
1

A Multiport Theory of Communications

Michel T. Ivrlač & Josef A. Nossek

Institute for Circuit Theory and Signal Processing

Technische Universität München, D–80333 Munich, Germany

email: {ivrlac, nossek}@tum.de

Abstract—Electromagnetics provides the ground for a physical
theory of communications, while information theory and signal
theory approach the problem from a purely mathematical point
of view. Nevertheless, the latter theories frequently do refer to
physical terms, such as: energy, power, noise, antennas, or waves.
It is strange enough, that, at present time, there is no provision
being made such that the usage of such terms in information
theory is at least consistent with the governing physics. More of-
ten than not, this results in less than optimum signal processing
solutions and does not contribute to a complete understanding
of communication systems. Circuit theoretic channel models can
help to bridge the gap between the physics of electromagnetics,
and the mathematical world of information theory. The multiport
concept makes sure that important physical concepts like energy,
power, or noise are captured correctly, and terms such as antennas
or waves are applied consistently with their physical meanings
in information theory and signal processing. We suggest how to
make circuit theoretic channel models and apply them to wire-
less communication systems which uses multiple antennas at both
ends of the link. We thereby show that, in contrast to common
belief, arrays of closely spaced antennas actually do support the
bandwidth- and power-e�cient multi-stream transmission.

I. Introduction

There is a host of technical and scienti�c disciplines involved
in the analysis and the design of telecommunication systems.
In radio communications these include: electromagnetic �eld
theory, radio-frequency engineering, circuit theory and design,
signal-, coding- and information theory. The �rst two disci-
plines form a part of the physical theory of communications,
for the laws of nature, like the Maxwell equations or the major
conservation laws, play a central role in their concepts and
methods. In contrast to that, signal-, coding-, and information
theory are mathematical theories. As such, they are not based
on the laws of nature but rather on de�nitions and mathemat-
ical logic. However, it is only in conjunction with the physical
disciplines that one can attempt a complete theory which pre-
dictions can be put to the test by experiment. To this end, it
is crucial that the mathematical and the physical layers of ab-
straction are consistent with each other. For instance, the �eld-
theoretic view of antennas [1], [2], is rather di�erent from the
typical signal- or information theoretic view [3], [4], which
drops many physical concepts, such as impedance or mutual
coupling. Nevertheless, it is essential that these di�erent rep-
resentations are consistent with each other.
It might be surprising that, at present time at least, no pro-

vision is made which ensures that all the layers of abstraction
actually are consistent, or at least, free of any con�ict with
one another. We can most easily see this when we look at
a typical signal-processing channel model: the vector additive
white Gaussian noise (awgn) channel. Signals are brought up

to the channel through a number of, say, N inputs, and ob-
served at a number of, say, M outputs. The transmit power is
de�ned to be proportional to the average squared Euclidean
norm of the channel input vector, and the output is perturbed
by additive white Gaussian noise. The noiseless input-output
relationship is described by the (M×N) dimensional »channel
matrix«, which has got its name due to the fact, that once it
is known, the information capacity of the awgn channel can
be computed [5]. Hence, from an information theory point of
view, the channel matrix tells all about the channel. The chan-
nel input, somehow has to be related with a relevant physical
quantity of the communication system: perhaps a voltage or
an electric �eld strength. However, physical power or energy
cannot be obtained from just one such quantity, but instead a
conjugated pair [6] is needed, say voltage and electric current,
or electric and magnetic �eld strength. Hence, in a physical
description of the channel, there are twice as many variables
(one conjugated pair for each input and each output) than
in the information theoretic description. By identifying each
conjugated pair with one port of an (M + N)-port, the noise-
less input-output relationship needs an (M + N) × (M + N)
matrix, which connects one half of the port variables with the
other half [7]. Because MN < (M + N)2, the channel matrix
does not have enough degrees of freedom to capture the com-
plete physics of the channel. Yet, from an information theory
point of view, it has to tell everything about the channel!
Nevertheless, this con�ict can be resolved by making use

of the additional degrees of freedom which come from the
relationship between the information theoretic channel input
and output on the one hand, and some of the physical port
variables, on the other. By virtue of this relationship, the phys-
ical context can be »encoded« into the channel matrix, such
that the correct channel capacity can be obtained in the usual
way, within the information theory layer of abstraction.

To this end, our approach consists of the introduction of
circuit theoretic multiport models, which are to serve as the
»medium« between physical and purely mathematical layers
of abstraction. On the one hand, circuit theory is so close to
electromagnetics such that many important elements of high
frequency engineering are captured very accurately by equiv-
alent circuits. On the other hand, the port concept of circuit
theory allows to abstract from these equivalent circuits again,
and work instead with »black-box« multiports, that are com-
pletely described as soon as the relationship between the port-
variables is known. For linear multiports this relationship is
a linear one and yields a simple algebraic multiport descrip-
tion which connects neatly with information theory. Thereby,
it keeps important information theoretic aspects of commu-
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Figure 1. Linear multiport communication system.

nications, like transmit power or noise covariance, consistent
with the physics of communications.

In this paper, we present a circuit theoretic multiport model
for linear multi-input multi-output (mimo) communication
systems. We apply this multiport model to a wireless mimo
system and analyze its channel capacity as we move the an-
tennas in the arrays closer and closer. While it is a common
belief that close antenna spacing reduces the numerical rank
of the channel matrix, and, henceforth, �nally only permits
a single data stream to be transfered, we �nd that quite the
contrary can be true. Under certain conditions, close antenna
spacing does not impair multi-stream transmission at all. This
shows that wireless mimo systems which are based on highly
compact antenna arrays have potential for multi-streaming.

II. Multiport Communications

Let us now develop a physical model of a communication sys-
tem with N inputs, and M outputs. Every input and output is
replaced by a port, de�ned by two conjugated variables: com-
plex voltage envelopes, and complex current envelopes. The(M + N)-port which results is displayed in Figure 1. The input
signals are supplied by N voltage generators, which are mod-
eled as ideal voltage sources with a series resistance R. The
voltage envelopes uG,n , with the index n ∈ {1, 2, . . . ,N}, con-
tain the information that has to be transfered over the channel.
The voltage generators are connected to the �rst N ports of
the multiport. To the remaining M ports, we connect noise
voltage sources uN,m , noise current sources iN,m , and a termi-
nation resistance R, with the index m ∈ {1, 2, . . . ,M}. These
voltage sources and current sources model the system noise
which may consist of the noise generated by the low-noise am-
pli�ers and the noise that is generated by the communication
multiport itself. We assume the multiport can be described by
its impedance matrix Z ∈ CC

(M+N)×(M+N) ⋅VA−1 :
[ uT

uR
] = Z [ iT

iR
] , (1)

where uT ∈ CC
N×1 ⋅V, and uR ∈ CC

M×1 ⋅V, are the vectors of the
complex voltage envelopes appearing across the transmit and

the receive ports, while iT ∈ CC
N×1 ⋅ A, and iR ∈ CC

M×1 ⋅ A, are
the vectors of the corresponding complex current envelopes.
When we collect all the generator complex voltage envelopes
uG,n , and all the load complex voltage envelopes uL,m into
vectors uG ∈ CC

N×1 ⋅V, and uL ∈ CC
M×1 ⋅V, respectively, we can

write the input-output relationship as:

uL = DuG + EuN + FiN ⋅ R´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶√
R η

, (2)

where uN ∈ CC
M×1 ⋅ V, and iN ∈ CC

M×1 ⋅ A, are the vectors of
the complex noise voltage and noise current envelopes, respec-
tively, and

D = −Γ̃ (IM+N + R−1Z)−1ΓT , (3)

E = −Γ̃ (IM+N + R−1Z)−1 Γ̃ T , (3a)

F = E + IM , (3b)

where In , is the n × n, identity matrix, and

Γ = [ IN ON×M ] , (4)

Γ̃ = [OM×N IM ] , (4a)

with Om×n , denoting the m×n, all-zeros matrix. The transmit
power is de�ned as the noise-free net power �owing into the
N transmit-side ports:

PTx = E [Re{uH
T iT} ∣ (uN = 0, iN = 0)] (5)

= 1

4R
E [uH

GBuG] , (5a)

where the matrix B ∈ CC
N×N, is given as:

B = C + CH − CHC , (6)

with the auxiliary matrix C ∈ CC
N×N, de�ned as:

C = 2Γ (IM+N + R−1Z)−1ΓT . (6a)

In this paper, we assume for simplicity, that all complex noise
voltage envelopes are mutually uncorrelated, and all complex
noise current envelopes are mutually uncorrelated, but there
may be a correlation between uN,m , and iN,m :

E [uN,m i
∗
N,m′] = δm ,m′ ⋅ρ ⋅√E [∣uN,m ∣2]E [∣iN,m ∣2], ∀m, (7)

where ρ ∈ CC, is the correlation coe�cient, which we assume
is the same for all receiver side ports. The receiver noise co-
variance matrix is then given by:

Rη = E [ηηH] (8)

= 4σ 2
FFH + RN

R
(ρEFH + ρ∗FEH) + R2

N

R2
EEH

1 + RN

R
(ρ + ρ∗) + R2

N

R2

, (8a)

where σ 2 = 1⁄4E[∣uN,m + RiN,m ∣2]/R ∈ RR+ ⋅W, denotes the avail-
able noise power, and

RN =
√

E [∣uN,m ∣2] / E [∣iN,m ∣2], ∀m, (9)

is the so-called noise resistance [8].
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Figure 2. Multiport model of a wireless mimo communication system with transmit and receive impedance matching networks.

With such a complete physical description of the multiport
communication system, the next task is to convert it into the
standard information theoretic channel model:

y = Hx + ϑ , (10)

E [∣∣x∣∣22] = PTx , (10a)

E [ϑϑH] = σ 2
ϑ IM . (10b)

Herein, the N-dimensional vector x, is the channel input, the
M-dimensional vector y, is the channel output, while ϑ de-
notes the M-dimensional channel noise vector, and H ∈ CC

M×N,
is the channel matrix. For a given channel matrix, the channel
capacity of the mimo system can be computed [5].

It is part of the beauty of information theory, that one does
not have to – and usually doesn’t – de�ne what the »channel
input«, and »channel output« actually are, that is, how they are
related with measurable quantities (physical quantities) of the
communication system. By this abstract approach, (10), (10a),
and (10b), can be used to model a great variety of communi-
cation systems.

In order to successfully apply information theory to a par-
ticular communication system – successfully in the sense that
the predictions of the theory can stand the test of actual mea-
surement –, one has to »encode« the physical context of the
system into the channel matrix. It must make a di�erence in
the way how we build the channel matrix, when, one time,
our mimo system is a multi-wire on-chip bus, and another
time, a multi-antenna radio communication system, for the
governing physics is di�erent for the two. But how does one
»encode« the physical context into the channel matrix? To this
end, we de�ne the following two bijective transformations:

x = VuG , (11)

y = W−1uL , (11a)

between the physical port variables (uG , uL), and the informa-
tion theoretic input and output variables (x , y), where V , and
W are invertible matrices. When we substitute (11) and (11a)

into (10), and compare the result with (2), we see that

H = W−1DV−1, (12)

must hold. By de�ning:

W =
¿ÁÁÀ R

σ 2
ϑ

R
1/2
η ∈ CC

M×M ⋅ √V ⋅A−1 , (13)

V = 1

2
√
R
B1/2 ∈ CC

N×N ⋅ √A ⋅V−1 , (13a)

it is made sure that (10a) and (10b) hold true, provided that,
�rstly: BH = B > 0, and secondly Rη is regular. If this is so,
then (10), (10a), (10b), is a circuit theoretic channel model,
where the dimensionless matrix H ∈ CC

M×N, as de�ned in (12),
captures all physical properties of the multiport communica-
tion system that are of relevance for information theory.

III. Modeling Wirelessmimo Systems

We apply the developed circuit theoretic channel model to the
wireless mimo system shown in Figure 2. It consists of two an-
tenna arrays with N , and M antennas, located at the transmit-
ter and the receiver, respectively, and it is modeled as a linear
multiport with impedance matrix ZA ∈ CC

(M+N)×(M+N) ⋅VA−1 :
[ uAT

uAR
] = [ ZAT ZATR

ZART ZAR
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ZA

[ iAT
iAR
] , (14)

where uAT , uAR, iAT, and iAR , denote the vectors of complex
voltage and current envelopes of the transmit and receive an-
tenna arrays, respectively. Because antennas are reciprocal, it
is true that ZATR = ZT

ART . However, it is also true, that in radio
communications, there usually is a huge attenuation between
transmitter and receiver, such that the receiver (almost) does
not act back on the transmitter. In the following, we therefore
apply the so-called unilateral approximation of (14), which is
obtained by setting ZATR = ON×M , while keeping ZART , as it is.
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Let the impedance matching networks be lossless multiports,
which are described by:

[ uT

uAT
] = j⎡⎢⎢⎢⎢⎣

ON −√RRe{ZAT}1/2
−√RRe{ZAT}1/2 −Im{ZAT}

⎤⎥⎥⎥⎥⎦ [
iT−iAT ] ,

[ uR

uAR
] = j⎡⎢⎢⎢⎢⎣

RNβ IM
√
RNαRe{ZAR}1/2√

RNαRe{ZAR}1/2 −Im{ZAR}
⎤⎥⎥⎥⎥⎦[

iR−iAR ] ,
where α, β ∈ RR, will be explained in just a moment. Within the
domain of the unilateral approximation, the impedance matrix
Z, of the complete system, composed of the antenna arrays,
impedance matching networks, and the medium connecting
receiver and transmitter, then becomes:

Z = [ ZT ON×M

ZRT ZR
] ∈ CC

(M+N)×(M+N) ⋅VA−1 , (15)

where

ZT = R ⋅ IN , (16)

ZR = RN (α + jβ) ⋅ IM , (16a)

ZRT = √RRNα ⋅ Re{ZAR}−1/2 ZART Re{ZAT}−1/2 . (16b)

The purpose of the impedance matching networks becomes
clear now. Firstly, both transmit side and receive side antenna
arrays get decoupled, because ZT, and ZR, are diagonal matri-
ces. Secondly, each transmit side voltage generator is loaded by
the impedance R. Since this equals its internal impedance, the
generators deliver all their available power (power matching).
�irdly, each receive ampli�er is driven by a source impedance
equal to RN (α + jβ), where α, and β, can be optimized such
as to obtain the largest possible signal to noise ratio (snr) at
the output of the ampli�ers (noise matching) [9]:

α = √1 − Im{ρ}2 , β = Im{ρ} . (17)

Notice from (16b), that even though the impedance matching
network does decouple the antennas, mutual antenna coupling
reappears in the transimpedance matrix ZRT , by virtue of the
real-parts of ZAR , and ZAT . Therefore, a decoupled antenna

array is substantially di�erent from an array of uncoupled

antennas. By de�ning:

σ 2
ϑ = 8σ 2 ⋅

√
1 − Im{ρ}2 − Re{ρ}

RN/R + R/RN + 2Re{ρ} , (18)

and φ = arctan β/(α + R/RN), the mimo channel matrix from
(12), becomes:

H = e−jφ ⋅ Re{ZAR}−1/2 ZART Re{ZAT}−1/2 . (19)

Notice that the physical noise properties (σ 2, RN, and ρ), are
condensed into the variance σ 2

ϑ . The unimodular term e−jφ, is
not important from an information theoretic perspective, for
it has no e�ect on the channel capacity. For a uniform linear
array of isotropic radiators, it can be shown [10] that:

(Re{ZAR})m ,n = (Re{ZAT})m ,n = Rr ⋅ sinc(kd(m − n)) ,
(20)

with wave number k = 2π/λ, where λ is the wave length, and
d is the distance between neighboring radiators, while sinc(x),
is the sin(x)/x - function, and Rr ∈ RR+ ⋅VA−1, is the so-called

x y

z

d x
′

y
′

z
′

d
rθT

θR

Figure 3. Two arbitrarily oriented uniform linear arrays in free space.

radiation resistance of the antennas [1]. Being canonical mini-
mum scattering antennas [11], the isotropic radiators do not in-
terfere with each other as long as there are no electric currents
�owing through them [12]. As zero port current is exactly the
condition one needs to compute the entries of an impedance
matrix, the transimpedance matrix ZART , can be readily ob-
tained. One just has to look at antenna pairs formed by one
receive side and one transmit side antenna, for the neighbor-
ing antennas do not interfere for zero port currents. For two
uniform linear arrays in empty space, and aligned with the
z-axis, or the z′-axis of Cartesian coordinate systems, respec-
tively, (see Figure 3), we, therefore, obtain the well known re-
lationship:

ZART = ζ ⋅ aR(θR)aT
T(θT),

where θR, and θT, are the angles of elevation from which the
receiver sees the transmitter, and vice versa (see also Figure 3),
while the transmit and receive array steering vectors are de-
�ned in the usual way:

aT(θ) = [ 1 e−jkd cos θ e−2jkd cos θ ⋯ e−(N−1)jkd cos θ ]T , (21)

aR(θ) = [ 1 e−jkd cos θ e−2jkd cos θ ⋯ e−(M−1)jkd cos θ ]T , (21a)

and ζ ∈ CC ⋅VA−1, is a constant (which depends on the distance
r, of receiver and transmitter, and the wave length). In a multi-
path environment, the transimpedance matrix becomes:

ZART = ∑
i

ζ i ⋅ aR(θR,i)aT
T(θT,i), (22)

where θR,i , and θT,i , are the i-th path’s angles of arrival and
departure, respectively, and ζ i ∈ CC ⋅VA−1, is the corresponding
path coe�cient. With (19), (20), and (22), we now have got
all the necessary ingredients to model wireless mimo systems
consistently with the governing physics.

IV. Compact Wirelessmimo Systems

Because mutual antenna coupling is strongest at small antenna
separation, it can be expected that it has a strong impact on
the performance of compact mimo systems – and indeed, it
has. To this end, let there be two paths connecting the trans-
mitter to the receiver, say, one direct path in line of sight, and
another path via some re�ectors. Notice that ZART , as given
in (22), will converge to a scaled all-ones matrix, as d → 0,
hence, becoming rank de�cient. However, what about the rank
of the channel matrix H ? Substituting (22) and (20) into (19),
it follows for the case M = N = 2, that

det lim
d→0

H =
−3e−2jφ ζ1ζ2

R2
r

( cos(θR,1) − cos(θR,2)) ( cos(θT,1) − cos(θT,2)) .
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Interestingly, the channel matrix remains regular, even when
d → 0, provided that both of the paths are distinct at the re-
ceiver and the transmitter. Therefore, transmission and recep-
tion of multiple data streams at the same time inside the same
band of frequencies is possible, even when very compact an-
tenna arrays are employed. In order to demonstrate this e�ect
in an even more striking way, consider the special case:

θR,1 = θT,2 = π/2 − arccos√2/3 ≈ 55○,

θR,2 = θT,1 = π/2 + arccos√2/3 ≈ 125○,

ζ1 = ζ2 = ζ .

The channel matrix now becomes, as d → 0:

lim
d→0

H = 2e−jφ
ζ

Rr

[ 1 0
0 1
] .

This intriguing result shows that it is possible to transfer two
data streams which are even capable to carry the same infor-
mation rate, despite that d → 0.
To look at the same subject from a slightly di�erent point

of view, consider a multi-path environment, which gives raise
to be modeled as correlated Rayleigh fading which is indepen-
dent between receiver and transmitter:

ZATR = 1√
trRTx

R
1/2
RxGR

1/2
Tx , (23)

where RTx = E [ZH
ATRZATR], and RRx = E [ZATRZ

H
ATR], denote

the transmit- and the receive side fading covariance matrices,
respectively, while G ∈ CC

M×N, contains independent and iden-
tically distributed, zero-mean, unity-variance, circularly sym-
metric, complex Gaussian random variables. The channel ca-
pacity of the mimo system can be expressed as [5]:

C = N∑
i=1

C i , (24)

that is, as the sum of information rates C i , of up to N data
streams, computable as:

C i = log2max (1, ξµi/σ 2) , (25)

where the constant ξ ∈ RR+ ⋅W, is chosen such that

N∑
i=1

max (0, ξ − σ 2/µi) = PTx , (26)

is ful�lled. Herein, the µi ∈ RR0+, with i ∈ {1, 2, . . . ,N}, denote
the eigenvalues of HHH. Let the transmit and receive side an-
tenna arrays be aligned co-linearly, that is, be aligned in the so-
called »end-�re« direction. Let there be a uniform-conical an-
gle spread with an opening angle of 120○, centered around the
»end-�re« direction, for both the transmitter and the receiver.
For a �xed transmit power, we compute the ergodic channel
capacity E[C], and the ergodic information rates E[C i], of the
individual data streams, by evaluating (24), and (25), respec-
tively, and averaging over di�erent realizations of Rayleigh fad-
ing (that is, di�erent realizations of the matrix G). Figure 4
shows the results. As the antenna spacing d, is reduced from
half wavelength towards zero, both the ergodic channel capac-
ity E[C], and the individual ergodic rates E[C1], and E[C2],
actually even increase a little bit.
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Figure 4. Ergodic channel capacity and stream-rates.

V. Conclusion

A circuit theoretic multiport modeling approach is presented,
which has the purpose to ensure consistency among the dif-
ferent layers of abstraction which are used in analysis and de-
sign of communication systems. Especially, it is taken care that
important terms, such as »energy«, »noise«, or »antenna« are
used consistently with the physics that governs the commu-
nication system. To demonstrate the utility of the proposed
multiport modeling approach, it is shown that mimo systems
composed of very densely packed antenna arrays can be used
for multi-streaming. This fact is a direct result of the physics
of mutual antenna coupling, in conjunction with properly de-
signed impedance matching networks. This result highlights
the necessity that channel models are used in communications
engineering, which are consistent with physics.
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