branches cor-
responding to different tasks. It utilizes the concept of multi-task
learning to help the network with better feature extraction ability.
For instance, the network designed in [11] could simultaneously
estimate salient objects contours and saliency maps, which would
implicitly drive the intermediate features to concentrate more on
the edge pixels. Similarly, [49] stacked a series of cross refinement
units to simultaneously refine multi-level features of salient object
detection and edge detection. [50] supervised the network for
saliency detection, additionally with foreground contour detection
and edge detection to alleviate the incomplete predictions. [51]
extended the salient object detection task further by utilizing eye
fixations information.

The proposed approach is based on the U-shape structure.
However, unlike the approaches above that solved the task
by designing various network architectures, advancing attention
mechanisms, or including more supervisions, we investigate how
to utilize the efficient pooling techniques to solve the global
information dilution problem and feature fusion problem across
large scales in the U-shape structure.

2.2 Pooling
As a key component in modern CNNs, pooling mainly has two
functions. The first is to reduce the spatial size of feature maps,
thereby reducing the computational cost. The second is to enhance
the translation invariance capability and help relieve the overfitting
problem during optimization.

Basic Operations. As the two most commonly used types of
pooling operations, average [52], [53] and maximum [54] pooling
aims to select the average and maximum value inside the target
pooling window as its output, respectively. For average pooling,
the gradient is evenly distributed to all pixels in the pooling win-
dow during back-propagation. For maximum pooling, the gradient
only considers the maximum value pixel while the gradients of the
rest pixels inside the pooling window are set to zero. [55] proposed
a mixing strategy and a gating strategy to combine maximum and
average pooling, and further introduced a more complicated tree-
structured self-learning pooling strategy.

Advanced Operations. Instead of basing on the basic average and
maximum pooling, [56] presented a lossless pooling for image
super-resolution that could down-sample a single-channel map
to a multi-channel map with lower spatial resolution without
information loss. [57] designed a local importance-based pooling
that could learn adaptive and discriminative importance maps to
aggregate features for down-sampling instead of the hand-crafted
ones. [58] studied the shape of pooling windows and exploited a
lightweight strip pooling strategy that adopted long and narrow
pooling windows both vertically and horizontally.

Different from the above methods that aimed to design various
pooling functions, we explore how pooling can be utilized to build
a more efficient and effective salient object detection network. The
proposed network can cooperate with most of the pooling opera-
tions mentioned above. We will show that the proposed network
can generalize well to more sophisticated pooling operations in
the experiment section, other than only the basic ones.

2.3 Edge Detection
Edge detection is one of the most fundamental problems in
computer vision. Traditional methods, such as Canny [59], mainly
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Fig. 2: Pipeline of our salient object detection model, where high-level semantic features containing the location information of salient
objects can be delivered to each pyramid level in the top-down pathway. We use a pyramid pooling module (PPM) to locate salient
objects better and introduce global guiding flows to deliver the captured location information to fuse with the features at each pyramid
level. After each fusion, a feature aggregation module (FAM) is connected to help reduce the aliasing effect and enrich the details.

focused on utilizing the intensity and color gradients. Later, many
feature learning methods based on information theory [60]–[63]
were proposed, which attempted to employ various hand-crafted
features to capture information from both local and global aspects.

Due to strong features extracted by CNNs, deep learning-based
methods have recently overwhelmed the traditional approaches
in accuracy and speed. [64] combined CNNs with the nearest
neighbor search by proposing N4-Fields. [65] partitioned the
contour data into sub-classes and fit each sub-class by different
model parameters. [66] introduced the concept of deep supervision
and applied it to CNNs by adding extra supervision to the last
convolutional layer of each stage. [67] extended edge detection
with the concept of semantic segmentation and proposed a model
to detect and recognize the semantic categories of edge pixels
simultaneously. [68] proposed to learn crisp boundaries by intro-
ducing a top-down backward refinement pathway. [69] extended
HED [66] by adding side supervision to the combination of the
outputs of all convolutional layers in each stage instead of the last
one.

Though the proposed approach is targeted at salient object
detection, we will show that it generalizes well to the edge
detection task and performs comparably to the above methods
specifically tailored for edge detection.

3 POOLNET

It has been pointed out in [10], [12], [18], [40] that high-level
semantic features help discover the specific locations of salient
objects. In the meantime, low- and mid-level features are also
essential for improving the features extracted from deep layers
from a coarse level to a fine level. Based on the above knowledge,
in this section, we propose a couple of pooling-based modules
capable of accurately capturing the exact positions of salient
objects and sharpening their details.

3.1 Overall Pipeline
We build our architecture based on the feature pyramid networks
(FPNs) [14], which belong to a type of classic U-shape archi-
tecture designed in a bottom-up and top-down manner. Due to
its strong ability to fuse multi-level features from the backbone
networks [70], [71], this type of architecture has been widely
adopted in many computer vision tasks, including salient object
detection. Despite so, a key problem of FPNs is that the high-level
semantic information is progressively transmitted to lower layers,
which makes the location information captured by deep layers
gradually diluted.

Given the FPN structure, as shown in Fig. 2, we introduce a
global guidance module (GGM) built upon the top of the bottom-
up pathway. By aggregating the high-level information extracted
by GGM into feature maps at each feature level, our goal is to
explicitly notice the layers at different pyramid levels where the
salient objects are. After the guidance information from GGM
is merged with the features at different levels, in our original
conference version, we introduce a feature aggregation module
(FAM) to ensure that feature maps at different scales can be well
merged. This paper further advances the original FAM structure
and presents a new version: FAM+, which we found can better
capture local details. In what follows, we describe the structures
of the modules mentioned above and explain their functions in
detail.

3.2 Global Guidance Module
While FPNs provide a classic architecture for combining multi-
level features from the classification backbone, the problem for
this type of architecture is that the high-level features will be
gradually diluted when transmitted to lower layers because the
top-down pathway is built upon the bottom-up backbone. It has
been shown in [15], [72] that the empirical receptive fields of
CNNs are much smaller than the ones in theory, especially for
deeper layers. Hence, the receptive field of the whole network is
not large enough to capture the global information of the input
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Fig. 3: Visual comparisons for salient object detection among different configurations of our approach. (a) Source image; (b) Ground
truth; (c) FPN baseline [14]; (d) FPN + FAMs; (e) FPN + PPM (pyramid pooling module); (f) FPN + GGM; (g) FPN + GGM + FAMs.
Adding GGM improves the ability to discover the accurate positions of salient objects substantially. More interestingly, the utilization
of FAMs can further improve the quality of the resulting saliency maps in that the boundary details are well refined.
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Fig. 4: Detailed illustrations of our feature aggregation module
(FAM) and its advanced version (FAM+). (a) Original FAM,
which comprises four parallel sub-branches and each of which
works in an individual scale-space. After up-sampling, all these
sub-branches are combined via summation and then fed into
a convolutional layer. (b) Proposed FAM+, which introduces a
series of short connections between different sub-branches to build
internal communications explicitly.

images sufficiently. The immediate effect on this is that only parts
of the salient objects can be discovered, as shown in Fig. 3c.
To eliminate the lack of high-level semantic information for fine-
level feature maps in the top-down pathway, we introduce a global
guidance module (GGM). It contains a modified pyramid pooling
module [15], [40] and a series of global guiding flows to explicitly
make feature maps at each level be aware of the locations of the
salient objects, as shown in Fig. 2.

To be more specific, the pyramid pooling module in our GGM
consists of four sub-branches to capture the context information
of the input images. The first and last sub-branches are an identity
mapping layer and a global average pooling layer. For the two

middle sub-branches, we adopt the adaptive average pooling layer2

to ensure that their output feature maps are with spatial sizes 3×3
and 5× 5, respectively. Given the pyramid pooling module, what
we need to do now is to guarantee that the guidance information
produced by it can be reasonably fused with the feature maps at
different levels in the top-down pathway.

Quite different from the previous work [40], which simply
views the pyramid pooling module as a part of the FPNs, our pyra-
mid pooling module is independent of the FPNs. By introducing a
series of global guiding flows (identity mappings), the high-level
semantic information can be easily delivered to feature maps at
various levels (see the green arrows in Fig. 2). In this way, we
explicitly transmit the global guidance information into each part
of the top-down pathway to ensure that the location information
will not be diluted when building FPNs.

To better demonstrate the effectiveness of our GGM, we show
some visual comparisons, where some saliency maps produced
by a VGGNet version of FPNs3 are illustrated in Fig. 3c. It can
be easily found that with only the FPN baseline, it is difficult
to locate salient objects for some complex scenes. There are
also some results in which only parts of the salient object are
detected. However, when our GGM is incorporated, the quality
of the resulting saliency maps is greatly improved despite some
losses in boundary details. As shown in Fig. 3f, salient objects can
be precisely discovered, verifying the importance of GGM.

3.3 Feature Aggregation Module
The utilization of our GGM allows global guidance information
to be delivered to feature maps at different pyramid levels.
However, a new question that deserves asking is how to make
the coarse-level feature maps from GGM seamlessly merge with
the feature maps at different pyramid scales. Taking the VGGNet
version of FPNs as an example, the feature maps corresponding
to C = {C2, C3, C4, C5} in the pyramid have down-sampling
rates {2, 4, 8, 16} corresponding to the size of the input image,

2. https://pytorch.org/docs/stable/nn.html#adaptiveavgpool2d
3. Similar to [14], we use the feature maps outputted by conv2, conv3,

conv4, conv5 which are denoted by {C2, C3, C4, C5} to build the feature
pyramid upon the VGGNet [71]. The channel numbers corresponding to
{C2, C3, C4, C5} are set to {128, 256, 512, 512}, respectively.
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Fig. 5: Visualization of feature maps around FAMs. Feature maps
shown on the left are from models with FAMs, while feature maps
displayed on the right are from the models replacing FAMs with
two convolution layers. The last row is source images and the
corresponding ground-truth annotations. (a-d) are visualizations of
feature maps at different places. As can be seen, when our FAMs
are used, feature maps after FAMs can more precisely capture the
location and detailed information of the salient objects (Column a),
in comparison with those after two convolutional layers (Column
c). Better and clearer effect can be observed when viewed in color.

respectively. In the original top-down pathway of FPNs, feature
maps with coarser resolutions are up-sampled by a factor of 2.
Therefore, adding a convolutional layer with kernel size 3×3 after
the merging operation can effectively reduce the aliasing effect of
up-sampling. However, some of the global guiding flows need
larger up-sampling rates (e.g., 8). It is essential to bridge the big
spatial gaps between the global guiding flows and the feature maps
of different scales efficiently and effectively.

To this end, we present a series of feature aggregation modules
(FAMs), each of which contains four sub-branches, as illustrated
in Fig. 4a. As can be seen, the input feature maps are first
transformed into different scale-spaces by being fed into mul-
tiple average pooling layers with varying down-sampling rates.
The feature maps from different sub-branches after convolutional
transformations are then up-sampled and used as residuals to
merge with the input feature maps. A 3 × 3 convolutional layer
is attached after fusion. In general, FAM offers two advantages.
On the one hand, it assists our model in reducing the aliasing
effect caused by up-sampling operations, especially when the
up-sampling rate is large (e.g., 8). On the other hand, it allows
each spatial location to view the local context in different scale-
spaces, further enlarging the receptive field of the whole network.
To the best of our knowledge, this is the first work revealing
that reasonable utilization of pooling techniques helps reduce the
aliasing effect of up-sampling, especially when the up-sampling
rate is large.

To verify the effectiveness of our proposed FAMs, we visualize

the feature maps near the FAMs in Fig. 5. By comparing the left
part (w/ FAMs) with the right part (w/o FAMs), feature maps
after FAMs (Column a) can better capture the salient objects than
those without FAMs (Column c). In addition to visualizing the
intermediate feature maps, we also show some saliency maps
produced by models with different settings in Fig. 3. By comparing
the results in Column f (w/o FAMs) and Column g (w/ FAMs), it
can be easily found that introducing FAM multiple times allows
our network to sharpen the details of the salient objects better.
This phenomenon is especially clear by observing the second row
of Fig. 3. All the discussion above verifies the significant effect of
our FAMs on better fusing feature maps at different scales. In our
experiment section, we will give more numerical results.

3.4 Advanced Feature Aggregation Module

In our conference version, we have investigated the effect of
our FAMs on sharpening the object details and improving the
model performance. In this part, we demonstrate that reasonably
modeling the dependencies between sub-branches in the FAMs is
beneficial to the saliency results as well. To distinguish with the
FAMs described above, we call our new design advanced feature
aggregation module, or FAM+ for short.

The structure of our FAM+ has been shown in Figure 4(b).
Compared to our original FAM, which independently conducts
feature transformations in different scale-spaces, we add a series of
short connections (down-sampling operations) between adjacent
sub-branches in FAM+. More concretely, the fine-level feature
maps after convolutional transformation are not only directly up-
sampled for fusion but also sent to the coarser-level sub-branch to
conduct a new convolutional transformation. This design explic-
itly establishes internal communications between adjacent sub-
branches, allowing the output features to be more discriminative.
Compared to the original FAM, FAM+ requires no extra learnable
parameters but leads to better performance. We will give more
numerical results in Sec. 5.

3.5 Discussion

Our feature aggregation module (FAM) is proposed to bridge the
large spatial gaps between the local contextual information and
global guidance information with efficient pooling techniques.
Existing feature aggregation modules solved this problem mostly
by increasing the convolutional operations’ kernel sizes or dila-
tion rates. However, large kernel sizes mean more parameters
and MAdds, while large dilation rates require more memory
and slow down the speed. The pooling operations used in our
FAM, on the contrary, introduce no additional parameters while
reducing the spatial resolution of the feature maps and making
the subsequent convolution operations have less memory and
computational burden. In addition to the efficiency advantage,
the pooling operations introduce more translation invariance and
prevent overfitting. In general, FAM can reduce the aliasing effect
caused by up-sampling operations, as shown in Fig. 5. It can also
enlarge the receptive field of the whole network and obtain more
precise location information and better performance, as shown in
Fig. 3 and Table 1. We also advance FAM by explicitly building
internal communications between the adjacent sub-branches and
present FAM+, producing richer feature representations. FAM+
does not introduce any learnable parameters but largely improves
the performance.
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4 POOLNET-M
Due to the large number of parameters and MAdds in the backbone
(compared to light-weighted models [73]), it is difficult to deploy
PoolNet to applications on mobile devices directly. In many real-
world scenarios, such as mobile phones and robotics, it’s of great
importance to carry out the detection and segmentation algorithms
in a timely fashion on a computationally limited platform. As an
alternative, in this section, we propose a light-weighted version
of PoolNet by rethinking the trade-off between efficiency and
effectiveness, which is abbreviated as PoolNet-M.

In this paper, we take the famous and successful MobileNetV2
[73] as an exemplar backbone to re-design our PoolNet-M. It
is also worth mentioning that any other light-weighted classifi-
cation networks can also be considered. MobileNetV2 contains
an initial fully convolutional layer with 32 filters, followed by
19 inverted residual blocks divided into seven stages and a final
fully-connected layer for classification. We remove the last fully-
connected layer, change the strides of the 3 × 3 convolutional
layers in the 6th stage to 1, and increase the dilation rates of
the 3 × 3 convolutional layers in the last two stages to 2 to
maintain the large receptive field. To build FPNs, we use feature
maps from the last layers of stages {1, 2, 3, 5, 7}, which have
down-sampling rates of {2, 4, 8, 16, 16}, respectively. Regarding
the computational cost, five 1 × 1 convolutional layers with
channel numbers {12, 16, 24, 36, 72} are connected to the stages
mentioned above.

Directly using standard 3 × 3 convolutions in the FAM or
FAM+ and the pyramid pooling module would introduce lots of
learnable parameters. Depthwise separable convolutions [73] elim-
inate this problem by ingeniously combining the depthwise and
pointwise convolutions for their capabilities in building spatial and
inter-channel dependencies, respectively. To further reduce com-
putational cost while keeping high performance, MobileNetV2
adopts inverted residual blocks, which reduce the channel numbers
of 1× 1 pointwise convolutions but expands the 3× 3 depthwise
bottleneck. Likewise, to make our model lighter, we use inverted
residual blocks to replace the 3×3 convolutional layers in both the
pyramid pooling module and FAM (FAM+). The input and output
channels in the inverted residual blocks at each level are set to
{12, 16, 24, 36, 72}, respectively, and the expansion rates are all
set to 3. We will show in Sec. 5 that the new-designed PoolNet-M
(PoolNet-M+) can achieve comparable performance against those
existing state-of-the-arts with a large reduction of the learnable
parameters and MAdds.

5 EXPERIMENTS

This section first describes the experiment setups, including the
implementation details, the datasets used, and the evaluation met-
rics. We then conduct a series of ablation studies to demonstrate
the impact of each component of our proposed approach on
the performance. Moreover, we report the performance of our
approach under different settings and compare them with previous
state-of-the-art methods.

5.1 Experiment Setup

Implementation Details. The proposed framework is imple-
mented based on the PyTorch repository4. All experiments are

4. https://pytorch.org

carried out on a workstation with an Intel Xeon 12-core CPU
(3.6GHz), 64GB RAM, and a single NVIDIA RTX-2080Ti GPU.
The backbone parameters of our network (e.g., VGG-16 [71],
ResNet-50 [70], and MobileNetV2 [73]) are initialized with the
corresponding models pre-trained on the ImageNet dataset [77],
and the remaining ones are randomly initialized. We train the
networks with heavy backbones for 36 epochs in total, and the
initial learning rate is set to 5e-5, which is divided by 10 after 27
epochs. In comparison, the light-weighted network is trained for
60 epochs in total with an initial learning rate of 1e-4, which is
divided by 10 after 50 epochs. For all experiments, the Adam [78]
optimizer with a weight decay of 5e-4 is used, and the training
batch size is set to 10. We use random rotation and horizontal
flipping for data augmentation. In both training and testing phases,
input images are resized to 384 × 384. Unlike our conference
version, we do not use any additional training data in this paper as
all the edge-related parts have been removed.

Datasets. To evaluate the performance of our proposed frame-
work, we conduct experiments on five commonly used datasets,
including ECSSD [79], PASCAL-S [74], DUT-OMRON [75],
HKU-IS [29], and DUTS-TE [76].

Loss Function. The standard binary cross entropy loss is used as
commonly done, which is defined as follows:

loss(S,G) = − 1

N

N∑
k=1

[Gklog(Sk)+(1−Gk)log(1−Sk)], (1)

where S and G denote the predicted map and the ground truth,
respectively, while k is the index of pixels and N is the number
of pixels in S.

Evaluation Criteria. We evaluate the performance of our ap-
proach and other methods using four widely-used metrics:
precision-recall (PR) curves, F-measure score, mean absolute error
(MAE), and Structural measure (S-measure) [80].

• The precision value is the ratio of ground truth salient
pixels in the predicted salient region, while the recall
value is the percentage of the detected salient pixels in
all ground truth areas. The precision and recall values are
calculated by comparing the predicted saliency map after
thresholding with the corresponding ground truth. We plot
the precision-recall curve at different thresholds using the
average precision and recall of all images in the dataset.

• F-measure, denoted as Fβ , is an overall performance
measurement and is computed by the weighted harmonic
mean of the precision and recall:

Fβ =
(1 + β2)× Precision×Recall

β2 × Precision+Recall
, (2)

where β2 is set to 0.3 as done in previous work to weight
precision more than recall. We report the maximum F-
measure from all precision-recall pairs, which is a good
summary of the method’s detection performance [37].

• The MAE score is defined as the average pixel-wise
absolute difference between the binary ground truth and
the saliency map. It indicates how similar a saliency map
S is when compared to the ground truth G:

MAE =
1

W ×H

W∑
x=1

H∑
y=1

|S(x, y)−G(x, y)|, (3)
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No. FPN
GGM FAM/ PASCAL-S [74] DUT-OMRON [75] HKU-IS [29] DUTS-TE [76]

PPM GGFs FAM+ Fβ ↑ MAE ↓ Sm ↑ Fβ ↑ MAE ↓ Sm ↑ Fβ ↑ MAE ↓ Sm ↑ Fβ ↑ MAE ↓ Sm ↑
1 ✓ - 0.825 0.090 0.816 0.760 0.071 0.779 0.910 0.041 0.889 0.830 0.054 0.835
2 ✓ ✓ - 0.848 0.081 0.835 0.796 0.062 0.814 0.917 0.038 0.898 0.856 0.048 0.858
3 ✓ ✓ - 0.833 0.087 0.823 0.773 0.068 0.791 0.913 0.040 0.892 0.839 0.051 0.844
4 ✓ ✓ ✓ - 0.856 0.075 0.848 0.799 0.062 0.810 0.925 0.038 0.907 0.860 0.047 0.865
5 ✓ FAM 0.855 0.080 0.840 0.808 0.061 0.821 0.923 0.039 0.903 0.863 0.049 0.865
6 ✓ ✓ ✓ FAM 0.866 0.075 0.849 0.813 0.060 0.830 0.927 0.036 0.908 0.870 0.045 0.871
7 ✓ FAM+ 0.856 0.080 0.841 0.817 0.059 0.826 0.925 0.036 0.907 0.872 0.045 0.869
8 ✓ ✓ ✓ FAM+ 0.872 0.070 0.857 0.817 0.059 0.832 0.931 0.035 0.914 0.878 0.043 0.880

Table 1: Ablation analysis for the proposed GGM, FAM, and FAM+. As can be observed, each component in our architecture plays an
important role and contributes to the performance. Especially, our new FAM+ works better than the original FAM in most cases. The
best performance in each column is highlighted in bold.

where W and H denote the width and height of saliency
map S, respectively.

• S-measure evaluates the structural similarity between the
real-valued saliency map and its binary ground-truth. It
considers the object-aware (So) and region-aware (Sr)
structure similarities simultaneously:

Sm = α× So + (1− α)× Sr, (4)

where α is empirically set to 0.5.

5.2 Ablation Studies

We experiment with different module design options and network
configurations to illustrate the effectiveness of each component of
our method. By default, our ablation experiments are performed
based on VGG-16 and the DUTS-TR [76] dataset unless special
explanations. We test models under different settings of our ap-
proach on four challenging datasets: PASCAL-S, DUT-OMRON,
HKU-IS, and DUTS-TE.

5.2.1 Effectiveness of PoolNet
In this subsection, except for different combinations of GGM and
FAMs (or FAM+s), all other network configurations are kept the
same.

GGM Only. The addition of GGM (the 4th row in Table 1)
gives performance gains in all terms of F-measure, MAE, and
S-measure on all four datasets over the FPN baseline. The global
guidance information produced by GGM allows our network to
focus more on the integrity of salient objects, greatly improving
the quality of the resulting saliency maps. As shown in Table 1,
simply adding GGM to the baseline FPN has a performance gain
of around 4% on the DUT-OMRON dataset (0.799 v.s. 0.760) in
F-measure and more than 3% on the same dataset in S-measure.
A similar phenomenon can also be observed on the other three
datasets. From Fig. 3 (Column f v.s. Column c), it can be easily
found that the utilization of GGM helps discover more accurately
where the salient objects are. Therefore, the details of the salient
objects can be sharpened, which might be wrongly estimated as
background for models with limited receptive fields (e.g., Column
c in the last row of Fig. 3).

FAMs Only. Simply embedding FAMs into the FPN baseline
(the 5th v.s. 1st rows in Table 1) is helpful on almost all four
datasets. For instance, compared to the results with no FAM
incorporated, adding FAMs improves the F-measure scores on

Image GT w/o PPM w/ PPM

Fig. 6: Feature maps outputted by the last layer of the bottom-
up pathway. As can be seen, when the PPM is incorporated, our
network can more accurately locate the salient objects, even their
boundaries. On the contrary, when removing the PPM, the location
information of salient objects loses a lot. It demonstrates that
leveraging PPM is indeed helpful for segmenting the complete
salient objects due to its effective way of increasing the receptive
field of our network.

the DUT-OMRON and DUTS-TE datasets by 4.8% and 3.3%,
respectively. It is because that the pooling operations inside FAMs
also enlarge the receptive field of the whole network compared
to the models without them. It can also be observed from the
visual examples displayed in Fig. 3 (Column d v.s. Column c),
where the predictions with FAMs involved have more integral
segmentation results. Moreover, the FPN baseline, even with GGM
incorporated, still needs to merge feature maps from different
levels. The further improvement after adding FAMs (the 6th v.s.
5th rows in Table 1) indicates the effectiveness of our FAMs for
solving the aliasing effect of up-sampling. The visual results in
Fig. 3 (Column g v.s. Column f) also verify the above argument.
As can be seen, models with FAMs introduced can better sharpen
the details of the detected salient objects. However, for Column
f, the corresponding model does not possess this ability to render
the object boundaries clearly. The coarse-level features from deep
layers after up-sampling cannot be well fused with fine-level
features when no FAM involves, raising undesired aliasing effect
and poor boundary quality.

GGM & FAMs. By introducing both GGM and FAMs into the
FPN baseline (the 6th row in Table 1), the performance compared
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No. FAM+ PASCAL-S [74] DUT-OMRON [75] HKU-IS [29] DUTS-TE [76]
P1 P2 P4 P8 Fβ ↑ MAE ↓ Sm ↑ Fβ ↑ MAE ↓ Sm ↑ Fβ ↑ MAE ↓ Sm ↑ Fβ ↑ MAE ↓ Sm ↑

1 ✓ 0.856 0.075 0.848 0.799 0.062 0.810 0.925 0.038 0.907 0.860 0.047 0.865
2 ✓ ✓ 0.866 0.071 0.853 0.806 0.061 0.819 0.931 0.035 0.910 0.873 0.043 0.874
3 ✓ ✓ ✓ 0.872 0.070 0.855 0.816 0.059 0.824 0.931 0.035 0.913 0.873 0.043 0.874
4 ✓ ✓ ✓ ✓ 0.872 0.070 0.857 0.817 0.059 0.832 0.931 0.035 0.914 0.878 0.043 0.880

Table 2: Ablation analysis on the importance of each sub-branch in FAM. Pi denotes average pooling layer of kernel size i × i and
stride i, aside from P1, which denotes the identity mapping sub-branch. The best performance in each column is highlighted in bold.

No. Pooling Type PASCAL-S [74] DUT-OMRON [75] HKU-IS [29] DUTS-TE [76]
GGM FAM+ Fβ ↑ MAE ↓ Sm ↑ Fβ ↑ MAE ↓ Sm ↑ Fβ ↑ MAE ↓ Sm ↑ Fβ ↑ MAE ↓ Sm ↑

1 Max Max 0.868 0.069 0.852 0.812 0.061 0.823 0.931 0.035 0.915 0.869 0.046 0.865
2 Max Avg 0.868 0.070 0.857 0.812 0.063 0.818 0.930 0.035 0.915 0.872 0.045 0.871
3 Avg Max 0.874 0.068 0.859 0.815 0.061 0.821 0.931 0.035 0.914 0.874 0.044 0.873
4 Avg Avg 0.872 0.070 0.857 0.817 0.059 0.832 0.931 0.035 0.914 0.878 0.043 0.880

Table 3: Ablation analysis on the impact of different types of pooling operations used in GGM and FAM+. As can be observed, when
using the average pooling operations in both GGM and FAM+, better overall performances can be achieved. The best performance in
each column is highlighted in bold.

to the models with either GGM or FAMs incorporated can be
further enhanced in all terms of F-measure, MAE, and S-measure.
This phenomenon demonstrates that our GGM and FAM are two
complementary modules. On the one hand, the utilization of the
proposed GGM allows our approach to possess a strong capability
of accurately discovering salient objects and keep the detected
objects more integral. On the other hand, our FAMs can help
refine the details of the discovered salient objects. As illustrated
in Fig. 3, by comparing Column g and Column d, we can observe
that adding GGM can locate the salient regions more precisely.
By comparing Column g and Column f, our approach with both
GGM and FAMs can capture more detailed information about the
boundaries of salient objects. More qualitative results can be found
in Fig. 9.

FAM+ v.s. FAM. As shown in Table 5, when taking the VGG-
16 as the backbone, our network with GGM and FAMs has
already achieved better performance than previous state-of-the-
art methods. Here, we show that simply adjusting the structure
of our original FAM by introducing internal communications, as
described in Sec. 3.4 can further boost the performance. Table 1
shows the results when replacing the original FAM with our newly
proposed FAM+. By comparing results from the 7th v.s. 5th rows,
or the 8th v.s. 6th rows, we can easily observe that the utilization of
FAM+ leads to steady improvements on all four datasets and both
circumstances, either with GGM incorporated or not, respectively.
Specifically, the results on the challenging PASCAL-S and DUTS-
TE datasets can be boosted by ∼ 1% in terms of F-measure and
S-measure. It reflects that building internal communications within
the original FAM does matter for achieving higher performance.

5.2.2 Ablation on GGM
To better understand the constitution of our proposed GGM, we
perform two ablation experiments, which correspond to the 2nd
and 3rd rows in Table 1, respectively. We first remove the pyramid
pooling module while connecting the feature map C5 to each
pyramid level in the top-down pathway (i.e., keeping the global
guiding flows only). This operation degrades the performance of
our approach by more than 2% in F-measure (Row 3 v.s. Row
4). Furthermore, we attempt to drop out all the global guiding
flows by directly connecting the pyramid pooling module to C5

and building the FPN. This modification makes the performance
decline as well compared to the results with the entire GGM
considered (Row 2 v.s. Row 4). In Fig. 6, we also show some
visualizations of the feature maps outputted by the last layer of
the bottom-up pathway. Apparently, the pyramid pooling module
is capable of better capturing the locations of salient objects
and guaranteeing their integrity. These experiments indicate that
both the pyramid pooling module and global guidance flows play
important roles in our GGM, and the absence of either of them is
harmful to the performance of our approach.

5.2.3 Ablation on FAM+
As described above, FAM+ is an effective tool to reduce the
aliasing effect caused by up-sampling, especially when the rate
is large (e.g., 4 or 8), and meanwhile, to further enlarge the
receptive field of the model. In our default setting, we adopt
three different down-sampling rates (i.e., 2, 4, and 8), as shown
in Fig. 4. We set the largest kernel size of the pooling layers
to 8 × 8 by considering the sizes of C5 and the feature map
from the last layer of the backbone. It has been explained that the
FAM+ is designed to smooth the stride gaps when fusing feature
maps with different resolutions. To demonstrate that the three
scales we adopt are necessary, we conduct a series of ablation
experiments. As shown in the first three rows of Table 2, when
we gradually increase the number of pooling sub-branches with
larger down-sampling rates in FAM+ (with the identity mapping
sub-branch unchanged), the performances on four datasets vary
with an overall increasing trending. When all the pooling sub-
branches are combined (the last row in Table 2), the results can
be maximized. We can conclude from the above analysis that
richer combinations of down-sampling rates in FAM+ usually
bring better overall performances and robustness across datasets.
It also proves the effectiveness of integrating cross-scale feature
representations.

5.2.4 Ablation on Pooling Operations
Pooling techniques play a fundamental role in the proposed
method. Here, we investigate how different types of pooling
operations and their combinations perform. We firstly focus on
two basic yet most common types of pooling operations: average
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No. Pooling Type FPS PASCAL-S [74] DUT-OMRON [75] HKU-IS [29] DUTS-TE [76]
Fβ ↑ MAE ↓ Sm ↑ Fβ ↑ MAE ↓ Sm ↑ Fβ ↑ MAE ↓ Sm ↑ Fβ ↑ MAE ↓ Sm ↑

1 Avg 48 0.872 0.070 0.857 0.817 0.059 0.832 0.931 0.035 0.914 0.878 0.043 0.880
2 Mixed [55] 29 0.872 0.070 0.859 0.816 0.060 0.835 0.932 0.034 0.915 0.873 0.044 0.878
3 Gated [55] 31 0.876 0.068 0.862 0.821 0.060 0.835 0.934 0.034 0.915 0.875 0.045 0.879
4 Tree [55] 7 0.880 0.068 0.862 0.818 0.060 0.834 0.934 0.034 0.916 0.878 0.043 0.880
5 Lossless [56] 30 0.852 0.079 0.841 0.792 0.069 0.801 0.922 0.040 0.904 0.857 0.050 0.859
6 LIP [57] 32 0.873 0.070 0.859 0.825 0.059 0.836 0.935 0.033 0.918 0.878 0.043 0.881
7 Strip [58] 27 0.879 0.069 0.858 0.830 0.056 0.833 0.935 0.034 0.916 0.885 0.041 0.882

Table 4: Ablation analysis on the impact of cooperating existing smarter pooling operations. The basic average pooling operation
shows a good trade-off between effectiveness and efficiency. The best performance in each column is highlighted in bold.
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Fig. 7: Ablation analysis on how different combinations of FAM+s influence the performances. The vertical axes represent the F-
measure values, and the horizontal axes show the combination of FAM+s on different positions. In the horizontal axes, ’x’ means a
FAM+, and ’-’ means two 3× 3 convolution layers. There are four different positions in total, ranging from high- to low-levels.
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Fig. 8: Ablation analysis on how different combinations of GGFs influence the performances. The vertical axes represent the F-measure
values, and the horizontal axes show the combination of GGFs leading to different stages. In the horizontal axes, ’x’ means a GGF, and
’-’ means no connection. There are three stages in total, ranging from high- to low-levels.

pooling and max pooling. We attempt to replace all the adaptive
average pooling operators in GGM with adaptive max pooling
operators and (or) all the average pooling operators in FAM+
with max pooling operators to see the performance difference. We
keep all other configurations unchanged and show the results in
Table 3. As can be seen from the 1st v.s. 4th rows, using the max
pooling operators in both the GGM and FAM+ modules, yields
an average performance decrease of about 0.7% in terms of S-
measure across four datasets. The decreases in the challenging
DUT-OMRON and DUTS-TE datasets are especially evident.
Replacing either one of the average pooling operators in the
GGM and FAM+ modules with max pooling operators causes
performance drops in different degrees. By comparing the 3rd
v.s. 2nd rows, we can see that changing for average pooling in
the GGM module brings more benefits than the FAM+ module.
Generally, using average pooling operators in both the GGM and
FAM+ modules achieves the best overall results. We argue that the
above phenomena may be because, unlike max pooling, average
pooling can better capture local contextual information as it builds
connections among locations within the whole pooling window.

Considering that various smarter pooling operations have been
proposed, we also conduct experiments that cooperate our method
with them in Table 4. The 2nd-4th rows are from methods that
use different strategies to combine the average and max pooling
operations. By comparing them with the 1st row, we find that
more complicated structures do not necessarily mean better per-

formance. Though the most complicated tree-structured pooling
operation performs slightly better, it slows the speed dramatically
by 84%. Similar phenomena occur with the 5th and 6th rows,
which use adaptive pixel-level strategies. We can find that the top
six methods provide the same receptive field sizes as their pooling
windows are of the same shapes. Differently, Strip pooling [58]
(last row) achieves better performance by using a band shape
pooling window to perform average pooling, which enlarges the
receptive field size though sacrificing some efficiency. From the
above analysis, we argue that average pooling is sufficient and
more efficient when having the same pooling window sizes.
However, selecting and adjusting the pooling window sizes to
achieve a better trade-off between accuracy and efficiency remains
to be studied.

5.2.5 Different Combinations of FAM+s and GGFs
As illustrated in Fig. 2, in the proposed PoolNet+, we use a
FAM+ to aggregate the feature maps with different receptive fields
at each stage in the top-down pathway. Additionally, the global
information collected by the PPM is guided into the above feature
aggregation processes with a series of GGFs. By far, we treat
all the FAM+s placed at different positions as a whole, so are
the GGFs. To understand how each FAM+ (GGF) and different
combinations of FAM+s (GGFs) influence the performance and
analyze their universality across different datasets, we decompose
the FAM+s (GGFs) and carry out a series of ablation experiments
in this subsection.
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Method
Params MAdds ECSSD [79] PASCAL-S [74] DUT-OMRON [75] HKU-IS [29] DUTS-TE [76]

(M) (G) Fβ ↑ MAE ↓ Sm ↑ Fβ ↑ MAE ↓ Sm ↑ Fβ ↑ MAE ↓ Sm ↑ Fβ ↑ MAE ↓ Sm ↑ Fβ ↑ MAE ↓ Sm ↑
VGG-16 backbone
DCL16 [41] 66.25 - 0.896 0.080 0.869 0.805 0.115 0.800 0.733 0.094 0.762 0.893 0.063 0.871 0.786 0.081 0.803
RFCN16 [19] - - 0.898 0.097 0.856 0.827 0.118 0.808 0.747 0.094 0.774 0.895 0.079 0.860 0.786 0.090 0.793
SBF17 [81] 93.90 15.90 0.855 0.092 0.830 0.763 0.133 0.758 0.687 0.109 0.748 - - - - - -
WSS17 [76] 14.70 15.40 0.855 0.106 0.806 0.771 0.140 0.740 0.694 0.110 0.726 0.862 0.079 0.819 0.740 0.099 0.743
MSR17 [11] - - 0.903 0.059 0.887 0.839 0.083 0.835 0.790 0.073 0.805 0.907 0.043 0.896 0.824 0.062 0.834
DSS17 [10] 62.23 52.20 0.906 0.064 0.880 0.821 0.101 0.804 0.760 0.074 0.789 0.900 0.050 0.881 0.813 0.065 0.826
NLDF17 [20] 35.48 - 0.903 0.065 0.870 0.822 0.098 0.805 0.753 0.079 0.770 0.902 0.048 0.878 0.816 0.065 0.816
Amulet17 [21] 33.16 20.70 0.911 0.062 0.876 0.826 0.092 0.816 0.737 0.083 0.784 0.889 0.052 0.866 0.773 0.075 0.800
C2SNet18 [82] 137.05 20.50 0.910 0.055 0.894 0.842 0.082 0.836 0.757 0.072 0.798 0.896 0.048 0.883 0.807 0.062 0.828
PAGR18 [16] - - 0.924 0.064 0.883 0.847 0.089 0.822 0.771 0.071 0.775 0.919 0.047 0.889 0.854 0.055 0.839
RAS18 [45] 20.23 15.90 0.918 0.059 0.888 0.829 0.101 0.799 0.786 0.062 0.814 0.913 0.045 0.887 0.831 0.059 0.839
BMPM18 [23] - - 0.926 0.048 0.905 0.854 0.074 0.845 0.793 0.063 0.809 0.922 0.039 0.907 0.854 0.048 0.862
JDFPR19 [83] 87.61 - 0.925 0.052 0.902 0.854 0.082 0.841 0.802 0.057 0.821 0.920 0.039 0.903 0.833 0.058 0.836
PAGE19 [84] - - 0.928 0.046 0.906 0.848 0.076 0.842 0.791 0.062 0.825 0.920 0.036 0.904 0.838 0.051 0.855
AFNet19 [46] 25.78 - 0.932 0.045 0.907 0.861 0.070 0.849 0.817 0.058 0.825 0.926 0.036 0.906 0.867 0.045 0.867
PoolNet-V 52.51 48.81 0.935 0.046 0.909 0.866 0.075 0.849 0.813 0.060 0.830 0.927 0.036 0.908 0.870 0.045 0.871
PoolNet-V+ 26.31 27.51 0.940 0.044 0.914 0.872 0.070 0.857 0.817 0.059 0.832 0.931 0.035 0.914 0.878 0.043 0.880
ResNet-50 backbone
SRM17 [40] 53.14 - 0.916 0.056 0.891 0.838 0.084 0.834 0.769 0.069 0.798 0.906 0.046 0.887 0.826 0.058 0.836
DGRL18 [12] - - 0.921 0.043 0.899 0.844 0.072 0.836 0.774 0.062 0.806 0.910 0.036 0.895 0.828 0.049 0.842
PiCANet18 [17] 47.22 54.06 0.932 0.048 0.912 0.864 0.075 0.854 0.820 0.064 0.830 0.920 0.044 0.904 0.863 0.050 0.868
ICTB19 [48] - - 0.935 0.045 0.912 0.855 0.071 0.850 0.811 0.060 0.837 0.925 0.037 0.909 0.855 0.043 0.865
CPD19 [43] 47.85 - 0.936 0.042 0.913 0.859 0.071 0.848 0.796 0.056 0.825 0.925 0.034 0.907 0.865 0.043 0.869
CSNet20 [85] 36.37 11.75 0.940 0.041 0.914 0.866 0.073 0.851 0.821 0.055 0.831 0.930 0.033 0.911 0.881 0.040 0.879
PoolNet-R 68.26 38.19 0.940 0.042 0.914 0.863 0.075 0.849 0.830 0.055 0.834 0.934 0.032 0.917 0.886 0.040 0.883
PoolNet-R+ 34.12 14.03 0.949 0.040 0.925 0.879 0.068 0.864 0.831 0.056 0.842 0.941 0.034 0.921 0.894 0.039 0.890
MobileNetV2 backbone
PoolNet-M 3.00 1.20 0.932 0.048 0.902 0.847 0.083 0.835 0.818 0.058 0.821 0.924 0.038 0.902 0.866 0.046 0.862
PoolNet-M+ 3.00 1.20 0.938 0.048 0.909 0.864 0.078 0.844 0.830 0.056 0.830 0.930 0.037 0.909 0.872 0.046 0.868

Table 5: Quantitative salient object detection results on five widely used datasets. The best results with different backbones are
highlighted in bold, respectively. As can be seen, our approach achieves the best results on nearly all datasets and metrics.

FAM+s. When basing on the VGG-16 network, there are four
suitable positions to place FAM+, resulting in 16 different com-
binations in total. For better illustration, we plot the relations
between different combinations of FAM+s and the corresponding
F-measure scores on five datasets in Fig. 7. The overall trending
on most of the datasets is that more FAM+s have better average
performances. We also observe that when there is only one FAM+,
it is better to put it on either of the two middle stages rather than on
the highest or lowest stage. Interestingly, if there are two FAM+s,
a more appropriate solution is to place them at the highest and
lowest stages, respectively.

We can also observe that the ECSSD and HKU-IS datasets
are more sensitive to the absence of FAM+ at the lowest stage
while the PASCAL-S, DUT-OMRON, and DUTS-TE datasets are
more sensitive to the second-highest stage instead. We conclude
that most of the samples in the ECSSD and HKU-IS datasets have
only one small salient object. It is vital to narrow the gap between
the local contextual information and global guidance information
as the latter may lose the location information of the salient object
due to large-scale down-sampling. Conversely, the distributions of
the PASCAL-S, DUT-OMRON, and DUTS-TE datasets are more
closer to the real world, hence having more big-sized samples. In
that case, FAM+ at a higher stage can more effectively enlarge the
network’s overall receptive field and help better locate the salient

objects.

GGFs. There are three suitable locations where GGFs can be
connected, leading to a total of eight possible circumstances. We
also plot the relations between different combinations of GGFs
and the corresponding F-measure scores on five datasets in Fig. 8.
From the curves, we can see that the performances are roughly
the same on the ECSSD, PASCAL-S, and DUT-OMRON datasets
when no or only one GGF is introduced. In most cases, if one
of the three GGFs is removed from the model, the performances
drop more or less. Especially when the GGF to the highest stage is
removed, the performances on four datasets decrease dramatically.
The ECSSD and PASCAL-S datasets are most sensitive to the
absence of the GGF to the highest stage, while the DUT-OMRON
and DUTS-TE datasets are more sensitive to the absence of the
GGF to the lowest stage. And the HKU-IS dataset is more likely
to be influenced by the GGF to the middle stage. The above
phenomena show that the global information vanishing problem
has different manifestations when targeting different datasets.

Generally, when preserving all the FAM+s and GGFs in the
network, it has the most stable and robust performances across all
datasets. We hope the above analysis can help the researcher with
more insights on designing network structures that can be widely
applied to datasets of various distributions.
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Multiple objects; Transparent objects; Complex geometry

Multiple objects; Complex geometry; Small objects

Complex geometry; Large objects

Low contrast; Complex geometry

Image GT PoolNet-R+ CPD [43] AFNet [46] JDFPR [83] PAGE [84] BMPM [23] PiCA [17] DGRL [12] SRM [40]

Fig. 9: Qualitative comparisons to previous state-of-the-art methods. Compared to other methods, our approach is capable of not only
locating the integral salient objects but also well refining the details of the detected salient objects. It makes our resulting saliency maps
very close to the ground-truth annotations.

5.3 Comparisons to the State-of-the-Arts
In this subsection, we compare our proposed PoolNet+ with 21
previous state-of-the-art and recent real-time methods. For fair
comparisons, the saliency maps produced by these methods are
generated by the original code released by the corresponding
authors or directly provided by them. Moreover, all results are
directly from the single-model testing without relying on any post-
processing tools. All the predicted saliency maps are evaluated
with the same evaluation code and environment.

5.3.1 Quantitative Comparisons
In this part, we quantitatively compare our approach with previous
state-of-the-art methods. The results can be found in Table 5.
We report results on the VGG-16 [71], ResNet-50 [70], and
MobileNetV2 [73] networks. From Table 5, we can observe that
our original version of models (i.e., PoolNet-V and PoolNet-R)
already outperform almost all previous state-of-the-art methods
on most of the datasets when depending on the same backbone
networks. To be specific, when the ResNet-50 backbone is used,
our PoolNet-R improves the state-of-the-art method CSNet [85]
in both F-measure and S-measure on the DUT-OMRON, HKU-IS,
and DUTS-TE datasets. Our VGG-16 version PoolNet (PoolNet-
V) also performs better than AFNet, which takes the VGG-
16 network as the backbone. When taking the newly proposed
FAM+ into account, our improved version PoolNet+ achieves even
better performance under both VGG-16 and ResNet-50, setting
new state-of-the-art results on almost all datasets. Compared to

our ResNet-50 version PoolNet-R+ (with 34.1M parameters and
14.0G MAdds), the light-weighted version PoolNet-M+ contains
merely 3.0M parameters and 1.2G MAdds (less than 10%) but
still achieves good results. Moreover, as shown in Table 5, results
by PoolNet-M+ on five datasets are better than those produced by
heavy models, such as ICTB [48] and CPD [43], which rely on the
ResNet-50 backbone. It demonstrates that with a large amount of
parameters and MAdds reduction, our PoolNet-M+ not only runs
at a very fast speed but also achieves better results than most of the
heavy models that exploit more powerful classification networks
as backbones.

5.3.2 Visual Comparisons

To further explain the advantages of our approach, we show some
qualitative results produced by PoolNet-R+ and other previous
state-of-the-art methods in Fig. 9. Each image is associated with
different properties, including transparent objects, multiple ob-
jects, small objects, large objects, complex geometry, and low con-
trast, as done in [10]. Our goal is to demonstrate that our approach
can work more robustly and better under different circumstances.
It can be easily seen that our approach not only highlights the
right salient objects but also maintains their sharp boundaries in
almost all circumstances. The other methods, however, sometimes
fail when dealing with complex scenes, especially when the salient
objects are with complex geometry (the 6th row in Fig. 9). It is
mainly because our GGM can more precisely locate the salient
objects while FAM+ can better fuse features at different scales,



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX,NO. XX, XXX. XXXX 13

PoolNet-M+ PoolNet-R+ CPD [43] AFNet [46] PAGE [84]
Size 300× 400 300× 400 352× 352 224× 224 224× 224

FPS 66 53 27 31 25
PiCANet [17] SRM [40] Amulet [21] DGRL [12] NLDF [20]

Size 224× 224 353× 453 256× 256 384× 384 300× 400

FPS 8 16 20 8 12
DSS [10] RAS [45] C2SNet [82] WSS [76] SBF [81]

Size 300× 400 300× 400 300× 400 300× 400 300× 400

FPS 12 39 32 52 36

Table 6: Average speed (FPS) comparisons among PoolNet-
M+, PoolNet-R+, the previous state-of-the-art, and recent real-
time methods. Because of the efficient pooling techniques, our
approachs run much faster than all other methods when having
similar numbers of parameters and MAdds. Notice that PoolNet-
M+ achieves significantly better results than other alternative
methods while only needs less than 10% computational resources.

and thus the main parts and details of salient objects can be well
captured.

5.3.3 Speed Analysis
Average speed (FPS) comparisons with the previous state-of-the-
art and recent real-time salient object detection methods (tested in
the same environment) are reported in Table 6. Compared to the
previous fastest approach, WSS [76], which has a running speed
of 52 FPS when the input images are of 300× 400 resolution, our
heavy PoolNet-R+ achieves a comparable running speed (53 FPS)
when tested on images of the same resolution. But PoolNet-R+
performs dramatically better than WSS on all five datasets. Even
compared to the previous best-performing approach with lower
running speed, e.g., CPD [43], PoolNet-R+ still gets better results
in terms of both performance and speed, as shown in Table 5.
The data in Table 6 shows that PoolNetR+ sometimes has a larger
number of parameters but requires less computational resources
(MAdds) and runs faster. Moreover, our light-weighted version,
PoolNet-M+, is even more efficient with less than 20% parameters
and 10% MAdds than to WSS and RAS but achieves much better
performance, as shown in Table. 5. It can also be found that in
Table 6 our PoolNet-M+ can run at a speed of 66 FPS when
processing an image with a resolution of 300 × 400. These facts
verify that our approach achieves the best results on salient object
detection and runs at a very fast speed. It is primarily because our
pooling-based designs make the following operators occupy less
computational cost than the previous methods, as the feature maps
are spatially down-sampled by a large scale, leading to substantial
improvement.

6 DISCUSSION

6.1 Reduction of Parameters and MAdds
A non-negligible drawback of the models proposed in our con-
ference version [1] (i.e., PoolNet-V and PoolNet-R) is their huge
computational burdens. As shown in Table 5, both PoolNet-V and
PoolNet-R have large amounts of parameters and MAdds. This
subsection shows that more than half of the computational burdens
can be seamlessly cut off without sacrificing the performances. We
mainly base on two observations, 1) salient object detection is a
low-level vision problem, so there is no need for an extremely
diverse feature space, especially in deeper stages; 2) too many
3 × 3 convolutional layers can sometimes be redundant [70].

Version Total backbone PPM GGFs FAMs Others

#Params Previous 68.26 23.51 11.27 5.31 18.14 10.04
(M) Now 34.12 23.51 1.31 0.20 6.20 2.90

#MAdds Previous 37.58 6.24 2.37 12.76 1.65 14.56
(G) Now 14.03 6.24 0.22 0.59 0.98 6.00

Table 7: Comparisons of network’s composition of parameters
and MAdds. We take the ResNet-50 network as the backbone for
example. The compared two models include the one proposed in
the previous conference version (PoolNet-R) and its corresponding
computational burden reduced version.

We take the PoolNet-R for example, which uses the ResNet-50
network as the backbone. To be more specific, we reduce the
computational burden in the following three ways:

• When building the feature pyramid, the channel numbers
of the feature maps outputted by the intermediate stages of
ResNet-50 are mapped from {128, 256, 256, 512, 512} to
{128, 128, 256, 256, 256}, respectively.

• The feature integration operation after the pooling sub-
branches in PPM is changed from concat to element-wise
summation.

• The kernel sizes of the last convolution layer in FAM+ and
all convolution layers in GGFs are changed from 3× 3 to
1× 1.

The compositions of parameters and MAdds of PoolNet-R before
and after the computational burden reduction process are listed in
Table 7. As can be noticed, the model after computational burden
reduction requires 50% and 63% fewer parameters and MAdds,
respectively. The reduction rates are especially significant for the
PPM and GGFs parts. It is worth noting that the performances
of the two models listed in Table 7 are basically the same (an
average fluctuation of ∼ 0.2% in Fβ). The above results indicate
that the redundant computational costs can be effectively reduced
regarding the target task’s characteristics by carefully tailoring
network structure.

6.2 Efficiency Analysis
This subsection analyzes the efficiency of the proposed PoolNet-
R+ by decomposing its components and comparing them with
the FPN baseline. Without loss of generality, the PoolNet-R+ can
be decomposed into four parts: backbone, PPM, GGFs, FAM+s,
and other essential components to build up the network. We build
the FPN baseline to include the backbone and other essential
components. The PPM and GGFs modules are excluded, and the
FAM+s are replaced with two 3× 3 convolution layers. As shown
in Table 8, the 1st row is the FPN baseline. By comparing the 2nd
and 3rd rows to the 1st row, we can find out that both the PPM
and GGFs modules increase the number of parameters, MAdds,
and inference latency slightly. However, adopting the FAM+s
results in fewer MAdds (the 4th v.s. 1st rows), though more
parameters are introduced, which indicates that more parameters
do not necessarily mean more calculations.

An inevitable question that occurs simultaneously is why less
amount of MAdds leads to more latency (the 2nd v.s. 3rd, 4th
v.s. 1st rows)? We argue that it is related to the optimization
and underlying implementation of the algorithms on different
platforms. For instance, there are multiple parallel paths in both
the PPM and FAM+ modules, which are performed, however,
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No. FPN PPM GGFs FAM+s Params(M) MAdds(G) Latency(ms)

1 ✓ 28.47 15.26 15.45

2 ✓ ✓ 29.79+1.32 15.48+0.22 16.11+0.66

3 ✓ ✓ 28.67+0.20 15.84+0.58 15.84+0.39

4 ✓ ✓ 32.60+4.13 13.23−2.03 15.96+0.51

5 ✓ ✓ ✓ ✓ 34.12+5.65 14.03−1.23 16.93+1.48

Table 8: Decomposition of each component’s influence on the
network’s efficiency. We take the ResNet-50 network as the
backbone for example. The models w/o FAM+s (Rows 1-3) use
two 3 × 3 convolution layers instead. The subscripts in the last
three columns represent the relative changes compared to the 1st
row. We measure the MAdds and latency with an input tensor of
shape 1× 3× 224× 224 on a single RTX 2080Ti GPU.

serially on PyTorch. In FAM+, the input feature maps are firstly
spatially down-sampled before being further processed. The core
parts of FAM+ (operations before the last 3 × 3 convolution
layer) require fewer MAdds even than a single 3× 3 convolution
layer. In general, the PoolNet-R+ (the last row) requires 8.1% less
computational burden in theory compared to the FPN baseline,
though with more modules introduced. The PoolNet-R+ also
obtains dramatically better performances. Considering the above
analysis, we expect the proposed PoolNet+ to have a faster running
speed in the future with the help of more engineering optimization
efforts.

6.3 Failure Case Analysis

We show some failure predictions of our approach in Fig. 10.
Generally, these failure cases can be categorized into four circum-
stances. The first one is having complex backgrounds, as shown in
the samples from the first two rows. The second circumstance is
the low contrast between foreground and background, shown in the
2nd two rows. One common defect in the above two circumstances
is that the salient object cannot be completely segmented out, in
which some small parts of the salient object are missed. Another
defect is that the main body of the salient object cannot be
detected, or some non-salient regions are miss-predicted as salient.
The third circumstance is occlusion, as shown in the 3rd two rows.
In these cases, part of the salient object, especially around the
regions being occluded, cannot be integrally extracted. The last
type of failure cases is caused by transparent objects, as shown
in the last two rows. Although our approach can detect some
parts of the target transparent objects in most cases, it is still
difficult to segment out the complete salient objects. In most of
the above cases, it is hard to distinguish the boundaries between
the foreground and background, even for humans.

To remedy the above problem, we argue that there are three
possible ways. First of all, a promising solution is to enlarge
the scale of the training dataset, which is straightforward as the
CNN-based models learn all the knowledge from the dataset. If
the model sees enough samples during the training phase, it will
perform better when facing similar scenes. A large training set that
includes as diverse scenes as possible and has a data distribution
closer to the real world will always help. Secondly, including more
prior knowledge on the segmentation level so that pixels with
similar colors or textures can be detected together as a region.
The characteristics of CNNs determine that the input image is
processed pixel-wisely, where the learnable weights decide the

Complex background

Low-contrast between foreground and background

Occlusion

Transparent objects

Image GT Ours Image GT Ours

Fig. 10: Failure cases selected from multiple datasets. These
failure cases can be categorized into four typical circumstances.

correlations of two positions in the prediction map. The segment-
level prior can alleviate the parts missing and blurring problems
mentioned above as the similar pixels are correlated. It can also
serve as a post-processing step to further refine the predicted maps.
Designing more advanced models that have more powerful feature
extracting capabilities can be another solution. More diverse and
rich feature representations usually mean a higher possibility of
correcting the mis-prediction made by previous models.

7 GENERALIZATION TO EDGE DETECTION

This section investigates the generalization ability of the proposed
approach by applying it to another popular low-level vision task:
edge detection. We compare our edge detection results with eight
recent popular CNN-based methods focusing on edge detection.

7.1 Implementation Details

Except for the batch normalization layers, we apply the proposed
PoolNet-R+ network for edge detection without modification.
Similar to [69], we take input images of arbitrary sizes for both
training and testing, and the training batch size is set to one.
Also, a deep-supervision strategy is applied. We remove the batch
normalization layers in PoolNet-R+ except for the ones in the
backbone network (i.e., ResNet-50), whose parameters are frozen
during training and testing. We initialize the backbone parameters
with the corresponding weights pre-trained on the ImageNet
dataset and the rest randomly. The whole training period takes
12 epochs, and the initial learning rate is set to 5e-5, divided
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(a) Image (b) GT (c) HED [66] (d) RCF [69] (e) CED [68] (f) PoolNet-R+

Fig. 11: Visual comparisons with several recent state-of-the-art edge detectors. As can be seen, our proposed approach can generate a
cleaner background and capture weak object boundaries compared to the other three methods. This phenomenon is especially clear for
the second image. All the images are from the BSDS 500 dataset [61].

Method ODS OIS

DeepContour [65] 0.756 0.773
HED [66] 0.788 0.808
CEDN [87] 0.788 0.804
RDS [88] 0.792 0.810
COB [89] 0.793 0.820
DCNN+sPb [90] 0.813 0.831
RCF [69] 0.811 0.830
CED [68] 0.815 0.833

PoolNet-R+ 0.819 0.834

Table 9: Quantitative comparison of our approach with existing
edge detection methods.

by 10 after 9 epochs. We use the Adam [78] optimizer with a
weight decay of 5e-4 for optimization. We train and evaluate
our results on the BSDS 500 set [61], containing 200 training,
100 validation, and 200 testing images, each with accurately
annotated boundaries. Besides, our training set also incorporates
the images from the PASCAL Context Dataset [86] and performs
data augmentation as in [66], [69] for fair comparisons. We use
the fixed contour threshold (ODS) and per-image best threshold
(OIS) for evaluation similar to previous work. Before evaluation,
we apply the standard non-maximal suppression algorithm to get
thinned edges.

7.2 Quantitative Comparisons
In Table 9, we show quantitative results by a series of recent CNN-
based methods and ours. As can be seen, by simply applying
PoolNet-R+ that is designed for salient object detection to edge
detection, our edge results are better than most of the previous
CNN-based models and are even comparable to the state-of-the-
art model. It implies that PoolNet is also beneficial to the edge
detection task. We want to emphasize that although the goal
of designing PoolNet is to improve the performance of salient
object detection, our ultimate model can also produce promising
edge predictions. We further found that PoolNet can also be well
generalized to other low-level visual tasks. We apply PoolNet

to the RGB-D salient object detection and camouflaged object
detection tasks where it also performs favorably. More details
can be found in the supplementary material. It is expected that
the progress we make in designing PoolNet is helpful for future
research in other directions.

7.3 Visual Comparisons

In Fig. 11, we show some visual comparisons between PoolNet
and other three popular methods, including HED [66], RCF
[69] and CED [68]. Thanks to the powerful features learned by
PoolNet, even without network modification, our approach still
performs well in detecting the real boundaries of objects compared
to the best method that is specifically tailored. As shown in column
(f) in Fig. 11, PoolNet can give light predictions to the edges that
are not the real boundaries of objects but concentrate more on
the genuine object boundaries as more global information is lead
in by the GGM module. We believe this characteristic can make
our approach more helpful in real-world applications than other
methods.

8 CONCLUSION

This paper explores the potential of efficient pooling techniques
on salient object detection by designing two simple pooling-based
modules. Considering the vital importance of precisely locating
the salient objects, we design a global guidance module (GGM)
to enlarge the valid receptive field of the bottom-up pathway and
ensure the guiding role of the location information in the top-down
pathway. An advanced feature aggregation module (FAM+) is
further proposed to bridge the gap between the local contextual in-
formation and global guidance information. Extensive experiments
on five popular salient object detection benchmarks demonstrate
that the proposed method confidently outperforms the state-of-
the-art methods. Furthermore, to meet the needs of extremely
low computational overhead on mobile devices, we present a
light-weighted version, called PoolNet-M+, which achieves good
performance with ∼ 10× fewer parameters and MAdds and runs
even faster.
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We carry out a series of carefully designed ablation experi-
ments on multiple datasets from three aspects to understand how
and why the proposed two modules work. First, we regard GGM
and all the FAM+s as two integral parts to verify their influence
from the network structure level. Since there are multiple positions
in the network to place the proposed two modules, we then
decompose the components in GGM and each FAM+ to validate
their contributions from the module level. Finally, we compare
different design choices of the two modules from the operation
level. Along with the numbers and curves, we also visualize the
intermediate feature maps under various circumstances to illustrate
the influence intuitively.

We analyze the efficiency of the proposed method and show
that more than half of the computational cost can be cut off without
harming the performances. To demonstrate the generalization
ability of the proposed structure, we apply it to three related and
popular low-level vision tasks, including edge detection, RGB-
D salient object detection, and camouflaged object detection. We
show that with little modification, the proposed structure achieves
substantial improvements over the state-of-the-art methods on
the three tasks on multiple datasets, respectively. We hope our
design principles and experiments could provide promising future
research directions in salient object detection and other related
vision tasks.
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