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Figure 1: An illustration of our parallel insertion-based BVH optimization. For each node (the input node), we search for the best position
leading to the highest reduction of the SAH cost for reinsertion (the output node) in parallel. The input and output nodes together with the
corresponding path are highlighted with the same color. Notice that some nodes might be shared by multiple paths. We move the nodes to the
new positions in parallel while taking care of potential conflicts of these operations.

Abstract

We present a novel highly parallel method for optimizing bounding volume hierarchies (BVH) targeting contemporary GPU
architectures. The core of our method is based on the insertion-based BVH optimization that is known to achieve excellent
results in terms of the SAH cost. The original algorithm is, however, inherently sequential: no efficient parallel version of the
method exists, which limits its practical utility. We reformulate the algorithm while exploiting the observation that there is no
need to remove the nodes from the BVH prior to finding their optimized positions in the tree. We can search for the optimized
positions for all nodes in parallel while simultaneously tracking the corresponding SAH cost reduction. We update in parallel all
nodes for which better position was found while efficiently handling potential conflicts during these updates. We implemented
our algorithm in CUDA and evaluated the resulting BVH in the context of the GPU ray tracing. The results indicate that the
method is able to achieve the best ray traversal performance among the state of the art GPU-based BVH construction methods.

Categories and Subject Descriptors (according to ACM CCS):

1.3.7 [Computer Graphics]: Raytracing—I.3.5 [Computer

Graphics]: Object Hierarchies—I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—

1. Introduction

Ray tracing is the underlying engine of many contemporary image
synthesis algorithms. An elementary operation of ray tracing is to
find the nearest intersection with a scene for a given ray. The major
bottleneck is the time complexity which is linear in the number of
scene primitives for a ndive approach. In practice, millions of rays
are tested against millions of scene primitives; the nédive approach
becomes practically inapplicable. The complexity issue motivated
researchers to arrange the scene into various spatial data structures
which accelerate ray tracing by orders of magnitude.

Nowadays, bounding volume hierarchy (BVH) is one of the most
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popular acceleration spatial data structure. In the terminology of
graph theory, the BVH is a rooted tree containing references to
scene primitives in leaves and bounding volumes in interior nodes.
The bounding volumes tightly enclose the scene primitives in the
corresponding subtree. In the context of ray tracing, we typically
use binary or quaternary BVH with axis-aligned bounding boxes.
For a given scene, the space of valid BVHs suffers from combina-
torial explosion. We can express the quality of the resulting BVH
in terms of the SAH cost [MB90]. The problem of finding an SAH-
optimal BVH is believed to be NP-hard [KA13]. Due to the hard-
ness, various heuristics are employed to construct a good BVH.
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High-quality BVHs are desirable in both online and offline ren-
dering. In offline rendering, increasing BVH quality might save
hours or even days of computational time. In online rendering, a
scene consists of static and dynamic geometry. The static part is
the same in every frame, and thus it pays off to precompute a high-
quality BVH for it. The insertion-based optimization method pro-
posed by Bittner et al. [BHH13] achieves the best results in terms
of the BVH quality up to date [AKL13]. The method iteratively se-
lects a BVH node and removes it, then traverses the BVH from the
root and looks for the best position for the insertion using branch-
and-bound pruning approach with the priority queue. The quality,
however, comes at a cost: the sequential CPU-based BVH optimi-
zation requires computational times several orders of magnitude
higher than the recent GPU-based BVH builders.

In this paper, we propose a new highly parallel algorithm based
on reinsertions. Our principal idea is that we do not have to remove
the node from the BVH to compute the SAH cost reduction yielding
from its reinsertion. Unlike the original algorithm, we traverse the
BVH from many nodes in parallel while simultaneously tracking
the SAH cost reduction. We use the original position of each node
as a lower bound of the SAH cost reduction to efficiently prune the
search. The traversal is GPU-friendly as we do not use any priority
queue or another auxiliary data structure. Using this traversal, we
are able to process all nodes in parallel. In the second phase, the
nodes are moved in the tree in parallel. Conflicts between nodes
occur and must be resolved. We use a greedy approach prioritizing
nodes with the higher SAH cost reduction based on atomic locks.
The method optimizes a BVH iteratively by reinserting batch of
nodes in each iteration and reducing the SAH cost until it converges
to a local minimum.

The algorithm is designed to be highly parallel exploiting com-
putational power of modern many-core architectures, and thus exe-
cution times are just fractions of times of the original reinsertion
method [BHH13]. In many cases, our algorithm also reaches slig-
htly better results in terms of quality since we search for the best
reinsertion position for all nodes and use looser termination crite-
ria. The algorithm can be easily plugged into existing GPU-based
ray tracing frameworks as it can be used as an optional BVH post-
processing if maximum ray traversal performance is required.

2. Related Work

The bounding volume hierarchy has a long history dating back to
1980s. Rubin and Whitted [RW80] were the first ones who used
manually created BVHs in rendering. Kay and Kajiya [KK86]
designed the construction algorithm using spatial median splits.
Goldsmith and Salmon [GS87] proposed a metric which estima-
tes the efficiency of BVHs today known as surface area heuristic
(SAH). The SAH metric is often associated with the full-sweep
SAH algorithm, which recursively splits scene primitives by axis-
aligned planes into left and right subtree based on the SAH me-
tric. The evaluation of all splitting planes is rather costly, and thus
Havran et al. [HHS06], Wald et al. [Wal07, WBSO07], and Ize et
al. [IWP07] proposed an approximate SAH evaluation based on the
concept of binning. The full-sweep algorithm was a de facto refe-
rence algorithm for a long time. Today, there are several ways how
to do better than the full-sweep algorithm. Walter et al. [WBKPOS]

proposed to construct BVH bottom-up by agglomerative clustering.
Kensler [Ken08] optimizes an existing BVH by tree rotations. Bitt-
ner et al. [BHH13] also optimizes an existing BVH by more general
remove-and-insert operations. Another popular concept is sorting
scene primitives along the Morton curve [Mor66] which not only
coherently fills the space but also implicitly encodes the hierarchy
using spatial median splits. This approach was recently extended by
Vinkler et al. [VBH17] by taking into account also sizes of scene
primitives.

Nowadays scenes are more and more complex, and there is also
a tendency to use ray tracing in interactive applications with dyn-
amic content. Thus, not only the quality but also the construction
speed became an important aspect. With hardware development,
researchers started to design the construction algorithms to utilize
parallel capabilities of both multi-core CPUs and many-core GPUs.

Multi-core CPU Gu et al. [GHFB13] proposed parallel
approximate agglomerative clustering using the Morton curve
to partition scene primitives into coherent clusters. Ganestam
et al. [GBDAMIS5] proposed a similar approach using SAH
splits instead of agglomerative clustering. Recently, Hendrich et
al. [HMB17] revisited an idea of Hunt et al. [HMF07] to use
an existing hierarchy to accelerate the construction. Benthin et
al. [BWWA17] used the same idea to improve the concept of two-
level BVHs.

Many-core GPU Lauterbach et al. [LGS*09] proposed an algo-
rithm known as LBVH using the concept of the Morton codes and
spatial median splits. Karras [Kar12] and Apetrei [Apel4] impro-
ved the LBVH method using the concept of radix trees. The LBVH
method is the fastest construction algorithm up to date but resulting
BVHs suffer from lack of quality as the method employs only spa-
tial median splits. To improve this weakness, Pantaleoni and Lu-
ebke [PL10], Garanzha et al. [GPM11] extended the LBVH met-
hod into a method known as HLBVH which employs SAH splits
for the top levels of the hierarchy. Karras and Aila [KA13] propo-
sed an optimization method by parallel subtree restructuring. Do-
mingues and Pedrini [DP15] further extended this method by em-
ploying agglomerative clustering instead of the brute force algo-
rithm. Recently, Meister and Bittner [MB17] proposed an efficient
method based on parallel locally-ordered agglomerative clustering.
Recently, Ylitie et al. [YKL17] showed that excellent ray traversal
performance can be achieved by using compressed wide BVHs.

3. Cost Model

The surface area heuristic (SAH) [GS87, MB90] expresses the ex-
pected number of operations for finding the nearest intersection for
a given BVH and a random ray. The cost of a BVH node is given
by the recurrence equation:

if N is interior node,

Z
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where ¢(N) is the cost of the subtree with a root N, SA(N) is the

surface area of bounding box of the node N, N and N are left and

right children of the node N, respectively, and |N| is the number of

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John Wiley & Sons Ltd.



D. Meister & J. Bittner / Parallel Reinsertion for Bounding Volume Hierarchy Optimization

triangles in the node N. The constants c7 and ¢; express the average
cost of the traversal step and ray-triangle intersection, respectively.

The underlying assumptions of SAH are that the distribution of
rays is uniform and that the rays are unoccluded. Under these as-
sumptions, the ratio of surface area of child node and parent node
is equal to the conditional probability of hitting a child node when
the parent node is hit. We can rewrite Equation 1 by unrolling the
recurrence:

1

c(N):W CT§SA(Ni)+CIZSA(N1)|N1| , @

N;

where N; and N; denote interior and leaf nodes of the subtree with
root N, respectively. Although the assumptions of this cost model
are generally not met, it works very well in practice.

4. Bounding Volume Hierarchy Optimization

We propose an algorithm based on parallel reinsertion (PRBVH)
for optimization of bounding volume hierarchies. First, we define
the reinsertion operation. Then, we describe the two main ideas
how to independently search for the best position for the reinser-
tion and how to resolve conflicts between nodes. Last, we put these
ideas together and provide a brief description of the optimization
algorithm.

4.1. Reinsertion Operation

For a given node (input node), we search for another node (output
node), such that the insertion of the input node at the output node
reduces the SAH cost. The reinsertion is a combination of a remo-
val and an insertion. We remove the input node (with the whole
subtree) from the tree together with its parent, and we connect its
sibling to the original position of the parent (removal). Then, we
insert the input node into the output node using the parent as a com-
mon parent (insertion). An example of the reinsertion operation is
depicted in Figure 2.

4.2. Parallel Search

The goal of the optimization is to reduce the SAH cost. If we use
one triangle per leaf, then all terms in Equation 2 become constant
except the surface areas of interior bounding boxes SA(N;). In other
words, the SAH cost becomes directly proportional to the sum of
surface areas of bounding boxes. Using one triangle per leaf during
the optimization is beneficial as the optimization is less constrai-
ned. We formulate our problem as maximization of the surface area
decrease which corresponds to the SAH cost reduction. The surface
area decrease is equal to the sum of decreases of surface areas of
affected bounding boxes.

Notice that only bounding boxes on the path between the input
and output nodes might be affected. This path starts by traversing
tree up to the root and then at some point it breaks into a sibling
subtree. We denote the node where the path breaks as the pivor
node (see Figure 2). The surface area decrease for all nodes on
the path before the pivot node is non-negative (corresponding to
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Figure 2: An illustration of the reinsertion operation of the green
node (the input node) into the red node (the output node). Suppose
that the green node knows the path to the red node. First, we remove
the green node together with the blue node (its parent) from the
tree. Then we place the yellow node (its sibling) into the original
position of the blue node. Last, we insert the green into the red node
using the blue node as a common parent.

the removal), and the surface area decrease on the path after the
pivot node is non-positive (corresponding to the insertion). More
precisely, we can decompose the path into three zones based on
the sign of the surface area decrease: positive zone, zero zone, and
negative zone. The positive zone starts at the input node and ends
at some node before the pivot node. The zero zone always contains
the pivot node since the bounding box of the pivot node is never
affected. The negative zone starts at some node behind the pivot
node and ends at the output node. The decomposition into the zones
is depicted in Figure 3.

Let us look closer how to find the output node. We want to tra-
verse the tree from a given input node to all other nodes (except the
nodes below the input node). For the traversal, we want to avoid
using a stack or another data auxiliary data structure. To traverse
all nodes, we proceed from the input node visiting all siblings’
subtrees on the way up to the root. We can visit siblings’ subtree
simply by pre-order (or post-order) traversal without any auxiliary
data structure using just parent links. We have two states indica-
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Figure 3: An illustration of the path between the input and output
nodes decomposed into three zones based on the sign of the surface
area decrease of the corresponding node: positive zone (green),
zero zone (gray), and negative zone (red).

ting whether we are in the down or up phase of the traversal. In the
down phase, we go to the left child if the current node is interior.
Otherwise, we switch to the up phase. In the up phase, if we came
from the left child, then we go to the right child and switch to the
down phase. Otherwise, we go to the parent.

We accumulate the surface area decrease from the input node to
the current output node. The accumulated surface area decrease is
the sum of the individual surface area decreases of the nodes on
the path from the input node to the current output node excluding
the input node, its parent, and the current output node. We use the
parent as a common parent for the input and output nodes, and thus
its surface area decrease is the difference between the surface area
of the parent node and the surface area of the union the input and
output nodes.

During the down phase, we apply pruning as visiting all nodes
would be inefficient. We want to estimate the upper bound of the
surface area decrease of the parent node, which is equivalent to esti-
mating the lower bound of the surface area of the union of the input
and the output nodes since the surface area of the parent is known.
The surface area of the union must be greater than or equal to the
surface area of the input node. Thus, if the accumulated surface
area decrease plus the upper bound is less than or equal to the best
surface area decrease found so far, then we can prune the search as
the surface area decrease on the way down is non-positive.

4.2.1. Search Algorithm Details

Now let us look into the details of the procedure which is given
in Algorithm 1. We fetch the bounding box of the input node (b;;,)
and its parent (bparens) as we need them to compute the surface area
decrease (lines 1-2). We want to visit all siblings on the way up to
the root. The sibling of the input node is the first sibling we want
to visit. Thus, we set the sibling as the current output node (out),
the parent of the input node as the current pivot node (pivor), and
the down flag (down) to true (lines 6-8). The accumulated surface
area decrease (d) is the sum of surface area decreases from the in-
put node to the current output node excluding the input node, its
parent, and the current output node; and it is initially set to O (line
5). The difference between the surface areas of the parent node and

the input node (dp,,,q) is the upper bound of the surface area de-
crease of the parent node (line 4), we use it to prune the search. The
surface area decrease of a node on the path up to the pivot node is
the original surface area of the node minus the surface area of the
node after the removal of the input node. The surface area after the
removal is equal to the surface area of the union of bounding boxes
of all siblings up to the node. We can compute this union of boun-
ding boxes (by;y,r) incrementally as we update the pivot node, and
initially it is set to the empty box (line 3). We also set the sibling
as the best output node found so far (outy, ) and the best surface
area decrease so far (dj.s) to O which corresponds to the original
position (lines 5-6).

After the initialization, we enter the main loop (lines 9-54). We
fetch the bounding box of the current output node and compute the
union of the bounding boxes of the input and output nodes (lines
10-11).

The main loop consists of three different cases based on the state
of the search: the down phase (lines 13-23) and the up phase (lines
46-51) of the pre-order traversal, and the case when the pre-order
traversal of a subtree is finished (lines 27-44).

If the down flag is true, we enter the down phase. We compute
the surface area decrease for the current output node, which is the
sum of the accumulated surface area decrease and the surface area
decrease of the parent node. Eventually, we update the best out-
put node found so far (lines 14-17). We update the accumulated
surface area decrease as we want to continue down (line 18). At
this point, we apply the pruning we discussed above (lines 19-21).
If the upper bound of the parent node plus the accumulated surface
area decrease is less or equal to the best surface area decrease found
so far, we prune the search. Thus, if the current output node is a leaf
or the search was pruned, we set the down flag to false. Otherwise,
we continue to the left child.

If the down flag is false, then the search was either pruned, or
a leaf node was reached. We have to subtract the surface area de-
crease of the current output node (line 25). There are two cases:
the first case is the situation when we finish the pre-order traver-
sal of the subtree, the second case is the up phase of the pre-order
traversal.

In the first case, the current output node is a child node of the pi-
vot node. We update the pivot bounding box by merging it with the
current output node, and we switch to the pivot node (lines 27-29).
We compute the surface area decrease for the pivot node similarly
to the down phase, and eventually, we update the best output node
found so far (lines 33—36). We update the accumulated surface area
decrease (line 37). Note that we skip the parent node of the input
node because such insertion does not make sense. If we reach the
root, we are done (lines 39—41). Otherwise, we update the pivot
node by switching it to its parent and continue to its sibling (lines
41-44).

In the second case, we enter the up phase of the pre-order traver-
sal. If we come from the left subtree, we switch to the right subtree
(lines 47—48). Otherwise, we continue to the parent node (line 50).
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4.3. Parallel Reinsertion

The procedure described above is able to find the optimized posi-
tion for all nodes in parallel. The second phase of the algorithm is to
move the nodes to their new positions. In this step, each input node
should be removed from its original location and then reinserted
into to the position indicated by the output node. More precisely, it
should become a sibling of the output node.

However, the reinsertion operations of multiple nodes can be in
mutual conflicts. We can distinguish between two types of conflicts:
(1) topological conflicts and (2) path conflicts.

4.3.1. Topological Conflicts

The topological conflicts are caused by two or more reinsertion
operations trying to modify the topology of the same node in the
tree. The topological changes induced by the reinsertion operation
are localized in the proximity of the input and output nodes. More
precisely, the topological conflicts involve six nodes in total. These
are the nodes participating in the removal (the input node, its si-
bling, its parent, and its grandparent) and the insertion (the output
node and its parent) (see Figure 2).

To resolve the conflict, we aim to lock the nodes involving the
topological change to prevent race conditions. We use a greedy
locking scheme based on atomic operations: if any two reinsertions
share the same node involving a topological change, then the rein-
sertion with the higher surface area decrease locks the node. Prior to
reinsertion, we verify whether all nodes which aimed to be locked
by the operation were locked successfully. If this is the case, the
reinsertion is performed. Otherwise, the reinsertion is abandoned
as it was in conflict with another reinsertion operation that yielded
higher SAH cost reduction.

4.3.2. Path Conflicts

Additional conflicts arise if multiple reinsertions share nodes on
the paths and try to modify the bounding boxes of shared nodes in
a different way. Recall that each path consists of up to three zones
which induce different modification of the corresponding bounding
boxes (as it was shown in Figure 3). If such types of conflicts occur,
then the total surface area decrease in the shared part is not simply
the sum of the surface area decreases of the individual reinsertions.
In general, some of these path conflicts are harmless (e.g. conflicts
of nodes from the zero zone), some may support each other in terms
of the SAH cost reduction (e.g. adding overlapping areas in the ne-
gative zone), and some work against each other (e.g. conflict of
positive and negative zones). The path conflicts can be resolved by
locking all nodes on the reinsertion paths in the same way as to-
pology nodes. Note that to access all nodes on the path, we encode
the path into the bit set already during the search phase. In this way,
all nodes on the path can be accessed during the locking and lock
verification phases.

4.3.3. Locking Strategy

For predictable SAH cost reduction, we should combine both
above-described locking strategies. We call this combined locking
strategy (resolving both topological and path conflicts) conserva-
tive. Using the conservative strategy, the algorithm is guaranteed to
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converge as the total surface area decrease is the sum of individual
surface area decreases for all successfully locked paths.

However, for the correctness of the proposed algorithm in terms
of valid BVH topology it suffices to resolve only the topological
conflicts. We call this locking strategy aggressive. With the aggres-
sive strategy, the total surface area decrease will generally not cor-
respond to the sum of individual surface area decreases: it can either
be lower or even higher (if multiple operations support each other).

Experimentally, we have observed that the aggressive strategy
leads to faster BVH convergence; moreover, it converges to a BVH
with slightly lower SAH cost than the conservative one. At first
sight, this was a surprising result, and therefore we provide a more
detailed analysis of the parallel reinsertion in the next section.

4.3.4. Superiority of the Aggressive Strategy

Suppose that we have a set of bounding boxes enclosed by their pa-
rent bounding box. Let us investigate how many bounding boxes
from the set define the parent bounding box. Bounding boxes
strictly inside the parent box can be excluded, i.e. they do not define
the boundary of the bounding box. If two bounding boxes touch a
face, we can also exclude one of these bounding boxes supposing
that the bounding box does not define another face. All in all, at
most six bounding boxes define the parent bounding box in 3D, i.e.
one for each face.

Let us further investigate what might happen after removal and
insertion of multiple nodes into a single node. We consider first
only the removal of multiple nodes. Only nodes defining the origi-
nal bounding box might have positive surface area decrease. If two
nodes define the same face, then both nodes have zero surface area
decrease (at least for that particular face). Other nodes are strictly
inside the original bounding box, and thus they also have zero sur-
face area decrease. If we remove the nodes with positive surface
area decrease, it might happen that the total surface area decrease
is less than the sum of the individual surface area decreases (the de-
creases are shared among multiple reinsertion paths). If two faces
defined by two nodes share an edge, then the surface area decrease
of the region around the edge is counted only once, even if it is
included in both individual surface area decreases. Let us remove
these nodes and update the bounding box. We can further shrink
bounding box by removing the rest of the nodes. These nodes ori-
ginally assumed zero surface area decrease, and thus their removal
can only be beneficial in terms of the overall SAH cost. An example
of the removal of multiple nodes is depicted in Figure 4.

A very similar situation arises with the insertion of multiple no-
des. We suppose that all nodes have negative surface area decrease
as the bounding box should be enlarged by the insertion. Some of
these nodes define the final bounding box. If two nodes define the
same face of the final bounding box, then the shared insertions are
beneficial as the bounding box is enlarged only once (after the first
insertion). On the other hand, when we insert the nodes defining
the final bounding box, it might happen that the total surface area
decrease is lower than the sum of the individual surface area de-
creases. If two faces defined by two nodes share an edge, then the
total surface area decrease is the sum of the individual surface area
decreases plus the (negative) surface area decrease induced by the
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Figure 4: An illustration of the removal of multiple nodes (green) from a single node. The nodes defining the original bounding box (bold
border) yield a positive surface area decrease, the other nodes are expected to yield zero surface area decrease. We successively remove three
nodes defining the bounding box. In this case, the shared area (dashed border) is counted only once instead of twice, and thus the actual total
surface area decrease is reduced by half of the shared area. On the other hand, the combined surface area decrease becomes larger than
expected by removing the nodes that did not define the boundaries of the node bounding box and which originally expected zero surface area

decrease.

region around the edge. Let us insert these nodes and update the
bounding box. We will not enlarge the bounding box by inserting
the rest of the nodes since we already inserted the nodes defining
the final bounding box. These nodes have negative surface area de-
crease, and thus the shared insertion is beneficial in terms of the
overall SAH cost. An example of the insertion of multiple nodes is
depicted in Figure 5.

Let us visualize the worst and best case of the total surface area
decrease in a node shared by two paths. In the best case of the remo-
val, the bounding box might completely collapse into a degenerated
bounding box with zero surface area by removing multiple nodes.
However, the bounding box will not change by removing any sin-
gle node. In the worst case of the removal, the bounding box might
collapse into degenerated bounding box with zero surface area by
removing a single node, and the surface area decreases from other
nodes are not counted at all. These two cases are depicted in Fi-
gure 6 (left). In the best case of insertion, the bounding box will be
enlarged just by one node and the others will not change it at all. In
the worst case of the insertion, imagine the situation that we insert
two degenerated bounding boxes (points) into a degenerated boun-
ding box (point). We enlarge the bounding box from a point to a
line segment still with zero surface area by applying any individual
insertion. However, by inserting both nodes, the bounding box will
be enlarged by the combined effect of both inserted nodes. These
latter two cases are depicted in Figure 6 (right).

Let us sum up why the aggressive strategy performs better than
the conservative one. In the aggressive strategy, only nodes partici-
pating in topology changes are locked, and thus significantly more
reinsertions can be performed in parallel in a given iteration. Espe-
cially, at the beginning, the positive surface area decreases are much
greater than negative surface area decreases, and thus the combined
effect of multiple reinsertions is beneficial. Additionally, there are
typically much more nodes to be removed not defining the origi-
nal bounding box and much more nodes to be inserted not defining
the final bounding box for which the shared removal and insertion
combines positively as discussed above.

4.4. Complete Algorithm

The algorithm takes an arbitrary BVH as an input and optimizes it
iteratively. In each iteration, a batch of reinsertion operations is per-

formed. First, each node searches for its best output node in parallel
using the search discussed in Section 4.2. Second, the conflicts be-
tween nodes are resolved using the locking scheme discussed in
Section 4.3. The nodes with successful locks can be reinserted. Af-
ter the reinsertion, we recompute the bounding boxes and the SAH
cost.

4.4.1. Sparse Search

The bottleneck of the algorithm is the search phase. Additionally,
when neighboring nodes find their optimized positions, there is a
high chance of conflict during the insertion phase. Thus, we intro-
duce an integer parameter u > 1 to control the density of the nodes
used for the search. We process only nodes satisfying the following
condition:

I (mod p) =i (mod u), 3)

where i is the index of the node and / the number of the iteration.
In other words, we process every u-th node in round-robin manner
based on the number of iteration. By increasing u, the search gets
sparser as fewer nodes are used to initiate the search. Thus, this
phase becomes faster, and additionally, there are fewer conflicts du-
ring the reinsertion. The optimal setting of the u parameter is scene
dependent, but the results indicate that good results are obtained by
using u € {4,...,9}.

4.4.2. Termination Criteria

In later stages of the optimization, the experiments showed that
the total surface area decrease oscillates around zero. In this case,
it is reasonable to terminate the optimization. Even if the surface
area decrease is still positive but very close to zero, it is beneficial
to terminate the optimization earlier which results in a BVH with
roughly the same quality as if we had continued. To deal with these
issues, we introduce another parameter €. If the difference between
the SAH cost of the previous and the current iterations is less than
€, we either decrement u by one if it is greater than one or termi-
nate the optimization if it is equal to one. We set the € parameter to
0.1 which seems to be a reasonable choice according to our experi-
ments.
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Figure 5: An illustration of the insertion of multiple nodes (red) into a single node. All nodes assume negative surface area decrease since
they enlarge the bounding box of the output node, and thus increasing its surface area. Notice that only three nodes define the final bounding
box (bold border). We successively insert these three nodes. The combined surface area increase becomes larger than expected by the extra
area caused by multiple insertions (dashed border). On the other hand, we do not have to count the surface area increase caused by the nodes
inside the final bounding box (the bounding box was already enlarged by the boundary nodes), which reduces the surface area increase and
can easily outweigh the above mentioned unexpected surface area increase.
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Figure 6: An illustration of the worst (bottom) and best (top) of
the total surface area decrease for two parallel reinsertions N1 and
N, in node N: two removals (left) and two insertions (right). For
each particular case, we show the difference between the combined
total area decrease and the sum of surface area decrease: Ad =
dip—(di +dy).

5. GPU Implementation

We implemented our algorithm in CUDA [NBGS08]. We use the
structure-of-arrays layout to represent the BVH: left indices (4B),
right indices (4B), parent indices (4B), minimal bounds (16B),
and maximal bounds (16B). We also use some additional buffers
to store intermediate results for each node: surface area decreases
(4B), output node indices (4B), and locks (8B). The algorithm takes
an arbitrary BVH as an input. The main loop consists of six kernels
that are repeatedly executed to optimize the BVH.

Find the best node The first kernel implements the search proce-
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dure (see Algorithm 1) to find the best output node for every node
in parallel. We store the surface area decrease and the index of the
best output node.

Lock nodes The second kernel implements the locking scheme.
We process all nodes with the positive surface area decrease in pa-
rallel. We use 64-bit integers to implement the locks: 32 bits for the
area decrease and 32 bits for the node index. We use the fact that the
result of comparison of positive numbers in the floating point repre-
sentation is the same as the comparison in the integer representa-
tion. Thus, we lock a node by the atomic maximum operation. The
reinsertion with the highest surface area decrease always wins the
node. We use the node index to avoid deadlocks between two rein-
sertions with the same surface area decrease prioritizing the node
with a higher index. We lock all nodes directly participating in the
reinsertion: removal (the input node, its sibling, its parent, and its
grandparent) and insertion (the output node and its parent).

Check locks Similarly to the previous kernel, we process all no-
des with positive surface area decrease. We check the locks of no-
des directly participating in the reinsertion. If any node of the rein-
sertion was locked by another reinsertion, then the reinsertion will
not be performed. In this case, we set the surface area decrease to
0 to exclude these reinsertions for the next step.

Reinsert We check again surface area decreases and perform the
reinsertion if it was not excluded in the previous step.

Recompute bounding boxes After the reinsertion, we have to re-
compute bounding boxes. We use the parallel bottom-up procedure
proposed by Karras [Kar12]. Each interior node has a counter initi-
ally set to 0. Threads process from leaves up to the root atomically
incrementing the counter in interior nodes. If the original value was
0, then the thread is the first one in the node, and thus it is killed.
Otherwise, the thread is the second one and continues to the parent.

Compute the SAH cost We compute the SAH cost to adjust the
U parameter or to terminate the optimization. We use the unrolled
version of the SAH cost (see Equation 2) which enables computing
the SAH cost simply by parallel reduction.

The source codes of the algorithm can be downloaded from
the project website: http://dcgi.felk.cvut.cz/projects/
prbvh/.
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6. Results and Discussion

We evaluated the PRBVH method using a GPU path tracer based
on a high-performance ray tracing kernel of Aila et al. [AL09]. Our
path tracing implementation uses next event estimation with two
light source samples per hit. We used 128 samples per pixel and
1024 x768 image resolution for all measurements. We evaluated
all methods using eight publicly available test scenes of various
complexity. All measurements were performed on a PC with Intel
Core 17-3770 3.4 GHz (4 physical cores), 16 GB RAM, GTX TI-
TAN X GPU with 12 GB RAM (Maxwell architecture, CUDA 9.1),
Windows 7 OS.

As reference methods, we used the LBVH builder proposed by
Karras [Karl2], the ATRBVH builder proposed by Domingues
and Pedrini [DP15], the PLOC builder proposed by Meister and
Bittner [MB17], and the RBVH method proposed by Bittner et
al. [BHH13]. For the LBVH method, we used 60-bit Morton co-
des. For the ATRBVH method, we used the publicly available im-
plementation of treelet restructuring using treelets of size 20. We
modified the implementation to use an adaptive number of iterati-
ons. The Yy parameter determines how many triangles a treelet must
have to be optimized. In the original implementation, the 7y para-
meter is initially set to the treelet size, and it is doubled in each
iteration. We optimize the BVH until the y parameter exceeds the
number of triangles in the whole scene. We used the LBVH buil-
der with 60-bit Morton codes as a base for the ATRBVH method.
For the PLOC method, we also used a publicly available imple-
mentation using the radius set to 100 and 60-bit Morton codes. For
the RBVH method, we use BVHs initially built by LBVH and the
optimization termination criteria suggested in the original paper.

For our PRBVH method, we exhaustively evaluated the in-
fluence of the yp parameter in the range {1,...,32}. We chose
three representative settings yielding the best results: PRBVHﬁ:l,

PRBVHﬁ:4, and PRBVHﬁzg. In all cases, we used an adaptive leaf
size using the algorithm from the PLOC implementation transfor-
ming the structure-of-arrays data layout into the array-of-structures
data layout needed by the ray tracing kernel. Different algorithms
produce BVHs with different node layout. For the sake of fair com-
parison, we modified the algorithm to transform BVHs into the
GPU-friendly BES layout.

The results are summarized in Table 1. For each tested method,
we report the SAH cost of the constructed BVH (using traversal
and intersection constants ¢y = 3 and ¢; = 2), the average trace
speed (overall and for specific ray types), and the total build time
(including both the build time and the optimization time). For the
build time, we report the sum of kernel times for the GPU-based
methods, and CPU times for the RBVH method. For all PRBVH
tests, we optimize BVHs initially constructed by LBVH with 60-bit
Morton codes. The reported trace speed is the average of three dif-
ferent representative camera views to reduce the influence of view
dependency.

We can see that both methods PRBVH and RBVH converge to
very similar SAH costs and achieve the best results overall. Parti-
cularly, the PRBVH method reaches up to 67% lower SAH costs
than LBVH, up to 16% lower SAH costs than ATRBVH, and up to
22% lower SAH costs than PLOC.

The PRBVH and RBVH methods achieve the highest trace
speed, while PRBVH yields slightly higher trace speed than RBVH
in six of the eight tested scenes. Particularly, the PRBVH method
reaches up to 114% higher trace speed than LBVH, up to 12% hig-
her trace speed than ATRBVH, and up to 31% higher trace speed
than PLOC. Notice that all settings of the PRBVH method indepen-
dently of the parameter u yield very similar trace speed and SAH
costs. The LBVH method, which achieves the best build times over-
all, is up to two orders of magnitude faster than the PRBVH met-
hod. The ATRBVH and PLOC methods are up to one order of mag-
nitude faster than the PRBVH method. However, the PRBVH met-
hod is still almost two orders of magnitude faster than the RBVH
method.

We compared the progress of optimization of BVHs initially
built by LBVH and ATRBVH. In general, optimization times when
starting from ATRBVH are lower than when starting from LBVH.
The SAH costs are roughly the same in both cases. The compari-
son for the Manuscript scene is given in Figure 8. In this particular
case, the optimization of LBVH converges to lower SAH cost than
the optimization of ATRBVH, and the convergence is faster. We
also compared the aggressive and conservative strategies. In all ca-
ses, the aggressive strategy converges faster to lower SAH costs.
The comparison for the Crown scene is given in Figure 7. Notice
the overhead in the locking and checking phase caused by the more
complicated implementation of the conservative strategy.

From Figures 7 and 8, we can see two additional remarks. First,
the major bottleneck is the search phase (even if it is accelerated by
the y parameter). Second, we can observe the exponential tendency
in the SAH cost reduction in time. In other words, if we want to
reduce the SAH cost further, we need more and more time.

7. Conclusion and Future Work

We proposed a new parallel method for BVH optimization that tar-
gets contemporary GPU architectures. The method is based on the
idea of iterative application of reinsertions [BHH13]. We reformu-
lated the search phase of the algorithm while exploiting the obser-
vation that there is no need to remove the nodes from the BVH
prior to finding their optimized positions in the tree. This allowed
us to apply the search for optimized node positions in the BVH in
a massively parallel fashion. We designed an algorithm for upda-
ting all nodes in parallel while handling potential conflicts either
by conservative or aggressive strategy. We also provide the first
deeper analysis of the influence of concurrent update operations on
the BVH. We implemented our algorithm in CUDA and made the
implementation publicly available. The evaluation in the context
of the GPU ray tracing shows that the proposed method is able to
achieve the best ray traversal performance among the state of the
art GPU-based BVH construction methods making it a good can-
didate for GPU-based high-quality renderers. On the tested scenes
the proposed technique achieves ray tracing speedup of 4% to 12%
w.r.t. ATRBVH and 8% to 31% w.r.t. PLOC.

In the future, we would like to focus on exploiting a priori kno-
wledge about scene modifications within our algorithm. If only a
part of the scene is dynamic, the algorithm could exploit temporal
coherence by focusing the updates on the BVH nodes correspon-
ding to the moving parts. This is a typical scenario in video games
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#triangles 1087k 2169k 2880k 4305k 4868k 5632k 7880k 8637k
SAH cost [-]
LBVH 204 254 1237 182 76 429 251 299
ATRBVH 168 163 1055 95 63 173 136 110
PLOC 179 178 1087 102 67 170 139 110
RBVH 160 139 1004 81 63 158 125 100
PRBVHﬁZI 159 143 985 80 61 160 128 101
PRBVH;):4 159 143 985 80 61 159 127 100
PRBVH, g 159 142 985 80 61 159 126 100
Trace speed (Overall) [MRays/s]
LBVH 110 185 45 164 86 72 62 81
ATRBVH 125 235 51 231 101 116 95 161
PLOC 116 205 42 226 93 113 94 160
RBVH 123 263 49 242 93 124 108 150
PRBVHﬁZI 131 257 54 249 106 123 104 166
PRBVHﬁ:4 131 256 54 250 107 123 105 173
PRBVHﬁzg 131 262 55 250 107 125 106 172
Trace speed (Primary / Shadow / Secondary) [MRays/s]
LBVH 404 /80/56 4457256798 92/54/17 20771751793 163 /108 /31 111/92/31 91/96/28 136/96 /37
ATRBVH 450/90/ 64 509/322/127 98/62/19 293/242/131 193/126/38  161/154/51 162/154/41  233/196/76
PLOC 406/86/58 464 /291/107 80/55/15 293/238/124  167/124/33  152/155/49  150/156/39  241/198/72
RBVH 460/89 /62 607 /338 /150 93/64/18 307/257/136  173/119/34  175/164/54  181/171/47  239/181/69
PRBVHﬁ:I 484/93/69 586/339/143  115/65/20  320/260/140  202/130/40 175/161/54  177/167/45  254/200/78
PRBVH2:4 483/93/69 597/343/141  115/65/20  322/261/140  205/131/40 173/162/54 181/166/45  262/207/81
PRBVHﬁzg 479/93 /69 614/340/148 115/65/20  322/261/140 207/132/40 180/164/55 181/168/46  262/206/81
Build time [s]

LBVH 0.01 0.02 0.02 0.05 0.05 0.06 0.08 0.10
ATRBVH 0.07 0.15 0.18 0.27 0.32 0.42 0.56 0.62
PLOC 0.05 0.08 0.10 0.13 0.19 0.20 0.37 0.29
RBVH 29.41 58.57 91.15 114.00 27.26 207.20 290.82 96.91
PRBVH;)ZI 0.60 2.56 2.96 4.56 3.74 21.08 15.55 26.09
PRBVHﬁ:4 0.34 1.23 2.33 1.15 1.67 5.08 6.97 6.72
PRBVHﬁzg 0.42 1.17 3.03 1.14 1.83 4.63 6.37 5.77

Table 1: Performance comparison of the PRBVH method and reference methods: LBVH [Karl2], ATRBVH [DP15], PLOC [MB17], and
RBVH [BHH13]. The reported numbers are averaged over three different viewpoints for each scene. The best results are highlighted in bold.
For computing the SAH cost, we used ct = 3 and c¢; = 2. The PRBVH method corresponds to the aggressive strategy optimizing BVHs built

by LBVH.

where a large part of the scene remains static between successive
frames. By focusing the optimization on the dynamic scene parts,
we could continuously maintain high-quality BVH in a fraction of
the computational time required by the uninformed algorithm.

In terms of theoretical analysis, we see a certain analogy bet-
ween the insertion-based optimization and 2-OPT, which is a po-
pular heuristic optimizing the solution of the traveling salesman
problem. The idea is to take all pairs of edges and swap them to
reduce the total length. In the case of the insertion-based optimiza-
tion, we take all pairs of nodes and try to insert them into each other
to reduce the total surface area. There is a well-known generaliza-
tion of 2-OPT to k-OPT which takes all k-tuple of edges and tries
to swap them in all possible ways to reduce the total length and still
keep a valid Hamiltonian circle. We can do the same generalization
for the insertion-based optimization. Thus, we can take all k-tuples
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of nodes and try to insert them into each other in all possible ways
to reduce the total surface area.
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Algorithm 1 Pseudocode for searching for the best position for the
reinsertion.

1: b;, + BoX(in)
2: bparent <— BOX(PARENT(in))
3: bpiver < EMPTY_BOX
4: dpoyng < AREA(bparent) — AREA(bjy,)
5: dpes < d 0
6: OUtpes <— out <— SIBLING(in)
7: pivot < PARENT(in)
8: down<+ TRUE
9: while TRUE do
10: bouw: <+ BOX(out)
11: berged <= UNION(b, bour)
12: if down then
13: ddirect = AREA(bparent) — AREA (bmerged)
14: if dpes; < dgirec: +d then
15: dpest < ddirect +d
16: OUlpes <— Out
17: end if
18: d < d + AREA(bour) — AREA(Dyerged)
19: if LEAF(out) V dpoyna +d < dpes then
20: down < FALSE
21: else
22: out < LEFT(out)
23: end if
24: else
25: d < d — AREA(bour) + AREA(Dyerged)
26: if pivot = PARENT(out) then
27: bpivor <~ UNION(bauhbpivot)
28: out <+ PARENT (out)
290: bour < BOX(out)
30: if our # PARENT(in) then
31 bmerged — UNION(bimbpivot)
32: dgirect < AREA(bparent) — AREA(bperged)
33: if dpesr < dyirec +d then
34: dpest < dgirees +d
35: OUlppg <— OUL
36: end if
37: d < d+ AREA(bour) — AREA(bpivor)
38: end if
39: if out = root then
40: break
41: end if
42: out < SIBLING(pivor)
43: pivor < PARENT(out)
44: down < TRUE
45: else
46: if out = LEFT(PARENT(out)) then
47: down < TRUE
48: out < SIBLING(out)
49: else
50: out < PARENT (our)
51: end if
52: end if
53: end if

54: end while




