A Tutorial on Software Obfuscation

Sebastian Banescu
Alexander Pretschner
Department of Informatics, Technische Universitat Miinchen

Abstract

Protecting a digital asset once it leaves the cyber trust boundary of its creator is a
challenging security problem. The creator is an entity which can range from a single
person to an entire organization. The trust boundary of an entity is represented by all
the (virtual or physical) machines controlled by that entity. Digital assets range from
media content to code, and include items such as: music, movies, computer games and
premium software features. The business model of the creator implies sending digital
assets to end-users — such that they can be consumed — in exchange for some form of
compensation. A security threat in this context is represented by malicious end-users,
who attack the confidentiality or integrity of digital assets, in detriment to digital asset
creators and/or other end-users. Software obfuscation transformations have been pro-
posed to protect digital assets against malicious end-users, also called [Man-At-The-End|
attackers. Obfuscation transforms a program into a functionally equivalent
program which is harder for MATE]to attack. However, obfuscation can be use both for
benign and malicious purposes. Malware developers rely on obfuscation techniques to
circumvent detection mechanisms and to prevent malware analysts from understanding
the logic implemented by the malware. This chapter presents a tutorial of the most
popular existing software obfuscation transformations and mentions published attacks
against each transformation. We present a snapshot of the field of software obfuscation
and indicate possible directions, which require more research.

1 Introduction

A common business model for commercial media content and software creators is to dis-
tribute digital assets (e.g. music, movies, proprietary algorithms in software executables,
etc.) to end-users, in exchange for some form of compensation. Even with ubiquitous cloud-
based services, digital asset creators still need to ship media content and client applications
to end-users. For both performance and scalability reasons, software developers often choose
to develop thick client applications, which contain sensitive code and/or data. For example,
games or media players are often thick clients offering premium features or content, which
should only be accessible if the end-user pays a license fee. Sometimes, the license is tempo-
rary and therefore the client software should somehow restrict access to these features and
content once the license expires. Moreover, some commercial software developers also want

Protection against MATE attacks

— T

Legal Technical
prOteCtion/ prOteCtion
)) (Partial) Trusted
Obfuscation Encryption Server-side native code
execution

Figure 1: Classification of protections against [MATE|attacks proposed in [40].

to protect secret algorithms used in their client software, which give them an advantage over
their competitors.

One open challenge in IT security is protecting digital assets once they leave the cyber
trust boundary of their creator. The creator of digital assets can range from a single person
to an organization. The security threat in this context is represented by malicious end-users,
who among other things, may want to:

e Use digital assets without paying the license fees required by the creators of that digital
asset.

e Redistribute illegal copies of digital assets to other end-users, sometimes in order to
make a profit.

e Make changes to the digital assets (e.g. by tampering with its code), in order to modify
its behavior.

Such malicious end-users are also called [Man-At-The-End (MATE)| attackers [37], and they
have control of the (physical or virtual) machine where the digital asset is consumed. Practi-
cally, any device under the control of an end-user (e.g. PC, TV, game console, mobile device,
smart meter, etc.), is exposed to attacks. A model of the attacker capabilities,
akin to the degree of formalization of the [Man-In-The-Middle (MITM)| attacker introduced
by Dolev-Yao [51], is still missing from the literature. However, MATE] attackers are as-
sumed to be extremely powerful. They can examine software both statically using manual
or automatic static analysis, or dynamically using state of the art software decompilers and
debuggers [89]. Shamir et al. |113] present a attack, which can retrieve a secret key
used by a black-box cryptographic primitive to protect the system if it is stored somewhere
in non-/volatile memory. Moreover, the memory state can be inspected or modified dur-
ing program execution and CPU or external library calls can be intercepted (forwarded or
dropped) [133]. Software behavior modifications can also be performed by the at-
tacker by tampering with instructions (code) and data values directly on the program binary
or after they are loaded in memory. The attacker can even simulate the hardware
platform on which software is running and alter or observe all information during software
operation [35]. The only remaining line of defense in case of attacks is to increase the
complexity of an implementation to such an extent that it becomes economically unattractive
to perform an attack [35].

Researchers, practitioners and law makers have sought several solutions for this challenge,
all of which have their advantages and disadvantages. Figure [1| shows a classification of
these solutions, proposed by Collberg et al. [40]. On the one hand, there are legal protection
frameworks that apply to some geographic regions, such as the Digital Millennium Copyright
Act [41] in the USA, the EU Directive 2009/24/EC [84], etc. On the other hand, there are
technical protection techniques (complementing legal protection), which are divided into four
subcategories, namely: (1) software based obfuscation, (2) encryption (via trusted hardware),
(3) server-side execution and (4) trusted (i.e. tamper-proof or tamper-evident) native code.
The latter three subcategories will be briefly discussed in the related work section. The
obfuscation subcategory is the main focus, i.e. software-only protection that does not rely
on trusted entities.

An obfuscator is in essence a compiler that takes a program as input, and outputs a
functionally equivalent program, which is harder to understand and analyze than the input
program. The meaning of the phrases “functionally equivalent” and “harder to understand
and analyze” will be discussed in this chapter. For instance, some classical compiler opti-
mizations are also considered obfuscation transformations [40], because in order to make the
code more efficient, such optimizations may replace control-flow abstractions that are easy to
understand by developers (e.g. loops), with other constructs which are less straightforward
(e.g. goto statements).

This chapter presents a tutorial of several popular obfuscation transformations together
with illustrative examples. It also mentions the MATE attacks published in the literature,
which have been proposed for defeating each obfuscation transformation. The rest of the
chapter is structured as follows. Section [2| presents classification dimensions for obfuscation
transformations. Section [3| presents classification dimensions for MATE attacks. Section
presents a survey of obfuscation transformations and state of the art MATE attacks that
claim to break each obfuscation. Section [l discusses the current state of software obfuscation
versus MATE attacks. Section [6] presents related work, and section [7] concludes the chapter.

2 Classification of Code Obfuscation Transformations

Several surveys and taxonomies for software obfuscation have been proposed in literature [8|
40,186(94,/109]. This section describes the classification dimensions presented in those works
and discusses their advantages, disadvantages and overlaps. We present the classification
dimensions in increasing order of importance, starting with the least important category.

2.1 Abstraction Level of Transformations

One common dimension of code transformations is the level of abstraction at which these
transformations have a noticeable effect, i.e. source code, intermediate representation and
binary machine code. Such a distinction is relevant for usability purposes, e.g. a JavaScript
developer will mostly be interested in source code level transformations and a C developer will
mainly be interested in binary level. However, none of the previously mentioned taxonomies
and surveys classify transformations according to the abstraction level. This is due to the
fact that some obfuscation transformations have an effect at multiple abstraction levels.

Moreover, it is common for papers to focus only on a specific abstraction level, disregarding
transformations at other levels.

2.2 Unit of Transformations

Larsen et al. [86] proposed classifying transformations according to the of granularity at
which they are applied. Therefore they propose the following levels of granularity:

e Instruction level transformations are applied to individual instructions or sequences of
instructions. This is due to the fact that at the source code level, a code statement
can consist of one or more IR or Assembly instructions.

e Basic block level transformations affect the position of one or more basic blocks. Basic
blocks are a list of sequential instructions that have a single entry point and end in a
branch instruction.

e Loop level transformations alter the familiar loop constructs added by developers.

e Function level transformations affect several instructions and basic blocks of a partic-
ular subroutine. Moreover, they may also affect the stack and heap memory corre-
sponding to the function.

e Program level transformations affect several functions inside an application. However,
they also affect the data segments of the program and the memory allocated by that
program.

e System level transformations target the operating system or the runtime environment
and they affect how other programs interact with them.

The unit of transformation is important in practice because developers can choose the ap-
propriate level of granularity according to the asset they must protect. For example, loop
level transformations are not appropriate for hiding data, but they are appropriate for hid-
ing algorithms. However, the same problem, as for the previous classification dimension,
arises for the unit of transformation, namely the same obfuscation transformation may be
applicable to different units of transformation.

2.3 Dynamics of Transformations

The dynamics of transformation — used by Schrittwieser et al. [109] — indicate whether a
transformation is applied to the program or its data statically or dynamically. Static trans-
formations are applied once during: implementation, compilation, linking, installation or
update, i.e. the program and its data does not change during execution. Dynamic trans-
formations are applied at the same times as static transformations, however, the program
or its data also change during loading or execution, e.g. the program could be decoded at
load time, because it was encoded on disk. Even though dynamic code transformations
are generally considered stronger against attacks than static ones, they require the
code pages to be both writable and executable, because the code may modify itself during

execution. This opens the door for remote attacks (e.g. code injection attacks [122]), which
are more dangerous for end-users than attacks. Moreover, dynamic transformations
generally have a higher performance overhead than static transformations, because code has
to first be written (generated or modified) and then executed. Therefore, on the one hand,
many benign software developers avoid dynamic transformations entirely. On the other
hand, dynamic transformations are heavily used by malware developers, because they are
not generally concerned about high performance overhead.

2.4 Target of Transformations

The most common dimension for classifying obfuscation transformations is according to the
target of transformations. This dimension was first proposed by Collberg et al. [40], who
indicated four main categories: layout, data, control and preventive transformations. In a
later publication Collberg and Nagra [39] refined these categories into four broad classes:
abstraction, data, control and dynamic transformations. Since the last class of Collberg and
Nagra [39] (i.e. dynamic transformations), overlaps with the dynamics of transformation
dimension, described in [subsection 2.3, we will use a simplification of these two proposals
where we remove the dynamic transformations class and merge the abstraction, layout and
control classes. Therefore, the remaining transformation targets are:

e Data transformations, which change the representation and location of constant values
(e.g. numbers, strings, keys, etc.) hard-coded in an application, as well as variable
memory values used by the application.

e Code transformations, which transform the high-level abstractions (e.g. data structures,
variable names, indentation, etc.) as well as the algorithm and control-flow of the
application.

This dimension is important for practitioners, because it indicates the goal of the defender,
i.e. whether the defender wants to protect data or code. Note that obfuscation transforma-
tions which target data may also affect the layout of the code and its control-flow, however,
their target is hiding data, not code. In practice data transformations are often used in com-
bination with code transformations, to improve the resilience of the program against
attacks.

Data transformations Data transformations can be divided into two subcategories:

1. Constant data transformations, which affect static (hard-coded) values. Abstractly,
such transformations are encoding functions which take one or more constant data
items 7 (e.g. byte arrays, integer variables, etc.), and convert them into one or more
data items ¢ = f(¢). This means that any value assigned to, compared to and based
on ¢ is also changed according to the new encoding. There will be a trade-off between
resilience on one hand, and cost on the other, because all operations performed on ¢
require computing f~1(i), unless f is homomorphic w.r.t. those operations.

2. Variable data transformations, which modify the representation or structure of variable
memory values. The goal of such transformations is to hamper the development of

| Dimension | Possible values

Source code
Abstraction level | Intermediate representation
Binary machine code

Instruction
Basic block
Loop
Function
Program
System

Static
Dynamic
Constant Data
Variable Data
Code Logic
Code Abstraction

Unit

Dynamics

Target

Table 1: Classification dimensions for obfuscation transformations.

automated attacks, which can assume that a certain variable memory value
will always have a certain representation or a certain structure (e.g. an integer array of
100 contiguous elements). If such assumptions hold then automated attacks are easier
to develop, because they mainly rely on pattern matching. Therefore, by employing
the transformations presented in this section, one can raise the bar for these kinds of
attacks.

Note that variable transformations are not the transformations that affect the names or the
order of variables, but the representation of the data stored in those variables.

Code transformations Code transformations can also be divided into two subcategories,
namely:

1. Code logic transformations, which affect the control-flow of the program, its ease of
readability and maintainability. Such transformations are aimed at adding complex-
ity to the code in order to prevent attackers from understanding what the
algorithm(s) implemented by the code are.

2. Code abstraction transformations, which destroy programming abstractions, are gen-
erally the first hints that attackers use to start reverse engineering a program.

As opposed to constant data transformations, which in some cases perform one-way map-
pings of data to a completely different domain which requires no interpretation, code trans-
formations must always perform a mapping to the same domain of executable code, because
obfuscated code must be able to run on the underlying machine where it is installed.

2.5 Summary of Obfuscation Transformation Classification

Table [I| provides a summary of the classification dimensions described above along with
the possible discrete values that each dimension can take. In the next section we choose
to present a survey of obfuscation transformations classified according to their target of
transformation, because it entails a clear partition of transformations.

3

Classification of MATE Attacks

In contrast to the classification of software protection techniques (see section 2)), the classi-
fication of [MATE]| attacks has been the topic of relatively few publications [2,37,[109]. This
section presents the most relevant classification dimensions of attacks.

3.1

Attack Type Dimension

Basile et al. [19] argue that it is not feasible to consider every possible attacker goal since
it represents the desired end-result for the attacker, e.g. see the position of other players in
computer games, or play premium content without paying, etc. Therefore, in this chapter
we classify attacks according to their type, i.e. the means through which an attacker goal
can be achieved. According to Collberg et al. [36,37], there are four types of information a
[MATE] attacker may be interested in recovering from an obfuscated program:

The original or a simplified version of the source code. This is always the case for MATE|
attackers who are interested in intellectual property theft, i.e. stealing a competitor’s
algorithm.

A statically embedded or dynamically generated data item. Common examples of such
data items are decryption keys used by [Digital Rights Management (DRM)[technologies
to play premium content only on authorized devices, for authorized users. However,
data items may also include hard-coded passwords, IP addresses, etc.

The sequence of obfuscation transformations and/or tools used to obfuscate (protect)
the program, also called metadata. This kind of information is often used by antivirus
engines to detect suspicious binaries, based on the fact that several previously seen
malware have used the same obfuscation transformations and/or tools.

The location, (i.e. lines of code or bytes) of a particular function of the code. For
instance, the attacker may be interested in the module which performs premium content
decryption in order to copy it and reuse it in another program, without necessarily
understanding how it works.

We compare these four information types proposed by Collberg et al. [36,[37], with the
analyst’s aims proposed by Schrittwieser et al. [109]:

Code understanding, which according to its description in the paper maps to the source
code information type described above. However, the name of this category suggests
a more general attack type than a full recovery of the entire source code, because it
could be sufficient to have a partial code understanding. For example, a malware
analysis engine can decide that a software is malicious using its observed behavior
(e.g. unsolicited calls to premium telephone numbers), which does not require full
understanding of the source code. Moreover, metadata recovery also falls inside of this
category of code understanding. Therefore, in this chapter we will use this more general
category, i.e. code understanding.

e Finding the location of data, which maps perfectly onto the data item information type
described above. However, the phrase location of data may be mistaken for the location
information type. Therefore, this chapter will simply use data item recovery.

e Finding the location of program functionality, which maps onto the location informa-
tion type described above. However, Schrittwieser et al. [109] also add that this type
of information may be used to answer questions regarding if the program is malicious
or not. In this chapter we move such questions to the code understanding category,
because we believe an answer to such a question, requires some level of code under-
standing, but not necessarily recovering the entire source code.

e Extraction of code fragments, which does not directly map onto any of the informa-
tion items described above. However, we believe that finding the location of program
functionality is a prerequisite to this aim of the analyst, because extraction can only
be done after the location of the code fragment has been recovered. Therefore, in this
chapter we associate this aim of the analyst with the location information type.

In sum, we use the following three categories of attack types with the meanings discussed
above: (1) code understanding, (2) data item recovery and (3) location recovery.

3.2 Dynamics Dimension

Dynamics is one of the most commonly used classification criteria for automated
attacks and it refers to whether the attacked program is executed on a machine or not, i.e.:

e Static analysis attacks do not execute the program on the underlying (physical or
virtual) machine. The subject of the analysis is the static code of the program.

e Dynamic analysis attacks run the program and record executed instructions, function
calls and /or memory states during execution, which are the subject of analysis.

Static attacks are commonly faster than dynamic attacks. However, static analysis at-
tacks do not handle many code obfuscation transformations as well as dynamic analysis
attacks. This does not mean that dynamic analysis attacks can handle any kind of obfus-
cation easily. For instance, it is challenging to dynamically analyze programs employing
code transformation techniques that achieve temporal diversity, i.e. the program has sig-
nificantly different execution traces and/or memory states on every execution. Moreover,
dynamic analysis is in general incomplete, i.e. it cannot explore or reason about all possible
executions of a program, as opposed to static analysis.

3.3 Interpretation Dimension

Code interpretation refers to whether the program’s code or the artifacts generated using
it (e.g. static disassembly, dynamic traces), are treated as text or are interpreted accord-
ing to a semantic meaning (e.g. operational semantics). Therefore the two types of code
interpretation considered in this chapter are:

e Syntactic attacks which treat the program’s code or any other artifacts generated by
executing or processing it, as a string of bytes (e.g. characters). For example, pattern
matching on static code [114] and pattern recognition via machine learning traces of
instructions [15], treat the code as a sequence of bytes.

e Semantic attacks which interpret the code according to some semantics, e.g. denota-
tional semantics, operational semantics, axiomatic semantics and variations thereof
[59]. For example, abstract interpretation [44] uses denotational semantics, while
fuzzing [120] uses operational semantics.

Syntactic attacks are generally faster than semantic attacks due to the missing layer of
abstraction that interprets the code. Coincidentally, most syntactic attacks are performed
via static analysis and most semantic attacks are performed via dynamic analysis. However,
there are exceptions e.g. the syntactic analysis of dynamically generated execution traces
and semantic static analysis via abstract interpretation [44].

3.4 Alteration Dimension

Alteration refers to whether the automated [MATE| attack changes (alters) the code or not.
This type of classification is analogous to the message alteration classification of [MITM
attacks on communication channels. Hence there are two types of code alteration:

e Passive attacks do not make any changes to the code or data of the program. For
instance, extracting a secret key or password from a program does not require any
code alterations.

o Active attacks make changes to the code or data of a program. For example, removing
data or code integrity checks (e.g. password checks), requires modifying the code of
the program. Also “disarming” malware may also involve tampering with its code.

If an attacker’s goal can be achieved via either passive or active attacks, then the type
of attack used depends on the complexity of the program under attack and the types of
protection the program has in place. For instance, if a program is protected via dynamically
verified checksums of the program input, then active attacks require finding and disabling
these checksumming instructions, which could be more costly than a passive attack.

3.5 Summary of MATE Attack Classification

Table [2| provides a summary of the classification dimensions described above along with the
possible discrete values that each dimension can take. In the remainder of this chapter we
will refer to these dimensions when describing attack implementations.

4 Survey of Obfuscation Transformations

Obfuscation transformations can be implemented in different ways, i.e. the obfuscation trans-
formation gives only a high-level description (e.g. pseudo-code) and it leaves it up to the

‘ Dimension ‘ Possible values ‘
Code understanding
Attack type Data recovery
Location recovery
. Static
Dynamics -
Dynamic
Code interpretation Syntact.l ¢
Semantic
. Passive
Alteration Active

Table 2: Classification dimensions for automated MATE attacks.

() (e
q2 ql

insert node

split I|s

Figure 2: Opaque expressions based on linked lists.

obfuscation engine developer to take concrete implementation decisions. This section pro-
vides a description of the abstract idea behind common obfuscation transformations, it does
not focus on any particular implementation of an obfuscation engine. This state of the art
survey groups obfuscation transformation techniques according to their target of transfor-
mation, namely data and code. We also give examples using code snippets written in C,
JavaScript and Assembly language, to illustrate the transformations.

4.1 Constant Data Transformations

Opaque predicates Collberg et al. [40] introduce the notion of opaque predicates. The
truth value of these opaque predicates is invariant w.r.t. the value of the variables which
comprise it, i.e. opaque predicates have a value which is fixed by the obfuscator e.g. the
predicate 22 +x = 0 (mod 2) is always true. However, this property is hard for the attacker
to deduce statically. Collberg et al. [40] also present an application of opaque predicates,
which is called extending loop condition. This is done by adding an opaque predicate to loop
conditions, which does not change the value of the loop condition, but makes it harder for
an attacker to understand when the loop terminates.

Opaque predicates can be created based on mathematical formulas which are hard to solve
statically, but they can also be built using any other problem which is difficult to compute
statically, e.g. aliasing. Aliasing is represented by a state of a program where a certain
memory location is referenced by multiple symbols (e.g. variables) in the program. Several
works in literature show that pointer alias analysis (i.e. deciding at any given point during

10

g WwN

Listing 2: Code after Encode Literals

Listing 1: Code before Encode Literals 1[it maia(int ac. chare avil) 1
int main(int ac, char* av[]) { 2 double s = sin(atof(av[1]));
int a = 1; 3 double c¢ = cos(atof(av[1]));
// do stuff 4 int a = (int) (s * s + c * c);
return O; 5 // do stuff
¥ 6 return O0;
e

execution, which symbols may alias a certain memory location), is undecidable |71}85]/104].
Therefore, Collberg et al. [40] propose to leverage this undecidability result to build opaque
predicates using pointers in linked lists. For instance, consider the linked list illustrated in the
top-left part of [Figure 2| This circular list consists of four elements and it has two pointers
(i.e. g1 and ¢y) referencing its elements. After performing three list operations, i.e. inserting
another list element (top-right part of [Figure 2)), splitting the list in two parts (bottom-right)
and then moving the pointer ¢, two elements forward (bottom-left), the obfuscator knows
that the element referenced by ¢ is larger than the element referenced by ¢,. However, this
relation is hard to determine using static analysis techniques, therefore ¢; > g9 represents an
opaque predicate, which is always true. Wang et al. [128] employ such opaque expressions
to hide code pointer values, hence, obfuscating control flow via data obfuscation.

One extension of opaque predicates was made by Palsberg et al. [99], who propose dy-
namic opaque predicates which change their truth values between different runs of the pro-
gram. A further extension appeared in the work of Majumdar and Thomborson [90], who
proposed distributed opaque predicates which change their truth values during the same ex-
ecution of a program, depending on the location in code, where they are evaluated. This
means that the values of the opaque predicate changes during execution of a program due
to values being sent and received from other programs in a distributed system.

Attacks: Due to their popularity, opaque predicates have been the target of several MATE]
attacks published in the literature. Dalla Preda et al. [47] propose a location and data re-
covery attack which based on abstract interpretation [44], hence it is a static, semantic and
passive attack. Banescu et al. [9,/12] propose a data recovery and code understanding at-
tack based on symbolic execution, which is dynamic, semantic and passive. This attack also
aimed other obfuscation transformations which will be presented later in this section such as:
converting static data to procedural data, encoding arithmetic, inserting dead code, virtual-
ization and control flow flattening. Salem and Banescu [107] propose a code understanding
attack in order to identify which programs have been obfuscated using opaque predicates
and which have been obfuscated using the same obfuscation transformations enumerated for
the previous attacks, plus program encoding, which is presented later in this section.

Convert static data to procedural data (a.k.a. Encode Literals) A simple way of
obfuscating a hard-coded constant is to convert it into a function (program) that produces
the constant at runtime [40]. This transformation implies choosing an invertible function
(program) f, feeding the constant to f as input and storing the output. During runtime the
inverse of that function, i.e. f=! is applied to the output of f which was stored somewhere
in the program. Obfuscating a hard-coded constant value (e.g. 5), by using simple encoding
functions (e.g. f(i) = a - i+ b), leads to small execution overheads. However, since i is

11

Listing 3: Hiding the value of k = 02876554321 using Mixed Boolean-Arithmetic.

1| int main(int argc, charx argv([]) { // compiled on a 32-bit architecture

2| int x = atoi(argv([1]);

3| int x1 = atoi(argv[2]);

4| int x2 = atoi(argv[3]);

5

6| int a = x*(x1 | 3749240069) ;

7| int b = x*((-2*x1 - 1) | 3203512843);

8| int d = ((235810187*x+281909696- x2) ~ (2424056794+x2));

9| int e = ((3823346922%x+3731147903+2%x2) | (3741821003 + 4294967294%*x2));
10

11| int k = 135832444xd +4159134852%e+272908530*%a+409362795*x+136454265*xb+2284837645 +

415760384*axb+ 2816475136*%a*xd+1478492160*a*xe+3325165568*xb*xb+2771124224%xb*x + 1247281152%
a*x+1408237568*xb*xd+2886729728*xb*e+4156686336*xx*x+4224712704*x*d + 415760384*ax*a
+70254592*xx*xe+1428160512*xd*xd+1438646272*xd*xe+1428160512%ex*xe;

12| // do stuff

13| return O0;

14|}

a constant, such functions can also be deobfuscated using compiler optimizations such as
constant folding [7]. Therefore, another way of hiding constants is to build expressions
dependent on external variables (e.g. user input). For instance, opaque expressions — similar
to opaque predicates except that their value is non-Boolean — always have a certain fixed
value during program execution, e.g. cos?(x) + sin®(z) is always equal to 1, regardless of the
value of x. Therefore, the constant value 1 from the C code from [Listing 1|, can be encoded
using this opaque expression, which cannot be simplified away by the compiler. The resulting
code after this obfuscation is shown in |Listing 2| This transformation can also be applied to
string constants, which can be split into substrings or even single characters, which can be
interpreted as integers. At runtime these substrings or characters would be concatenated in
the right order to form the original string.

Attacks: This obfuscation transformation has been successfully attacked by the two se-
mantic attacks of Banescu et al. [9,[12] based on symbolic execution and the attack of Salem
and Banescu [107] based on pattern recognition, mentioned in the attacks on opaque predi-
cates.

Mixed Boolean-Arithmetic Zhou et al. [140], propose a data encoding technique called
[Mixed Boolean-Arithmetic (MBA)| [MBA|encodes data using linear identities involving Boolean
and arithmetic operations, together with invertible polynomial functions. The resulting en-
coding is made dependent on external inputs such that it cannot be deobfuscated using
compiler optimization techniques. The following example is taken from [140] and it aims to
encode an integer value k = 0x87654321. The example gives k as an input to the following
second degree polynomial with coefficients in Z/(23%):

f(z) = 7273185282* + 3506639707 + 6132886 (mod 22).

The output of computing f(k) is 1704256593. This value can be inverted back to the value
of k during runtime by using the following polynomial:

(@) = 142829158427 4 1257694419z + 4129091678 (mod 22).

12

Zhou et al. [140] describe how to pick such polynomials and how to compute their inverse.
Since the polynomial f~!(z) does not depend on program inputs and the value of f(k)
is hard-coded in the program, an attacker can retrieve the value of k by using constant
propagation. In order to create a dependency of f~!(k) on program inputs, the following
Boolean-arithmetic identity is used:

2y=—2V(-y—1) - (22 -1V (-2y—1)) -3

This identity makes the computation of a constant value (i.e. 2y, which is the value of f(k)
in the running example), dependent on a program input value, i.e. . Note that this relation
can be applied multiple times for different program inputs. The resulting Boolean-arithmetic
relation is further obfuscated by applying the following identity:

r+y=(xdy) —((-2z—-1)V(-2y—1))—1.

Making the computation of f~!(k) dependent on three 32-bit integer input arguments of the
program and applying the second Boolean-arithmetic relation multiple times gives the code
in [Listing 3| which dynamically computes the original value of k = 0287654321. Note that
in variables a, b, d and e are input dependent, common subexpressions of the
expression of k.

Attacks: Guinet et al. [67] propose a static analysis tool called Arybo, which is able to
simplify MBA expressions. Their attack is meant for code understanding and data recovery
and it uses code semantics to achieve this goal.

White-box cryptography This transformation was pioneered by Chow et al. [32,33],
who proposed the first White-Box Data Encryption Standard (WB-DES)| and White-Box]
Advanced Encryption Standard (WB-AES)| ciphers in 2002. The goal of [White-Box Cryp-
tography (WBC)| is the secure storage of secret keys (used by cryptographic ciphers), in
software, without hardware keys or trusted entities. Instead of storing the secret key of a
cryptographic cipher separately from the actual cipher logic, white-box cryptography em-
beds the key inside the cipher logic. For instance, for |[Advanced Encryption Standard (AES)|
ciphers, the key can be embedded by multiplication with the T-boxes of each encryption
round [58]. However, simply embedding the key in the T-boxes of is prone to key
extraction attacks since the specification of is publicly known. Therefore,
implementations use complex techniques to prevent key extraction attacks, e.g., wide linear
encodings [135], perturbations to the cipher equations [26] and dual-ciphers [79].

The idea behind the white-box approach in [32] is to encode the internal cipher
logic (functions) inside [Look-up Tables (LUTs)| One extreme and impractical instance of
this idea is to encode all plaintext-ciphertext pairs corresponding to an cipher with a
128-bit key, as a with 2'?% entries, where each entry consists of 128-bits. Such a
would leak no information about the secret-key but exceed the storage capacity of currently
available devices. However, this [LUT}based approach also works for transforming internal
functions (e.g. XOR functions, AddRoundKey, SubBytes and MixColumns [58]) to
table lookups, which can be divided such that they have a smaller input and output size. For
instance, [Listing 4|shows the implementation of a 8-bit XOR gate, which takes one byte value
as an input argument and outputs the bitwise-XOR of this value and the Most Significant

13

N

Listing 5: LUT-based 8-bit XOR

1| char 1lut[256] = {

.. . . 2 0x53, 0x52, 0xb1, ..., 0x5C,
Listing 4: 8-bit XOR with MSB of secret 3| 0x43. 0x42. Ox41. Ox4C.
key 4| 0x73, 0x72, 0x71, ..., 0x7C,

5 | |
char xor(char imput) { 6| 0xA3, OxA2, OxAl, ..., OxAC
return input ~ 0x53; 7| ¥;
X 8
9| char xor(char input) {
10 return lut[input];
11|}

Byte (MSB) of the secret key of the cipher instance, which is 0x53 in [Listing 41 This
function can easily be converted to a[LUT}based implementation — as illustrated in [Listing 5
— by constructing a[LUT]containing all input-output combinations for the 8-bit XOR function
from Therefore, this [LUT] contains 256 elements and the LUT-based version of
the XOR function simply requires a look-up in this table, as shown on line 10 of

can also be used to encode random invertible bijective functions, which are used to
further obfuscate the representing internal functions. This is necessary because
an attacker could extract the Most Significant Byte (MSB) of the secret key from the in
[Listing 5] In order to hide the key, [WBC| proposes to generate a random permutation of 256
bytes and apply it to the LUT] To be able to use the resulting the inverse permutation
would be composed with the next operation following the XOR during encryption.
Since the attacker would not know the randomly generated permutation value, s/he would
no longer be able to extract the key directly from the [LUT] Converting several steps of an
[AES| cipher to[LUT}based implementations and then applying random permutations to these
LUTs|leads to an implementation which is much more compact than the huge with 2128
entries of 128-bits. Typically, the size of a cipher is around a few megabytes. The
same idea can also be applied to other ciphers as well.

Attacks: Several attacks on [133,134] and [23,48] have been
published in the literature, on the ground of algebraic attacks, which treat each cipher as
an overdefined system of equations [43]. All of these attacks assume that the structure and
purpose of the is known. Therefore, Banescu et al. [14] propose using data obfuscation
techniques to hide the location and structure of the used by ciphers.

One-way transformations One-way transformations refer to mapping data values from
one domain to another domain (e.g. f(i) = ¢'), without needing to perform the inverse map-
ping f~!(#) during runtime. This means that f must be homomorphic w.r.t. the operations
performed using . For instance, a cryptographic hash function such a [Secure Hash Algo-|
rithm (SHA)|, e.g. [SHAF256 (denoted H) may be used as a one-way transformation. H can
map a hard-coded string password s to a 256-bit value, i.e. v = H(s). Generally, the only
operation performed with a hard-coded password is an equality check with an external user
input i. Hence, v does not need to be mapped back to s during runtime. Instead, the pro-
gram can compute v' = H (i) and verify the equality between the hard-coded value v and the
dynamically computed v’. Since the implementation of H for cryptographic hash functions,
does not disclose the inverse mapping H~!, the attacker is forced to either guess s,

14

Listing 7: Merged variables

Listing 6: Split variable

. 1l int i; // i = b1l,b2,b3,b4
char bl, b2, b3, b4; // i = bl,b2,b3,b4d 2| char add_bi1(char a) {
i >> ;
int add(int a) { Z } return a + (i 24) 5
return a + ((bl << 8 + b2) 5|7/
<< 8 + b3)
<< 8 + bd: 6| char add_b4 (char a) {
? 7 return a + (i & Oxff);
iy 8| }

or identify the equality comparison and modify it such that it always indicates equality re-
gardless of 7. The latter tampering attack can be hampered if the code of the equality check
is highly obfuscated, which can be achieved by applying code obfuscation transformations
(see [subsection 4.3]).

Attacks: More than a decade ago, Wang et al. [129] suggested how to find collisions in
hash functions such as MD4, MD5, HAVAL 128 and RIPEMD. However, it was only recently
that Stevens et al. [117] discovered the first collision for the SHA1 hash function. Both of
these attacks are meant to recover input data for the hash function, which hashes to the same
value as another input data. They are dynamic and semantic since they require executing
the hash functions.

4.2 Variable Data Transformations

Split variables The idea behind this transformation is to substitute one variable by two
or more variables [40]. For instance, a 32-bit integer variable ¢ can be split into four byte
variables by, by, by and by that represent the integer 4, i.e. i = by - 2562 + by - 2562 + bs - 256 +
by. This idea is similar to converting static data to procedural data, except that splitting
variables does not apply to constant values, but to any value that a variable may hold at
any moment during execution. shows a C-code snippet illustrating the previously
mentioned example of replacing an integer by four bytes. This code snippet also shows
that such an obfuscation transformation requires us to implement functions even for simple
arithmetic operations such as addition (lines 3-7). We must reconstruct the 32-bit integer
value before performing the actual arithmetic operation, i.e. addition. This kind of function
must be implemented for all operations, which are needed in the original un-obfuscated
program.

Attacks: Slowinska et al. [115] propose a data recovery attack based on dynamic trace
analysis of so-called temporal reuse intervals, which indicate the usage patterns of certain
memory locations. This attack is also applied to the merging variables transformation pre-
sented next.

Merge variables Two or more variables can be merged into a single variable, if the ranges
of the combined variables fit within the precision of the compound variable [40]. For example,
up to four 8-bit variables can be packed into a 32-bit variable, i.e. the inverse operation than
splitting variables. |Listing 7| shows an illustration of this example, where four byte variables,
namely by, by, b3 and by have been merged into an integer variable 7. Any operations on the
individual variables has to be carefully crafted in order not to affect the other variables.

15

Listing 8: Folded array

int folded [10][10] = {{1, 2, ..., 10}, Listing 9: Flattened array
11, 12, ..., 201, 1| int flattened[100] = {1, 2, ..., 100};
{91, 92, ..., 100}};

For instance, arithmetic addition functions — as shown on lines 2-8 of — must
be implemented for each of the four different variables. These functions could be further
obfuscated using the code obfuscation transformations in order to raise the bar for attackers.
A [MATE] attacker would first need to understand these functions in order to figure out that
multiple variables are stored in a compound variable.

Attacks: The previously mentioned attack proposed by Slowinska et al. [115] for
splitting variables, also applies to merging variables. In addition to this attack, Viticchi
et al. [126] performed a user study where a group of students managed to successfully re-
verse engineer programs obfuscated using the merge variables transformation by employing
a combination of both static and dynamic analysis tools and techniques.

Restructure arrays Similarly to variables, arrays can be split or merged [40]. However,
in addition to that, arrays can be folded (increasing the number of dimensions), or flattened
(decreasing the number of dimensions). For instance, if the original code contained an array
of 100 integer elements, then this array could be folded into a 10 by 10 matrix as shown
in [Listing 88 We can also consider the dual, where the original code contained the 10 by
10 matrix and it would be flattened into a 1-dimensional array of 100 elements as shown
in [Listing 9 Folding and flattening break code abstractions put in by software developers
(e.g. matrices are flattened into arrays), which force reverse engineers to first understand
logic in the code before they can recover this useful abstraction.

Attacks: Slowinska et al. |[116] propose a code understanding attack based on pattern
recognition of access patterns on execution traces generated by symbolic execution. This
attack mixes both static and dynamic techniques in order to recover data structures from
obfuscated code. It is a passive attack which uses code semantics. This attack is not only
aimed to break restructuring of arrays, but also loop transformations, presented later in this
chapter.

Reorder variables This transformation changes the location or the name of variables in
the program code, by permuting or substituting them [35]. Moreover, it can re-purpose
variables such that they are no longer used for the same (single) task. It has low cost
and it improves resilience, because automated attacks can no longer assume certain

Listing 11: Basic block after reordering

Listing 10: Original basic block variables

mov eax, 0x10h
mul ebx, eax
cmp ebx, 0x10h
je 0x12345678

mov edx, 0x10h
mul ebx, edx
cmp ebx, 0x10h

S W N -

je 0x12345678

16

O U WN

patterns, e.g. that variables are always laid-out in a certain order, or that one specific variable
(name) is used for a certain purpose only. An example of such a transformation is illustrated
in the Assembly-code snippets from [Listing 10| and [Listing 11 where the register eax in the
former listing is substituted by register edx in the latter listing. Pappas et al. |[100] apply
this transformation at the binary level by reassigning register operands at the basic block
level. They show that this transformation is able to eliminate (on average) over 40% of
[Return Oriented Programming (ROP)| gadgets in different instances of the same program.
This means that using this transformation breaks 40% of the patterns in the binary code.

Attacks: Griffin et al. [65] present an automated attack, which is able to perform
data recovery for the purpose of malware string signature extraction and is able to break
this transformation of re-ordering variables. Their attack is static and semantic.

Dataflow Flattening Dataflow flattening, proposed by Anckaert et al. [4], is an advanced
version of variable reordering, inspired by the idea of oblivious RAM proposed by Goldreich
and Ostrovsky [63]. It periodically reorders data stored on the heap via a Memory Man-
agement Unit (MMU), such that the functionality of the program is not altered. It is not
feasible to show a meaningful code snippet for the MMU that would fit in one page of this
chapter, but the intuition behind the way in which it reorders data on the heap is simple.

1. The MMU allocates a new memory region on the heap, for a given variable.

2. It copies the value of that variable to the new memory region.

3. The MMU updates all pointers from the old to the new memory region of the variable.
4. Finally, it deallocates the old memory region.

In addition to reordering the data on the heap, dataflow flattening also proposes moving
all local variables from the stack to the heap and scrambling pointers to hide the relation
between the different pointers returned to the program. This transformation has a resilience
against attacks, nonetheless, its execution overhead is also high.

Attacks: At the time of writing this chapter, we are not aware of reported attacks on this
obfuscation technique in the literature.

Listing 13: Prologue and epilogue after

Listing 12: Original function prologue stack randomization

: 1| sub esp, 0x43
and epilogue 2| push obp
push ebp ;save previous stack frame 3| sub esp, O0x5f
mov ebp, esp ;base of this stack frame 4| mov ebp, esp
c. ;function body 5| ...
mov esp, ebp ;discard this stack frame 6| mov esp, ebp
pop ebp ;restore previous frame 7| add esp, 0x5f
ret 8| pop ebp
9| add esp, 0x43
10| ret

17

Listing 15: Addition function obfuscated

with DSR
Listing 14: Original addition function 1[int mask a = randQ);
int a = 5; 2/ int a = 5 ~ mask_a;
int b = 10; 3| int mask_b = rand();
. 4|int b = 10 ~ mask_b;
int sum = a + b; 5| ...
6| int mask_sum = rand();
7| int sum = ((a ~ mask_a) + (b "~ mask_b)) ~
mask_sum;

Randomized stack frames This transformation assigns each newly allocated stack frame
a random position on the stack [61]. For this purpose it subtracts a random value from the
stack pointer in the function prologue (simulating a push of multiple elements) and adds this
value before the function returns in the function epilogue. Additionally, Fedler et al. [55]
propose padding each stack frame internally by a random amount, such that return address
and local variables are at random offsets. Note that, these random offsets could be generated
at compile time or during runtime. This is again done by performing random subtractions
from the stack pointer in the function prologue and undoing these subtractions in the function
epilogue. A typical function prologue and epilogue is shown in the Assembly code snippet
from [Listing 12| The prologue starts by saving the address of the base of the previous stack
frame (line 1). Then it sets the base of the new stack frame (line 2). After the body of the
function is executed the contents of the new (current) stack frame are discarded (line 4) and
the previous stack frame is restored (line 5). |Listing 13| shows the prologue and epilogue
after the stack randomization transformation is applied. Note the instructions inserted on
lines 1, 3, 7 and 9, which subtract and add random values — 0x43 and 0x5f in our example —
from the stack pointer register (i.e. esp). Since the subtracting and adding instructions are
stack operation, the value subtracted in the prologue, must be added in reverse order in the
epilogue. These added instructions can be easily identified by the attacker, however,
they could be further obfuscated using both code and data transformations.

Attacks: Strackx et al. [118] propose a data recovery attack that is able to bypass the
protection offered by randomized stack frames via a technique called a buffer overread (note
that this is different from buffer overflow). This attack is dynamic, semantic and active
because it changes the data of the program in process memory.

Data space randomization Cadar et al. [27] and Bhatkar and Sekar [21] introduce a
data transformation technique which they call Data Randomization and Data Space Ran-
domization (DSR), respectively. The idea of these two techniques is to XOR (i.e. encrypt)
data values stored in program memory (e.g. stack, heap, etc.) with randomly generated
masks. The masks do not need to be fixed, they can be generated dynamically at runtime
and used to encrypt the data values. Whenever a data value must be read by the program, it
is first decrypted using the right mask. After an authorized modification of a decrypted data
value occurs, the result is re-encrypted with the same or with a different mask depending
on the implementation. The technique is inspired by PointGuard [45], which encrypts code
pointers. DSR offers protection against attackers who want to extract or modify
data values from/in process memory. One challenge of implementing DSR is that different

18

pointers may point to the same encrypted memory value, therefore, they must use the same
mask to decrypt a data value. This problem is solved in part by performing a static alias
analysis of the code [5], before the transformation is applied. We have already mentioned
that alias analysis is in general undecidable, therefore, an approximation is performed and
a common mask is used for all pointers that cannot be statically determined.

Listing 14| shows a C-code snippet performing a simple summation operation. |Listing 15
shows how the function from after it is obfuscated using DSR. Note that each
value is XOR~ed with a random mask, which must be used for decryption when performing
the addition operation on line 7 of [Listing 15| Even though the actual values of the variables
are now hidden by masking, the security issue is shifted to hiding the masks or the relation
between values and masks from attackers. This can be achieved by applying other
obfuscation transformations on top of DSR. DSR is reported to introduce an average run-
time overhead of 15% and it can protect against buffer- and heap-overflow attacks.

Attacks: The attack of Strackx et al. |118] which was presented as an attack for the
random stack frames transformation is also able to bypass DSR.

4.3 Code Logic Transformations

Instruction reordering This technique targets sequences of instructions, which when
permuted, do not alter the original program execution [35]. Similarly to variable reordering,
this transformation is meant to break attacks based on pattern matching. However,
it has very low resilience w.r.t. human-assisted attacks, because it does not increase
the difficulty of code understanding by much. An example of instruction reordering is shown
in |Listing 17, where the instructions on lines 1 and 2 have been reordered from their origi-
nal positions in [Listing 16 The candidate instruction sequences targeted by this technique
are also candidates of parallel processing optimizations, because they can be independently
performed by different execution threads, without any danger of race conditions. The re-
ordered sequence of instructions must be equivalent to the original sequence. The cost of
this transformation are low. Pappas et al. [100] have employed instruction reordering on
binary basic block level and have shown that this transformation reduces the number of
gadgets by over 30%, hence, increasing the resilience against attacks. Note that
this transformation can be also performed at basic block level, however, this would have a
lower increase in resilience compared to instruction reordering.

Attacks: Zhang et al. [139] propose a static code understanding attack in order to detect
repackaged Android applications, which are suspected to be malicious. Their attack uses
code semantics to build a so-called view graph of each application, which is compared to other
applications in order to determine if they are repackaged versions of the same application.
The authors indicate that this attack is resilient to multiple code obfuscation transformations

Listing 16: Code before instruction re- Listing 17: Code after instruction re-
ordering ordering
mov eax, ebx 1| add ecx, edx
add ecx, edx 2| mov eax, ebx
add eax, ecx 3| add eax, ecx
4l .

19

N =

0 ~N O O WwN -

Listing 18: Assembly code#1 per- Listing 19: Assembly code#2 performing swap

forming swap 1[pash eax
mov edx, eax 2| push ebx
mov eax, ebx 3| pop eax
mov ebx, edx 4| pop ebx

presented in this section, namely: merging functions, opaque predicates, inserting dead
code, removing functions, function argument randomization and converting static data to
procedural.

Instruction substitution This technique (first mentioned in [35]) is based on the fact
that in some programming languages as well as in different [Instruction Set Architectures|
, there exist several (sequences of) equivalent instructions. This means that substi-
tuting an instruction (sequence) with its equivalent will not change the semantic behavior
of the program, nevertheless, it will result in a different binary representation. A concrete
implementation and evaluation of this technique is presented by Jacob et al. [74] and it is
also used in the Hydan tool [52]. shows an Assembly code snippet representing a
swap function from register eax to register ebx, using register edx as an auxiliary variable.
isting 19| shows one of the many possible instruction sequences — equivalent to [Listing 18
— presented by Jacob et al. [74]. The transformation has a moderate cost, however, it offers
low resilience against attacks, due to the fact that the number of transformations
available is limited. Regarding the resilience against remote attacks, Pappas et al. [L00] mea-
sured the effect of this transformation at binary basic block level, against ROP] attacks and
discovered that it reduces less than 20% of gadgets. Moreover, the use of uncommon
instructions will decrease stealth, i.e. indicate to an attacker where the substitution occurred.
In order to improve the stealth of this transform, De Sutter et al. [49] proposed a technique
called instruction set limitation, which proposes candidates for substitution based on the
statistical distribution of instruction types in the program. Mason et al. [92] also proposed
a similar technique with the purpose of improving the stealth of shellcode by encoding it as
text written in the English language.
Attacks: The code understanding and data recovery attack of Banescu et al. [9], presented
as an attack for opaque predicates is also applicable to bypass this transformation.

Listing 20: Code before Encode Listing 21: Code after Encode Arithmetic
Arithmetic 1| int main(int ac, charx av[]) {
int main(int ac, char* av[]) { 2 int x = atoi(av[1]);
int x = atoi(av[1]); 3 int y = atoi(av[2]);
int y = atoi(av[2]); 4 int w = atoi(av[3]);
int w = atoi(av[3]); 5 int z = (((x ~ y) + ((x & y) << 1)) | w) +
int z = x + y + w; 6 (((x 7 y) + ((x & y) << 1)) & w);
// do stuff 7 // do stuff
return 0; 8 return O;
} 9|}

20

W N

Listing 23: Code after inserting garbage code

Listing 22: Code before inserting 1[int sum = o
garbage code 2|int prod = 1;
: 3| for (i = 0; i < arr_len; i++) {
int sum = 0; 4 sum += arr[il;
for (i = 0; i < arr_lemn; i++) 5 prod *= arr([il;
sum += arr[il; 6|
int average = sum / arr_len; 7| int average = sqrt(prod);
8| average = sum / arr_len;

Encode Arithmetic This technique is proposed by Collberg [36] and it is a variant of
instruction substitution, which substitutes boolean or arithmetic expressions by expressions
involving both boolean and arithmetic operations, which are harder to understand. One
example of such a transformation is illustrated by [Listing 21|, which shows a C code snippet
after encode arithmetic has been applied to the right-hand side of the assignment to variable
z from line 5 of [Listing 20}

Attacks: The drawback of this approach is that there are a limited number of such
Boolean-arithmetic identities available in the literature [130]. Eyrolles et al. [54] have pro-
posed writing a reverse transformation for each of them, after identifying [Mixed Boolean-|
|Arithmetic (MBA)| expressions via pattern matching.

Garbage insertion This technique implies inserting arbitrary sequences of instructions,
that are independent of the data flow of the original program and do not affect its
behavior (functionality) [35]. The possible sequences that may be inserted are
virtually infinite, nonetheless, the performance-cost grows proportionally to the number of
inserted instructions. |Listing 22| and [Listing 23| shows a program that computes the average
of all elements in an array arr, before and after garbage code has been inserted. Note that
in [Listing 23], lines 2, 5 and 7 represent garbage code that has no influence on the output
value of the program. However, inserting garbage code changes the relative offset the original
instructions of the program. It also raises the complexity of reverse-engineering by cluttering
the original code. However, note that garbage code should be inserted only after performing
compiler optimizations, because it can be identified and eliminated via taint analysis.
Attacks: Performing the generic attack based on taint analysis, proposed by Yadegari et
al. [136], would remove lines 2, 5 and 7 in [Listing 23| because the final value of average
(line 8 in has no data dependency on prod. The transformation space for this
technique is limited only by physical or practical run-time constraints such as time delays and
memory consumption, because as opposed to dead code, garbage code is always executed.

Insert dead code This transformation was first proposed by Collberg et al. [40] and it
modifies the control-flow of a program such that a dead branch is added, i.e. a branch that
is never taken during runtime. Adding the dead branch is facilitated by opaque predicates,
because one of the branches of a conditional statement that uses such an opaque predicate,
will never be executed, while the other branch will always be executed. In order not to
disclose the truth value of opaque predicates by leaving the dead branch empty, Collberg
suggests inserting dummy code on the dead branch. To further confuse the attacker, the
dead code can be a buggy version of the other branch, which is always chosen. For instance,

21

consider the code snippet from [Listing 24| which converts the first input argument to an
integer and then sets the value of variable y to the square root of the input argument’s value.
isting 25| shows that dead code can be inserted anywhere by first inserting a conditional
statement with an opaque predicate that is always true (line 4) and then adding dead code
in the branch that is never taken (line 7). Note that we can wrap as many lines of code as we
want using the conditional statement. Moreover, the size of the dead code can be arbitrarily
large.
Attacks: Along with the previously presented attacks by Salem and Banescu [107], Zhang
et al. [139], Yadegari et al. |136], and Banescu et al. [9], there are numerous works in the
filed of compilers presenting optimizations for dead code removal [68,[81].

Adding and removing function calls These two techniques were first proposed by
Cohen [35], and can be applied at any unit of transformation. Adding a call to a sub-routine
implies: (1) selecting an arbitrary sequence of instructions, (2) creating a sub-routine using
that sequence and (3) finally, substituting the original sequence with a call to that sub-
routine. Removing a call to a sub-routine implies: (1) substitute all calls to a sub-routine
with the body of that sub-routine and (2) delete the sub-routine. shows a code
snippet that contains a function, while |Listing 27| shows a code snippet where this function
has been removed. The reverse transformation from |Listing 27| to |Listing 26| is adding
function calls. These transformations cause changes in the structure of a program, which
creates more complexity for MATE] attacks. The cost of this technique grows or decreases
with the number of inserted and removed sub-routine calls, respectively. This method has
been extended by Banescu et al. [15], such that system calls are added or existing system
calls are substituted with equivalent ones. They call this transformation behavior obfuscation
because it hides the system call trace analyzed by behavioral malware analysis engines.

Attacks: We have already mentioned the attack of Zhang et al. [139], which also claims to
bypass this obfuscation transformation. In addition to this work, many works on behavioral
malware detection claim they are resilient to the addition or removal of system calls [15]
132]. Such machine learning based malware detection approaches are classified as dynamic,
passive and syntactic, because they treat the function call traces generated by the obfuscated
software as a sequence of bytes.

Loop transformations Several loop transformations have been proposed as compiler opti-
mization passes by Bacon et al. |[7]. Collberg et al. [40] argue that these loop transformations

Listing 25: Code after inserting dead code

Listing 24: Code before inserting 1| int main(int ac, char* av[]) {
dead code 2 int x = atoi(av[1]);
3 int y;
int main(int ac, char* av[]) { 4 if (x*x + x % 2 == 0)
int x = atoi(av[1]); 5 y = sqrt(x);
int y = sqrt(x); 6 else
// do stuff 7 y = X * X;
return O0; 8 // do stuff
} 9| return O0;
10]}

22

Listing 26: Add function calls

int foolint a, int b) { Listing 27: Remove function calls
return a + b;

} 1lint ¢ = a + b + 1;

int ¢ = foo(a, b + 1);

Listing 29: Code with jumps added

mov edx, eax

Listing 28: Code with jumps removed jep L1

mov edx, eax
mov eax, ebx
mov ebx, edx

L2:mov ebx, edx

Ll:mov eax, ebx

0 N0 WN -

jmp L2

also increase software complexity metrics and can therefore be considered obfuscation trans-
formations that increase resilience against attacks. Loop tilling or blocking is intended to
improve cache locality, by dividing loop iteration lengths into parts that fit in the CPU cache.
This increases the nesting level of loops and is therefore more potent. Loop distribution or
fission breaks the independent instructions in a loop body into multiple loops with the same
iteration length, which increases the number of loops in the code. Loop unrolling repli-
cates the body of the loop a certain number of times and reduces the number of iterations
correspondingly, which increases the number of lines of code in the program.

Attacks: The dynamic code understanding attack by Slowinska et al. [116], already pre-
sented as an attack on the restructure arrays transformation, is also applicable to loop
transformations.

Adding and removing jumps These techniques change the control-flow of the program
by adding spurious jumps or removing existing jumps [35]. Adding jumps can be done by
substituting an arbitrary sequence of instructions / by: (1) a jump to a random position, (2)
followed by I and (3) a jump to the instruction immediately following I in the original version
of the program. An example is illustrated in [Listing 29| where the code from has
been transformed by adding two unconditional jumps to labels L1 and L2. Removing jump
instructions may also be done if it does not alter the original semantics of the program,
e.g. unconditional jumps may be removed and the code from the address of the jump, merged
with the code preceding the unconditional jump. An example is shown in [Listing 28 where
all jumps from the code in have been removed. However, in practice adding
jumps is more frequently employed in order to increase the complexity of the attack.
The transformation space of this technique is bounded by the length of the program it is
applied to. The cost of this method grows (decreases) with the number of inserted (removed)
jump instructions. The resilience of adding jumps can be increased by further obfuscating
the addresses of the jumps using data obfuscation techniques such as opaque expressions or
converting static data to procedural data.

Attacks: If the target of the added jumps are not made dependent on input values using
opaque expressions, then they are trivial to bypass using the already mentioned dynamic

23

attack of Yadegari et al. [136]. On the other hand removing jumps can be bypassed by
dynamic taint analysis on augmented |[Control Flow Graphs (CFGs)| proposed by Yadegari
et al. [137], which is a dynamic, passive and semantic attack.

Program encoding This technique keeps one or more instructions encoded (i.e. en-
crypted [28,/127] or compressed [98]), while the program is not executing and decodes the
sequence(s) when the program is running [35]. The resilience of program encoding against
attacks depends on the algorithm used for encoding, e.g. a compression algorithm can be
undone without a secret key, while an encryption requires finding the key. However, the costs
may also be relatively high compared to other obfuscation techniques, because the code has
to be decoded before it can be executed. There is a trade-off between resilience and cost
depending on the level of granularity at which this transformation is applied, i.e. if applied
at instruction level, the cost and resilience are high, because each instruction is decoded,
executed and re-encoded, hence the whole code is never stored in decoded form in memory,
at one point in time. While if program encoding is applied at program level, the whole code
is decoded and afterwards it starts executing, hence an attacker could perform a memory
dump after decoding to have a copy the whole code. Additionally, this technique does not
protect well against dynamic analysis attacks, e.g. during execution the code is decoded in
memory and it can be read or modified directly in memory by the attacker.

Attacks: Tang et al. [121] propose a static, passive and syntactic attack against poly-
morphic malware, in order to extract signatures based on the position and distribution of
byte values in obfuscated malware binaries. Qiu et al. [103] propose a dynamic, passive and
semantic attack based on taint analysis, in order to determine the location of integrity checks
inside code.

Self-modifying code This technique has been discussed in several works [35,|78]88,94].
It implies adding, modifying and/or removing instructions of a program during its execu-
tion. Therefore, it creates a high complexity for static-analysis attacks. Kanzaki et al. [7§]
proposed replacing real instructions with bogus instructions that would get replaced by real
instructions before they are executed and then replaced again by bogus instructions after
execution. This transformation requires a sound analysis of all possible execution paths lead-
ing to and following the instruction(s) that are to be modified. Madou et al. [88] propose
to apply self-modifying code at the function level by creating so-called function templates,
i.e. arrays of byte having a larger size than any single function in a chosen subset of func-
tions. For instance, if the subset consists of functions f; and fs, the code of function f; is

N1 f2
memory offset: | 0 | 1 | 2 | 3 | 4 0| 11213

memory value: | b7 | 48 | a0 | 53 | fa e9 | 48 | a0 | 33

T Edit Scripts
memory offset: | 0| 1 | 2 | 3|4 e =[0— 07,3 = 53,4 — fa]
memory value: | 7|48 | a0 | 7 | 7 ey = [0 — €9,3 — 33]

Figure 3: Self-modifying code via function templates and edit scripts

24

5 bytes long and the code of function f; is 4 bytes long, then the template 7" must be at
least 5 bytes long as shown in [Figure 3] Note that function templates are generated by an
intersection of the code bytes of all other functions in the subset, i.e. common code bytes
are kept in place (e.g. 48 and a0 in and other code bytes are randomly initialized.
Each function f is associated to an edit script e, which indicates the locations (i.e. indices)
of the function template that must be patched and the values they must be patched with, in
order to reconstruct the code of f. Therefore, when any function f is called, the edit script
e corresponding to f is first executed and then the resulting code in the function template
is executed.

Attacks: Self-modifying code can be effective against dynamic-analysis attack, which
aim to break the integrity of the code (e.g. via dynamic code patching), if the executed
instructions are different in different runs of the program with the same inputs. However,
Nguyen et al. [96] have shown that applying such temporal diversity to instruction level
encryption (i.e. instruction set randomization [18]) has negative effects on confidentiality of
the encryption key because encrypting the same code with different keys leaks information
about the code, similar to two-time pads [93]. In the case of self-modifying code, there
is no dedicated decoder routine, as was the case for the program encoding transformation.
Instead, different parts of the code are “responsible” for modifying other instructions and
these are often spread throughout the entire program. The trade-off between resilience and
cost is similar to that of program encoding and virtualization. Dalla Preda et al. [46] applied
an abstract interpretation based attack to generate signatures for metamorphic malware
samples, hence this attack is a code understanding, static, passive and semantic attack.

Virtualization obfuscation This technique is related to the program encoding technique,
because it also implies an encoding of instructions |35]. Additionally, it also requires an inter-
pretation engine (called “simulator” or “emulator”), which is able to decode the instructions
and execute them on the underlying platform. The simulator may also be running on top of
another simulator and so forth, giving an arbitrary nesting level. Normally, this creates com-
plexity for static-analysis attacks, because the attacker has to first understand the custom
interpreter logic and then the code running on top of it. The most significant difference of
virtualization w.r.t. program encoding is that no code must be written to a memory location
during decoding. However, the trade-off between resilience and cost for this transformation

Listing 30: Point function program

int main(int argc, char* argv[]) { // Virtualization bytecode:
char branch_cond = 1; // a5 00 07
branch_cond &= argv[1][0] == >1°>; // 87 00 00 02
branch_cond &= argv[1][1] == ’2’; // 87 00 01 03
branch_cond &= argv[1][2] == ’3’; // 87 00 02 04
branch_cond &= argv[1][3] == ’4°; // 87 00 03 05
branch_cond &= argv[1][4] == ’5’; // 87 00 04 06
if (branch_cond) // 1f 00 02

printf ("You win!\n"); // 03 00

return O0; // 42 01

}

25

are the same as in the case of program encoding. For clarity, we provide all of the steps of
the Virtualize transformation for the program in Listing This program prints the mes-
sage “You win!” on standard output if the first argument passed to this program is equal
to “12345”. The virtualization transformation is applied to this program using the following
steps and the result is illustrated in Listing 31}

1. Map variables, function parameters and constants to entries in a common data array,
which represents the memory of the interpreter. This array is initialized on lines 3-4 in
Listing Its first position represents the branch_cond variable from Listing [30] and
the following entries represent constants such as the return value, the ASCII codes of
the characters from "1’ to ’5” and logical true encoded as 1.

2. Map all statements in a function to a new randomly chosen language, which represents
the instruction set architecture (ISA) of the interpreter. In our example the ISA is

defined by:

e Variable assignment is encoded using 3 bytes, namely the opcode (0xa5) and the
index of the left- and right-hand operands inside the data array.

e Equality comparison, followed by applying the logical AND operation to between
the result and another variable. Examples of such instructions are shown on lines
4-5 in Listing Such an instruction is encoded using 4 bytes, namely the opcode
(0x87), the variable to which the boolean value is assigned and the two other byte
values which are compared for equality.

e Conditional branch statements are encoded using 3 bytes, namely the opcode
(0x1f), the boolean variable which is tested and the number of bytes to jump
over if the variable is false.

e Printing a string on standard output is encoded using 2 bytes, namely the opcode
(0x03) and the index of the string to be printed in the list of hard-coded strings
of the function. In our example the list of hard-coded strings contains only one
string and is defined on line 2 of Listing

e The return instruction is encoded using 2 bytes, namely the opcode (0x42) and
the value that should be returned by the program.

Now we can write virtualization bytecode corresponding to the C program in Figure 30,
which is shown in the comments of the code from the same figure.

3. Store the encoded bytecode inside the code array, which is initialized on lines 5-9 in

Listing [31]

4. Create an interpreter for the previously generated ISA, which can execute the instruc-
tions in the code array using the data array as its memory. The input-output behavior
of this execution must be the same as that of the original program. The interpreter
can be seen on lines 11-32 of Listing [31] It consists of an infinite while loop, which has
a switch statement inside. Each case section of the switch statement is an opcode
handler, i.e. each possible opcode in the bytecode program is processed by a dedicated

26

Listing 31: Point function program obfuscated with virtualization

int main(int argc, char* argv[]) {
char const *strings = "You win!\0";
unsigned char datal[8] = {0, // branch_cond var
0o, 49, 50, 51, 52, 53, 1}; // constants
unsigned char code[30] = {0xab6, 0x00, 0x07, 0x87, 0x00,
0x00, 0x02, 0x87, 0x00, 0x01, 0x03, 0x87,
0x00, 0x02, 0x04, 0x87, 0x00, 0x03, 0x05,
0x87, 0x00, 0x04, 0x06, Ox1f, 0x00, 0x02,
0x03, 0x00, 0x42, 0x01};
int vpc = 0;
while (1)
switch (codelvpcl) {
case Oxab : // variable assignment
datal[code[vpc+1]] = datalcode[vpc+2]];
vpc += 3;
break;
case 0x87 : // equality comparison plus and
datal[code [vpc+1]] &=
(argv [1] [code[vpc+2]] == datalcodel[vpc+3]1]1);
vpc += 4;
break;
case Ox1f : // if statement
vpc += (datalcodel[vpc+1]]) ? 0 : datalcodelvpc+2]];
vpc += 3;
break;
case 0x03 : // printf string
printf ("%s\n", strings + codel[vpc+1]);
vpc += 2;
break;
case 0x42: // return
return datal[code[vpc+1]];
}
}

part of the interpreter. The current instruction to be processed by the interpreter is
indicated by an integer variable of the interpreter called the virtual program counter
(VPC). The VPC is used to index the instructions in the code array and it is initial-
ized with the offset of the first instruction in that array (line 10). In every instruction
handler the operands of the current instruction are used to perform the operation(s)
corresponding to this instruction. Afterwards, the VPC is set to the offset of the
following bytecode instruction to be executed. This interpreter should be augmented
with cases representing bogus opcodes for all possible byte values in order to increase

the resilience against attacks.

Together with virtualization a wide range of additional data and code obfuscation transfor-
mations can be applied. Banescu et al. [11] propose randomizing the layout of the bytecode
instructions in the code array, as well as the format of these instructions. Collberg [36] pro-
poses encoding the value of the VPC using opaque expressions, changing the interpreter’s
dispatch method from a switch-statement to table lookups, and many more.

Attacks: Kinder [80] proposes a static, semantic attack based on abstract interpretation
and a technique called VPC' lifting, in order to automatically recover memory values at any
code location. Rolles [105] proposes a manual, static, semantic and passive attack to un-
derstand the mapping between the bytecode and the instruction handlers of the interpreter.
Banescu et al. [11] present an experiment where a dynamic, active, syntactic attack, which

27

Listing 33: Code after |CFF

int gcd(int a, int b){
int next = 0;
while (1) {
switch (next) {
case O:
if (a != b) next = 1;
else next = 2;

Listing 32: Code before |Control Flow|
[Flattening (CFF)|

0 ~NOoO o WN -

break;
case 1:
if (a > b) next = 3;
else next = 4;
break;
case 2: return aj;
break;
case 3: a = a - b; next = 0;

int gcd(int a, int b){
while (a !'= b)
if (a > b)
a = a - b;
else
b =D>b - aj;
return a;

}

e e
O WP OO

[ure
(e}

break;

case 4: b = b - a; next
break;

default:
break;

N = =
O © 00 N
]
o

N
e

313

is able to remove a large portion of the code of the interpreter and recover the original logic
of the program.

Control flow flattening Wang et al. [128] and Chow et al. [34] proposed [CFF] which
collapses all the basic blocks of a function into a flat [CFG], which hides the original control
flow of the program. A program transformed by is similar to an interpreter (as we
saw for virtualization obfuscation), which chooses the right basic block where to go on the
second level. An example is shown in [Listing 33| where the function computing the
Greatest Common Divisor (GCD) of two integers a and b — shown in — has been
transformed by [CEF] As opposed to virtualization obfuscation — which uses a virtual program
counter (VPC) — the order in which the cases of the switch statement must be executed is
indicated by a control variable (i.e. next in the example from , which is updated
by every case of the switch statement accordingly. Updating next can occur before, during
or after part of the logic of the original program is executed. The infinite loop is exited
when a case contains a return or break statement. Another difference w.r.t. virtualization
obfuscation is that multiple cases of the switch statement of a program transformed by [CFF],
may contain the same instructions. For virtualized programs each case represents a different
instruction, which may appear multiple times in the original program. This means that in
order to recover the original control flow of a program obfuscated using [CEF] one must simply
order the cases of the switch statement in the correct order, while this is not applicable to
virtualized programs, because some cases may be needed multiple times.

Attacks: Udupa el al. [123] were the first to propose an automated attack to
recover the original control flow from a program obfuscated using [CFF] Their method com-
bined dynamic and static analysis techniques and was able to accurately recover the original
control flow.

28

O 00 N O U WK -

Listing 35: Code after branch functions

Listing 34: Code before branch functions 1| mov edx, eax
2 push 1
mov edx, eax
- 3 call £
Jmp 4 .
L2:mov ebx, edx 5| L2:mov ebx, edx
‘mp L3 6 push 3
Jmp 7 call f
- 8
Ll.?;v E;X’ ebx 9| L1:mov eax, ebx
g E 10 push 2
e 11 call f
12| L3:...

Branch functions Linn and Debray [87] propose hiding the control flow of calls, condi-
tional and unconditional jumps, from static disassembly algorithms, by replacing them with
calls to a so called branch function. An example is shown in where all jumps from
the original code shown in have been replaced by a call to offset f, which rep-
resents the start address of the branch function. The branch function computes the actual
target of the jump dynamically using a parameter passed by the callee — via push instruc-
tions in —and a lookup-table. Instead of returning to the instruction immediately
following the call instruction, the branch function either jumps to the address of the original
jump instruction which it replaced, or to several “junk” bytes after the call instruction that
it replaced. The structure of the control flow graph is also flat similar to [CFF] however, the
switch-statement is replaced by the branch function.

Schrittwieser and Katzenbeisser [108] present an extension of the idea from [87], which
is explicitly aimed at defending against both static- and dynamic-analysis techniques. The
targets of the branch functions are gadgets (i.e. short instruction sequences ending in a
return instruction) [112]. Additionally, they generate gadget graphs which add redundancy
such that the one path in the original code can have multiple paths in the obfuscated code.
This is meant to hamper dynamic analysis attacks by generating different traces for the same
inputs. The disadvantage of this method is that its resilience increases inversely proportional
to the size of the gadgets, while its cost decreases exponentially with this size.

Attacks: Kruegel et al. [83] present a static, passive, semantic approach to bypass branch
functions in order to disassemble code obfuscated using this transformation to a large extent.

4.4 Code Abstraction Transformations

Merging and splitting functions These two techniques are the code correspondents to
the data obfuscation transformations of merging and splitting variables [35]. Merging is done
by creating larger functions with more inputs and outputs, some of which are independent.
An example is shown in [Listing 37, where func3 is the result of merging funcl and func2
from [Listing 36] Note that func3 uses a flag variable c. The body of func1 is executed when
c is even and the body of func2 is executed with c is odd. Splitting is done by dividing large
functions into smaller functions, e.g. the function in[Listing 37 can be split into two functions
as shown in [Listing 36| Similarly to the adding and removing calls transformations, this
technique changes the structure of the program, breaking abstractions added by developers,

29

= O WO ~NO®OU D WN =

which makes the code more difficult to understand. Moreover, the cost of this transformation
is increased or decreased with the number of split, respectively merged functions.

Attacks: Rugaber et al. [106] present ideas for implementing a static, semantic and active
attack for code obfuscated by merging functions. The goal of their attack is to both detect
the location of the lines of code belonging to different functions and to extract this code into
separate functions.

Remove comments and change formatting This transformation is only applicable to
programs which are delivered as source code (e.g. JavaScript). Comments are removed if
they exist and all space, tab and newline characters are also removed, which results in a
continuous string of code which is more potent against human attackers, than the original
code. An example is shown in [Listing 39, which is the result of removing comments and all
formatting of the code from [Listing 38, The original formatting and comments cannot be
recovered [40], however, the code can be easily reformatted using automated tools. The cost
of this transformation is low and in many cases it even improves memory costs and execu-
tion speed. Therefore, such transformations have found their way into commercial products,
such as: Stunnix [119], DashO [101], Dotfuscator [102], Thicket [110], ProGuard [66] and
yGuard [138]. However, the resilience against attacks of these obfuscation transfor-
mations is very low because a similar alignment can be automatically generated even by free
and open source Integrated Development Environments (IDEs).

Attacks: Bichsel et al. [22] propose a code understanding attack against this transfor-
mation, based on probabilistic learning of large code bases. This attack is implemented as
a service called DeGuard and it is applied statically, syntactically and passively to android
applications.

Scrambling identifier names This transformation implies changing all symbol names
(e.g. variables, constants, functions, classes, etc.) into random strings [40]. One example
is shown in where all the variable names of the code from have been
changed to random identifiers. This is a one-way transformation, because the names of
the symbols cannot be automatically recovered by a deobfuscator. Therefore, the
is forced to understand what a symbol is from a semantics point of view. It has a much
higher resilience than formatting removal since identifiers contain useful abstractions added
by software developers. Similarly to removing comments and changing formatting, this

Listing 36: Splitting functions Listing 37: Merging functions
funcil(int a, int b) { 1| func3(int a, int b, int c) {
X = 4 2 if (¢ %h 2 == 0) {
if (a < 3) 3 x = 4;
X = x + 6; 4 if (a < 3)
X *= b; 5 X = x + 6;
} 6 X *= b;
7 } else {
func2(int a, int c) { 8 y = a + 12;
y = a + 12; 9 y = y/b;
y = y/c; 10| 3
} 113}

30

e

O W0 ~NOU D WN -

W N

Listing 38: Original JavaScript code

function NewObject (prefix) { Listing 39: JavaScript code after remov-
var count=0; . .
// This function generates a pop-up mg comments an(lfornlattnlg
this.SayHello=function(msg) { 1| function NewObject (prefix){var count=0;
count ++;) this["SayHello"]= function(msg){count
alert (prefix+msg); ++;alert (prefix+ msg)}}var obj= new
b NewObject ("Message : ");obj.SayHello(
} "You are welcome.")
var obj=new NewObject ("Message : ");
obj.SayHello("You are welcome.");
Listing 40: Code before scram- Listing 41: Code after scrambling identifiers
blhlg identifiers 1| za82b547bcb = 0;
sum = 0; 2| for (z1cOab7cfOc = 0; z1lcOab7cfOc < za862d19cbc;
for (i = 0; i < arr_len; i++) z1c0ab7cfOc++)
sum += arr[i]; 3 za82b547bcb += zcl1lc28cab67f[z1cO0ab7cfOc];
average /= arr.len; 4| z8c8£7c7867 /= za862d19chc

transformation has a very low cost and it is also used as an optimization that reduces code
size, because long symbol names can be replaced by shorter ones.

Attacks: Ceccato et al. [29] investigate the relative strength of two different obfuscation
transformations, namely scrambling identifier names and opaque predicates. They find that
scrambling identifier names poses more challenges for human-assisted attacks than opaque
predicates. This holds in the context where identifiers in the original program have a proper
semantic meaning (in English). On the other hand the machine learning based attack of
Bichsel et al. [22], which was already mentioned as an attack for removing comments and
changing formatting, is able to automatically recover meaningful identifier names with high
accuracy.

Removing library calls and programming idioms Most programs perform calls to
external libraries providing useful data structures (e.g. lists, maps, etc.) and algorithms
(e.g. sorting, searching, etc.). attackers often start by inspecting calls made to exter-
nal libraries to give a high-level indication of what the program is doing. This transformation
implies replacing such dependencies on external libraries with own implementations where
possible [40]. Note that such a transformation is stronger than static linking, which only
copies the code of the library routines in the executable. Static linking can be easily reverse
engineered by pattern matching attacks |[114]. Techniques from the field automatic program
recognition |131] can be used to identify common programming patterns and replace them
with less obvious ones. For example, consider iterating over a linked list; the standard list
data structure can be replaced with a less common one, such as cursors into an array of
elements.

Attacks: The machine learning based attack of Bichset et al. [22], which was already
mentioned as an attack for removing comments and changing formatting, is also applicable
for bypassing this transformation.

31

Modify inheritance relations Programs written in some object-oriented programming
languages are distributed in some intermediate format to end-users (e.g. C#, Java, etc.).
These intermediate formats are only compiled to native code on the client’s machine and
contain useful object-oriented programming abstractions. In such programs it is important
to break the useful abstractions offered by classes, their structure and their relations (e.g. ag-
gregation, inheritance, etc.). According to Collberg et al. [40], the complexity of a class grows
with its depth in the inheritance hierarchy and the number of its direct descendants. This
can be done by splitting classes and inserting dummy classes. One variant of class insertion
is called false refactoring [40]. False refactoring is performed on two or more classes that
have no common behavior. All instance variables of these classes having the same type are
moved into the new parent class. Methods of the parent class can be buggy versions of
methods from its child classes. This approach has been further extended by Foket et al. [60],
who propose a technique called class hierarchy flattening. In this approach a common inter-
face that contains all methods of all classes is created. All classes implement this common
interface and they have no other relationship between each other. This effectively destroys
class hierarchies and forces the attacker to analyze the code.

Attacks: At the time of writing this chapter there have been no reported attacks on this
obfuscation technique in the literature.

Function argument randomization Randomizing the order of formal parameters of
methods and inserting bogus arguments is a technique implemented by tools such as Ti-
gress [38]. The purpose of this transformation is to hide common function signatures across
a large diverse set of instances. This transformation is straightforward to perform for pro-
grams which do not offer an external interface (e.g. libraries). However, if this obfuscation
is applied to a library, then it changes the interface (of that library), and all the correspond-
ing programs using that library will have to be updated as well. The resilience and cost
of this transformation are low. However, the resilience can be improved by combining this
transformation with the encode arithmetic transformation such that computations inside the
function are made dependent on the randomly added arguments similarly to how we did for
MBAI

Attacks: The static code understanding attack of Zhang et al. [139] is also able to bypass
this obfuscation transformations.

4.5 Summary of Survey

In the survey presented above, we have enumerated several practical data and code obfus-
cation transformations. Practical obfuscation does not offer provable security guarantees
like cryptographic obfuscation [17,/62] does. Nevertheless, many contexts mandate the use
of practical obfuscation transformations to protect digital software assets, e.g. secret keys,
premium content, intellectual property of code, etc. In such contexts, the goal is to raise
the bar against the majority of attackers, not all possible attackers, e.g. developers
are concerned about malicious end-users, not governmental organizations, which are highly
funded.

shows an overview and classification of all the obfuscation transformation pre-
sented in this section. We note that most of the presented transformations are applicable for

32

Obfuscation Transformation ‘ Abstraction | Unit

Dynamics | Target

Opaque Predicates All Function Static Data constant
Convert static data to procedural data All Instruction Static Data constant
Mixed Boolean Arithmetic All Basic block Static Data constant
White-box cryptography All Function Static Data constant
One-way transformations All Instruction Static Data constant
Split variables All Function Static Data variable
Merge variables All Function Static Data variable
Restructure arrays Source Program Static Data variable
Reorder variables All Basic block Static Data variable
Dataflow flattening Binary Program Static Data variable
Randomized stack frames Binary System Static Data variable
Data space randomization All Program Static Data variable
Instruction reordering All Basic block Static Code logic
Instruction substitution All Instruction Static Code logic
Encode Arithmetic All Instruction Static Code logic
Garbage insertion All Basic block Static Code logic

Insert dead code All Function Static Code logic
Adding and removing calls All Program Static Code logic

Loop transformations Source, IR Loop Static Code logic
Adding and removing jumps Binary Function Static Code logic
Program encoding All All buy System | Dynamic Code logic
Self-modifying code All Program Dynamic Code logic
Virtualization obfuscation All Function Static Code logic
Control flow flattening All Function Static Code logic
Branch functions Binary Instruction Static Code logic
Merging and splitting functions All Program Static Code abstraction
Remove comments and change formatting Source Program Static Code abstraction
Scrambling identifier names Source Program Static Code abstraction
Removing library calls and programming idioms | All Function Static Code abstraction
Modify inheritance relations Source, IR Program Static Code abstraction
Function argument randomization All Function Static Code abstraction

Table 3: Overview of the classification of obfuscation transformations

all levels of abstraction (i.e. source code, IR and binary). Most of the presented transforma-
tions are applicable at the function unit of transformation, followed closely by the program
unit and then by instruction and basic block, both in third place. Only randomized stack
frame have an effect on the system unit of transformation, because they change the layout
of the stack. Two of the presented techniques are dynamic, meaning that they must allow
code pages to be writable during program execution. The number of presented transforma-
tions are relatively balanced between the two different targets of transformation and their
subcategories, however, code transformations are slightly more numerous.

5 Discussion

In this section we present an overview of the previous survey and discuss the observations
stemming from it. Based on this discussion we identify gaps in the field of software obfusca-
tion which require further investigation /research.

Table 4] provides an overview of the various attacks (already mentioned in the

previous section), which have been successfully applied in order to defeat the obfuscation

transformations presented in [section 4] w.r.t. the attack dimensions presented in [section 3]

33

Code Understanding Data item recovery Location recovery
Obfuscation Transformation Static Dynamic Static Dynamic Static Dynamic
Syn ‘ Sem | Syn ‘ Sem Syn ‘ Sem | Syn ‘ Sem Syn ‘ Sem | Syn ‘ Sem
Opaque Predicates 107] 139] [[107] 9] [47] 9] 471
Convert static data to procedural data 107] 139] | 107 9| 9|
Mixed Boolean Arithmetic 1 167]
White-box cryptography 48|/134]
One-way transformations 117}129
Split variables 115
Merge variables 115126 |126]
Restructure arrays |116]
Reorder variables |65
Dataflow flattening
Randomized stack frames 118]
Data space randomization 118
Instruction reordering 1139
Instruction substitution 9| 9|
Encode Arithmetic |107] |107] 9| |54] 9]
Garbage insertion 136
Insert dead code 1107 139 | 107 9//136] 19]
Adding and removing calls 139] | [15[132
Loop transformations 116
Adding and removing jumps 136//137]
Program encoding |107{121 |107 103
Self-modifying code 46| |96 103:7
Virtualization obfuscation 107 105_7711 107_779 136 1801 9|
Control flow flattening 107] 107 9//123] 9|
Branch functions 183
Merging and splitting functions |106] |106]
Remove comments and change formatting | [22]
Scrambling identifier names 22|
Removing library calls and prog. idioms 22| |114]
Modify inheritance relations
Function argument randomization |139]

Table 4: Overview of obfuscation resilience against MATE attacks

These attacks are placed in the cells of [Table 4| to indicate the obfuscation transformation(s)
they claim to break and where they stand w.r.t. the attack dimensions presented in [section 3|
The following observations stem from [Iable 4

e Some works present attacks which are applicable to multiple obfuscation transfor-
mations and multiple attack dimensions. For instance, the attacks by Salem and
Banescu [107], Zhang et al. [139], Yadegari et al. [136] and Banescu et al. [9] have a
wide range of application. However, not that this does not imply that these attacks are
equally effective against all the obfuscation transformation they apply to. For instance
symbolic execution based attacks have a much harder task when dealing with virtu-
alization obfuscation or encode arithmetic, than when dealing with converting static
data to procedural data.

e Except for comparing different attacks w.r.t. the classification dimensions pre-
sented in [section 3| there is no set of standard benchmarks used in the field of software
obfuscation, which would allow comparing different attacks to one another. This indi-
cates that more research is necessary in order to be able to compare these attack tech-
niques to each other. Such research is needed for evaluating the strength of different
obfuscation transformations. Therefore, the development of: (1) standard obfuscation
benchmarks for attacks and (2) standard attack benchmarks for obfuscation
transformations is still an open problem in the field of software protection.

34

It is not shown in due to lack of horizontal space, however, there are fewer
active attacks, than passive attacks. This may be due to the fact that active attacks
are often associated with malicious exploitation (e.g. cracking software), which is not
ethical for most researchers. However, more research is required in the direction of
active attacks in order to enable the development of stronger protection against such
attacks.

Also there are fewer attacks which aim to recover the location of data and/or code, in
comparison to attacks on code understanding or data recovery. Location attacks are
often associated with active attacks, therefore the previous argument applies to this
observation as well.

As expected, the majority of data recovery attacks target data obfuscation trans-
formations and the majority of code understanding attacks target code obfuscation
transformations. However, there are also some attacks which target both types of
transformations, when they are used in combination with each other. Nevertheless,
much more research is needed for investigating the strength of combinations of multi-
ple software obfuscation transformations.

Most attacks on obfuscated code are dynamic, because the majority of the obfusca-
tion transformations presented in this paper aim to break static analysis techniques.
Similarly, most attacks are semantic because most dynamic attacks are also semantic.
However, note that there are also exceptions. Nevertheless, there are relatively few
works about static semantic and dynamic syntactic attacks, which indicates a topic
that needs further exploration.

Obfuscation transformations which have few or no attacks against them are not an
indication that they are more secure. For instance, in the case of dataflow flattening,
the most probable reason why there are no attacks against it is because it is too
expensive to implement this obfuscation transformation in most practical scenarios.
One of the strongest obfuscation transformation categories against attackers
are dynamic transformations, however, these transformations generally require making
executable code pages in process memory also writable, which opens the door to remote
code injection attacks [125]. Since most software today is connected to the Internet,
the risk of a remote attacker performing code injection in the software of an end-
user is higher than the risk of that end-user being a attacker. Therefore, such
self-modifying code techniques are avoided by commercial software developers.

Most attacks published in literature are dynamic, because even if code is statically en-
crypted/encoded, it must be decrypted/decoded during execution. This is the “Achilles
heel” of obfuscation, i.e. code must still be executable, no matter how intricate the code
is obfuscated when inspected statically. To prevent dynamic[MATE]attacks in practice
obfuscation is used in combination with anti-dynamic-analysis techniques such as anti-
debugging [1] and anti-emulation [57]. Such methods aim to prevent dynamic analysis
attacks, i.e. they force attackers to take a static analysis approach, because obfuscation
is assumed to be harder to break using static attacks.

35

| Defenders | | Attackers |

ﬂ ey Fights %

' A
High performance T ” Low performance
contraints |1 < g contraints

Software Protection Malicious MATE
Camp (Reverse Engineer)
Uses obfuscations Uses attacks
developed by developed by

%{ Fights . sy
Low performance . "|High performance
contraints I T contraints
Malware Developer Malware Analysis
Camp

Figure 4: Overview of obfuscation related research camps and their connection via malicious
entities.

e In some contexts, the attacker is not forced to perform static analysis due to
anti-dynamic-analysis techniques, but due to resource constraints. For instance, some
malware analysis systems have to analyze millions of instances per day [95]. Performing
dynamic analysis (e.g. execution trance analysis) is in general more costly than static
analysis (e.g. code pattern recognition). Therefore, benign attackers (i.e. mal-
ware analysts) choose to perform static analysis attacks as a way of quickly filtering
previously analyzed malware instances, which employ simple obfuscation transforma-
tions such as instruction reordering. Generally, any software which is detected as highly
obfuscated and not seen before is subjected to a more thorough (dynamic) analysis.

Given the publications in the field of software obfuscation presented in this chapter, we can
see that the field of software protection research is divided into two camps:

1. The software protection camp, which aims to create defenses against malicious MATE

attackers who want steal intellectual property and bypass license or integrity checks.
The main disadvantage of this camp is that it is subject to significant performance con-
straints, because commercial software developers generally do not want to compromise
the speed or responsiveness of their products by adding security.

. The malware analysis camp, which are benign [MATE] attackers, who aim to develop
attacks against obfuscation techniques employed by malware. The main disadvantage
of this camp is again related to performance constraints of their attacks, which should
be automatic and scalable to millions of programs per day.

These constraints are due to the high competitiveness on the commercial software markets.
In today’s software market the end-user experience is one of the main selling points of
software and this implies having transparent but effective security solutions.

36

Probably the main beneficiaries of the publications from this field are malicious MATE
attackers and malware developers (shown in the top-right and bottom-left of who
can borrow any techniques proposed by the second and first camps, respectively, because
they do not impose such high performance constraints on themselves, as those imposed on
the two camps of researchers. For instance, a malware developer is likely much more in-
terested in the security added by combining multiple obfuscation transformations, because
even if the performance of the malware is decreased by three orders of magnitude, for the
malware developer it is crucial that malware analysis engines have a hard-time disarming
and reverse engineering the malware. This is very different for game developers, who must
have highly responsive graphical user interfaces. Similarly to malware developers, malicious
reverse engineers may afford to leave their laptops to run an attack for “a few more hours/-
days”, because the return on investment (e.g. a free, cracked game) is likely higher than the
power bill.

Given this observation, one may jump to the conclusion that it may be beneficial for
benign software developers and anti-malware developers, if less research in this field were
published, because then malicious attackers and malware developers would not have
as many techniques and tools at their disposal. This would not stop malicious parties from
developing their own techniques, but it would keep many benign parties “in the dark” about
advances in this field. This was the case in the 1980s, before this research community was
born and malicious parties were already using software obfuscation to protect malware and
attacks to break licenses. Therefore, having such a two camp research community,
where each side challenges the weaknesses of the other side leads to continuous improvements,
which accelerate progress and practical applicability of such research.

6 Related Work

As indicated in Figure [I] there are several ways in which one could protect against
attacks. Since in this chapter we focus on technical protection via obfuscation, in this section
we present the other types of protections. This is followed by related work from the field of
cryptographic obfuscation and by other surveys of software obfuscation.

6.1 Encryption via Trusted Hardware

Software protection via encryption is usually enabled by trusted hardware, also called trusted
computing. Intel has released a hardware based technology [3], known as Software Guard
eXtension (SGX), which enables software developers to protect the confidentiality of their
applications’ code via protected execution areas called enclaves. Dewan et al. [50] also
use a trusted hypervisor to protect the sensitive memory of programs against unauthorized
access by leveraging trusted hardware. Feng et al. [56] propose performing randomly-timed
stealthy measurements which can be validated locally, using Intel’s Active Management
Technology [73]. These approaches provide high security guarantees. However, they require
trusted hardware to be available and the installation of a hypervisor. Software developers
of popular software (e.g. web browsers), generally do not want to restrict their user base by
imposing such requirements.

37

6.2 Server-Side Execution

Tamper protection via communication with trusted servers is employed in massive mul-
tiplayer online games (MMOGs) to detect cheating. Anti-cheat software such as Punk-
Buster [53], Valve Anti-Cheat (VAC) [124], Fides [77] and Warden [69] perform client-side
computation, which are validated by a trusted server.

Martignoni et al. [91] and Seshandri et al. [111] propose establishing a trusted computing
base to achieve verifiable code execution on a remote un-trusted system. The trusted com-
puting base in the two methods is established using a verification function. The verification
function is composed of three components: (i) a checksum function, (ii) a send function,
and (iii) a checksum function. However, the main difference between the two methods is the
checksum function. In the work of Martignoni et al. [91] generates a new checksum function
each time and sends it encrypted to the un-trusted system. In the work of Seshandri et
al. |111], the checksum function is known a priori and the challenge issued by the dispatcher
consists in a seed that initializes this function. Since the remote component in both methods
knows precisely in which execution environment the function must be executed and knows
the hardware characteristics of the un-trusted system, it can compute the expected checksum
value and can estimate the amount of time that will be required by the un-trusted system
to decrypt and execute the function, and to send back the result. Since Intel x86 architec-
ture, the architecture for which the approach of Seshandri et al. [111], was developed, is full
of subtle details, researchers have found ways to circumvent the remote component. Also,
a limitation of the approach of Martignoni et al. [91], is the impossibility to bootstrap a
tamper-proof environment on simultaneous multi threading (SMT) or simultaneous multi
processing (SMP) systems. On such systems, the attacker can use the secondary computa-
tional resources (parallel threads for example) to forge checksums or to regain control of the
execution after attestation.

Jakobsson and Johansson [76] propose a similar technique for detecting malware on mo-
bile devices. Collberg et al. [38] propose tamper protection by pushing continuous updates
from a trusted server to the client, which force the attacker to repeat reverse engineering
and patching on each update. One disadvantage of these protection techniques is their de-
pendence on external trusted servers. This dependence may cause a denial-of-service to
end-users of the protected software applications which are also meant to be used offline, in
case Internet connectivity is unavailable. Therefore in this chapter we focus on solutions
that operate locally, i.e., without dependence on a trusted server.

6.3 Code Tamper-detection and Tamper-proofing

Code tamper-detection and tamper-proofing are complementary techniques to software di-
versity and obfuscation and they aim to detect, respectively prevent unauthorized modifica-
tions of a program’s code. However, these techniques are not generally stealthy, and hence
they should be combined with diverse obfuscation in order to hamper attackers from
disabling such mechanisms.

Chang and Atallah [30] propose building a network of code regions, where a region can be
a block of user code, a checker, or a responder. In this method checkers check each other in
addition to user code by comparing a known checksum of piece of code to runtime checksum

38

of the same code. If the checker has discovered that a region has been tampered with, a
responder will replace the tampered region with a copy stored elsewhere. An important
aspect of this algorithm is that it is not enough for checkers to check just the code, they
must check each other as well. If checkers are not checked, they are easy to remove. Horne et
al. [70] build on top of [30], by hiding the expected (precomputed checksum) value which is
easy to identify, because of its randomness. The idea is to construct the checksum function
such that unless the code has been tampered with, the function always checksums to a
known number (usually zero). Having this function allows to insert an empty slot within the
region under protection, and later give this slot a value that makes the region checksum to
zero. The technique of Horne et al. [70] randomly places large numbers of checkers all over
the program, but makes sure that every region of code is covered by multiple checkers. To
minimize pattern-matching attacks, this method describes how to generate a large number
of variants of lightweight checksum functions. The disadvantage of the code introspection
approach used by both [30] and [70] is its stealthiness, because code that reads itself is seldom
used for other purposes.

Chen et al. |31] propose an idea called oblivious hashing, where the checksum value
is computed over the execution trace rather than the static code. The checksum can be
computed by inserting instructions that monitor changes to variables and the execution of
instructions. A problem with automating this technique, is that it is hard to predict what side
effects a function might have. It might destroy valuable global data or allocate extraneous
dynamic memory that will never be properly freed. Furthermore, there is a problem with
non-deterministic functions that depend on: user input, the time of day, network traffic,
thread scheduling, and so on, because they do not have a fixed output that can be checked.
This technique also faces the issue of automatically generating challenge data (test inputs)
that most of the code of a function. The approach by Ibrahim and Banescu [72] implements
a variant of oblivious hashing and therefore it also suffers from the same disadvantages.
However, we address the last issue by proposing the use of symbolic execution in order to
generate the challenge data.

Jacob et al. |[75] propose an approach which depends on a unique property of the x86
instruction set architecture (ISA). The x86 ISA has a variable instruction length (1-15 bytes)
with no alignment, this means instructions can start at any offset in the code. This results
in the possibility of having overlapping or even nested instructions. So the basic idea will
be that when a block is executed it computes a checksum of another block. For the purpose
of protecting the code, we need two blocks to share instruction bytes. Having two blocks to
share instruction bytes, can be achieved by interleaving the instructions and inserting jumps
to maintain semantics. The advantage in this technique is that the code checksumming
computations will not require reading the code explicitly. The disadvantage is mainly the
performance overhead of the added instructions. Jacob et al. [75] report that the protected
binary can be up to three times slower than the original. Even though this overhead may
be acceptable in many circumstances, this technique cannot be applied to programs that
execute on the Common Language Runtime such as programs written in C#.

Cappaert et al. [28] propose a technique that hinders both code analysis and tampering
attacks simultaneously through code encryption. During run-time, code decryption can be
done at a chosen granularity (e.g. one function at a time), when that part of code is needed
at run-time. This technique performs integrity-checking of the code by using it to compute

39

the keys for decryption and encryption. The basic idea is using the checksum value of a
function, as the decryption key of another function. The advantage of this technique is that
the encryption key is computed at run time, which means the key is not hard-coded in the
binary and therefore hard to find through static analysis. The disadvantage of this technique
is the run-time overhead as well as the its stealth.

6.4 Cryptographic Obfuscation

In addition to the practical software protection techniques presented so far, there is also
an entire sub-field of cryptography dedicated to obfuscation. The first formal study of
obfuscation was published in 2001 by Barak et al. [17]. They propose that an ideal obfuscator
should be able to take any program and transform it into a virtual black boz, i.e. a
attacker would be able to interact with it in the same manner as with a program running on
a remote server, however, the attacker would not be able to learn anything from the program
in addition to what can be learned from its input-output behavior. Barak et al. [17] formally
prove that such an obfuscator cannot exist for all programs. However, they do not exclude
that such an obfuscator may exist for particular programs.

Over a decade later, Garg et al. [62] proposed a construction for indistinguishability ob-
fuscation, a different obfuscation notion than black-box obfuscation, which guarantees that
the obfuscations of two programs implementing the same functionality are computationally
indistinguishable. This was a major breakthrough in cryptography, since a few years ear-
lier it was proven by Goldwasser and Rothblum [64] that indistinguishability obfuscation
is the best possible type of obfuscation that can be achieved for all programs. Therefore,
we are currently seeing a revival of interest in obfuscation from the cryptographic commu-
nity, because the construction of Garg et al. [62] may be employed to construct functional
encryption, public key encryption, digital signatures, etc. However, multiple works have
signaled that the current constructions of indistinguishability obfuscation are still far from
being practical, i.e. applicable to real-world software applications [6},13,/16].

6.5 Other Surveys of Software Obfuscation

The seminal work of Collberg et al. [40] provides one of the first taxonomies of software obfus-
cation. Their work also provides an illustration of how different obfuscation transformations
work, however since this paper was published 20 years before this chapter, they do not in-
clude recently developed obfuscation transformations and attacks against them, as presented
in this chapter. Mavrogiannopoulos et al. [94] provide a taxonomy of self-modifying code
techniques and implementations, which we have compressed into one single transformation.

Larsen et al. [86] provide a survey of software diversification transformations, which are
closely related to obfuscation, i.e. all software obfuscation transformations can be used to
achieve diversity, but not vice-versa. However, as opposed to our work which focuses on
attacks, the work of Larsen et al. [86] focuses on remote attacks such as memory
corruption, code injection and code reuse.

Schrittwiesser et al. [109] recently published a survey complementary to this work. Their
focus is on providing an overview of attacks and how they affect existing obfusca-
tion transformations. However, they do not provide many details or illustrations of how the

40

different obfuscation transformations look like, as we do in this chapter. Their classification
of obfuscation transformations and MATE attacks differ from the classification used in this
chapter to some extent. Therefore, they do not touch on the same points we have discussed
in [section 5] For instance, as opposed to our work, they do not discuss obfuscation transfor-
mations that target the readability of the source code, hence, they also do not cite
attacks applicable to such transformations. Regarding the attack classification, we
emphasize the difference between syntactic and semantic attacks and claim that this dimen-
sion of classification is orthogonal to the dynamics dimension. This means that syntactic
attacks such as pattern recognition can also be applied to dynamically generated execution
traces, which is often done by malware analysis engines. Moreover, we also propose using the
alternation classification dimension, which differentiates between active and passive attacks.
This dimension allowed us to identify the fact that there are far less active attacks published
in the literature than passive attacks, which indicates a gap in this field. On the other hand,
they propose a separation between automated attacks and human-assisted attacks. They
claim human-assisted attacks are the hardest attacks to defeat using obfuscation.

7 Conclusion

This paper presents a tutorial on software obfuscation. This tutorial includes a state of the
art survey of obfuscation transformations and their classifications. Each obfuscation trans-
formation is accompanied by an illustrative example (often in the form of code snippets), as
well as an enumeration of existing associated attacks published in the literature. We discuss
how the current landscape of software obfuscation research is split into two complementary
camps, namely software protection and malware analysis, and why this division is impor-
tant for accelerating progress. An interesting observation is that malicious entities may have
higher benefits from techniques proposed in the field of research, due to the fact that they do
not have high performance constraints as benign entities (e.g. commercial software vendors)
have. However, the only way to defend against malicious entities is to push these areas of
research forward. One way to increase the performance constraints of malicious MATE at-
tackers is by employing frequent software updates, which shrinks the window of opportunity
of such attackers. Therefore, future research in the field of software obfuscation should also
investigate obfuscation techniques which allow incremental updates.

Our outlook on the field of obfuscation is positive. We believe that even with advances in
hardware-based software protection techniques such as Intel SGX [42], software obfuscation
will still be used for applications where such hardware is not available (e.g. mobile devices),
or where such hardware is too costly too incorporate (e.g. resource constrained embedded de-
vices). Moreover, Intel SGX may be able to defend software assets against a software-based
attacks, but MATE attackers may also resort to side-channel attacks [25] or reverse engineer-
ing attacks at the hardware level [97]. There is an entire field of research, parallel to software
obfuscation, namely hardware obfuscation, where the goal is to mangle the structure or lay-
out of logical gates such that MATE attackers cannot steal the intellectual property directly
from hardware, e.g. an Application-Specific Integrated Circuit (ASIC) [20]. Note that it is
straightforward to map many of the obfuscation transformations presented in this chapter
to the field of hardware obfuscation, and vice-versa. Furthermore, the field of cryptograpic

41

obfuscation is popular nowadays due to the indistinguishability obfuscation candidate pro-
posed by Garg el al. [62], which makes us optimistic in believing that obfuscation will still
be a highly dynamic and innovative field of research in the following decade.

The main challenge in the field of software obfuscation is that there is no standard
methodology or benchmarks for evaluating the strength of different obfuscation transforma-
tions or combinations thereof. The first steps in the direction of obfuscation evaluation have
been made by Banescu et al. [9,/10,|12], who use automated attack effort as a way of com-
paring the strength of different obfuscation transformations. However, they mainly focus on
attacks based on symbolic execution, hence more research is needed in this direction to cover
other types of attacks. This observation is on par with the conclusions of other surveys |109].
We also note that more research is required for topics such as the development of active at-
tacks, static semantic attacks and self-modifying code techniques that do not increase the
attack surface of the software they protect.

We envision that side-channel attacks against obfuscation will become increasingly pop-
ular. This premonition is due to the recent Differential Computation Analysis (DCA) pre-
sented by Bos et al. [24]. DCA is the software counterpart of Differential Power Analysis
(DPA), which has been succesfully applied to recover secret keys from ASICs, e.g. smart-cards
with little effort and prerequisites [82]. Similar to DPA, DCA able to recover a symmetric
cryptographic key from a white-box cryptographic cypher binary, in a matter of seconds,
without needing to disassemble the binary or to know anything about its structure. How-
ever, these side-channel attacks also make some assumptions, which could be broken by
cleaver obfuscation transformations. Therefore, we urge researchers to invest more resources
in designing obfuscation transformations, which are able to block such side-channel attacks.

References

[1] B. Abrath, B. Coppens, S. Volckaert, J. Wijnant, and B. De Sutter. Tightly-coupled
self-debugging software protection. In Proceedings of the 6th Workshop on Software
Security, Protection, and Reverse Engineering, page 7. ACM, 2016.

[2] A. Akhunzada, M. Sookhak, N. B. Anuar, A. Gani, E. Ahmed, M. Shiraz, S. Furnell,
A. Hayat, and M. K. Khan. Man-at-the-end attacks: Analysis, taxonomy, human
aspects, motivation and future directions. Journal of Network and Computer Applica-
tions, 48:44-57, 2015.

[3] I. Anati, S. Gueron, S. Johnson, and V. Scarlata. Innovative technology for cpu based
attestation and sealing. In Proceedings of the 2nd international workshop on hardware
and architectural support for security and privacy, volume 13, 2013.

[4] B. Anckaert, M. H. Jakubowski, R. Venkatesan, and C. W. Saw. Runtime protection
via dataflow flattening. In 2009 Third International Conference on Emerging Security
Information, Systems and Technologies, pages 242-248. IEEE, 2009.

[5] L. O. Andersen. Program analysis and specialization for the C programming language.
PhD thesis, University of Cophenhagen, 1994.

42

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

D. Apon, Y. Huang, J. Katz, and A. J. Malozemoff. Implementing cryptographic
program obfuscation. TACR Cryptology ePrint Archive, 2014:779, 2014.

D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler transformations for high-
performance computing. ACM Computing Surveys (CSUR), 26(4):345-420, 1994.

L. Badger, L. D’Anna, D. Kilpatrick, B. Matt, A. Reisse, and T. Van Vleck. Self-
protecting mobile agents obfuscation techniques evaluation report. Network Associates
Laboratories, Report, pages 01-036, 2002.

S. Banescu, C. Collberg, V. Ganesh, Z. Newsham, and A. Pretschner. Code obfusca-
tion against symbolic execution attacks. In Proc. of 2016 Annual Computer Security
Applications Conference. ACM, 2016.

S. Banescu, C. Collberg, and A. Pretschner. Predicting the resilience of obfuscated code
against symbolic execution attacks via machine learning. In 26th USENIX Security
Symposium (USENIX Security 17), Vancouver, BC, 2017. USENIX Association.

S. Banescu, C. Lucaci, B. Kramer, and A. Pretschner. Votdcs: A virtualization obfus-
cation tool for c. In Proceedings of the 2016 ACM Workshop on Software PROtection,
pages 39-49. ACM, 2016.

S. Banescu, M. Ochoa, and A. Pretschner. A framework for measuring software ob-
fuscation resilience against automated attacks. In Software Protection (SPRO), 2015
IEEE/ACM 1st International Workshop on, pages 45-51. IEEE, 2015.

S. Banescu, M. Ochoa, A. Pretschner, and N. Kunze. Benchmarking indistinguishabil-
ity obfuscation - a candidate implementation. In Proc. of 7th International Symposium
on ESSoS, number 8978 in LNCS, 2015.

S. Banescu, A. Pretschner, D. Battré, S. Cazzulani, R. Shield, and G. Thompson.
Software-based protection against changeware. In Proceedings of the Conference on
Data and Application Security and Privacy, CODASPY 15, pages 231-242, 2015.

S. Banescu, T. Wuchner, A. Salem, M. Guggenmos, A. Pretschner, et al. A framework
for empirical evaluation of malware detection resilience against behavior obfuscation.
In 2015 10th International Conference on Malicious and Unwanted Software (MAL-
WARE), pages 40-47. IEEE, 2015.

B. Barak. Hopes, fears, and software obfuscation. Communications of the ACM,
59(3):88-96, 2016.

B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang.
On the (im) possibility of obfuscating programs. In Advances in Cryptology CRYPTO
2001, pages 1-18. Springer, 2001.

E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovic, and D. D. Zovi. Random-
ized instruction set emulation to disrupt binary code injection attacks. In Proceedings

of the 10th ACM conference on Computer and communications security, pages 281-289.
ACM, 2003.

43

[19]

[20]

[21]

[22]

2]

[27]

28]

[29]

[30]

[31]

C. Basile, S. Di Carlo, T. Herlea, V. Business, J. Nagra, and B. Wyseur. Towards
a formal model for software tamper resistance. In Second International Workshop on
Remote Entrusting (ReTtust 2009), volume 16.

G. T. Becker, M. Fyrbiak, and C. Kison. Hardware obfuscation: Techniques and open
challenges. In Foundations of Hardware IP Protection, pages 105-123. Springer, 2017.

S. Bhatkar and R. Sekar. Data space randomization. In D. Zamboni, editor, Detection
of Intrusions and Malware, and Vulnerability Assessment, number 5137 in Lecture
Notes in Computer Science, pages 1-22. Springer Berlin Heidelberg, Jan. 2008.

B. Bichsel, V. Raychev, P. Tsankov, and M. Vechev. Statistical deobfuscation of an-
droid applications. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pages 343-355. ACM, 2016.

O. Billet, H. Gilbert, and C. E. Chatbi. Cryptanalysis of a white box AES implemen-
tation. SAC’04, pages 227-240, Waterloo, Canada, 2005. Springer-Verlag.

J. W. Bos, C. Hubain, W. Michiels, and P. Teuwen. Differential computation anal-
ysis: Hiding your white-box designs is not enough. In International Conference on
Cryptographic Hardware and Embedded Systems, pages 215-236. Springer, 2016.

F. Brasser, U. Miller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-R.
Sadeghi. Software grand exposure: Sgx cache attacks are practical. arXiv preprint
arXiv:1702.07521, 2017.

J. Bringer, H. Chabanne, and E. Dottax. White box cryptography: Another attempt.
located at, last visited on Jul, 22(2011):14, 2006.

C. Cadar, P. Akritidis, M. Costa, J.-P. Martin, and M. Castro. Data randomization.
Technical report, Technical Report TR-2008-120, Microsoft Research, 2008. Cited on,
2008.

J. Cappaert, B. Preneel, B. Anckaert, M. Madou, and K. De Bosschere. Towards
tamper resistant code encryption: Practice and experience. In Information Security
Practice and Ezxperience, pages 86-100. Springer, 2008.

M. Ceccato, M. D. Penta, P. Falcarin, F. Ricca, M. Torchiano, and P. Tonella. A family
of experiments to assess the effectiveness and efficiency of source code obfuscation
techniques. Empirical Software Engineering, 19(4):1040-1074, Feb. 2013.

H. Chang and M. J. Atallah. Protecting software code by guards. In Security and
privacy in digital rights management, pages 160-175. Springer, 2001.

Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha, and M. H. Jakubowski. Oblivious
hashing: A stealthy software integrity verification primitive. In International Workshop
on Information Hiding, pages 400-414. Springer, 2002.

44

[32]

[33]

[34]

S. Chow, P. Eisen, H. Johnson, and P. C. V. Oorschot. White-box cryptography and
an AES implementation. In Selected Areas in Cryptography, number 2595 in LNCS,
pages 250-270. Springer Berlin Heidelberg, Jan. 2003.

S. Chow, P. Eisen, H. Johnson, and P. C. Van Oorschot. A white-box DES implemen-
tation for DRM applications. In Digital Rights Management, pages 1-15. Springer,
2003.

S. Chow, Y. Gu, H. Johnson, and V. A. Zakharov. An approach to the obfusca-
tion of control-flow of sequential computer programs. In International Conference on
Information Security, pages 144-155. Springer, 2001.

F. B. Cohen. Operating system protection through program evolution. Computers &
Security, 12(6):565-584, Oct. 1993.

C. Collberg. The Tigress C Diversifier/Obfuscator. http://tigress.cs.arizona.
edu/. Accessed: 2016-11-29.

C. Collberg, J. Davidson, R. Giacobazzi, Y. X. Gu, A. Herzberg, and F. Wang. Toward
digital asset protection. Intelligent Systems, IEEE, 26(6):8-13, 2011.

C. Collberg, S. Martin, J. Myers, and J. Nagra. Distributed application tamper de-
tection via continuous software updates. In Proceedings of the 28th Annual Computer
Security Applications Conference, ACSAC 12, pages 319-328, New York, NY, USA,
2012. ACM.

C. Collberg and J. Nagra. Surreptitious software. Upper Saddle River, NJ: Addision-
Wesley Professional, 2010.

C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating transformations.
Technical report, Department of Computer Science, The University of Auckland, New
Zealand, 1997.

U. Congress. Digital millennium copyright act. Public Law, 105(304):112, 1998.

V. Costan and S. Devadas. Intel sgx explained. TACR Cryptology ePrint Archive,
2016:86, 2016.

N. T. Courtois and J. Pieprzyk. Cryptanalysis of block ciphers with overdefined systems
of equations. In International Conference on the Theory and Application of Cryptology
and Information Security, pages 267-287. Springer, 2002.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings of
the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
pages 238-252. ACM, 1977.

C. Cowan, S. Beattie, J. Johansen, and P. Wagle. Pointguard TM: protecting pointers
from buffer overflow vulnerabilities. In Proceedings of the 12th conference on USENIX
Security Symposium, volume 12, pages 91-104, 2003.

45

http://tigress.cs.arizona.edu/
http://tigress.cs.arizona.edu/

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[57]

[58]

M. Dalla Preda, R. Giacobazzi, S. Debray, K. Coogan, and G. M. Townsend. Modelling
metamorphism by abstract interpretation. In International Static Analysis Symposium,
pages 218-235. Springer, 2010.

M. Dalla Preda, M. Madou, K. De Bosschere, and R. Giacobazzi. Opaque predicates
detection by abstract interpretation. In M. Johnson and V. Vene, editors, Algebraic
Methodology and Software Technology, volume 4019 of Lecture Notes in Computer
Science, pages 81-95. Springer Berlin Heidelberg, 2006.

Y. De Mulder, P. Roelse, and B. Preneel. Cryptanalysis of the Xiao-Lai white-box
AES implementation. In Selected Areas in Cryptography, pages 34—49, 2013.

B. De Sutter, B. Anckaert, J. Geiregat, D. Chanet, and K. De Bosschere. Instruction set
limitation in support of software diversity. In International Conference on Information
Security and Cryptology, pages 152-165. Springer, 2008.

P. Dewan, D. Durham, H. Khosravi, M. Long, and G. Nagabhushan. A hypervisor-
based system for protecting software runtime memory and persistent storage. In Pro-
ceedings of the 2008 Spring simulation multiconference, pages 828-835. Society for
Computer Simulation International, 2008.

D. Dolev and A. C. Yao. On the security of public key protocols. In Proceedings of
the 22nd Annual Symposium on Foundations of Computer Science, SFCS 81, pages
350-357, Washington, DC, USA, 1981. IEEE Computer Society.

R. El-Khalil and A. D. Keromytis. Hydan: Hiding information in program binaries.
In International Conference on Information and Communications Security, pages 187—
199. Springer, 2004.

Evenbalance. PunkBuster — Online Countermeasures, 2015. http://www.
evenbalance.com/pbsetup.php, [Online; accessed 20-September-2016].

N. Eyrolles, L. Goubin, and M. Videau. Defeating mba-based obfuscation. In Pro-
ceedings of the 2016 ACM Workshop on Software PROtection, pages 27-38. ACM,
2016.

R. Fedler, S. Banescu, and A. Pretschner. Isa2r: Improving software attack and anal-
ysis resilience via compiler-level software diversity. In International Conference on
Computer Safety, Reliability, and Security, pages 362-371. Springer, 2015.

W.-c. Feng, E. Kaiser, and T. Schluessler. Stealth measurements for cheat detection
in on-line games. In Proceedings of the Tth ACM SIGCOMM Workshop on Network
and System Support for Games, pages 1520, 2008.

P. Ferrie. Attacks on more virtual machine emulators. Symantec Technology Exchange,
55, 2007.

P. FIPS. 197: Advanced encryption standard (aes). National Institute of Standards
and Technology, 2001.

46

http://www.evenbalance.com/pbsetup.php
http://www.evenbalance.com/pbsetup.php

[59]

[60]

[61]

[69]

[70]

R. W. Floyd. Assigning meanings to programs. Mathematical aspects of computer
science, 19(19-32):1, 1967.

C. Foket, B. De Sutter, B. Coppens, and K. De Bosschere. A novel obfuscation: class
hierarchy flattening. In Foundations and Practice of Security, pages 194-210. Springer,
2013.

S. Forrest, A. Somayaji, and D. H. Ackley. Building diverse computer systems. In
Operating Systems, 1997., The Sizth Workshop on Hot Topics in, pages 67-72. IEEE,
1997.

S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In Proc. of
the 54th Annual Symp. on Foundations of Computer Science, pages 40-49, 2013.

O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious rams.

Journal of the ACM (JACM), 43(3):431-473, 1996.

S. Goldwasser and G. N. Rothblum. On best-possible obfuscation. In Theory of
Cryptography, pages 194-213. Springer, 2007.

K. Griffin, S. Schneider, X. Hu, and T.-C. Chiueh. Automatic generation of string
signatures for malware detection. In International Workshop on Recent Advances in
Intrusion Detection, pages 101-120. Springer, 2009.

GuardSquare. ProGuard: The open source optimizer for Java bytecode. https://
www . guardsquare. com/en/proguard. Accessed: 2017-03-03.

A. Guinet, N. Eyrolles, and M. Videau. Arybo: Manipulation, canonicalization and
identification of mixed boolean-arithmetic symbolic expressions. In GreHack 2016,
2016.

R. Gupta, D. Benson, and J. Z. Fang. Path profile guided partial dead code elimina-
tion using predication. In Parallel Architectures and Compilation Techniques., 1997.
Proceedings., 1997 International Conference on, pages 102-113. IEEE, 1997.

G. Hoglund. Hacking world of warcraft: An exercise in advanced rootkit design. Black
Hat, 2006.

B. Horne, L. Matheson, C. Sheehan, and R. E. Tarjan. Dynamic self-checking tech-
niques for improved tamper resistance. In Security and privacy in digital rights man-
agement, pages 141-159. Springer, 2002.

S. Horwitz. Precise flow-insensitive may-alias analysis is np-hard. ACM Transactions
on Programming Languages and Systems (TOPLAS), 19(1):1-6, 1997.

A. Tbrahim and S. Banescu. Stinsdcs: A state inspection tool for c. In Proceedings of
the 2016 ACM Workshop on Software PROtection, pages 61-71. ACM, 2016.

47

https://www.guardsquare.com/en/proguard
https://www.guardsquare.com/en/proguard

[73]

[74]

[75]

[78]

[30]

[81]

[82]

[83]

[84]

Intel. Intel Active Management Technology — Query, Restore, Upgrade, and
Protect Devices Remotely, 2016. http://www.intel.com/content/www/us/en/
architecture-and-technology/intel-active-management-technology.html,
[Online; accessed 20-September-2016].

M. Jacob, M. H. Jakubowski, P. Naldurg, C. W. N. Saw, and R. Venkatesan. The
superdiversifier: Peephole individualization for software protection. In Advances in
Information and Computer Security, pages 100-120. Springer, 2008.

M. Jacob, M. H. Jakubowski, and R. Venkatesan. Towards integral binary execution:
Implementing oblivious hashing using overlapped instruction encodings. In Proceedings

of the 9th workshop on Multimedia € security, pages 129-140. ACM, 2007.

M. Jakobsson and K.-A. Johansson. Retroactive detection of malware with applications
to mobile platforms. In Proceedings of the 5th USENIX Conference on Hot Topics in
Security, HotSec’10, pages 1-13, Berkeley, CA, USA, 2010. USENIX Association.

E. Kaiser, W.-c. Feng, and T. Schluessler. Fides: Remote anomaly-based cheat detec-
tion using client emulation. In Proceedings of the 16th ACM Conference on Computer
and Communications Security, CCS 09, pages 269-279, New York, NY, USA, 2009.
ACM.

Y. Kanzaki, A. Monden, M. Nakamura, and K.-i. Matsumoto. FExploiting self-
modification mechanism for program protection. In Computer Software and Appli-
cations Conference, 2003. COMPSAC 2003. Proceedings. 27th Annual International,
pages 170-179, 2003.

M. Karroumi. Protecting white-box AES with dual ciphers. In K.-H. Rhee and
D. Nyang, editors, Information Security and Cryptology - ICISC' 2010, number 6829 in
Lecture Notes in Computer Science, pages 278-291. Springer Berlin Heidelberg, Jan.
2011.

J. Kinder. Towards static analysis of virtualization-obfuscated binaries. In 19th Work-
ing Conference on Reverse Engineering (WCRE), pages 61-70, Oct 2012.

J. Knoop, O. Riithing, and B. Steffen. Partial dead code elimination, volume 29. ACM,
1994.

P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Advances in cryptol-
oqy—CRYPTO’99, pages 789-789. Springer, 1999.

C. Kruegel, W. Robertson, F. Valeur, and G. Vigna. Static disassembly of obfuscated
binaries. In USENIX security Symposium, volume 13, pages 18-18, 2004.

A. Kur, M. Planck, and T. Dreier. European intellectual property law: text, cases and
materials. Edward Elgar Publishing, 2013.

[85] W. Landi. Undecidability of static analysis. ACM Letters on Programming Languages

and Systems (LOPLAS), 1(4):323-337, 1992.

48

http://www.intel.com/content/www/us/en/architecture-and-technology/intel-active-management-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/intel-active-management-technology.html

[36]

[90]

[91]

[92]

[93]

P. Larsen, A. Homescu, S. Brunthaler, and M. Franz. Sok: Automated software di-
versity. In 2014 IEEE Symposium on Security and Privacy, pages 276-291. IEEE,
2014.

C. Linn and S. Debray. Obfuscation of executable code to improve resistance to static
disassembly. In Proceedings of the 10th ACM conference on Computer and communi-
cations security, pages 290-299. ACM, 2003.

M. Madou, B. Anckaert, P. Moseley, S. Debray, B. De Sutter, and K. De Bosschere.
Software protection through dynamic code mutation. In Information Security Appli-
cations, pages 194-206. Springer, 2006.

A. Main and P. C. van Oorschot. Software protection and application security: Un-
derstanding the battleground. International Course on State of the Art and Evolution
of Computer Security and Industrial Cryptography,, 2003.

A. Majumdar and C. Thomborson. Manufacturing opaque predicates in distributed
systems for code obfuscation. In Proceedings of the 29th Australasian Computer Science
Conference-Volume 48, pages 187-196. Australian Computer Society, Inc., 2006.

L. Martignoni, R. Paleari, and D. Bruschi. Conqueror: tamper-proof code execution on
legacy systems. In International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, pages 21-40. Springer, 2010.

J. Mason, S. Small, F. Monrose, and G. MacManus. English shellcode. In Proceedings
of the 16th ACM conference on Computer and communications security, pages 524-533.
ACM, 2009.

J. Mason, K. Watkins, J. Eisner, and A. Stubblefield. A natural language approach to
automated cryptanalysis of two-time pads. In Proceedings of the 15th ACM conference
on Computer and communications security, pages 235—-244. ACM, 2006.

N. Mavrogiannopoulos, N. Kisserli, and B. Preneel. A taxonomy of self-modifying code
for obfuscation. Computers € Security, 30(8):679-691, Nov. 2011.

McAfee. McAfee Labs Threats Report. Technical Report March, 2016. http://www.
mcafee.com/us/resources/reports/rp-quarterly-threats-mar-2016.pdf.

A. Nguyen-Tuong, A. Wang, J. D. Hiser, J. C. Knight, and J. W. Davidson. On
the effectiveness of the metamorphic shield. In Proceedings of the Fourth European
Conference on Software Architecture: Companion Volume, pages 170-174. ACM, 2010.

K. Nohl, D. Evans, S. Starbug, and H. Plotz. Reverse-engineering a cryptographic rfid
tag. In USENIX security symposium, volume 28, 2008.

M. Oberhumer, L. Molnar, and J. F. Reiser. Upx: the ultimate packer for executables,
2004.

49

http://www.mcafee.com/us/resources/reports/rp-quarterly-threats-mar-2016.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threats-mar-2016.pdf

[99]

[100]

[101]

[102]

103]

[104]

105

[106]

[107]

[108]

[109]

[110]

[111]

[112]

J. Palsberg, S. Krishnaswamy, M. Kwon, D. Ma, Q. Shao, and Y. Zhang. Experience
with software watermarking. In Computer Security Applications, 2000. ACSAC’00.
16th Annual Conference, pages 308-316. IEEE, 2000.

V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing the gadgets: Hindering
return-oriented programming using in-place code randomization. pages 601-615. IEEE,
May 2012.

PreEmptiveSolutions. DashO: Java & Android Obfuscator & Runtime Protection.
https://www.preemptive.com/products/dasho. Accessed: 2017-03-03.

PreEmptiveSolutions. Dotfuscator: .NET App Self Protection and Obfuscation.
https://www.preemptive.com/products/dotfuscator. Accessed: 2017-03-03.

J. Qiu, B. Yadegari, B. Johannesmeyer, S. Debray, and X. Su. Identifying and un-
derstanding self-checksumming defenses in software. In Proceedings of the 5th ACM
Conference on Data and Application Security and Privacy, pages 207-218. ACM, 2015.

G. Ramalingam. The undecidability of aliasing. ACM Transactions on Programming
Languages and Systems (TOPLAS), 16(5):1467-1471, 1994.

R. Rolles. Unpacking virtualization obfuscators. In Proceedings of the 3rd USENIX
Conference on Offensive Technologies, WOOT’09, pages 1-1, Berkeley, CA, USA, 20009.
USENIX Association.

S. Rugaber, K. Stirewalt, and L. M. Wills. The interleaving problem in program
understanding. In Reverse Engineering, 1995., Proceedings of 2nd Working Conference
on, pages 166-175. IEEE, 1995.

A. Salem and S. Banescu. Metadata recovery from obfuscated programs using ma-
chine learning. In Proceedings of the 6th Software Security, Protection and Reverse
Engineering Workshop, page 8. ACM, 2016.

S. Schrittwieser and S. Katzenbeisser. Code obfuscation against static and dynamic
reverse engineering. In Information Hiding, pages 270-284, 2011.

S. Schrittwieser, S. Katzenbeisser, J. Kinder, G. Merzdovnik, and E. Weippl. Protecting
software through obfuscation: Can it keep pace with progress in code analysis? ACM
Computing Surveys (CSUR), 49(1):4, 2016.

SemanticDesigns. Thicket Family of Source Code Obfuscators. http://www.
semanticdesigns.com/Products/0Obfuscators/. Accessed: 2017-03-03.

A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla. Pioneer: verifying
code integrity and enforcing untampered code execution on legacy systems. In ACM
SIGOPS Operating Systems Review, volume 39, pages 1-16. ACM, 2005.

H. Shacham. The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In Proceedings of the 14th ACM conference on Computer
and communications security, pages 552-561, 2007.

50

https://www.preemptive.com/products/dasho
https://www.preemptive.com/products/dotfuscator
http://www.semanticdesigns.com/Products/Obfuscators/
http://www.semanticdesigns.com/Products/Obfuscators/

[113]

[114]

[115]

[116]

[117]

18]

119]

[120]

[121]

[122]

[123]

[124]

[125]
[126]

[127]

[128]

A. Shamir and N. Van Someren. Playing 'hide and seek’ with stored keys. In Financial
cryptography, pages 118-124, 1999.

I. Skochinsky. IDA F.L.I.LR.T. Technology: In-Depth. https://www.hex-rays.com/
products/ida/tech/flirt/in_depth.shtml, 2013. Accessed: 2017-03-03.

A. Slowinska, I. Haller, A. Bacs, S. Baranga, and H. Bos. Data structure archaeology:
scrape away the dirt and glue back the pieces! In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment, pages 1-20. Springer, 2014.

A. Slowinska, T. Stancescu, and H. Bos. Howard: A dynamic excavator for reverse
engineering data structures. In NDSS, 2011.

M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov. The first collision
for full sha-1. URL: https://shattered. it/static/shattered. pdf, 2017.

R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund, and T. Walter.
Breaking the memory secrecy assumption. In Proceedings of the Second FEuropean
Workshop on System Security, pages 1-8. ACM, 2009.

Stunnix. C/C++ Obfuscator. http://stunnix.com/prod/cxxo/. Accessed: 2017-03-
03.

M. Sutton, A. Greene, and P. Amini. Fuzzing: brute force vulnerability discovery.
Pearson Education, 2007.

Y. Tang and S. Chen. An automated signature-based approach against polymorphic
internet worms. [EEE Transactions on Parallel and Distributed Systems, 18(7), 2007.

P. Team. Pax non-executable pages design & implementation. Awaliable: http://paz.
grsecurity. net, 2003.

S. Udupa, S. Debray, and M. Madou. Deobfuscation: reverse engineering obfuscated
code. In 12th Working Conference on Reverse Engineering, 2005.

Valve. Valve Anti-Cheat System (VAC), 2015. https://support.steampowered.com/
kb_article.php?p_faqid=370, [Online; accessed 20-September-2016].

A. van de Ven and I. Molnar. Exec shield, 2004.

A. Viticchié, L. Regano, M. Torchiano, C. Basile, M. Ceccato, P. Tonella, and R. Tiella.
Assessment of source code obfuscation techniques. 2016.

Z. Vrba. cryptexec: Next-generation runtime binary encryption using on-demand func-
tion extraction. 2003.

C. Wang, J. Davidson, J. Hill, and J. Knight. Protection of software-based survivability
mechanisms. In International Conference on Dependable Systems and Networks, 2001.
DSN 2001, pages 193-202, 2001.

51

https://www.hex-rays.com/products/ida/tech/flirt/in_depth.shtml
https://www.hex-rays.com/products/ida/tech/flirt/in_depth.shtml
http://stunnix.com/prod/cxxo/
https://support.steampowered.com/kb_article.php?p_faqid=370
https://support.steampowered.com/kb_article.php?p_faqid=370

[129]

[130]

131]

[132]

[133]

[134]

[135]

[136]

[137]

138

[139)]

[140]

X. Wang, D. Feng, X. Lai, and H. Yu. Collisions for hash functions md4, md5, haval-
128 and ripemd. TACR Cryptology ePrint Archive, 2004:199, 2004.

H. S. Warren. Hacker’s Delight. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002.

L. M. Wills. Automated program recognition: a feasibility demonstration. Artif. Intell.,
45(1-2):113-171, Sept. 1990.

T. Wiichner, M. Ochoa, and A. Pretschner. Robust and effective malware detection
through quantitative data flow graph metrics. In International Conference on Detec-
tion of Intrusions and Malware, and Vulnerability Assessment, pages 98-118. Springer,
2015.

B. Wyseur. White-Box Cryptography. PhD thesis, KATHOLIEKE UNIVERSITEIT
LEUVEN, Kasteelpark Arenberg 10, 3001 Leuven-Heverlee, 2009.

B. Wyseur, W. Michiels, P. Gorissen, and B. Preneel. Cryptanalysis of white-box DES
implementations with arbitrary external encodings. In Selected Areas in Cryptography,
number 4876 in LNCS, pages 264-277. Springer Berlin Heidelberg, 2007.

Y. Xiao and X. Lai. A secure implementation of white-box AES. In 2nd International
Conference on Computer Science and its Applications, 2009. CSA ’09, pages 1-6, 2009.

B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray. A generic approach to
automatic deobfuscation of executable code. In Security and Privacy (SP), 2015 IEEE
Symposium on, pages 674—691. IEEE, 2015.

B. Yadegari, J. Stephens, and S. Debray. Analysis of exception-based control transfers.
In Proceedings of the Seventh ACM on Conference on Data and Application Security
and Privacy, pages 205-216. ACM, 2017.

yWorks. yGuard Java Bytecode Obfuscator and Shrinker. https://www.yworks.com/
products/yguard. Accessed: 2017-03-03.

F. Zhang, H. Huang, S. Zhu, D. Wu, and P. Liu. Viewdroid: Towards obfuscation-
resilient mobile application repackaging detection. In Proceedings of the 2014 ACM

conference on Security and privacy in wireless € mobile networks, pages 25-36. ACM,
2014.

Y. Zhou, A. Main, Y. X. Gu, and H. Johnson. Information hiding in software with
mixed boolean-arithmetic transforms. In International Workshop on Information Se-
curity Applications, pages 61-75. Springer, 2007.

52

https://www.yworks.com/products/yguard
https://www.yworks.com/products/yguard

	Introduction
	Classification of Code Obfuscation Transformations
	Abstraction Level of Transformations
	Unit of Transformations
	Dynamics of Transformations
	Target of Transformations
	Summary of Obfuscation Transformation Classification

	Classification of MATE Attacks
	Attack Type Dimension
	Dynamics Dimension
	Interpretation Dimension
	Alteration Dimension
	Summary of MATE Attack Classification

	Survey of Obfuscation Transformations
	Constant Data Transformations
	Variable Data Transformations
	Code Logic Transformations
	Code Abstraction Transformations
	Summary of Survey

	Discussion
	Related Work
	Encryption via Trusted Hardware
	Server-Side Execution
	Code Tamper-detection and Tamper-proofing
	Cryptographic Obfuscation
	Other Surveys of Software Obfuscation

	Conclusion

