
Drifuzz: Harvesting Bugs in Device Drivers from Golden Seeds

Zekun Shen
New York University
zekun.shen@nyu.edu

Ritik Roongta
New York University

ritik.r@nyu.edu

Brendan Dolan-Gavitt
New York University
brendandg@nyu.edu

Abstract
Peripheral hardware in modern computers is typically as-
sumed to be secure and not malicious, and device drivers are
implemented in a way that trusts inputs from hardware. How-
ever, recent vulnerabilities such as Broadpwn have demon-
strated that attackers can exploit hosts through vulnerable
peripherals, highlighting the importance of securing the OS-
peripheral boundary. In this paper, we propose a hardware-
free concolic-augmented fuzzer targeting WiFi and Ether-
net drivers, and a technique for generating high-quality ini-
tial seeds, which we call golden seeds, that allow fuzzing to
bypass difficult code constructs during driver initialization.
Compared to prior work using symbolic execution or greybox
fuzzing, Drifuzz is more successful at automatically finding
inputs that allow network interfaces to be fully initialized, and
improves fuzzing coverage by 214% (3.1×) in WiFi drivers
and 60% (1.6×) for Ethernet drivers. During our experiments
with fourteen PCI and USB network drivers, we find eleven
previously unknown bugs, two of which were assigned CVEs.

1 Introduction

Built-in peripherals such as PCI devices have traditionally
been considered trusted. As a result, device drivers are often
written with the assumption that these peripherals’ control
interfaces are reliable (although they may ultimately deliver
untrusted data, such as network packets, to higher layers).
Modern peripherals, however, are complex devices with their
own firmware and vulnerabilities. If the firmware of a periph-
eral is compromised, the device can be used to launch attacks
on the main OS and gain control over the whole system.

Recent vulnerabilities in WiFi [2,44] and Bluetooth [35,46]
adapters illustrate the possibility of attacking the host re-
motely through flaws in device drivers. Although this attack
vector is complex and requires chaining multiple vulnerabili-
ties from device drivers and device firmware, it demonstrates
the possibility of gaining kernel privilege discreetly. In other
cases, corrupted or buggy peripherals can affect the host ker-
nel via memory errors in device drivers such as out-of-bound

writes. Moreover, even without finding vulnerabilities in the
peripheral firmware, attackers with physical access can per-
form “evil maid” attacks by connecting a malicious device
that identifies itself as a supported peripheral and then exploits
vulnerabilities in that device.1

There are two major security boundaries for a device driver:
the userspace-OS boundary and the OS-peripheral boundary.
Many works [11,13,23,29,39,43,54] in device driver security
focus on the former boundary by testing ioctl system calls.
Although some prior work [4, 49, 50, 52] has investigated
the low-level OS-peripheral boundary, it is overall less well-
explored. The latter boundary consists of hardware-related
inputs including port I/O, Memory Mapped I/O (MMIO),
Direct Memory Access (DMA), and interrupts. MMIO is
used to access individual hardware registers while DMA is
used for bulk transfers. Finally, hardware interrupts cause the
CPU to halt and transfer control to an interrupt handler within
the device driver.

A major challenge in testing device drivers is the diversity
of hardware peripherals. Some prior work [4, 49, 52] has
assumed the presence of actual hardware peripheral for each
driver under test, but such approaches are difficult to scale
(since multiple physical devices are needed in order fuzz in
parallel) and can be expensive (since one must obtain the
target hardware; for older drivers obtaining real hardware
may not even be feasible).

An attractive alternative to using real hardware is to test the
driver in an emulated environment such as QEMU. Emula-
tors do not need any specialized hardware, and testing can be
scaled up by simply launching more copies of the emulator.
This approach raises new challenges, however. Outside of
the relatively small set of peripherals supported by QEMU,
testing a device driver requires some understanding of the
expected behavior of the corresponding peripheral. For ex-
ample, many device drivers probe the values of identification

1Although historically such attacks (at least over PCI) were trivial due
to unrestricted direct memory access (DMA) to RAM, in modern systems
the increasingly prevalent use of IOMMUs means that malicious peripherals
typically only have access to a small portion of RAM.

1

and status registers during initialization, and will regard the
device as broken or unsupported if the expected values are not
returned. A failed check on such an important path results in
immediate termination, leaving further driver code untested
and any deeper bugs undiscovered.

This problem is exacerbated by code patterns such as magic
value checks and polling loops in driver code, which present
roadblocks to traditional fuzzing techniques that generate
random values. We regard these roadblocks as blocking
branches and find them pervasive in device drivers. Our
key insight in this work is that while there are many ways for
driver initialization to fail, there is typically a “golden path”
that passes these checks and fully initializes the device driver.
Without knowledge of this golden path, fuzzing can only find
shallow paths where the driver terminates early. We introduce
a technique that combines concolic testing and forced execu-
tion to generate “golden seeds”: fuzzer inputs that can be used
to guide driver initialization. Concolic execution allows Dri-
fuzz to quickly solve hard-to-fuzz constraints such as magic
value checks, while forced execution lets us bypass repetitive
checks (e.g., polling loops) that would otherwise hinder both
concolic and symbolic approaches.

We leverage this idea to build Drifuzz, a concolic-assisted
fuzzer designed to uncover device driver vulnerabilities at
the OS-peripheral boundary. We implement our system as
a hybrid fuzzer: after generating a golden seed we alternate
between coverage-guided random fuzzing and concolic execu-
tion. Although hybrid fuzzing is a common technique in other
domains [23, 37, 38, 51, 56], it has not previously been used
at the OS-peripheral boundary. Hybrid fuzzing is particularly
effective for testing device drivers, which have relatively low
execution throughput and code patterns that random fuzzing
struggles with.

In our experiments we find that starting hybrid fuzzing with
a golden seed improves coverage by 214% (3.1×) for complex
WiFi drivers. On simpler drivers such as Ethernet NICs, we
find that Drifuzz outperforms the baseline fuzzer and achieves
60% (1.6×) more coverage. In addition, we find six new bugs
across the ten tested PCI drivers and six bugs in four tested
USB WiFi drivers.

We make the following contributions:

• We introduce a technique for generating “golden seeds”
that allow device driver code to execute successfully
without access to real hardware, allowing fuzzing to
reach deeper into driver code.

• We implement these ideas by adding support for concolic
execution and forced execution to the PANDA dynamic
analysis platform; to the best of our knowledge, Drifuzz
is the first whole-system hybrid fuzzer that tests the OS-
peripheral boundary.

• We use Drifuzz to find and fix 11 Linux device driver
bugs, two of which were assigned CVEs.

2 Background

2.1 Device Driver Security

Operating system kernels are implemented as the abstraction
between user-level software and hardware. Between the hard-
ware and kernel subsystem abstraction lie the device drivers.
Because there is a wide variety of hardware to support, device
drivers are many and varied. This makes it difficult for main-
tainers to audit the security of device drivers; Renzelmann
et al. [40] point out that device drivers also generally have
low test priority. At the same time, device drivers run in ker-
nel mode and are highly privileged, making them compelling
targets.

Device drivers are exposed to attacker-controlled input
from two sources: userspace and hardware. A Linux userspace
program can use the ioctl system call to invoke and exploit
a driver to perform a local privilege escalation to kernel-mode.
The other kind of attack comes from the hardware side; here
the peripheral is assumed to be either malicious or compro-
mised.

In this paper, we focus on the hardware attack vector in
PCI and USB devices such as WiFi and Ethernet peripherals.
Because they receive external inputs via Ethernet or wireless
signals, vulnerabilities in these drivers may be exploitable
remotely and discreetly.

We note that the attack surface exposed in a driver may
differ slightly depending on whether we assume that the pe-
ripheral is compromised (e.g., a real PCIe WiFi peripheral
whose firmware has been compromised) or a malicious pe-
ripheral hardware is used (e.g., a FaceDancer USB dongle).
A compromised device may have hardware limitations that
prevent it from returning arbitrary values in response to driver
queries (e.g., a memory-mapped version register may be fixed
in hardware), whereas a malicious peripheral would not be
subject to any such limitations. In our fuzzer, we assume the
latter threat model, and do not attempt to impose restrictions
on the values returned from hardware. This design choice
allows us to find vulnerabilities that could be exploited by
malicious hardware, and also avoids the need for detailed
knowledge of each specific peripheral’s capabilities. However,
some of the found vulnerabilities might not be exploitable for
genuine peripherals.

2.2 Whole System Emulation and Analysis

Full-system emulation using QEMU [1, 15] is useful for test-
ing kernel subsystems and drivers. Using a full-system emu-
lator allows us to attach an emulated hardware peripheral and
respond to interactions from the OS with fuzzed input. Prior
work, such as USBFuzz [36], Syzkaller’s USB Fuzzing [13]
and Agamotto [50], also use whole-system emulation for this
purpose.

2

KVM and TCG Mode QEMU provides two modes for full-
system emulation, Kernel-based Virtual Machine (KVM) and
Tiny Code Generator (TCG) modes. QEMU-KVM uses CPU
support for hardware virtualization via Linux’s KVM virtual-
ization subsystem [25], which allows it to run the compiled
OS binary with near bare-metal speed. QEMU-TCG, in com-
parison, translates the binary to an intermediate representation
(IR), and then translates the IR to machine code for the host ar-
chitecture for execution. Although TCG mode is slower than
hardware, TCG mode makes taint analysis [17] and symbolic
execution [38, 56] possible.

LLVM Mode Chipounov et al. [8] introduced a technique
for dynamically translating the TCG IR to LLVM IR so that
existing LLVM analysis techniques can be used with QEMU.
This work reduces the development overhead for creating
whole-system dynamic binary analyses, but it introduces a
large performance penalty that we discuss shortly.

PANDA PANDA (Platform for Architecture-Neutral Dy-
namic Analysis) [17] is a record-and-replay tool built upon
QEMU’s TCG and LLVM modes. PANDA inserts hooks in
full-system emulation to record essential inputs for a later
deterministic replay. The record-and-replay feature allows
users to record an execution in reasonably-fast TCG mode
and perform heavier analyses at replay time. This is important
when analyzing driver code, as many drivers have timeouts
and watchdog threads that may be triggered if execution speed
is too slow.

PANDA also supports taint analysis in a plugin system. A
user can mark input bytes as tainted and observe taint flow
and the branch instructions that depend on tainted data. It first
translates TCG-IR to LLVM-IR and instruments the LLVM to
add taint tracking, and then compiles and runs the LLVM code.
The process introduces about 20x overhead compared to TCG
mode: a ten-second recording can take about one minute in
TCG mode replay and twenty minutes in LLVM-mode replay.
When used in a fuzzer, this overhead can impede progress. In
section 4.3, we discuss our optimizations to run LLVM mode
selectively to improve speed.

Concolic Execution The random mutation strategy in
fuzzing may have trouble with hard-to-pass checks, such as
magic values or checksum validation, in real-world programs.
Concolic execution is a method that uses symbolic execution
on a concrete input to generate new inputs that diverge from
the concrete path. These neighboring paths can potentially
lead the fuzzer to an unexplored section of code and help the
fuzzer overcome these blocking branches [30].

2.3 Challenges
2.3.1 Hardware Diversity and Availability

Hardware diversity is the major drawback of previous work
that has hardware in the loop [49, 52]. Charm [52] re-
quires porting new device drivers to the host virtual machine

and components to the Android system, a task which the
authors estimate takes two to five person-days. Although
Periscope [49] needs less human labor, porting its compo-
nents to the tested Android device is still necessary.

More importantly, the hardware-in-the-loop approach is
not scalable. Even if the driver source code is available, re-
searchers need to purchase the hardware that corresponds to
each driver, which severely limits the ability of researchers
to conduct broad testing of many drivers. The reliance on
physical hardware also bounds the speed at which testing can
be performed, since each device can only run one test case
at a time. And powerful server hardware with many cores
cannot be effectively used for such testing, since the device
under test serves as a bottleneck. For these reasons, we believe
fuzzing with emulation is a better solution for securing the
OS-peripheral boundary.

2.3.2 Hard-to-Fuzz Code Patterns in Drivers

The benefit of fuzzing without real devices is that we can
easily scale up to running on multiple virtual machines. At
the same time, the lack of real hardware means that we have
little idea what the input to the driver should look like. When
fuzzing user-space programs, this problem can be alleviated
by building a corpus of valid inputs to use as initial seeds;
however, the inputs to device drivers do not conform to any
particular file format, so seed inputs are not available. As You
et. al. [55] note, fuzzing performance degrades when valid
inputs are not present.

Moreover, device drivers contain many constructs such as
magic values and polling loops that are challenging for tra-
ditional fuzzers and symbolic execution engines, and drivers
will typically abort as soon as they detect unusual responses
from the device. An example of a magic value check in the
Cisco snic driver is shown in Listing 1. To pass the check,
the fuzzer needs to provide a 4-byte value equal to the magic
value and another 4-byte value equal to the version id. In our
experiments, we found that a state of the art greybox fuzzer,
Agamotto, was unable to pass this condition and failed to
initialize the device driver. Magic values are often masked or
shifted before comparison, so even dictionary-based fuzzing
may not help.

Polling loops are also common in driver code: the driver
may repeatedly query some device registers in a loop and
abort if an unexpected value is encountered. An example
of such a loop can be seen in Listing 3 later in the paper,
where the ath9k driver tests an MMIO register in a loop 256
times. Existing techniques may struggle with such constructs:
fuzzing is unlikely to generate the correct value on each iter-
ation, symbolic execution may encounter path explosion (as
a new state is generated on each iteration of the loop), and
concolic execution would need to generate 256 inputs one at
a time in order to get past the loop.

3

1 #define VNIC_RES_MAGIC 0x766E6963L
2 #define VNIC_RES_VERSION 0L
3 if (ioread32(&rh->magic) != VNIC_RES_MAGIC ||
4 ioread32(&rh->version) != VNIC_RES_VERSION) {
5 return -EINVAL;
6 }
7 return 0;

Listing 1: Magic value check in snic.

3 Drifuzz Design

As shown in Figure 1, we design Drifuzz with three ma-
jor parts: seed generation, fuzzing, and concolic execution.
We first generate the golden seed (Section 3.2) that helps us
reach deep driver code with the help of concolic execution
and forced execution (Section 3.3). We then pass the golden
seed to our fuzzer, which sends mutated inputs to multiple
KVM virtual machines. Each virtual machine (VM) handles
MMIO/DMA reads with the content of the input seeds (Sec-
tion 3.1); seeds are split up and reserved by I/O address to
improve stability (Section 4.1). The virtual machine guest
initializes the device driver and brings up the target network
interface. After execution, the virtual machine reports the
branch coverage bitmap to the fuzzer core. The fuzzer sup-
ports hybrid fuzzing using a concolic execution thread (Sec-
tion 3.4).

3.1 Device Driver Inputs
MMIO and DMA are the two major sources of input for a
device driver. Working on low level, PCI drivers usually use
port I/O, MMIO and DMA directly. On the other hand, USB
drivers work on higher layer with a universal protocol where
data are transferred as packets.

MMIO is handled by QEMU’s PCI device emulation inter-
face. When we create an emulated device, we add memory-
mapped regions that reflect the PCI memory layout on real
hardware. Whenever the guest OS accesses these MMIO re-
gions, QEMU queries our emulated device, which forwards
MMIO reads to the fuzzer core. We ignore any writes to the
emulated MMIO. Because QEMU implements the port I/O
space as another memory region in its own address space, we
also handle port I/O in this way.

DMA accesses require special handling. The Linux docu-
mentation defines two types of DMA buffers: consistent DMA
and streaming DMA. Consistent DMA works synchronously:
the driver and the device can read and write to the allocated
space at any time and the result is visible to the other end
immediately. Streaming DMA uses asynchronous communi-
cation, where the driver allocates a buffer and lets the device
asynchronously access the buffer. When the device finishes
the work, it notifies the driver through MMIO or an interrupt.
The driver then deallocates the buffer and reads the data if
needed.

We modify the kernel code to intercept DMA allocation and
feed fuzzed input via the DMA buffer. We handle consistent
and streaming DMA in different ways. Because consistent
DMA is similar to MMIO, we register the memory region
as an MMIO region with QEMU when allocating consistent
DMA, and remove the region when it is deallocated. On the
other hand, streaming DMA is used for transferring a larger
amount of data asynchronously. Reading input happens after
deallocation. Therefore, we fill the buffer with fuzzing input
whenever deallocation occurs.

USB devices communicate data mostly via bulk transfers.
At the lowest level, these data packets are transferred by the
DMA controller and work similarly to streaming DMA. How-
ever, we leverage the USB layer of QEMU and handle them
at the packet level, similar to USBFuzz [36].

3.2 Golden Seed Search

In Section 2.3.2, we noted that the key problem of fuzzing
drivers without the corresponding hardware is the lack of
a good initial seed: without such input, fuzzing mostly gets
stuck early in driver initialization and cannot explore more
complex device driver code. In this subsection, we introduce
a search algorithm based on concolic execution to find such a
“golden seed” for our fuzzer.

Many symbolic branches in driver code have preferred
conditions. Examples include an I/O flag that indicates the
device is still alive, a check if there is new input, or a version
ID check. Such branches must always resolve the same way if
driver initialization is to succeed. If they do not, the driver will
typically abort and prevent further exploration of the driver
code; we call these blocking branches. Hence, we can find
such branches using concolic execution and fix them to the
preferred condition to reach deeper code.

We define a preference as the mapping from branch instruc-
tions to their preferred conditions (Pre f erence : Branch →
Condition). A blocking branch is often indicated by an in-
crease in coverage when flipped and there may be multiple
blocking branches in one execution. Our algorithm greed-
ily attempts to maximize a score based on the number of
unique symbolic branches. Our golden seed search algorithm
iteratively identifies the blocking branches while executing
the seeds and improves the seed using a constraint solver to
unlock key branches.

Listing 2 shows our algorithm in detail. Starting from an
empty preferences map (line 2), we initialize the set of sym-
bolic branches to consider by executing a random input and
noting any branches that depend on input from the device
and storing it in new_branches. The while loop (lines 6–27)
then iteratively grows the preference map by attempting to
find the preferred condition for each new branch. It does so
by using forced execution (described in the next section) to
run the input with the branch set to either true or false (line
13), which records all symbolic branches and produces a new

4

Figure 1: OS-peripheral boundary fuzzing with Drifuzz: our golden seed generation algorithm creates good initial inputs to
overcome difficult checks during driver initialization. These seeds are then used as a starting point for a hypervisor-based
concolic fuzzer that tests deeper code in the driver by repeatedly restoring a VM snapshot, initializing the driver, and feeding
fuzzer-generated inputs via a virtual peripheral.

input that induces the path. If this exposes new branches,
preferred_results is updated so the branches can be consid-
ered in the next iteration. Branch conditions that are already
present in the most recent execution are skipped (lines 11–12),
since they are already satisfied by the current trace.

Once all branches in the current iteration have been evalu-
ated, we pick the highest-scoring branch condition, save it in
the preferences (lines 23–24), and select corresponding input
and the branches it exposed to work on in the next iteration
(lines 26–27). The loop terminates when no new branches are
uncovered while testing branch conditions (lines 18–20), and
designates the current input as the golden seed.

Empirically, we have found that the best metric for evalu-
ating inputs is the number of unique symbolic branches they
expose. Compared to block or branch coverage, the number of
unique symbolic branches emphasizes how our inputs affect
the execution path. If there is a tie, we prefer the input that
results in fewer total symbolic branches (as shorter traces are
more efficient for fuzzing).

3.3 Forced Execution
Forced execution optimizes flipping repetitive concolic
branches in device drivers by simply forcing a branch to
go in the desired direction rather than attempting to solve the
constraints. Conventional concolic execution can only flip
one branch per execution; if a check is repetitive and has a
preferred condition, this will result in many wasted executions
and calls to the constraint solver. The code in Listing 3 shows
a real-world example in the Atheros ath9k driver. The optimal
path traverses the loop 256 (0x100) times with the condition
on line 6 returning false each time, requiring 256 concolic

1 def greedy_search(input):
2 preferences = {} # pc: cond
3 result = forced_execute(input, preferences)
4 new_branches = result.concolic_branches()
5
6 while True:
7 preferred_results = {}
8 for br in new_branches:
9 # Test for the preference condition

10 for c in [True, False]:
11 if satisfy(result, {br, c}):
12 continue
13 test_result = forced_execute(input,

merge(preferences, {br: c}))
14 if has_new_branch(test_result):
15 preferred_results[(br, c)] =

test_result
16
17 # No new branches found.
18 if len(preferred_results) == 0:
19 print("The end.")
20 break
21
22 # Prepare for next iteration
23 br, cond, result =
24 select_best_preference(

preferred_results)
25 preferences = merge(preferences, {br:cond})
26 new_branches = new_branches(result)
27 input = result.output
28 golden_seed = input

Listing 2: Golden seed search algorithm

5

1 int test_io() {
2 for (u32 i = 0; i < 0x100; i++) {
3 iowrite(OFFSET, i);
4 delay(10);
5 reg = ioread(OFFSET);
6 if (reg != i)
7 return -EIO;
8 }
9 return 0;

10 }

Listing 3: Atheros ath9k driver initialization test code snippet

runs.
To overcome this limitation of concolic execution, we use

forced execution [33] to get the desired path and generate the
correct input that will traverse that path, avoiding unnecessary
branch flips. For the example in Listing 3, forced execution
would allow us to traverse all 0x100 iterations of the loop
with a single execution by setting the branch on line 6 to false.
Concolic execution can then be used on this path to find the
inputs that satisfy the branch condition in a single step, rather
than having to solve each instance of the branch one at a time.

One pitfall of forced execution is that we cannot guarantee
that the executions we generate correspond to any input: we
may traverse paths that have conflicting conditions, resulting
in an infeasible path. During golden seed search, we always
try forced execution first, and retry with an input provided
by the solver if the first execution fails due to an infeasible
path. If that also fails, we exclude the tested branches from
consideration in the golden seed search. In Section 4.5 we
describe in detail how we implement forced execution by
modifying the generated TCG IR on the fly.

3.4 Traditional and Hybrid Fuzzing

Our design inherits kAFL’s [43] traditional fuzzing design.
The core fuzzer mutates and records inputs based on the cov-
erage feedback. With the ability to run concolic execution,
we are able to provide hybrid fuzzing as well. After seed
generation, we use traditional fuzzing most of the time and
invoke concolic execution to get over hard-to-pass branch
conditions. When encountering a new path, the fuzzer core
forwards the input to the concolic executor to generate inputs
for neighboring paths. The new inputs are sent to the fuzzer
core to test whether they result in new coverage.

4 Implementation

In this section, we discuss several relevant implementation
details of our implementation. Overall, our implementation
consists of 8,754 lines of new or modified code in C and
Python; the total lines of code for each component are listed
in Table 1. All code is released as open source to help future

research and replication of our results.

Component Lines
Linux Comm Driver and DMA Tracking 470 + 0

PANDA Concolic Support 842 + 77
PANDA Customization 2421 + 146

Fuzzing Backend (adapted from kAFL) 872 + 331
Fuzzing Scripts 874 + 0
Concolic Scripts 2721 + 0

Table 1: Drifuzz components and lines of code, as counted by
cloc. We describe changes by added line + modified line.

4.1 Multi-buffer Input Feeding
Prior OS-peripheral boundary fuzzers [50] represent the
fuzzer input as a single file, returning data from this file se-
quentially as the driver attempts to read data from the device.
This compact sequential representation allows mutation strate-
gies such as bit-flips and interesting bytes to work well, but
may cause the same input to exhibit different behavior with
concurrent drivers, as the kernel scheduler could run threads
in a different order. This in turn could make it more difficult
to reproduce test cases produced by the fuzzer and makes cov-
erage measurements less stable. Concurrency is common in
device drivers, which may register some tasks to run in back-
ground threads while interrupt handling occurs in another
thread.

Instead, we store the fuzzer input as a collection of se-
quences separated according to their I/O address or DMA
buffer size. The intuition is that different I/O addresses usu-
ally have different purposes and different threads usually work
on different tasks, so this separation is more likely to provide
the same behavior and coverage even if threads run in a dif-
ferent order. Our evaluation of this technique did not uncover
major differences in bitmap coverage for the drivers we tested.
However, because it does not add additional overhead and
could still have benefits for drivers we have not yet tested, we
leave it enabled.

4.2 KASAN Optimization
A major factor in the effectiveness of a fuzzer is the speed
at which it can test a single input. While evaluating prior
work [50], we found that virtual machine execution speed is
much slower than native speed for tasks such as running the
Linux modprobe command, which loads and initializes a de-
vice driver. Although the command can finish in milliseconds
natively, it takes more than one second for some drivers inside
the virtual machine.

Analyzing the performance of the execution, we found that
the overhead is caused by stack walking in Kernel Address
Sanitizer (KASAN). By default, KASAN records each mem-
ory (de)allocation and its call stack; although this information

6

is not used in detecting memory errors, it allows KASAN to
produce stack traces for the (de)allocation site, which can be
helpful for debugging or for deduplicating crashes. However,
during fuzzing, this cost is borne on every process and thread,
and kernel module loading in particular involves many alloca-
tions (e.g., for the module code and all of its data structures).

We find that disabling this stack walk in KASAN results
in a 4× speedup on average. Although this produces slightly
less informative bug reports, we can easily reconstruct the
missing information and generate a complete report after the
fact by replaying interesting inputs with unmodified KASAN.
In Appendix A we provide further details on the performance
impact and causes of stack unwinding overhead and evaluate
alternative solutions.

4.3 Selective Symbolic Execution
As discussed earlier, PANDA is built for offline analyses, so
it trades off speed for precision. However, high throughput is
critical for effective bug-finding in fuzzing. Inspired by previ-
ous works [9, 10], we apply selective symbolic execution and
only run device driver code in LLVM mode. In the absence
of KASLR (which we disable), loadable device drivers are
located starting at address 0xffffffffa0000000 on a 64-bit x86
system. We modify PANDA to only use LLVM translation if
the code address is above this address.

We also enable LLVM for three additional pieces of kernel
code that are needed for analysis: I/O functions, memcpy, and
context switch functions. I/O functions (such as ioread32)
are essential for us to register symbolic or taint values. The
memcpy function can be called from a kernel module but
resides in the code of the main kernel. And context switch
functions are important for the correctness of the symbolic
or taint tracking. When driver code is interrupted, the kernel
saves the current registers on the stack. When the driver code
gets to run again, the scheduler first restores the registers.
To properly preserve symbolic labels in registers, we force
context switch functions to run in LLVM mode.

By only running relevant driver code in LLVM mode, we
can speed up the analysis by up to 20×. With this optimiza-
tion, the overhead of running symbolic execution is almost
identical to the TCG-mode overhead. The reason is that there
are typically many kernel threads running in the background,
and so driver code is a relatively small fraction of the total
execution.

4.4 Concolic Execution
Similar to Siewertsen [48] (though independently imple-
mented), we build our concolic execution on PANDA’s ex-
isting taint analysis plugin. The design gives us many ad-
vantages. The record-and-replay system can let us run the
time-sensitive driver code in fairly fast TCG mode, and per-
form analysis in compute-heavy LLVM mode. We need full-

system emulation to attach emulated devices, and PANDA can
already handle such use case. Lastly, PANDA is built upon
QEMU and retains QEMU-KVM support; although we can
neither record nor replay under KVM mode, using PANDA
directly reduces redundant code. For constraint solving we
use the Microsoft’s Z3 [12] as it is fast, widely used, and
robust.

PANDA’s taint system translates TCG IR to LLVM IR, in-
strumenting it with functions that provide fine-grained (byte-
level) taint tracking. Depending on the LLVM IR instruction
type, taint can be propagated or removed. For example, multi-
plication mixes the taint of the input registers, while a store
instruction replaces taint on the destination with the taint
labels from the source.

To implement concolic execution, we extend the PANDA
taint system’s shadow memory to hold pointers to Z3 expres-
sions, and then implement symbolic rules for each LLVM IR
operation. For each IR instruction type, we apply the equiva-
lent symbolic expression and store the result in the shadow
memory. For example, in LLVM IR %result = %reg1 + %

reg2, if %reg1 has a symbolic value x and %reg2 has a con-
crete value 7, %result will hold the symbolic value x+7.

To mark the initial symbolic input, we wrote a plugin that
intercepts MMIO and DMA reads and creates byte-level sym-
bolic labels. We can then collect symbolic branch conditions
during execution; the full path condition is simply the conjunc-
tion of these constraints. For traces generated during forced
execution, we can use the path condition as-is to obtain an
input from the solver that would produce the trace in the
absence of forced execution (if one exists). During hybrid
fuzzing, we can use the path condition to invert a particular
branch by truncating the conjunction of constraints after the
term corresponding to that branch, negating that term, and
passing the resulting formula to the Z3 solver to obtain a new
input that causes the branch to go the opposite direction.

To handle symbolic pointers, Drifuzz concretizes the sym-
bolic address using the concrete value observed at runtime.
This is a common design choice shared with other imple-
mentations of concolic execution [21, 45, 47], but can limit
our ability to handle driver code that produces complex con-
straints involving symbolic pointers. This could be improved
by implementing symbolic pointer reasoning as found in sys-
tems such as Mayhem [6].

4.5 Forced Execution via TCG Modification

To achieve branch modification while still capturing useful
path constraints, we hook into QEMU’s TCG generation mod-
ule. During seed generation, we modify the target branch to
always go to the desired condition (either always true or al-
ways false). At the same time, we track the original branch
condition so that we can collect the corresponding path con-
straints.

When the concolic executor sees a modified branch, it adds

7

1 int ath10k_wait_for_target_init() {
2 for (int i = 0; i < 0x100; i++) {
3 reg = ioread(); // concrete: 0
4 if (reg & FLAG_INIT) // forced true
5 break;
6 delay();
7 }
8 if (reg & FLAG_INIT) // not forced
9 return 0; // success;

10 return -ETIMEOUT; // error;
11 }

Listing 4: Infeasible path

a path constraint that corresponds to the desired condition.
At the end of concolic execution, when we have collected all
path constraints, we use Z3 to solve the constraints and find a
real input for this path.

In the ath9k example (Listing 3), we can quickly test the
always-true or always-false condition for the branch. If the
condition is always true, the test I/O function quickly fails and
returns an error code to the caller, which aborts initialization.
On the other hand, 256 iterations of the loop can finish in a
single execution when the branch is always false, allowing the
core to continue execution and find unseen symbolic branches.
The new branches give the always-false condition a favorable
score and we can proceed to find and solve the remaining
blocking branches.

Infeasible Paths Although forced execution works well in
practice, it can sometimes lead to infeasible paths (i.e., there
is no actual input that corresponds to the path). When there
are two symbolic branches that depend on one another, fix-
ing the outcome of one branch can result in an infeasible
path. The underlying cause is that during forced execution
variables involved in the modified branch condition retain
their original concrete values. If a later branch depends on the
same variable, the branch outcome will be consistent with the
concrete value, producing a pair of contradictory constraints
and an unsatisfiable path condition. For example, in Listing 4,
forcing line 4 to true without changing the condition at line 8
might cause a timeout error to be returned at line 10.

Due to the design of our TCG modification, we cannot
force the latter branch on the fly. TCG modification occurs
during execution, and it must be consistent throughout the
record-and-replay phase. Since we are unaware of symbolic
values at record time, we cannot modify the path to enforce
consistency with the earlier forced branch.

However, we can detect this condition: in an infeasible path,
the path constraints from the two conditions are contradictory
and Z3 will return unsat. When such an inconsistency is
detected, we remove the later path constraint and generate a
new input that satisfies the first path. We then repeat concolic
execution with newly generated input. Because we actually
change the concrete value, this allows the second branch to

be satisfied as well.
Although this works for most cases of infeasible paths,

there are more complicated cases (e.g., with more than two
dependent conditions) where this technique fails. In this case
we simply ignore the preference for that particular branch
when generating the golden seed.

4.6 Fuzzer Implementation

We build our fuzzer on top of kAFL [43] as it is a mature
fuzzer that works with QEMU-KVM instances. This allows
us to take advantage of fast hardware virtualization when
testing new inputs and collecting coverage.

The fuzzer starts up multiple QEMU-KVM virtual machine
instances in parallel. For PCI targets, each QEMU instance
has an emulated peripheral configured with the PCI device
IDs2 of the target device to send fuzzing input. For USB
targets, we attach an emulated USB peripheral with a USB de-
scriptor containing the correct device identifier for the target
driver; this identifier can be obtained from the USB_DEVICE
declaration in the driver’s code. We attach another virtual de-
vice to the VM for communication with the fuzzing backend.
The VM also runs a modified guest Linux kernel that exposes
DMA mapping.

Each instance starts with a fresh environment by loading
a VM snapshot. It then runs a script inside the guest VM
(shown in Listing 5) that uses modprobe to load the driver,
waits for one second to let any background setup finish, and
then attempts to bring up the network interface so it is able
to receive or transmit packets. Our customized kernel detects
failures during initialization that prevent the module from
loading and will abort the run early to avoid wasting time on
unsuccessful runs.

The startup script is intended to mimic the default OS oper-
ations when automatically bringing up an interface on boot.
Because we focus on testing the OS-peripheral boundary, we
do not attempt to fuzz the userspace attack surface (e.g., by
making calls to ioctl). For this reason, our fuzzing exper-
iments typically reach an average of 22% line coverage on
the tested drivers (full line coverage results can be found in
Appendix B). However, once the interface has successfully
been initialized using Drifuzz’s golden seeds, the userspace
attack surface could also be tested using existing system call
fuzzers [11].

When the script finishes, it reports coverage and restores
the VM to the saved snapshot. If the instance times out or has
a memory error, we record the input and restart the virtual
machine. For fuzzing PCI drivers, we also trigger an inter-
rupt for the device every 75 MMIO reads/writes. This allows
the interrupt handling code to be explored while preserving
determinism and reproducibility.

2These IDs are readily available for each driver in the kernel’s
modules.alias file.

8

1 #!/bin/bash
2 target=$1
3 # Intilize the driver
4 modprobe $target # Return if failed
5 # Wait for async tasks
6 sleep 1
7 # Bring up network interface
8 if ip link | grep "eth0"; then
9 ip link set dev eth0 up

10 elif ip link | grep "wlan0"; then
11 ip link set dev wlan0 up
12 fi

Listing 5: Scripts run by guest system

Our fuzzer uses the golden seed generated according to
the algorithm in Section 3.2 for its initial input and creates
test cases for each execution that reaches new coverage. Both
the initial seed and the test cases are stored in a format that
contains the binary file with actual values to return as well as
the mapping of MMIO addresses and DMA read sizes to the
values (as described in Section 4.1) for PCI devices. Because
input to USB devices is handled at the higher-level packet
interface, only the binary file is required.

5 Evaluation

In this section, we evaluate the efficiency and effectiveness of
Drifuzz on a total of ten real-world Ethernet and WiFi drivers,
including both PCI and USB targets. We are interested in the
following questions:

RQ1. Evaluating Drifuzz: How efficient and effective is
Drifuzz’s golden seed search? What are the individual
contributions of the golden seeds and hybrid fuzzing
components at achieving code coverage in drivers, com-
pared to a baseline coverage-guided fuzzer?

RQ2. Comparison with prior work: How does Drifuzz
compare to prior work on device driver testing that
used symbolic execution (SymDrive [40]) or coverage-
guided greybox fuzzing (Agamotto [50])?

RQ3. Bug-finding: Can Drifuzz find previously unknown
bugs in Linux network drivers?

5.1 Experimental Setup

Our evaluation is performed on two separate systems: a server
with 2x AMD EPYC 7542 32-core CPUs and 512 GiB of
RAM (referred to as just the “server machine” throughout this
section), and a desktop with a 16-core AMD Ryzen 5950x
CPU and 32 GiB of RAM (the “desktop machine”). We use
the former for our larger fuzzing experiments, and the latter for
smaller experiments and those that require a specialized kernel
(e.g., for comparisons with Agamotto) or other extensive local

Driver Time Sym Branch Block Bugs
ath9k 138m 118 7 0

ath10k_pci 25m 20 4 1
rtwpci 76m 22 6 0
8139cp 40m 19 2 0
atlantic 16m 20 1 2

snic 14m 7 4 0
stmmac_pci 75m 54 3 1

ar5523 57m 7 1 1
mwifiex_usb 2m 15 2 1

rsi_usb 3m 8 2 2

Table 2: Golden seed search statistics: runtime, number of
unique symbolic branches discovered, number of fixed block-
ing branches and number of bugs we found and fixed.

modifications (such as the build and runtime environment for
SymDrive).

5.2 Evaluating Drifuzz
5.2.1 Golden Seed Generation

In this experiment, we run our golden seed generation algo-
rithm on the desktop machine with ten target drivers: three
PCI WiFi, four PCI Ethernet and three USB WiFi. In Table 2,
we list the mean time needed to generate the seed across
three trials, the total number of symbolic branches discovered,
and the number of blocking branches that are discovered and
solved. Ten of our eleven previously unknown bugs were
discovered during seed generation.

The time required for seed generation varies depending on
the complexity of the driver, from a few minutes for ris_usb
and mwifiex_usb up to 138 minutes for the ath9k driver. Seeds
are intended to be generated once and then used for longer
fuzzing campaigns, so we feel that these times are reasonable.
The number of symbolic branches found indicate that it is
capable of reaching deeper paths in driver code, particularly
for PCI drivers. Our results also show that blocking branches
are relatively common and present in all tested drivers.

5.2.2 Ablation Study

To better understand the contribution of the seed generation
and concolic fuzzing components to Drifuzz’s ability to cover
code in complex drivers, we conduct an ablation study in
which we compare the coverage achieved in seven PCI net-
work drivers (three WiFi and four Ethernet) under different
configurations: greybox fuzzing with a random seed (Ran-
domSeed, our baseline), concolic fuzzing with random seed
(RS+C), greybox fuzzing with the generated golden seed
(GoldenSeed) and concolic fuzzing with golden seed (GS+C,
our full system).

The WiFi drivers tested are rtwpci, ath9k, and ath10k, and
the Ethernet drivers are stmmac_pci, 8139cp, atlantic, and

9

snic. The WiFi drivers are chosen because they are complex
SoftMAC drivers which implement most of the 802.11 func-
tionality in software rather than hardware, while the Ethernet
drivers were picked to allow comparison with prior work [50].

Our experiments run in parallel with 64 QEMU instances,
utilizing all physical cores. For each configuration, we run a
fuzzing experiment for 1 hour, for a total of 64 core-hours.
When running concolic execution, we pause a QEMU in-
stance to ensure all settings use the same amount of CPU
time. Following the fuzzing recommendations of Klees et
al. [26], we repeat each experiment ten times; we also provide
the coverage increase of the full system (GS+C) compared to
the baseline and assess statistical significance using the two-
sided Mann-Whitney U test3. To measure coverage we count
the number of non-zero bytes in the coverage map (this is
equivalent to the number of unique edges discovered, modulo
hash collisions). The results are summarized in Table 3.

We find that compared to the baseline, the full Drifuzz con-
figuration can boost coverage by 214% in WiFi PCI drivers
and 60% in Ethernet PCI drivers, on average. The results
are statistically significant for all drivers except stmmac_pci
(although the gains for the 8139cp driver are quite small).
Through manual inspection, we find that stmmac_pci and
8139cp have relatively simple initialization functions, so stan-
dard greybox fuzzing suffices on these drivers.

The configurations that use golden seeds tend to outperform
those that start with random seeds. This is true even when
we do not employ concolic execution during fuzzing. We
believe that this may indicate that many of the more difficult
conditions in driver code are found during the initialization
phase, so configurations using golden seeds capture most of
the benefits of concolic execution during seed generation. We
do not find statistically significant differences between the
two golden seed configurations, providing further evidence
that concolic fuzzing does not add much additional benefit
over golden seeds alone.

5.3 Comparison with Prior Work

5.3.1 SymDrive

In Section 2.3.2, we noted that purely symbolic approaches
may suffer from path explosion when faced with code con-
structs found in complex device drivers, leading us to employ
a combination of concolic and forced execution in the de-
sign of our golden seed generation algorithm. To test this,
we compare Drifuzz’s golden seed generation to a previous
symbolic-execution based system for testing device drivers,
SymDrive [40].

Because SymDrive is relatively old (it was published in
2012) and is implemented for Linux 3.1.1, we backport Dri-

3As noted by Bundt et al. [3], scipy’s implementation of the Mann-
Whitney U test previously had a bug that made it unreliable for n < 20.
This bug was fixed in May 2021, and we made sure to use the fixed version.

fuzz to this kernel version and then use both systems to test
four PCI WiFi drivers present in this version of the kernel:
ath5k, ath9k, atmel_pci, and orinoco_pci. Because Linux 3.1.1
does not support in-kernel coverage measurement via kcov,
we instead compare the time spent by each system to com-
plete its exploration, whether the network interface (eth0 or
wlan0) is successfully initialized once each system’s search
terminates, and the number of bugs found. As the SymDrive
paper, we perform three trials and report the mean time. The
result is shown in Table 4: interface discovery and bugs found
results are consistent in all three trials.

SymDrive finishes faster than Drifuzz for three out of the
four drivers, but encounters path explosion in the orinoco
driver and takes 420 minutes (7 hours) to complete. However,
SymDrive only successfully initializes the network interface
in one of the four drivers, ath9k, while Drifuzz is able to
initialize the interface in all four. We diagnosed each failing
case from SymDrive and found several distinct causes. In
orinoco, a loop without an upper bound created a large number
of states, leading to path explosion. The ath5k driver failed
due to an error in SymDrive where the symbolic executor
jumps to an invalid instruction offset. Finally, the atmel driver
fails because a library function in a dependent driver was
missing from Symdrive’s source-level instrumentation, which
is used to favor successful return values (zero, in most parts
of the Linux kernel) during symbolic exploration.

Finally, whereas SymDrive’s exploration does not uncover
any bugs in the tested drivers, Drifuzz found memory safety
issues in the ath5k and orinoco_pci drivers. We find that the
orinico bug has been independently discovered and patched in
later kernel versions; however, the ath5k bug was still present
in modern kernels. We reported the flaw and provided a fix to
the kernel maintainers.

5.3.2 Agamotto

Agamotto is the most closely related work to our own, as it
applies greybox fuzzing at the OS-peripheral boundary. Due
to hardware compatibility issues, we perform our comparison
on the desktop rather than the server machine. As before,
we run the experiment for one hour, but due to the lower
number of CPU cores on the desktop machine this gives a
16 core-hour experiment; we repeat the experiment ten times
and report significance. We add support for the three PCI
WiFi drivers tested in Section 5.2.2 to Agamotto to make the
evaluation more consistent with our ablation study, and test
four PCI Ethernet and three USB WiFi drivers (included in
Agamotto’s evaluation).

We also made minor modifications to Agamotto to make
the configuration more consistent and comparable with Dri-
fuzz. Agamotto’s coverage measurement uses a shared global
variable for the previous program counter, which leads to
spurious edges added to the coverage map in the presence
of multiple threads; we convert it to a thread-local variable.

10

Driver RandomSeed RS+C GoldenSeed GS+C Increase Signif
ath9k 310.9 522.9 2070.9 2793.7 798.6% ***

ath10k_pci 462.8 657.2 785.6 793.4 71.4% ***
rtwpci 183.1 163.6 384.1 386 110.8% ***
8139cp 173.1 172.4 173.3 173.7 0.3% *
atlantic 372.1 1441.9 1033.7 1532.5 311.9% ***

stmmac_pci 798.9 749.5 818.5 812.9 1.8% n.s.
snic 54 81.7 83 83.7 55.0% ****

Table 3: Mean bitmap byte coverage when fuzzing PCI network drivers across 10 trials with coverage increase between the
baseline (RandomSeed) and our full system (GS+C). RS: random seed; GS: golden seed; +C: concolic-assisted. Asterisks indicate
the significance level as measured by the Mann-Whitney U test: *: p<0.05, **: p<0.01, ***: p<0.001, and ****: p<0.0001.

Driver SymDrive Intf Drifuzz Intf Bugs
ath5k 13s × 65m ✓ 1
ath9k 193s ✓ 138m ✓ ×

atmel_pci 2s × 29m ✓ ×
orinoco_pci ~420m × 64m ✓ 1

Table 4: Comparison between SymDrive and Drifuzz’s con-
colic search; we perform three trials and report the mean. Intf
indicates whether the network interface is found. The Bugs
column shows bugs Drifuzz discovered in Linux v3.1.1 that
SymDrive does not find.

Driver Agamotto Drifuzz Increase Signif
ath9k 503.4 2782.5 452.7% ***

ath10k_pci 412.9 889.9 115.5% ***
rtwpci 163 394.2 141.8% ***
8139cp 105.7 171.8 62.5% ****
atlantic 265.8 841 216.4% ***

stmmac_pci 742.9 914.8 23.1% ***
snic 51 86.1 68.7% ****

Table 5: Mean bitmap byte coverage from 10 trials for Ag-
amotto and Drifuzz with coverage increase and statistical
significance: *: p<0.05, **: p<0.01,***: p<0.001 and ****:
p<0.0001).

Agamotto also measures coverage in the entire network sub-
system; because Drifuzz is optimized for driver fuzzing (in
particular, its concolic analysis is disabled outside of driver
code); we limit Agamotto’s coverage tracking to driver code
as well.

PCI Drivers We compare Drifuzz with Agamotto on PCI-
based drivers in Table 5. We find that Drifuzz achieves, on
average, 154% (2.5×) higher coverage across PCI drivers.
These results are significant at the p<0.001 level or better for
all tested drivers. Despite a shorter experiment, the coverage
is generally on par with the results of our ablation study;
we believe this is due to the significantly faster single-core
performance on the desktop system.

Driver Agamotto Drifuzz Bug Signif
ar5523 47 60.7 1 ****
mwifiex 66 126.7 1 ****

rsi 76 217.3 2 ****

Table 6: Mean block coverage for USB targets from 10 trials,
Agamotto vs Drifuzz, the number of newly discovered bugs
by Drifuzz, and statistical significance: *: p<0.05, **: p<0.01,
: p<0.001 and *: p<0.0001). GS: golden seed byte
coverage.

USB Drivers Here, we evaluate Agamotto and Drifuzz on
the three USB WiFi drivers that were included in Agamotto’s
evaluation. For consistency with Drifuzz, we omit the USB
disconnect option when testing Agamotto and compare cov-
erage achieved within the driver. Note that unlike the other
experiments in our evaluation, we measure block coverage
rather than edge coverage because Agamotto (and Syzkaller,
on which Agamotto’s USB support is based) do not report
branch coverage when fuzzing USB devices. The results are
shown in Table 6.

Drifuzz outperforms Agamotto on every driver, finding four
previously unknown bugs that Agamotto fails to detect. We
use the interactive coverage UI (inherited by Syzkaller) and
confirm that the buggy code is not covered by Agamotto in
any of the three drivers.

5.4 Bug Finding

In addition to the bugs discovered in the course of our main
evaluation, we also conducted an ad hoc test of the ath9k
USB driver with the golden seed generation algorithm. We
were able to find two bugs in this driver using Drifuzz, both
of which were already reported by Syzkaller. We submitted
patch for one of the two, which had not yet been fixed.

Overall, we have used Drifuzz to find eleven previously
unknown bugs in four PCI drivers and four USB drivers. We
discovered two other PCI driver bugs manually during the
development of our fuzzer. We have submitted patches to the
Linux open-source community for fourteen discovered bugs;

11

thirteen of these patches have been accepted into the kernel
and one is still under review.

Table 7 lists the twelve memory bugs we discovered and
fixed with Drifuzz. Ten were found during the concolic explo-
ration phase of golden seed generation and two were found
during hybrid fuzzing.

5.4.1 Vulnerability Disclosure

We reported all bugs found to the Linux kernel developers, and
provided patches to fix the issues. We additionally evaluated
the severity of the issues, applied for CVE identifiers for the
two we felt were likely to be exploitable, and were assigned
CVE-2021-43975 and CVE-2021-43976. CVE-2021-43975
is an out-of-bounds read followed by an out-of-bound write
with attacker-controlled length in the atlantic PCI Ethernet
driver, and may be exploitable locally by an attacker with the
ability to attach a malicious PCI device, or by first exploiting
a flaw in the atlantic firmware and then using this vantage
point to attack the host. CVE-2021-43976 is a kernel panic
(denial of service) in the Marvell mwifiex USB driver and can
be triggered by an attacker who can insert a malicious USB
device or compromise the mwifiex firmware.

Aside from disclosing and helping to fix the vulnerabilities
we discovered, we also worked with a downstream vendor to
help them understand the potential impact on their distribu-
tion.

6 Limitations and Future Work

Similar to many other systems that use symbolic execu-
tion [21, 45, 47], we have a limitation in our handling of
pointers with symbolic addresses. Ideally, a read or write at a
symbolic address should consider that all possible addresses
that satisfy the constraints could be modified; however, this
can be very expensive in practice. We instead adopt a common
practical workaround and simply concretize the pointer. As a
consequence, however, we cannot solve complex constructs
involving symbolic addresses, such as parsing the contents
of non-volatile read-only memory (NVRAM) in the rtwpci
driver. We hope to remove this limitation in future work by
adopting some form of symbolic array modeling, similar to
that found in Mayhem [6].

As we discuss in our related work, the nascent field of
embedded device rehosting [18, 53], which attempts to au-
tomatically model device peripherals so that the embedded
device firmware can be emulated entirely in software, shares
many key goals with our work. Both rehosting and hardware-
free driver fuzzing need to generate satisfactory responses to
driver queries, lest the driver conclude that the hardware is
malfunctioning and abort. Although the level of driver func-
tionality needed to fuzz a driver is significantly less than that
required to emulate a whole embedded system, we believe that
some of our techniques for finding good values for peripheral

responses while avoiding path explosion may be applicable
to the rehosting problem as well, and we aim to explore this
connection further in future research.

We hope to extend our work to closed-source Android de-
vice drivers. Because these devices are mobile, they are more
exposed to remote attacks via WiFi and Bluetooth; at the same
time, many of the drivers are closed source and proprietary,
which makes large-scale testing difficult. Our current work-
flow requires the driver source only for coverage collection;
however, recent advances in both hardware-assisted coverage
collection [42,43] and static binary rewriting [16,20, 57] may
make coverage collection on closed-source drivers easier. Fi-
nally, we also hope to extend our fuzzer to explore different
interrupt schedules in order to expose harder-to-find driver
bugs such as race conditions.

7 Related Work

Fuzzing has recently received a great deal of attention from
academic researchers. Here we focus on the work most closely
related to Drifuzz; for a more complete overview of recent
fuzzing research we direct the reader to the survey of Manès
et al. [31]. Drifuzz extends traditional fuzzing by using forced
execution and concolic testing to generate good initial seeds
for complex driver code, allowing the OS-peripheral boundary
to be efficiently tested without requiring actual hardware.

Hybrid Fuzzing Hybrid fuzzing is a popular approach to
overcome some of the limitations of random fuzzing; however,
the majority of this work focuses on userspace programs [7,
21, 23, 37, 51, 56]. HFL [23] works with the Linux kernel but
mainly examines the system call interface and does not handle
MMIO, DMA, or interrupts.

USB Fuzzing Although PCI device drivers have so far re-
ceived relatively little attention, some prior work has exam-
ined the security of USB drivers [27,36]. Here, the motivating
threat model is an attacker who has physical access to a ma-
chine and can insert a malicious USB peripheral.

Program Transformation Prior work uses program trans-
formation in fuzzing [37] and malware detection [24]. T-
Fuzz [37] applies forced execution to disable complex con-
dition checks and later recovers the path through symbolic
execution. Although the basic idea is similar, Drifuzz works
with kernel code and modifies the driver code during concolic
execution to quickly identify preferred branch conditions.

Checkpoint-based Fuzzing Agamotto [50] uses snapshots
to accelerate device driver fuzz testing. Finding new paths is
a rare occasion in fuzzing; most of the fuzzer’s time is spent
in already-found paths. Agamotto actively creates snapshots
during execution. When it executes a new input, it finds the
closest snapshot by longest common prefix, and starts exe-
cution from the snapshot. The time difference between real
execution and restoration is saved and thus speeds up fuzzing.
Although our evaluation finds that Drifuzz’s seed generation

12

Summary Driver Type Fixed Stage
KASAN: slab-out-of-bounds in ath10k_pci_hif_exchange_bmi_msg ath10k PCI ✓ seed-gen
KASAN: slab-out-of-bounds in hw_atl_utils_fw_upload_dwords atlantic PCI ✓ fuzzing
KASAN: double-free or invalid-free in consume_skb atlantic PCI ✓ seed-gen
KASAN: use-after-free in stmmac_napi_poll_rx stmmac PCI ✓ seed-gen
KASAN: use-after-free in aq_ring_rx_clean atlantic PCI ✓ seed-gen
KASAN: slab-out-of-bounds in ath5k_eeprom_read_pcal_info_5111 ath5k PCI ✓ seed-gen
KASAN: null-ptr-deref ar5523 USB ✓ seed-gen
skbuff: skb_over_panic mwifiex USB ✓ seed-gen
KASAN: slab-out-of-bounds in ath9k_hif_usb_rx_cb ath9k_htc USB ✓ seed-gen
KASAN: slab-out-of-bounds in rsi_read_pkt rsi USB ✓ seed-gen
KASAN: use-after-free in rsi_rx_done_handler rsi USB ✓ seed-gen
KASAN: use-after-free in rsi_read_pkt rsi USB fuzzing

Table 7: Summary of new memory/panic bugs we found, the name of the buggy device driver, bus type, whether fixed upstream
and the stage we found the bug

is better able to handle complicated drivers and reach deeper
paths, the snapshot mechanism could also potentially bene-
fit Drifuzz if the necessary symbolic state were saved in the
snapshot.

Symbolic Execution SymDrive [40] and DDT [28] are ear-
lier works that use symbolic execution to test device drivers.
However, as we see in our comparison with SymDrive (Sec-
tion 5.3.1), these symbolic approaches may struggle with
complex code such as WiFi drivers due to path explosion.

Hardware-based Device Driver Testing Hardware-in-the-
loop testing can be an effective bug-finding strategy [34, 41,
49, 52]. Unfortunately, this technique requires significant hu-
man effort and resources to test a new device. For example,
Periscope [49] needs to flash a custom Android kernel to the
device under test and Charm [52] requires porting the device
driver to a modified kernel. One recent work, BOSD [29],
uses record and replay to scale fuzzing of GPU drivers by
replaying recorded responses from the real hardware on mul-
tiple cores, but at least one real device is still needed, and it
focuses only on the system call boundary.

Firmware Rehosting On the embedded side, there are
firmware testing tools that apply fuzzing [19, 32] and sym-
bolic execution [5, 22, 58]. These tools mainly work with IoT
devices that run custom firmware on the ARM architecture.
P2IM [19] and DICE [32] use heuristics tuned for micro-
controllers to categorize the type of input registers, such as
control registers, status registers and data registers.

In concurrent work, µemu [58] and Jetset [22] use symbolic
execution in an attempt to create higher-fidelity models of
embedded peripherals; while µemu targets relatively simple
microcontrollers, Jetset can partially emulate more complex
embedded systems such as a Raspberry Pi. Jetset approxi-
mates the interprocedural distance to a goal location in the
firmware and uses this distance to choose a direction at sym-
bolic branches. This heuristic can bypass some constructs

such as query loops, but in more complex device drivers, er-
ror paths are often shorter than paths that correctly initialize
the driver. For example, Jetset’s distance-based heuristic will
favor the error return in Listing 3; while Jetset can eventually
recover by backtracking, this can be quite expensive, particu-
larly when the initial error and the goal are far apart.

8 Conclusion

In this paper we presented a technique for efficiently generat-
ing “golden seeds” that allow the OS-peripheral boundary to
be tested efficiently without access to real hardware periph-
erals. Our implementation augments PANDA’s existing taint
analysis to perform concolic execution, and leverages TCG
modification to optimize concolic golden seed generation.
Our evaluation of fourteen WiFi and Ethernet drivers shows
that golden seeds and hybrid fuzzing allow Drifuzz to achieve
higher coverage than the previous state of the art and uncover
real vulnerabilities in device drivers. Two bugs with severe
impact were assigned CVEs.

Availability

To facilitate future research, we have made Drifuzz available
as an open source project at:
https://github.com/messlabnyu/DrifuzzProject

References

[1] Fabrice Bellard. QEMU, a fast and portable dynamic
translator. In USENIX annual technical conference,
FREENIX Track, volume 41, page 46. Califor-nia, USA,
2005.

13

https://github.com/messlabnyu/DrifuzzProject

[2] Gal Beniamini. Over the air: Exploiting Broadcom’s
Wi-Fi stack (part 1). https://googleprojectzero.
blogspot.com/2017/04/over-air-exploiting-b
roadcoms-wi-fi_4.html, 2017.

[3] Joshua Bundt, Andrew Fasano, Brendan Dolan-Gavitt,
William Robertson, and Tim Leek. Evaluating synthetic
bugs. In Proceedings of the ACM Asia Conference on
Computer and Communications Security (ASIACCS),
Virtual Event, Hong Kong, 2021.

[4] Laurent Butti. Wi-Fi advanced fuzzing. BlackHat EU
2007, 2007.

[5] Chen Cao, Le Guan, Jiang Ming, and Peng Liu. Device-
agnostic firmware execution is possible: A concolic ex-
ecution approach for peripheral emulation. In Annual
Computer Security Applications Conference, pages 746–
759, 2020.

[6] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert,
and David Brumley. Unleashing mayhem on binary
code. In 2012 IEEE Symposium on Security and Privacy,
pages 380–394, 2012.

[7] Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong
Zhou, Yulong Zhang, Tao Wei, and Long Lu. Savior:
Towards bug-driven hybrid testing. In 2020 IEEE Sym-
posium on Security and Privacy (SP), pages 1580–1596.
IEEE, 2020.

[8] Vitaly Chipounov and George Candea. Dynamically
translating x86 to LLVM using QEMU. Technical re-
port, École Polytechnique Fédérale de Lausanne (EPFL),
2010.

[9] Vitaly Chipounov, Vlad Georgescu, Cristian Zamfir, and
George Candea. Selective symbolic execution. In Pro-
ceedings of the 5th Workshop on Hot Topics in System
Dependability (HotDep), 2009.

[10] Vitaly Chipounov, Volodymyr Kuznetsov, and George
Candea. S2E: A platform for in-vivo multi-path analysis
of software systems. Acm Sigplan Notices, 46(3):265–
278, 2011.

[11] Jake Corina, Aravind Machiry, Christopher Salls, Yan
Shoshitaishvili, Shuang Hao, Christopher Kruegel, and
Giovanni Vigna. DIFUZE: Interface aware fuzzing for
kernel drivers. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’17, page 2123–2138, New York, NY, USA, 2017.
Association for Computing Machinery.

[12] Leonardo De Moura and Nikolaj Bjørner. Z3: An effi-
cient SMT solver. In International conference on Tools
and Algorithms for the Construction and Analysis of
Systems, pages 337–340. Springer, 2008.

[13] Google Developers. Syzkaller. https://github.com
/google/syzkaller.

[14] KASAN developers. The kernel address sanitizer
(kasan). https://docs.kernel.org/dev-tool
s/kasan.html#usage.

[15] QEMU Developers. Official QEMU mirror. https:
//github.com/qemu/qemu.

[16] S. Dinesh, N. Burow, D. Xu, and M. Payer. RetroWrite:
Statically instrumenting COTS binaries for fuzzing and
sanitization. In 2020 IEEE Symposium on Security
and Privacy (SP), pages 1497–1511, Los Alamitos, CA,
USA, may 2020. IEEE Computer Society.

[17] Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim
Leek, and Ryan Whelan. Repeatable reverse engineer-
ing with PANDA. In Proceedings of the 5th Program
Protection and Reverse Engineering Workshop, pages
1–11, 2015.

[18] Andrew Fasano, Tiemoko Ballo, Marius Muench,
Tim Leek, Alexander Oleinik, Brendan Dolan-Gavitt,
Manuel Egele, Aurélien Francillon, Long Lu, Nick Gre-
gory, Davide Balzarotti, and William Robertson. SoK:
Enabling security analyses of embedded systems via
rehosting. In 16th ACM ASIA Conference on Computer
and Communications Security (ASIACCS), June 2021.

[19] Bo Feng, Alejandro Mera, and Long Lu. P2IM: Scal-
able and hardware-independent firmware testing via au-
tomatic peripheral interface modeling. In 29th USENIX
Security Symposium (USENIX Security 20), pages 1237–
1254, 2020.

[20] Antonio Flores-Montoya and Eric Schulte. Datalog
disassembly. In 29th USENIX Security Symposium
(USENIX Security 20), pages 1075–1092. USENIX As-
sociation, August 2020.

[21] Patrice Godefroid, Nils Klarlund, and Koushik Sen.
DART: Directed automated random testing. In Pro-
ceedings of the 2005 ACM SIGPLAN conference on Pro-
gramming language design and implementation, pages
213–223, 2005.

[22] Evan Johnson, Maxwell Bland, YiFei Zhu, Joshua Ma-
son, Stephen Checkoway, Stefan Savage, and Kirill
Levchenko. Jetset: Targeted firmware rehosting for
embedded systems. In 30th USENIX Security Sympo-
sium (USENIX Security 21), pages 321–338. USENIX
Association, August 2021.

[23] Kyungtae Kim, Dae R Jeong, Chung Hwan Kim,
Yeongjin Jang, Insik Shin, and Byoungyoung Lee. HFL:
Hybrid fuzzing on the Linux kernel. In Proceedings
of the 2020 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, 2020.

14

https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://docs.kernel.org/dev-tools/kasan.html#usage
https://docs.kernel.org/dev-tools/kasan.html#usage
https://github.com/qemu/qemu
https://github.com/qemu/qemu

[24] Kyungtae Kim, I Luk Kim, Chung Hwan Kim, Yonghwi
Kwon, Yunhui Zheng, Xiangyu Zhang, and Dongyan Xu.
J-Force: Forced execution on Javascript. In Proceedings
of the 26th international conference on World Wide Web,
pages 897–906, 2017.

[25] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and An-
thony Liguori. KVM: the Linux virtual machine mon-
itor. In Proceedings of the Linux symposium. Dttawa,
Dntorio, Canada, 2007.

[26] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,
and Michael Hicks. Evaluating fuzz testing, 2018.

[27] Andrey Konovalov. External USB fuzzing for Linux
kernel. https://github.com/google/syzkaller/
blob/master/docs/linux/external_fuzzing_usb
.md.

[28] Volodymyr Kuznetsov, Vitaly Chipounov, and George
Candea. Testing closed-source binary device drivers
with DDT. In USENIX Annual Technical Conference,
2010.

[29] Dominik Maier and Fabian Toepfer. BSOD: Binary-
Only Scalable Fuzzing Of Device Drivers, page 48–61.
Association for Computing Machinery, New York, NY,
USA, 2021.

[30] Rupak Majumdar and Koushik Sen. Hybrid concolic
testing. In 29th International Conference on Software
Engineering (ICSE’07), pages 416–426. IEEE, 2007.

[31] Valentin J.M. Manès, HyungSeok Han, Choongwoo
Han, Sang Kil Cha, Manuel Egele, Edward J. Schwartz,
and Maverick Woo. The art, science, and engineering
of fuzzing: A survey. IEEE Transactions on Software
Engineering, 47(11), Nov 2021.

[32] Alejandro Mera, Bo Feng, Long Lu, Engin Kirda, and
William Robertson. DICE: Automatic emulation of dma
input channels for dynamic firmware analysis. arXiv
preprint arXiv:2007.01502, 2020.

[33] Andreas Moser, Christopher Kruegel, and Engin Kirda.
Exploring multiple execution paths for malware analysis.
In IEEE Symposium on Security and Privacy, 2007.

[34] Marius Muench, Dario Nisi, Aurélien Francillon, and
Davide Balzarotti. Avatar2: A multi-target orchestra-
tion platform. In NDSS Workshop on Binary Analysis
Research, volume 18, pages 1–11, 2018.

[35] Andy Nguyen. BleedingTooth: Linux Bluetooth zero-
click remote code execution. https://google.githu
b.io/security-research/pocs/linux/bleeding
tooth/writeup.html.

[36] Hui Peng and Mathias Payer. USBFuzz: A framework
for fuzzing USB drivers by device emulation. In 29th
USENIX Security Symposium (USENIX Security 20),
pages 2559–2575, 2020.

[37] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-
Fuzz: fuzzing by program transformation. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 697–
710. IEEE, 2018.

[38] Sebastian Poeplau and Aurélien Francillon. SymQEMU:
Compilation-based symbolic execution for binaries. In
NDSS, 2021.

[39] Ivan Pustogarov, Qian Wu, and David Lie. Ex-vivo
dynamic analysis framework for Android device drivers.
In 2020 IEEE Symposium on Security and Privacy (SP),
pages 1088–1105. IEEE, 2020.

[40] Matthew J Renzelmann, Asim Kadav, and Michael M
Swift. Symdrive: Testing drivers without devices. In
10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 12), pages 279–292, 2012.

[41] Jan Ruge, Jiska Classen, Francesco Gringoli, and
Matthias Hollick. Frankenstein: Advanced wireless
fuzzing to exploit new Bluetooth escalation targets. In
29th USENIX Security Symposium (USENIX Security
20), pages 19–36, 2020.

[42] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi,
Simon Wör-ner, and Thorsten Holz. Nyx: Greybox
hypervisor fuzzing using fast snapshots and affine types.
In 30th USENIX Security Symposium (USENIX Security
21). USENIX Association, August 2021.

[43] Sergej Schumilo, Cornelius Aschermann, Robert Gaw-
lik, Sebastian Schinzel, and Thorsten Holz. kAFL:
Hardware-assisted feedback fuzzing for os kernels. In
Proceedings of the 26th USENIX Conference on Secu-
rity Symposium, SEC’17, page 167–182, USA, 2017.
USENIX Association.

[44] Denis Selyanin. Researching Marvell Avastar Wi-Fi:
from zero knowledge to over-the-air zero-touch RCE.
ZeroNights, https://2018.zeronights.ru/wp-co
ntent/uploads/materials/19-Researching-Mar
vell-Avastar-Wi-Fi.pdf, 2018.

[45] Koushik Sen, Darko Marinov, and Gul Agha. Cute: A
concolic unit testing engine for c. SIGSOFT Softw. Eng.
Notes, 30(5):263–272, sep 2005.

[46] Ben Seri, Gregory Vishnepolsky, and Dor Zusman.
BLEEDINGBIT: The hidden attack surface within BLE
chips. Technical report, ARMIS Inc., 2019.

15

https://github.com/google/syzkaller/blob/master/docs/linux/external_fuzzing_usb.md
https://github.com/google/syzkaller/blob/master/docs/linux/external_fuzzing_usb.md
https://github.com/google/syzkaller/blob/master/docs/linux/external_fuzzing_usb.md
https://google.github.io/security-research/pocs/linux/bleedingtooth/writeup.html
https://google.github.io/security-research/pocs/linux/bleedingtooth/writeup.html
https://google.github.io/security-research/pocs/linux/bleedingtooth/writeup.html
https://2018.zeronights.ru/wp-content/uploads/materials/19-Researching-Marvell-Avastar-Wi-Fi.pdf
https://2018.zeronights.ru/wp-content/uploads/materials/19-Researching-Marvell-Avastar-Wi-Fi.pdf
https://2018.zeronights.ru/wp-content/uploads/materials/19-Researching-Marvell-Avastar-Wi-Fi.pdf

[47] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,
Nick Stephens, Mario Polino, Audrey Dutcher, John
Grosen, Siji Feng, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. SoK: (State of) The Art
of War: Offensive Techniques in Binary Analysis. In
IEEE Symposium on Security and Privacy, 2016.

[48] Eike Siewertsen. Multi-platform binary program testing
using concolic execution. Master’s thesis, Chalmers
University of Technology, 2015.

[49] Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad
Spensky, Yeoul Na, Stijn Volckaert, Giovanni Vigna,
Christopher Kruegel, Jean-Pierre Seifert, and Michael
Franz. PeriScope: An effective probing and fuzzing
framework for the hardware-os boundary. In NDSS,
2019.

[50] Dokyung Song, Felicitas Hetzelt, Jonghwan Kim,
Brent ByungHoon Kang, Jean-Pierre Seifert, and
Michael Franz. Agamotto: Accelerating kernel driver
fuzzing with lightweight virtual machine checkpoints.
In 29th USENIX Security Symposium (USENIX Security
20), pages 2541–2557. USENIX Association, August
2020.

[51] Nick Stephens, John Grosen, Christopher Salls, Andrew
Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshi-
taishvili, Christopher Kruegel, and Giovanni Vigna.
Driller: Augmenting fuzzing through selective symbolic
execution. In NDSS, 2016.

[52] Seyed Mohammadjavad Seyed Talebi, Hamid Tavakoli,
Hang Zhang, Zheng Zhang, Ardalan Amiri Sani, and
Zhiyun Qian. Charm: Facilitating dynamic analysis of
device drivers of mobile systems. In Proceedings of
the 27th USENIX Conference on Security Symposium,
SEC’18, page 291–307, USA, 2018. USENIX Associa-
tion.

[53] Christopher Wright, William A. Moeglein, Saurabh
Bagchi, Milind Kulkarni, and Abraham A. Clements.
Challenges in firmware re-hosting, emulation, and anal-
ysis. ACM Computing Surveys, 54(1), January 2021.

[54] Wen Xu, Hyungon Moon, Sanidhya Kashyap, Po-Ning
Tseng, and Taesoo Kim. Fuzzing file systems via two-
dimensional input space exploration. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 818–
834. IEEE, 2019.

[55] Wei You, Xuwei Liu, Shiqing Ma, David Perry, Xiangyu
Zhang, and Bin Liang. SLF: fuzzing without valid seed
inputs. In 2019 IEEE/ACM 41st International Confer-
ence on Software Engineering (ICSE), pages 712–723.
IEEE, 2019.

[56] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and
Taesoo Kim. QSYM: A practical concolic execution
engine tailored for hybrid fuzzing. In 27th USENIX
Security Symposium (USENIX Security 18), pages 745–
761, 2018.

[57] Z. Zhang, W. You, G. Tao, Y. Aafer, X. Liu, and
X. Zhang. STOCHFUZZ: Sound and cost-effective
fuzzing of stripped binaries by incremental and stochas-
tic rewriting. In 2021 2021 IEEE Symposium on Security
and Privacy (SP), pages 1884–1901, Los Alamitos, CA,
USA, may 2021. IEEE Computer Society.

[58] Wei Zhou, Le Guan, Peng Liu, and Yuqing Zhang. Au-
tomatic firmware emulation through invalidity-guided
knowledge inference. In 30th USENIX Security Sympo-
sium (USENIX Security 21), pages 2007–2024. USENIX
Association, August 2021.

A KASAN Optimization

Here we provide more detailed performance results for frame
unwinding. We use the test cases generated by our fuzzer
to evaluate the performance of Drifuzz on the 7 PCI net-
work drivers. The result, shown in Table 8, shows an average
speedup of 4.72× after removing stack unwinding for mem-
ory allocation and deallocation, with speedups of nearly 16×
in allocation-intensive drivers. Beginning with Linux v5.11,
KASAN provides a mechanism to disable collection of stack
traces on alloc/free via the kasan.stacktrace=off boot pa-
rameter [14]; however, this feature is only available when
using the hardware tag-based implementation of KASAN.

As an alternative to disabling KASAN’s stack unwinding,
we could also attempt to use a faster unwinder; we therefore
evaluated the two unwinders supported by Linux kernel. The
Frame Pointer unwinder (FP) stores a pointer to the previous
frame in a register so it can more quickly unwind calling
stacks. The ORC unwinder (enabled by default) uses a binary
format to store information about stack frame sizes, allow-
ing unwinding to occur without the use of a dedicated frame
pointer register. Although this makes unwinding much slower,
it improves performance during normal execution by free-
ing up an extra register and reducing code size by ≈3.2%.
However, with KASAN enabled, stack traces are collected
frequently during kmalloc and kfree, causing a slowdown of
up to 20% in our tests.

To more precisely measure the overhead of allocation-
related unwinding we created a micro-benchmark module
that performs kmalloc/kfree 500,000 times (comparable
to the number of allocations made during Ethernet driver
initialization). We test four configurations: KASAN+FP,
KASAN+ORC, KASAN with our patch, and, for comparison,
ORC with KASAN disabled. Across ten trials, the benchmark
takes 286.7ms, 351.2ms, 57.8ms and 8ms. Our patched ver-
sion is considered the baseline, where the same code is run but

16

no stack unwinding happens. The data show that FP unwinder
is 1.2× faster than ORC unwinder, but our patch still provides
a speedup of 4.9× over the FP unwinder.

Driver Optimized Unmodified Speedup
ath10k_pci 0.32s 2.23s 6.96×

ath9k 1.45s 1.96s 1.35×
rtwpci 0.28s 2.12s 7.65×
atlantic 0.16s 2.07s 12.93×
8139cp 1.14s 3.14s 2.74×

stmmac_pci 1.51s 1.93s 1.28×
snic 0.13s 2.04s 15.95×

geomean 4.72×

Table 8: Average execution time in seconds per input with
optimized and unmodified KASAN.

B Absolute Coverage

Here we report absolute line coverage for fuzzed PCI drivers.
The coverage information was produced by replaying the
fuzzer-generated test cases under a gcov-instrumented version
of the kernel. The results can be seen in Table 9. As noted
in Section 4.6, some parts of the driver code are unreachable
by fuzzing device inputs and can only be reached by making
ioctl calls from userspace.

Driver Lines Covered Total Lines Coverage
ath10k_pci 1700 21827 7.8%

ath9k 6526 19944 32.7%
rtwpci 1147 8544 13.4%
atlantic 2224 5553 40.1%
8139cp 379 904 41.9%

stmmac_pci 1328 7812 17%
snic 146 3074 4.7%

mean 22.5%

Table 9: Line coverage in PCI drivers as measured by gcov.

17

	Introduction
	Background
	Device Driver Security
	Whole System Emulation and Analysis
	Challenges
	Hardware Diversity and Availability
	Hard-to-Fuzz Code Patterns in Drivers

	Drifuzz Design
	Device Driver Inputs
	Golden Seed Search
	Forced Execution
	Traditional and Hybrid Fuzzing

	Implementation
	Multi-buffer Input Feeding
	KASAN Optimization
	Selective Symbolic Execution
	Concolic Execution
	Forced Execution via TCG Modification
	Fuzzer Implementation

	Evaluation
	Experimental Setup
	Evaluating Drifuzz
	Golden Seed Generation
	Ablation Study

	Comparison with Prior Work
	SymDrive
	Agamotto

	Bug Finding
	Vulnerability Disclosure

	Limitations and Future Work
	Related Work
	Conclusion
	KASAN Optimization
	Absolute Coverage

